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Notations 

Symbols and their meanings 

Symbol Meaning 

A 

P(A) 

a,b,c 

a+ 

B(H) 

bdy (9) 

C 

C 

dim(·) 

dist (T, S) 

E,F,G,P,Q 

Eu ,Fu 

E>-, F>-

g 

Q 

int (9) 

,(T) 

Tr(T) 

an AW* -algebra 

complete lattice of projections in A 

usually denotes elements in a C* -algebra 

the generalised inverse of a 

all bounded linear operators on H 

boundary of the set g 

set of complex numbers 

C*-algebra 

dimension function 

distance from the operator T to the set S 

projections 

spectral measures 

spectral projections 

group of invertible elements in M 

closure of 9 

interior of g 

reduced minimum modulus of T 

essential minimum modulus of T 
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H 

I 

index(T) 

I< 

K(M) 

K(H) 

M 

m(T) 

mr(T) 

N 

Nr 

P(M) 

p(T) 

R(S) 

1rr( ·) 

<I>o 

<I>e(M, I) 

4>r(M, I) 

4>s(M,I) 

<I>u(M, I) 

a Hilbert space 

closed two-sided ideal 

index of an element T 

stonian space 

closed ideal generated by finite projections in M 

ideal of compact operators in B( H) 

left regular representation of a 

a van Neumann algebra 

info-(ITI) 

lower bound of T relative to I 

set of natural numbers 

null projection of T 

complete lattice of projections in M 

resolvent set of T 

right annihilator of the set S 

quotient map 

Fredholm elements of index zero 

left Fredholm elements in M relative to I 

right Fredholm elements in M relative to I 

semi-Fredholm elements in M relative to I 

union of <I>e(M,I) and <I>r(M,I) 
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R 

Rr 

r(a) 

O"(T) 

O"e(T) 

s(T) 

T,S,U,V 

T* 

ITI 

{T}' 

z 

Ze(M,I) 

Z(M,I) 

set of real numbers 

range projection of T 

spectral radius of a 

spectrum of T 

essential spectrum of T 

semi-Fredholm radius of T 

operators 

adjoint of T 

absolute value of T 

commutant of T 

center of M 

set of T in M for which 1rr(T) is a left topological zero 

divisor in M /I 

set of T in M for which 1rr(T) is a right topological zero 

divisor in M /I 

set of T in M for which 1rr(T) is a topological zero 

divisor in M /I 
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INTRODUCTION 

Operational quantities characteristic of the semi-Fredholm operators have been in­

troduced in the theory of bounded operators between Banach spaces and applied 

successfully to for example perturbation theory [Gol66], [Kat66], [Zem81], [Zem84a], 

[Zem84b]. 

In recent years, there have been various attempts at generalising various classical 

results relating to compact operators (in particular results that consider the compact 

operators as an ideal in the full algebra of bounded operators on a Hilbert space) to 

the setting of a von Neumann algebra containing a closed ideal. 

In all these developments the existence of projections plays a crucial role. In fact it 

is well known (via the spectral theorem) that a von Neumann algebra is generated 

by its projections and that the class of projections is a complete lattice in the sense 
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of Boolean algebra. For a closed ideal in the algebra it was shown by Wright [Wri54] 

that the ideal is exactly the closure of the ideal generated by its projections. This 

result generalises an important characterisation of the ideal of compact operators, 

namely that it is the closure of the ideal of finite rank operators, and hence the 

closed ideal generated by the finite dimensional projections. 

In [Kaf77,Kaf78], Kaftal has considered the ideal of so called algebraically compact 

operators which is defined to be the closed ideal generated by the "Murray and von 

Neumann" finite projections in the von Neumann algebra, and has shown that the 

ideal consists of those operators which map the unit ball to sets which have compact­

like properties. This characterisation was generalised to arbitrary norm-closed ideals 

by Stroh [Str89]. 

M. Breuer [Bre68,Bre69] has developed a complete Fredholm theory and index the­

ory relative to the closed ideal generated by the finite projections in the algebra 

and applied his results successfully in the study of vector bundles relative to a von 

Neumann algebra. By using Breuer's ideas, left and right Fredholm theory relative 

to the compact ideal was introduced by V. Kaftal [Kaf77,Kaf78] and results like 

the Weyl-von Neumann theorem was extended to this setting. With the Fredholm 

theory available, the notion of Riesz elements was introduced by A. Stroh and J. 

Swart [StS91] and a complete Riesz decomposition theorem was obtained. 

It was first noted by Olsen [ 0 ls84] that the study of a Fredholm theory in a von 
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Neumann algebra setting has successful generalisations towards any closed two­

sided ideal in the algebra. In particular, by making use of the dimension function of 

Tomiyama [Tom58] and the work of Wils [Wil70], Olsen has developed a comprehen­

sive Fredholm theory and index theory for closed two-sided ideals in von Neumann 

algebras. 

In this thesis we will focus mainly on the role that the minimum modulus and 

the reduced minimum modulus play with regards to perturbation theory in a von 

Neumann algebra setting and some possible extensions to AW*-algebras. 

Chapter 1 mainly deals with basic facts that will be used throughout the thesis. 

The main tool in all of this work is the existence of a spectral representation for 

self-adjoint elements in a von Neumann algebra. In this chapter we show that any 

self-adjoint element in an AW* -algebra possesses a spectral decomposition within 

the algebra. Closely related is the notion of a polar decomposition of an element in 

the algebra. In applications one usually apply the spectral theorem to the absolute 

value of an element. Since this will be a key idea in obtaining our results we include 

a proof of the polar decomposition of an element in an AW* -algebra. In order to 

make the thesis as self-contained as possible we give a short introduction of the 

index theory of von Neumann algebras developed by Olsen [Ols84]. 

In Chapter 2 we focus on the norm-closed two-sided ideals in an AW* -algebra. We 

show that closed ideals have properties very similar to the ideal of compact operators 
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on a Hilbert space. The spectral type of characterisations obtained in this chapter 

of elements from a given closed ideal generalises results of Kaftal [Kaf77] and Stroh 

[Str89]. 

A fairly easy application of the spectral theorem shows that any AW* -algebra has 

real rank zero. We finally use this fact and some work of Hadwin [Had95] to show 

that the lifting of algebraic elements is possible in an AW* -algebra setting relative 

to any closed two-sided ideal. 

In Chapter 3 we study some properties of the reduced minimum modulus and the 

reduced essential minimum modulus in a von Neumann algebra setting. We answer 

a question raised in [Str94] in the affirmative, namely that the reduced essential 

minimum modulus of an element in a von Neumann algebra relative to any norm 

closed two sided ideal is equal to the reduced minimum modulus of the element 

perturbed by an element from the ideal. As a corollary, we extend some basic 

perturbation results on semi-Fredholm elements to a von Neumann algebra setting. 

In particular, we show that if an operator is semi-Fredholm relative to any closed 

ideal, then it is a point of continuity of the reduced essential minimum modulus 

map. More generally, we find a complete characterisation of the points of continuity 

of the reduced essential minimum modulus in terms of Fredholm properties. These 

results generalise the work of Mbekhta and Paul [MbP96]. We conclude the chapter 

by a study of the asymptotic behaviour of the reduced essential minimum modulus. 
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In [Ols84], Olsen used another quantity, the essential lower bound, to characterise 

the classes of left and right Fredholm elements. In Chapter 4 we show that by using 

similar techniques, as for the case of the reduced quantities, the essential lower bound 

of an element can be perturbed by an element from the ideal to the lower bound. 

An important consequence is the lifting of invertible elements from the quotient 

algebra to the algebra, namely that any Fredholm element of index zero can be 

perturbed by an element from the ideal to give an invertible element in the algebra. 

In [Ver95], the essential lower bounds are used to characterise the topological zero 

divisors in the quotient algebra. We continue further our study on these bounds, by 

results, connecting the topological divisors of zero with the boundary of the group 

of invertible elements. 

We conclude this chapter by finding some necessary and sufficient conditions for 

regular elements in a von Neumann algebra to be in the closure of the group of 

invertible elements. For similar results in the classical theory of operators on a 

Hilbert space we refer the reader to [Rog77], [IzK85], [Wu89], and [ Gal94]. 
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Chapter 1 

PREREQUISITES 

An important part of our study is to have a complete understanding of the ideal 

structure in von Neumann algebras. Results on this subject are studied in d~tail by 

Wils [Wil70), Stroh [Str89) and West [Wes93). A careful investigation of the proofs 

of these results indicates that one could easily generalise most of the result to a more 

general class of C* -algebras, namely the AW* -algebras. 

Essential tools in the whole study are the use of the spectral theorem and the 

existence of a polar decomposition in the algebra. Kaplansky [Kap51], [Kap52], 

[Kap68), showed AW* -algebras as an appropriate setting for certain parts of the 

algebraic theory of von Neumann algebras. 

An AW* -algebra A is a C* -algebra which is also a Baer * -ring. 1.e. for every 
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nonempty subset S of A, the right annihilator R( S) = PA for a suitable projection 

P in A. It is clear from the definition that any AW*-algebra has an identity I. 

Hence the definition implies already the existence of projections in the algebra. A 

W*-algebra (von Neumann algebra) is a weakly closed *-sub algebra of operators 

on a Hilbert space. It is not hard to show that any W* -algebra is an AW* -algebra. 

In the commutative case the difference is this: A commutative AW*-algebra is 

characterised by a C( I<) space, where I< is compact and stonian, while in the W* -

case I< need to be hyperstonian. 

Recall that a compact space I< is stonian if the closure of every open set is open. A 

useful characterisation of this notion is that if {fa} is any decreasing set in CR(K) 

bounded from below, then infimum {fa} exists and is in CR(K). 

Now suppose that T is a self-adjoint element of an AW* -algebra A, and let A(T, I) 

be the commutative AW*-algebra generated by T and/. Then A(T, I) is isomorphic 

to a C( I<) space where I< is stonian. Since T is self-adjoint it corresponds to a real 

valued function T(t) on I<. Let I<>. = K\T- 1 (>,,, oo ). Clearly I<>. is an open and 

closed set on which T takes values not exceeding A. The characteristic function of 

I<>. is a projection in C(K). Let E>. = E(-oo,>.] be the corresponding projection in 

A(T, I). 
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Theorem 1.1 JfT is a self-adjoint element in A, then the family {E,\} of projections 

defined above satisfies the following properties 

(a) E>. = 0 if A< -IITII and E>. = I if A 2: IITII 

(b) E>. ~ E>-' if A< A' 

(c) E>. = I\ E>-' 
>.'>>. 

(d) TE>.~ AE>. and A(I - E>.) ~ T(I - E>.) for each A 

/_
IITII 

(e) T = AdE>., meaning T is the norm limit of finite linear combinations 
-IITII 

with coefficients in the spectrum of T of oiihogonal projections EN - E>.. 

Proof 

(a) Let E>. be as above. If A< -IITII , then I<>.= I<\T- 1(\ oo) is the empty set 

since T(I<) = <T(T) C [-IITII , IITII]- Similarly if A > IITII , I<>. = I< which 

implies that E>. = I (the identity of the AW*-algebra A). 

(b) Let A ~ A', then I<>. ~ KN and since a *-isomorphism preserves order E>. ~ E>.'· 

( c) Note that I<>. is a clopen set on which T takes values not exceeding A. If 

I<' is another clopen subset of I< on which T takes values not exceeding A, 

then I<' ~ I<\T- 1 (A, oo), hence r-1
(\ oo) C I<\I<'. Since I<\I<' is closed, 

T- 1(A, oo) C I<\I<', hence I<'~ I<>,. Thus I<>. is the largest such set. To show 
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( c) note first that E ,\ is a lower bound for { E~ : >..' > A}. Let P be any 

projection in A such that P ~ E,\, for all >..' < A (i.e. PE,\, = EA'P for all 

>..' < A). Then P corresponds to a characteristic function of a clopen set K0 

which is contained in KN except for a nowhere dense set for each >..' < A. Since 

K0 and K,\, are both open and closed, K 0 is actually a subset of KN, Thus 

K0 is a clopen subset of K on which P takes values not exceeding >..' for each 

>..' > A. Hence P takes values not exceeding A on K0 . Thus P ~ E,\, 

(d) Note that T takes values not exceeding A on K\T- 1 (A,oo). Hence TE,\~ AE,\ 

for each A > 0. Also as T is continuous and takes values greater than or equal 

to A on T- 1(A,oo), we have 

(e) Let {Ao, Ai, ... An} be a partition of [-IITII , IITII] such that Ao= -IITII and 

An= IITII- Let Aj be a point of [Aj-1, Aj] n rJ(T) =I=¢. If [Aj-1, Aj] n rJ(T) = ¢, 

n 

Now, L Aj(E,\1 - E,\J_ 1 ) is a linear combination of mutually orthogonal char­
j=l 

acteristic functions EN - E,\ with coefficients in rJ(T). Since 

/_
IITII 

IIT - SIi ~ max {IAj - Aj-11} it follows that T = AdE,\, 
-IITII 

□ 
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Since I< is stonian i.e. CR(K) is order complete, projections like E(-oo,>.); E(>.,µ); 

E[>.,µ]; E(>.,oo) etc will all make sense as projections in A(T, I). 

We will see that the existence of spectral projections of a self-adjoint element in A 

plays an important role in the structure theory of ideals in AW* -algebras. 

Proposition 1.2 Let T be a positive element in A. Then for any c > 0 there exists 

a positive S E A such that TS = P, P a non-zero projection and I IT - T P 11 < c. 

Proof Let A(T, I) be the commutative AW*-algebra generated by T and /. 

Then A(T, I) is isomorphic to C(K), where I< is stonian. Since T is positive, it 

corresponds to a positive real valued function on I<. We suppose O < c < I ITI I­

Define 

U = {t EK: T(t) > c}. 

Then D is a non-empty clopen set. Consider the spectral projection P = I - Ee: i.e. 

P is the projection onto D. Since 

T(t) :=; con I<\U, we have 

0 ::; T(I - P) ::; c(/ - P) ::; c /. 

Hence 

I IT - T Pl I ::; E,. 

Let 

1 - -
S(t) = T(t) fort E U and S(t) = 0 fort E I<\U. 
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Since [J is open and closed, S is a continuous function and ST corresponds to the 

characteristic function of [J. Hence ST = TS = P. □ 

Let P(A) denote the set of all projections in A. Projections in A are partially 

ordered by P :::; Q if PQ = P. It was shown by Kaplansky [Kap51] that with this 

order relation P(A) is a complete lattice. We say that projections P and Q are 

equivalent, written P ,....., Q, if there exists an element U E A such that P = UU* 

and Q = U*U. We write P j Q if there exists a projection G such that P,....., G:::; Q. 

We call a projection P E P(A) finite if P ,....., G :::; P implies G = P. It was shown 

by Kaplansky [Kap51] that basically all the results that Murry and von Neumann 

[M vN36] proved on these relations in W* -algebras hold in general AW* -algebras. 

We list the important facts: 

PL: For any two projections P and Q, we have P V Q - Q,....., P - PI\ Q. 

C: For any two projections P and Q there exists a central projection G such 

that PG j QG and P(I - G) t Q(I - G). 

For TE A, we define the null projection of T by Nr := sup{P E P(A): T P = O} 

and the range projection of T by Rr : = inf { Q E P(A) : (I - Q)T = O} 

By making use of the structure of commutative AW* -subalgebras, it was shown in 

Kaplansky [Kap51] that Rr ,....., Rr*. 

The following relations is known in an AW* -algebra setting and will prove to be 

useful in our study. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

CHAPTER 1 PREREQUISITES 

Proposition 1.3 Let P and Q be any two projections in A, then 

RPQ = P - PI\ (I - Q) and RQP = P V (/ - Q) - (I - Q). 

Proof Let V = PQ. Since V(I - Q) = 0, one has RQP(/ - Q) = 0. Thus 

(I - Q) + RQP is a projection. Let U = (I - Q) + RQP· We will show that 

U = sup { P, (I - Q)}. Obviously (I - Q) ~ U. Since 

0 = V RQP - V = PQRQP - PQ 

we have 

Hence 

= [P - P(I - Q)]RQP - [P - P(I - Q)] 

= PRQP - P[(I - Q)RQP] - P + P(I - Q) 

= PRQP - P + P(I - Q) 

p = P(I - Q) + p RQP 

= P[(I - Q) + RQP] 

=PU 

12 

On the other hand, suppose P ~ W and (I - Q) ~ W for some projection W, it is 

to be shown that U ~ W. Then 
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Thus 

VW=PQW 

= P(W - (I - Q)) 

= PW- P(I- Q) 

= p - P(I - Q) 

= PQ= V 

RQP :S w 

13 

Combined with (I - Q) :S W, this yields (I - Q) + RQP :S W Thus 

U = P V (I - Q) which proves the second identity. It follows at once that PI\ (I - Q) 

exists and is equal to I - (I - Q) V (I - P). The first identity will hence follow from 

the second one. □ 

We are now ready to state and prove the polar decomposition for elements in an 

AW* -algebra setting. For a E C , C a C* -algebra it is clear by the continuous 

functional calculus that lal = (a*a)½ is an element of C. However in a C*-algebra 

setting one does not have in general a decomposition of the form a= ujaj. 

Theorem 1.4 Let A be an arbitrary AW* -algebra. Then for any T E A there exists 

a partial isometry U in A such that T = UITI , UU* = Rr and U*U = Rr•• 

Proof Let A{T*T , I} be a commutative AW* -algebra containing T*T. By Propo­

sition 1.2 we have for every n = l, 2, 3, ... there exists a positive element 
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Sn E A{T*T, I} such that 

( a) T*T S~ is a projection Pn ~ RT* 

(c) (Sn) is increasing and Sn-1(Sn - Sn-1) = 0 n = 2,3, ... 

It is clear that ( Pn) is increasing and sup Pn = Rr•. Let Un = T Sn, then 

Moreover ( Qn) is increasing, since 

TT*TS 2 S2T* n-1 n 

TT*TS4 T* n-1 

(T s~-1 T*)(T s~-1 T*) 

By [Kap52, Lemma 20) there exists a partial isometry U in A such that U* U = RT* , 

UU* = Rr and U Pn = Un. We show that T = UITI. 
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Hence by (b), 

Thus 

< 

IIT(RT* - Pn)II 

IIT*T(RT* - Pn)JJ½ 
1 

fo 

IIT- UITJII:::; IIT- UnJTIII + ll(U - Un)ITJJI 
1 

:::; y'n + ll(U - Un)(RT* - Pn)ITIII 

2 
<- □ - fo 

It is not hard to show the uniqueness of this polar decomposition under the given 

conditions. 

It is clear from the work of Kaplansky [Kap51], and the results illustrated here, that 

AW* -algebras has a rich projection structure. This in fact carries over to the ideal 

structure in AW*-algebras. It was shown by F. Wright [Wri54) that there exists a 1-1 

correspondence between the norm closed two-sided ideals of A and the equivalence 

closed lattice ideals of P(A). In Chapter 2 we will give more attention towards 

this structure theory of closed ideals and its projections. In order to obtain any 

generalisation of a Fredholm theory, one needs the notion of a dimension function 

on the lattice of projections. 

In the case where A is a W* -algebra, J Tomiyama [Tom58), provided such a notion. 

Olsen [Ols84) used this function to develop a complete index theory in W*-algebras. 
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We give a short introduction to this theory. To avoid misunderstanding we will 

denote a W*-algebra (von Neumann algebra) by M. 

If Z is the center of M, with spectrum n, the abelian von Neumann algebra Z is 

identified with C(O) where the compact space n is hyperstonian, i.e. the closure 

of every open set in n is open and n admits the structure of a perfect Borel mea­

sure [Dix51]. Hence for every projection P in Z, there corresponds a characteristic 

function of a unique clopen subset I< in n. Since any von Neumann algebra can be 

decomposed into three different types, we can partition n into three clopen subsets 

ni, i = I, I I, I I I, such that Mxni is of type i. Let 

Vi := {O} UN U {N / N an infinite cardinal, NS dimension of H} ; 

Vu := [O, oo) U [N / N an infinite cardinal, N S dimension of H} ; 

Viu := {O} U {N / N an infinite cardinal, N S dimension H}. 

Each ½ is compact when considered with the order topology. Let 

F := {! : n --+ V : f is continuous and J(ni) C ½ X { i} }, 

where V denotes the disjoint union LJ ½ x { i} 
iE{l,II,III} 

The following theorem is due to Tomiyama [Tom58] 

Theorem 1.5 For any von Neumann algebra M on a Hilbert space H, there exists 

a function dim :P(M) --+ F with the following properties: 

(a) 0 S dim PS dimension of H, for each PE P(M) and dim P = 0 iff P = O; 
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(b) dim P ~ dim Q if P j Q; 

(c) for mutually orthogonal projections P and Q, dim (P + Q) = dim P + dim Q 

( d) for a central projection Z, dim ( Z P) = Z dim P for each P E P( M). D 

In the classical index theory every Fredholm operator has index some positive or 

negative integer. In the general theory, in order to include 'negative' values we need 

to extend F to a larger class of continuous functions. 

For ½, let -½ = {-a : a E ½} with the natural ordering -a ~ -b if a ~ b. 

Identify -0 with O and with the order topology on - ½ U ½ we let Cc(n) be the set 

of all continuous functions f such that f ( ni) C - ½ U ½. 

For any two functions f and gin Cc(n), we define addition as follows: 

IfX={tEn 

(f + g)(t) = l 
f(t) # -g(t)} then we define 

f(t) + g(t) on X 

o on n\ x 
Then since X is clopen, addition is well defined and continuous. 

For each TE M, define the map index: M ➔ Cc(n) by 

index(T) := dimNr - dim NT*. 
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Notice that index(T*) = - index(T) and from Theorem 1.5 index(T) 2: 0 if and 

only if NT* j Nr. 

Let I be any norm closed two sided ideal in M and let 7rI : M -----t M /I denote 

the canonical quotient map. An element T E M is called left Fredholm relative to I 

if 7rI(T) is left invertible in M/I. We denote <I>e(M, I) by the class of left Fredholm 

elements. The class <I>r ( M, I) of right Fredholm elements is defined in the obvious 

similar way. Then by <I>(M,I) := <I>e(M,I) n <I>r(M,I) we will denote the class of 

Fredholm operators relative to I. 

Call an element T E M semi-Fredholm relative to I if there exists a central projec­

tion P E M such that 

PT E <I>e(P M , PI) and (I - P)T E <I>r((J - P)M, (I - P)I). 

We denote this class by <I>s(M,I). Note that <I>s(M,I) = <I>e(M,I) U <I>r(M,I) 

when M is a factor i.e. the center Z = CI. 

We give two examples to illustrate some of the notions above. 

Examples 1.6 

1. Let N0 be the first infinite cordinal number (i.e. the number corresponding 

to countable sets) and let N1 be the ordinal number of the continuum. Let 

M = B(H) where His of dimension N1 . Then the center Z of M is CI. 

Since M is of type I, 
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V = -½ u Vi= {-Ni,-No} u Z u {No,N1} 

and Cc(n) = V. In this case index(<P(M,K(H))) = Z which implies the classi­

cal index theory. 

2. Let M = f(X) and I = c0 . It is well known that M can be embedded as a 

W*-subalgebra of 8(£2). Then Z = f(X) = C(,BN). For this type I algebra 

V = { -N0 } u Z u {N0 } 

and Cc(,BN) = C(,BN, V) = VN. 

□ 

We refer the interested reader for more detailed exposition of Fredholm theory rel­

ative to any closed ideal in M to [Ols84]. 

Remark 1. 7 In the development of [Ols84], Olsen used the fact that the stonian 

space n has the structure of a perfect Borel measure. For more general AW* -algebras 

we do not necessarily have that n is hyperstonian. However, it was shown by [Sas55] 

that for a general AW* -algebra there exists a notion of a dimension function which 

has properties very similar to the result of Tomiyama. It is hence an interesting 

problem to investigate to which extend an index theory can be developed in general 

AW*-algebras. This however will not be dealt with in this thesis. 

Now if I is a compact ideal in M (i.e. I is contained in the norm closed ideal 

generated by the finite projections) the index map is invariant under perturbations 
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by elements of I, and constant on components of the open sets of Fredholm elements 

relative to I. 

We state without proofs the results from [Ols84] which will be used throughout this 

work. For T E M and I any norm closed ideal in M let 

Clearly mr(T) > 0 if and only if 1rr( ITI) is invertible in M /I. Hence by using the 

polar decomposition mr(T) > 0 if and only if 1rr(T) is left invertible in M /I if and 

only if T E <I>e(M, I). 

Proposition 1.8 [Ols84] Let I be any closed ideal in M. Then 

1) TE <I>e(M,I) if and only if mr(T) > 0 

2) TE <I>r(M,I) if and only if mr(T*) > 0 

3) T E <I>(M, I) if and only if mr(T) > 0 and mr(T*) > 0 and in this case 

mr(T) = mr(T*). D 

Theorem 1.9 [Ols84] Let I be a compact ideal in M. Let T and S in M be such 

that IIT-SII < mr(T) then T,S E <I>e(M,I) with index (T) = index (S). □ 

Theorem 1.10 [Ols84] Let I be a compact ideal in M and I< EI. IJT E <I>e(M,I) 

then T + I< E <I>e(M,I) and index (T +I<)= index (T). □ 
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Remark 1.11 If the ideal I is not contained in the relative compact ideal, the 

index map does not have these desired properties. Olsen [Ols84] showed that for 

any norm closed ideal I there exists a unique central projection P such that PI is 

compact in PM and ( I - P) I is completely non compact in ( I - P) M. 

For the compact summand, the result above applies and for the completely non­

compact part Olsen modified the index map to obtain an index with all the desired 

properties. Hence if I is any norm closed two-sided ideal in M and P the central 

projection, we define 

index(T) := indexp(T P) + index(I-P)((I - P)T) 

where indexp (resp. index(I-P)) is the index map on the compact (resp. completely 

non-compact) part. 

Theorem 1.12 [Ols84, 7.1, 10.8] Let I be any norm closed ideal in M, and let 

T, SE M be such that IIT - SIi < mr(T) then T, SE <I>,(M,I) and index (T) 

index (S). D 

Theorem 1.13 [Ols84] Let I be any norm closed ideal in M. The class <I>s(M,I) is 

an open partial semigroup in M on which the index map is continuous and <I>s(M,I) 

is norm dense in M. Moreover if T E M, then T is the limit of elements from 

<I>s(M,I) having the same index as T. D 
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Chapter 2 

NORM CLOSED IDEALS 
IN AW*-ALGEBRAS 

In the study of W* -algebras and more generally an AW* -algebra A, the interplay 

between the algebra structure and the set of projections of A is very important. For 

such an algebra the ideals of A are subsets of central importance. 

In this chapter we want to focus on the role on how projections can be used to 

characterise the elements in the ideals. Particularly we are interested in the study 

of norm-closed two-sided ideals in A. As mentioned earlier it was shown by F. Wright 

[Wri54] that there exists a one to one correspondence between the closed ideals of 

A and the equivalence closed lattice ideals of P(A), the so called p-ideals. 

Here we explore the extend to which norm closed ideals in AW* -algebras resemble 
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the ideal of compact operators on a Hilbert space. This is a generalisation of the 

theory developed for W* -algebras by Kaftal [Kaf77,Kaf78] and Stroh [Str89]. 

The following spectral type of characterisation for AW* -algebras proved to be im­

portant in the case of W* -algebras. 

Theorem 2.1 Let I be a norm-closed two-sided ideal in A and let T E A. Then 

the following statements are equivalent. 

1) TE I 

2) For every E > 0 there exists a spectral projection Pe: of ITI such that Pe: E I and 

Proof From the polar decomposition in AW*-algebras, Theorem 1.4, TE I if and 

only if ITI EI. Clearly (2) implies (1), since I is a norm closed ideal. If (1) holds, 

then ITI E I and by Proposition 1.2 for any c > 0, there exists a positive S E A 

such that ITIS is a projection, say ITIS = Pe:, and !IT- TPe:II ~ IIITI - ITIPe:II < c. 

Hence Pe: E I and therefore the result follows. □ 

For a closed ideal I, let Ifinite = {TE A: Rr EI}. In the case of A= B(H) and 

I= K,(H), it is clear that Ifinite will correspond to the finite rank operators. Since 

the T Pe: in Theorem 2.1 is contained in Ifinite this characterisation corresponds to 

the classical result which says that any compact operator on a Hilbert space can be 

approximated by finite rank operators. 
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Corollary 2. 2 Let I be a closed two-sided ideal in A. Then I = Ifinite. □ 

Recall from Chapter 1 that if T E A is self-adjoint we may identify the AW* -

algebra generated by T and I with a C(K) space where I< is stonian. We denoted 

the spectral projections by E>. = E(-oo,>.] i.e. the projection corresponding the 

characteristic function of the clopen set I<>. = I<\T- 1 (> .. , oo ). Let E(>.,oo) = I - E>. 

and ifµ < )., let E(µ,>.] be the projection corresponding to the characteristic function 

of the clopen set I<>. n T- 1 (µ, oo ). 

Theorem 2.3 Let I be a closed two-sided ideal in A and let T E I be self-adjoint, 

then 

E >. E I for every A < 0 

and 

E(>.,oo) E I for every A > 0 

Proof For A > 0 let U = {t E I<: T(t) > A}. Then U is a clopen set and E(>.,oo) 

- 1 -
corresponds to the characteristic function of U. Define S(t) = T(t) for t E U and 

S(t) = 0 fort E I<\U. Then as in the proof of Proposition 1.2 ST= E(>.,oo)· Since 

T E I it follows that E(>.,oo) E I. 

For ). < 0, let I<>. = I<\T- 1 ()., oo ). Then E>. corresponds to the characteristic 
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function of I<>-.. Similarly, define 

S(t) = T~t) on K>. and S(t) = 0 for t E T- 1(A, oo ). 

Hence TS = E>-. and since T E I, it follows that E>-. E I. □ 

We give a characterisation of the essential spectrum of a positive element in an 

AW*-algebra which will be used in further chapters. Let 1rr : A ➔ A/I be the 

canonical quotient map and for any T E A, let 

A similar result for the case of W* -algebras appears in [LSS95]. 

Theorem 2 .4 Let I be a closed ideal in an AW* -algebra A and T E A be self­

adjoint. Then 

Proof Suppose first ,\ ~ ar(T). Then T>-. = T - ,\J has an essential inverse S E A 

i.e. 

1 
1rr(T) · 1rr(S) = 1rr(I). Let c < I l1rr( S) II" 
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Since T>-.E(>,-c,>-.+c] ::; cE(>-.-c,>-.+c], by Theorem 1.1, it follows that 

I l1rr( E(>-.-c,>-.+c]) 11 I l1rr( E(>-.-c,>-.+c]T>-.S) 11 

< c ll1rr(S)II 

< 1 

But since 1ry( E(>-.-c,>-.+c]) is a projection in A/I of norm less than one, it follows that 

Hence 

Conversely, suppose there exists an c > 0 such that E(>-.-c,>-.+c] E I. Again, view T 

as a continuous function on a stonian space I<. Define 

S(t) = 0 if 

(T(t) - .\t1 if 

t E K>-.+c n T- 1 (>, - c, oo) 

t E T- 1 (.\ + c, oo) 

Since all the sets in consideration are clopen, S E C( I<) and 

Hence 1rr(T>-.)1rr(S) = 1rr(S)1rr(T>-.) = 1rr(I) , which implies that A (f_ a-r(T). □ 
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We now generalise part of [Ols84] Theorems 4.5 and 4.7 towards an AW*-algebra 

setting. 

Lemma 2.5 Suppose T, S are two elements in any C*-algebra C. If T is positive 

and S is a left inverse for T, then S is a positive two-sided inverse for T. 

Proof By the Gelfand-Naimark theorem we may assume that T and S acts on some 

Hilbert space H. Since ST = I, TS* = I and it suffices to show that S is positive. 

This follows from the fact that 

< Sx,x > < STS*x,x > < TS*x, S*x > 

for every x E H. □ 

Theorem 2.6 Let I be a closed two-sided ideal in A. Then the following are 

equivalent: 

a) T is left invertible mod I. 

b) ITI is invertible mod I. 

c) 0 ~ ar(ITI). 

Proof The implications b) =} a) and b) {:} ( c) are obvious. That a) =} b) follows 

from Lemma 2.5, for if T = UITI is the polar decomposition of T (Theorem 1.4) 

and S is a left inverse for T mod I then SU will be a left inverse for the positive 
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element ITI modulo I. □ 

Corollary 2. 7 The following conditions are equivalent: 

a) T is invertible mod I. 

b) Both o-r(ITI) and o-r(IT*I) do not contain zero and inf o-r(ITI) = inf o-r(IT*I). 

Proof Suppose T is invertible mod I and let S E A be the two-sided inverse mod 

I, i.e. there exists I<1 , I<2 E I such that ST = I+ I<1 and TS = I+ I<2 . From 

Theorem 2.6 0 tJ_ o-r( ITI) and if we let T* = VIT* I be the polar decomposition of 

T*, it follows from S*T* =I+ Iq in a similar way that O tJ_ o-r(IT*I). a)=} b) then 

follows from the equality 

o-r(ITI) U {O} = o-r(IT*I) U {O} 

The implication b) =} a) follows from the fact that if T has a left inverse mod I and 

a right inverse mod I, the two inverses should be the same. □ 

By definition we have T is left invertible mod I if there exists an S E A such that 

ST- I E I. In the classical characterisation theorem for operators that are Fredholm 

with respect to the compact operators, one can arrange these members of K(H) to 

be projections. We generalise this result in the following Theorem. 

Theorem 2.8 If T is left invertible mod I then there exists an S E A, I - E E I 

such that ST = E. 
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Proof It follows from Theorem 2.6 that ITI is invertible mod I and from Theorem 

2.4 we can find an c > 0 such that E[o,e] E I. View ITI as a continuous function on 

a stonian space I< and define 

Then 

if we let S 

follows. 

l (ITl(t))- 1 if 
So(t) = 

0 if 

t E ITl- 1(c, oo) 

t E K\ITl- 1 (c, oo) 

S0 U*, where T :..::: UITI is the polar decomposition of T, the result 

□ 

From these results it seems natural to ask whether one can develop a complete 

Fredholm theory in an AW* -algebra setting. However, the main task will be to 

introduce an index map which possesses all the desired properties. We have men-

tioned in Chapter 1, Remark 1.7 that it seems possible to define an index map by 

making use of the existence of a dimension function on P(A) due to Sasaki [Sas55). 

The theory of Olsen [Ols84] made extensive use of the fact that in case of a van 

Neumann algebra, the center has the structure of a perfect Borel measure. Hence 

in order to develop an index theory for general AW* -algebra one should overcome 

this difficulty and explore the topological properties of our stonian space n. 

We conclude this chapter by another application of our spectral theory in AW* -

algebras by showing that the lifting of algebraic elements in any AW* -algebra is 
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possible. Lifting of an element with a certain property from the quotient algebra 

to an element in the algebra with the same property became important during the 

mid seventees when Brown, Douglas and Fillmore [BDF73] started their famous 

programme of extension theory of C* -algebras. 

To explain the basic idea around lifting we consider the following exact sequence: 

0-+ I~ C 4 C/I-+ 0 

where I is a closed ideal in a C* -algebra C, i the inclusion map and 1rr the canonical 

quotient map. It was shown [BDF73] that in the case where C = B(H), I= K(H) 

and T E C is essentially normal (i.e., 1rr(T) is normal in C /I) one cannot in gen­

eral find a compact operator I< such that T + I< is normal in C. Brown, Douglas 

and Fillmore provided precise conditions, relating to Fredholm theory, under which 

normality can be lifted. Today various references exist of results relating to liftings 

and we refer the reader to [AkP77], [BrP91], [Had95], [Ols77] and [Str94] etc. 

We are interested in the recent results obtained by Hadwin [Had95] who studied 

the lifting of algebraic elements in a C* -algebra setting. An element a E C is called 

algebraic if there exists a complex polynomial f such that f (a) = 0. It was shown 

by Olsen and Pedersen [01P89] that in the case f(t) = tn, n 2:: 1 and b EC/I is such 

that f(b) = 0 then there exists an a EC with f(a) = 0 and 1rr(a) = b. 

In [Had95] it was shown that the lifting of algebraic elements in general is not 

possible. For example if f(t) = t2 - t, C = C[O, 1] and I= {g: g(O) = g(l) = O} 
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then for the function h(t) = t it follows that f(1rr(h)) = 0. But, since Chas no non­

trivial idempotents it will not be possible to find a q E C such that 1rr( q) = 1rr( h) 

and f(q) = 0. 

Hadwin showed that this lifting holds for a large class of C* -algebras. For example 

if C has real rank zero then the lifting of algebraic elements is possible. Recall 

that a C* -algebra has real rank zero if every self-adjoint element in C is a limit of 

self-adjoint elements with finite spectrum. 

The following characterisation of real rank zero due to Brown and Pedersen [BrP91] 

will be the essential key to our result. 

Theorem 2.9 A C* -algebra C has real rank zero if and only if for each pair of 

positive elements a, b E C with ab = 0 and c > 0 there exists a projection p E C such 

that 11(1 - p)all ~ c and IIPbll ~ c. □ 

Theorem 2.10 Any AW*-algebra has real rank zero. 

Proof Let T and S be two positive elements of A such that TS = 0. Then by 

[Ber72], § 3 Proposition 9 and § 4 Proposition 7, {T, S}" is a commutative AW* -

algebra and hence isomorphic to C(I<) where I< is stonian. View S and T as 

functions on I< and let 0 < c < I ITI I be given. Let P be the projection corresponding 

to the characteristic function of [J where U = { t E I< : T( t) > c}. It clearly follows 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

CHAPTER 2 NORM CLOSED IDEALS IN AW*-ALGEBRAS 

that 

and hence 

0 ~ T(I - P) ~ c(I - P) < cl 

IIT(I - P)II ~ C 

32 

Since TS = 0 it follows for any t E D that S( t) = 0 which implies that PS = 0. □ 

From [Had95], Corollary 3 we obtain the following: 

Theorem 2 .11 Let A be an AW* -algebra) and I a closed two-sided ideal in A. 

For 1rr(T) E A/I, and f a polynomial such that f ( 1rr(T)) = 0, there exists a I< E I 

such that f (T + I<) = 0. □ 

This directly solves an interesting problem of lifting projections in an AW* -algebra 

setting. We have seen that this is not the case for a general C* -algebra. 

Corollary 2.12 Any projection in A/I has a projection lifting in A. 

Proof Let f(t) = t2 - t and apply Theorem 2.11. 

Open problems 2.13 

D 

1. Is it possible to develop a meaningful index theory in the framework of AW* -

algebras? 

2. We call a E A/I quasinilpotent if o-( a) = {0}, i.e. r( a) = 0, where r denotes 

the spectral radius. The question whether a quasinilpotent element of A/I 
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has a quasinilpotent lifting is still unresolved in general. For the case where 

A= B(H) and I= K(H) we have the well-known West decomposition theorem 

[Wes66], which states that any quasinilpotent element in B(H)/K(H) has a 

quasinilpotent lifting. The method of proof of this result is analogous to the 

process of super-diagonalizing a matrix and then splitting it into the sum of 

diagonal and nilpotent matrices. Super-diagonalization of compact operators 

depends essentially on the existence of proper closed invariant subspaces. 

The best result in this direction can be found in Rogers [Rog90]. In this paper 

Rogers proved that if I is any closed two-sided ideal in a C* -algebra C, then 

a quasinilpotent element 1rr(T) of C /I has a quasinilpotent lifting if O'(T) is 

totally disconnected. 

The open question mentioned would be answered in the affirmative if one could 

'lift' the spectral radius for arbitrary elements of A/I. In other words we need 

to prove that for any T E A there exists a K E I such that r(T + I<) = 

r(1rr(T)), where r(T) denotes the spectral radius of T. In [AkP77] Akemann 

and Pedersen proved this result for any T with r( 1rr(T)) > 0. Further partial 

answers to the question under consideration can be found in [StS91]. Even in 

the case of type II00 W* -factors the question is to the best of our knowledge 

still open. 
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Chapter 3 

THE REDUCED MINIMUM MODULUS 
IN OPERATOR ALGEBRAS 

A number of operational quantities characteristic of the semi-Fredholm operators 

have been introduced in the theory of bounded operators between Banach spaces 

and applied successfully to for example perturbation theory. 

Recall that for an operator Ton a Banach space X, the reduced minimum modulus 

of T is defined by 

,(T) = inf {IITxll : d(x,N(T)) = 1} 

where N(T) is the kernel of the operator T. It is well known that ,(T) > 0 if and only 

if T has closed range. In the study of operators and the quantities associated with 

them, the concept of stability under small perturbation is central. The word small 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

CHAPTER 3 THE REDUCED MINIMUM MODULUS 35 

may refer to an operator with small norm, or an operator belonging to some special 

class, such as the ideal of compact operators. One of the classical results in the 

perturbation theory of semi-Fredholm operators is the following stability theorem 

due to Kato [Kat66], that if Tis semi-Fredholm and Sis arbitrary with I ISi I < ,(T), 

then T + S is also semi-Fredholm and the Fredholm index is preserved. 

Zemanek [Zem84a], obtained asymptotic formulas for the semi-Fredholm radius of 

an operator in terms of various essential minimum moduli of the operator. Here the 

semi-Fredholm radius s(T) is defined to be the supremum of all c > 0 such that 

T - )..J are semi-Fredholm for j>..j < c. Now if we let 

100 (T)= sup{,(T+F): dim(range(F))<oo}, 

it was shown by Zamanek [Zem84a] that 

hence showing that the perturbation theorem of Kato is asymptotically sharp. 

In the Hilbert space setting these quantities have important spectral interpretations. 

In fact, C. Apostal [Apo85] obtained a useful spectral characterisation of,, namely 

,(T) = inf {o-(ITl)\{0}}. 

This characterisation provides a natural way of extending the concept of a re­

duced minimum modulus to the C* -algebra setting, as was shown by Harte and 
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Mbekhta [HaM92,HaM93], in their study of generalised inverses in C* -algebras. 

Now if 1r: B(H)-+ B(H)/K(H) is the quotient map it is natural to consider the 

reduced minimum modulus of 1r(T) in the Calkin algebra. 

1.e. ,e(T) = 1(1r(T)) = inf {a(1r(ITl))\{0}}. 

This quantity is called the reduced essential minimum modulus. Mbekhta and Paul 

[MbP96], proved that ,e(T) = sup{ ,(T + I<) : I< E K(H)} and gave a beautiful 

argument to show that the supremum is attained. These results were independently 

obtained by Stroh [Str94], in his study of the lifting of regular elements in C*­

algebras. 

In this chapter we study the role of the reduced minimum modulus in a von Neumann 

algebra setting. One of the main results gives a similar relation as in [Str94] between 

the reduced essential minimum modulus and the minimum modulus of an element 

in the algebra. To be more precise, if I is any norm closed ideal in M, then 

,( 1rI(T)) = sup ,(T + I<). 
KEI 

In [Str94], it was not known whether the supremum in the above formula is attained. 

The main obstacle with the argument presented in [Str94] is the absence of a Stampfli 

type of decomposition in general operator algebras. i.e. For T E M, can one find a 

I< E I such that 

a(T + I<) = a( 1r(T) ). 
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A positive solution of this result will solve a long standing open problem in W* -

algebras, namely that lifting of quasinilpotent elements from M /I to M is possible 

[Rog90]. 

However, we show by using different spectral techniques that in any von Neumann 

algebra relative to any closed two-sided ideal the supremum in our formula is at­

tained. We show that basically all the perturbation results in Mbekhta and Paul 

[MbP96] extend to a von Neumann algebra setting and give a complete charac­

terisation of semi-Fredholm elements in terms of the points of continuity of the 

map: T-+ 1(1rr(T)). 

Lemma 3.1 [Str94, Theorem 7] Let I be any closed two-sided ideal in M. Then 

for any TE M, 

,r(T) = sup ,(T + K). 
KET 

Proof Since l1r(T)I = 1r(ITI) = 1r(IT + Kl) for all KE I, it follows that 

a(l1r(T)I) C a(IT+ Kl) for all KE I. Hence 

Conversely, we may assume without loss of generality that ,( 1r(T)) > 0. Hence 

for any interval [a, ,8) C (0, 1( 1r(T))) , using Theorem 2.4 we have E[a,{3) E I. 

From the inequality I IT E[o,,6) - T E[a,{3) 11 ~ a it is clear that T E[o,,e) E I for any 
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/3 E (0,,{rr(T))), and hence ,(T -TE[o,{3)) 2:: {3. From this it follows that 

sup 1(T + K) 2: ,('rr(T)). 
KEI 

□ 

Theorem 3.2 Let TE M. Then there exists a KE I such that ,r(T) = ,(T + K). 

Proof If ,r(T) = 0 we are done, since then 1(T) = ,r(T) = 0 and therefore the 

theorem will hold for the choice K = 0. Suppose that ,r(T) > 0. Then, by Lemma 

3.1 there is a K 1 EI such that ,(T + K 1 ) > 0. Hence we may assume without loss 

of generality that ,r(T) > 0 and 1 (T) > 0. Let P = E(o,-yz(T)) = Eh(T)m(T)) and 

let K0 = ,r(T)P - !TIP, where E denotes the spectral measure for IT!. We want to 

show that Ko E I. 

By an application of Theorem 2.4 it follows that t E (]'I( ITI) if and only if E[t-c,t+c] ~ I 

for every c > 0. Hence for any 0 < a < f3 < ,r(T) it follows by a compactness ar­

gument that E[a,,6] E I. Now for any choice of f3 > 0 such that 1(T) < f3 < ,r(T), 

it follows from 

and 

that K 0 EI. Furthermore, since ITI = (I - P)ITI + ,r(T)P - K 0 , we have 
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,r(T) ,r(ITI) 

,r((I - P)ITI + ,r(T)P) 

,((I - P)ITI + ,r(T)P) 

,(ITI + Ko)-

Let T = UITI be the polar decomposition of T and let K = U K 0 . Then, since 

IT+ Kl2 (T + K)*(T + K) 

T*T + T* K + K*T + K* K 

ITl 2 + ITIU*U Ko+ KoU*UITI + KoU*U Ko 

ITl2 + ITIR1r1Ko + KoR1r1ITI + KoR1r1Ko 

ITl2 + ITIKo + KolTI + KJ 

( ITI + Ko)2, 

39 

it follows from the uniqueness of the square root of a positive element in a C* -algebra 

that IT+ Kl = ITI + K 0 • Hence ,r(T) = ,(T + K). □ 

Corollary 3.3 If T is normal then, for every n 2:: 1, there exists a K EI n {T}' 

such that 

Proof By a consequence of the functional calculus for a normal element T, it follows 

that if we choose K as in Theorem 3.2, then T and K commute. Direct computation 
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shows that T + I< is normal, and by the uniqueness of the square root it again follows 

that l(T + I<rl =IT+ Kin and l1r(Trl = l1r(T)ln. Applying the spectral mapping 

theorem, we obtain 

□ 

Theorem 3.4 Let T E M. Then T is left Fredholm relative to I if and only if 

Nr E I and there exists a B E M such that RB E I and 1(T + B) > 0. 

Moreover, if IIT - SIi < ,r(T) then S is left Fredholm and index(S) = index(T). 

Proof If T is left Fredholm, then clearly ITI is Fredholm, which implies that 

0 i crr(ITI). Hence ,r(T) = '"'!r(ITI) > 0. Let Ebe the spectral measure with respect 

to ITI, then Nr = E[o] E I. In fact, an argument similar to that in the proof of 

Theorem 3.2 shows that for any 0 < {3 < '"'!r(T), E[o,/3] EI. Let B = -T E[o,/3], then 

RB = E(o,/3] ::; E[o,/3] E I and 

Conversely, suppose that Nr = E[o] E I and that there exists a B E M such that 

RB E I and ,(T + B) > 0. Then '"'!r(T) = '"'!r(T + B) ~ ,(T + B) > 0 and E[o] E I 

implies 0 i crr(ITI), which implies that ITI is Fredholm. Hence Tis left Fredholm. 

To obtain the last statement of our theorem, let I IT - SI I < ,r(T). By Remark 

1.11 it was shown that one can reduce the Fredholm and index perturbation theory 
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to two special cases by making use of a central decomposition. Now a direct ap­

plication of Theorem 1.12 it follows that S is left Fredholm relative to I and that 

index(S) = index(T). □ 

Harte and Mbekhta [HaM92; HaM93] introduced the notion of regular elements in 

a general C* -algebra setting. If C denotes a C* -algebra, an element a E C is called 

regular if there exists a b E C such that a = aba. For operator T on a Hilbert space, 

this relation is equivalent to the closedness of the range of T. Note that ab and ba 

are idempotents. It is shown [HaM92; HaM93] that if a E C is regular then there 

exists a unique (Moore-Penrose) generalised inverse a+ such that aa+ and a+ a are 

orthogonal projections in C. In fact, it is shown [Str94] that if T is an element of a 

von Neumann algebra then TT+= Rr and T+T = RT*. 

For a general C* -algebra C, Harte and Mbekhta [HaM92; HaM93] defined the re­

duced minimum modulus by using the left regular representation i.e. if a E C and 

La : C -+ C is defined by La ( b) = ab then ,(a) is the reduced minimum modulus 

of the operator La acting as a Banach space operator on C. It was shown [HaM93], 

[Str94] that ,(a)= inf o-(lal)\{O} where lal = (a*a)½. As in the classical theory one 

has the following proposition which can be found in [HaM92]. 

Proposition 3.5 Let C be a C* -algebra and a EC. Then a is regular if and only if 

,(a) > 0. Moreover if a is regular then I la+ I I,( a) = 1. □ 
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From this proposition and Theorem 3.2 the following result holds. 

Theorem 3.6 If T E M is regular modulo I {i.e. 1rr(T) is regular) then there 

exists a I< E I such that T + I< is regular. □ 

Remark 3. 7 We illustrate with an example that the lifting of regular elements in 

a C* -algebra setting does not hold in general. Let 

C = C [ 0, 1] and I = {J E C : f ( 0) = f ( 1) = 0}. 

If we let J ( x) = x, then J + I is a non-trivial idempotent in C / I and hence regular. 

Moreover, the nonzero regular elements in C are exactly the invertible functions. 

Any perturbation of f by an element in I will have the value zero at the point 

x = 0. This implies that there exists no g E I such that f + g is regular in C. □ 

Theorem 3.8 [HaM93, Theorem 5] Let T, S E M be regular, then 

and if both T and S are non-zero, then 

Proof View M as a concrete von Neumann algebra on some Hilbert space H. It 

was shown in [LSS95], Proposition 1.2 that for any T E M 

,(T) = sup{A: IITxll ~ A dist(x, N(T)) for all x EH}. 
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Since T = TT+T; T+ = T+TT+ , (T+T)* = T+T, (TT+)* = TT+ and 

(T*)+ = (T+)*, we have 

s+ S*+(S* - T*)(I - TT+)= s+(I - TT+) 

and 

(I - s+ S)(S* - T*)T*+T+ = -(I - s+ S)T+. 

Hence 

s+ - T+ + s+(s - T)T+ = s+(I - TT+) - (I - s+ S)T+ 

= s+ s*+(s* - T*)(I - TT+) - (I - s+ S)T+. 

Thus s+ - T+ = -S+(S - T)T+ + s+ S*+(S* - T*)(I - TT+) 

+(I - s+ S)(S* - T*)T*+T+ 

Let C = ( f + T+T - s+ s)- 1 and X E H. Then since for any element B E M, 

we have 

IIBB+II = IIB+BII = 1 and 

dist(x, N(B)) = dist (RB•X, N(B)) ~ IIRB•xll 

< IIRB•II dist (x,N(B)) 

dist (T+Tcx, N(T)) = IIT+TCxll = 11s+ Sxll 

= dist ( x, N ( S)) 

which implies 

IISxll 2:: IITT+TCxll - llS -TII IIT+TCxll 

43 
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~ (,(T) - IIS - TJI) dist(x, N(S)). 

This gives 

,(S) ~ ,(T) -11s - TJI □ 

Lemma 3.9 If T is left Fredholm and I IT - SJ I < ,r(T), then 

l,r(T) - ,r(S)I ~ IIT - SIi-

Proof Since Tis left Fredholm, 1r(T) is left invertible. Let 1r(T)+ be the left inverse 

of 1r(T) in M/I. From Proposition 3.5 it follows that ,r(T) = IJ1r(T)+J1- 1
. Now let 

S E M be such that J IT - SI I < ,r(T) = l11r(T)+ I 1-1
. Then 

I l1r(T) - 1r(S) 11 ~ I IT - SJ I < l11r(T)+ I 1-l' 

which implies that 

Hence 

1r(I) - 1r(T)+(1r(T) - 1r(S)) = 1r(T)+1r(S) is invertible in M/I. As 

[1r(T)+1r(S)J- 11r(T)+1r(S) = 1r(I), 

it follows that 1r( S) is left invertible. Let 1r( S)+ denote its left inverse. Since 

it follows from Theorem 3.8 that 

l,r(T) - ,r(S) I ~ J l1r(T) - 1r(S) 11 ~ I IT - SJ J. □ 
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Lemma 3.10 Let Q E P(M) be a central projection and P = I - Q. Then 

,r(T) = min{ ,rQ(TQ), 1rp(T P)}. 

Proof Let T E M be such that 1r(T) is invertible in M /I, i.e. there exists an 

S E M such that 

Hence 

and similarly 

1r(QTQ)1r(QSQ) = 1r(Q), which imply that 1r(PTP) is invertible in MP/IP and 

1r(QTQ) is invertible in MQ/IQ. 

Thus 

Pr(T) C PIP(T P) n prQ(TQ). 

Now suppose that 

and 
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Then 

1r(T)(1r(PSP) + 1r(QRQ)) = 1r(PT)1r(SP) + 1r(QT)1r(QR) = 1r(P) + 1r(Q) = 1r(I). 

Hence 

In particular, 

Hence 

prp(T P) n PIQ(TQ) C Pr(T). 

,r(T) inf(ar(ITl)\{O}) 

inf( arp(IT Pl)\ {O} U arQ(ITQI)\ {O}) 

min{ rIP(T P), rIQ(TQ)}. 

□ 

Theorem 3.11 If Tis semi-Fredholm, then Tis a point of continuity of ,r(-). 

Proof Let T be semi-Fredholm and let Tn ➔ T. Since T is semi-Fredholm there 

exists a central projection P such that T P is left Fredholm in MP /IP and T( I - P) 

is right Fredholm in M(I - P)/I(I - P). Clearly TnP ➔ T P. Thus given any c > 0, 

there exists an N such that IITnP - TPII < min(c:,,rp(TP)) for all n 2:: N. By 

Lemma 3.9, l,rp(TP)-,rp(TnP)I < IITP-TnPII < c for all n 2:: N, i.e. rIP(TnP) 

converges to rIP(T P). By taking adjoints we see that T*(I - P) is left Fredholm, 

and by using the fact that the minimum modulus preserves adjoints we deduce that 

rI(I-P)(Tn(I - P)) ➔ 1I(I-P)(T(I - P)). 
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Since 

,r(T) = min{,rp(TP),,r(I-P)(T(I - P))} 

it follows that 

,r(Tn) converges to ,r(T). Hence Tis a point of continuity of ,r(·). □ 

Theorem 3.12 If T E M is a point of continuity of ,r(-) and ,r(T) > 0, then T 

is semi-Fredholm. 

Proof If ,r is continuous at T and ,r(T) > 0 then there exists an a > 0 such that if 

I IT- SI I < a then ,r(S) ~ ,r(T)/2 := J. Since the set of semi-Fredholm elements is 

uniformly dense in M, Theorem 1.13, there exists a sequence (Tn) of semi-Fredholm 

elements such that Tn converges to T. Let c = min{ a, J} > 0. Then there exists 

an N such that I !TN - Tl! < c, which implies that ,r(TN) ~ J and IITN - Tl! < 6. 

Since TN is semi-Fredholm there exists a central projection P such that TN Pis left 

Fredholm and T(I - P) is right Fredholm. Note that 

Hence Theorem 1.12 implies that T P is left Fredholm. On the other hand, from 

IITt(I - P) - T*(I - P)II ~ IITt - T*II < J ~ ,r(Tt) < rI(I-P)(Tt(I - P)) 

it follows that T(I - P) is right Fredholm. Thus T is semi-Fredholm. □ 
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Theorem 3.13 An element T E M is a point of continuity of ,I : M --+ [O, oo] if 

and only if either ,I(T) = 0 or T is semi-Fredholm. 

Proof Suppose that T E M is a point of continuity of iI· Then either ,I(T) = 0 

or ,I(T) > 0. If ,I(T) > 0 then Theorem 3.12 implies that T is semi-Fredholm. 

Conversely, if ,I(T) = 0 and (Tn) is any sequence in M that converges to T, then 

lim supn,I(Tn) :::; ,I(T) by Theorem 7 of [HaM93). Hence ,I(Tn) = ,I(T) = 0 for 

every n, which implies that T is a point of continuity of ,I. Alternatively, if T is 

semi-Fredholm, then it follows from Theorem 3.11 that Tis a point of continuity. □ 

It is worth noting that Theorem 3.4 holds for semi-Fredholm elements in M. 

Theorem 3.14 Let TE <I>s(M,I) and let SE M be such that IIT - SIi < ,I(T). 

Then SE <I>s(M,I) and index(S) = index(T). 

Proof Let P be a central projection such that TP E <I>t(MP,IP) and 

T(I - P) E <I>r(M(I - P),I(I - P)). Then from Lemma 3.9 IIT P-SPII < iIP(T P) 

and from Theorem 3.4 it follows that SP E <I>t(MP,IP) with 

indexp(SP) = indexp(TP). Similarly S(I - P) E <I>r(M(I - P),I(I - P)), with 

index(I-P)(S(I - P)) = index(I-P)(T(I - P)). Hence SE <I>s(M,I) and 

index(S) = index(T). □ 
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Corollary 3.15 Let T E M be such that ,r(T) > 0. Then the following conditions 

are equivalent: 

( a) T is a point of continuity of ,r( · ). 

(b) T is semi-Fredholm. 

(c) There exist a, /3 > 0 such that for any SE M, 

I IT - SI I < a implies ,r(S) 2:: {3. 

( d) There exists a, /3 > 0 such that for any S E M, 

IIT- SIi < a implies (0,/3) C Pr(ISI) 

(e) There exists a, /3 > 0 such that for any SE M, 

IIT- SIi < a implies (0,/3) C Pr(IS*I). 

Proof (a){::} (b) follows from Theorem 3.13. 

(b) ⇒ (c) Let 0 < a < ,r(T). Then, if IIT - SIi < a, S is semi-Fredholm by 

Theorem 3.14. Hence ,r(S) = mr(S) > 0 and we may choose 0 < /3 ::; ,r(S). 

(c) ⇒ (d) If ,r(S) = inf (cr(7r(ISl))\{0}) 2:: /3 then (0,/3) C pr(ISI) 

( d) {::} ( e) follows from ,r( S) = ,r( S*) 

( d) ⇒ (b): From Theorem 1.13 <I> s ( M, I) is norm dense in M, hence we can find 

a semi-Fredholm element S E M such that I IT - SI I < min{ a, /3}. Thus by our 

hypothesis we have /3 ::; ,r(S) which implies that IIT - SIi < ,r(S). Since S is 
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semi-Fredholm there exists a central projection P E P(M) such that 

SP E <Pf(MP,IP) and S(J - P) E <Pr(M(I - P),I(I - P)) 

Also from Lemma 3.10 it follows that 

IITP - SPII ~ IIT- SIi < ,r(S) ~ ,rp(SP) 

Hence by Theorem 3.4, T P E <Pe( MP, IP) 

Similarly we can show that T(I - P) E <Pr(M(I - P),I(I - P)) 

Thus TE <Ps(M,I). 

50 

□ 

Another interesting fact to note is that in Lemma 3.1 ,r(T) can not be obtained 

by taking the supremum only over all perturbation from the ideal Ifinite. This was 

observed for the case where M = B(H) and I= K(H) in [MbP96), Example 1. 

We give a condition for which such a result holds in a general von Neumann algebra 

setting. This generalises Theorem 7 of Mbekhta and Paul [MbP96). 

Theorem 3.16 Let T E M such that ,(T) > 0, then 

,r(T) = sup{ ,(T + I<) : I< E Ifinite}. 

Proof This result follows by the same arguments used in proving Lemma 3.1. For, if 

,(T) > 0, ,r(T) > 0 from which we have shown that for any {3 E (0, ,r(T)) we have 

,(T-T E[o,{3)) 2 {3 and T E[o,{3) E Ifinite Hence sup { ,(T + I<) : I< E Ifinite} 2 ,r(T) 

and since the converse inequality is clear the result follows. □ 
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For general TE M, let , 00 (T) = sup{,(T +I<): I< EL.finite}-

With regards to the asymptotic behaviour of ,r(T) we have the following generali­

sation of Zemanek [Zem84a]. Let 

and we define the semi-Fredholm radius 

sr(T) ·- sup {c: > 0: T - Al E <I>s(M,I) for i>.il < c} 

Theorem 3.17 IJT E <I>s(M,I), then 

Proof Note that from Theorem 3.16 , 00 (T) = ,r(T). We first show that 

1 

sr(Tn)n ::; sr(T) for every n EN. 

Let >.i E C be such that 

i.e. An I - Tn E <I> s( M, I). Then there exists a central projection P E M such that 

(>.in I - Tn)P is left Fredholm in MP and (>.in I - Tn)(I - P) is right Fredholm in 

M(I - P). 

Note that 
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Hence 1rp(>-.P -TP) is left invertible in MP/IP and 1r(I-P)(>-.(I - P) -T(I - P)) 

is right invertible in M (I - P) /I(I - P) which implies that )..J - T E <I> s ( M, I) and 

hence ).. (/:. a<I>JT) which proves our assertion. Hence 

Now, for TE <I>s(M,I) and for every).. EC with i>-.1 < ,r(T), we have 

11(>-.J - T) - TII = i>-.1 < ,r(T) 

Thus from Theorem 3.14, it follows that )..J - TE <I>s(M,I). This implies that 

,r(T) ~ sr(T). 

Since Tn is semi-Fredholm for every n E N, we have 

D 

We show that the limit in the above theorem exists and equality holds. 

Theorem 3.18 Let TE <I>s(M,I) , then 

Proof For the converse inequality: Let Lrr(T) : M/I--+ M/I be the left regular 

representation. Since Tis in <I>s(M,I), there exists a central projection P E M 

such that TP E <I>e(MP,IP) and T(I - P) E <I>r(M(I - P),I(I - P)). 
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If 7rp : MP--+ MP/IP denotes the canonical quotient map, it follows that L1rp(TP) 

is injective. Clearly 

Now, if we view L1rp(TP) as an operator on the Banach space MP/IP, then it follows 

from [MaZ83] Theorem 3 that 

where b(L1rp(TP)) := sup{c > 0 : >iP -TP E <I>e(MP,IP)} for all l>il < c.} 

Note that [HaM93], Theorem 4 implies that 

,(L1rp(TP)) = ,rp(T P) , hence 

By using the facts that T(I - P) E <I>r(M(I - P),I(I - P)) if and only if 

T*(I - P) E <I>e(M(I - P),I(I - P)) and 

rI(I-P)(T*(I - P)) ;_ rI(I-P)(T(I - P)), we have 
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Since ,r(T) = mm { 1rp(T P), rT(I-P)(T(I - P))}, by Lemma 3.10, we have 

Moreover it follows directly that 

sr(T) = min { b(L1rp(TP)) , b(L1r1_p(T*(I-P)))}. Hence 

□ 

Open problems 3.19 

1. Regarding Theorem 3.2, if pis a polynomial with complex coefficients, can one 

find a/{ EI such that ,r(p(T)) = ,(p(T + K)). This conjecture is open even 

in the case where M = B ( H) and I = K, ( H) [MbP96). 

2. Does Theorem 3.2 hold for any C* -algebra and any closed ideal in the algebra? 
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Chapter 4 

THE ESSENTIAL LOWER BOUND 

As in the case of the reduced minimum modulus, the lower bound (minimum modu­

lus) of an operator on a Banach space has been studied extensively [MaZ83], [Bou81], 

[Gal94], [LeS71], [Rog77] and [Wu89] etc. For an operator Ton a Banach space X, 

the lower bound of T is defined by 

m(T) := inf {IITxll x EX, llxll = l}. 

It is clear from this definition that m(T) > 0 if and only if Tis bounded from below, 

hence injective. In [MaZ83], a useful spectral radius type result on the asymptotic 

behaviour of m(T) was proved, namely if 

b(T) := sup{c 2: 0 : T - )i.J is bounded below for i>i.l < c} 
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then 

1 

lim m(TnF = b(T). 
n➔oo 

It was shown [MaZ83] that this formula can be used to estimate the size of the 

spectrum of a given operator. If H is a Hilbert space it can be shown easily that 

m(T) = inf a(ITI). 

Since the main focus of this thesis is on the connection of quantities with Fredholm 

theory, we need to consider the notion of an essential lower bound of an operator. 

With the above spectral characterisation of m(T) (T a Hilbert space operator) in 

hand, it is clear how one should define the essential lower bound of T, namely 

where ae(ITI) denotes the spectum of 1r(T) in B(H)/K(H). This quantity has been 

important in understanding the structure of the Calkin algebra [Bou81], [Gal94]. 

It is well known that T is invertible modulo the compact operators if and only if 

me(T) and me(T*) are both positive. These quantities appear naturally in the study 

of Fredholm theory. More importantly, it was shown [Bou81], [Rog77] and [Wu89] 

that these quantities can also be used to determine the distance from an arbitrary 

operator to the sets of unitary and more generally invertible operators. For example 

if the Fredholm index of an operator T is not zero then max { me ( T), me ( T*)} is 

precisely the distance from T to the group of invertible operators. 
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In this chapter we are interested in the study of these quantities in a von Neumann 

algebra setting. To explain the setting, let M denote a von Neumann algebra and 

I a closed two-sided ideal in M. For a T E M, m(T) will denote the lower bound 

and mr(T) the essential lower bound relative to the quotient algebra M /I. It was 

shown [Ols84], [01P89] and [Olp86] that these generalised quantities play, as in the 

classical theory, a very important role in the study of Fredholm elements relative to 

I. The main result of this chapter will be the following lifting. 

"If T E M is Fredholm with index zero then there exists a I< E I such that 

mr(T) > 0 and my(T) = m(T + I<) = m(T* + I<*) = mr(T*)." 

An important consequence of this result is the lifting of invertible elements of M /I 

to M, namely if T is invertible modulo I and index (T) = 0, then there exists a 

I< E I such that T + I< is invertible in M. 

In the last part of this chapter we apply the lower bounds to study elements in the 

algebra which are essentially topological divisors of zero. We show that the semi­

Fredholm elements in M can be characterised in terms of these elements, and that 

any element in the boundary of Q ( the group of invertible elements) with non-zero 

index is essentially a topological divisor of zero. In a type Ile)() factor we obtain more, 

namely that if index (T) -=/- 0, then T E Q if and only if T is essentially a topological 
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divisor of zero. Finally we characterise regular elements in Q, by showing that an 

element T is regular if and only if index (T) = 0. 

Lifting of the essential lower bound 

In [Ver95], Vermaak obtained the following perturbation result on the essential lower 

bound mr(T) , where T E M. 

Theorem 4.1 [Ver95, Theorem 3. 7] Let T E M, then 

mr(T) = sup m(T + I<). 
KEI 

□ 

In his thesis, Vermaak posed the question whether the supremum in the above 

is attained in any von Neumann algebra relative to any closed ideal. By using 

a Stampfli type of decomposition (which do not hold for a general von Neumann 

algebra setting), Vermaak proved that the supremum is attained for the special case 

where M = B(H) and I= K(H). 

We show that this is the case in general. The proof of our theorem will be similar 

to Theorem 3. 2. 

Theorem 4.2 Let T E M and I be any closed ideal in M. Then there exists a 

I< E I such that 

mr(T) = m(T + I<). 
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Proof For any T E M, let E(>-.) denote the spectral measure of ITI and F(>-.) the 

corresponding spectral measure of jT*I. If mI(T) = 0, the claim holds for the choice 

I< = 0. Hence we may assume without loss of generality that mI(T) > 0. Then by 

Proposition 1.8 T is left Fredholm and in particular E[o) E I. Let P = E[o,mI(T)] 

and I<0 = mI(T)P - ITIP. By Theorem 2.4 it follows for any 0 ::; /3 < mI(T), that 

E[o ,a] E I. Hence {,a ( mI(T) - ).. )dE>-. E I. Since I is a norm closed ideal and 
· lo 

::; mI(T) - /3 

it follows that I<o E I. Also, since ITI = (I - P) ITI + mI(T)P - I<0 we have 

mI(T) mI(ITI) 

mI((I - P)ITI + mI(T)P) 

m((I - P)ITI + mI(T)P) 

m(ITI + I<o) 

Let I<= U I<0 where U is the partial isometry in the polar decomposition of T. 

Since 

IT+ I<l 2 = (T + I<)*(T + I<) 

= T*T + T* I< + I<*T + I<* I< 

= ITl 2 + ITIU*U I<o + I<oU*UITI + I<oU*U I<o 

= ITl 2 + ITIR1T1I<o + I<oR1TilTI + I<oR1T1I<o 
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= ITl 2 + ITIKo + KolTI + KJ 

= (ITI + Ko)2 

60 

it follows from the uniqueness of the square root of a positive element in a C*-algebra 

that IT+ Kl = ITI + Ko and hence mr(T) = m(T + K). □ 

From this theorem it immediately follows that if T E M is left invertible mod I, 

then there exists a Ke E I such that T + Ke is left invertible in M. By replacing 

T with T* it follows that if T is right invertible mod I, then there exists a Kr E I 

such that T + Kr is right invertible mod I. However to ensure that we obtain a 

single element K E I such that T + K is invertible in M we have to assume that 

T is invertible mod I with index zero. This decomposition of Fredholm elements of 

index zero proved to be very important in the classical theory [Ber70]. For a general 

von Neumann algebra a proof can be found in [Ver95]. It will be clear that this will 

also follow from the following perturbation result. 

Theorem 4.3 If T E M is Fredholm with index zero then there exists a I< E I 

such that mr(T) > 0 and mr(T) = m(T + K) = m(T* + K*) = mr(T*). 

Proof Since T is Fredholm of index zero it follows from Proposition 1.8 that 

mr(T) = mr(T*) > 0, E[o], F[o] EI and E[o] rv F[o]• The last equivalence means there 

exists a partial isometry V in M such that V* V = E[o] and VV* = F[o]. If we let 

W = U + V, where T = UITI it follows that Wis unitary and W E[o,.\] W* = F[o,.\] 

for every A ~ 0. To see this one needs the following relations 
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b) U*U = Ry. ,UU* = Rr 

c) U = UU*U = RrU = URr• 

d) V = VV*V = VNr = Nr.V 

Then W*W = (U + V)*(U + V) = Ry. + Nr = I. 

Similarly WW* = I. 

By similar arguments we see that 

61 

and since from the spectral theorem U E(o,-\] U* = F(o,-\] , for every A > 0, one easily 

obtains 

If we let K = W K0 where K0 is choosen as in the proof of Theorem 4.2, it follows 

that K E I. Since 

and 
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by a similar computation as in the proof of Theorem 4.2 we have IT+ Kl = ITI + Ko 

and mr(T) == m(T + K). Since IT*+ K*I = WITIW* + W K 0 W* it follows that 

mr(T*) = m(T* + K*) and hence the result follows. □ 

Corollary 4.4 Let T E M be Fredholm of index zero. Then there exists K E I 

such that T + K is invertible in M. 

Proof Note that Tis Fredholm if and only if mr(T) = mr(T*) > 0. It follows from 

Theorem 4.3 that there exists a K E I such that m(T + K) = m(T* + K*) > 0. 

This implies that T + K is invertible in M (see also [Bou81]). □ 

Topological divisors of zero 

Let B be a Banach algebra and La 

B. We define 

B --+ B be the left regular representation of 

m(a) := m(La) = inf {llabll : b EB and llbll = 1} 

Up to now we were mostly interested in the case where the lower bound of an element 

is positive. It follows directly that m( a) = 0 if and only if there exists a sequence 

(bn) in B with llbnll = 1 such that (llabnll) converges to zero. Hencem(a) = 0 if and 

only if a is a left topological divisor of zero. 

In the case of C* -algebras we have the following spectral characterisation which 

motivates our definition of the lower bounds in the first section of this chapter. 
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Theorem 4.5 Let C be a C*-algebra and a EC, then m(a) = inf o-(lal) 

Proof If m(a) = 0 then 0 E o-(lal). For, if not lal is invertible in C and hence 

a*a = lal 2 is invertible in C. Let c = (a*a)- 1
• Since m(a) = 0 there exists a sequence 

(bn) in C such that I lbn 11 = 1 and ( abn) converges to zero. From this it follows that 

bn = ca*abn ---+ 0 , which contradicts the fact that I lbn 11 = 1 for all n. Hence we have 

m(a) = inf o-(!al) = 0. 

Suppose m( a) > 0 , then from 

m(a) = m(La) = inf{l!Labll : llbll = 1} 

it follows that La : C ---+ C is bounded from below i.e. there exists a constant k > 0 

such that I labl I 2 k I lbl I for all b E C. 

If N(La) denotes the null space of La then N(La) = {0}, hence 

Recall that ,(a)= inf o-(lal)\{0}. In order to complete the proof we only need to 

show that 0 ~ o-(lal)- Since ,(a)> 0, !al is regular. Hence there exists c EC such 

that !al = lalclal. 

Since lllalbll = llabll for every b EC it follows that lllalbll 2 kllbll for all b EC. In 

particular 

lllal(l - c!al)II 2 kill - c!alll-
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Since ial(l - cial) = jaj - jajcjal = 0 it follows that ialc = cjal = 1. 

Hence ial is invertible in C which implies that O ~ a(lal). □ 

We will be mainly interested in the case where C = M/I where Mis a von Neumann 

algebra and I a closed ideal in M. Recall we defined mr(T) = inf a(1rr(ITI). 

From Theorem 4.5 we see that mr(T) = m(1rr(T)) where m(·) is defined using the 

left regular representation. 

Theorem 4.6 Let TE M. Then 

mr(T) = m(1rr(T)) = inf {ll1rr(TP)II PE P(M) and P ~ I} 

Proof The first equality follows from Theorem 4.5. Let Eu denote the spectral 

measure for IT j. Let 

F = {ll1rr(TP)II PE P(M) and P ~ I} 

and 

G = {ll1rr(TS)II : SE Mand ll1rr(S)II = 1}. 

Let c > 0 be given and let Qc: = E[o,m:r(T)+c:]· Then by Theorem 2.4 we have for any 

c > 0 that Qc: ~ I. Moreover, ll1rr(TQc:)II ::; IITQc:II ::; mr(T) + c and therefore 

inf F ::; mr(T). Now consider any c > 0 and let Sc: = ITIE[m:r(T)-c:,oo) and RE M 
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arbitrary. Then, since E[o,mi-(T)-c) E I it follows directly that 

Then 

1rr(R*T*TR) = 1rr(R*S;R). 

I l1rr( R*T*T R) 11 

ll1rr(R*S;R)II 

> (mr(T) - c) 2 1l1rr(R* E[mi-(T)-c,oo)R)II 

(mr(T) - c:)21l1rr(R*R)II 

( mr(T) - c )2 I l1rr( R) 112, 

65 

so that mr(T) ::; inf G. All that is still needed to be shown in order to obtain the 

second equality is that inf G ::; inf F and this is clear since F C G. □ 

We call T E M an essential left topological divisor of zero if 1rr(T) is a left topological 

divisor of zero in M /I. We denote this class of elements by Zt( M, I). The class 

Zr ( M, I) of essentially right topological divisors of zero is defined in a similar way. 

Let Z(M,I) = Zt(M,I) n Zr(M,I). 

Theorem 4.7 TE Zt(M,I) if and only if mr(T) = 0. 

Proof This follows directly from Theorem 4.5 and our comment that m( 1rr(T)) = 0 

if and only if 1rr(T) is a left topological divisor of zero in M /I. □ 

By a similar argument we can show that T E Zr(M, I) if and only if mr(T*) = 0. 

Hence we obtain the following. 
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Corollary 4.8 Let TE M. Then TE Z(M,I) if and only if mr(T) = mr(T*) = 0. 

□ 

The following characterisation of the left and right Fredholm elements follows from 

Theorem 4. 7 and Proposition 1.8 

Corollary 4.9 Let M be a von Neumann algebra and I any norm closed two-sided 

We would like to mention that a part of Theorem 4.6, Theorem 4. 7 and the corollaries 

also appear in [Ver95]. However we made use of the left regular representation on 

a C* -algebra to at first obtain a useful characterisation of mr(T) ( see Theorem 4.5 

and the first equality in Theorem 4.6). From this the important characterisations, 

Theorem 4. 7 and its corollaries, follow immediately. 

It was shown in [IzK85], Theorem 4.2 that in the case where M = B(H) and index 

(T) # 0, then dist (T, Q) = max{ me(T), me(T*)}. Hence for TE B(H) with nonzero 

index, T E Q if and only if T E Z(B(H), K(H)). In this section we show to what 

extend this result holds in a von Neumann algebra setting. 

We recall that two projections E, Fin M are Murry and von Neumann equivalent, 

and write E "' F, if there exists a partial isometry U E M such that U*U = E and 

UU* == F. A projection E is called finite relative to M if the relation E "' F ::; E 

implies E = F. The set of finite projections play an important role in the structure 
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theory of von Neumann algebras. Let K denote the norm closed two-sided ideal 

generated by the finite projections. In the case where M is the set of bounded 

operators on a Hilbert space, K corresponds to the ideal of compact operators. 

In [Ols89], Olsen considered the quantity a(T) = inf {-X: E[o,,\] rv F[o,,\]} and showed 

that a(T) = dist (T, Q). Clearly if index(T) = 0 then a(T) = 0. It is also shown 

that in the case where M is a type II00 factor and K the norm closed ideal generated 

by the finite projections that if index (T) -/- 0 then a(T) = max{ mK(T), mK(T*) }. 

Proposition 4.10 Let M be a type II00 factor and K the ideal generated by fi­

nite projections in M. Then if index (T) -/- 0, we have a(T) = 0 if and only if 

TE Z(M,K). 

Proof This follows directly from the above observations and Theorem 4. 7. □ 

Corollary 4.11 Let <I> 0 be the set of index zero Fredholm elements in M, then <I> 0 

is an open subset of Q, i.e. <I> 0 C int(Q). 

Proof We know that <I> 0 C Q. Let T E <I> 0 , then mK(T) > 0. Hence for every 

S E M such that 11 S - T 11 < mK ( T) has index zero by Theorem 1. 9 and hence 

a(S) = dist(S, Q) = 0. Thus SEQ, which implies that Tis an interior point of Q. 

□ 
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Theorem 4.12 Let M be a type II00 factor then 

(1) Z(M, K) c Q\Q 

(2) bdy(Q) c Z(M, K) 

Proof (1) If TE Z(M,K) then mK(T) = mK(T*) = 0. If index(T) = 0 then 

a(T) = 0. Hence T E Q. If index(T) # 0 then it follows directly from Proposition 

4.10 that T E Q. 

(2) Suppose T E bdy(Q) and say mK(T) > 0 (i.e. T is left Fredholm). Then 

there exists an invertible S E M such that I IT - SI I < mK(T). By Theorem 1.9 

index(T) = index(S) = 0 which implies that T is Fredholm of index zero. Hence 

mK(T) = mK(T*) > 0. By Corollary 4.11, <I>a is an open subset of Q and hence Tis 

an interior point of Q, which is a contradiction. Thus mK(T) = 0. Similarly we can 

show that mK(T*) = 0. Hence T E Z(M, K). □ 

Remark 4.13 From Theorem 4.12 it seems interesting to ask in the case of type 

II00 factor whether bdy(Q) coincides with Z(M, K). In the case of non-factors we 

could manage to prove only one direction of Proposition 4.10. 

The following Lemma is well known but since it plays such an important role we 

include a proof. 

Lemma 4.14 Let Ea :S E, Fa < F be projections in K such that E rv F and 

Ea rv Fa, then E - Ea rv F - Ea. 
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Proof By comparability of projections [KaR86], there exists a projection Q in the 

center of M such that 

(E - Ea) j Q(F - Fa)Q and (F - Fa)(/ - Q) j (E - Ea)(! - Q). 

Suppose (E - Ea)Q f (F - Fa)Q. Then there exists a projection P such that 

(E - Ea)Q rv P < (F - Fa)Q. Since Ea rv Fa we have QEa rv QFa and thus 

EQ = (E - Ea)Q + EaQ rv P + FaQ < FQ. 

Hence FQ rv EQ < FQ which contradicts the finiteness of FQ. Using the relation 

(F - Fa)(/ - Q) j (E - Ea)(/ - Q), 

we similarly obtain 

(F - Fa)(! - Q) rv (E - Ea)(! - Q). 

Hence E - Ea rv F - Fa. D 

Theorem 4.15 Let K be the closed ideal generated by the finite projections. For 

TE M such that index (T)-:/- 0 and a(T) = 0 we have TE Z(M, K). 

Proof Suppose T ~ Z(M,K). Then either mK(T) or mK(T*) is positive. Since 

mK(T) = inf {/3 : E[a,,a+c] ~ K for every c > O} and a(T) = 0 it follows that both 

mK(T) and mK(T*) are positive and hence equal. Hence there exists A > 0 such 

that E[a,-\] rv F[a,-\] E K. Let E = E[a,-\], F = F[a,-\], Ea = E(a,-\] and Fa = F(a,-\]. 
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Then E0 rv F0 since F(o,,\] = U E(o,,\]U* where U is the partial isometry in the polar 

decomposition of T. Applying Lemma 4.14 we have E[o] rv F[o]• Hence index(T) = 0 

which contradicts our assumption. □ 

We conclude this section by finding some necessary and sufficient conditions for 

regular elements in any von Neumann algebra to be in Q. 

Lemma 4.16 If P and Q are projections in M such that I IP - Q 11 < 1, then 

Prv Q. 

Proof Let PI\ (I - G) denote the projection onto the closed subspace 

P(H) n (I - Q)(H). It follows from Proposition 1.3 that the range projection 

RPQ = P - PI\ (I - Q). Since IIP - QII < 1, it follows that PI\ (I - Q) = 0. For, 

otherwise we could find a norm one vector x E P(H) n (I - Q)(H) which would 

mean that 

1 = llxll = IIP(x)II = IIP(x) - Q(x)II ~ IIP - QII < 1. 

Hence RPQ = P. Similarly by replacing P by Q in the above argument, we have 

RQP = Q. But since RPQ rv R(PQ)* = RQP, it follows that p rv Q. □ 

Theorem 4.17 [HaM93, Theorem 6]. If T, Tn are nonzero regular elements in a 

von Neumann algebra M, with I ITn - T 11 ➔ 0, then the following are equivalent: 
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c) sup IIT:11 < 00. 
n 

Proof 

(a) ⇒ (b): If (IIT:- T+II) converges to zero, the sequences of projections (T;tTn) 

and (TnT;t) converge to T+T and TT+ respectively. Hence by Theorem 3.8, 

we have ,(Tn) converges to ,(T). 

(b) ⇒ ( c): Since T is regular, we have ,(T) > 0. ,(Tn) converges to ,(T) implies 

that ,(Tn) is bounded below and since I IT: I l,(Tn) = 1 we have sup I IT: 11 < oo. 
n 

( c) ⇒ (a): Since by Theorem 3.8 

and sup IIT;tll < oo we have 
n 

IIT;t - T+11 ::; II - T:(Tn - T)TII + IIT:T:+(T~ - T*)(I - TT*)II 

+ ll(I - T:Tn)(T: - T*)T*+T+11 

< IIT:11 IIT+11 IITn -TII + IIT;tll llT;tll llTn -TII 

+IIT+11 IIT+11 IITn - TII 

< c I ITn - Tl I for some constant c. 
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Hence, as (IITn -TII) converges to zero, it follows that (IIT:- T+II) converges 

to zero. D 

Theorem 4.18 Let T E M be regular. Then the following conditions are equivalent: 

(1) TE Q 

(2) T is of index zero 

(3) T = SP for some S E Q and P an orthogonal projection. 

Proof (1) ⇒ (2): Let T E Q. Then there exists a sequence (Tn) C Q such that 

(Tn) converges to T. Let Sn = TnT+ and S = TT+. Clearly (Sn) converges to Sand 

since Rs;. = Rr and Rr(H) = T(H), we have S-;; Sn= TT+= S = s+ S. Hence by 

Theorem 4.17, it follows that SnS-;: converges to ss+ =TT+. This implies that for 

sufficiently large n, we can find two projections SnS-;: and S-;; Sn of distance strictly 

less than one. Since Rsn = I - N s;.. and Rs;. = I - N Sn, we have 11 N Sn - N s;.. I I < 1. 

Hence by Lemma 4.16, Nsn rv Ns;.. i.e. index (Sn) = 0. Since Sn = TnT+ and index 

(Tn) = 0, it follows that index (T+) = 0. Hence index (T) = 0. 

(2) ⇒ (3): If index (T) = 0, then as was indicated in the proof of Theorem 4.3 

there exists a unitary U E M such that T = UITI. If we let S = U(ITI + Nr) and 

P = Rr- then S E Q and T = SP. 

( 3) ⇒ ( 1): It follows immediately from the fact that 
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index (T) index (SP) 

index (S)+ index (P) 

0 

which implies that a(T) = 0. Hence T E 9. 

Open problems 4.19 

1. See Remark 4.13. 

73 

□ 

2. For M = B(H) and I = K(H) the following interesting inequality holds 

[Izu79]: For any T, SE B(H) with index(T) # index(S), it follows that 

Does this inequality hold in general? A positive solution for a type II00 factor 

with respect to the compact ideal might be a first step in solving this question. 
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SUMMARY 

In this thesis we study operational quantities characteristic of semi-Fredholm elements 

relative to a norm-closed ideal in a von Neumann algebra. In recent years, there 

have been various attempts at generalising various classical results relating to compact 

operators on a Banach space to the setting of a von Neumann algebra containing a 

closed ideal. In the study of operators and the quantities associated with them, the 

concept of stability under small perturbations is central. 

In this work we mainly concentrate on results relating quantities like the reduced 

minimum modulus and the lower bound of an element to the study of Fredholm theory. 

We answer an open question in the affirmative, namely that the reduced essential 
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minimum modulus of an element in a von Neumann algebra relative to a closed ideal is 

equal to the reduced minimum modulus of the element perturbed by an element from 

the ideal. As a corollary, we extend some basic perturbation results on semi-Fredholm 

elements. We also find a complete characterisation of the points of continuity of the 

reduced essential minimum modulus in terms of Fredholm properties and study the 

asymptotic behaviour of this quantity. 

On the other hand it is known in the classical theory of operators on a Hilbert space that 

the lower bound and the essential lower bound of an operator measures the distance 

from the operator to the sets of unitary and more generally invertible operators. We 

study these bounds, by results, connecting the topological divisors of zero with the 

boundary of the group of invertible elements. We also find necessary and sufficient 

conditions for regular elements in a von Neumann algebra to be in the closure of the 

group of invertible elements. 
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OPSOMMING 

Die proefskrif handel oor die studie en toepassings van operatormate in Fredholm 

teorie relatief tot enige geslote ideaal in 'n von Neumann algebra raamwerk. Daar 

bestaan reeds beduidende literatuur waarin verskeie belangrike klassieke resultate wat 

handel oor kompakte operatore op 'n Banach ruimte en die rol van hierdie operatore 

in Fredholm teorie, veralgemeen is na 'n von Neumann algebra raamwerk. Stabiliteit 

van operatore onder "klein" steurings vorm 'n sentrale deel van hierdie studie. 

Daar word hoofsaaklik gekyk na die rol wat mate soos die minimum moduli speel ten 

opsigte van Fredholm teorie. Onder andere word 'n oop probleem opgelos, naamlik <lat 

die essensiele minimum modulus van 'n element in 'n von Neumann algebra relatief tot 
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'n geslote ideaal gelyk is aan die minimum modulus van die gesteurde element deur 

'n element van die ideaal. Hieruit volg belangrike veralgemenings van resultate wat 

handel oor die steuringsteorie van Fredholm operatore deur kompakte operatore na 'n 

von Neumann algebra raamwerk. Daar word aangetoon dat die punte van kontinui"teit 

van die essensiele minimum modulus volledig gekarakteriseer kan word in terme van 

Fredholm eienskappe. Asimptotiese eienskappe van die essensiele minimum modulus 

word ook bestudeer. 

Ander mate van belang in die studie is die ondergrens, en essensiele ondergrens van 'n 

element in 'n von Neumann algebra. Hierdie mate word gebruik om die afstand van 'n 

element na die groep van inverteerbare elemente te meet. Verder karakteriseer hierdie 

mate die elemente wat topologiese nulclelers is in die gegewe algebra. Verbande word 

afgelei tussen hierdie elemente en elemente in die rand van die groep van inverteerbare 

elemente. Ten einde word nodige en voldoende voorwaardes gegee vir 'n reguliere 

element van die algebra om in die rand van die groep van inverteerbare elemente te 

wees. 
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