BAPELA, MANAS MAJAKWANE

YAMAMOTO TYPE THEOREMS IN BANACH ALGEBRAS

Yamamoto type theorems in Banach algebras

 byManas Majakwane Bapela

Submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in the

FACULTY OF SCIENCE UNIVERSITY OF PRETORIA

PRETORIA
DECEMBER 1995

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor, Prof A. Ströh, for his invaluable assistance and patience in guiding me in this study. His motivation and encouragement helped me through difficult times.

I would also like to thank my co-supervisor, Prof J. Swart for the enthusiasm he expressed whilst working with me.

My sincere gratitudes go to my colleague, Mrs R. A. Coetzer, for the proofreading of this paper.

I learnt a lot from the conversations I have had with Dr A. R. Weston and Prof L. E. Labuschagne both of our Department, as well as Prof P. M. Rosenthal of the University of Toronto. I therefore, would like to express my sincere thanks to them.

My sincere appreciation also go to my parents who supported me throughout my studies.

I am greatly indebted to the Foundation for Research Development, for the generosity they expressed through their funding. I feel inclined to mention that without their funding this research would have been almost non-existent.

CONTENTS

1. INTRODUCTION 1
2. RANKS OF ELEMENTS IN A BANACH ALGEBRA 3
3. COMPARISON OF RANK CONCEPTS 15
4. FUNCTIONAL CALCULUS AND MULTIPLICITIES OF SPECTRAL POINTS 24
5. THE SPECTRAL POINT SEQUENCE, APPROXIMATION NUMBERS AND THEIR PROPERTIES 42
6. THE SPECTRAL RADIUS PROPERTY FOR BANACH ALGEBRAS 50
APPENDIX 61
NOTATIONS 69
REFERENCES 70
SUMMARY 72
OPSOMMING 73

1. INTRODUCTION

In 1967, T. Yamamoto [16], stated and proved an asymptotic relation between the singular values and eigenvalues of a matrix. As mentioned in [12], it was C.R. Loesner who rediscovered this result in 1976. The formulation of this result involving approximation numbers of matrices, see Definition 5.1, suggested an extention of this result to $B(X)$, where X is a Banach space. Nylen and Rodman [12] proved this relation for Banach algebras satisfying the spectral radius property, see Definition 6.4. They also showed that C^{*}-algebras and finite dimensional algebras do have the spectral radius property and stated that $B(X)$, where X is a Banach space, also has the property. In Theorem 6.10 of this paper we give a complete proof of this property for $B(X)$.

In [12] Nylen and Rodman conjectured that every Banach algebra with a unit element has the spectral radius property. We prove their conjecture in the affirmative in Theorem 6.12.

Other interesting results proved are found in Sections 5 and 6 as Lemma 5.2 and Theorem 6.1, both results on some properties of approximation numbers.

Let us state Yamamoto's Theorem for the algebra of matrices over the complex field \mathbb{C}. Let $M_{k}(\mathbb{C})$ denote the set of all k by k matrices over \mathbb{C}. Given a matrix $A \in M_{k}(\mathbb{C})$, we denote the eigenvalues of A by

$$
\alpha_{1}(A), \alpha_{2}(A), \ldots, \alpha_{k}(A)
$$

with the convention that multiple eigenvalues are repeated according to their multiplicities and indexed so that

$$
\left|\alpha_{k}(A)\right| \leq \ldots \leq\left|\alpha_{1}(A)\right|
$$

The singular values of A are denoted by

$$
\sigma_{1}(A), \ldots, \sigma_{k}(A)
$$

where $\sigma_{i}(A)$ is the non-negative square root of $\alpha_{i}\left(A^{*} A\right), A^{*}$ being the adjoint of A.

Proposition 1.1 ([16], Theorem 1). Let $A \in M_{k}(\mathbb{C})$. For each i,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sigma_{i}\left(A^{n}\right)\right)^{\frac{1}{n}}=\left|\alpha_{i}(A)\right| \tag{1.1}
\end{equation*}
$$

It is worth noting that $\sigma_{1}(A)=\|A\|$, with $\|$.$\| being the underlying algebra$ norm. So $\left(\sigma_{1}\left(A^{n}\right)\right)^{\frac{1}{n}}=\left\|A^{n}\right\|^{\frac{1}{n}}$ and $\left|\alpha_{1}(A)\right|=r(A)$, the spectral radius of A. For $i=1$, equation (1.1) is just the spectral radius formula, that is Beurling's formula.

Hence, for Proposition 1.1 to make sense in $B(X)$, where X is a Banach space, the generalization of singular values, namely the notion of approximation
numbers, had to be introduced. This notion has been widely explored in the literature, see for instance monographs [6], [9], and [13].

With the notion of approximation numbers, D. E. Edmunds and W. D. Evans [6] extended Proposition 1.1 to elements of $B(X)$, where X is a Banach space.

To get a meaningful extension of Proposition 1.1 to the elements of a general Banach algebra A, we need the notion of rank of elements of A, so as to define approximation numbers for elements of A.

In Section 2 we introduce the notion of rank in a general Banach algebra and it turns out that this notion corresponds to the classical notion of rank for the Banach algebra $B(X)$. This correspondence is shown in Theorem 2.6. We provide some properties of the rank function which will be needed in the sequel. In Section 3 we compare the notion of rank defined in this paper, see Definition 2.1, with those appearing in the literature. In Section 4 we introduce the notion of spectral multiplicity of an isolated spectral point. We prove the main result of this paper in Sections 5 and 6. At the end of Section 6 we give a proof of the conjecture of Nylen and Rodman mentioned earlier.

Throughout this paper we assume that the reader is familiar with definitions and standard results on Banach algebras and C^{*}-algebras. Functionals and operators are assumed linear and bounded unless otherwise stated.

2. RANKS OF ELEMENTS IN A BANACH ALGEBRA

Throughout this section, a Banach algebra A is assumed to be over the complex field \mathbb{C} and is also assumed to contain a unit element 1 unless otherwise stated. We will often write λ in place of $\lambda 1, \lambda \in \mathbb{C}$.

Definition 2.1. An element $a \in A$ is said to be of rank one if $a \neq 0$ and for every $b \in A$, there is a scalar $\lambda \in \mathbb{C}$ such that aba $=\lambda a$. An element $x \in$ A is said to be of rank n if x can be expressed as a sum of n elements of rank one but cannot be expressed as a sum of less than n elements of rank one.

We say $x \in A$ is of finite rank if $\operatorname{rank}(x)=k$, for some non-negative integer k and then write $\operatorname{rank}(x)<\infty$.

An element a of A is of infinite rank if it is not of finite rank and we write $\operatorname{rank}(a)=\infty$.

Proposition 2.2 ([12], Proposition 2.2). Let $a, b \in A$. The rank function has the following properties:
(a) $\operatorname{rank}(a+b) \leq \operatorname{rank}(a)+\operatorname{rank}(b)$,
(b) if $\operatorname{rank}(a)=1$, then for every $b \in A$ either $a b=0$ or $\operatorname{rank}(a b)=1$.

Moreover $\operatorname{rank}(b a)=1$ unless $b a=0$,
(c) $\operatorname{rank}(a b) \leq \min \{\operatorname{rank}(a), \operatorname{rank}(b)\}$,
(d) the set F_{A} defined by $F_{A}=\{a \in A: \operatorname{rank}(a)<\infty\}$ is a two-sided ideal in A, and
(e) the subalgebra $A\left(a_{1}, \ldots, a_{s}\right)$ of A, generated by 1 and a finite number of finite rank elements a_{1}, \ldots, a_{s} of A, is finite dimensional, as a vector space over \mathbb{C}.

Proof. (a) For the case where at least one of a and b is of infinite rank the result follows trivially. Hence, suppose both $\operatorname{rank}(a)$ and $\operatorname{rank}(b)$ are finite, that is $\operatorname{rank}(a)=n_{1}$ and $\operatorname{rank}(b)=n_{2}$. So, $a=a_{1}+\ldots+a_{n_{1}}$, where $\operatorname{rank}\left(a_{i}\right)=1$, $\left(i=1, \ldots, n_{1}\right)$. Also $b=b_{1}+\ldots+b_{n_{2}}$, where $\operatorname{rank}\left(b_{j}\right)=1,\left(j=1, \ldots, n_{2}\right)$. Then $a+b=a_{1}+\ldots+a_{n_{1}}+b_{1}+\ldots+b_{n_{2}}$, from which we deduce that $\operatorname{rank}(a+b) \leq n_{1}+n_{2}=\operatorname{rank}(a)+\operatorname{rank}(b)$.
(b) Since $\operatorname{rank}(a)=1$, for every $c \in A$ there is a $\lambda \in \mathbb{C}$ such that $a c a=$ λa. Arbitrarily choose $d \in A$ and assume $a b \neq 0$. Then $a b d a b=\left(\lambda_{0}\right) a b$, for some $\lambda_{0} \in \mathbb{C}$. That is $(a b) d(a b)=\lambda_{0}(a b)$ which shows that $\operatorname{rank}(a b)=1$. By a similar argument, it can be shown that $\operatorname{rank}(b a)=1$ unless $b a=0$.
(c) If both $\operatorname{rank}(a)$ and $\operatorname{rank}(b)$ are infinite we then have nothing to prove. Suppose $\operatorname{rank}(a)=n \leq \operatorname{rank}(b)$. So, $a b=\left(a_{1}+\ldots+a_{n}\right) b$ with $\operatorname{rank}\left(a_{i}\right)=$ $1,(i=1, \ldots, n)$. That is, $a b=a_{1} b+\ldots+a_{n} b$. Thus, from (a) $\operatorname{rank}(a b)$ $\leq \operatorname{rank}\left(a_{1} b\right)+\ldots+\operatorname{rank}\left(a_{n} b\right)$. By (b) $\operatorname{rank}(a b) \leq n=\min \{\operatorname{rank}(a), \operatorname{rank}(b)\}$. The analogous argument works for the case where $\operatorname{rank}(b)=n \leq \operatorname{rank}(a)$.
(d) Let $a, b \in F_{A}$ and $d \in A$. We apply (a) and (c) to get the following: $\operatorname{rank}(\alpha a+\beta b) \leq \operatorname{rank}(\alpha a)+\operatorname{rank}(\beta b) \leq \operatorname{rank}(a)+\operatorname{rank}(b),(\alpha, \beta \in \mathbb{C})$. That is, $\operatorname{rank}(\alpha a+\beta b)<\infty$. Hence, F_{A} is a subspace of A.

Also from part (b), $\operatorname{rank}(d b) \leq \min \{\operatorname{rank}(d), \operatorname{rank}(b)\} \leq \operatorname{rank}(b)<\infty$. Thus, $d b \in F_{A}$ and by a similar argument, $b d \in F_{A}$. Whence, F_{A} is a two-sided ideal in A.
(e) Since any finite rank element of A is a sum of a finite number of rank one elements of A , we assume that $\operatorname{rank}\left(a_{i}\right)=1,(i=1, \ldots, s)$.

The algebra $A\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ consists of all polynomials in $1, a_{1}, a_{2}, \ldots, a_{s}$. Let $a_{0}=1$. For all $1 \leq i \leq s$ and $0 \leq k \leq s$ it follows that $a_{i} a_{k} a_{i}=\lambda_{i k} a_{i}$.

Thus all powers of finite products of elements of $A\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ will reduce to scalar multiples of products of distinct elements from $\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$.

Hence $A\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ will be spanned by all possible finite products of distinct elements from $\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{s}\right\}$ which can only be finite in number.

Therefore $\operatorname{dim}\left(A\left(a_{1}, a_{2}, \ldots, a_{s}\right)\right)<\infty$ and the theorem is established.

Corollary 2.3 ([12], Corollary 2.3). Every $x \in A$ with $\operatorname{rank}(x)<\infty$ is algebraic. That is, there is a non-zero polynomial $P(t)$ such that $P(x)=0$. In particular, the spectrum $\sigma_{A}(x)$ is a finite set.

Proof. The subalgebra $A(x)$, generated by the identity 1 and x is finite dimensional, which follows from Proposition 2.2 (e). Since $x^{n} \in A(x),(n=$ $1,2, \ldots)$, the $x^{n, s}$ cannot all be linearly independent over \mathbb{C}. This says that scalars $\lambda_{1}, \ldots, \lambda_{k}$ exist, not all zero, such that

$$
\lambda_{k} x^{n_{k}}+\ldots+\lambda_{1} x^{n_{1}}=0
$$

Whence,

$$
P(t)=\lambda_{k} t^{n_{k}}+\ldots+\lambda_{1} t^{n_{1}}
$$

is the required polynomial for which $P(x)=0$.
Lastly, by the Spectral Mapping Theorem, it follows that

$$
\sigma(P(x))=P(\sigma(x))
$$

But,

$$
\begin{aligned}
\sigma(P(x)) & =\sigma(0) \\
& =\{0\} .
\end{aligned}
$$

So, $P(\sigma(x))=\{0\}$. Since $P(t)$ has a finite number of zeros, it follows that $\sigma(x)$ is a finite set and we are done.

We next show that if $A=B(X)$, then the rank notion coincides with the classical notion of finite dimensional range. We will need the following lemma to prove that.

Lemma 2.4. Let $T \in B(X)$, with X a Banach space and $\operatorname{dim}(T(X))=$ $n<\infty$. Then, T has a representation of the form

$$
T x=f_{1}(x) y_{1}+\ldots+f_{n}(x) y_{n}
$$

where $\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left\{f_{1}, \ldots, f_{n}\right\}$ are sets in X and X^{\prime} respectively.
Proof. There is an independent set $\left\{y_{1}, \ldots, y_{n}\right\}$ in Y, such that

$$
\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}=T(X)
$$

Then for each $x \in X$,

$$
\begin{equation*}
T x=\sum_{i=1}^{n} f_{i}(x) y_{i} \tag{2.1}
\end{equation*}
$$

Since this representation is unique the coefficients $f_{i}(x)$ are clearly seen to define linear functionals on X.

Since $T(X)$ has a finite dimension, all norms on $T(X)$ are equivalent, hence there exists a constant $K>0$ such that

$$
\sum_{i=1}^{n}\left|f_{i}(x)\right| \leq K\left\|\sum_{i=1}^{n} f_{i}(x) y_{i}\right\| \text { for any } x \in X
$$

Hence

$$
\begin{aligned}
\sum_{i=1}^{n}\left|f_{i}(x)\right| & \leq K\|T x\| \\
& \leq K\|T\|\|x\|
\end{aligned}
$$

This shows that all the f_{i} 's are bounded.

The y_{1}, \ldots, y_{n} in representation (2.1) are chosen to be linearly independent. We could arrange it so that f_{1}, \ldots, f_{n} are also linearly independent but we will not need this fact for our purpose.

Remark 2.5. We will use the following notation. If $y \in X$ and $f \in X^{\prime}, X$ a Banach space, we define

$$
T=f \otimes y \text { on } X
$$

as

$$
T x:=f(x) y
$$

Then it is clear from Lemma 2.4 that if $T \in B(X)$ then $\operatorname{dim}(T(X))=1$ if and only if there exists $y \in X$ and $f \in X^{\prime}$ such that

$$
T=f \otimes y
$$

For the case where X is a Hilbert space, it follows from the Riesz representation theorem on bounded linear functionals that there exists a unique vector $z \in X$ such that $f=\langle, z>$ where $\langle.,$.$\rangle denotes the inner product on X$. In this case we will write $T=z \otimes y$ meaning

$$
(z \otimes y)(x)=<x, z>y
$$

Note that if T is of rank one, we can always arrange either y or z to be a unit vector. Then clearly T is a rank one projection on H if and only if $T=z \otimes z$ for some unit vector $z \in H$. This follows by using the following standard properties:-

$$
\begin{gathered}
\left(z \otimes z^{\prime}\right)\left(w \otimes w^{\prime}\right)=<w^{\prime}, z>w \otimes z^{\prime} \\
(z \otimes y)^{*}=y \otimes z, \text { where }{ }^{*} \text { denotes the adjoint of an operator, } \\
\|z \otimes y\|=\|z\|\|y\|
\end{gathered}
$$

We next prove a theorem that confirms that if $A=B(X)$, where X is a Banach space, the rank notion applied to an elment x of A boils down to the rank of x as an operator, that is, the dimension of the range of x.

Theorem 2.6 ([12], Theorem 2.4). Let $A=B(X)$, where X is a Banach space. Let $T \in A$. Then, $\operatorname{rank}(T)=n$ if and only if $\operatorname{dim}(T(X))=n$.

Proof. By the representation in Lemma 2.4 it is clear that any operator $T \in B(X)$ with $\operatorname{dim}(T(X))=n$ can be written as a sum of n operators each with one-dimensional range.

Hence it suffices to prove the theorem for $n=1$.
Now suppose $\operatorname{rank}(T)=1$. Since $T^{2}=\lambda T$ for some scalar λ, we can assume, if $\lambda \neq 0$, by rescaling, that $T^{2}=T$. The rescaling can be done by considering $T_{0}=\frac{T}{\lambda}$, if $\lambda \neq 0$. So that, $T_{0}^{2}=\frac{T^{2}}{\lambda^{2}}=\frac{\lambda T}{\lambda^{2}}=\frac{T}{\lambda}=T_{0}$. Hence either $T^{2}=T$ or $T^{2}=0$.

Case 1: Suppose $T^{2}=T$. That is, T is a projection. Thus, X is a direct sum of T-invariant subspaces X_{0} and X_{1} such that $T a=a$, for all $a \in X_{1}$ and $T b=0$, for all $b \in X_{0}$.

We now assume $\operatorname{dim}\left(X_{1}\right)>1$. So, there are $a_{1}, a_{2} \in X_{1}$, which are linearly independent. Let X_{2} be a direct complement of $\operatorname{span}\left\{a_{1}\right\}$ in X_{1}. Clearly $a_{2} \in$ X_{2}. Define $S \in A$ by

$$
S b=0, \quad b \in X_{0} \oplus X_{2}
$$

and

$$
S a_{1}=a_{1}
$$

So,

$$
\begin{aligned}
T S T a_{1} & =T S a_{1} \\
& =T a_{1} \\
& =a_{1} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
T S T a_{2} & =T S a_{2} \\
& =T 0 \\
& =0 .
\end{aligned}
$$

So, there is no $\lambda \in \mathbb{C}$ such that $T S T=\lambda T$, which contradicts the assumption that $\operatorname{rank}(T)=1$. So, we must have

$$
\begin{aligned}
\operatorname{dim}(T(X)) & =\operatorname{dim}\left(X_{1}\right) \\
& =1 \\
& =\operatorname{rank}(T) .
\end{aligned}
$$

Case 2: Suppose $T^{2}=0$. We also carry out the argument by contradiction. We suppose that $\operatorname{dim}(T(X))>1$. Let $a_{1}=T c_{1}$ and $a_{2}=T c_{2}$ be linearly independent for some c_{1} and $c_{2} \in X$. It then follows from the linearity of T that c_{1} and c_{2} are also linearly independent. Since $T^{2}=0$, it follows that

$$
\left\{a_{1}, a_{2}, c_{1}, c_{2}\right\}
$$

is linearly independent, because

$$
\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} c_{1}+\lambda_{4} c_{2}=0
$$

implies that

$$
T\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} c_{1}+\lambda_{4} c_{2}\right)=0
$$

which implies that

$$
\lambda_{1} T a_{1}+\lambda_{2} T a_{2}+\lambda_{3} T c_{1}+\lambda_{4} T c_{2}=0 .
$$

Hence

$$
\lambda_{1} T^{2} c_{1}+\lambda_{2} T^{2} c_{2}+\lambda_{3} T c_{1}+\lambda_{4} T c_{2}=0
$$

So,

$$
\lambda_{3} T c_{1}+\lambda_{4} T c_{2}=0, \text { because } T^{2}=0 .
$$

That is,

$$
\lambda_{3} a_{1}+\lambda_{4} a_{2}=0,
$$

which means that

$$
\lambda_{3}=\lambda_{4}=0, \text { because } a_{1} \text { and } a_{2} \text { are linearly independent. }
$$

Since

$$
\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} c_{1}+\lambda_{4} c_{2}=0
$$

it follows that

$$
\lambda_{1} a_{1}+\lambda_{2} a_{2}=0,
$$

Therefore,

$$
\lambda_{1}=\lambda_{2}=0, \text { because } a_{1} \text { and } a_{2} \text { are linearly independent. }
$$

We then have

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0
$$

We now let

$$
M=\operatorname{span}\left\{a_{1}, a_{2}, c_{1}, c_{2}\right\}
$$

Clearly, M is T-invariant. Restricting T to the subspace M, we can represent T by the following matrix:

$$
T=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Consider

$$
S=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Clearly

$$
T S T=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, there is no scalar $\lambda \in \mathbb{C}$ such that

$$
T S T=\lambda T
$$

This contradicts the assumption that $\operatorname{rank}(T)=1$. We therefore have

$$
\operatorname{dim}(T(X))=1=\operatorname{rank}(T)
$$

For the converse, assume that $\operatorname{dim}(T(X))=1$. So, by using Lemma 2.4 it follows that

$$
\begin{equation*}
T a=\psi(a) b,(a \in X), b \text { a fixed vector and } \psi \text { fixed in } X^{\prime} . \tag{2.2}
\end{equation*}
$$

Note that from (2.2) we have

$$
b=\frac{T a}{\psi(a)},(a \neq 0)
$$

So, for any $S \in B(X)$, we get

$$
T S b=\psi(S b) b .
$$

Therefore,

$$
\frac{T S T a}{\psi(a)}=\psi(S b) b
$$

That is,

$$
T S T a=\psi(S b) \psi(a) b
$$

That is,

$$
\begin{aligned}
T S T a & =\frac{T a}{\psi(a)} \psi(a) \psi(S b) \\
& =\psi(S b) T a .
\end{aligned}
$$

Therefore,

$$
T S T a=\psi(S b) T a, \text { for all } a \in X
$$

So,

$$
T S T=\lambda T \text { for all } S \in B(X), \text { where } \lambda=\psi(S b)
$$

Whence, $\operatorname{rank}(T)=1$.

Remark 2.7. Let $A=M_{n}(\mathbb{C})$, the algebra of all n by n matrices over \mathbb{C}. The space A, with the usual matrix multiplication, can be viewed as the algebra $B\left(\mathbb{C}^{n}\right)$ with multiplication being the composition of operators and the classical matrix rank of an n by n matrix T is exactly the dimension of $T\left(\mathbb{C}^{n}\right)$ which by Theorem 2.6 equals $\operatorname{rank}(T)$.

We now illustrate by an example that if we define another product on the vector space $A=M_{n}(\mathbb{C})$, the matrix rank differs from our notion of rank.

Example 2.8. Let $A=M_{n}(\mathbb{C})$ with Hadamard multiplication. Then, in general

$$
\operatorname{rank}(x) \neq \operatorname{rank}_{M}(x),
$$

where $x \in A$ and rank_{M} denotes the matrix rank. Recall that Hadamard multiplication of matrices is carried out entrywise.

Let us consider the case where $n=3$. Let

$$
x=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
y=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Note that $\operatorname{rank}_{M}(x)=1$. But

$$
x y x=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Clearly, there is no scalar $\lambda \in \mathbb{C}$ such that

$$
x y x=\lambda x .
$$

This implies that

$$
\operatorname{rank}(x) \neq \operatorname{rank}_{M}(x)
$$

Example 2.9. Let $A=l_{\infty}$, the algebra of all bounded sequences of complex numbers. Multiplication is pointwise. Then $x \in l_{\infty}$ is of rank one if and only if x has only one non-zero entry. The ideal F_{A} consists of all sequences with only a finite number of non-zero entries.

We now give a natural example of an algebra $A \neq \mathbb{C}$ which illustrates that if an element is of finite rank, then it must be of rank one. Hence, F_{A} consists only of rank one elements and F_{A} is not equal to all of A.

Definition 2.10. An element $x \in A$ such that $x^{k}=0$ but $x^{k-1} \neq 0$ for some $k \geq 2$ is said to be a nilpotent element of order k.

Example 2.11. Let A be the algebra generated by the identity matrix I and the powers of an n by n nilpotent matrix M of order k. Let $x \in A$. So,

$$
\begin{equation*}
x=z_{s} M^{s}+\ldots+z_{k-1} M^{k-1},\left(z_{i} \in \mathbb{C}\right) \tag{2.3}
\end{equation*}
$$

where $s \geq 0$ and $z_{s} \neq 0$.

We observe that any non-zero element of A is of the form (2.3). Suppose $\operatorname{rank}(x)=1$. Then, for any $y \in A$ there is a scalar λ such that

$$
x y x=\lambda x .
$$

Let y be the identity I. So, $x^{2}=\lambda x$. for some $\lambda \in \mathbb{C}$.
Clearly, since x is nilpotent, λ must be zero. Note that multiplying x by itself, the smallest exponent is $2 s$ and for the product x^{2} to be zero, the smallest exponent, $2 s$, must be at least k. That is,

$$
2 s \geq k,
$$

which implies that $s \geq\left\lceil\frac{k}{2}\right\rceil$. Of course, if $s \geq\left\lceil\frac{k}{2}\right\rceil$ we have, for any $y \in A$ that

$$
x y x=0 .
$$

So, $\operatorname{rank}(x)=1$.
Whence, $\operatorname{rank}(x)=1$ if and only if $s \geq\left\lceil\frac{k}{2}\right\rceil$. Almost the same argument shows that the finite rank elements of A are exactly the rank one elements.

For the rest of this section we concentrate on specific finite dimensional algebras and show that in this case the notion of rank is determined by the classical matrix rank. We will consider finite dimensional C^{*}-algebras.

Lemma 2.12. Let A be a finite dimensional C^{*}-algebra. Then A is the linear span of its projections.

Proof. Since any element in A is a linear combination of self-adjoint elements and a self-adjoint element generates a commutative C^{*}-algebra, we may assume, without loss of generality, that A is commutative. Hence, by the Gelfand-Naimark Theorem, $A \cong C(K)$, for some compact Hausdorff space K.

Since A is finite dimensional, K must be a finite set. This follows from the following considerations:-

For $k \in K$, let $\tau_{k} \in C(K)$ be defined by

$$
\tau_{k}(f)=f(k), \quad(f \in C(K)) .
$$

Then the set $\left\{\tau_{k}: k \in K\right\}$ is linearly independent, for suppose $\lambda_{1} \tau_{k_{1}}+$ $\ldots+\lambda_{n} \tau_{k_{n}}=0$. By Urysohn's Lemma, if we fix i, there is an $f \in C(K)$ such that $f\left(k_{i}\right)=1$ and $f\left(k_{j}\right)=0$ for $j \neq i$. This implies that $\lambda_{i}=0$. Say $K=\left\{k_{1}, \ldots, k_{n}\right\}$. The lemma follows by letting $p_{i}=\chi_{\left\{k_{i}\right\}}$, where χ denotes the characteristic function.

Definition 2.13. Let A be a C^{*}-algebra. An irreducible representation of A on a Hilbert space H is a ${ }^{*}$-homomorphism π of A into $B(H)$ such that the
only subspaces invariant under $\pi(T)$, for all $T \in A$, are the trivial subspaces $\{0\}$ and H.

It is clear from the Gelfand-Naimark-Segal construction pertaining to representations of C^{*}-algebras ([15], Theorems 9.18 and 9.22) that irreducible representations of C^{*}-algebras always exist.

Definition 2.14. For a Hilbert space H let $K(H)$ denote the compact operators on H. A C^{*}-algebra is said to be liminal if for every non-zero irreducible representation (H, ϕ) of A we have

$$
\phi(A)=K(H)
$$

We prove that every finite dimensional C^{*}-algebra is liminal. As an overture to that, we prove the following theorem.

Theorem 2.15 ([11], Theorem 2.4.9). Let A be a C^{*}-algebra acting irreducibly on a Hilbert space H and having non-zero intersection with $K(H)$. Then, $K(H) \subset A$.

Proof. Since $A \bigcap K(H)$ is not $\{0\}$ and the adjoint of any element in $A \bigcap K(H)$ is again in $A \bigcap K(H)$, it follows that $A \bigcap K(H)$ contains a nonzero self-adjoint element a. It follows from the Beurling formula for the spectral radius ($[11]$, Theorem 1.2.7) that $r(a)=\|a\|>0$. So, $\sigma(a)$ has a non-zero element. Let $0 \neq \lambda \in \sigma(a)$. So, $\sigma(a)$ consists only of isolated eigenvalues, because $a \in K(H)$. Let

$$
f(z)= \begin{cases}1, & \text { if } z=\lambda \\ 0, & \text { if } z \in \sigma(a) \backslash\{\lambda\}\end{cases}
$$

Then $f \in C(\sigma(a))$. The Gelfand Naimark theorem implies that the commutative C^{*}-algebra generated by 1 and a, which we denote by $A(1, a)$, is isomorphic to $C(\sigma(a))$. Hence, this isomorphism gives a projection $f(a) \in A(1, a) \subset A$ and we denote it by p_{λ}. Let $g(z)=z,(z \in \sigma(a))$. So,

$$
\begin{aligned}
(g(z)-\lambda) f(z) & =g(z) f(z)-\lambda f(z) \\
& =0
\end{aligned}
$$

Therefore,

$$
(g(a)-\lambda) f(a)=0
$$

That is,

$$
(a-\lambda) p_{\lambda}=0
$$

Therefore, $p_{\lambda}(H) \subseteq \operatorname{ker}(a-\lambda)$. Since $a \in K(H)$, the restriction of a to the subspace $\operatorname{ker}(a-\lambda)$ is also compact. But since this restriction is just λ times the identity element of $B(\operatorname{ker}(a-\lambda))$, the identity element of $B(\operatorname{ker}(a-\lambda))$ is compact, implying that $\operatorname{ker}(a-\lambda)$ is finite dimensional. We thus have $\operatorname{dim}\left(p_{\lambda}(H)\right)<\infty$. Hence we may choose a non-zero projection p in A of minimal finite dimensional
range. Then $p A p$ is finite dimensional and, by Lemma 2.12, $p A p$ is spanned by its projections. Since p is of minimal finite dimensional range, the only projections in $p A p$ are 0 and p. Hence, $p A p=\mathbb{C} p$. Let $0 \neq x \in p(H)$ be a unit vector. Let $M=\{a(x): a \in A\}$. Then, M is a closed vector subspace of H invariant for A and $M \neq\{0\}$, because $x=p(x) \in M$. Since A is irreducible, $M=H$. So, if y is an arbitrary element of $p(H)$, then $y=\lim _{n \rightarrow \infty} a_{n}(x)$, with $\left\{a_{n}\right\}_{n=1}^{\infty} \subset A$. So, $y=\lim _{n \rightarrow \infty} p a_{n} p(x)$, because $y=p(y)$ and $x=p(x)$. Since $p a_{n} p=\lambda_{n} p$ for some $\lambda_{n} \in \mathbb{C}$, it follows that $y \in \mathbb{C} x$. So, $p(H)=\mathbb{C} x$. Therefore, from Remark 2.5 and the fact that p is a projection, we have that $p=x \otimes x$. We now suppose y is an arbitrary unit vector of H. So, there is an $a_{n} \in A$ such that $y=\lim _{n \rightarrow \infty} a_{n}(x)$. Since $\left\|y \otimes y-a_{n}(x) \otimes a_{n}(x)\right\| \leq\left\|y-a_{n}(x)\right\|\|y\|+$ $\left\|a_{n}(x)\right\|\left\|y-a_{n}(x)\right\|$ and $\left\{a_{n}(x)\right\}$ is bounded, we get

$$
y \otimes y=\lim _{n \rightarrow \infty} a_{n}(x) \otimes a_{n}(x)
$$

That is,

$$
\begin{aligned}
y \otimes y & =\lim _{n \rightarrow \infty} a_{n}(x \otimes x) a_{n}^{*} \\
& =\lim _{n \rightarrow \infty} a_{n} p a_{n}^{*} \in A .
\end{aligned}
$$

That is, all rank one projections are in A, which, by ([11], Theorem 2.4.6), implies that $F(H) \subseteq A$. So, $K(H) \subseteq A$.

Lemma 2.16 ([11], Example 5.62). Let A be a finite dimensional C^{*} algebra. Then A is liminal.

Proof. Let (H, π) be a non-zero irreducible representation of A. For some non-zero vector $x \in H, \pi(A) x$ is dense in H. But, $\pi(A) x$ is finite dimensional. So, $H=\pi(A) x$ is also finite dimensional. We thus have $\pi(A) \subseteq K(H)$. But from Theorem 2.15, we have $K(H) \subseteq \pi(A)$. Therefore, $\pi(A)=K(H)$. So, A is liminal.

Definition 2.17 We call a C^{*}-algebra A simple if $\{0\}$ and A are the only closed ideals in A.

Theorem 2.18 ([11], Remark 6.2.1). If A is a finite dimensional, simple C^{*}-algebra, then

$$
A \stackrel{*}{\cong} M_{n}(\mathbb{C})
$$

for some positive integer n.
Proof. Let (H, π) be as in the proof of Lemma 2.16. Since A is simple and $\operatorname{ker}(\pi)$ is a closed ideal in A, we have $\operatorname{ker}(\pi)=\{0\}$. It follows that π is faithful. This says that

$$
A \stackrel{*}{\cong} \pi(A)=K(H)
$$

The last equality follows from Lemma 2.16. So, we have $A \stackrel{*}{\cong} B(H)$, because $\operatorname{dim}(H)<\infty$. If $\operatorname{dim}(H)=n$, then $A \stackrel{*}{\cong} M_{n}(\mathbb{C})$, as wanted.

We now prove the structure theorem for finite dimensional C^{*}-algebras.
Proposition 2.19. Let A be a finite dimensional C^{*}-algebra. Then,

$$
A \stackrel{*}{\cong} M_{n_{1}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{m}}(\mathbb{C})
$$

for some integers n_{1}, \ldots, n_{m}.
Proof. If A is simple, the result follows from Theorem 2.18. We prove the general result by induction on the dimension n of A. The case $n=1$ is obvious. Suppose the result holds for all dimensions less than n. We may suppose that A is not simple, and so contains a non-zero proper closed ideal I, and we may take I to be of minimum dimension. In this case I has no non-trivial ideals, so I is ${ }^{*}$-isomorphic to $M_{n_{1}}(\mathbb{C})$ for some integer n_{1}. Hence, I has a unit element and we denote it by p. So $I=A p$ and p is in the centre of A. To see this, note that for any $x \in A$, we have $x p \in I$. Hence, $p x p=x p$. Similarly, for x^{*} one has $p x^{*} p=x^{*} p$. This implies that $p x=p x^{*} p^{*}=p x p=x p$. Also, $A(1-p)$ is a C^{*}-subalgebra of A and the map

$$
A \rightarrow A p \oplus A(1-p), a \mapsto(a p, a(1-p))
$$

is a ${ }^{*}$-isomorphism. Since the algebra $A(1-p)$ has dimension less than n, it is, by the inductive hypothesis, ${ }^{*}$-isomorphic to $M_{n_{2}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{m}}(\mathbb{C})$ for some integers n_{2}, \ldots, n_{m}. Thus, A is ${ }^{*}$-isomorphic to $M_{n_{1}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{m}}(\mathbb{C})$.

Remark 2.20. The structure theorem for finite dimensional C^{*}-algebras now enables one to view the rank notion for elements of C^{*}-algebras in terms of the matrix rank. The structure theorem for Banach algebras is in the appendix as Proposition A.19. If

$$
A \cong M_{n_{1}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{m}}(\mathbb{C})
$$

for some integers n_{1}, \ldots, n_{m}, then $a \in A$ implies that

$$
a=a^{(1)} \oplus \ldots \oplus a^{(1)} \oplus \ldots \oplus a^{(p)} \oplus \ldots \oplus a^{(p)}
$$

where $a^{(k)}$ is a d_{k} by d_{k} matrix repeated r_{k} times in the direct sum. Hence,

$$
\operatorname{rank}(a)=r_{1} \operatorname{rank}\left(a^{(1)}\right)+\ldots+r_{p} \operatorname{rank}\left(a^{(p)}\right) .
$$

3. COMPARISON OF RANK CONCEPTS

Throughout this section we bear in mind the notion of rank introduced in Definition 2.1 and compare it with others appearing in the literature.

In the appendix we prove some standard results on semi-simple and semiprime Banach algebras which will be needed in this section.

Puhl [14] introduced a notion of rank for semi-prime algebras, see Definition A. 7 in the appendix for the definition of semi-prime algebra. According to Puhl, an element x of a semi-prime algebra A is of rank one if there is a bounded linear functional $\psi \in A^{\prime}$, such that $x y x=\psi(y) x$, for all $y \in A$, that is, the wedge operator $T_{x}: A \mapsto A$ defined by $T_{x}(y)=x y x$ has one dimensional range. Clearly, our notion of rank one implies the notion used by Puhl. Since a detailed study of the comparison of the rank concept in semi-prime algebras appears in an MSc thesis of Essman [8], we will not continue any further discussion on it.

Ylinen [17] defined an element x of an algebra A to be of finite rank if the wedge operator $T_{x}: A \rightarrow A$ defined by $T_{x}(y)=x y x$ has a finite dimensional range. It turns out that an element of a semi-simple Banach algebra, see Definition A. 1 in the appendix, is of finite rank in the sense of Ylinen's definition if and only if it is of finite rank in the sense of Definition 2.1. By Proposition A. 13 any semi-simple algebra is semi-prime and again the comparison can be found in an MSc thesis of Essmann [8]. In Theorem 3.3 we obtain a stronger comparison by giving exact estimates.

Definition 3.1. We call an element q of an algebra A quasi-nilpotent if the spectral radius of q is zero and we denote the set of all quasi-nilpotent elements of A by $Q(A)$.

Lemma 3.2. Let A be a Banach algebra and Rad(A) the radical of A. If $A q \subset Q(A)$, then $q \in \operatorname{Rad}(A)$. Similarly, if $q A \subset Q(A)$, then $q \in \operatorname{Rad}(A)$.

Proof. Suppose $q \notin \operatorname{Rad}(A)$. Then there is a continuous irreducible representation $\pi: A \rightarrow B(X)$ of A on a linear space X, such that $\pi(q) \neq 0$. So, there is an $x \in X$ such that $\pi(q) x \neq 0$. Since, by hypothesis, $q \in Q(A)$, it follows that $\pi(q) x$ and x are linearly independent. By the Jacobson Density Theorem, Theorem A.17, there is an $a \in A$ such that $\pi(a) x=0$ and $\pi(a) \pi(q) x=x$. That is $\pi(a q) x=x$. Hence, $\sigma(\pi(a q)) \neq\{0\}$ and by using Remark A.5, $\sigma(\pi(a q)) \subset \sigma(a q)$. We thus have $r(a q) \neq 0$. That is $a q \notin Q(A)$. Since $\sigma(a q) \backslash\{0\}=\sigma(q a) \backslash\{0\}$, the second statement will follow from the first.

Theorem 3.3 ([12], Proposition 7.1). Let A be a semi-simple Banach algebra and let $x \in A$ with $\operatorname{rank}(x)=k<\infty$. Then $\operatorname{dim}(x A x) \leq k^{2}$.

Proof. We first observe, by Definition 2.1, that $x A x$ is a sum of k^{2} terms of the form $n A m$, where $n, m \in A$ and $\operatorname{rank}(n)=\operatorname{rank}(m)=1$. Hence, if we choose elements $a, b \in A$ such that $\operatorname{rank}(a)=\operatorname{rank}(b)=1$, it will be sufficient
to show that $\operatorname{dim}(a A b) \leq 1$. Assume $a A b \neq\{0\}$. So, there is a $c \in A$ such that $a c b \neq 0$. Since $\operatorname{Rad}(A)=\{0\}$, we have $a c b \notin \operatorname{Rad}(A)$. So, by Lemma 3.2, there is a $d \in A$ such that $r(a c b d) \neq 0$. Therefore, by the spectral mapping theorem, we have $r\left((a c b d)^{2}\right) \neq 0$. Whence, $(a c b d)^{2} \neq 0$. Suppose $a c b d a=0$, then $(a c b d)^{2}$ $=0$, which yields a contradiction. Therefore, d satisfies $a c b d a \neq 0$.

We next let $f \in A$ and consider functionals λ_{a} and λ_{b} on A given by

$$
a z a=\lambda_{a}(z) a
$$

and

$$
b z b=\lambda_{b}(z) b .
$$

We then have

$$
a c b d a f b=\lambda_{a}(c b d) a f b,
$$

and

$$
a c b d a f b=\lambda_{b}(d a f) a c b .
$$

Since $a c b d a \neq 0$, it follows that $\lambda_{a}(c b d) \neq 0$. Thus

$$
\begin{aligned}
a f b & =\frac{a c b d a f b}{\lambda_{a}(c b d)} \\
& =\frac{\lambda_{b}(d a f) a c b}{\lambda_{a}(c b d)} .
\end{aligned}
$$

So, $\operatorname{dim}(a A b) \leq 1$, as wanted.

Remark 3.4 Suppose A is the semi-simple Banach algebra consisting of all 2 by 2 matrices and let

$$
x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then $\operatorname{rank}(x)=2$ and clearly $\operatorname{dim}(x A x)=\operatorname{dim}(A)=4$. Hence, $\operatorname{rank}(x)<$ $\operatorname{dim}(x A x)$.

Remark 3.5. If an algebra is not semi-simple, Theorem 3.3 need not hold. To see this, consider the algebra A of 3 by 3 upper triangular matrices with entries from $l_{\infty}(\mathbb{N})$. The algebra operations of addition and multiplication are the usual matrix operations and operations within the entries are exactly the algebra operations of $l_{\infty}(\mathbb{N})$. Let

$$
x=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

According to Definition 2.1, $\operatorname{rank}(x)=2$. But

$$
x A x=\left\{\left(\begin{array}{lll}
0 & 0 & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right): y \in l_{\infty}(\mathbb{N})\right\} .
$$

Since $l_{\infty}(\mathbb{N})$ is infinite dimensional, it follows that $\operatorname{dim}(x A x)=\infty$. So, Theorem 3.3 does not hold in this algebra.

Definition 3.6. An element $y \in A, A$ any algebra, is said to be single if $x y z=0$ for some x and $z \in A$ implies that $x y=0$ or $y z=0$.

Definition 3.7. An element $x \in A, A$ any algebra, is said to be compactly acting if and only if the wedge operator

$$
T_{x}: A \rightarrow A
$$

defined by

$$
T_{x}(y)=x y x
$$

is compact.
We next introduce another notion of rank, the primitive-rank, and compare it with that of Definition 2.1. Prior to introducing this notion, we establish some facts pertaining to primitive Banach algebras as the primitive-rank notion makes sense only in primitive Banach algebras.

Lemma 3.8 ([3], page 29). Let A be a primitive Banach algebra. Let $x, y \in$ A with

$$
x A y=\{0\} .
$$

Then, either $x=0$ or $y=0$.
Proof. Suppose $x \neq 0$ and $y \neq 0$ and let ψ be a faithful irreducible representation of A on a linear space X. Then there are $a, b \in X$ such that

$$
\psi(x) a \neq 0 \text { and } \psi(y) b \neq 0
$$

$\psi(A y) a$ is a subspace of X which is invariant under each element of $\psi(A)$. Hence,

$$
\overline{\psi(A y) a}=X
$$

Therefore there is a sequence z_{n} in A such that

$$
\lim _{n \rightarrow \infty} \psi\left(z_{n} y\right) a=b
$$

We thus have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \psi\left(x z_{n} y\right) a & =\psi(x) a \\
& \neq 0 .
\end{aligned}
$$

Whence, there exists a z_{n} such that $x z_{n} y \neq 0$.

Lemma 3.9 ([7], Lemma 1). Let a be any element of a Banach algebra A. (i) If s is a single element of A, so are as and sa.
(ii) If s acts compactly on A, so do as and sa.

Proof. (i) If s is single and $x(a s) y=0$ for some $x, y \in A$, then either $x a s=0$ or $s y=0$. So, either $x a s=0$ or $a s y=0$. Thus, as is single. By a similar argument, sa can be shown to be single and (i) is established.
(ii) Since the map

$$
x \mapsto a s x a s
$$

is a composition of the maps

$$
x \mapsto x a \mapsto s x a s \mapsto a s x a s
$$

if s acts compactly then so does $a s$. Similarly $s a$ acts compactly and this completes the proof.

Theorem 3.10 ([7], Theorem 4). Let s be a non-zero compactly acting single element of a semi-simple Banach algebra A. Then, there is an $e \in \operatorname{Min}(A)$ such that $s=s e$.

Proof. Since A is assumed semi-simple, using Lemma 3.2, the left ideal As contains an element $b=x s$ which is not quasi-nilpotent and is of unit norm. From Lemma $3.9, b$ is single and acts compactly on A. Let T be the compact operator on A defined by

$$
T a=b a b
$$

Since $T^{n} b=b^{2 n+1}$, we have the following:

$$
\left\|T^{n}\right\|^{\frac{1}{n}} \geq\left\|b^{2 n+1}\right\|^{\frac{1}{n}}
$$

and this shows that T is not quasi-nilpotent as b is not quasi-nilpotent. Since T is compact, it follows that T has a non-zero eigenvalue λ and a corresponding finite dimensional eigenspace S_{λ}. Let $0 \neq l \in S_{\lambda}$. For any positive integer n,

$$
T l b^{n}=b l b^{n+1}=\lambda l b^{n} .
$$

So, we have $l b^{n} \in S_{\lambda}$. Since $\operatorname{dim}\left(S_{\lambda}\right)<\infty$, the set $\left\{l b^{n}: n=1,2, \ldots\right\}$ is linearly dependent and hence, there is a polynomial $P($.$) of minimal degree such$ that $l b P(b)=0$. Since b is single, either $l b=0$ or $b P(b)=0$. Let us suppose P can be factored as a product of non-constant polynomials $P=P_{1} P_{2}$. Then, $P_{1}(b) b P_{2}(b)=b P(b)=0$ and since b is single, either $b P_{1}(b)=0$ or $b P_{2}(b)=$ 0 contradicting the minimality of P. Therefore, P is of degree one and hence, $b(b-\alpha)=0$, for some scalar α. Then, $e=\frac{b}{\alpha}$ is an idempotent element of A. From Lemma 3.9, e is single and acts compactly on A. Since the map $a \mapsto e a e$ is an identity on $e A e$, it follows that $\operatorname{dim}(e A e)<\infty$. Also, if eaeebe $=e a e b e=0$, then since e is single, either eae $=0$ or $e b e=0$, showing that $e A e$ is an integral domain. But $e A e$ being an integral domain and finite dimensional implies that $e A e$ is a division algebra. So, e is a minimal idempotent, see Definition A. 9 in the appendix. We now let $a \in A$ and recall that $b=x s$. Then,

$$
\begin{aligned}
x s(a-e a) & =\alpha e(a-e a) \\
& =0 .
\end{aligned}
$$

Since s is single with $x s=\alpha e \neq 0$, we have

$$
(s-s e) a=0
$$

Since A is semi-simple and a is arbitrarily chosen from A, we have $s=s e$ as wanted.

We next prove a theorem that relates compactly acting single elements to rank one elements of a primitive Banach algebra.

Theorem 3.11 ([12], page 747). Let A be a primitive Banach algebra. An element $0 \neq x \in A$ is single and compactly acting if and only if $\operatorname{rank}(x)=1$.

Proof. (\Rightarrow) Suppose $0 \neq x$ is single and acts compactly. So, by Theorem 3.10, there is an $e \in \operatorname{Min}(A)$ such that

$$
x=x e
$$

Therefore, since a minimal idempotent (see Definition A.9), is clearly of rank one and $x \neq 0$, it follows from Proposition 2.2 (b) that

$$
\operatorname{rank}(x)=1, \text { because } x \neq 0
$$

(\Leftarrow) Suppose $\operatorname{rank}(x)=1$. So, x is compactly acting. Thus, we should only show that x is single. Suppose are $a, b \in A$ such that $a x \neq 0$ and $x b \neq 0$. We show that $a x b \neq 0$. By the contraposition of Lemma 3.8,

$$
\begin{equation*}
a x y x b \neq 0 \text { for some } y \in A \tag{3.1}
\end{equation*}
$$

We have $a x y x b=a \lambda x b$, for some $\lambda \in \mathbb{C}$, because $\operatorname{rank}(x)=1$. Of course $\lambda \neq 0$, otherwise we would have

$$
\begin{aligned}
a x y x b & =a \lambda x b \\
& =0,
\end{aligned}
$$

which would then contradict (3.1). So, we have

$$
a x b=\frac{a x y x b}{\lambda}
$$

$$
\neq 0
$$

Thus, x is single as wanted.

We will need the following facts to introduce the notion of primitive-rank for elements of a primitive Banach algebra A. We assume that A contains single compactly acting elements. Hence, from Theorem 3.10, A possesses minimal idempotents.

Lemma 3.12 ([3], Lemma F.2.1). Let A be a primitive algebra and let e, f $\in \operatorname{Min}(A)$ and R be a right ideal of A. Then,
(i) there exist $u, v \in A$ such that $f=u e v$;
(ii) $\operatorname{dim}(e A f)=1$;
(iii) $\operatorname{dim}(R e)=\operatorname{dim}(R f)$.

Proof. (i) From Lemma 3.8 we have $e A f \neq\{0\}$. Let v be a non-zero element of $e A f$. Since $A f$ is a minimal left ideal, we have $A f=A v$, and so $f=u v$ for some $u \in A$. Also, $v=e v$, hence $f=u e v$.
(ii) From (i), since R is a right ideal, we have $e A f=e A u e v \subset e A e v=\mathbb{C e v}$. Whence, (ii) follows.
(iii) From (i) we have $R f=$ Ruev \subset Rev. So if $\operatorname{dim}(R e)<\infty$, so is $\operatorname{dim}(R e v)$ and $\operatorname{dim}(R f) \leq \operatorname{dim}(R e v) \leq \operatorname{dim}(R e)$. Similarly, if $\operatorname{dim}(R f)<\infty$, then $\operatorname{dim}(R e) \leq \operatorname{dim}(R f)$. Also, if $R f$ is infinite dimensional so is $R e v$ and therefore, so is $R e$ and the analogous argument gives the converse.

Theorem 3.13. Let A be a primitive Banach algebra. If $e \in \operatorname{Min}(A)$, then,

$$
\begin{aligned}
\pi: A & \rightarrow B(A e) \\
a & \mapsto \pi(a)
\end{aligned}
$$

defined by

$$
\pi(a) x=a x, \quad(x \in A e)
$$

is a continuous, faithful, irreducible representation of A on $A e$.
Proof. Since $\pi(a)$ is in $B(A e)$, we have

$$
\begin{aligned}
\|\pi(a)\| & =\sup _{\|x\|=1}\|\pi(a)(x e)\| \\
& =\sup _{\|x e\|=1}\|a x e\| \\
& \leq\|a\| .
\end{aligned}
$$

So, π is norm reducing and so it is continuous.
Since, from Lemma 3.8, $x A e=\{0\}$ implies that $x=0, \pi$ is faithful. Lastly, if B is a subspace of $A e$ which is invariant under $\pi(x)$, for each $x \in A$, it follows that B is a left ideal of A. It follows from Lemma A. 11 that either $B=\{0\}$ or $B=A e$, because $A e$ is a minimal ideal. So, π is irreducible.

Remark 3.14. With π as in Theorem 3.13 above, we observe that $\pi(x)=$ $x A e$. It follows from Lemma 3.12 (iii) that the rank of the operator $\pi(x) \in B(A e)$ is independent of the particular choice of $e \in \operatorname{Min}(A)$. Thus, the rank notion we introduce in the next definition is well defined.

Definition 3.15. Let A be a primitive Banach algebra such that $\operatorname{Min}(A)$ is non-empty. Let $x \in A, e \in \operatorname{Min}(A)$. Let $\pi: A \rightarrow A e$ be a continuous, faithful, irreducible representation of A on Ae. We define the primitive-rank(x) to be the rank of $\pi(x)$. We denote it by

$$
\text { primitive }-\operatorname{rank}(x)
$$

Proposition 3.16. Let A be a primitive Banach algebra. Let $x \in A$. Then x has a rank one image under some continuous faithful representation if and only if x is single and compactly acting.

Proof. (\Leftarrow) Let s be any non-zero compactly acting single element of A. From Theorem 3.10, there exists $e_{0} \in \operatorname{Min}(A)$ such that $s=s e_{0}$. Let s be any non-zero compactly acting single element of A. Then from Theorem 3.13, the representation π of A on $A e_{0}$ is faithful, continuous, and irreducible.

We should show that $\operatorname{rank}(\pi(s))=1$. But,

$$
\pi(s)(A e)=s A e
$$

So,

$$
\operatorname{rank}(\pi(s))=\operatorname{dim}(s A e)
$$

Since

$$
s A e_{0} \subseteq e_{0} A e_{0}
$$

and from the proof of Theorem $3.10, e_{0} A e_{0}$ has been shown to be a division algebra, by the Gelfand-Mazur Theorem,

$$
\operatorname{dim}\left(e_{0} A e_{0}\right)=1
$$

But,

$$
s A e_{0} \subseteq e_{0} A e_{0}
$$

Therefore,

$$
\operatorname{dim}\left(s A e_{0}\right) \leq \operatorname{dim}\left(e_{0} A e_{0}\right)=1
$$

That is,

$$
\operatorname{rank}(\pi(s))=\operatorname{dim}(s A e) \leq 1
$$

But, $\pi(s) \neq 0$. Therefore, $\operatorname{rank}(\pi(s))=1$. Recall from Theorem 2.6 that in $B(A e)$ the rank notion coincides with the dimension of the range.
(\Leftarrow) For the converse, suppose $\operatorname{rank}(\pi(s))=1$, for some $s \in A$. So,

$$
\{\pi(s) \pi(a) \pi(s): a \in A\}=\{\pi(s a s): a \in A\}
$$

has dimension at most one. So, $\operatorname{dim}(s A s) \leq 1$, by faithfulness of π. So, s acts compactly. Also, an operator of rank one is single, for if $T \in B(X)$ is of rank one, from Lemma 2.4, $T=(f \otimes y)$, for some $y \in X$ and some $f \in X^{\prime}$. So $R T S x=0$ for all $x \in X$ will imply that $((f \circ S) \otimes R y) x=0$ for all $x \in X$ where $f \circ S$ denotes the composition of f with S. This will imply that either $f \circ S=0$ or $R y=0$. Which will mean that either $f \otimes R y=0$ or $f \circ S \otimes y=0$. But $R T=f \otimes R y$ and $T S=f \circ S \otimes y$. So we will have either $R T=0$ or $T S=0$ which will mean that T is single as claimed. Now if $a s b=0$, for some elements $a, b \in A$, then

$$
\pi(a) \pi(s) \pi(b)=\pi(a s b)=0
$$

So, either $\pi(a s)=0$ or $\pi(s b)=0$, which implies that $a s=0$ or $s b=0$, because π is faithful. Whence, s is single.

We are now ready to state and prove the fact that primitive-rank as in Definition 3.15 coincides exactly with the rank concept introduced in Definition 2.1.

Theorem 3.17. Let A be a primitive Banach algebra and $x \in A$. If $\operatorname{rank}(x)<\infty$ or primitive $-\operatorname{rank}(x)<\infty$, then

$$
\operatorname{rank}(x)=\operatorname{primitive}-\operatorname{rank}(x) .
$$

Proof. Suppose $\operatorname{rank}(x)=1$. By Theorem 3.11, the single compactly acting elements of A are exactly the rank one elements of A. So by Proposition $3.16, x$ has a rank one image in $B(A e),(e \in \operatorname{Min}(A))$. Thus,

$$
\operatorname{rank}(x)=\operatorname{primitive}-\operatorname{rank}(x) .
$$

Conversely, suppose primitive $-\operatorname{rank}(x)=1$. Again, by Proposition 3.16, x is single and compactly acting. By Theorem $3.11, \operatorname{rank}(x)=1$. Therefore,

$$
\operatorname{primitive}-\operatorname{rank}(x)=\operatorname{rank}(x) .
$$

Suppose $\operatorname{rank}(x)=k$. That is,

$$
x=x_{1}+\ldots+x_{k}, \text { with } \operatorname{rank}\left(x_{i}\right)=1,(i=1, \ldots, k) .
$$

This implies that

$$
\pi(x)=\pi\left(x_{1}\right)+\ldots+\pi\left(x_{k}\right),
$$

where $\pi: A \rightarrow B(A e)$ is defined as before by $\pi(x) b e=x b e$. Therefore,

$$
\begin{aligned}
\operatorname{rank}(\pi(x)) & \leq \operatorname{rank}\left(\pi\left(x_{1}\right)\right)+\ldots+\operatorname{rank}\left(\pi\left(x_{k}\right)\right) \\
& \leq k, \text { because } \operatorname{rank}\left(\pi\left(x_{i}\right)\right)=1 \text { by the first part of the proof. }
\end{aligned}
$$

Therefore, primitive $-\operatorname{rank}(x) \leq k=\operatorname{rank}(x)$.
Suppose now that primitive $-\operatorname{rank}(x)=k$. Let $a_{1} e, \ldots, a_{k} e$ be the basis elements of range of $\pi(x)$. By the Jacobson density theorem, Theorem A.9, there are $b_{1}, \ldots, b_{k} \in \mathrm{~A}$ such that

$$
b_{i} a_{j} e=a_{j} e,(i=j)
$$

and

$$
b_{i} a_{j} e=0, \text { otherwise. }
$$

So,

$$
\pi(x)=\pi\left(b_{1}\right) \pi(x)+\ldots+\pi\left(b_{k}\right) \pi(x), \text { with primitive }-\operatorname{rank}\left(b_{i} x\right)=1
$$

By the faithfulness of the representation of A on $A e, x=b_{1} x+\ldots+b_{k} x$. Therefore $\operatorname{rank}(x) \leq k=\operatorname{primitive}-\operatorname{rank}(x)$. Whence, $\operatorname{rank}(x)=$ primitive $-\operatorname{rank}(x)$.

4. FUNCTIONAL CALCULUS AND MULTIPLICITIES OF SPECTRAL POINTS

Throughout this section, a Banach algebra A is assumed to have a unit element 1 unless otherwise stated. We use the notion of rank as in Definition 2.1 to introduce the concept of spectral points with finite multiplicity. Since the notion of multiplicity we introduce relies heavily on the analytic functional calculus, we include it in this section. In fact the functional calculus we establish can be found in [10].

To establish the functional calculus we will make use of the following two formulas.

Let $a \in A$ and $\sigma(a)$ denote the spectrum of a. For $\lambda \in \rho(a):=\mathbb{C} \backslash \sigma(a)$ with $|\lambda|>r(x)$ we have

$$
\begin{equation*}
r_{\lambda}:=(\lambda-a)^{-1}=\sum_{n=0}^{\infty} \frac{a^{n}}{\lambda^{n+1}} . \tag{4.1}
\end{equation*}
$$

For $\lambda, \mu \in \rho(a)$ it follows that

$$
\begin{equation*}
r_{\lambda}-r_{\mu}=(\mu-\lambda) r_{\lambda} r_{\mu} \tag{4.2}
\end{equation*}
$$

The above equations are well-known in spectral theory and can be found in [10].

Proposition 4.1. Let $\sum_{n=0}^{\infty} \alpha_{n} \lambda^{n}$ be a power series with the radius of convergence r. Let A be a Banach algebra and let $x \in A$ with the spectral radius $r(x)$. Then the series $\sum_{n=0}^{\infty} \alpha_{n} x^{n}$ converges if $r(x)<r$ and diverges if $r(x)>r$.

Proof. Suppose $r(x)<r$. The case where $r(x)>r$ will follow exactly the same. In fact we show that $\sum_{n=0}^{\infty} \alpha_{n} x^{n}$ is absolutely convergent by using the root test and the spectral radius formula.

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|\alpha_{n} x^{n}\right\|^{\frac{1}{n}} & \leq \limsup _{n \rightarrow \infty}\left|\alpha_{n}\right|^{\frac{1}{n}} \underset{n \rightarrow \infty}{\limsup }\|x\|^{\frac{1}{n}} \\
& =\frac{1}{r} r(x) \\
& <1
\end{aligned}
$$

Let A be a Banach algebra and let f be a complex valued function which is analytic for $|\lambda|<r$. That is, for $|\lambda|<r$ we have $f(\lambda)=\sum_{n=0}^{\infty} \alpha_{n} \lambda^{n}$. If $x \in A$ with $r(x)<r$ then we define

$$
f(x):=\sum_{n=0}^{\infty} \alpha_{n} x^{n}
$$

If Γ is an oriented, closed, rectifiable curve in \mathbb{C} then Γ is said to be an integration path. If

$$
f: \Gamma \rightarrow X
$$

where X denotes a Banach space, we define a path integral to be

$$
\int_{\Gamma} f(\lambda) d \lambda
$$

as the limit of the Riemann sums (taken in the usual sense)

$$
\sum f\left(\lambda_{k}\right)\left(\lambda_{k}-\lambda_{k-1}\right)
$$

The existence of this integral is verified as in the complex function theory. For instance, if f is continuous on Γ, then $\int_{\Gamma} f(\lambda) d \lambda$ exists. From the above definition the following properties follow:
(a) $\int_{\Gamma} \alpha f(\lambda) d \lambda=\alpha \int_{\Gamma} f(\lambda) d \lambda$.;
(b) $\int_{\Gamma}(f(\lambda)+g(\lambda)) d \lambda=\int_{\Gamma} f(\lambda) d \lambda+\int_{\Gamma} g(\lambda) d \lambda$;
(c) $\left\|\int_{\Gamma} f(\lambda) d \lambda\right\| \leq \max _{\lambda \in \Gamma}\|f(\lambda)\|($ length of $\Gamma)$;
(d) $x^{\prime}\left(\int_{\Gamma} f(\lambda) d \lambda\right)=\int_{\Gamma} x^{\prime}(f(\lambda)) d \lambda$ for every $x^{\prime} \in X^{\prime}$; and
(e) $T \int_{\Gamma} f(\lambda) d \lambda=\int_{\Gamma} T f(\lambda) d \lambda$ for every $T \in B(X)$.

Definition 4.2. Let $\Delta \subseteq \mathbb{C}$ be any region, that is, a connected set in a complex plane. We say a function

$$
f: \Delta \rightarrow A
$$

is differentiable at a point $\lambda_{0} \in \Delta$ if there is $f^{\prime}\left(\lambda_{0}\right) \in A$ such that

$$
\left\|\frac{f(\lambda)-f\left(\lambda_{0}\right)}{\lambda-\lambda_{0}}-f^{\prime}\left(\lambda_{0}\right)\right\| \rightarrow 0
$$

as $\lambda \rightarrow \lambda_{0}$ and we call $f^{\prime}\left(\lambda_{0}\right)$ the derivative of f at λ_{0}. We say f is differentiable in $\Omega \subseteq \Delta$ if f is differentiable at every $\lambda \in \Omega$.

Proposition 4.3 (Cauchy's Integral Theorem.) Let X be a Banach space, and let Δ be a non-empty open subset of \mathbb{C}. If $f: \Delta \rightarrow A$ is differentiable in the region Δ and if Γ_{1}, Γ_{2} are two integration paths each with the same initial and final points which can be deformed into each other continuously in Δ, then

$$
\int_{\Gamma_{1}} f(\lambda) d \lambda=\int_{\Gamma_{2}} f(\lambda) d \lambda .
$$

In particular,

$$
\int_{\Gamma} f(\lambda) d \lambda=0
$$

if Γ is a closed curve whose interior contains only points on Δ.
Proof. Let $x^{\prime} \in X^{\prime}$. Then

$$
\begin{aligned}
x^{\prime}\left(\int_{\Gamma_{1}} f(\lambda) d \lambda\right) & =\int_{\Gamma_{1}} x^{\prime}(f(\lambda)) d \lambda \\
& =\int_{\Gamma_{2}} x^{\prime}(f(\lambda)) d \lambda, \text { by Cauchy's Integral Theorem for } \\
& \text { complex valued analytic functions, } \\
& =x^{\prime}\left(\int_{\Gamma_{2}} f(\lambda) d \lambda\right) .
\end{aligned}
$$

The result follows as x^{\prime} was arbitrarily chosen from X^{\prime}.

Proposition 4.4. Let A be a Banach algebra. If the complex valued function f is analytic for $|\lambda|<r$ and if $x \in A$ with $r(x)<r$, then the equation

$$
f(x)=\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) r_{\lambda} d \lambda
$$

is valid, where Γ is a positively oriented circle whose radius lies strictly between $r(x)$ and r and $r_{\lambda}=(\lambda-x)^{-1}$ is the resolvent of x. Of course the integral on the right makes sense as r_{λ} is continuous on Γ.

Proof. Since f is analytic for $|\lambda|<r$, we can write

$$
f(\lambda)=\sum_{n=0}^{\infty} \alpha_{n} \lambda^{n}
$$

So,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) r_{\lambda} d \lambda & =\frac{1}{2 \pi i} \int_{\Gamma}\left(\left(\sum_{n=0}^{\infty} \alpha_{n}\right) \lambda^{n} r_{\lambda} d \lambda\right. \\
& =\sum_{n=0}^{\infty} \alpha_{n} \frac{1}{2 \pi i} \int_{\Gamma} \lambda^{n} r_{\lambda} d \lambda .
\end{aligned}
$$

Interchanging the sum and the integral is justified by the fact that the radius of Γ is less than r, that is the sum $\sum_{n=0}^{\infty} \alpha_{n} \lambda^{n}$. converges uniformly on Γ. From equation (4.1) we have that

$$
r_{\lambda}=\sum_{k=0}^{\infty} \frac{x^{k}}{\lambda^{k+1}}
$$

for $\lambda \in \Gamma$. Since the series in (4.1) converges uniformly on Γ, using the integral formula below

$$
\int_{\Gamma} \frac{1}{\lambda^{k}}= \begin{cases}2 \pi i, & \text { if } k=1 ; \\ 0, & \text { otherwise }\end{cases}
$$

and integrating termwise, it follows that.

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{n} r_{\lambda} d \lambda & =\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{n}\left(\sum_{k=0}^{\infty} \frac{x^{k}}{\lambda^{k+1}}\right) d \lambda \\
& =\sum_{k=0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma} \frac{x^{k}}{\lambda^{k+1-n}} d \lambda \\
& =x^{n}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) r_{\lambda} d \lambda & =\sum_{n=0}^{\infty} \alpha_{n} \frac{1}{2 \pi i} \int_{\Gamma} \lambda^{n} r_{\lambda} d \lambda \\
& =\sum_{n=0}^{\infty} \alpha_{n} x^{n} \\
& =f(x)
\end{aligned}
$$

For $x \in A$, let $H(x)=\{f: \Delta(f) \rightarrow \mathbb{C}$ such that $\sigma(x) \subseteq \Delta(f)$, and $\Delta(f)$ is an open set on which f is analytic. $\}$

Definition 4.5. A region $B \subseteq \mathbb{C}$ is said to be admissible with respect to $x \in A$ if
(a) $\sigma(x) \subseteq B$;
(b) B is open and bounded;
(c) the boundary, ∂B, of B consists of finitely many closed rectifiable Jordan curves, C_{1}, \ldots, C_{n}, which are all pairwise disjoint;
(d) the orientation of ∂B is given by the orientation of each C_{i} where the orientation of each C_{i} is described as in the complex function theory.
If $f \in H(x)$, then there is an admissible region B with

$$
\sigma(x) \subseteq B \subseteq \bar{B} \subseteq \Delta(f)
$$

If B^{\prime} is another admissible region then, since $\lambda \rightarrow r_{\lambda}$ is by standard spectral theory holomorphic on $\rho(x)$, by Cauchy's Integral Theorem, Proposition 4.3, we have

$$
\int_{\partial B} f(\lambda) r_{\lambda} d \lambda=\int_{\partial B^{\prime}} f(\lambda) r_{\lambda} d \lambda .
$$

We now define $f(x)$, for all $f \in H(x)$. Let B be an admissible region with $\sigma(x) \subseteq B \subseteq \bar{B} \subseteq \Delta(f)$. Then

$$
f(x):=\frac{1}{2 \pi i} \int_{\partial B} f(\lambda) r_{\lambda} d \lambda
$$

We define the following operations on $H(x)$:
$(\alpha f)(\lambda):=\alpha f(\lambda)$ for all $\lambda \in \Delta(f) ;$
$(f+g)(\lambda):=f(\lambda)+g(\lambda)$; and
$(f g)(\lambda):=f(\lambda) g(\lambda)$ for all $\lambda \in \Delta(f) \bigcap \Delta(g)$.
These operations are well-defined and make $H(x)$ into an algebra. The following theorem serves as the foundation for an analytic functional calculus:

Theorem 4.6. The mapping $\phi: H(x) \rightarrow A$ defined by $\phi: f \mapsto f(x)$ has the following properties:
(a) $(\alpha f)(x)=\alpha f(x) ;$
(b) $(f+g)(x)=f(x)+g(x)$;
(c) $(f g)(x)=f(x) g(x)$, hence $f(x)$ commutes with $g(x)$. In particular, $f(x)$ commutes with x;
(d) for $f(\lambda)=\lambda^{n}$, we have $f(x)=x^{n},(n=0,1,2, \ldots)$;
(e) if $f(\lambda) \neq 0$ for all $\lambda \in \sigma(x)$, then $f(x)$ has an inverse $f(x)^{-1}=\left(\frac{1}{f}\right)(x)$.

Proof. Clearly, (a) and (b) follow from the properties of the integral. From the proof of Proposition 4.4 we have

$$
\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{n} r_{\lambda} d \lambda=x^{n}
$$

Hence (d) follows.
For the proof of (c), let B_{f} and B_{g} be admissible regions of f and g respectively with

$$
\overline{B_{f}} \subseteq B_{g} \subseteq \overline{B_{g}} \subseteq \Delta(f) \bigcap \Delta(g)
$$

So,

$$
\begin{aligned}
f(x) g(x) & =\left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} f(\lambda)(\lambda-x)^{-1} d \lambda \int_{\partial B_{g}} g(\mu)(\mu-x)^{-1} d \mu \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} \int_{\partial B_{g}} f(\lambda) g(\mu)(\lambda-x)^{-1}(\mu-x)^{-1} d \mu d \lambda \\
& =\left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} \int_{\partial B_{g}} f(\lambda) g(\mu)(\mu-\lambda)^{-1}\left((\lambda-x)^{-1}-(\mu-x)^{-1}\right) d \mu d \lambda,
\end{aligned}
$$

which follows from equation (4.2).

Therefore,

$$
\begin{aligned}
f(x) g(x)= & \left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} \int_{\partial B_{g}} f(\lambda) g(\mu)(\lambda-x)^{-1}(\mu-\lambda)^{-1} d \mu d \lambda \\
& -\left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} \int_{\partial B_{g}} f(\lambda) g(\mu)(\mu-x)^{-1}(\mu-\lambda)^{-1} d \mu d \lambda \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} f(\lambda)(\lambda-x)^{-1}\left(\int_{\partial B_{g}} \frac{g(\mu)}{(\mu-\lambda)} d \mu\right) d \lambda \\
& -\left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{g}} g(\mu)(\mu-x)^{-1}\left(\int_{\partial B_{f}} \frac{f(\lambda)}{(\mu-\lambda)} d \mu\right) d \lambda \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \int_{\partial B_{f}} f(\lambda)(\mu-x)^{-1}(2 \pi i) g(\lambda) d \lambda+0
\end{aligned}
$$

which follows from Cauchy's Integral Theorem, Proposition 4.3. Thus,

$$
f(x) g(x)=\frac{1}{2 \pi i} \int_{\partial B_{f}} f(\lambda) g(\lambda) d \lambda(\lambda-x)^{-1}=(f g)(x)
$$

Part (e) follows from (c), (d) and the equation

$$
\left(f \frac{1}{f}\right)(\lambda)=1 \text { for } \lambda \in \Delta(f)
$$

We next proof the Spectral Mapping Theorem which will be needed often in this thesis.

Theorem 4.7 ([10], Proposition 47.1.) Let A be a Banach algebra with a unit element 1 and let $x \in A$. For every $f \in H(x)$, we have $\sigma(f(x))=f(\sigma(x))$.

Proof. Let $\mu \in \sigma(f(x))$. Suppose $\mu \notin f(\sigma(x))$, that is $\mu-f(\lambda)$ for all $\lambda \in \sigma(x)$. Then $\mu-f(x)$ is, by Theorem 4.6(e), invertible. We thus have a contradiction as μ is assumed to be in the spectrum of $f(x)$. So, $\sigma(f(x)) \subseteq$ $f(\sigma(x))$.

For the converse, we suppose that $\mu \in f(\sigma(x))$. That is $\mu=f(\omega)$ for some $\omega \in \sigma(x)$. We define a function g on $\Delta(f)$ by

$$
g(\lambda):=\frac{f(\lambda)-f(\omega)}{\lambda-\omega}, \text { for } \lambda \neq \omega, \quad g(\omega):=f^{\prime}(\omega)
$$

Clearly, g lies in $H(x)$. Since

$$
g(\lambda)(\omega-\lambda)=f(\omega)-f(\lambda)
$$

it follows, with the aid of Theorem 4.6(c), that

$$
g(x)(\omega-x)=f(\omega)-f(x)=\mu-f(x)
$$

Suppose $\mu \in \rho(f(x))$, then

$$
\left((\mu-f(x))^{-1} g(x)\right)(\omega-x)=(\omega-x)\left((\mu-f(x))^{-1} g(x)\right)=1
$$

It follows from the above equation that $\omega-x$ is invertible which cannot be the case because ω lies in $\sigma(x)$. So, $\mu \notin \rho(f(x))$ as supposed. We thus have $f(\sigma(x)) \subseteq \sigma(f(x))$. Therefore

$$
\sigma(f(x))=f(\sigma(x))
$$

We will need to establish some background material in order to define spectral projections in a Banach algebra A.

Definition 4.8. Let A be a Banach algebra and let $x \in A$. A subset σ of $\sigma(x)$ is called a spectral set of x if σ and $\sigma(x) \backslash \sigma$ are closed. We call $\sigma(x) \backslash \sigma$ the spectral set complementary to σ.

If σ_{1} and σ_{2} are complementary spectral sets of x, and if Δ_{1} and Δ_{2} are open disjoint sets that cover σ_{1} and σ_{2} respectively, then we define on $\Delta:=$ $\Delta_{1} \bigcup \Delta_{2}$ the functions f_{1} and f_{2} by

$$
\begin{aligned}
& f_{1}(\lambda)= \begin{cases}1, & \text { if } \lambda \in \Delta_{1} \\
0, & \text { if } \lambda \in \Delta_{2}\end{cases} \\
& f_{2}(\lambda)= \begin{cases}1, & \text { if } \lambda \in \Delta_{2} \\
0, & \text { if } \lambda \in \Delta_{1} .\end{cases}
\end{aligned}
$$

Clearly $f_{1}, f_{2} \in H(x)$. Define

$$
p_{1}:=f_{1}(x) \text { and } p_{2}:=f_{2}(x) .
$$

We have $p_{1}^{2}=f_{1}(x) f_{1}(x)=f_{1}(x)=p_{1}$ and, analogously, we have $p_{2}^{2}=p_{2}$. Since $f_{1} f_{2}=0$, it follows from Theorem 4.6 (c) that $p_{1} p_{2}=0$. This establishes the following proposition:

Proposition 4.9. Let A be a Banach algebra, and let σ_{1} and σ_{2} be complementary spectral sets of $x \in A$. If Γ_{1}, Γ_{2} are simple, closed integration paths oriented counter-clockwise which lie in $\rho(x)$ and contain σ_{1} and σ_{2} in their interior respectively but no other parts of the spectrum, $\sigma(x)$, of x, then the elements

$$
p_{i}:=\frac{1}{2 \pi i} \int_{\Gamma_{i}}(\lambda-x)^{-1} d \lambda, \quad(i=1,2)
$$

lie in $A, p_{i}^{2}=p_{i}$ and $p_{1} p_{2}=0$. It is permitted that one of the spectral sets be empty.

Definition 4.10. Let A be a Banach algebra with a unit. Let $x \in A$. A point $\lambda \in \sigma_{A}(x)$ will be called a spectral point with finite multiplicity if λ is an isolated point in $\sigma_{A}(x)$ and the spectral projection

$$
e=\frac{1}{2 \pi i} \int_{\Gamma}(z-x)^{-1} d z
$$

is of finite rank, where $\Gamma \subset \rho(x)$ is a closed simple contour, with λ being the only spectral point of x in Γ. The rank of e will be called the multiplicity of λ.

Proposition 4.11 ([12], Proposition 3.2). Let A be a Banach algebra with a unit element 1 and let $a \in A$. Suppose that $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint, closed and non-empty subsets of $\sigma(a)$ such that $\sigma(a) \backslash \sigma_{i}$ is also closed, $(i=1, \ldots, k)$. Let Γ_{i} be a simple rectifiable curve enclosing σ_{i} but not $\sigma_{j},(i \neq j)$ and $\Gamma_{i} \bigcap \sigma(a)=\emptyset$. Define e_{i} by

$$
e_{i}=\frac{1}{2 \pi i} \int_{\Gamma_{i}}(z-a)^{-1} d z
$$

Then,
(a) e_{i} is independent of the choice of Γ_{i}, provided Γ_{i} satisfies the stated criteria, $(i=1, \ldots, k)$,
(b) e_{i} is an idempotent and $e_{i} e_{j}=0,(i \neq j)$,
(c) the sum $e_{1}+\ldots+e_{k}$ is an idempotent,
(d) the spectrum $\sigma_{A}\left(a e_{i}\right)=\sigma_{i} \cup\{0\}$ and the spectrum $\sigma_{e_{i} A e_{i}}\left(a e_{i}\right)=\sigma_{i}$, $(i=1, \ldots, k)$,
(e) if, in addition, $\sigma_{A}(a)=\sigma_{1} \cup \ldots \cup \sigma_{k}$, then

$$
1=e_{1}+\ldots+e_{k}
$$

Proof. (a) Follows directly from Proposition 4.3.
(b) Follows from Proposition 4.9.
(c) From part (a) and part(b),

$$
\begin{aligned}
\left(e_{1}+\ldots+e_{k}\right)^{2} & =e_{1}^{2}+\ldots+e_{k}^{2}+\sum_{i \neq j} e_{i} e_{j} \\
& =e_{1}+\ldots+e_{k}+0
\end{aligned}
$$

Therefore, $e_{1}+\ldots+e_{k}$ is an idempotent.
(d) Let

$$
f(z)=z,(z \in \sigma(a))
$$

and let

$$
g_{i}(z)= \begin{cases}1, & \text { if } z \in \sigma_{i} \\ 0, & \text { otherwise }\end{cases}
$$

By functional calculus,

$$
\begin{aligned}
a & =f(a), \\
e_{i} & =g_{i}(a) .
\end{aligned}
$$

Consider

$$
h(z)=f(z) g_{i}(z)= \begin{cases}z, & z \in \sigma_{i} \\ 0, & \text { otherwise }\end{cases}
$$

So,

$$
\begin{aligned}
a e_{i} & =h(a) \\
& =f(a) g_{i}(a) .
\end{aligned}
$$

Whence, $\sigma_{A}\left(a e_{i}\right)=\sigma_{i} \cup\{0\}$, by the Spectral Mapping Theorem.
We show that $\sigma_{e_{i} A e_{i}}\left(a e_{i}\right)=\sigma_{i}$. Suppose $\lambda \notin \sigma_{i}$. Let

$$
\begin{gathered}
f_{i}(z)= \begin{cases}1, & \text { if } z \in \sigma_{i} ; \\
0, & \text { otherwise },\end{cases} \\
g_{i}(z)= \begin{cases}\frac{f_{i}(z)}{(\lambda-z)}, & \text { if } z \in \sigma_{i} \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Then $g_{i} \in H(a)$ and from the functional calculus,

$$
(\lambda-a) g_{i}(a)=e_{i},
$$

and

$$
e_{i} g(a)=g(a) e_{i}=g(a) .
$$

Thus

$$
\left(\lambda e_{i}-a e_{i}\right) g(a) e_{i}=e_{i}
$$

from which it follows that $\lambda \notin \rho_{e_{i} A e_{i}}\left(a e_{i}\right)$. Hence

$$
\sigma_{e_{i} A e_{i}}\left(a e_{i}\right) \subset \sigma_{i}
$$

Now the following argument will finish the proof.
Suppose $\lambda \in \bigcap_{i=1}^{k} \rho_{e_{i} A e_{i}}\left(a e_{i}\right)$, then by an easy compution we have

$$
(\lambda-a)^{-1}=\left(\lambda e_{1}-a e_{1}\right)^{-1} e_{1}+\ldots+\left(\lambda e_{k}-a e_{k}\right)^{-1} e_{k}
$$

Hence

$$
\lambda \in \rho(a)=\left(\sigma_{1} \cup \ldots \cup \sigma_{k}\right)^{c} .
$$

That is,

$$
\sigma_{1} \cup \ldots \cup \sigma_{k} \subset \sigma_{e_{1} A e_{1}}\left(a e_{1}\right) \cup \ldots \cup \sigma_{e_{k} A e_{k}}\left(a e_{k}\right)
$$

Since σ_{i} are mutually disjoint, it follows that

$$
\sigma_{i} \subset \sigma_{e_{i} A e_{i}}\left(a e_{i}\right)
$$

Whence,

$$
\sigma_{e_{i} A e_{i}}\left(a e_{i}\right)=\sigma_{i}
$$

(e) Let Γ be a closed contour arround $\sigma(a)$. So,

$$
1=\frac{1}{2 \pi i} \int_{\Gamma}(z-a)^{-1} d z
$$

But,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma}(z-a)^{-1} d z & =\frac{1}{2 \pi i} \int_{\Gamma_{1}}(z-a)^{-1} d z+\ldots+\frac{1}{2 \pi i} \int_{\Gamma_{k}}(z-a)^{-1} d z . \text { Thus } \\
1 & =e_{1}+\ldots+e_{k}
\end{aligned}
$$

We are now going to look into the algebra $p A p$, where p is a non-trivial idempotent. We think of $p A p$ not as a subalgebra of A, but as an algebra equipped with p as its unit element and $\|\cdot\|_{p}$, to be defined below, as its, norm equivalent to $\|$.$\| . The formula for the alleged norm is as follows:$

$$
\|p a p\|_{p}=\sup \{\|(p a p)(p x p)\|: x \in A,\|p x p\|=1\}
$$

Theorem 4.12 ([12], page 734). Let A be a Banach algebra with a unit element 1. Then,
(a) $\|\cdot\|_{p}$ is a norm on $p A p$,
(b) $\|p a p\| \cdot\|p\|^{-1} \leq\|p a p\|_{p} \leq\|p a p\|$,
(c) $\|p\|_{p}=1$,
(d) $\|(p a p)(p b p)\|_{p} \leq\|p a p\|_{p}\|p b p\|_{p}$,
(e) $p A p$ is a norm-closed subset of A.

Proof. (a) Suppose $p a p=0$. Then, $\|p a p\|_{p}$ is clearly 0 . For the converse of this, if $p a p \neq 0$, let $x=\frac{p}{\|p\|}$. Then $\|p x p\|=1$ and since $\|\cdot\|$ is a norm on A, we have
$\|(p a p)(p x p)\| \neq 0$.
So $\|p a p\|_{p} \neq 0$.
That $\|p a p\|_{p} \geq 0$, follows from the fact that

$$
\|(p a p)(p x p)\| \geq 0(x \in A) .
$$

In what follows we will often use the fact that $\|\cdot\|$ is an algebra norm on A.

Let $c \in \mathbb{C}$. So,

$$
\begin{aligned}
\|c(p a p)\|_{p} & =\sup \{\|c(p a p)(p x p)\|: x \in A,\|p x p\|=1\} \\
& =|c| \sup \{\|(p a p)(p x p)\|: x \in A,\|p x p\|=1\} \\
& =|c|\|p a p\|_{p} .
\end{aligned}
$$

For the triangle inequality, we note the following:

$$
\begin{aligned}
\|p a p+p b p\|_{p}= & \sup \{\|(p a p+p b p)(p x p)\|: x \in A,\|p x p\|=1\} \\
= & \sup \{\|(p a p)(p x p)+(p b p)(p x p)\|: x \in A,\|p x p\|=1\} \\
\leq & \sup \{\|(p a p)(p x p)\|: x \in A,\|p x p\|=1\} \\
& \quad+\sup \{\|(p b p)(p x p)\|: x \in A,\|p x p\|=1\} \\
= & \|p a p\|_{p}+\|p b p\|_{p} .
\end{aligned}
$$

Whence, $\|\cdot\|_{p}$ is a norm of $p A p$ and part (a) is established.
(b) From the definition of $\|\cdot\|_{p}$, we have

$$
\begin{aligned}
\|p a p\|_{p} & =\sup \{\|(p a p)(p x p)\|: x \in A,\|p x p\|=1\} \\
& \leq \sup \{\|p a p\|\|p x p\|: x \in A,\|p x p\|=1\} \\
& =\|p a p\| .
\end{aligned}
$$

That is,

$$
\|p a p\|_{p} \leq\|p a p\| .
$$

We only need to show that

$$
\|p a p\|\|p\|^{-1} \leq\|p a p\|_{p}
$$

Since

$$
\left\|\frac{p}{\|p\|}\right\|=1
$$

we have

$$
\begin{aligned}
\|p a p\|_{p} & \geq\left\|(p a p)\left(\frac{p}{\|p\|}\right)\right\| \\
& =\frac{\|p a p\|}{\|p\|} .
\end{aligned}
$$

That is,

$$
\|p a p\|\|p\|^{-1} \leq\|p a p\|_{p}
$$

Hence we have

$$
\|p a p\|\|p\|^{-1} \leq\|p a p\|_{p} \leq\|p a p\| .
$$

(c) From the definition of $\|\cdot\|_{p}$, we have

$$
\begin{aligned}
\|p\|_{p} & =\sup \{\|(p p p)(p x p)\|: x \in A,\|p x p\|=1\} \\
& =\sup \{\|p x p\|: x \in A,\|p x p\|=1\} \\
& =1
\end{aligned}
$$

(d) Consider

$$
L_{p a p} \in B(p A p)
$$

defined by

$$
L_{p a p}(p b p)=(p a p)(p b p),(b \in A) .
$$

Note that

$$
\begin{aligned}
\left\|L_{p a p}\right\| & =\sup _{\|p x p\|=1}\left\|L_{p a p}(p x p)\right\| \\
& =\sup \left\{\left\|(p a p)(p x p)_{\|}: x \in A,\right\| p x p \|=1\right\} \\
& =\|p a p\|_{p}
\end{aligned}
$$

But,

$$
\left\|L_{p a p} L_{p b p}\right\| \leq\left\|L_{p a p}\right\|\left\|L_{p b p}\right\| .
$$

Therefore,

$$
\|(p a p)(p b p)\|_{p} \leq\|p a p\|_{p}\|p b p\|_{p}
$$

(e) Remember that $p A p=\{a \in A: p a p=a\}$. Now, observe that

$$
p x_{n} p \rightarrow x \text { implies that } p^{2} x_{n} p^{2} \rightarrow p x p .
$$

This follows from the fact that

$$
p^{2} x_{n} p^{2}=p\left(p x_{n} p\right) p
$$

So,

$$
p x_{n} p \rightarrow p x p
$$

Therefore,

$$
p x p=x .
$$

Whence,

$$
x \in p A p
$$

Therefore, $p A p$ is indeed a norm closed subset of A.

Proposition 4.13 ([12], Proposition 3.3). Let A be a Banach algebra. Let $a \in A$ be an idempotent of rank n. Then, there are elements $a_{1}, \ldots, a_{n} \in A$ such that

$$
\begin{equation*}
a=a_{1}+\ldots+a_{n}, \tag{4.3}
\end{equation*}
$$

where $\operatorname{rank}\left(a_{i}\right)=1, i=1, \ldots, n$ and a_{1}, \ldots, a_{n} are mutually orthogonal idempotents. Conversely, if (4.3) holds for mutually orthogonal rank one idempotents a_{1}, \ldots, a_{n}, then a is a rank n idempotent.

Proof. Let $a \in A$ be an idempotent with $\operatorname{rank}(a)=n$. So,

$$
a=x_{1}+\ldots+x_{n},
$$

where $x_{i} \in A$ and $\operatorname{rank}\left(x_{i}\right)=1,(i=1, \ldots, n)$. Let

$$
b_{i}=a x_{i} a,(i=1, \ldots, n)
$$

Then,

$$
b_{1}+\ldots+b_{n}=a\left(x_{1}+\ldots+x_{n}\right) a .
$$

That is,

$$
b_{1}+\ldots+b_{n}=a \text {, because } a \text { is an idempotent. }
$$

Also,

$$
\begin{aligned}
\operatorname{rank}\left(b_{i}\right) & =\operatorname{rank}\left(a x_{i} a\right),(i=1, \ldots, n) \\
& \leq \operatorname{rank}\left(x_{i}\right),(i=1, \ldots, n) \\
& =1
\end{aligned}
$$

Also, $\operatorname{rank}\left(b_{i}\right) \neq 0$, for, $\operatorname{rank}\left(b_{i}\right)=0$ for some i will contradict $\operatorname{rank}(a)=n$. Therefore, $\operatorname{rank}\left(b_{i}\right)=1,(i=1, \ldots, n)$. We next consider B, the algebra generated by $\left\{b_{1}, \ldots, b_{n}\right\}$. Note that

$$
b_{i}=a x_{i} a \text { implies that } a b_{i}=a^{2} x_{i} a=b_{i}
$$

and

$$
b_{i} a=a x_{i} a^{2}=b_{i}
$$

It follows that a is the identity for the algebra B. Suppose $\left(a-b_{i}\right)$ is invertible in B. Then, there is an $x \in B$ such that

$$
\begin{aligned}
\left(a-b_{i}\right) x & =x\left(a-b_{i}\right) \\
& =a .
\end{aligned}
$$

Clearly, $x \in A$ as well. So,

$$
\begin{aligned}
n & =\operatorname{rank}(a) \\
& =\operatorname{rank}\left(\left(a-b_{i}\right) x\right) \\
& \leq \operatorname{rank}\left(a-b_{i}\right) \\
& \leq \operatorname{rank}\left(b_{1}\right)+\ldots+\operatorname{rank}\left(b_{i-1}\right)+\operatorname{rank}\left(b_{i+1}\right)+\ldots+\operatorname{rank}\left(b_{n}\right) \\
& =n-1, \text { which yields a contradiction. }
\end{aligned}
$$

Thus, $a-b_{i}$ is not invertible in B. That is, $1 \in \sigma_{B}\left(b_{i}\right)$.
Since $\operatorname{rank}\left(b_{i}\right)=1,(i=1, \ldots, n)$, it follows that

$$
b_{i}^{2}=\lambda_{i} b_{i}, \text { for some } \lambda_{i} \in \mathbb{C} .
$$

Note that this formula holds in B as well. Now consider the polynomial

$$
P(t)=t^{2}-\lambda_{i} t
$$

We thus have

$$
P\left(b_{i}\right)=0 .
$$

So,

$$
\{0\}=\sigma\left(P\left(b_{i}\right)\right)=P\left(\sigma\left(b_{i}\right)\right)
$$

that is,

$$
P\left(\sigma\left(b_{i}\right)\right)=\{0\} .
$$

Since $1 \in \sigma_{B}\left(b_{i}\right)$, it follows that $P(1)=0$. But,

$$
P(1)=(1-\lambda) .
$$

Therefore, $1-\lambda=0$ which implies that $\lambda=1$. So, we have $b_{i}^{2}=b_{i}$ and b_{i} is an idempotent, $(i=1, \ldots, n)$. We complete the proof by induction. The statement for $n=2,3, \ldots$ to be proven is P_{n} as follows: Suppose $a \in A$ is of rank n and $a^{2}=a$. If there exists b_{1}, \ldots, b_{n} such that $b_{i}^{2}=b_{i}, \operatorname{rank}\left(b_{i}\right)=1, a b_{i}=b_{i} a=b_{i}$ for all $i=1, \ldots, n$ and $a=b_{1}+\ldots+b_{n}$, then there exists a_{1}, \ldots, a_{n} enjoying all of the above properties listed for b_{1}, \ldots, b_{n} and the additional property that $a_{i} a_{j}=0$ when $i \neq j$.

For P_{2}. Given $a=b_{1}+b_{2}$ with the hypothesis of P_{2}, we have

$$
\begin{aligned}
b_{1} & =b_{1}^{2} \\
& =b_{1}\left(a-b_{2}\right) \\
& =b_{1} a-b_{1} b_{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
b_{1} b_{2} & =b_{1}-b_{1} a \\
& =0, \text { because } b_{1} a=b_{1} .
\end{aligned}
$$

Now suppose P_{n} is true for $n<k$. Suppose now that $\operatorname{rank}(a)=k$ and b_{1}, \ldots, b_{k} satisfy the hypotheses of P_{k}. Now let

$$
a^{\prime}=b_{2}+b_{3}+\ldots+b_{k} .
$$

Therefore,

$$
\begin{equation*}
a^{\prime}=a-b_{1} . \tag{4.4}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\left(a^{\prime}\right)^{2} & =\left(a-b_{1}\right)^{2} \\
& =a-a b_{1}-b_{1} a+b_{1}^{2} \\
& =a-b_{1}-b_{1}+b_{1} \\
& =a^{\prime} .
\end{aligned}
$$

So, a^{\prime} is an idempotent. Define $b_{i}^{\prime}=a^{\prime} b_{i} a^{\prime}$ for $i=2, \ldots, k$ and let $x \in \mathrm{~A}$. We then have,

$$
\begin{aligned}
b_{i}^{\prime} x b_{i}^{\prime} & =\left(a^{\prime} b_{i} a^{\prime}\right) x\left(a^{\prime} b_{i} a^{\prime}\right), \text { following from the definition of } b_{i}^{\prime} \\
& =a^{\prime}\left(b_{i}\left(a^{\prime} x a^{\prime}\right) b_{i}\right) a^{\prime}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
b_{i}^{\prime} x b_{i}^{\prime} & =a^{\prime} \lambda b_{i} a^{\prime}, \text { because } \operatorname{rank}\left(b_{i}\right)=1,(i=2,3, \ldots, k), \\
& =\lambda a^{\prime} b_{i} a^{\prime} \\
& =\lambda b_{i}^{\prime}, \text { following from the definition of } b_{i}^{\prime} .
\end{aligned}
$$

Therefore,

$$
\operatorname{rank}\left(b_{i}^{\prime}\right)=1,(i=2,3, \ldots, k)
$$

Also,

$$
\begin{aligned}
a^{\prime} b_{i}^{\prime} & =a^{\prime} a^{\prime} b_{i} a^{\prime} \\
& =a^{\prime} b_{i} a^{\prime} \\
& =a^{\prime} b_{i} a^{\prime} a^{\prime} \\
& =b_{i}^{\prime} a^{\prime}=b_{i}^{\prime},
\end{aligned}
$$

with

$$
a^{\prime}=b_{2}^{\prime}+\ldots+b_{k}^{\prime} .
$$

By the induction hypothesis, there are rank one elements a_{2}, \ldots, a_{k} such that

$$
\begin{aligned}
a_{i}^{2} & =a_{i}, \\
a_{i} a^{\prime} & =a^{\prime} a_{i}=a_{i}, \\
a^{\prime} & =a_{2}+\ldots+a_{k}, \text { and } \\
a_{i} a_{j} & =0,(i \neq j) .
\end{aligned}
$$

We define

$$
a_{1}=b_{1} .
$$

So that,

$$
\begin{equation*}
a^{\prime}=a-a_{1} . \tag{4.5}
\end{equation*}
$$

So,

$$
\begin{aligned}
a & =a^{\prime}+a_{1} \\
& =\left(a_{2}+\ldots+a_{k}\right)+a_{1} .
\end{aligned}
$$

Thus, we only need to show that $a_{1} a_{i}=a_{i} a_{1}=0,(i \neq 1)$. Since $a_{i} a^{\prime}=a^{\prime} a_{i}=a_{i}$, by the inductive hypothesis, we have

$$
\begin{aligned}
a_{1} a_{i} & =a_{1} a^{\prime} a_{i} \\
& =a_{1}\left(a-a_{1}\right) a_{i}, \text { which follows from equation }(4.4) \\
& =\left(a_{1} a-a_{1}^{2}\right) a_{i} \\
& =\left(a_{1}-a_{1}\right) a_{i}, \text { by hypothesis } \\
& =0
\end{aligned}
$$

Similarly, $a_{i} a_{1}=0$.
Conversely, Suppose a_{1}, \ldots, a_{n} are mutually orthogonal rank one idempotents, with

$$
a=a_{1}+\ldots+a_{n} .
$$

We want to show that $\operatorname{rank}(a)=n$ and that a is an idempotent. That a is an idempotent, is easy to see, for,

$$
\begin{aligned}
a^{2} & =\left(a_{1}+\ldots+a_{n}\right)^{2} \\
& =a_{1}^{2}+\ldots+a_{n}^{2}+\sum_{i \neq j} a_{i} a_{j} \\
& =a_{1}+\ldots+a_{n}+0,0 \text { emanating from mutual orthogonality of the } a_{i}{ }^{\prime} s, \\
& =a .
\end{aligned}
$$

For the rest of this proof we establish that $\operatorname{rank}(a)=n$. Clearly,

$$
\begin{aligned}
\operatorname{rank}(a) & \leq \operatorname{rank}\left(a_{1}\right)+\ldots+\operatorname{rank}\left(a_{n}\right) \\
& =n .
\end{aligned}
$$

Suppose $\operatorname{rank}(a)<n$. It will then follow that

$$
a=b_{1}+\ldots+b_{k}, k<n, \text { with } \operatorname{rank}\left(b_{i}\right)=1,(i=1, \ldots, k) .
$$

Let S be a finite dimensional Banach algebra generated by

$$
\left\{1, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k} .\right\}
$$

From Remark A. 20 we see that S is a direct sum of its radical, $\operatorname{Rad}(S)$ and a semi-simple Banach algebra A_{s}. That is,

$$
S=\operatorname{Rad}(S) \oplus A_{s}
$$

We thus have

$$
a_{i}=a_{i r} \oplus a_{i s},\left(a_{i r} \in \operatorname{Rad}(S), a_{i s} \in A_{s}\right),(i=1, \ldots, n)
$$

and

$$
b_{i}=b_{i r} \oplus b_{i s},\left(b_{i r} \in \operatorname{Rad}(S), b_{i s} \in A_{s}\right),(i=1, \ldots, n)
$$

We claim that

$$
a_{1 s}, \ldots, a_{n s}
$$

are mutually orthogonal idempotents, for, $a_{i}^{2}=a_{i}$ implies, by using the fact that $\operatorname{Rad}(S)$ is an ideal and the uniqueness of the direct sum decomposition, that $a_{i s}^{2}=a_{i s}$. So, $a_{1 s}, \ldots, a_{n s}$ are idempotents.

For mutual orthogonality we use exactly the same argument. So, $a_{i s} a_{j s}=$ 0 . Note that $a_{i s} \neq 0$, otherwise $a_{i}=a_{i r}$ and that will mean, by Remark A.4, that $r\left(a_{i r}\right)=0$, because $a_{i r} \in \operatorname{Rad}(S)$. Since $a_{i r}$ is an idempotent, this will mean that $a_{i r}=0$.

That $\operatorname{rank}\left(a_{i s}\right)=1$, is just a routine check.
Let $b_{1 s}, \ldots, b_{q s},(q \leq k)$ be non-zero elements among the $b_{1 s}, \ldots, b_{k s}$. Similarly, $\operatorname{rank}\left(b_{j s}\right)=1,(j=1, \ldots, q)$ as elements of A_{s}.

Lastly, we also have

$$
\begin{align*}
a_{s} & =a_{1 s}+\ldots+a_{n s} \\
& =b_{1 s}+\ldots+b_{q s} . \tag{4.6}
\end{align*}
$$

This is motivated by the fact that

$$
a=b_{1}+\ldots+b_{q}=\left(b_{1 r}+\ldots+b_{q r}\right) \oplus\left(b_{1 s}+\ldots+b_{q s}\right)
$$

and

$$
a=\left(a_{1 r}+\ldots+a_{n r}\right) \oplus\left(a_{1 s}+\ldots+a_{n s}\right) .
$$

Since A_{s} is a finite dimensional semi-simple algebra,

$$
a_{j s}=a_{j s}^{(1)} \oplus \ldots \oplus a_{j s}^{(1)} \oplus \ldots \oplus a_{j s}^{(p)} \oplus \ldots \oplus a_{j s}^{(p)}
$$

where $a_{j s}^{(k)}$ is a d_{k} by d_{k} matrix repeated r_{k} times in the direct sum. Hence, Remark 2.20 gives

$$
\operatorname{rank}\left(a_{j s}\right)=r_{1} \operatorname{rank}\left(a_{j s}^{(1)}\right)+\ldots+r_{p} \operatorname{rank}\left(a_{j s}^{(p)}\right)
$$

Since $a_{j s}$'s are rank one mutually orthogonal matrices, it follows that

$$
\operatorname{rank}\left(a_{s}\right)=\sum_{i=1}^{n} \operatorname{rank}\left(a_{j s}\right)=n
$$

Thus, we have contradicted the assumption that $q \leq k<n$ and equation (4.6). Therefore, $\operatorname{rank}(a)=n$ as required and this completes the proof of the theorem.

Corollary 4.14. Let a_{1}, \ldots, a_{r} be mutually orthogonal idempotents in A of finite ranks. Then,

$$
\operatorname{rank}\left(a_{1}+\ldots+a_{r}\right)=\operatorname{rank}\left(a_{1}\right)+\ldots+\operatorname{rank}\left(a_{r}\right) .
$$

Proof. Using Proposition 4.13, we can write each a_{i} as a sum of rank one mutually orthogonal idempotents $a_{i j}$'s. Equation (4.5) of Proposition 4.13 tells us that $\operatorname{rank}\left(a_{1}+\ldots+a_{r}\right)=\operatorname{rank}\left(a_{1}\right)+\ldots+\operatorname{rank}\left(a_{r}\right)$.

5. THE SPECTRAL POINT SEQUENCE, APPROXIMATION NUMBERS AND THEIR PROPERTIES

Throughout this section A denotes a Banach algebra endowed with a unit element 1 unless otherwise stated.

To generalise Yamamoto's Theorem to a general Banach algebra setting, we need to make an extensive study of the properties that the spectrum of an element in a Banach algebra possesses regarding the finite multiplicity property points. We now introduce the notion of a spectral point sequence.

Let $x \in A$. Let $r(x)$ be the spectral radius of x. Consider the following set:

$$
\begin{equation*}
S_{1}=\{z:|z|=r(x)\} \bigcap \sigma(x) . \tag{5.1}
\end{equation*}
$$

If the set S_{1} is comprised of only finite multiplicity spectral points of x, we then set

$$
\mu_{i}(x)=r(x),(i=1, \ldots, n),
$$

where n is the sum of the multiplicities of the finite multiplicity spectral points of x in S_{1}. If S_{1} has some spectral points of x with infinite multiplicities, we set

$$
\mu_{i}(x)=r(x),(i=1,2, \ldots)
$$

In the former case we continue by considering $x_{1}=(1-e) x(1-e)$ as an element of the algebra $(1-e) A(1-e)$, where e is the sum of the Riesz idempotents corresponding to the points in S_{1}. It is worth noting that $r\left(x_{1}\right)<r(x)$, because

$$
\sigma(x) \backslash S_{1}=\sigma((1-e) x(1-e)),
$$

because $\sigma_{e A e}($ exe $)=S_{1}$, by part (d) of Proposition 4.11. We consider the set

$$
S_{2}=\left\{z:|z|=r\left(x_{1}\right)\right\} \bigcap \sigma\left(x_{1}\right)
$$

If S_{2} consists only of finite multiplicity spectral points of x_{1}, we set

$$
\mu_{n+i}(x)=r\left(x_{1}\right),\left(i=1, \ldots, n_{1}\right),
$$

where n_{1} is the sum of the multiplicities of the points of S_{2}. Otherwise, we set

$$
\mu_{n+i}(x)=r\left(x_{1}\right),(i=1,2, \ldots)
$$

Continuing like this, we obtain the sequence

$$
\begin{equation*}
\mu_{1}(x) \geq \mu_{2}(x) \geq \ldots \tag{5.2}
\end{equation*}
$$

of non-negative numbers called the spectral point sequence of x.
The sequence (5.2) can either be infinite or finite. It can be finite if $\sigma(x)$ is comprised of only a finite number of points of finite multiplicity and this is the case when the Banach algebra A is finite dimensional and semi-simple, see Proposition A. 19.

We use $n(x)$ to denote the length of the sequence (5.2).
Definition 5.1. Let $x \in A$. The $j^{\text {th }}$ approximation number of x is given by

$$
a_{j}(x)=\inf \{\|x-y\|: y \in A, \operatorname{rank}(y)<j\}
$$

Properties of approximation numbers for elements of $B(X)$, where X is a Banach space have been thoroughly investigated in the literature, see for instance monographs [6] and [13].

In the next lemma we state and prove some properties of approximation numbers for elements of A, necessary for the proofs of the main result in this thesis.

Lemma 5.2. Let $x, y \in A$.
(a) If $m \geq n$ then $a_{m}(x) \leq a_{n}(x)$, and $a_{1}(x)=\|x\|$;
(b) $a_{m+n-1}(x y) \leq a_{m}(x) a_{n}(y)$;
(c) $a_{m+n-1}(x+y) \leq a_{m}(x)+a_{n}(y)$;
(d) $a_{m}(x y) \leq a_{m}(x)\|y\|$ and $a_{n}(x y) \leq a_{n}(y)\|x\|$;
(e) if x is an idempotent of rank at least m then $a_{m}(x) \geq 1$.

Proof. (a) Follows trivially from Definition 5.1.
(b) Let $\epsilon>0$ and $\tilde{x}, \tilde{y} \in A$ be given such that $\operatorname{rank}(\tilde{x})<m$ and $\operatorname{rank}(\tilde{y})<n$ with $\|x-\tilde{x}\|<a_{m}(x)+\epsilon$ and $\|y-\tilde{y}\|<a_{n}(y)+\epsilon$. Using Proposition 2.2 it follows that

$$
\begin{aligned}
\operatorname{rank}(\tilde{x}(x-\tilde{y})+x \tilde{y}) & \leq \operatorname{rank}(\tilde{x}(y-\tilde{y}))+\operatorname{rank}(x \tilde{y}) \\
& \leq \operatorname{rank}(\tilde{x})+\operatorname{rank}(\tilde{y}) \\
& <m+n-1 .
\end{aligned}
$$

We thus have,

$$
\begin{aligned}
a_{m+n-1}(x y) & =\inf \{\|x y-z\|: z \in A, \operatorname{rank}(z)<m+n-1\} \\
& \leq\|x y-(\tilde{x}(y-\tilde{y})+x \tilde{y})\| \\
& =\|x y-\tilde{x} y+\tilde{x} \tilde{y}-x \tilde{y}\| \\
& =\|x(y-\tilde{y})-\tilde{x}(y-\tilde{y})\| \\
& =\|(x-\tilde{x})(y-\tilde{y})\| \\
& \leq\|x-\tilde{x}\| \cdot\|y-\tilde{y}\| \\
& <\left(a_{m}(x)+\epsilon\right)\left(a_{n}(y)+\epsilon\right) .
\end{aligned}
$$

Therefore, since $\epsilon>0$ was chosen arbitrarily,

$$
a_{m+n-1}(x y) \leq a_{m}(x) a_{n}(y)
$$

(c) Let $\epsilon>0$ and let $\tilde{x}, \tilde{y} \in A$ be such that $\operatorname{rank}(\tilde{x})<m$ and $\operatorname{rank}(\tilde{y})<n$ and $\|x-\tilde{x}\|<a_{m}(x)+\frac{\epsilon}{2}$ and $\|y-\tilde{y}\|<a_{n}(y)+\frac{\epsilon}{2}$.

Since $\operatorname{rank}(\tilde{x}+\tilde{y})<m+n-1$, it follows that

$$
\begin{aligned}
a_{m+n-1}(x+y) & \leq\|x+y-(\tilde{x}+\tilde{y})\| \\
& =\|x+y-\tilde{x}-\tilde{y}\| \\
& =\|(x-\tilde{x})+(y-\tilde{y})\| \\
& \leq\|x-\tilde{x}\|+\|y-\tilde{y}\| \\
& <a_{m}(x)+a_{n}(y)+\epsilon .
\end{aligned}
$$

Hence,

$$
a_{m+n-1}(x+y) \leq a_{m}(x)+a_{n}(y)
$$

(d) From (b) with $n=1$ and using (a), we get

$$
\begin{aligned}
a_{m}(x y) & \leq a_{m}(x) a_{1}(y) \\
& =a_{m}(x)\|y\| .
\end{aligned}
$$

Similarly, with $m=1$, we get,

$$
a_{n}(x y) \leq a_{n}(y)\|x\|
$$

(e) We prove this by contradiction. Suppose x is an idempotent of rank at least m and $a_{m}(x)<1$. Then, there is a $y \in A$ with $\operatorname{rank}(y)<m$ such that $\|x-y\|<1$. It then follows that $1-x+y$ is invertible. So,

$$
\begin{aligned}
m & \leq \operatorname{rank}(x) \\
& =\operatorname{rank}\left(x(1-x+y)(1-x+y)^{-1}\right) \\
& \leq \operatorname{rank}(x(1-x+y)) \\
& =\operatorname{rank}(x y) \\
& \leq \operatorname{rank}(y) \\
& <m
\end{aligned}
$$

which yields a contradiction.

Lemma 5.3. Let $x \in A$ and define the number

$$
e_{k}(x)=\sup \left\{\|y\|^{-1}: k \leq \operatorname{rank}(x y) \leq \infty,(y x)^{2}=y x, x \in A\right\},(k \geq 1)
$$

If the set of all $y \in A$ such that $k \leq \operatorname{rank}(x y) \leq \infty$ and $(y x)^{2}=y x$ is empty, we leave e_{k} undefined. Note that this happens when $\operatorname{rank}(x)<k$. If $e_{k}(x)$ exists, then $e_{k}(x) \leq a_{k}(x)$.

Proof. Note that

$$
\begin{aligned}
\|y x\| & =\|(y x)(y x)\| \\
& \leq\|y x\|\|y x\| .
\end{aligned}
$$

Therefore, $\|y x\| \geq 1$. Thus, $\|y\| \geq\|x\|^{-1}$. So, if the set of such y 's is non-empty, $e_{k}(x) \leq\|x\|<\infty$. Let $\epsilon>0$ be given and let y satisfy

$$
e_{k}(x)-\epsilon \leq\|y\|^{-1}, \operatorname{rank}(y x) \geq k \text { and }(y x)^{2}=y x .
$$

Then, by Lemma 5.2,

$$
\begin{aligned}
1 & \leq a_{k}(x y) \\
& \leq a_{k}(x)\|y\|
\end{aligned}
$$

So,

$$
\begin{aligned}
e_{k}(x)-\epsilon & \leq\|y\|^{-1} \\
& \leq a_{k}(x)
\end{aligned}
$$

Therefore, $e_{k}(x) \leq a_{k}(x)$.

The following sequence of lemmas paves a way for the proofs of the main result, Theorem 5.9, to be stated later in the section.

Lemma 5.4 ([12], Lemma 4.5). Let $x \in A$ and let $\left\{\mu_{n}(x)\right\}_{n=1}^{\infty}$ be the spectral point sequence of x where $n(x) \leq \infty$. Let n be a positive integer not greater than $n(x)$. Then,

$$
\limsup _{m \rightarrow \infty}\left(a_{n}\left(x^{m}\right)\right)^{\frac{1}{m}} \leq \mu_{n}(x)
$$

Proof. Let e be the sum of the Riesz idempotents corresponding to the spectral points of x with absolute value strictly greater than $\mu_{n}(x)$. Since each such a spectral point is of finite multiplicity, $\operatorname{rank}(e)<\infty$. Let $k=\operatorname{rank}(e)$. By definition of $\mu_{n}(x)$ and part (a) of Lemma 5.2, $k<n$. So, for any non-negative integer m,

$$
\begin{aligned}
a_{n}\left(x^{m}\right) & \leq a_{k+1}\left(x^{m}\right), \text { because } k \leq k-1 \text { implies } k+1 \leq n \\
& \leq\left\|x^{m}-e x^{m}\right\|, \text { because } \operatorname{rank}\left(e x^{m}\right) \leq k<k+1 \\
& =\left\|(1-e) x^{m}\right\| .
\end{aligned}
$$

By the spectral radius formula and properties of the Riesz idempotents, we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty}\left\|(1-e) x^{m}\right\|^{\frac{1}{m}} & =\lim _{m \rightarrow \infty}\left\|(1-e) x(1-e)^{m}\right\|^{\frac{1}{m}} \\
& =\mu_{n}(x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{m \rightarrow \infty}\left(a_{n}\left(x^{m}\right)\right)^{\frac{1}{m}} & \leq \lim _{m \rightarrow \infty}\left\|(1-e) x^{m}\right\|^{\frac{1}{m}} \\
& =\mu_{n}(x)
\end{aligned}
$$

Theorem 5.5 ([2], page 46). Let $x \in$ A. Suppose $\alpha \notin \sigma(x)$. Then,

$$
\operatorname{dist}(\alpha, \sigma(x))=\frac{1}{r\left((\alpha-x)^{-1}\right)}
$$

Proof. Let Ω be an open set containing $\sigma(x)$, but not α. Then $f(\lambda)=\frac{1}{\alpha-\lambda}$ is holomorphic on Ω. So, $\sigma\left((\alpha-x)^{-1}\right)=\left\{\frac{1}{\alpha-\lambda}: \lambda \in \sigma(x)\right\}$. In particular,

$$
\begin{aligned}
r\left((\alpha-x)^{-1}\right) & =\sup \left\{\frac{1}{|\alpha-\lambda|}: \lambda \in \sigma(x)\right\} \\
& =\frac{1}{\inf \{|\alpha-\lambda|: \lambda \in \sigma(x)\}} \\
& =\frac{1}{\operatorname{dist}(\alpha, \sigma(x))}
\end{aligned}
$$

Corollary 5.6. If 0 is not in $\sigma(x)$ and $\mu_{0}=\min \{|\lambda|: \lambda \in \partial \sigma(x)\}$, then

$$
r\left(x^{-1}\right)=\frac{1}{\mu_{0}}
$$

Proof. In Theorem 5.5, let $\alpha=0$. Thus,

$$
\begin{aligned}
r\left(x^{-1}\right) & =\frac{1}{\operatorname{dist}(0, \sigma(x))} \\
& =\frac{1}{\mu_{0}}
\end{aligned}
$$

Lemma 5.7. Let $y \in A$. Let $\beta \in \mathbb{R}^{+}$. Then,

$$
\lim _{m \rightarrow \infty}\left\|y^{m}\right\|^{\frac{1}{m}}=\frac{1}{\beta} \text { implies that } \lim _{m \rightarrow \infty}\left(\left\|y^{m}\right\|^{-1}\right)^{\frac{1}{m}}=\beta
$$

Proof. We have

$$
\begin{aligned}
\lim _{m \rightarrow \infty}\left(\left\|y^{m}\right\|^{-1}\right)^{\frac{1}{m}} & =\lim _{m \rightarrow \infty}\left(\frac{1}{\left\|y^{m}\right\|}\right)^{\frac{1}{m}} \\
& =\frac{1}{\lim _{m \rightarrow \infty}\left\|y^{m}\right\|^{\frac{1}{m}}} \\
& =\beta
\end{aligned}
$$

Lemma 5.8 ([12], Lemma 4.6). Let $a \in A,\left\{\mu_{n}(a)\right\}_{n=1}^{\infty}$ be the spectral point sequence of a and $n(x) \leq \infty$. Let $n \leq n(a)$ be given and suppose $\mu_{n}(a)>0$. Let k denote the sum of the multiplicities of the spectral points of a with absolute value at least $\mu_{n}(a)$. Then,

$$
e_{k}\left(a^{m}\right) \text { exists, for all } m \in \mathbb{Z}^{+} \text {and } \liminf _{m \rightarrow \infty}\left(e_{k}\left(a^{m}\right)\right)^{\frac{1}{m}} \geq \mu_{k}(a)
$$

Proof. Let e be the sum of the Riesz idempotents corresponding to the spectral points of a with absolute value greater than or equal to $\mu_{n}(a)$. By Corollary 4.14, $\operatorname{rank}(e)=k$. By Theorem $4.12, e A e$ is a Banach algebra with norm $\|\cdot\|_{e}$, equivalent to $\|\cdot\|$ on A. Moreover, $\sigma_{e A e}(e a e)$ consists of all $\lambda \in \sigma(a)$ such that $|\lambda| \geq \mu_{k}(a)$, the inequality following from the nature of the sequence (5.2). So, $0 \notin \sigma_{e A e}(e a e)$. This says that eae is invertible in $e A e$, that is, there is a $b \in A$ such that

$$
(e a e)(e b e)=(e b e)(e a e)=e
$$

By part (c) of Theorem 4.6,

$$
e a e=e a
$$

Thus,

$$
\begin{aligned}
(e b e)(e a e) & =(e b e)(e a) \\
& =(e b e) a .
\end{aligned}
$$

Therefore, for every $m \in \mathbb{Z}^{+},(e b e)^{m} a^{m}=e$. To see that $e_{k}\left(a^{m}\right)$ is defined, let $y=(e b e)^{m}$ then

$$
\left((y) a^{m}\right)^{2}=(y) a^{m} \text { and } \operatorname{rank}\left(a^{m}(y)\right) \geq k
$$

In this case $\operatorname{rank}\left(a^{m}(y)\right)=\operatorname{rank}(e)=k$, so $e_{k}\left(a^{m}\right)$ is well defined. In fact,

$$
e_{k}\left(a^{m}\right) \geq\left\|(e b e)^{m}\right\|^{-1}, \text { by the definition of } e_{k}\left(a^{m}\right)
$$

Since

$$
e b e=(e a e)^{-1} \text { in } e A e
$$

it follows that

$$
r(e b e)=\frac{1}{\mu_{k}(a)}, \text { by Corollary 5.6. }
$$

Thus,

$$
\lim _{m \rightarrow \infty}\left\|(e b e)^{m}\right\|_{e^{\frac{1}{m}}}=\frac{1}{\mu_{k}(a)}, \text { which is Beurling's formula. }
$$

So,

$$
\lim _{m \rightarrow \infty}\left\|(e b e)^{m}\right\|^{\frac{1}{m}}=\frac{1}{\mu_{k}(a)}, \text { because }\|\cdot\|_{e} \text { is equivalent to }\|\cdot\| .
$$

Therefore,

$$
\left.\mu_{k}(a)=\lim _{m \rightarrow \infty}\left\|(e b e)^{m}\right\|^{-1}\right)^{\frac{1}{m}}, \text { by Lemma 5.7. }
$$

So,

$$
\liminf _{m \rightarrow \infty}\left(\left\|(e b e)^{m}\right\|^{-1}\right)^{\frac{1}{m}} \leq \liminf _{m \rightarrow \infty}\left(e_{k}\left(a^{m}\right)\right)^{\frac{1}{m}}, \text { because }\left\|(e b e)^{m}\right\|^{-1} \leq e_{k}\left(a^{m}\right)
$$ that is,

$$
\lim _{m \rightarrow \infty}\left(\left\|(e b e)^{m}\right\|^{-1}\right)^{\frac{1}{m}} \leq \liminf _{m \rightarrow \infty}\left(e_{k}\left(a^{m}\right)\right)^{\frac{1}{m}}
$$

Thus,

$$
\mu_{k}(a) \leq \liminf _{m \rightarrow \infty}\left(e_{k}\left(a^{m}\right)\right)^{\frac{1}{m}}
$$

We are now in a position to state the main result of this paper and prove a special case thereof. A proof for the general case is relegated to the next section.

Theorem 5.9 ([12], Theorem 4.2). Let $a \in A$, and let $\left\{\mu_{n}(a)\right\}_{n=1}^{\infty}$ be the spectral point sequence of a, where $n(a) \leq \infty$. Define $\mu(a)=\lim _{j \rightarrow \infty} \mu_{j}(a)$ if $n(a)=\infty$, otherwise, $\mu(a)=\mu_{n(a)}(a)$.
(a) Assume $n(a)=\infty$. Then, for every n such that $\mu_{n}(a)>\mu(a)$, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\mu_{n}(a) \tag{5.3}
\end{equation*}
$$

and if $\mu_{n}(a)=\mu(a)$ then,

$$
\begin{equation*}
\lim \sup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \leq \mu(a) \tag{5.4}
\end{equation*}
$$

(b) Assume $n(a)<\infty$. Then, equation (5.3) holds for every $n \leq n(a)$.

Proof. (a) Let $n \in \mathbb{Z}^{+}$be given.

$$
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \leq \mu_{n}(a), \text { by Lemma 5.4. }
$$

So, the inquality (5.4) always hold. If $\mu_{n}(a)>\mu(a)$, then let k be the sum of the multiplicities of the spectral points with absolute value at least $\mu_{n}(a)$. We observe that $\mu_{k}(a)=\mu_{n}(a)$ and $k \geq n$. So,

$$
\begin{aligned}
\mu_{n}(a) & \leq \liminf _{m \rightarrow \infty}\left(e_{k}\left(a^{m}\right)\right)^{\frac{1}{m}}, \text { just by Lemma } 5.8, \\
& \leq \liminf _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}, \text { from Lemma } 5.3 \\
& \leq \limsup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \\
& \leq \mu_{n}(a), \text { by Lemma } 5.4 .
\end{aligned}
$$

That is,

$$
\liminf _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\limsup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\mu_{n}(a)
$$

So,

$$
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\mu_{n}(a)
$$

and so, part (a) is proved.
(b) If $\mu_{n}(a)>0$, then the above argument applies just fine. If $\mu_{n}(a)=0$, Lemma 5.4 says that

$$
\limsup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \leq \mu_{n}(a)=0 .
$$

Therefore,

$$
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\limsup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=0
$$

Whence,

$$
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=0=\mu_{n}(a)
$$

To explore the inequality (5.4) further, some work will need to be done and in the next section we look into that.

6. THE SPECTRAL RADIUS PROPERTY FOR BANACH ALGEBRAS

So far we have explored the limiting behaviour of $\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}$, for a fixed n as m increases, for the case $n(a)<\infty$ and for the case $n(a)=\infty$ with $\mu_{n}(a)>\mu(a)$. For the case $\mu_{n}(a)=\mu(a)$, with $n(a)=\infty$, we do the work in this section. As mentioned in the introduction, Nylen and Rodman conjectured that in this case we have equality with limsup replaced by limit. We prove the truth of their conjecture in this section.

To formulate the general result, we first investigate $\bar{F}_{A}^{\|\cdot\|}$, the norm closure of finite rank elements of a Banach algebra A. We will consider the factor algebra $A / \bar{F}_{A}^{\|\cdot\|}$. We will use $\sigma_{K}(a)$ to denote the spectrum of $a+\bar{F}_{A}^{\|\cdot\|}$ and $r_{K}(a)$ to denote its spectral radius, where $a+\bar{F}_{A}^{\|\cdot\|}$ is an element of $A / \bar{F}_{A}^{\|\cdot\|}$. Also let $\|a\|_{K}$ denote the norm of $a+\bar{F}_{A}^{\|} \cdot \|$.

Theorem 6.1. Let $a \in A$ and let $a_{\infty}(a)=\lim _{k \rightarrow \infty} a_{k}(a)$. Then,
(a) $a_{\infty}(a)=\inf \left\{\|a-y\|: y \in F_{A}\right\}$, the distance from a to F_{A}.
(b) Let $K_{A}=\left\{a \in A: a_{\infty}(a)=0\right\}$. Then,
K_{A} is a norm closed two - sided ideal in A and $\bar{F}_{A}^{\| \|}=K_{A}$.

Proof. (a) Obviously

$$
\inf \{\|a-y\|: \operatorname{rank}(y)<\infty\} \leq a_{k}(a) \text { for each } k
$$

Hence

$$
\begin{aligned}
\inf \{\|a-y\|: \operatorname{rank}(y)<\infty\} & \leq \inf a_{k}(a) \\
& =a_{\infty}(a) .
\end{aligned}
$$

For the opposite inequality, let $y \in A$ be such that $\operatorname{rank}(y)<\infty$. Suppose $\operatorname{rank}(y)<k$. Then

$$
\|a-y\| \geq a_{k}(a) \geq a_{\infty}(a)
$$

Hence

$$
\inf \{\|a-y\|: \operatorname{rank}(y)<\infty\} \geq a_{\infty}(a)
$$

Whence

$$
\operatorname{dist}\left(a, F_{A}\right)=a_{\infty}(a)
$$

(b) We first show that K_{A} is norm closed.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence with $x_{n} \in K_{A}$, for all n. Say $x_{n} \rightarrow x$. So, given $\epsilon>0$, there is an $N>0$ such that $\left\|x_{n}-x\right\|<\epsilon$ whenever $n \geq N$. But,

$$
a_{2 k-1}\left(x-x_{n}+x_{n}\right) \leq a_{k}\left(x-x_{n}\right)+a_{k}\left(x_{n}\right), \text { by Lemma 5.2(c). }
$$

That is,

$$
\begin{aligned}
a_{2 k-1}(x) & \leq a_{k}\left(x-x_{n}\right)+a_{k}\left(x_{n}\right) \\
& \leq a_{1}\left(x-x_{n}\right)+a_{k}\left(x_{n}\right), \text { by Lemma } 5.2(\mathrm{a}), \\
& =\left\|x-x_{n}\right\|+a_{k}\left(x_{n}\right), \text { by Lemma 5.2(a). }
\end{aligned}
$$

So,

$$
\lim _{k \rightarrow \infty} a_{2 k-1}(x) \leq\left\|x-x_{n}\right\|+\lim _{k \rightarrow \infty} a_{k}\left(x_{n}\right)
$$

That is,

$$
\begin{aligned}
a_{\infty}(x) & \leq\left\|x-x_{n}\right\|+a_{\infty}\left(x_{n}\right) \\
& =\left\|x-x_{n}\right\| \text { because } x_{n} \in K_{A} \text { implies that } a_{\infty}\left(x_{n}\right)=0 .
\end{aligned}
$$

So,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{\infty}(x) & \leq \lim _{n \rightarrow \infty}\left\|x-x_{n}\right\| \\
& =0 .
\end{aligned}
$$

Therefore, $a_{\infty}(x) \leq 0$, which implies that $a_{\infty}(x)=0$. Hence, $x \in K_{A}$. Whence, K_{A} is norm closed.

We next show that K_{A} is a two-sided ideal in A. Let $x, y \in K_{A}$. So,

$$
a_{2 n-1}(x-y) \leq a_{n}(x)+a_{n}(y)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} a_{2 n-1}(x-y) \leq \lim _{n \rightarrow \infty} a_{n}(x)+\lim _{n \rightarrow \infty} a_{n}(y)
$$

That is,

$$
\begin{aligned}
a_{\infty}(x-y) & \leq a_{\infty}(x)+a_{\infty}(y) \\
& =0
\end{aligned}
$$

So,

$$
x-y \in K_{A} .
$$

Let $z \in K_{A}$ and $x \in A$. So, $a_{n}(x z) \leq a_{n}(z)\|x\|$, by Lemma 5.2(d). Therefore,

$$
\begin{aligned}
a_{\infty}(x z) & \leq a_{\infty}(z)\|x\| \\
& =0 .
\end{aligned}
$$

Therefore,

$$
x z \in K_{A} .
$$

Similarly,

$$
z x \in K_{A} .
$$

Therefore, K_{A} is a two-sided ideal of A.

If $x \in F_{A}$, say $\operatorname{rank}(x)<k$. Then $a_{k}(x)=0$. Hence $a_{\infty}(x)=\inf _{k} a_{k}(x)=0$. Thus $F_{A} \subseteq K_{A}$. Let $x \in \bar{F}_{A}^{\|\cdot\|}$. Since K_{A} is closed, it follows that $\bar{F}_{A}^{\|\cdot\|} \subseteq K_{A}$.

For the reverse inclusion, let $x \in K_{A}$. So, $a_{\infty}(x)=0$. It then follows from (a) that

$$
\inf \left\{\|x-y\|: y \in F_{A}\right\}=0
$$

Whence,

$$
K_{A}=\bar{F}_{A}^{\|\cdot\|}
$$

Remark 6.2. In the proof of Theorem 6.1 (a), it is also clear that $a_{\infty}(a)=$ $\inf \left\{\|a-y\|: y \in K_{A}\right\}$, which is the norm of the Banach algebra A / K_{A}. Also, if $A=B(X)$, with X a Banach space having the approximation property, that is $\overline{F(X)}{ }^{\|l\|}=K(X)$, then K_{A} will be the ideal of the compact operators on X.

In the following theorem we will provide conditions on a Banach algebra such that the inequality (5.4) becomes equality, with limsup replaced by limit.

Theorem 6.3 ([12], Theorem 5.1). Let $a \in A$ be such that the spectral point sequence $\left\{\mu_{n}(a)\right\}_{n=1}^{\infty}$ of a has an infinite length, with limit $\mu(a)$ and that for some integer n,
$\mu_{n}(a)=\mu(a)=\sup \left\{|\lambda|: \lambda \in \sigma_{A}(a)\right.$ and λ is not an f.m. spectral point. $\}(6.1)$
(Herein, f.m. stands for finite multiplicity.)
Assume that

$$
\begin{equation*}
r_{K}(a)=\mu(a) \tag{6.1}
\end{equation*}
$$

Then,

$$
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\mu_{n}(a)
$$

Proof. For any $n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
\liminf _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} & =\liminf _{m \rightarrow \infty}\left(\inf \left\{\left\|a^{m}-x\right\|: \operatorname{rank}(x)<n\right\}\right)^{\frac{1}{m}} \\
& \geq \liminf _{m \rightarrow \infty}\left(\inf \left\{\left\|a^{m}-x\right\|^{\frac{1}{m}}: \operatorname{rank}(x)<\infty\right\}\right) \\
& =\liminf _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \\
& \geq \liminf _{m \rightarrow \infty}\left(\inf \left\{\left\|a^{m}-x\right\|^{\frac{1}{m}}: x \in K_{A}\right\}\right) \\
& =\liminf _{m \rightarrow \infty}\left\|a^{m}+K_{A}\right\|^{\frac{1}{m}} \\
& =r_{K}(a) \\
& =\mu_{n}(a)
\end{aligned}
$$

But,

$$
\limsup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \leq \mu_{n}(a) .
$$

So,

$$
\begin{aligned}
\liminf _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} & \leq \limsup _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}} \\
& \leq \mu_{n}(a) .
\end{aligned}
$$

Whence,

$$
\lim _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)\right)^{\frac{1}{m}}=\mu_{n}(a)
$$

Note that from the above proof of Theorem 6.3, and Lemma 5.4, we have

$$
r_{K}(a) \leq \liminf _{m \rightarrow \infty}\left(a_{n}\left(a^{m}\right)^{\frac{1}{m}} \leq \mu_{n}(a)\right.
$$

So, the following inequality always hold:

$$
\begin{equation*}
r_{K}(a) \leq \mu(a) \tag{6.2}
\end{equation*}
$$

where $\mu(a)$ is as in Theorem 6.2.
Definition 6.4. A Banach algebra A is said to have the spectral radius property if

$$
r_{K}(a)=\mu(a)
$$

for every $a \in A$ for which $\left\{\mu_{n}(a)\right\}_{n=1}^{\infty}$ is an infinite length spectral point sequence with limit $\mu(a)$ attained by $\mu_{k}(a)$, for some integer k.

We will need the following lemma to prove that finite dimensional algebras have the spectral radius property.

Lemma 6.5 ([12], Lemma 5.5). Suppose for $a \in A$ there is an element $b \in$ A such that $a b$ is an idempotent of infinite rank. Then,

$$
a_{\infty}(a)=\|a\|_{K} \geq\|b\|^{-1} .
$$

Proof. We show that if e is an idempotent of infinite rank, then $\|e\|_{K} \geq 1$. Suppose $\|e\|_{K}<1$. There is a finite rank element x such that $\|e-x\|<1$. So, $1-e+x$ is invertible. As such,

$$
\begin{aligned}
e & =e(1-e+x)(1-e+x)^{-1} \\
& =e x(1-e+x)^{-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{rank}(e) & \leq \operatorname{rank}(x) \\
& <\infty .
\end{aligned}
$$

Thus, we have a contradiction, because, by assumption, $\operatorname{rank}(e)=\infty$. Since $a b$ is an idempotent of infinite rank, it follows that

$$
\|a b\|_{K} \geq 1
$$

So,

$$
\begin{aligned}
1 & \leq\|a b\|_{K} \\
& \leq\|a\|_{K}\|b\|_{K} \\
& \leq\|a\|_{K}\|b\| .
\end{aligned}
$$

Therefore,

$$
\|a\|_{K} \geq\|b\|^{-1}
$$

Theorem 6.6 ([12], Theorem 5.4). Suppose the spectral point sequence of $a \in A$ is infinite, and for some $n, \mu_{n}(a)=\mu(a)$. Suppose further that there is an isolated point $\lambda \in \sigma(a)$ such that $|\lambda|=\mu(a)$ and the corresponding Riesz idempotent e is of infinite rank, then

$$
r_{K}(a)=\mu(a) .
$$

Proof. Suppose $\mu(a)=0$. Obviously, since $r_{K}(a) \leq \mu(a)$, no work needs to be done in this case.

We now Suppose $\mu(a)>0$. Since $0 \notin \sigma_{e A e}(a e a)$, it follows that eae is invertible in $e A e$. Let ede be the inverse of eae in $e A e$.

By Corollary 5.6, since $\sigma_{e A e}(a e a)=\{\lambda\}$, we have

$$
\begin{equation*}
|\lambda|^{-1}=\lim _{m \rightarrow \infty}\left\|(e d e)^{m}\right\|^{\frac{1}{m}} \tag{6.3}
\end{equation*}
$$

Recall that e commutes with a. So $e=a e d e=a^{m}(e d e)^{m}$, which is an idempotent for any $m \in \mathbb{Z}^{+}$. By Lemma 6.5 , with a^{m} playing the role of a and $(e d e)^{m}$ playing the role of b, we get

$$
\begin{equation*}
\left\|a^{m}\right\|_{K} \geq\left\|(e d e)^{m}\right\|^{-1} . \tag{6.4}
\end{equation*}
$$

Using equality (6.3) and inequality (6.4) and Beurling's formula we have,

$$
\begin{aligned}
r_{K}(a) & =\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{K}^{\frac{1}{n}} \\
& \geq \lim _{n \rightarrow \infty}\left(\left\|(e d e)^{n}\right\|^{-1}\right)^{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty}\left\|(e d e)^{n}\right\|^{-\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left\|(e d e)^{n}\right\|^{\frac{1}{n}}} \\
& =|\lambda| .
\end{aligned}
$$

That is,

$$
\begin{aligned}
r_{K}(a) & \geq|\lambda| \\
& =\mu(a)
\end{aligned}
$$

So, we have

$$
r_{K}(a)=\mu(a)
$$

because, from inequality (6.2), we always have $r_{K}(a) \leq \mu(a)$.

Corollary 6.7. Let A be a finite dimensional Banach algebra. Then, A has the spectral radius property.

Proof. We first claim that if A is finite dimensional, then $x \in A$ implies that x is algebraic.

Let $a \in A$ be such that $\left\{\mu_{n}(a)\right\}_{n=1}^{\infty}$ is an infinite length spectral point sequence with limit $\mu(a)$ attained by $\mu_{k}(a)$, for some integer k. Consider $B=$ $\left\{a^{n}: n=1,2, \ldots\right\}$. Note that $a^{n} \in A,(n=1,2, \ldots)$. Since $\operatorname{dim}(A)<\infty$, only a finite number of elements of B are linearly independent over \mathbb{C}. So, there is a polynomial $P(z)$ such that $P(a)=0$. Therefore, a is algebraic and the claim is established. By Corollary 2.3, $\sigma(a)$ is a finite set. Whence, applying Theorem 6.6, the result follows.

In the rest of this section we will use our own techniques to show that $B(X)$ has the spectral radius property and exploit the same idea to show that any Banach algebra with a unit element also has the spectral radius property.

To accomplish this we will make use of the standard results on Riesz theory and Fredholm theory for Banach algebras. Since this theory is involved and well established in the literature, see [3] and [5], we will use the results without proofs.

We call an element $x \in A$ inessential if its spectrum $\sigma_{A}(x)$ is at most countable with zero being the only possible accumulation point. An ideal consisting only of inessential elements is called an inessential ideal. It follows from Corollary 2.3 that F_{A} is an inessential ideal. Clearly the norm closure of any
inessential ideal will also be inessential. As such, K_{A} is an inessential norm closed ideal of A.

From [3], Section R, we see that Fredholm theory and Riesz theory in A is carried out relative any inessential two-sided ideal of A. For our purpose we consider Fredholm theory and Riesz theory relative to K_{A}. We call $x \in A$ Fredholm relative to K_{A} if $x+K_{A}$ is invertible in A / K_{A}. We will denote the class of Fredholm elements of A by $\Phi(A)$. We call $x \in A$ Riesz if $r_{K}(x)=0$ and denote the class of Riesz elements of A by $R(A)$.

It is a direct consequence of the above definitions that $x \in R(A)$ if and only if $\sigma_{K}(x)=\{0\}$ if and only if $\lambda-x \in \Phi(A)$ for all $\lambda \neq 0$.

Remark 6.8. If $A=B(X)$, then it is clear from [3], Theorem O.2.2 that invertibility modulo $F_{A}=F(X)$ is equivalent to invertibility modulo $K(X)$. Since $F(X) \subseteq K_{A} \subseteq K(X)$, in general, it will follow that the Riesz and Fredholm elements relative K_{A} as we defined them, coincide with the classical Riesz and Fredholm operators. In fact $r_{K}(x)$ and $\sigma_{K}(x)$ are exactly the essential spectral radius and the essential spectrum respectively.

We call $\lambda \in \mathbb{C}$ a Fredholm point of $x \in A$ if $\lambda-x \in \Phi(A)$ and we call $\lambda \in \mathbb{C}$ a Riesz point if either $\lambda \notin \sigma(x)$ or if λ is an isolated Fredholm point of $\sigma(x)$, see [3] Section R.

We will need the following theorem to prove that $B(X)$, where X is a Banach space, has the spectral radius property.

Theorem 6.9 ([3], Theorem R.2.4). Let $x \in A$. Then, every Fredholm point of x lying in $\partial \sigma(x)$ is isolated.

Theorem 6.10. Let $A=B(X)$, where X is a Banach space. Then A has the spectral radius property.

Proof. Let $T \in B(X)$, with the spectral point sequence $\left\{\mu_{j}(T)\right\}_{j=1}^{\infty}$ of infinite length, satisfying $\mu_{m}(T)=\lim _{n \rightarrow \infty} \mu_{n}(T)$, for some integer m. The essential spectral radius of T has the following property:

$$
r_{K}(T) \leq \mu_{m}(T), \text { which is just inequality (6.2) }
$$

So, we only need to show that $\mu_{m}(T) \leq r_{K}(T)$.
Recall that the essential spectrum of T is given by

$$
\begin{aligned}
\sigma_{K}(T) & =\sigma(T+K(X)) \\
& =\sigma(T) \backslash\{\lambda \in \sigma(T): \lambda-T \in \Phi(A)\} .
\end{aligned}
$$

Consider the set

$$
S=\left\{\lambda \in \sigma(T):|\lambda|>r_{K}(T)\right\}
$$

Suppose $S=\emptyset$. In this case we have

$$
|\lambda| \leq r_{K}(T), \text { for all } \lambda \in \sigma(T)
$$

Therefore, $\mu_{m}(T) \leq r_{K}(T)$. We thus have $\mu_{m}(T)=r_{K}(T)$.
Now we suppose $S \neq \emptyset$. We show that all elements of S are contained in $\partial \sigma_{B(X)}(T)$. Suppose not. Then there exists a point $\lambda \in S \backslash \partial \sigma_{B(X)}(T)$. Hence we can find a neighbourhood $U \subset \sigma_{B(X)}(T)$ which contains λ. (We can even assume that $\left.U \not \subset \sigma_{K}(T)\right)$. Now we let

$$
t_{0}=\sup \{t \mid(1+\epsilon) \lambda \in \sigma(T) \text { for all } \epsilon \leq t\}
$$

Then $\left(1+t_{0}\right) \lambda \in \sigma(T)$ because $\sigma(T)$ is closed. Moreover $\left(1+t_{0}\right) \lambda \in \partial \sigma(T) \bigcap S$. Hence $\left(1+t_{0}\right) \lambda$ is isolated by Theorem 6.9 which gives a contradiction by the definition of t_{0}. It follows from Theorem 6.9 that S consists only of isolated points. Let $\lambda_{0} \in S$ and consider $p\left(\lambda_{0}, T\right)$, the spectral projection corresponding to λ_{0}. Let Γ be a rectifiable curve enclosing no other point of $\sigma(T)$ other than λ_{0}. We thus have

$$
\begin{aligned}
p\left(\lambda_{0}, T\right)+K(X) & =p\left(\lambda_{0}, T+K(X)\right) \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(\lambda-T+K(X))^{-1} d \lambda \\
& =0, \text { by the Cauchy's Integral Theorem, as } \lambda_{0} \notin \sigma_{K}(x) .
\end{aligned}
$$

So, $p\left(\lambda_{0}, T\right) \in K(X)$, which means that $p\left(\lambda_{0}, T\right) \in F(X)$, since any compact projection is of finite rank. Whence, λ_{0} is a finite multiplicity point. Therefore, $\lambda \in S$ implies that λ is a finite multiplicity point. So, $\mu_{m}(T)=\mu(T) \leq r_{K}(T)$ and the theorem is established.

The idea of the proof of Theorem 6.10 will be used to show that any Banach algebra with a unit element has the spectral radius property.

Lemma 6.11. Let I be a two-sided ideal of A and let $x \in A$. Suppose $\mu \neq 0$ is isolated in $\sigma_{A}(x)$. If the Riesz idempotent e_{μ} corresponding to μ is in $\bar{I}^{\|\cdot\|}$, then $e_{\mu} \in I$.

Proof. The subalgebra $e_{\mu} \bar{I}^{\|} \cdot{ }^{\|} e_{\mu}$ of A is closed. So, it is a Banach algebra with identity e_{μ}. Also, $e_{\mu} I e_{\mu}$ is a dense two-sided ideal in $e_{\mu} \bar{I}\|\cdot\|_{\mu}$. Clearly,

$$
e_{\mu} \bar{I}^{\|\cdot\|} e_{\mu}=e_{\mu} I e_{\mu},
$$

for if not then we can find a proper maximal ideal J containing $e_{\mu} I e_{\mu}$. Since J is closed and dense in $e_{\mu} \bar{I}\|\cdot\| e_{\mu}$, it has to be all of $e_{\mu} \bar{I}\|\cdot\| e_{\mu}$, which yields a contradiction. So,

$$
\begin{aligned}
e_{\mu} & \in e_{\mu} \bar{I}^{\|\cdot\|} e_{\mu} \\
& =e_{\mu} I e_{\mu} \\
& \subset I .
\end{aligned}
$$

That is, $e_{\mu} \in I$ as wanted.

Theorem 6.12. Let A be a Banach algebra with a unit element 1. Then, A has the spectral radius property.

Proof. Let $a \in A$, with the spectral point sequence given by $\left\{\mu_{n}(a)\right\}_{n=1}^{\infty}$ with $n(a)=\infty$, and $\mu_{m}(a)=\lim _{n \rightarrow \infty} \mu_{n}(a)$, for some integer m. From inequality (6.2), we always have

$$
\begin{equation*}
r_{k}(a) \leq \mu_{m}(a) \tag{6.5}
\end{equation*}
$$

So, we only need to show that $\mu_{m}(a) \leq r_{k}(a)$. Remember that

$$
\sigma_{K}(a)=\sigma_{A}(a) \backslash\left\{\lambda \in \sigma_{A}(a):(\lambda-a) \in \Phi(A)\right\}
$$

Consider the set

$$
S=\left\{\lambda \in \sigma_{A}(a):|\lambda|>r_{k}(a)\right\}
$$

If $S=\emptyset$, then $|\lambda| \leq r_{k}(a)$ for all $\lambda \in \sigma_{A}(a)$. Therefore, $\mu_{m}(a) \leq r_{k}(a)$.
Now we suppose $S \neq \emptyset$. We show that all elements of S are contained in $\partial \sigma_{A}(a)$. Suppose not. Then there exists a point $\lambda \in S \backslash \partial \sigma_{A}(a)$. Hence we can find a neighbourhood $U \subset \sigma_{A}(a)$ which contains λ. (We can even assume that $\left.U \not \subset \sigma_{K}(a)\right)$. Now we let

$$
t_{0}=\sup \{t \mid(1+\epsilon) \lambda \in \sigma(a) \text { for all } \epsilon \leq t\}
$$

Then $\left(1+t_{0}\right) \lambda \in \sigma(a)$ because $\sigma(a)$ is closed. Moreover $\left(1+t_{0}\right) \lambda \in \partial \sigma(a) \bigcap S$. Hence $\left(1+t_{0}\right) \lambda$ is isolated by Theorem 6.9 which gives a contradiction by the definition of t_{0}. It follows from Theorem 6.9 that S consists only of isolated points. Let $\lambda_{0} \in S$ and consider $p\left(\lambda_{0}, a\right)$, the spectral idempotent in A corresponding to λ_{0}. Let Γ be a simple rectifiable curve enclosing no other point of $\sigma_{A}(a)$ other than λ_{0}. Thus,

$$
\begin{aligned}
p\left(\lambda_{0}, a\right)+K_{A} & =p\left(\lambda_{0}, a+K_{A}\right) \\
& =\frac{1}{2 \pi i} \int_{\Gamma}\left(\lambda-a+K_{A}\right)^{-1} d \lambda \\
& =0, \text { by the Cauchy's Integral Theorem, as } \lambda_{0} \notin \sigma_{K}(a) .
\end{aligned}
$$

Therefore,

$$
p\left(\lambda_{0}, a\right) \in K_{A}=\bar{F}_{A}^{\|\cdot\|}
$$

So, by Lemma 6.11, $p\left(\lambda_{0}, a\right) \in F_{A}$. Therefore, λ_{0} is a finite multiplicity point. We thus have $\lambda \in S$ implies that λ is a finite multiplicity point of $\sigma_{A}(a)$. Therefore,

$$
\begin{equation*}
\mu_{m}(a) \leq r_{k}(a) . \tag{6.6}
\end{equation*}
$$

Inequalities (6.5) and (6.6) yield,

$$
r_{K}(a)=\mu(a) .
$$

Whence, A has the spectral radius property.

We have shown that any Banach algebra with unit has the spectral radius property. Hence, C^{*}-algebras do have the property. Nylen and Rodman in [2] proved that any C^{*}-algebra with unit has the spectral radius property. Their proof makes use of the reduced atomic representation of C^{*}-algebras. To conclude this thesis we would like to mention that the representation used in [3], Theorem $C^{*} .4 .3$, gives a much more elegant proof that a C^{*}-algebra with a unit element has the spectral radius property. We state Theorem $C^{*} .4 .3$ without proof. It was shown in [14], that $F_{A}=\operatorname{Soc}(A)$, where $\operatorname{Soc}(A)=\{0\}$ if A has no minimal left or right ideals. Otherwise if A has minimal ideals and the smallest left ideal containing all minimal left ideals coincides with the smallest right ideal containing all minimal right ideals and we call this two-sided ideal the socle of A, denoted by $\operatorname{Soc}(A)$.

Theorem 6.13 ([3], Theorem C*.4.3). Let A be a C^{*}-algebra. there is a faithful *-(and therefore isometric) representation (φ, H) of A on a Hilbert space H with the following properties:
(a) $\varphi(\operatorname{Soc}(\mathrm{A}))=F(H) \bigcap \varphi(A)$,
(b) $\varphi(\overline{\operatorname{Soc}(A)})=K(H) \bigcap \varphi(A)$,
(c) $\varphi(R(A))=R(H) \bigcap \varphi(A)$,
(d) $\varphi(\Phi(A))=\Phi(H) \bigcap \varphi(A)$ if A is unital.

Theorem 6.14. Let A be a C^{*}-algebra with a unit element. Then, A has the spectral radius property.

Proof. We may assume that A is a C^{*}-subalgebra of $B(H)$ and that

$$
K_{A}=K(H) \bigcap A .
$$

The map

$$
\psi: A / K_{A} \rightarrow B(H) / K(H)
$$

defined by

$$
\psi\left(a+K_{A}\right)=a+K(H)
$$

is a ${ }^{*}$-isomorphism. Hence $\psi\left(A / K_{A}\right)$ is a C^{*}-subalgebra of $B(H) / K(H)$. That

$$
\sigma_{A / K_{A}}\left(a+K_{A}\right)=\sigma_{B(H) / K(H)}(\varphi(a)+K(H))
$$

follows from a well-known fact in C^{*}-algebra theory, namely that the spectrum of an element in a C^{*}-algebra is the same as the spectrum with respect to any C^{*}-subalgebra containing that element.

From Theorem 6.9, $B(H)$ has the spectral radius property. It follows from Theorem 6.13(a) and the fact that $\sigma_{A}(a)=\sigma_{B(H)}(\varphi(a))$ that A has the spectral radius property as well: Suppose λ_{0} is an isolated point of σ_{A} with finite multiplicity. Then, since φ is a C^{*}-algebra isomorphism,

$$
\varphi\left(p\left(\lambda_{0}, a\right)\right)=p\left(\lambda_{0}, \varphi(a)\right)
$$

where in each case $p\left(\lambda_{0},.\right)$ is the spectral projection corresponding to λ_{0}. From Theorem 6.13(a) $p\left(\lambda_{0}, a\right)$ is finite rank if and only if $p\left(\lambda_{0}, \varphi(a)\right)$ is finite rank.

APPENDIX

The following standard facts and definitions have been relegated to this section, the appendix, merely to facilitate the flow of the presentation of the main results.

Definition A.1. Let A be a unital Banach algebra over \mathbb{C}. Let X be a Banach space over \mathbb{C}.
(i) We define a non-zero irreducible representation of A on X namely π to be a homomorphism from A into $B(X)$ such that $\{0\}$ and X are the only invariant subspaces under $\pi(a)$ for all $a \in A$. We say π is continuous if there is a constant C such that $\|\pi(a)\| \leq C\|a\|$.
(ii) We define a primitive ideal to be a kernel of some continuous irreducible representation of A and we denote the set of such ideals by Π_{A}.
(iii) An algebra A is primitive if $\{0\}$ is a primitive ideal of A.
(iv) The radical of an algebra A, denoted by $\operatorname{Rad}(A)$, is defined to be the intersection of the kernels of all continuous irreducible representations of A. If there are no primitive ideals we define $\operatorname{Rad}(A)=A$.
(v) An algebra A is semi-simple if $\operatorname{Rad}(A)=\{0\}$.

Theorem A.2. Let A be an algebra with unit 1. Then the following are identical:
(a) the intersection of all maximal left ideals of A,
(b) the intersection of all maximal right ideals of A,
(c) the set of x such that $1-z x$ is invertible in A, for all $z \in A$,
(d) the set of x such that $1-x z$ is invertible in A, for all $z \in A$.

Proof. The equivalence of (c) and (d) follows from the fact that $\sigma_{A}(z x) \cup$ $\{0\}=\sigma_{A}(x z) \cup\{0\}$. We only show the equivalence of (a) and (c) as that of (b) and (d) is shown analogously.

Let x be in the intersection of all maximal left ideals of A. If $1-z x$ is not invertible then $A(1-z x)$ is a left ideal of A, so it is contained in some maximal left ideal I_{0}. Then $z x \in I_{0}$ and $1-z x \in I_{0}$. So $1 \in I_{0}$. That is $I_{0}=A$, which yields a contradiction.

For the converse, suppose that $1-z x$ is invertible for all $z \in A$. If x is not in the intersection of all maximal left ideals, it means that there is a maximal left ideal J_{0} such that $x \notin J_{0}$. Then $I_{0}+A x=A$ and as a result $1-z x \in J_{0}$, which yields a contradiction because it will imply that $1 \in J_{0}$.

Let I be a maximal left ideal of A. It is closed, so

$$
X=A / I
$$

is a Banach space for the norm defined by

$$
\|\bar{a}\|\left\|=\inf _{u \in I}\right\| a+u \|,
$$

where $\bar{a}=a+I$ is an element of A / I. There is a natural representation π of A on X defined by

$$
\pi(x) \bar{a}=\overline{x a} .
$$

This continuous representation is called the left regular representation associated to I. It is irreducible because I is a maximal left ideal. The kernel of the representation is

$$
\operatorname{ker}(\pi)=(I: A)=\{x: x \in A, x A \subset I\}
$$

The following theorem provides the characterization of the radical in terms of irreducible representations for Banach algebras.

Theorem A.3. Let A be a Banach algebra with unit 1. Then,
(a) for every irreducible representation π of A there is a maximal left ideal I such that $\operatorname{ker}(\pi)=(I: A)$, as a result, $k e r(\pi)$ is a closed two-sided ideal of A,
(b) the radical of $A, \operatorname{Rad}(A)$, equals any of the sets described in Theorem A. 2

Proof. (a) Let π be an irreducible representation of A on a complex vector space X and let $\alpha \neq 0$ be in X. Then

$$
F=\{\pi(x) \alpha: x \in A\}
$$

contains α and it is invariant under π, so $F=X$. Let

$$
I=\{x: x \in A, \pi(x) \alpha=0\} .
$$

Because $F=X$, we have $I \neq A$, so I is a left ideal of A. Let J be a proper left ideal of A containing I. Then either $J=I$ or $\{\pi(x) \alpha: x \in J\}$ is different from $\{0\}$ and is invariant under π. So $\{\pi(x) \alpha: x \in J\}=X$. As a result, there is an $e \in J$ such that $\pi(e) \alpha=\alpha$, so $x e-x \in I$ for all $x \in A$. Then for any $x \in A$ we have

$$
x=(x-x e)+x e \in I+J \subset J
$$

so that $A=J$ and that yields a contradiction. As a result I is a maximal left ideal. Clearly $\operatorname{ker}(\pi) \subset(I: A)$. If $x \in(I: A)$, then $x A \subset I$ and thus $\pi(x) \pi(y) \alpha=0$ for every $y \in A$. As a result we have $\pi(x) X=\{0\}$, whence $\pi(x)=0$. That is $x \in \operatorname{ker}(\pi)$.
(b) If $x \in \operatorname{Rad}(A)$ then $x A \subset \operatorname{Rad}(A) \subset I$ for all maximal left ideals I. As a result thereof, $x \in(I: A)$ for all maximal left ideals I. It follows from (a) that x
is in the intersection of the kernels of all continuous irreducible representations of A.

For the converse, if x is in the intersection of the kernels of all continuous irreducible representations of A then $x \in(I: A)$ for all maximal left ideals I. Whence, $x=x 1 \in I$ for all such I, and thus $x \in \operatorname{Rad}(A)$.

Remark A.4. Let A be an algebra with a unit 1. Parts (c) and (d) of Theorem 2 yields that the radical, $\operatorname{Rad}(A)$, of A is contained in the set of quasi-nilpotent elements of A.

Remark A.5. We note that if $\pi: A \rightarrow B(X)$ is a continuous irreducible representation of A , then $\pi(1)$ is the identity operator I in $B(X)$ for if this is not true, we will have $\pi(1) X$ to be a closed subspace of X which is invariant under $\pi(a)$ for every $a \in A$. To see closedness, suppose $\pi(1) x_{n} \rightarrow y$. So $\pi(1) x_{n}=$ $\pi(1) \pi(1) x_{n} \rightarrow \pi(1) y$. So $y \in \pi(1) X$. This contradicts the irreducibility of π.

Remark A.6. It is worth noting that if an algebra A is primitive then it is semi-simple. This follows from the fact that $\{0\} \in \Pi_{A}$ which implies that $\operatorname{Rad}(A)=\bigcap_{P \in \Pi_{A}} P=\{0\}$. Whence, by Definition A. 1 (v), A is semi-simple.

Definition A. 7 We call an algebra A semi-prime if uxu $=0$ for all $x \in A$ implies that $u=0$.

Remark A.8. Let A be a semi-prime algebra. Let J be a left ideal or right ideal of A. Then $J^{2}=\{0\}$ implies that $J=\{0\}$. To see this let $y \in J$. So $y x y \in J^{2}$ for all $x \in A$. That is $y x y=0$ for all $x \in A$. From Definition A. 7 $y=0$. Since y was arbitrarily chosen from J, we conclude that $J=\{0\}$.

Definition A.9. Let A be any algebra.
(i) An idempotent in A is an element p such that $p^{2}=p$.
(ii) A minimal idempotent in A is a non-zero idempotent p such that
$p A p$ is a division algebra and we denote the set of all such idempotents by $\operatorname{Min}(A)$

Definition A.10. A right ideal R of an algebra A is minimal if $R \neq\{0\}$ and if for any right ideal $R_{1} \subset R$, either $R_{1}=\{0\}$ or $R_{1}=R$. Analogously, a left ideal L of A is minimal if $L \neq\{0\}$ and if for any left ideal $L_{1} \subset L$, either $L_{1}=\{0\}$ or $L_{1}=L$.

Lemma A. 11 ([4], Lemma 6). Let A be a semi-prime algebra.
(i) If $e \in \operatorname{Min}(A)$ then $A e$ is a minimal left ideal of A.
(ii) If $e \in \operatorname{Min}(A)$ then $e A$ is a minimal rigth ideal of A.

Proof. (i) Suppose that $e \in \operatorname{Min}(A)$. Let J be a non-zero left ideal of A with $J \subset A e$. By the contraposition of Remark A.8, $J^{2} \neq\{0\}$. So there are elements $a e$ and $b e$ of J such that aebe $\neq 0$. It follows that $e b e \neq 0$. Since $e A e$ is a division algebra, there exists a $c \in e A e$ such that $c e b e=e$. Then $A e=A c e b e \subset A b e \subset J$, and so $A e$ is a minimal left ideal.
(ii) This part of the lemma follows by an analogous argument as in (i).

Lemma A. 12 ([3], Theorem BA.3.5). Let A be a semi-simple algebra. If $e \in \operatorname{Min}(A)$, then there is a unique $P_{e} \in \Pi_{A}$ such that $e \notin P_{e}$.

Proof. Let $e \in \operatorname{Min}(A)$. So,

$$
P_{e}=\{x \in A \quad: \quad x A \subset A(1-e)\}
$$

is a primitive ideal because,

$$
\pi: A \rightarrow B(A e)
$$

defined by

$$
\pi(a) b e=a b e
$$

is an irreducible representation of A on $A e$ with kernel P_{e}. The irreducibility follows since e is minimal. Thus, $e \notin P_{e}$, because $e \in P_{e}$ implies that

$$
\pi(e) A e=e A e=\{0\}
$$

which will yield a contradiction.
If $P \in \Pi_{A}$ and $e \notin P$, then $P \bigcap A e=\{0\}$, because by Lemma A. $11 A e$ is a minimal left ideal. Hence, $P e=\{0\}$, because $P e \subseteq P \bigcap A e=\{0\}$. If $x \in P$, then, obviously, $x A \subset P$. So, $x A e=\{0\}$. It then follows that $x \in P_{e}$ and thus $P \subset P_{e}$. But $P_{e} A e=\{0\} \subset P$. So, either $A e \subset P$ or $P_{e} \subset P$, again this follows from the fact that both P_{e} and $A e$ are left ideals, see for instance Lemma A.11. But $P \bigcap A e=\{0\}$. Therefore, $P_{e} \subset P$ which yields that $P_{e}=P$.

Proposition A. 13 Let A be a semi-simple algebra with a unit element 1. Then A is semi-prime.

Proof. Let $x \in A$. Suppose $x y x=0$ for all $y \in A$. So $y x y x=0$. That is $r\left((y x)^{2}\right)=0$. This implies that $(r(y x))^{2}=0$. So we have $r(y x)=0$. That is $y x \in Q(A)$ for all $y \in A$. By Lemma 3.1 we have $x \in \operatorname{Rad}(A)=\{0\}$. That is $x=0$. Thus A is semi-prime.

Lemma A. 14 ([2], Lemma 4.2.2). Let A be a Banach algebra and π be a continuous irreducible representation of A on a Banach space X. Then, $C=$ $\{T: T \in \mathrm{~B}(\mathrm{X}), T \pi(x)=\pi(x) T$, for all $x \in A\}$ is isomorphic to \mathbb{C}.

Proof. Obviously C is a closed subalgebra of $B(X)$ containing the identity. Let $T \neq 0$ be in C. Then,

$$
T \pi(x)(X)=\pi(x) T(X) \subset T(X), \text { for every } x \in A
$$

This says $T(X)$ is invariant under π. Thus, $T(X)=X$. Also, $\operatorname{ker}(T)$ is invariant under π, but $\operatorname{ker}(T)=X$ is not possible. So, T is an invertible linear operator. By the Open Mapping Theorem, T is invertible in $B(X)$ and its inverse satisfies

$$
T^{-1} \pi(x)=\pi(x) T^{-1},(x \in A) .
$$

So, $T^{-1} \in C$. Therefore, C is a division algebra and the result follows from the Gelfand-Mazur Theorem.

Lemma A. 15 ([2], Lemma 4.2.3). Let π be a continuous irreducible representation of A on a Banach space X. If x_{1} and x_{2} are linearly independent in X, then there is an element $a \in A$ such that $\pi(a) x_{1}=0$ and $\pi(a) x_{2} \neq 0$.

Proof. Suppose that $\pi(x) x_{1}=0$ implies that $\pi(a) x_{2}=0$. Let

$$
L_{i}=\left\{x: x \in A, \pi(x) x_{i}=0\right\},(i=1,2) .
$$

Clearly, L_{1} and L_{2} are both maximal left ideals and $L_{1} \subset L_{2}$. So, $L_{1}=L_{2}=L$. The linear mappings

$$
T_{i}: A / L \rightarrow X
$$

defined by

$$
T(\bar{a})=\pi(a) x_{i},(i=1,2),
$$

are bounded and bijective. Let $D=T_{2} T_{1}^{-1}$, which is a bounded linear operator on X. Let $y \in X$ and suppose that $y=\pi(b) x_{1}$. Then, we have

$$
\begin{aligned}
\pi(a) D y & =\pi(a) T_{2} T_{1}^{-1}(y) \\
& =\pi(a) T_{2}(\bar{b}) \\
& =\pi(a) \pi(b) x_{2} \\
& =\pi(a b) x_{2},
\end{aligned}
$$

and

$$
\begin{aligned}
D \pi(a) y & =T_{2} T_{1}^{-1} \pi(a b) x_{1} \\
& =T_{2}(\overline{a b}) \\
& =\pi(a b) x_{2} .
\end{aligned}
$$

So,

$$
D \pi(a) y=\pi(a) D y,(a \in A)
$$

By Lemma A.14, there is a scalar $\lambda \neq 0$ such that $D=\lambda I$. Then, $T_{2}=\lambda T_{1}$. So, taking $a=1$, we get $x_{2}=\lambda x_{1}$, contradicting the independence of x_{1} and x_{2}.

Lemma A. 16 ([2], Lemma 4.2.4). Let A be a Banach algebra. Let π be a continuous irreducible representation of A on a Banach space X. If x_{1}, \ldots, x_{n} are linearly independent in X then there is an element $a \in A$ such that

$$
\pi(a) x_{i}=0,(i=1, \ldots, n-1), \text { and } \pi(a) x_{n} \neq 0
$$

Proof. Lemma A. 15 tells us that this Lemma holds true for $n=2$. We thus carry out the proof by induction. Suppose $n>2$ and the result holds for n - 1. So, there is an $a_{1} \in A$ such that $\pi\left(a_{1}\right) x_{i}=0,(i=1, \ldots, n-2)$, and $\pi\left(a_{1}\right) x_{n} \neq 0$.

If $\pi\left(a_{1}\right) x_{n-1}=0$, then we are done.
If $\pi\left(a_{1}\right) x_{n-1}$ and $\pi\left(a_{1}\right) x_{n}$ are linearly independent. Then, by Lemma 3.17, there is an $a_{2} \in A$ such that

$$
\pi\left(a_{2}\right) \pi\left(a_{1}\right) x_{n-1}=0
$$

and

$$
\pi\left(a_{2}\right) \pi\left(a_{1}\right) x_{n} \neq 0
$$

So,

$$
a=a_{2} a_{1} \text { will do . }
$$

We now suppose that $\lambda \pi\left(a_{1}\right) x_{n-1}=\pi\left(a_{1}\right) x_{n}$, for some $0 \neq \lambda \in \mathbb{C}$. The vectors $x_{1}, \ldots, x_{n-1}, \lambda x_{n-1}-x_{n}$ are linearly independent. So, there is an $a_{3} \in$ A such that $\pi\left(a_{3}\right) x_{i}=0,(i=1, \ldots, n-2)$, and $\pi\left(a_{3}\right)\left(\lambda x_{n-1}-x_{n}\right) \neq 0$. If $\pi\left(a_{3}\right) x_{n-1}=0$ we are done, we thus suppose it is not. If $\pi\left(a_{3}\right) x_{n-1}$ and $\pi\left(a_{3}\right) x_{n}$ are linearly independent, there is an $a_{4} \in A$ such that $\pi\left(a_{4}\right) \pi\left(a_{3}\right) x_{n-1}=0$ and $\pi\left(a_{4}\right) \pi\left(a_{3}\right) x_{n} \neq 0$. Then, $a=a_{4} a_{3}$ does it. So, suppose to the contrary that $\alpha \pi\left(a_{3}\right) x_{n-1}=\pi\left(a_{3}\right) x_{n}$. By assumption, $\lambda \pi\left(a_{3}\right) x_{n-1} \neq \pi\left(a_{3}\right) x_{n}$. So, $\lambda \neq \alpha$. Since $\pi\left(a_{3}\right) x_{n-1} \neq 0$, there is an $a_{5} \in A$ such that $\pi\left(a_{5}\right) \pi\left(a_{3}\right) x_{n-1}=\pi\left(a_{1}\right) x_{n-1}$.

By taking $a=a_{1}-a_{5} a_{3}$, we get $\pi(a) x_{i}=0,(i=1, \ldots, n-1)$, and

$$
\begin{aligned}
\pi(a) x_{n} & =\pi\left(a_{1}\right) x_{n}-\pi\left(a_{5}\right) \pi\left(a_{3}\right) x_{n} \\
& =\lambda \pi\left(a_{1}\right) x_{n-1}-\alpha \pi\left(a_{5} a_{3}\right) x_{n-1} \\
& =(\lambda-\alpha) \pi\left(a_{1}\right) x_{n-1} \\
& \neq 0, \text { as } \lambda-\alpha \neq 0 \text { and } \pi\left(a_{1}\right) x_{n-1} \neq 0 .
\end{aligned}
$$

We next use the sequence of Lemmas we have just established, to prove the Jacobson Density Theorem.

Theorem A. 17 ([2], Theorem 4.2.5). Let A be a Banach algebra. Let π be a continuous irreducible representation of A on a Banach space X. If x_{1}, \ldots, x_{n} are linearly independent in X and if y_{1}, \ldots, y_{n} are in X, then there is $a \in A$ such that

$$
\pi(a) x_{i}=y_{i}, \quad(i=1, \ldots, n)
$$

Proof. By Lemma A.16, there is a $b_{k} \in A$ such that $\pi\left(b_{k}\right) x_{i}=0$ if $i \neq k$ and $\pi\left(b_{k}\right) x_{k} \neq 0$. So there is a $c_{k} \in A$ such that $\pi\left(c_{k}\right) \pi\left(b_{k}\right) x_{k} \neq y_{k}$. We then take

$$
a=c_{1} b_{1}+\ldots+c_{n} b_{n}
$$

and the theorem follows.

Corollary A.18. Let A be a finite dimensional Banach algebra. Let π be a continuous irreducible representation of A on a Banach space X. Then π is onto.

Proof. Let $T \in B(X)$. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for X. By Theorem A.17, there exists an $a \in A$ such that $\pi(a) x_{i}=T x_{i}$ for $i=1, \ldots, n$. Whence $\pi(a)=T$.

Proposition A.19. Let A be a finite dimensional semi-simple Banach algebra over \mathbb{C}. Then

$$
A \cong M_{n_{1}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{m}}(\mathbb{C})
$$

for some integers n_{1}, \ldots, n_{m}.
Proof. We recall that Π denotes the set of all primitive ideals of A. Let $P \in \Pi_{A}$. The algebra A / P has a faithful continuous irreducible representation on a Banach space X over \mathbb{C}. Clearly the dimension of X is finite. By Corollary A.18, A / P is isomorphic to $B(X)$. But $B(X) \cong M_{n_{k}}(\mathbb{C})$ as the dimension of X is finite. Particularly, A / P has a unit element and has no bi-ideals other than $\{0\}$ and A / P. Thus P is maximal.

Since A is finite dimensional and A is semi-simple, there is a finite subset $\left\{P_{1}, \ldots, P_{m}\right\}$ of Π_{A} with $\bigcap_{i=1}^{m} P_{i}=\{0\}$ and we suppose that this set is chosen so that m is as small as possible.

Let $J_{i}=\bigcap_{k \neq i} P_{k}$. Then J_{i} is a non-zero bi-ideal and $P_{i} \bigcap J_{i}=\{0\}$. Since P_{i} is maximal, we have

$$
A=P_{i} \oplus J_{i}
$$

This implies that J_{i} is isomorphic to A / P_{i}. Therefore J_{i} is a minimal biideal of A and has a unit element e_{i}. We prove that

$$
A=J_{1} \oplus \ldots \oplus J_{m}
$$

Let $a \in A$. There exist $j_{1} \in J_{1}$ and $p_{1} \in P_{1}$ such that $a=j_{1}+p_{1}$. Then there exist $j_{2} \in J_{2}$ and $p_{2} \in P_{2}$ such that $p_{1}=j_{2}+p_{2}$. Since $J_{2} \subset P_{1}$, we have $p_{2}=p_{1}-j_{2} \in P_{1}, p_{2} \in P_{1} \bigcap P_{2}$. We next have $p_{2}=j_{3}+p_{3}$ with $j_{3} \in J_{3}$ and $p_{3} \in P_{1} \cap P_{2} \bigcap P_{3}$. Continuing this process, we arrive at $p_{m-1}=j_{m}+p_{m}$ with $j_{m} \in J_{m}$ and $p_{m} \in P_{1} \bigcap \ldots \cap P_{m}=\{0\}$. That is $a=j_{1}+\ldots j_{m}$. That this sum is direct follows from the equation $A=J_{i} \oplus P_{i}$. Since a was arbitrarily chosen from A, we have

$$
A=J_{1} \oplus \ldots \oplus J_{m}
$$

Since each J_{i} is isomorphic to $A / P_{i} \cong M_{n_{i}}(\mathbb{C})$, we conclude that

$$
A \cong M_{n_{1}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{m}}(\mathbb{C})
$$

Remark A.20. If the Banach algebra in Proposition A. 19 is finite dimensinal but not necessarily semi-simple but with a non-empty set of primitive ideals, we have

$$
A=J_{1} \oplus \ldots \oplus J_{m} \oplus \operatorname{Rad}(A)
$$

But $A_{s}=J_{1} \oplus \ldots \oplus J_{m}$, is semi-simple. So

$$
A=A_{s} \oplus \operatorname{Rad}(A)
$$

where A_{s} is a semi-simple algebra. If the set of primitive ideals is empty we have $\operatorname{Rad}(A)=A$, hence we still have the decomposition of A into a direct sum of a semi-simple algebra and its radical, where the semi-simple algebra in this case is just $A_{s}=\{0\}$.

NOTATIONS

Let X, Y be Banach spaces. Let A be a Banach algebra with $B \subset A$. Let Z be a subset of a vector space V.

REFERENCES

[1] Aupetit B., Inessential elements in Banach algebras, Bulletin of the London Math.Soc.18(1986)493-497.
[2] Aupetit B., A primer on Spectral Theory, Springer Verlag, New York, 1991.
[3] Barnes B. A., Murphy G. J., Smyth M. R. F., West T. T., Riesz and Fredholm theory in Banach algebras,Pitman Advanced Publishing Program, Boston, 1982.
[4] Bonsall F. F., Duncan J., Complete normed algebras, Springer-Verlag, New York, 1973.
[5] Caradus S. R., Pfaffenberger W. E., Yood B., Calkin algebras and algebras of operators on Banach spaces, Marcel Dekker Inc., New York, 1974.
[6] Edmunds D. E., Evans W. D., Spectral theory and Differential Operators, Oxford University Press, Oxford, 1987.
[7] Erdos J. A., Giotopoulos S., Lambrou M. S., Rank one elements of Banach algebras, Mathematika 24,178-181.(1977).
[8] Essmann A. M. J., The trace of nuclear elements in Banach algebras (MSc thesis), University of Pretoria, Pretoria, 1987.
[9] Gohberg I. C., Krein M. G., Introduction to the theory of Linear Non-self-adjoint Operators, American Mathematical Society, Providence, 1969.
[10] Heuser H. G., Functional Analysis, John Wiley and Sons., New york, 1982.
[11] Murphy G. J., C^{*}-algebras and operator theory, Academic Press, inc., New York, 1990.
[12] Nylen P., Rodman L., Approximation numbers and Yamamoto's Theorem in Banach Algebras, Integral Equations and Operator theory, Vol. 13 726-749 (1990).
[13] Pietsch A., s- numbers of Operators on Banach spaces, Studia Mathematica, 51:201-223 (1974).
[14] Puhl J., The trace of Finite and Nuclear Elements in Banach Algebras, Czechoslovakia Mathematical journal 28(103) 1978, Praha, (656-667).
[15] Takesaki M., Theory of Operator Alegebras I, Springer-Verlag, New York, 1979.
[16] Yamamoto T., On the extreme values of the Roots of Matrices, Journal of the Mathematical Society of Japan, 19: 175-178 (1967).
[17] Ylinen K., Compact and Finite Dimensional Elements of Normed Algebras, Ann. Acad. Sci. Fenn. AI 428: 7-37 (1968).

Yamamoto type theorems in Banach algebras

by
Manas Majakwane Bapela

Supervisor: Prof A. Ströh
Co-supervisor: Prof J. Swart
Department: Mathematics and Applied Mathematics
Degree: MSc

SUMMARY

The aim of this thesis is to study the asymptotic relation between the approximation numbers and isolated spectral points with finite multiplicity in a general Banach algebra setting.

In 1967 T. Yamamoto was the first to show that such asymptotic results hold for the algebra of n by n matrices with entries in the complex field. About twenty years later Edmunds and Evans found a meaningful extension of Yamamoto's Theorem for bounded operators on a Banach space.

After an extensive study of the notion of finite rank elements, we extend Yamamoto's Theorem to a general Banach algebra setting. Recently, Nylen and Rodman proved a special case of the result by showing that Yamamoto's Theorem holds for Banach algebras with the spectral radius property and conjectured that any Banach algebra possesses this property. In this thesis we prove their conjecture in the affirmative.

Yamamoto type theorems in Banach algebras

deur
Manas Majakwane Bapela

Leier: Prof A. Ströh
Medeleier: Prof J. Swart
Departement: Wiskunde en Toegepaste Wiskunde
Graad: MSc

OPSOMMING

Die doel van hierdie verhandeling is om in ' n Banach-algebra die asimptotiese verbande tussen die approksimasiegetalle en die geisoleerde eiewaardes met eindige multiplisiteit te bestudeer.

Hierdie verbande vir die algebra van n by n-matrikse is in 1967 deur T. Yamamoto bewys en is twintig jaar later deur Edmunds en Evans veralgemeen na operatore op 'n Banach-ruimte.

Nadat ' n volledige studie van elemente met eindige rang in ' n Banachalgebra gemaak word, bewys ons dat Yamamoto se stelling veralgemeen kan word na enige Banach-algebra. Hierdie studie los onder andere 'n oop probleem van Nylen en Rodman, op naamlik dat elke Banach-algebra die spektraal-radius eienskap het.

