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Abstract 

Metagenomic surveys have revealed that natural microbial communities are 

predominantly composed of sequence-discrete, species-like populations but the genetic and/or 

ecological processes that maintain such populations remain speculative, limiting our 

understanding of population speciation and adaptation to perturbations. To address this 

knowledge gap, we sequenced 112 Salinibacter ruber isolates and 12 companion metagenomes 

from four adjacent saltern ponds in Mallorca, Spain that were experimentally manipulated to 

dramatically alter salinity and light intensity, the two major drivers of this ecosystem. Our 

analyses showed that the pangenome of the local Sal. ruber population is open and similar in size 

(~15000 genes) to that of randomly sampled Escherichia coli genomes. While most of the 

accessory (non-core) genes were isolate-specific and showed low in situ abundances based on 

the metagenomes compared to the core genes, indicating that they were functionally unimportant 

and/or transient, 3.5% of them became abundant when salinity (but not light) conditions changed 

and encoded for functions related to osmoregulation. Nonetheless, the ecological advantage of 

these genes, while significant, was apparently not strong enough to purge diversity within the 

population. Collectively, our results provide an explanation for how this immense intra-

population gene diversity is maintained, which has implications for the prokaryotic species 

concept. 

 

 

 



 3 

Introduction   

Our understanding of the intraspecific diversity of prokaryotes is based largely on the  

comparative analyses of collections of isolates. Since these isolates typically originate from a  

variety of samples, habitats, and times, they often show varying fitness backgrounds and  

genomic adaptations specific to the local conditions at the time and place of isolation.  

Accordingly, the number of nonredundant genes (i.e., the pangenome) within many of the  

species formed by such isolates appears to increase continuously with the addition of each new  

isolate (i.e., the pangenome is open), and thus is quite large e.g., >30 000 or more genes than the  

human genome. This is especially the case for free-living, ecologically versatile species,  

contrasting with obligate symbionts, and other species of narrow ecological niche, that tend to  

have smaller or closed pangenomes (1, 2). Pangenomes are comprised of core and accessory  

genes (2-5). Core genes are shared by all or almost all (>90% of the total) genomes of a species  

and account for the general ecological and phenotypic properties of the species. Accessory  

genes, also referred to as auxiliary, dispensable, variable, or flexible genes, are present in only  

one or a few genomes of a species and can be further divided into strain-specific (isolate- 

specific), rare, or common genes based on the fraction of genomes found to contain the gene.  

While this phenomenon is well documented, it is still unclear whether results from the  

comparison of isolates acquired from different habitats and samples translate well to the diversity  

within natural populations; that is, a population of conspecific strains co-existing in the same  

environment or sample.  

The emerging picture from culture-independent metagenomic surveys of microbial  

communities is that bacteria and archaea predominantly form species-like, sequence-discrete  

populations with intraspecific genome sequence relatedness typically ranging from ~95% to  
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~100% genome-aggregate nucleotide identity (ANI) depending on the population considered i.e.,  

populations having a more recent bottleneck or genome sweep event show lower levels of  

intraspecific diversity (6-8). In contrast, ANI values between distinct (interspecific) populations  

are typically lower than 90%. Sequence-discrete populations have been commonly found in  

many different habitats including marine, freshwater, soils, sediment, human gut, and biofilms,  

and are typically persistent over time and space (9-12) indicating that they are not ephemeral but  

long-lived entities. Sequence-indiscrete populations (or, in other words, a continuum of ANI  

values) are rarely encountered in these previous studies, and when found are almost always  

attributable to the mixing of distinct habitats such as the mixing of water from different depths in  

the ocean water column during upwelling events (9, 12, 13). Consistent with the metagenomics  

perspective, a recent analysis of all available isolate genomes of named species (n ~ 90 000)  

revealed a similar bimodal distribution in ANI values; that is, a small number of genome pairs  

show 85-95% ANI relative to pairs showing either >95% or <85% ANI (i.e., an “ANI gap” or  

“discontinuity”) (14). These data reveal that a similar genetic (sequence) discontinuity is  

characteristic of both naturally occurring populations as well as classified (named in accordance  

with the bacteriological code) species comprising genomes of isolates. It remains to be tested,  

however, if functional (gene content) diversity patterns are also similar between naturally  

occurring populations and pure culture collections. Furthermore, it is equally important to  

elucidate the gene content dynamics of local populations to better understand the underlying  

evolutionary processes that shape species-like, sequence-discrete populations and maintain  

coherent species-like genomic structure on a global scale [reviewed in (6, 15)].  

More specifically, quantifying the extent of gene content variation (i.e., the accessory  

pangenome) within natural microbial populations is important to better understand the metabolic  
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and ecological plasticity of a population and how accessory genes facilitate adaptation to  

environmental perturbations. One prevailing hypothesis is that non-core gene diversity is largely  

neutral or ephemeral resulting from random genetic drift and a lack of competition among  

members of the population that is strong enough to lead to complete dominance of the  

member(s) carrying the genes in question (16). A competing hypothesis is that co-occurring  

subpopulations may accumulate substantial and ecologically important (non-neutral) gene  

content differences that enable, for instance, differentiated affinity for the same substrate, and  

thus are on their way to parapatric or sympatric speciation (15, 17, 18). The experimental data to  

test these hypotheses rigorously and quantitatively for a natural population are currently lacking,  

a gap that the present study aimed to fulfill.  

Metagenome-assembled genomes (MAGs) obtained from environmental samples using  

population genome binning techniques have been used to study sequence-discrete populations.  

However, verifying the purity, completeness, and accuracy of these MAGs is challenging (19- 

23). Furthermore, even with high quality MAGs, the extent to which the recovered gene content  

represents the pangenome of a population remains speculative, and can sometimes be low (24).  

MAGs cannot fully capture the total standing gene content variation of a natural population due  

to i) limitations in short-read assembly of hypervariable or genomic repeat regions, ii) low  

coverage of rare or accessory genes iii) high coverage of conserved regions shared across  

multiple populations, and iv) challenges in accurately grouping assembled contigs into MAGs  

during population genome binning (12, 24, 25).  Although a few longitudinal shotgun  

metagenomic studies have attempted to quantify the genetic variation within natural microbial  

populations, their primary focus has been on single nucleotide polymorphisms (SNPs) (e.g.,  

allelic variation) rather than gene content variation (7, 26-28). A few studies have also shown  
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that gene content can fluctuate within a population as an effect of the dominance of different  

strains (7, 12, 25) by querying isolate genomes or MAGs against time or spatial series  

metagenomes, but to our knowledge no study has quantified gene content diversity within natural  

populations or the existence of distinct (co-occurring) subpopulations based on shared gene  

content. For this, representative isolate genomes and/or whole genomes obtained through single- 

cell techniques (29, 30) need to be combined with MAGs and shotgun metagenomes, as  

performed in our study.   

 Solar salterns are semi-artificial environments used for harvesting salt for human  

consumption, and they harbor reduced microbial diversity driven primarily by environmental  

stressors, most notably sunlight intensity and high salt concentrations (31). Salinibacter ruber  

represents the major component of the bacterial fraction of salterns and is commonly isolated  

from hypersaline habitats globally (32). Hence, we used solar salterns in Mallorca, Spain as our  

experimental system, and focused on Sal. ruber to quantify the intraspecific gene content  

variation of its naturally occurring population on a local scale by combining metagenomic  

sampling with extensive isolate culturing efforts on the same samples. Samples were collected  

during a multi-stressor mesocosm experiment wherein salterns were stressed by different light  

intensity and salinity exposure regimes. Specifically, one control and three experimental ponds  

were filled with the same pre-concentrated inlet brines (Fig. S1). Apart from the inlet brines  

coming from the same source, the experimental ponds were isolated (no brine flow between  

ponds) and challenged by: i) sunlight intensity alterations using a shading mesh to cover a  

previously unshaded pond and ii) uncover a previously shaded pond, resulting in ~37-fold  

reduction or increase in sun irradiation, respectively (31), and, iii) abrupt changes in salt  

concentration from ~34% (salt saturation or precipitation level) to ~12% by dilution with  



 7 

freshwater over a period of four hours ((33), Fig. S1). The Sal. ruber populations from each of  

the four ponds were observed for one-month post-treatment by sampling 207 Sal. ruber isolates  

and 12 whole-community shotgun metagenomes. Metagenomes were sequenced from three time  

points: time-zero (Z), one-week (W), and one-month (M). Isolates from all ponds were  

sequenced at time-zero and one-month with an additional sampling day for the unshaded-shaded  

pond (ii) and the diluted pond (iii). The diluted pond had re-established salt-saturation conditions  

by natural evaporation at the end of the one-month experiment. See figure S1 for more details.  

Herein, we report the observed gene content diversity and the relative in situ gene abundance of  

the local Sal. ruber population during ambient (control) and experimentally altered  

environmental conditions.  

  

Results  

Sampling the local Sal. ruber population  

 To characterize the intraspecific diversity of the local Sal. ruber population in situ, we  

isolated 207 strains during a one-month time period from four adjacent saltern ponds at ‘Es  

Trenc’ in Mallorca, Spain (Fig. S1). Based on MALDI-TOF MS and RAPD signatures (Fig. S2),  

we selected 123 non-clonal isolates (i.e., strains with different RAPD profiles) for genome  

sequencing. 54 genomes were collected across the four ponds at time-zero (Z) and 54 genomes  

were collected across the four ponds at one-month (M). An additional 5 genomes were collected  

at two-days post dilution from the diluted pond and 10 genomes were collect at one-week (W)  

from the unshaded-shaded pond. See figure S1 for more details. After genome assembly, we  

selected 112 draft genomes that were determined to be free of contamination and of sufficient  

quality compared to previously completed Sal. ruber genomes for subsequent analyses (Sup.  
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Excel File 1). Our genomes had an average of 268 (stdev=60) contigs per assembly, an average  

N50 value of 25 369 bps (stdev= 7 357) and an average sequencing depth of 15X (stdev=5). The  

mean genome sequence length was 3 828 264 bps (stdev=140 342) with an average of 65.8%  

G+C content (stdev=0.3%) and an average of 3 369 unfiltered open reading frames per genome.  

All the Sal. ruber draft genomes had one 16S rRNA gene copy of 1 535 bps in length.   

  

Genomic diversity of the local Sal. ruber population based on 112 isolates  

 ANI vs. shared genome fraction analysis among all 112 genomes revealed a second  

closely related yet distinct population (n=10) around 95% ANI to the primary Sal. ruber  

population (n=102) (Fig. 1A). While this secondary cluster appears to be a divergent Sal. ruber- 

like clade based on our ANI analysis and maximum likelihood trees from 16S rRNA gene and  

single copy protein-coding genes (SCGs) (Figs. 1A & S3), it was initially identified as Sal. ruber  

using MALDI-TOF MS and RAPD analyses due to the highly similar spectra that made the  

strains of the new lineage to appear scattered among the true Sal. ruber (Fig. S2). Genomes of  

each population cluster share greater than 97.5% ANI among themselves with roughly a 3% ANI  

discontinuity and 5% difference in the shared genome fraction between them (Fig. 1A). We  

repeated this analysis using unassembled reads mapped to the assembled genomes in order to  

sidestep any potential biases resulting from assembly vs. assembly comparison of draft  

(incomplete) genomes containing hundreds of contigs and found essentially the same results  

(Fig. S4). We focused the remaining analyses on the primary Sal. ruber population due to its  

larger number of isolate genomes and the fact that the ten Sal. ruber genomes from the NCBI  

database fell within this primary population (Fig. 1A). Since the genomes from NCBI were  

isolated from various sites across the globe and are representative of the broader species level  
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diversity, this finding (e.g., Fig. 1A) suggests that our results from the locally sampled  

population of isolates in our collection may be transferable to other salterns where Sal. ruber  

represents a dominant species. The ANI values among the members of the primary population  

averaged approximately 98% and the shared genome fraction averaged approximately 80%,  

revealing that, while these genomes share high sequence identity, about 20% of the gene content  

differs in pairwise comparisons (Figs. 1A & S4). These findings revealed substantial  

intraspecific sequence (e.g., ANI) variation within the local population equivalent to that of the  

broader Sal. ruber species population based on the 10 available genomes from NCBI or other  

species with several sequenced representatives (14).  

 A maximum likelihood phylogeny of the full length 16S rRNA gene sequences carried by  

the isolate genomes or their concatenated set of 106 SCGs confirmed the ANI-based results. The  

two phylogenies showed that the minor Sal. ruber-like population formed a single diverging  

clade and that the ten NCBI genomes were dispersed throughout the primary clade (Fig. S3). In  

addition, the lack of defined subclades within the primary clade in terms of individual solar  

ponds (spatial) and time of sampling over the one-month sampling period (temporal) from which  

the genomes originated suggested that the local Sal. ruber population was largely homogeneous  

over space and time (Fig. S3). Likewise, the interspersed placement of the complete NCBI  

genomes within this primary clade indicated that genomic diversity at the local scale is  

representative of the current sequenced diversity captured by complete genomes collected at a  

more global scale (Fig. S3), although it should be noted that it remains unclear how well the  

NCBI genomes capture (or not) the global Sal. ruber genomic diversity. Collectively, these  

results indicated that our draft genome collection represents the extant cultivatable genomic  
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diversity found within the local Sal. ruber population and probably within the broader species  

population as well.  

  

Pangenome structure of the local Sal. ruber population  

 To assess genomic diversity at the gene level, we randomly selected 100 genomes from  

the primary Sal. ruber population (n=102) and analyzed the pangenome structure by calculating  

the empirical, non-redundant gene rarefaction curve while tracking new gene additions and gene  

class counts. We estimated the total pangenome (i.e., the number of non-redundant genes) of the  

local Sal. ruber population to be open (γ = 0.36; the γ parameter reflects the slope of the curve  

that represents the total non-redundant genes (2, 3)) consisting of 12 666 genes in total (Fig. 2A  

upper panel; Sup. Excel File 2). Each additional Sal. ruber genome added 98 new genes to the  

pangenome, on average, with a persistent mean addition of 48 new genes at n = 100 after 1 000  

permutations of the order that genomes were added to the rarefaction curve (Fig. 2A, lower  

panel). The exponential decay model fit to these data estimated that the new gene ratio (number  

of new genes per genome added to the pangenome / number of genes in genome) reached a  

lower asymptotic value of Ω = 2.2% of genes per genome (the Ω parameter estimates the lower  

asymptote of the decay curve (2, 3)), although the empirical values were measured to extend  

below this with a mean value of 1.7% at n = 100. These data show that nearly 2% of the gene  

content in any Sal. ruber genome sampled by our collection consisted of unique genetic material  

and that because of this, the total gene content diversity remained under-sampled even after  

sampling 100 genomes collected from the same source water (Fig. 2A; Sup. Excel File 2).  

Accordingly, we calculated that the pangenome of the local Sal. ruber genome collection was  

composed of 4 830 (~38% of total) isolate-specific genes and 5 587 (~44%) rare or common  
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genes distributed among the members of the population, with the core genes making up the  

remaining 18% (Fig. 2A; Sup. Excel File 2).  

While the total accessory genome remained unsaturated by sequencing, we estimated that  

there were 2 249 universally shared genes comprising the Sal. ruber core genome, or about 78%  

of a Sal. ruber genome (2 249 / 2 888) represented conserved, shared genetic material (Fig. 2A).  

These results were congruent with the ANI vs. shared genome fraction analysis as well (Fig. 1A).  

The persistence of the core genome was also validated by the extremely narrow empirical  

confidence intervals and by the exponential decay model reaching a similar lower asymptote  

limit at Ω = 2 248 after only 30 genome additions (Fig. 2A; Sup. Excel File 2). A cladogram  

based on the presence/absence of accessory genes revealed a similar overall clade structure to the  

core gene phylogeny, although several genomes clustered differently between the two trees  

(Figs. 3 & S5). Both trees indicated the existence of coexisting subpopulations within the Sal.  

ruber population based on the recovery of three -or more- distinct subclades (Figs. 3 & S5).  

Consistent with this view, analysis using evolutionary read placement of metagenomic reads to  

reference Sal. ruber rpoB gene sequences indicated the presence of subpopulations (or  

genotypes) that fluctuated in abundance relative to each other across the different sampling times  

(Fig. S6).  

  

Pangenome structure compared to other model species populations  

 Using the same pipeline, with additional random trials to calculate empirical confidence  

intervals, we estimated the pangenome of several, phylogenetically and physiological diverse,  

model bacterial species including Escherichia coli, Bacillus thuringiensis, Salmonella enterica,  

Mycobacterium tuberculosis, and Pseudomonas aeruginosa (Figs. 1B-E, 2B-C, 4 & 5; Sup.  
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Excel File 2). For these comparisons, we chose genomes to emulate the ANI distribution 

observed within the primary Sal. ruber population (~98% ANI, on average) in order to avoid the 

known effect of higher gene content conservation among genomes with higher ANI (genetic) 

relatedness as noted previously (34). Our selection process generated intraspecific ANI 

distributions similar to the primary Sal. ruber population centered around ~98.5% ANI (Fig. 1). 

We found the pangenome of E. coli to be open (γ = 0.34 for draft genomes and γ = 0.31 for 

complete genomes) and similar in size to the primary Sal. ruber population pangenome (Figs. 2 

& 4A-B; Sup. Excel File 2). Annotation results for the total pangenome were similar overall 

between Sal. ruber and E. coli, but, as expected for a well-studied model species, E. coli had 

fewer genes annotated as hypothetical or uncharacterized (Fig. S7; Sup. Excel File 3). Compared 

to E. coli, Sal. ruber had a comparable number of isolate-specific genes despite the smaller size 

of the Sal. ruber genome (2 888 vs. 4 118 genes per genome, on average). This was evident in a 

larger new gene ratio estimate for the Sal. ruber genomes, and in the number of isolate-specific 

(or rare) genes compared to the core genes (Figs. 4C & 5A-D), especially after normalizing by 

the pangenome or genome size for each species (Fig. 4D & 5E-L). Results for the other model 

bacterial species mentioned above are also reported but not discussed further to avoid 

redundancy. 

Another pattern revealed by our pangenome analysis was a consistent ratio of core 

genome size to genome size (i.e., what fraction of the total genes in the genome the core genes 

make up) at about 0.8-0.9, observed across species despite the variation of core gene to 

pangenome size ratios (Fig. 5L vs. H). This result was consistent with earlier observations based 

on a much smaller number of genomes per species (n ~ 10) (17). In addition, there was a general 

lack of genes with intermediate prevalence in the pangenome of a species between the core and 
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rare or isolate-specific gene classes (Figs. 4C, G, K & 6B). This means that genes are either  

predominantly present in all genomes or in only a few genomes of the population in accordance  

with the idea that new beneficial gene sweeps are comparatively less common than the creation  

and subsequent loss of new genetic material. In any case, we found the ratio of “accessory genes  

/ total pangenome genes” and “accessory genes in the genome / total genes in the genome” to be  

greater for Sal. ruber compared to the other species considered, indicating that a larger portion of  

the Sal. ruber genome is allocated toward gene content variation (Fig. 5E & I).  

  

Ecological/Functional importance of rare and isolate-specific Sal. ruber genes  

 To test if any isolate-specific or rare genes could provide an ecological benefit or were  

instead functionally neutral and/or ephemeral, we assessed their relative in situ abundance in the  

companion metagenomes representing changes in environmental conditions. To ensure adequate  

sequence coverage of the Sal. ruber population, metagenomes were re-sequenced to 15X  

coverage or greater for the Sal. ruber genomes based on their relative abundance (Fig. S8). To  

estimate the sequence depth of each gene (coverage), we computed a truncated average depth  

using the middle 80% of the sequence base positions (TAD80) to remove outlier effects from  

short conserved domains or motifs and the edge effect of read mapping to the ends of contigs  

(i.e. the top and bottom 10% of per base sequence depth values are removed from the distribution  

prior to taking the average), as suggested recently (35). We then normalized the TAD80 for each  

gene cluster by the average whole-genome TAD80 (Fig. S8) providing a view of the relative  

abundance of genes in relation to the relative genome abundance (Fig. 6A). Thus, a normalized  

value of 1.0 indicated that a gene has an equivalent in situ sequencing depth (relative abundance)  

to a single copy core gene; a value above 1.0 indicated that the gene abundance is greater than  
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the genome average. The resulting data revealed a strong decreasing trend in the distribution of 

gene abundances from the core gene class to the isolate-specific gene class (Fig. 6A). Notably, 

we identified that 0.7% of the isolate-specific genes (i.e., present in only one genome in our 

collection) and 2.8% of the rare genes (i.e., present in <20% of the genome in our collection) 

became abundant in situ during the intermediate salinity conditions (diluted pond one-week 

sample; 23.6% salt concentration), which followed the dilution from high (~34% salts) to low 

(~12% salts) salinity (Fig. 7). The isolates found to possess these genes originated from all ponds 

and sampling times (data not shown). They were not specific to isolates from the diluted pond 

only. The Sal. ruber population abundance in our samples did not vary more than three-fold and 

metagenomes were re-sequenced to provide 15X Sal. ruber genome coverage or greater (Fig. 

S8); thus, the differential gene abundance reported above cannot be attributed to possible 

artifacts related to low sequence coverage of the population. Such patterns were not observed for 

the abundance of any rare or isolate-specific genes in the light intensity or control treatment (Fig. 

7C, F, & I). 

 Functional annotation of the abundant fraction of isolate-specific and rare genes from the 

intermediate-salinity metagenome revealed that several of these genes could be involved in 

response to osmolarity changes, gene regulation, and transport of metabolites in/out of the cell. 

(Fig. 7H; Sup. Excel File 4). The isolate-specific genes that peaked in abundance during  

intermediate salinity shared high sequence similarity to genes found on the pSR84 plasmid from  

Sal. ruber strain M8, isolated more than a decade ago and shown to be more tolerant of lower  

salinity conditions than the type strain of Sal. ruber (Strain DMS 13855 or M31) (36). These  

results contrasted with an over-dominance of hypothetical and mobile functions among the  

isolate-specific genes that did not change in abundance in the intermediate-salinity metagenomes  
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(Figs. 7 & S9; Sup. Excel 4), revealing a strong bias toward functions that are presumably related  

to the salinity perturbation. In addition, 10.5% of the core genes also showed increased relative  

in situ abundances at the intermediate salinity metagenome and the (predicted) functions encoded  

by these core genes (Fig. 7B) were similarly involved in osmoregulation and transport as the rare  

(Fig. 7E) and isolate-specific (Fig. 7H) genes mentioned above. Hence, the enrichment of (or  

selection for) specific functions during salinity transition was evident in different parts of the  

population’s pangenome, and we focused our analysis on isolate-specific and rare genes because  

these made up a larger fraction of the pangenome (Fig. 6B). Given that core genes are typically  

single-copy genes in the genome, the increased abundances noted (Fig. 7B) could be due to  

recent horizontal transfer of these genes to/from other co-occurring populations or duplication of  

the genes within the genome (e.g. they are carried by multi-copy plasmids). Future work will  

elucidate the relevance of each of these scenarios.  

 We investigated if additional community members may also harbor the accessory genes  

found to fluctuate in relative abundance to determine if the genes are broadly important to the  

community (as opposed to just Sal. ruber) or if they may be horizontally transferred between  

community members. To evaluate the diversity of the genomic background (origin) of the Sal.  

ruber rare or isolate-specific genes that became abundant under the low-salinity condition, we  

assembled our metagenomic samples and searched for these genes (See Sup. Excel File 5 for  

metagenome assembly details). We found a variety of contigs containing similar, but not  

identically, copies of these genes within the 70 – 100% sequence identity range (Figs. S10 &  

S11). Genes of the rare class (Fig. S10) had more distant matches than genes in the isolate- 

specific class (Fig. S11). These results revealed that additional community members encode the  

genes, especially in the dilution pond one-week time point sample (salinity 23.6% NaCl),  
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indicating that the corresponding functions may indeed be selected by intermediate salinities and  

that genes with functions making their way to the rare class may be more broadly useful to the  

community as well. We also looked at synteny and taxonomic classification of the contigs  

identified, and while some contigs showed possible gene synteny indicating a common origin for  

the corresponding genes (Fig. S12), they were generally too short for conclusive results or  

taxonomic placement.  

  

Discussion  

 The pangenome of a local Sal. ruber population, sampled over a one-month period from  

four adjacent saltern ponds filled with the same source water, is open and similar in size to the  

pangenomes of E. coli and other species whose genomes were recovered from around the globe  

over the course of many years (Figs. 2 & 4). These results were somewhat unexpected given the  

range of samples providing the E. coli (and other) genomes relative to the few samples that  

provided the Sal. ruber isolates. In fact, we found that the pangenome to genome size ratio of the  

local Sal. ruber population is the largest of all species considered (Fig. 4B; Sup. Excel File 2).  

While pangenome sizes are known to vary between species (16, 18, 37), it is intriguing to find  

such extensive gene content variation within a single population and local source. These results  

also corroborate observations from a previous study of another large Sal. ruber isolate collection  

retrieved from a single, one drop (0.1 ml) sample that showed Sal. ruber to be phylogenetically  

homogenous at the ribosomal level yet diverse based on restriction patterns and metabolomics  

analysis (38). Furthermore, the Sal. ruber pangenome consisted primarily of core or very rare  

genes; few genes were found at intermediate prevalence, that is, encoded by a substantial fraction  

(e.g., ranging from 10% to 90% of the total) of genomes in our collection (Figs. 5 & 6B). These  
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results imply that the majority of non-core genes may indeed be neutral and/or ephemeral as  

previously hypothesized and do not contribute to the major functions carried by the population.  

Horizontal gene transfer (HGT) and gene deletion presumably underlie these patterns. Consistent  

with this assumption, our comparison of the Sal. ruber SCGs phylogenetic tree to that of the  

dendrogram based on the presence or absence of gene content revealed several incongruences  

(Fig. 3), indicating that HGT (and gene deletion) may be common.  

 While the great majority of isolate-specific and rare genes remained rare as conditions  

changed, at least a few of them (about 3.5% of the total) were found to considerably increase in  

abundance during the low-salinity (dilution) perturbation (Fig. 7). Several of the latter genes  

were three times more abundant relative to the genome average at intermediate salinity. Notably,  

the predicted functions encoded by these genes were associated with environmental sensing,  

metabolite transport in/out of the cell, glycosyltransferases (which may be related to  

osmoregulation) (39), and gene regulation (Figs. 7, S10, S11 & S12; Sup. Excel File 4). Very  

few hypothetical or uncharacterized genes were identified among the genes showing increased  

abundance at intermediate salinity despite the high frequency of the former genes in the total  

pangenome (Fig. S9). Collectively, these results further supported our hypothesis that the  

identified genes involved in regulation and transport are presumably important for cell  

osmoregulation under low- and intermediate-salinity conditions. While these findings await  

further experimental validation (e.g., measure the fitness effect of the genes), they do indicate  

that a small fraction (3.5%) of genes identified from the isolate-specific and rare class may  

facilitate the Sal. ruber population in adapting to changes in salinity concentrations, and thus are  

likely not neutral or ephemeral. Unfortunately, the exact function or substrate specificity for the  

identified genes remains unknown as bioinformatics analysis provides only general functional  
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prediction. Hence, we are not yet able to make specific inferences about how exactly these genes  

facilitate adaptation to intermediate salinity conditions. Note also that assessing the relative  

abundance of these genes in the time zero sample of lowest salinity (~12% salts) would not have  

been meaningful in this respect because the corresponding cells that carry these genes did not  

have enough time to adjust to the low salinity conditions and begin to grow (40, 41). Further, the  

great majority of the identified genes apparently do not undergo adaptive evolution since their  

pN/pS ratio based on metagenomic reads mapped on the genes were low, between 0.1-0.5,  

although slightly higher than that of the core genes (Fig. S13). These ratios indicated strong  

purifying selection for the identified osmoregulation-related genes and that they are already well  

fit for the function they carry out.  

 It is possible that additional isolate-specific or rare genes become important during  

fluctuations of other environmental variables. However, analysis of metagenomic data from the  

experimental manipulation of light intensity, the other major environmental factor for the saltern  

ecosystems (31), did not reveal any isolate-specific genes to change in abundance as we  

observed in the intermediate salinity samples. Notably, while Sal. ruber has been shown to be a  

heterotroph and strict aerobe, with limited substrate repertoire (40, 41), it also carries various  

rhodopsins, i.e. xanthorhodopsins, halorhodopsins and sensory rhodopsins (42, 43) that allow it  

to gain sunlight energy. Hence, the lack of rare or isolate-specific genes becoming abundant  

during the light intensity manipulation presumably reflects that the majority of light-specific  

functions are found among the core genes. Accordingly, any additional isolate-specific or rare  

genes of ecological importance would have to be specific to environmental parameters not  

measured by our work. Such parameters could include seasonal fluctuations (e.g., we sampled  

for one-month in August) or biotic factors such as phage predation (44). In any case, genes of  
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such ecological importance are not expected to make up a large fraction of the pangenome based 

on the results reported here (e.g., most isolate-specific genes were not found to be abundant 

relative to the average genome relative abundance in any metagenomic datasets) for salinity and 

light intensity transitions, the two major drivers of the saltern ecosystem. While some of these 

results and interpretations echoed those in previous studies (17, 45-47), they do provide a new 

and more quantitative perspective into the role of biodiversity within sequence-discrete 

populations (and species) during environmental transition. 

 An emerging question based on these findings is why the intrapopulation diversity was 

not purged (removed) when salinity conditions changed. That is, the genomes (cells) that encode 

the abovementioned genes should have outcompeted the remaining genomes of the population 

resulting in a more clonal population and/or (sub-population) speciation. However, phylogenetic 

analysis of the isolates (Fig. S3) and metagenomic read placement (Fig. S6) suggests that 

intrapopulation diversity was maintained and, in fact, the dominant subpopulations in terms of 

gene content bounced back in abundance when salt-saturation conditions were re-established. 

Thus, we hypothesize that the ecological advantage of these genes is significant, but not strong 

enough to purge the intrapopulation diversity (or sweep through the population) or a much longer 

duration of intermediate salinities than represented by our experimental design or the typical salt 

cycles observed in the Mallorca salterns would have been required for a population sweep event 

to take place. Consistent with this working hypothesis, genomes that do not encode these genes 

were apparently able to survive at lower growth rates until favorable (salt-saturation) conditions 

returned (Figs. 7 & S6). Further, the generation time previously observed for the natural Sal. 

ruber population in similar saltern ponds is close to 30 hours (40, 41), which reveals relative 

slow growth compared to organisms like E. coli (20-30 minutes generation time) and thus, a long 
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time is presumably required for population (and/or gene) sweep events to take place. While this  

hypothesis remains to be experimentally tested, it does provide a plausible explanation for the  

maintenance of sequence-discrete populations despite such immense intrapopulation gene  

content diversity, frequent HGT [Fig. 3 and Refs (12, 15, 47, 48)], and environmental transitions.  

That is, transient environment fluctuations could select for a subset of cells carrying specific  

accessory genes but the selective advantage conferred by these genes is not strong enough for the  

corresponding cells to outcompete the remaining co-occurring cells and dominate the population  

(diversity purging) within the time that the environmental fluctuations last and the strength of  

selection that the fluctuations impose on the population. Moreover, these results further  

corroborate the use of sequence-discrete populations as the important unit of microbial diversity  

for taxonomy as well as for future investigations for advancing taxonomy and diversity studies.  

 While isolate sequencing can circumvent the limitations of MAGs and short-read data in  

recovering the intra-population gene content diversity [discussed above and in (21, 22, 49)],  

isolation may provide an uneven view of the natural population due to isolation biases. However,  

this is unlikely to have been the case for the primary Sal. ruber population studied here based on  

several independent lines of evidence. First, the ten Sal. ruber genomes from NCBI, which  

originated from various salterns around the world, are grouped together into a single clade with  

the 102 genomes of the primary population in our core-genome phylogeny. This is also the case  

for the evolutionary placement of metagenomic reads onto the genome-based phylogeny, i.e., the  

great majority of reads were assigned to terminal branches (tips) of the tree as opposed to  

ancestral nodes; the latter would have indicated that the reads originated from abundant strains  

not represented by our isolates. Second, our collection of sequenced isolates represents a much  

larger collection (n = 207) of isolates that were first identified as Sal. ruber by MALDI-TOF MS  
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whole cell analysis and dereplicated by RAPD profile analyses to avoid sequencing the same  

clone. Importantly, in this larger collection, there were not any major or minor subclade(s) that  

were not represented by the subset of the 112 isolates we sequenced (Fig. S2A). Hence, our  

genome collection appears to be representative of the natural Sal. ruber population based on the  

phylogenetic placement of metagenomic reads, the MALDI-TOF spectra analysis, and the RAPD  

profiles of a much larger collection of (non-sequenced) isolates (Figs. S6 & S2). Finally, based  

on the ANI vs. the shared genome fraction analysis (Fig. 1), the draft E. coli genome collection  

had a wider distribution than the complete E. coli genome collection; however, the mean values  

on both axes were nearly equal (Fig. 1B & C). The wider distribution could be a technical  

artifact due to the nature of incomplete versus complete genome sequences, or likely a true signal  

of biological diversity arising from the greater number of draft genomes available. Regardless of  

the exact underlying reason, the similarity in values indicates that our measurements from draft  

genomes provide similar estimates to complete genomes and that our pipeline was robust.  

Importantly, we selected draft genomes from different species to be of a similar level of  

completeness and ANI relatedness to avoid any systematic effect of these parameters on our  

results and conclusions.  

 Despite the abovementioned advantages, the number of genomes we sequenced was still  

limiting compared to the total gene content diversity as evidenced by the incomplete capture of  

accessory genes by our pangenome analysis. Future work could include more replicate samples,  

longer time series analysis, and deeper metagenomic sequencing with long-read technology for  

more robust results and interpretations. It would be particularly interesting to measure the fitness  

advantage of isolates based on their specific complement of accessory genes to directly test the  

hypotheses presented above related to the ecological advantage of such genes. The work  
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presented here should serve as a guide for the number of samples and isolates to obtain, amount 

of sequencing to apply (Fig. S8), and what bioinformatics analyses to perform for studying the 

value of the diversity within natural sequence-discrete populations. It is also important to note 

that other species in different habitats may show different dynamics compared to those revealed 

here for the Sal. ruber population, especially with respect to what fraction of the pangenome 

responds to environmental change, because the perturbation (e.g., salinity change) may not 

translate well to the type of perturbations observed in these other habitats. Nonetheless, the 

striking similarities revealed between the Sal. ruber and E. coli pangenomes do indicate that, Sal. 

ruber is a useful model system for studying pangenome dynamics and the ecological/functional 

importance of accessory genes.   

 

Materials and Methods  

Experimental site, sampling and processing 

 Sal. ruber isolates and whole-community samples for shotgun-metagenomics were 

collected concomitantly from four adjacent solar saltern ponds in Mallorca, Spain at ‘Es Trenc’ 

(Fig. S1) at three time points over a one-month period post-treatment in August of 2012. The 

saltern ponds are part of a larger facility of crystallizers for salt harvest and are fed with the same 

inlet brines. After filling with inlet brines there was no fluid exchange between the ponds during 

the course of study, and there were negligible effects from rainfall in Majorca, Spain during the 

month of August, when the experiment was conducted. The conditions for each pond were as 

follows: 1) a control pond with ambient sunlight and salt-saturation conditions found at the ‘Es 

Trenc’ salterns, 2) a shaded-unshaded pond that was covered with a mesh to reduce sunlight 

intensity by 37-fold for 3 months prior to the experiment and then uncovered (unshaded) at time 
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zero, 3) an unshaded-shaded pond that was kept uncovered until time zero, then covered with a 

mesh (shaded), and 4) a diluted pond to which freshwater was added to reduce the salinity from 

~34% to ~12% in less than one hour. The mesocosm experiment was designed to test the effects 

of light intensity and salinity levels on the indigenous microbial communities inhabiting the 

salterns. Ponds #2 and #4 reached salt saturation conditions after one month during which time 

the microbial community dynamics re-stabilized; thus, no further sampling was performed after 

one month. The isolates used in this study were collected from all four ponds at time zero (just 

before the stressors were applied) and one-month (at the end of the experiment). Isolates were 

also sequenced from samples taken at two days post dilution treatment and one-week post the 

unshaded-shaded treatment (Fig. S1). The companion metagenomes for this study were 

sequenced from all four ponds sampled at one day, one week and one-month post treatment (Fig. 

S1). Metagenomes for the shaded-unshaded experiment were excluded in this study due to low 

sequence coverage of the Sal. ruber population in the corresponding samples. The experimental 

design and detailed procedures were previously described in (31), except for the inclusion of the 

diluted pond experiment which is described in (33) and outlined in Fig. S1. Samples were 

collected, processed for culturing, and resulting isolates were identified using Matrix-Assisted 

Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI–TOF MS) as described 

by (31, 32, 50) (Fig. S2A). Multiple clonal isolates were dereplicated using random amplified 

polymorphic DNA (RAPD) fingerprinting (50) (Fig. S2B). 

 

DNA extraction and Sequencing 

 Sal. ruber isolate cultivation and DNA extraction were performed as described in (42, 

51). For metagenomic DNA extraction, 25ml of brine samples were centrifuged at 13 000 rpm as 
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detailed in (51). DNA sequencing libraries were prepared using the Nextera XT DNA library  

prep kit (Illumina) according to manufacturer’s instructions up to the isolation of cleaned double  

stranded libraries. Library concentrations were determined by fluorescent quantification using a  

Qubit HS DNA kit and Qubit 2.0 fluorometer (ThermoFisher Scientific) and samples were run  

on a High Sensitivity DNA chip using the Bioanalyzer 2100 instrument (Agilent) to determine  

library insert sizes. Libraries were sequenced for 500-cycles (2 x 250-bp paired-end) on a MiSeq  

instrument (Illumina; Molecular Evolution Core facility, Georgia Institute of Technology) as  

recommended by the manufacturer. Additional sequencing of selected low-coverage libraries  

after the MiSeq sequencing was carried out on NextSeq 500 instrument (Illumina; located in the  

same facility) using a rapid run of 300 cycles (2 x 150-bp paired-end). Adapter trimming and  

demultiplexing of sequenced samples was carried out by the software available on each  

respective sequencing instrument.  

  

Sequence quality control, assembly, and gene prediction  

Raw reads in fastq format were evaluated with FastQC version 0.11.2 (52) in addition to  

quality analysis using custom Python scripts. Trimming and adapter clipping were performed  

using Trimmomatic version 0.39 (53) with settings ILLUMINACLIP NexteraPE- 

PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 MINLEN:36. Assembly was  

performed using SPAdes version 3.13.0 with the “--careful” flag and “-k 21,33,55,77,99,127”.  

Gene prediction was performed using Prodigal version 2.6.3 with default settings (54). The  

resulting summary tables can be found in Supplementary Excel File 1.   

  

Assessment of draft genome quality and phylogenetic analyses  
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 The Sal. ruber isolate draft genomes were assembled from an average of 158 Mbps  

(stdev=66) of sequenced reads per isolate after adapter clipping and quality trimming  

(Supplemental Excel File 1). For each assembly, contigs shorter than 1 000 base pairs with  

supporting sequence coverage of less than 2X were removed from the assembly. The draft  

genomes in addition to Sal. ruber and Sal. altiplanensis genomes retrieved from NCBI were  

evaluated using the Microbial Genomes Atlas (MiGA) (55) to generate assembly metrics, quality  

scores, and all vs. all ANI scores (Supplemental Excel File 1). MiGA also identifies and extracts  

predicted 16S rRNA gene sequences and universal SCGs for each genome submitted. The  

sequences for the 16S rRNA gene, rpoB and the concatenated set of SCGs from each genome  

were aligned using Clustal Omega version 1.2.1 (56) with default settings. Maximum likelihood  

trees for the 16S rRNA gene and rpoB alignments were generated using RAxML version 8.0.19  

(57) with parameters: -m GTRGAMMA -f a -N autoMRE -p 4564821 -T 2 -x 1235. An  

approximate maximum likelihood tree was generated for the concatenated SGCs using FastTree  

v2.1.10 (58) with default settings. The trees were drawn using either FigTree v1.4.3 (59) or iTOL  

version 4 (60).   

  

Pangenome analysis  

 A custom pipeline was developed for the pangenome analysis using a combination of  

Bash and Python programming. The pipeline starts with a directory containing genomes for  

single species and proceeds in five parts. Part 1 selects a seed genome at random and then  

continues random selection of genomes without replacement until the requested number of  

genomes meeting the criteria is reached. The pipeline keeps a genome if it matches the seed  

genome above a user defined ANI value (97.5% by default to match the ANI values observed  
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among Sal. ruber isolate genomes; Fig. 1). Part 2 predicts genes for each genome selected using  

Prodigal and removes genes shorter than 300 nucleotides in length. Part 3 runs an all vs. all ANI  

genome comparison using FastANI version 1.1 (14). Part 4 clusters all genes from all genomes  

using CD-HIT-EST version 4.7 (61) with parameters: -c 0.9 -n 8 -G 0 -g 1 -aS 0.7 -M 10000 -d 0  

-T 10. Step 5 uses custom Python scripts to parse the CD-HIT cluster file, run permutations to  

calculate the pangenome statistics, fit models to the empirical data, and build graphical plots of  

the results. The genomes used in our analysis included 878 complete and 11,167 draft E. coli,  

433 draft Bacillus thuringiensis, 3,037 draft Salmonella enterica, 1 865 draft Mycobacterium  

tuberculosis, and 3 264 draft Pseudomonas aeruginosa genomes downloaded from NCBI on  

June 26, 2019. To generate empirical distributions, the custom pangenome pipeline was used to  

run 100 random bootstrap trials for each species (other than Sal. ruber) with genome  

replacement between trials. Only one trial was run for Sal. ruber since only about 100 draft  

genomes were available and each trial used 100 genomes.  

 In accordance with Tettelin et. al. 2005 & 2008 (2, 3), we fit a power law model to our  

data to estimate the upward trajectory of the pangenome growth curve using the γ parameter,  

and, we fit an exponential decay model to our data to estimate the Ω parameter which represents  

the lower boundary of the curves for the number of core genes or new gene additions. The  

possible values for the γ parameter reflect an open (0 < γ < 1) or closed (γ < 0) pangenome. For  

this analysis, we chose 100 genomes at random from the primary Sal. ruber population which  

excluded the two draft genomes labelled as SZ05 and SM11 corresponding to the 5th and 11th  

isolates obtained from the shaded pond at time zero and one month respectively. We then defined  

gene classes by a parameter p = n / N where n is the number of genomes carrying a gene and N is  

the total number of genomes (N = 100). Core genes are defined as those showing p ≥ 0.9,  
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common when 0.2 ≤ p < 0.9, rare when 1 / N < p < 0.2, or isolate-specific when p = 1 / N. 

Accordingly, the accessory pangenome consists of all isolate-specific, rare, and common genes. 

 

Estimation of in situ gene abundance 

 Quality-trimmed metagenomic reads were searched against Sal. ruber draft genomes 

separately for each genome using the blastn option for the “task” parameter with BLAST+ 

version 2.2.29 with default settings (62). Reads that found a match higher than the 95% sequence 

identity threshold and an (alignment length) / (query read length) greater than a threshold of 0.9 

were used to calculate sequence depth (relative abundance). The resulting read depth data was 

truncated to the middle 80% (TAD80) of depth values (i.e., the upper and lower 10% of outliers 

were removed) using a custom Python script to provide TAD80 values for each genome, contig, 

and gene (Figs. 6, 7, & S8; Supplemental Excel File 4). The 2nd pond (shaded-unshaded) had 

relatively lower Sal. ruber abundance compared to the other ponds presumably due to the long-

term shading of the pond, and was sequenced at a lower effort, which rendered the assessment of 

gene in situ abundance unreliable. Hence, this pond was used for isolation but not in the 

remaining bioinformatics analysis. 

 

Gene annotations 

 Representative genes for each CD-HIT-EST gene cluster were annotated against both 

UniProt databases (SwissProt and TrEMBL release-2018_05) using the blastp algorithm from 

BLAST+ version 2.2.29 with default settings (62). Results were filtered for best match using a 

minimum threshold of 40% sequence identity and 50% alignment length coverage of the UniProt 

sequence for a match. Genes were also annotated using KofamKOALA version 2019-07-03 (63) 
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with KEGG release 91.0 (64) and only annotations with an asterisk indicating they were above  

predefined thresholds for the corresponding HMM models were kept for analysis. Annotations  

can be found in supplemental Excel file 3 and 4.  

  

Code Availability  

The custom code for these analyses are available on GitHub:  

https://github.com/rotheconrad/Salinibacter_ruber_01.  

  

Data availability  

The data for this study has been deposited in the European Nucleotide Archive (ENA) at EMBL- 

EBI under accession number PRJEB27680 (https://www.ebi.ac.uk/ena/data/view/PRJEB27680).  
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Fig. 1 Genomic diversity within selected species assessed by ANI and shared genome 

fraction. The shared genome fraction (y-axis) is plotted against ANI (x-axis). Correlation 

coefficients between these two genome variables are shown on each plot along with dashed lines 

for the mean values. The graphs to the top and right of each panel show the kernel density 

estimates for each axis.  (A) Values representing the 112 x 112 comparisons of our Sal. ruber 

isolate draft genome collection (designated as Draft-Draft), 10 x 10 for Sal. ruber genomes from 

NBI (designated as NCBI-NCBI), and 112 x 10 for our draft genomes versus the NCBI genomes 

(designated as Draft-NCBI). Correlation coefficients were calculated for the primary Sal. ruber 

population (n=102) as well as for the total population (n=112). The means were calculated for 

the primary Sal. ruber population only. Note that the draft datapoints overlap with the NCBI 

datapoints representing complete genomes revealing no major biases by the draft nature of these 

genomes with respect to gene content or ANI values. Similarly, this shows that our isolate 

collection captures the diversity seen within the available reference genomes. (B-E) 100 x 100 

genomic comparison results times 100 random sampling trials for (B) E. coli draft, (C) E. coli 

complete, (D) B. thuringiensis draft, and (E) S. enterica draft genome collections. Correlation 

coefficients and means were calculated for all values. Note the kernel density estimates on the 

perimeter of each panel (top and right) that clearly show the density distributions of the 

corresponding data points. 
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Figure 2: 
 

 

Fig. 2 Pangenome comparison of Sal. ruber to selected bacterial species. (A-C) The top panel 

shows the mean, 95% empirical confidence interval of permuted values, and the model fit for 

each of three curves showing the total non-redundant genes in the pangenome (dark gray), total 

number of core genes (gray), and total number of isolate-specific genes (light gray) on the y-axis 

plotted against the number of genomes sampled (x-axis) for (A) 100 draft genomes from the 
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primary Sal. ruber population, and results from all random trials for (B) E. coli draft genomes 

and (C) E. coli complete genomes. The lower panel shows the same calculations but for the new 

gene per genome ratio. The axes scales are conserved between panels. Pangenome metrics are 

also provided in Sup. Excel File 2. 

 

Figure 3: 
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Fig. 3 Clustering of Sal. ruber isolate genomes based on presence or absence of accessory 

genes reveals similar but divergent subpopulation structure compared to 16S or 

concatenated SCG gene tree. Comparison of the approximately-maximum-likelihood 

phylogenetic tree from SCGs to a dendrogram based on the presence or absence of accessory 

genes. Genome clustering is based on the pairwise Euclidean distance calculated from gene 

presence or absence using the scipy.spatial.distance.pdistfrom package and the Ward variance 

minimization algorithm from the scipy.cluster.hierarchy.linkage package in Python. The 

concatenated alignment of SCGs was stringently trimmed to remove all gap positions and 

contiguous non-conserved positions of 5 or greater. The lines connect the same gene across both 

trees. Isolates are named according to the different ponds and sampling times they were 

recovered from corresponding to the abbreviations in Fig. S1. So, CZ22 designates the 22nd 

isolate recovered from the control pond (C) at time zero (Z) and DM15 designates the 15th isolate 

recovered from the diluted pond (D) at time one-month (M). Note the plausible highlighted sub-

clade structures consist of isolates from all ponds and sampling times. 

 

 

 

 

 

 

 

 

 



 37 

Figure 4: 

 

Fig. 4 Detailed comparison of pangenome metrics for selected bacterial species. Pangenome 

metrics were calculated from draft genome collections for multiple organisms, plus one closed 

genome collection for E. coli. Error bars show the 95% empirical confidence interval of results 

calculated from 100 random trials each selecting 100 genomes and running 100 permutations. 

Sal. ruber error bars are not shown because only 100 draft genomes from this experiment were 

available (no random trials). (A) Absolute count of total non-redundant genes after the addition 
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of 100 randomly selected genomes. (B) Values from (A) normalized by the average genome size 

of each species. (C) Mean number of new genes added to the total pangenome per genome 

addition. (D) Values from (C) normalized by the average genome size of each species. 

Pangenome metrics also provided in Sup. Excel File 2. 

 

Figure 5: 
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Fig. 5 Detailed comparison of pangenome metrics for selected bacterial species. Pangenome 

metrics were calculated from draft genome collections for multiple organisms, plus one closed 

genome collection for E. coli. Error bars show the 95% empirical confidence interval of results 

calculated from 100 random trials each selecting 100 genomes and running 100 permutations. 

Sal. ruber error bars are not shown because only 100 draft genomes from this experiment were 

available (no random trials). Columns show the contribution to the pangenome of different 

classes of genes (isolate-specific, rare, common, or core) based on their prevalence among the 

100 genomes of the species analyzed (see text for details). (A-D) The absolute count of genes for 

each gene class are shown. (E-H) Counts from A-D normalized by the total size of the 

pangenome from (A). (I-L) Counts from A-D normalized by the average genome size of each of 

the species analyzed. Pangenome metrics also provided in Sup. Excel File 2. 

 

Figure 6: 
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Fig. 6 Relative in situ abundance of different classes of Sal. ruber genes based on their 

prevalence in isolate genomes. (A) Box plots show the distribution of the average TAD80 (i.e., 

in situ abundance) for each non-redundant gene cluster normalized by the average whole-genome 

TAD80 that was computed for and averaged across three control pond (salt saturation 

conditions) metagenomic datasets (y-axis). A normalized value of 1.0 indicates that the gene has 

A B
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an equivalent in situ coverage (abundance) to a single copy core gene. Genes are ordered on the 

x-axis based on their prevalence among 100 Sal. ruber genomes, e.g., a value of 1 at the bottom 

indicates that only 1 genome has this gene cluster (isolate-specific gene class), and values of 90 – 

100 at the top indicate that 90 to 100 genomes have the gene cluster (core gene class). Coverage 

values for each gene cluster provided in Sup. Excel File 4. (B) Counts of the number of non-

redundant genes of the pangenome (y-axis) assigned to each gene prevalence class (x-axis); 

classes are ordered as in panel A. 
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Figure 7: 

 

Fig. 7 Sal. ruber  gene abundance dynamics over the one month period of the experiment. 

Each line represents a non-redundant gene of the Sal. ruber pangenome for which the average 

TAD80 of the gene normalized by the whole-genome TAD80 of the same sample (y-axes) is 

plotted against the three metagenomic sampling time points (x-axes) for each of the three 

separate experimental ponds outlined in Fig. S1. Therefore, the lines represent the relative gene 

abundance in relation to the relative genome abundance. Results are organized by core (A-C), 

rare (D-F), or isolate-specific (G-I) gene class. Results for all genes are plotted as gray lines with 

a handful of genes from each class, selected based on their (higher) peak in B, E, and H panels 

representing the pond with changing salinity conditions (see x-axis values), shown in black. The 

corresponding functional annotations of these genes are also shown (figure legend).  All gene 

annotations provided in Sup. Excel File 4. The diluted pond salt concentration was reduced from 

33.6% to 12.0% salts at time zero (Z). 
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