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1. INTRODUCTION

In 1967, T. Yamamoto [16], stated and proved an asymptotic relation be-
tween the singular values and eigenvalues of a matrix. As mentioned in [12],
it was C.R. Loesner who rediscovered this result in 1976. The formulation of
this result involving approximation numbers of matrices, see Definition 5.1, sug-
gested an extention of this result to B(X), where X is a Banach space. Nylen
and Rodman [12] proved this relation for Banach algebras satisfying the spec-
tral radius property, see Definition 6.4. They also showed that C*-algebras and
finite dimensional algebras do have the spectral radius property and stated that
B(X), where X is a Banach space, also has the property. In Theorem 6.10 of
this paper we give a complete proof of this property for B(X).

In [12] Nylen and Rodman conjectured that every Banach algebra with a
unit element has the spectral radius property. We prove their conjecture in the
affirmative in Theorem 6.12.

Other interesting results proved are found in Sections 5 and 6 as Lemma 5.2
and Theorem 6.1, both results on some properties of approximation numbers.

Let us state Yamamoto’s Theorem for the algebra of matrices over the
complex field C. Let My (C) denote the set of all k by k matrices over C. Given
a matrix A € M(C), we denote the eigenvalues of A by

a1(A),az(A),...,ax(A),

with the convention that multiple eigenvalues are repeated according to their
multiplicities and indexed so that

lag(4)| < ... < aa(4))].
The singular values of A are denoted by
01(A),...,o0r(A),

where 0;(A) is the non-negative square root of «;(A*A), A* being the adjoint
of A.

Proposition 1.1 ([16], Theorem 1). Let A € My(C). For each 1,
limp _oo(0i(A™)) 7 = |ai(A)). (1.1)

It is worth noting that o,(A4) = || A]|, with ||.|| being the underlying algebra
norm. So (1(A"))% = ||A"||* and |a1(A4)| = r(A), the spectral radius of A.

For i = 1, equation (1.1) is just the spectral radius formula, that is Beurling’s
formula.

Hence, for Proposition 1.1 to make sense in B(X), where X is a Banach
space, the generalization of singular values, namely the notion of approximation
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numbers, had to be introduced. This notion has been widely explored in the
literature, see for instance monographs [6], [9], and [13].

With the notion of approximation numbers, D. E. Edmunds and W. D.
Evans [6] extended Proposition 1.1 to elements of B(X), where X is a Banach
space.

To get a meaningful extension of Proposition 1.1 to the elements of a general
Banach algebra A, we need the notion of rank of elements of A, so as to define
approximation numbers for elements of A.

In Section 2 we introduce the notion of rank in a general Banach algebra
and it turns out that this notion corresponds to the classical notion of rank for
the Banach algebra B(X). This correspondence is shown in Theorem 2.6. We
provide some properties of the rank function which will be needed in the sequel.
In Section 3 we compare the notion of rank defined in this paper, see Definition
2.1, with those appearing in the literature. In Section 4 we introduce the notion
of spectral multiplicity of an isolated spectral point. We prove the main result
of this paper in Sections 5 and 6. At the end of Section 6 we give a proof of the
conjecture of Nylen and Rodman mentioned earlier.

Throughout this paper we assume that the reader is familiar with definitions
and standard results on Banach algebras and C*-algebras. Functionals and
operators are assumed linear and bounded unless otherwise stated.
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2. RANKS OF ELEMENTS IN A BANACH ALGEBRA

Throughout this section, a Banach algebra A is assumed to be over the
complex field € and is also assumed to contain a unit element 1 unless otherwise
stated. We will often write A in place of A1, A € C.

Definition 2.1. An element a € A 1s said to be of rank one if a # 0 and
for every b € A, there is a scalar A € C such that aba = Aa. An element z €
A is said to be of rank n if = can be expressed as a sum of n elements of rank
one but cannot be expressed as a sum of less than n elements of rank one.

We say x € A 1s of finite rank if rank(z) = k, for some non-negative integer
k and then write rank(z) < co.

An element a of A is of infinite rank if it is not of finite rank and we write
rank(a) = oo.

Proposition 2.2 ([12], Proposition 2.2). Let a,b € A. The rank function
has the following properties:

(a) rank(a+b) < rank(a) + rank(b),
(b) if rank(a) = 1, then for every b € A either ab = 0 or rank(ab) = 1.

Moreover rank(ba) = 1 unless ba = 0,
(c) rank(ab) < min{rank(a), rank(b)},

(d) the set Fs defined by Fu = {a € A: rank(a) < oo} i3 a two-sided ideal
i A, and

(e) the subalgebra A(ay,...,as) of A, generated by 1 and a finite number of
finite rank elements ay,...,as of A, is finite dimensional, as a vector space
over C.

Proof. (a) For the case where at least one of a and b is of infinite rank the
result follows trivially. Hence, suppose both rank(a) and rank(b) are finite, that
is rank(a) = n; and rank(b) = ny. So, a = a1 + ... + an,, where rank(a;) = 1,
(1 =1,...,n1). Also b = by + ...+ byp,, where rank(b;) =1, ( = 1,...,n2).
Then a+b = ay + ... +an, + by + ... + by,, from which we deduce that
rank(a + b) < n; + ny = rank(a) + rank(b).

(b) Since rank(a) = 1, for every ¢ € A there is a A € C such that aca =
Aa. Arbitrarily choose d € A and assume ab # 0. Then abdab = (\g)ab, for
some A\g € C. That is (ab)d(ab) = Ag(ab) which shows that rank(ab) = 1. By a

similar argument, it can be shown that rank(ba) = 1 unless ba = 0.

(c) If both rank(a) and rank(b) are infinite we then have nothing to prove.
Suppose rank(a) = n < rank(b). So, ab = (a1 + ... + ap)b with rank(a;) =
1, (# = 1,...,n). That is, ab = a;b+ ... + apb. Thus, from (a) rank(ab)
< rank(a;b) + ... + rank(a,b). By (b) rank(ab) < n = min{rank(a),rank(d)}.

The analogous argument works for the case where rank(b) = n < rank(a).

3
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(d) Let a,b € F4 and d € A. We apply (a) and (¢) to get the following:
rank(aa + b) < rank(aa) + rank(8b) < rank(a) + rank(b), (o, 8 € C). That is,
rank(aa + fb) < co. Hence, Fj4 is a subspace of A.

Also from part (b), rank(db) < min{rank(d),rank(b)} < rank(b) < oo.
Thus, db € F4 and by a similar argument, bd € F4. Whence, F4 is a two-sided
ideal in A.

(e) Since any finite rank element of A is a sum of a finite number of rank
one elements of A, we assume that rank(a;) =1, (z =1,...,s).

The algebra A(ay,as,...,as) consists of all polynomials in 1,ay,az,...,as.
Let ag = 1. Forall 1 <z < s and 0 <k < s it follows that a;ara; = A;xa;.

Thus all powers of finite products of elements of A(ay,az,...,a,) will reduce
to scalar multiples of products of distinct elements from {ao, a;,...,as}.

Hence A(ai,asz,...,as) will be spanned by all possible finite products of
distinct elements from {ay, a1, asz,...,as} which can only be finite in number.

Therefore dim(A(ay, az,...,as)) < oo and the theorem is established.

]

Corollary 2.3 ([12], Corollary 2.3). Every x € A with rank(z) < oo s
algebraic. That 13, there is a non-zero polynomial P(t) such that P(z) = 0. In
particular, the spectrum o4(x) is a finite set.

Proof. The subalgebra A(z), generated by the identity 1 and z is finite
dimensional, which follows from Proposition 2.2 (e). Since z™ € A(z), (n =
1,2,...), the 2™s cannot all be linearly independent over C. This says that
scalars A1,..., A\ exist, not all zero, such that

Agz™ 4+ 4+ Mz™ = 0.

Whence,
P(t) = Apt™ + ...+ Ait™
is the required polynomial for which P(z) = 0.
Lastly, by the Spectral Mapping Theorem, it follows that

o(P(z)) = P(o(z)).

But,
a(P(z)) = o(0)
= {0}.
So, P(a(z)) = {0}. Since P(t) has a finite number of zeros, it follows that o(z)

is a finite set and we are done.
(a]

We next show that if A = B(X), then the rank notion coincides with the
classical notion of finite dimensional range. We will need the following lemma
to prove that.
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Lemma 2.4. Let T € B(X), with X a Banach space and dim(T(X)) =
n < oco. Then, T has a representation of the form

Tr = f1($)y1 + ...+ fn(x)yn’

where {y1,...,yn} and {f1,..., fn} are sets in X and X' respectively.
Proof. There is an independent set {y1,...,yn} in Y, such that

span{y1,...,yn} = T(X).

Then for each z € X,

Te =3, filx)yi- (2.1)

Since this representation is unique the coeflicients f;(z) are clearly seen to define
linear functionals on X.

Since T(X) has a finite dimension, all norms on T'(X) are equivalent, hence
there exists a constant K > 0 such that

Y 1fi@)| < K| fi(x)yil| for any z € X.
=1 i=1
Hence

S 1fi(e)] < K|Tall,
i=1

< K| T[]
This shows that all the f;’s are bounded.

o
The y1,...,Yn in representation (2.1) are chosen to be linearly independent.
We could arrange it so that fq,..., f, are also linearly independent but we will

not need this fact for our purpose.

Remark 2.5. We will use the following notation. If y € X and f € X', X
a Banach space, we define

T=f®yonX

as
Tz := f(z)y.

Then it is clear from Lemma 2.4 that if T € B(X) then dim(7(X)) = 1 if and
only if there exists y € X and f € X' such that

T:f®y.

5
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For the case where X is a Hilbert space, it follows from the Riesz represen-
tation theorem on bounded linear functionals that there exists a unique vector
z € X such that f =<,z > where < .,. > denotes the inner product on X. In
this case we will write T' = z ® y meaning

(2@ y)(z) =<z,z > y.

Note that if T is of rank one, we can always arrange either y or z to be
a unit vector. Then clearly T is a rank one projection on H if and only if
T = z ® z for some unit vector z € H. This follows by using the following
standard properties:-

22 wu')=<uw,z>w®~7,

(2®y)" =y ® 2z, where * denotes the adjoint of an operator,

lz®@yll = ll=llllyll-

D

We next prove a theorem that confirms that if A = B(X), where X is a
Banach space, the rank notion applied to an elment z of A boils down to the
rank of z as an operator, that is, the dimension of the range of z.

Theorem 2.6 ([12], Theorem 2.4). Let A = B(X), where X 1s a Banach
space. Let T € A. Then, rank(T) = n if and only if &im(T(X)) = n.

Proof. By the representation in Lemma 2.4 it is clear that any operator
T € B(X) with dim(T(X)) = n can be written as a sum of n operators each
with one-dimensional range.

Hence it suffices to prove the theorem for n = 1.

Now suppose rank(T') = 1. Since T? = AT for some scalar ), we can assume,
if X\ # 0, by rescaling, that T2 = T. The rescaling can be done by considering
Ty = TX’ if A # 0. So that, T¢ = %:— = % = -:}\: = Tp. Hence either T? = T or
T? = 0.

Case 1: Suppose T? = T. That is, T is a projection. Thus, X is a direct
sum of T-invariant subspaces Xy and X; such that T'a = q, for all a € X; and
Tb =0, for all b € X,.

We now assume dim(X;) > 1. So, there are a1,a2 € X1, which are linearly
independent. Let X, be a direct complement of span{a;} in X;. Clearly a; €
X3. Define S € A by

Sb=0, be Xo d X;

and
Sal =daj.

6
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So,
TSTal = TSa1

= Ta1

= 4aji.

Also,
TST(ZQ = TSG,Q

=T0
= 0.

So, there is no A € € such that TST = AT, which contradicts the assumption
that rank(7') = 1. So, we must have

dim(T(X)) = dim(X,)
=1
= rank(T).

Case 2: Suppose T? = 0. We also carry out the argument by contradiction.
We suppose that dim(T(X)) > 1. Let a3 = Tec; and az = Tcy be linearly
independent for some ¢; and ¢z € X. It then follows from the linearity of T that
c¢1 and ¢, are also linearly independent. Since T? = 0, it follows that

{ar,az,c¢1,c2}
is linearly independent, because
Arar + Az2a2 + Azc1 + Age2 =0

implies that
T(Ar1a1 + Agaz + Azc1 + Aacz) =0,

which implies that

)\1T(11 + )\2Ta2 + )\3TC] + /\4T62 = 0.

Hence

/\1T261 + )\2T262 + /\3T61 + )\4T02 = (.
So,

A3Tcq + MTez = 0, because T? = 0.
That is,

Azay + Agap =0,

which means that

A3 = Aq = 0, because a; and a; are linearly independent.

7
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Since

A1a1 + A2az + Aser + Mgz =0,

it follows that
Arar + Aq2az =0,

Therefore,

A1 = A2 =0, because ajand a; are linearly independent.

We then have
)\1 :)\2:/\3:)\420.

We now let
M = span{aj,az,c1,cz}.

Clearly, M is T-invariant. Restricting T to the subspace M, we can represent
T by the following matrix:

0 0 0O
0 0 0O
T= 1 0 0 0) '
01 00
Consider
0 0 01
0 0 0O
S = 0 00 0) '
0 00O
Clearly
0 0 0 O
0 0 0O
TST = 0 0 0 1
0 0 0O
Thus, there is no scalar A € C such that
TST = \T.

This contradicts the assumption that rank(7) = 1. We therefore have
dim(T(X)) = 1 = rank(T).

For the converse, assume that dim(7(X)) = 1. So, by using Lemma 2.4 it
follows that

Ta =1(a)b, (a € X), ba fixed vector and ¢ fixed in X'. (2.2)

8
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Note that from (2.2) we have

Ta
h =
P(a)’

So, for any S € B(X), we get

(a # 0).

TSb = (Sh)b.
Therefore,
TSTa
= (Sbh)b.
ORI
That is,
TSTa = (Sb)y(a)b.
That is,
Ta
TSTa = _ Sb
@ = S H@H(SH
= (Sb)Ta.
Therefore,
TSTa=1(Sb)Ta, for all a € X.
So,

TST = AT for all S € B(X), where A = ¢(5b).

Whence, rank(T) = 1.
o

Remark 2.7. Let A = M,(C), the algebra of all n by n matrices over C.
The space A, with the usual matrix multiplication, can be viewed as the algebra
B(C™) with multiplication being the composition of operators and the classical
matrix rank of an n by n matrix T is exactly the dimension of T(C"™) which by

Theorem 2.6 equals rank(T).
m]

We now illustrate by an example that if we define another product on the
vector space A = M, (C), the matrix rank differs from our notion of rank.

Example 2.8. Let A = M,(C) with Hadamard multiplication. Then, in
general

rank(z) # ranky (),

where x € A and rankys denotes the matriz rank. Recall that Hadamard mult:-
plication of matrices 1s carried out entrywise.

9
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Let us consider the case where n = 3. Let

1 1 1
zx={0 0 0],
00 0)
and
1 2 3
y=10 0 0].
0 0 O

Note that rankps(z) = 1. But

O O N
O O W

1
zyr = | 0
0

Clearly, there is no scalar A € C such that
Tyr = Az.
This implies that
rank(z) # rankps(z).
o

Example 2.9. Let A = [, the algebra of all bounded sequences of complex
numbers. Multiplication is pointwise. Then « € [ is of rank one if and only if
z has only one non-zero entry. The ideal F4 consists of all sequences with only
a finite number of non-zero entries.

(m]

We now give a natural example of an algebra A # C which illustrates that
if an element is of finite rank, then it must be of rank one. Hence, F4 consists
only of rank one elements and F4 is not equal to all of A.

Definition 2.10. An element z € A such that & = 0 but z*=1 £ 0 for
some k > 2 is said to be a nilpotent element of order k.

Example 2.11. Let A be the algebra generated by the identity matriz I and
the powers of an n by n nilpotent matriz M of order k. Let z € A. So,

T =z,M*+ ...+ MY (2 € ), (2.3)

where s > 0 and z, # 0.

10
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We observe that any non-zero element of A is of the form (2.3). Suppose
rank(z) = 1. Then, for any y € A there is a scalar A such that

TYyr = Az.

Let y be the identity I. So, 22 = Az. for some \ € C.

Clearly, since z is nilpotent, A must be zero. Note that multiplying = by
itself, the smallest exponent is 2s and for the product z? to be zero, the smallest
exponent, 2s, must be at least k. That is,

2s > k,
which implies that s > [£]. Of course, if s > [£] we have, for any y € A that
zyx = 0.

So, rank(z) = 1.
Whence, rank(z) = 1 if and only if s > [£]. Almost the same argument

shows that the finite rank elements of A are exactly the rank one elements.
D

For the rest of this section we concentrate on specific finite dimensional
algebras and show that in this case the notion of rank is determined by the
classical matrix rank. We will consider finite dimensional C*-algebras.

Lemma 2.12. Let A be a finite dimensional C*-algebra. Then A is the
linear span of its projections.

Proof. Since any element in A is a linear combination of self-adjoint
elements and a self-adjoint element generates a commutative C*-algebra, we
may assume, without loss of generality, that A is commutative. Hence, by the
Gelfand-Naimark Theorem, A = C(K), for some compact Hausdorff space K.

Since A is finite dimensional, K must be a finite set. This follows from the
following considerations:-

For k € K, let 7 € C(K) be defined by

(f) = f(k), (f € C(K)).

Then the set {rx : k € K} is linearly independent, for suppose A\;7g, +
.o-+ An7k, = 0. By Urysohn’s Lemma, if we fix i, there is an f € C(K)
such that f(k;) = 1 and f(k;) = 0 for j # :. This implies that A; = 0. Say
K = {ki,...,kn}. The lemma follows by letting p; = x{x;}, where x denotes
the characteristic function.

a]

Definition 2.13. Let A be a C*-algebra. An irreducible representation of
A on a Hilbert space H is a *-homomorphism n of A into B(H) such that the

11
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only subspaces invariant under n(T), for allT € A, are the trivial subspaces {0}
and H.

It is clear from the Gelfand-Naimark-Segal construction pertaining to rep-
resentations of C*-algebras ([15], Theorems 9.18 and 9.22) that irreducible rep-
resentations of C'*-algebras always exist.

Definition 2.14. For a Hilbert space H let K(H) denote the compact oper-
ators on H. A C*-algebra is said to be liminal if for every non-zero irreducible
representation (H , ¢) of A we have

$(A) = K(H).

We prove that every finite dimensional C'*-algebra is liminal. As an overture
to that, we prove the following theorem.

Theorem 2.15 ([11], Theorem 2.4.9). Let A be a C*-algebra acting irre-
ducibly on a Hilbert space H and having non-zero intersection with K(H). Then,
K(H) C A.

Proof. Since A()K(H) is not {0} and the adjoint of any element in
AN K(H) is again in A(K(H), it follows that A() K(H) contains a non-
zero self-adjoint element a. It follows from the Beurling formula for the spectral
radius ([11], Theorem 1.2.7) that r(a) = |la|| > 0. So, o(a) has a non-zero ele-
ment. Let 0 # A € o(a). So, o(a) consists only of isolated eigenvalues, because
a € K(H). Let

1, ifz= X
fz) = {0, if 2 € a(a)\{A}.

Then f € C(o(a)). The Gelfand Naimark theorem implies that the commutative
C*-algebra generated by 1 and a, which we denote by A(1,a), is isomorphic to
C(o(a)). Hence, this isomorphism gives a projection f(a) € A(1,a) C A and we
denote it by px. Let g(z) = z, (2 € a(a)). So,

(9(z) = Mf(z) = 9(2)f(2) — Af(2)
=0.

Therefore,

(9(a) = A)f(a) = 0.

That is,
(a—A)pr =0.

Therefore, py(H) C ker(a — A). Since a € K(H), the restriction of a to the sub-
space ker(a—A\) is also compact. But since this restriction is just A times the iden-
tity element of B(ker(a — A)), the identity element of B(ker(a — \)) is compact,
implying that ker(a — X) is finite dimensional. We thus have dim(px(H)) < oo.
Hence we may choose a non-zero projection p in A of minimal finite dimensional

12
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range. Then pAp is finite dimensional and, by Lemma 2.12, pAp is spanned by
its projections. Since p is of minimal finite dimensional range, the only projec-
tions in pAp are 0 and p. Hence, pAp = Cp. Let 0 # z € p(H) be a unit vector.
Let M = {a(z) : a € A}. Then, M is a closed vector subspace of H invariant for
A and M # {0}, because ¢ = p(z) € M. Since A is irreducible, M = H. So, if
y is an arbitrary element of p(H), then y = lim,—,o an(z), with {an}52, C A.
So, y = lim,— 00 panp(z), because y = p(y) and £ = p(z). Since papp = App
for some A, € C, it follows that y € Cz. So, p(H) = Cz. Therefore, from
Remark 2.5 and the fact that p is a projection, we have that p = z @ . We
now suppose y is an arbitrary unit vector of H. So, there is an a, € A such
that y = Lm0 an(z). Since [ly ®y — an(z) ® an(@)]| < ly — an(@)llyll +
llan(2)|llly — an(z)|| and {an(z)} is bounded, we get

y®y = lim ax(c)® an(z).

That is,
yQy = lim an(z ® z)ay,
n—oo

= lim appa), € A.
n—oo
That is, all rank one projections are in A, which, by ([11], Theorem 2.4.6),

implies that F(H) C A. So, K(H) C A.
o

Lemma 2.16 ([11], Example 5.62). Let A be a finite dimensional C* —
algebra. Then A is liminal.

Proof. Let (H,7) be a non-zero irreducible representation of A. For some
non-zero vector ¢ € H, n(A)z is dense in H. But, 7(A)z is finite dimensional.
So, H = m(A)z is also finite dimensional. We thus have 7(4) C K(H). But

from Theorem 2.15, we have K(H) C w(A). Therefore, 7(A) = K(H). So, A is

limminal.
o

Definition 2.17 We call a C*-algebra A simple if {0} and A are the only
closed ideals in A.

Theorem 2.18 ([11], Remark 6.2.1). If A is a finite dimensional, simple
C*-algebra, then

*
A= M, (C)
for some positive integer n.

Proof. Let (H, ) be as in the proof of Lemma 2.16. Since A is simple and
ker() is a closed ideal in A, we have ker(7) = {0}. It follows that = is faithful.
This says that

= r(A) = K(H).

13
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The last equality follows from Lemma 2.16. So, we have A = B(H), because
dim(H) < oo. If dim(H) = n, then A ~ M, (C), as wanted.

We now prove the structure theorem for finite dimensional C*-algebras.

Proposition 2.19. Let A be a finite dimensional C*-algebra. Then,

A M, (C)&...0 M, (C),

for some integers ny,...,nqy.

Proof. If A is simple, the result follows from Theorem 2.18. We prove the
general result by induction on the dimension n of A. The case n = 1 is obvious.
Suppose the result holds for all dimensions less than n. We may suppose that
A is not simple, and so contains a non-zero proper closed ideal I, and we may
take I to be of minimum dimension. In this case I has no non-trivial ideals, so
I is *-isomorphic to M,,(C) for some integer n;. Hence, I has a unit element
and we denote it by p. So I = Ap and p is in the centre of A. To see this, note
that for any ¢ € A, we have zp € I. Hence, prp = zp. Similarly, for z* one
has pz*p = z*p. This implies that pr = pz*p* = pzp = zp. Also, A(1 —p)isa
C*-subalgebra of A and the map

A— APGB A(l —-p),a = (apa a(l '—p))a

is a *-isomorphism. Since the algebra A(1 — p) has dimension less than n, it is,
by the inductive hypothesis, *-isomorphic to M,,(C)®...® M, _(C) for some
integers ng,...,nm. Thus, A is *-isomorphic to M, (C)& ... ® M, (C).

o

Remark 2.20. The structure theorem for finite dimensional C*-algebras
now enables one to view the rank notion for elements of C*-algebras in terms of
the matrix rank. The structure theorem for Banach algebras is in the appendix
as Proposition A.19. If

A2 My (C)&... 0 M, (C),
for some integers ny,...,n.,, then a € A implies that
a=aV®..0dV®...0d°a...07°,
where a(® is a di by di matrix repeated ry times in the direct sum. Hence,

rank(a) = ryrank(a®M) + ... + rpra.nk(a(”)).

14
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3. COMPARISON OF RANK CONCEPTS

Throughout this section we bear in mind the notion of rank introduced in
Definition 2.1 and compare it with others appearing in the literature.

In the appendix we prove some standard results on semi-simple and semi-
prime Banach algebras which will be needed in this section.

Puhl [14] introduced a notion of rank for semi-prime algebras, see Definition
A.7 in the appendix for the definition of semi-prime algebra. According to Puhl,
an element z of a semi-prime algebra A is of rank one if there is a bounded
linear functional ¥ € A', such that zyz = ¥(y)z, for all y € A, that is, the
wedge operator T, : A — A defined by T,(y) = zyz has one dimensional range.
Clearly, our notion of rank one implies the notion used by Puhl. Since a detailed
study of the comparison of the rank concept in semi-prime algebras appears in
an MSc thesis of Essman [8], we will not continue any further discussion on it.

Ylinen [17] defined an element z of an algebra A to be of finite rank if the
wedge operator T; : A — A defined by T;(y) = zyz has a finite dimensional
range. It turns out that an element of a semi-simple Banach algebra, see Def-
inition A.l in the appendix, is of finite rank in the sense of Ylinen’s definition
if and only if it is of finite rank in the sense of Definition 2.1. By Proposition
A.13 any semi-simple algebra is semi-prime and again the comparison can be
found in an MSc thesis of Essmann [§8]. In Theorem 3.3 we obtain a stronger
comparison by giving exact estimates.

Definition 3.1. We call an element q of an algebra A quasi-nilpotent if the
spectral radius of q i3 zero and we denote the set of all quasi-nilpotent elements

of A by Q(A).

Lemma 3.2. Let A be a Banach algebra and Rad(A) the radical of A. If
Aq C Q(A), then q € Rad(A). Similarly, if ¢A C Q(A), then ¢ € Rad(A).

Proof. Suppose ¢ ¢ Rad(A). Then there is a continuous irreducible rep-
resentation 7 : A — B(X) of A on a linear space X, such that n(gq) # 0.
So, there is an ¢ € X such that m(¢)z # 0. Since, by hypothesis, ¢ € Q(A),
it follows that 7(¢)z and z are linearly independent. By the Jacobson Den-
sity Theorem, Theorem A.17, there is an a € A such that n(a)z = 0 and
n(a)w(g)z = z. That is m(aq)r = z. Hence, o(n(aq)) # {0} and by using
Remark A.5, o(7(aq)) C o(aq). We thus have r(aq) # 0. That is ag ¢ Q(A).
Since o(ag)\{0} = o(ga)\{0}, the second statement will follow from the first.

m)

Theorem 3.3 ([12], Proposition 7.1). Let A be a semi-simple Banach
algebra and let z € A with rank(z) = k < co. Then dim(zAz) < k2.

Proof. We first observe, by Definition 2.1, that zAz is a sum of k? terms
of the form nAm, where n,m € A and rank(n) = rank(m) = 1. Hence, if we
choose elements a,b € A such that rank(a) = rank(b) = 1, it will be sufficient

15
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to show that dim(aAb) < 1. Assume aAb # {0}. So, there is a ¢ € A such that
acb # 0. Since Rad(A) = {0}, we have acb ¢ Rad(A). So, by Lemma 3.2, there
is a d € A such that r(acbd) # 0. Therefore, by the spectral mapping theorem,
we have r((acbd)®) # 0. Whence, (acbd)® # 0. Suppose acbda = 0, then (acbd)’
= 0, which yields a contradiction. Therefore, d satisfies acbda # 0.

We next let f € A and consider functionals A, and Ay on A given by
aza = A(2)a

and
bzb = Ap(2)b.

We then have
acbdafb = X,(cbd)afb,

and
acbdafb = Ap(daf)ach.

Since acbda # 0, it follows that A,(cbd) # 0. Thus

__acbdafb
— Aa(cbd)
_ Mp(daf)ach
 Aa(cbd)

afb

So, dim(aAb) < 1, as wanted.
[m]

Remark 3.4 Suppose A is the semi-simple Banach algebra consisting of all
2 by 2 matrices and let
(1 0
v = (0 1) |

Then rank(z) = 2 and clearly dim(zAz) = dim(A) = 4. Hence, rank(z) <
dim(zAz).

Remark 3.5. If an algebra is not semi-simple, Theorem 3.8 need not hold.
To see this, consider the algebra A of 3 by 3 upper triangular matrices with
entries from lo(IN). The algebra operations of addition and multiplication are
the usual matrix operations and operations within the entries are exactly the
algebra operations of /oo(IN). Let

01 0

z=10 0 1
0 0 O
16
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According to Definition 2.1, rank(z) = 2. But
0 0 y
a:sz{ 0 0 0 :yeloo(lN)}.
0 00

Since lo(N) is infinite dimensional, it follows that dim(zAz) = co. So, Theorem
3.3 does not hold in this algebra.
0

Definition 3.6. An element y € A, A any algebra, 13 said to be single if
zyz = 0 for some z and z € A implies that zy = 0 or yz = 0.

Definition 3.7. An element z € A, A any algebra, i3 said to be compactly
acting if and only if the wedge operator
T,.:A—> A
defined by
Tx(y) = zyz
18 compact.

We next introduce another notion of rank, the primitive-rank, and compare
it with that of Definition 2.1. Prior to introducing this notion, we establish
some facts pertaining to primitive Banach algebras as the primitive-rank notion
makes sense only in primitive Banach algebras.

Lemma 3.8 ([3], page 29). Let A be a primitive Banach algebra. Let z,y €
A with

zAy = {0}.
Then, either z = 0 ory = 0.

Proof. Suppose z # 0 and y # 0 and let ¥ be a faithful irreducible
representation of A on a linear space X. Then there are a,b € X such that

$(x)a # 0 and B(y)b # 0.
¥(Ay)a is a subspace of X which is invariant under each element of 1)(A). Hence,
¥(Ay)a = X.

Therefore there is a sequence z, in A such that

lim ¢(z,y)a =b.

17
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We thus have
lim Y(zzpy)a = Y(z)a

£ 0.

Whence, there exists a z, such that zz,y # 0.
m]

Lemma 3.9 ([7], Lemma 1). Let a be any element of a Banach algebra A.
(¢) If s 1s a single element of A, so are as and sa.

(1) If s acts compactly on A, so do as and sa.

Proof. (i) If s is single and z(as)y = 0 for some z,y € A, then either
zas = 0 or sy = 0. So, either zas = 0 or asy = 0. Thus, as is single. By a
similar argument, sa can be shown to be single and (i) is established.

(i) Since the map

T — asras

is a composition of the maps

T — Ira — sras — asras,

if s acts compactly then so does as. Similarly sa acts compactly and this com-

pletes the proof.
D

Theorem 3.10 ([7], Theorem 4). Let s be a non-zero compactly acting
single element of a semi-simple Banach algebra A. Then, there is an e € Min(A)
such that s = se.

Proof. Since A is assumed semi-simple, using Lemma 3.2, the left ideal
As contains an element b = zs which is not quasi-nilpotent and is of unit norm.
From Lemma 3.9, b is single and acts compactly on A. Let T be the compact
operator on A defined by

Ta = bab.

Since T™b = b2"t! we have the following:

1 1
1T > |[o*" |,
and this shows that 7' is not quasi-nilpotent as b is not quasi-nilpotent. Since T

is compact, it follows that T has a non-zero eigenvalue A and a corresponding
finite dimensional eigenspace Sy. Let 0 # | € S). For any positive integer n,

TIb™ = blp™ ! = \Ib™.

18
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So, we have 16" € S). Since dim(S)) < oo, the set {Ib" : n = 1,2,... } is
linearly dependent and hence, there is a polynomial P(.) of minimal degree such
that [bP(b) = 0. Since b is single, either b = 0 or bP(b) = 0. Let us suppose
P can be factored as a product of non-constant polynomials P = P, P,. Then,
P1(b)bP2(b) = bP(b) = 0 and since b is single, either bP;(b) = 0 or bP,(b) =
0 contradicting the minimality of P. Therefore, P is of degree one and hence,
b(b — a) = 0, for some scalar . Then, e = £ is an idempotent element of A.
From Lemma 3.9, e is single and acts compactly on A. Since the map a + eae is
an identity on eAe, it follows that dim(eAe) < co. Also, if eacebe = eaebe = 0,
then since e is single, either eae = 0 or ebe = 0, showing that eAe is an integral
domain. But eAe being an integral domain and finite dimensional implies that
eAe is a division algebra. So, e is a minimal idempotent, see Definition A.9 in
the appendix. We now let a € A and recall that b = xs. Then,

zs(a — ea) = ae(a — ea)
=0.

Since s is single with zs = ae # 0, we have
(s —se)a=0.

Since A is semi-simple and a is arbitrarily chosen from A, we have s = se as
wanted.
a]

We next prove a theorem that relates compactly acting single elements to
rank one elements of a primitive Banach algebra.

Theorem 3.11 ([12], page 747). Let A be a primitive Banach algebra. An
element 0 # z € A 1s single and compactly acting if and only if rank(z) = 1.

Proof. (=) Suppose 0 # z is single and acts compactly. So, by Theorem
3.10, there is an e € Min(A) such that

r = Ie€.

Therefore, since a minimal idempotent (see Definition A.9), is clearly of rank
one and z # 0, it follows from Proposition 2.2 (b) that

rank(z) = 1, because z # 0.
(<) Suppose rank(z) = 1. So, z is compactly acting. Thus, we should only
show that z is single. Suppose are a,b € A such that az # 0 and zb # 0. We
show that azb # 0. By the contraposition of Lemma 3.8,

azyzb # 0 for somey € A . (3.1)

19
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We have azyxb = alxb, for some A € C, because rank(z) = 1. Of course A # 0,

otherwise we would have
aryzh = alzb

=0,
which would then contradict (3.1). So, we have

azyxh

A

azh =
# 0.

Thus, z is single as wanted.

We will need the following facts to introduce the notion of primitive-rank
for elements of a primitive Banach algebra A. We assume that A contains single
compactly acting elements. Hence, from Theorem 3.10, A possesses minimal
idempotents.

Lemma 3.12 ([3], Lemma F.2.1). Let A be a primitive algebra and let e, f
€ Min(A) and R be a right ideal of A. Then,

(i) there exist u, v € A such that f = uev;

(vt) dim(eAf) = 1;

(iz) dim(Re) = dim(Rf).

Proof. (i) From Lemma 3.8 we have eAf # {0}. Let v be a non-zero
element of eAf. Since Af is a minimal left ideal, we have Af = Av, and so
f = uv for some u € A. Also, v = ev, hence f = uev.

(i1) From (i), since R is a right ideal, we have eAf = eAuev C eAev = Cev.
Whence, (ii) follows.

(ii1) From (i) we have Rf = Ruev C Rev. So if dim(Re) < oo, so is
dim(Rev) and dim(Rf) < dim(Rev) < dim(Re). Similarly, if dim(Rf) < oo,
then dim(Re) < dim(Rf). Also, if Rf is infinite dimensional so is Rev and

therefore, so is Re and the analogous argument gives the converse.
a]

Theorem 3.13. Let A be a primitive Banach algebra. If e € Min(A),

then,
m: A — B(Ae)

ar— m(a)

defined by
m(a)r = az, (z € Ae)

20
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i3 a continuous, faithful, irreducible representation of A on Ae.

Proof. Since n(a) is in B(Ae), we have

lIm(a)ll = S l[w(a)(ze)ll

zell=

= sup |laze|
lzell=1

< lall.

So, 7 is norm reducing and so it is continuous.

Since, from Lemma 3.8, zAe = {0} implies that z = 0, 7 is faithful. Lastly,
if B is a subspace of Ae which is invariant under n(z), for each z € A, it follows
that B is a left ideal of A. It follows from Lemma A.11 that either B = {0} or
B = Ae, because Ae is a minimal ideal. So, 7 is irreducible.

o

Remark 3.14. With 7 as in Theorem 3.13 above, we observe that n(z) =
zAe. It follows from Lemma 3.12 (iii) that the rank of the operator n(z) € B(Ae)
is independent of the particular choice of e € Min(A). Thus, the rank notion
we introduce in the next definition is well defined.

D

Definition 3.15. Let A be a primitive Banach algebra such that Min(A) is
non-empty. Let ¢ € A, e € Min(A). Let 7 : A — Ae be a continuous, faithful,
irreducible representation of A on Ae. We define the primitive-rank(z) to be the
rank of mw(z). We denote it by

primitive — rank(z).

Proposition 3.16. Let A be a primitive Banach algebra. Let ¢ € A. Then
T has a rank one image under some continuous faithful representation if and
only if x 1s single and compactly acting.

Proof. (<) Let s be any non-zero compactly acting single element of A.
From Theorem 3.10, there exists eg € Min(A) such that s = seg. Let s be any
non-zero compactly acting single element of A. Then from Theorem 3.13, the
representation m of A on Aey is faithful, continuous, and irreducible.

We should show that rank(w(s)) = 1. But,
7(3)(Ae) = sAe.

So,
rank(7(s)) = dim(sAe).

21
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Since
sAeg C egAeg,

and from the proof of Theorem 3.10, egAeg has been shown to be a division
algebra, by the Gelfand-Mazur Theorem,

dim(eg Aeo ) =1.

But,
SAC() g eoAC().
Therefore,
dim(sAeg) < dim(egAeg) = 1.
That is,

rank(w(s)) = dim(sAe) <1.

But, 7(s) # 0. Therefore, rank(n(s)) = 1. Recall from Theorem 2.6 that in
B(Ae) the rank notion coincides with the dimension of the range.

(<) For the converse, suppose rank(n(s)) = 1, for some s € A. So,
{m(s)m(a)n(s) : a € A} = {m(sas) : a € A}

has dimension at most one. So, dim(sAs) < 1, by faithfulness of . So, s acts
compactly. Also, an operator of rank one is single, for if T € B(X) is of rank
one, from Lemma 2.4, T = (f ® y), for some y € X and some f € X'. So
RTSz = 0 for all z € X will imply that ((f0S)® Ry)z = 0 for all z € X where
f oS denotes the composition of f with S. This will imply that either foS =0
or Ry = 0. Which will mean that either f@ Ry = 0or foS®y = 0. But
RT=f®Ryand TS = foS ®y. So we will have either RTT =0or TS =0
which will mean that T is single as claimed. Now if asb = 0, for some elements
a,b € A, then
n(a)m(s)m(b) = m(asb) = 0.

So, either m(as) = 0 or 7(sb) = 0, which implies that as = 0 or sb = 0, because
7 is faithful. Whence, s is single.
o

We are now ready to state and prove the fact that primitive-rank as in Defi-
nition 3.15 coincides exactly with the rank concept introduced in Definition 2.1.

Theorem 3.17. Let A be a primitive Banach algebra and ¢ € A. If
rank(z) < oo or primitive — rank(z) < oo, then

rank(z) = primitive — rank(z).
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Proof. Suppose rank(z) = 1. By Theorem 3.11, the single compactly
acting elements of A are exactly the rank one elements of A. So by Proposition
3.16, z has a rank one image in B(Ae), (e € Min(A)). Thus,

rank(z) = primitive — rank(z).

Conversely, suppose primitive — rank(z) = 1. Again, by Proposition 3.16, z is
single and compactly acting. By Theorem 3.11, rank(z) = 1. Therefore,

primitive — rank(z) = rank(z).
Suppose rank(z) = k. That is,
z=2z1+...+zk, withrank(z;) =1, (¢ =1,...,k).

This implies that
m(z) = m(z1) + ... + m(ak),
where 7 : A — B(Ae) is defined as before by m(z)be = zbe. Therefore,

rank(n(z)) < rank(w(z1)) + ... + rank(n(zx))
< k,because rank(m(z;)) = 1 by the first part of the proof.

Therefore, primitive — rank(z) < k = rank(z).

Suppose now that primitive — rank(z) = k. Let aje,...,are be the basis
elements of range of 7(z). By the Jacobson density theorem, Theorem A.9,
there are by,...,bx € A such that

biaje = aje, (¢ = j),

and
b;aje = 0, otherwise.

So,
n(x) = m(by)w(z) + ... + m(bx)w(z), with primitive — rank(b;z) = 1.
By the faithfulness of the representation of A on Ae, z = byjz + ... +brz. There-

fore rank(z) < k = primitive — rank(z). Whence, rank(z) = primitive — rank(z).
D
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4. FUNCTIONAL CALCULUS AND MULTIPLICITIES OF
SPECTRAL POINTS

Throughout this section, a Banach algebra A is assumed to have a unit
element 1 unless otherwise stated. We use the notion of rank as in Definition
2.1 to introduce the concept of spectral points with finite multiplicity. Since
the notion of multiplicity we introduce relies heavily on the analytic functional
calculus, we include it in this section. In fact the functional calculus we establish
can be found in [10].

To establish the functional calculus we will make use of the following two
formulas.

Let a € A and o(a) denote the spectrum of a. For A € p(a) := C\o(a) with
|A] > r(z) we have

- = a"
ra:i=(A—a) ! =Z—/\n+1.
n=0

(4.1)
For A, pu € p(a) it follows that

rA— T =(p—A)rary

(4.2)
The above equations are well-known in spectral theory and can be found in

[10].

Proposition 4.1. Let 3 o0 apnA™ be a power series with the radius of
convergence v. Let A be a Banach algebra and let £ € A with the spectral radius
r(z). Then the series 3 oo, ana™ converges if r(z) < r and diverges if r(z) > r.

n=0

Proof. Suppose r(z) < r. The case where r(z) > r will follow exactly the
same. In fact we show that } oo  a,z" is absolutely convergent by using the
root test and the spectral radius formula.

lim sup ||an:c"||71" < limsup |an[% lim sup ”x”i
n—oo n—oo n—o00

= 2r(z)

<L
o]

Let A be a Banach algebra and let f be a complex valued function which is
analytic for |A| < r. That is, for [A\| < r we have f(A) =Y o2 jaxA". Ifz € A
with r(z) < r then we define

f(z) = Z apz™.
n=0
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If T is an oriented, closed, rectifiable curve in C then T is said to be an
integration path. If
f:IT-X

where X denotes a Banach space, we define a path integral to be

| 5000

as the limit of the Riemann sums (taken in the usual sense)

3 FOR) Ak = Ak-1)-

The existence of this integral is verified as in the complex function theory.
For instance, if f is continuous on T, then [. f(A)d\ exists. From the above
definition the following properties follow:

(a) Jpaf(N)dX = a i f(A)dA,;

(b) Jo(f(X) +9(N)dX = fr F(N)dA + fr g(V)dA;

(e) Il Jp fF(N)dA|| < maxaer [|f(X)]|(length of T);

(d) ='(fp fF(A)dX) = [L2'(f(X))dA for every z' € X'; and
(e) T [ f(N)dX = [ Tf(X)d for every T € B(X).

Definition 4.2. Let A C C be any region, that 13, a connected set in a
complezx plane. We say a function

FiA—A
is differentiable at a point A\g € A if there s f'(Ag) € A such that

F) = fo)

IE5 =42 - 00l -0

as A — Ao and we call f'(Ao) the derivative of f at A\g. We say f is differentiable
in Q C A if fis differentiable at every A € Q.

Proposition 4.3 (Cauchy’s Integral Theorem.) Let X be a Banach space,
and let A be a non-empty open subset of C. If f : A — A 13 differentiable in
the region A and if T'1,Ty are two integration paths each with the same initial
and final points which can be deformed into each other continuously in A, then

/r SO = /r SO

In particular,

Lf@ﬂA=m
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if ' is a closed curve whose interior contains only points on A.

Proof. Let ' € X'. Then

#(f soan = [ (7o
= / z'(f(A))d)\, by Cauchy’s Integral Theorem for

2

complex valued analytic functions,
-y / FOVN).
r,

The result follows as ' was arbitrarily chosen from X'.
o

Proposition 4.4. Let A be a Banach algebra. If the complez valued func-
tion fis analytic for |\| <r and if z € A with r(z) < r, then the equation

1
= — A
1) = 37 [ FOrax
is valid, where I i3 a positively oriented circle whose radius lies strictly between

r(z) and r and ry = (A — z)7! is the resolvent of z. Of course the integral on
the right makes sense as ry is continuous on I.

Proof. Since f is analytic for |A| < r, we can write
FOY =" ani™,
n=0

So,
1 1 > n
5 /r FN)radr = 5 /r ((;an))\ radA

= Zani,//\"md/\.
= 2m Jp

Interchanging the sum and the integral is justified by the fact that the radius of
I' is less than r, that is the sum ) ../ a,A™. converges uniformly on I'. From

equation (4.1) we have that
et k
T
=) s
k=0

for A € I'. Since the series in (4.1) converges uniformly on I', using the integral

formula below
1 _f2m, ifk=1
r AF 10, otherwise,
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and integrating termwise, it follows that.
27” | Atradd = 5 / A"(Z 3F +1)d,\

oo / k
E —dA\

k n
i \k+1—
.’E

Thus,

n]

For z € A, let H(z) = {f : A(f) — C such that o(z) C A(f), and A(f) is

an open set on which f is analytic.}

Definition 4.5. A region B C C is said to be admissible with respect to
z€Aif

(a) o(z) € B;

(b) B i3 open and bounded,

(c) the boundary, OB, of B consists of finitely many closed rectifiable Jordan
curves, Ci,...,Cr, which are all pairwise disjoint,

(d) the orientation of OB i3 given by the orientation of each C; where the
orientation of each C; 1s described as in the complex function theory.

If f € H(z), then there is an admissible region B with
o(x) S BS B C A,

If B' is another admissible region then, since A — ry is by standard spectral
theory holomorphic on p(z), by Cauchy’s Integral Theorem, Proposition 4.3, we

have
/ f(/\)r)\d)\ = / f()\)r)\d/\.
8B 8B’

We now define f(z), for all f € H(z). Let B be an admissible region with
o(z) € B C B C A(f). Then

f(z) = 5}5 /a O

27

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



We define the following operations on H(z):
(af)(A) := af(A) for all A € A(f);

(f +9)(A) == f(A) + g(}); and

(F9)(A) := f(A)g(A) for all A € A(F)( A(9)-

These operations are well-defined and make H(z) into an algebra. The
following theorem serves as the foundation for an analytic functional calculus:

Theorem 4.6. The mapping ¢ : H(z) — A defined by ¢ : f — f(z) has
the following properties:

(a) (af)(z) = af(z);

(b) (f + 9)(=) = f(=) + g(=);

(c) (f9)(z) = f(z)g(z), hence f(z) commutes with g(z). In particular,

f(z) commutes with z;

(d) for f(A) = A", we have f(z) =z, (n=0,1,2,...);

(e) if f(X) #0 for all X € o(z), then f(z) has an inverse f(z)~! = (%)(:1:)

Proof. Clearly, (a) and (b) follow from the properties of the integral. From
the proof of Proposition 4.4 we have

1
— [ A"rad) = 2"
27t Jp

Hence (d) follows.
For the proof of (c), let By and B, be admissible regions of f and g respec-
tively with

B; C B, C B, CA(f)[ ) Alg).

So,

f@a@) =GP [ =07 [ gl - o)

— L2 —-:1:_1 —m_l
-G [ . / ,, 90 =) =)

27

1 -1 -1 -1
e /aB! /aBa FVI) = 2= 2)™ = (4 = 2) ™ )dpdd,

27

= (

which follows from equation (4.2).
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Therefore,
$0@) = G [ [ 0080 =27 s = )
- () / / FNg() (k- 2)" (1 = 2) dpsd
=G [, f0 =27 A Esamas
() / o) — ) / Iy

= (57" / FO)(u — ) (@ri)g(N)dA + 0,

which follows from Cauchy’s Integral Theorem, Proposition 4.3. Thus,
1 -
f@9(@) = 57 [ FNINAA- ) = (Fo))
e 3BI
Part (e) follows from (c) , (d) and the equation

( f})(,\) —1for A € A(f).

We next proof the Spectral Mapping Theorem which will be needed often
in this thesis.

Theorem 4.7 ([10], Proposition 47.1.) Let A be a Banach algebra with a
unit element 1 and let x € A. For every f € H(z), we have o(f(z)) = f(o(z)).

Proof. Let p € o(f(x)). Suppose p ¢ f(o(x)), that is p — f(A) for all
A € o(z). Then p — f(z) is, by Theorem 4.6(e), invertible. We thus have a
contradiction as p is assumed to be in the spectrum of f(z). So, o(f(z)) C

f(o(2)).
For the converse, we suppose that y € f(o(z)). That is p = f(w) for some
w € o(z). We define a function g on A(f) by

o) = TNTI@) o v su, )= Fo)

Clearly, g lies in H(z). Since

9w = A) = f(w) = F(N),

29

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



it follows, with the aid of Theorem 4.6(c), that
9(e)(w —z) = f(w) = f(z) = - f(2).
Suppose p € p(f(z)), then

(1= £(2)) " g(@))(w — &) = (w = 2)((k — £(2)) 9(2)) = 1.

It follows from the above equation that w — z is invertible which cannot be
the case because w lies in o(z). So, u ¢ p(f(z)) as supposed. We thus have
f(o(z)) C o(f(z)). Therefore

a(f(z)) = f(o(z)).

O

We will need to establish some background material in order to define spec-
tral projections in a Banach algebra A.

Definition 4.8. Let A be a Banach algebra and let ¢ € A. A subset o of
o(z) is called a spectral set of ¢ if o and o(z)\o are closed. We call o(z)\o the
spectral set complementary to o.

If oy and 0, are complementary spectral sets of z, and if A; and A, are
open disjoint sets that cover o, and oy respectively, then we define on A :=

Ay | A, the functions f; and f; by

_f1, ifren
ﬁ“"{m if A€ A,

Cf1, ifreA
ﬁ”)—{m if A € Ar.

Clearly f1, f» € H(z). Define
p1:= fi(z) and p; := fa(z).

We have p? = fi(z)fi1(z) = fi(z) = p1 and, analogously, we have p2 = p,.
Since fi fo = 0, it follows from Theorem 4.6 (c) that p;p2 = 0. This establishes
the following proposition:

Proposition 4.9. Let A be a Banach algebra, and let o1 and o2 be com-
plementary spectral sets of x € A. IfT'1,T; are simple, closed integration paths
oriented counter-clockwise which lie in p(z) and contain o1 and o in their inte-
rior respectively but no other parts of the spectrum, o(z), of x, then the elements

27m/(,\—x) Yy, (1=1,2)
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lie in A, p? = p; and p1p; = 0. It is permitted that one of the spectral sets be
empty.
a

Definition 4.10. Let A be a Banach algebra with a unit. Let z € A. A
point A € o4(z) will be called a spectral point with finite multiplicity if A is an
isolated point in o4(z) and the spectral projection

-1
2m/(z—x) dz,

i3 of finite rank, where I' C p(z) is a closed simple contour, with X being the
only spectral point of z in I'. The rank of e will be called the multiplicity of M.

Proposition 4.11 ([12], Proposition 3.2). Let A be a Banach algebra with
a unit element 1 and let a € A. Suppose that oq,...,0k are disjoint, closed and
non-empty subsets of o(a) such that o(a)\o; is also closed, (i =1,...,k). Let T
be a simple rectifiable curve enclosing o; but not o, (i # j) and ;[ o(a) = 0.

Define e; by
-1
- d
€; 27”/ (z —a) dz.
Then,

(a) ei 1s independent of the choice of Ty, provided T'; satisfies the stated
criteria, (1 =1,...,k),

(b) e; 1s an idempotent and eje; =0, (¢ £ j),

(c) the sum e; + ...+ ex is an idempotent,

(d) the spectrum oa(ae;) = o; U {0} and the spectrum o; ac;(ae;) = o;,
(i=1,...,k),
(e) if, in addition, o4(a) =01 U... U0y, then

l=e1+...+ €.

Proof. (a) Follows directly from Proposition 4.3.
(b) Follows from Proposition 4.9.
(c) From part (a) and part(b),

(e14...+e)=e+...+ef+ > eie;
i}
=61+...+6k+0.
Therefore, e; + ...+ e is an idempotent.
(d) Let
f(2) = 2, (z € o(a))
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and let
1, if z € 0y
0, otherwise.

gi(z) = {

By functional calculus,

a= f(a),
e; = g,(a).
Consider 2. z € o
hz) = f(2)9:(2) = {5 osnerwise.
So,

ae; = h(a)
= f(a)gi(a).
Whence, o 4(ae;) = o; U {0}, by the Spectral Mapping Theorem.
We show that o, 4¢;(ae;) = oi. Suppose A ¢ o;. Let

_J1, ifze€oy
fi(2) = {0, otherwise,

fi(z : ..
0i(2) = { 5L, ifzeoy

0, otherwise.

Then ¢g; € H(a) and from the functional calculus,
(A = a)gi(a) = ei,

and
eig(a) = g(a)ei = g(a).

Thus
(/\6,' - ae,-)g(a)eg = €;

from which it follows that A € pe; 4e;(ae;). Hence
Oe; Ae;(aei) C 0.

Now the following argument will finish the proof.
Suppose A € ﬂf=1pe.. Ae;(aei), then by an easy compution we have

A=—a) = (her —aer) ey + ...+ (Nex —aer) ex.

Hence
A€ p(a)=(o01U...Uay)".

That is,
o1 U...Uok C ey de,(ae1)U...Uoe, g, (aek).
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Since o; are mutually disjoint, it follows that

0i C Oc; Ac;(a€i).
Whence,

Oc; Ae; (0€;) = 0;.

(e) Let T" be a closed contour arround o(a). So,

-1
2m/(z—a) dz.
But

-1 1 1 -1
2m/(z—a) dz-- /(z—a) dz+...+ 57 (z-—a) dz. Thus
l=e1+... + 6.
o

We are now going to look into the algebra pAp, where p is a non-trivial
idempotent. We think of pAp not as a subalgebra of A, but as an algebra
equipped with p as its unit element and ||.||5, to be defined below, as its, norm
equivalent to ||.||. The formula for the alleged norm is as follows:

|pap||, = sup{||(pap)(pzp)| : = € A, ||pzp| = 1}.

Theorem 4.12 ([12], page 734). Let A be a Banach algebra with a unit
element 1. Then,

(e) ||.ll, 2 @ norm on pAp,
(8) llpapll-lpll=* < llpapll, < lIpapl|,
(e) lIpll = 1,

(4) |I(pap)(pbp)ll, < llpapll,ipbpll5,
(e) pAp is a norm-closed subset of A.

Proof. (a) Suppose pap = 0. Then, ||pap||, is clearly 0. For the converse
of this, if pap # 0, let z = WI’;T' Then ||pzp|| = 1 and since ||.|| is a norm on A,

we have

|| (pap)(pzp)|| # 0.

So ||papll, # 0.
That ||pap||, > 0, follows from the fact that

lI(pap)(pzp)l| 2 0 (z € A).

In what follows we will often use the fact that ||.|| is an algebra norm on A.
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Let ¢ € C. So,

llc(pap)ll, = sup{llc(pap)(pzp)|| : = € A, ||pzp|| = 1}
= |¢|sup{||(pap)(pzp)|| : = € A, ||lpzp|| = 1}
= |c||lpapl|,-

For the triangle inequality, we note the following;:
lpap + pbpl|, = sup{||(pap + pbp)(pzp)|| : = € A,||pzp|| = 1}
= sup{||(pap)(pzp) + (pbp)(pzp)|| : = € 4, ||pzp|| = 1}
< sup{||(pap)(pzp)| : = € A, ||pzp|| = 1}

+ sup{||(pbp)(pzp)|| : € A, ||pzp|| = 1}
= ||papll, + l|lpbpl|p-

Whence, ||.||, is a norm of pAp and part (a) is established.

(b) From the definition of ||.||,, we have

llpap||, = sup{||(pap)(pzp)| : € A, ||pzp| =1}
< sup{||pap|||lpzpl|| : = € A, ||pzp|| =1}
= ||pap||.

That is,
lpapllp < ||pap]|-

We only need to show that

Ipapllllpll =" < llpapll,-

Since p
Il =1,
we have
llpapll, > !I(pap)(“i)u
Pl
_ llpapl|
el
That is,

Ipapllllpll ™" < llpapll,-

Hence we have
llpap|llpll =" < llpapll, < llpapl.
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(c) From the definition of ||.||,, we have

llpll, = sup{||(ppp)(pzp)| : = € A, ||pzp| = 1}
= sup{||pzp|| : ¢ € A, ||pzp| =1}
=1.

(d) Consider
Lpap € B(pAp),

defined by
Lypap(pbp) = (pap)(pbp), (b € A).
Note that
”Lpap” = sup ||Lpap(pzp)|l
llpzpll=1
= sup{||(pap)(pzp)) : = € A, ||pep| =1}
= |lpap|lp-
But,
| LpapLypspll < ”Lpap””Lpbp”-
Therefore,

l|(pap)(pbp)llp < llpap|sllpbpllp-
(e) Remember that pAp = {a € A : pap = a}. Now, observe that

pznp — z implies that pz,p? — pp.
This follows from the fact that

P2zap? = p(pznp)p.

So,
PZnp — PZTP.
Therefore,
pTp = .
Whence,
z € pAp.

Therefore, pAp is indeed a norm closed subset of A.
]

Proposition 4.13 ([12], Proposition 3.3). Let A be a Banach algebra. Let
a € A be an idempotent of rank n. Then, there are elements ay,...,an € A such
that

a=ay+...+ ap, (4.3)
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where rank(a;) = 1,1 = 1, ... ,n and ay,...,a, are mutually orthogonal idem-
potents. Conversely, if (4.3) holds for mutually orthogonal rank one idempotents
a1,...,Qn, then a is a rank n idempotent.

Proof. Let a € A be an idempotent with rank(a) = n. So,
a=z14 ...+ T4,

where z; € A and rank(z;) =1, (¢ =1,...,n). Let

b; = azia, (1 =1,...,n).
Then,
bi+...+bp=a(z1 +... +zp)a.
That is,
by + ...+ b, = a, because a is an idempotent.
Also,

rank(b;) = rank(az;a), (: =1,...,n),
<rank(z;), (¢(=1,...,n),
=1.

Also, rank(b;) # 0, for, rank(b;) = 0 for some ¢ will contradict rank(a) = n.
Therefore, rank(b;) = 1, (: = 1,...,n). We next consider B, the algebra gener-
ated by {b1,...,b,}. Note that

b; = az;a implies that ab; = a®z;a = b;,

and
bia = aza® = b;.

It follows that a is the identity for the algebra B. Suppose (a — b;) is invertible
in B. Then, there is an z € B such that

(a — b))z = z(a —b;)
= a.
Clearly, z € A as well. So,

n = rank(a)
= rank((a — b;)z)
< rank(a — b;)
<rank(b;)+ ...+ rank(b;—1) + rank(bi4+1) + ... + rank(b,)

=n — 1, which yields a contradiction.
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Thus, a — b; is not invertible in B. That is, 1 € og(b;).
Since rank(b;) = 1, (: = 1,...,n), it follows that

b? = A;b;, for some A; € C.

Note that this formula holds in B as well. Now consider the polynomial

P(t) = t* — \it.
We thus have
P(b;) =0.
So,
{0} = o(P(b:)) = P(o(bi)),
that is,

P(a(bi)) = {0}
Since 1 € op(b;), it follows that P(1) = 0. But,

P(1) = (1-A).

Therefore, 1 — A = 0 which implies that A = 1. So, we have b? = b; and b; is an
idempotent, (z = 1,...,n). We complete the proof by induction. The statement
for n = 2,3,... to be proven is P, as follows: Suppose a € A is of rank n and
a? = a. If there exists by,...,b, such that b? = b;, rank(d;) = 1, ab; = b;a = b;
forall: =1,...,n and a = b; + ... + by, then there exists a;,...,a, enjoying
all of the above properties listed for b;,...,b, and the additional property that
aja; = 0 when ¢ # j.
For P,. Given a = b; + b, with the hypothesis of Py, we have

bl = bf
= bl(a - b2)
= bla - b1b2.
Therefore,
blbg = bl - bla

=0, because bja = b;.

Now suppose P, is true for n < k. Suppose now that rank(a) = k and b,,..., bk
satisfy the hypotheses of Pi. Now let

a' =b2 +b3+...+bk.
Therefore,
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a'=a—b1.

(4.4)

Note that
(a')* = (a = by)’
= a—abl -—bla+bf
=a-bh-h+bh
=ad.
So, @' is an idempotent. Define b} = a'b;a' for i = 2,...,k and let z € A. We
then have,
b;zb; = (a'b;a')z(a'b;a’), following from the definition of b,
= a'(b,-(a'a:a')b,-)a'.

Therefore,

bjzb; = a'Ab;a’, because rank(h;) =1, (i = 2,3,...,k),
= \a'b;a’

= \b;, following from the definition of b;.

Therefore,
rank(b)) =1, (:=2,3,...,k).
Also,
a'b; = a'a'b;a’

= a'b;a’

= a'b;a'd’

=bla' =¥
with

a' =by+...+b).

By the induction hypothesis, there are rank one elements as,...,axr such that

a? = a;,
"
a;a' =d'a; = a;,
a =ay+...+ax, and
aia; =0, (1# 7).
We define
a; = bl.
So that,
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d=a-a. (4.5)

So,

a=ada +a
=(az+...+ar)+a;.

Thus, we only need to show that a1a; = aja; =0, (¢ # 1). Since a;a' = d'a; = ai,
by the inductive hypothesis, we have

aja; = a; a'a,'
= a;(a — ay)a;, which follows from equation (4.4),
= (a1a — a?)aq;

= (a1 — a1)ai, by hypothesis,

=0.
Similarly, a;a; = 0.
Conversely, Suppose ay,...,a, are mutually orthogonal rank one idempo-
tents, with

a=a;+...+an,.

We want to show that rank(a) = n and that a is an idempotent. That a is an
idempotent, is easy to see, for,

a2=(a1+...+an)2

=a'f+...+a,21+Za,-aj
]
=a; + ...+ a, + 0, 0 emanating from mutual orthogonality of the a;'s,

= a.
For the rest of this proof we establish that rank(a) = n. Clearly,

rank(a) < rank(a;)+ ...+ rank(a,)

=n.
Suppose rank(a) < n. It will then follow that
a=b +...+ b,k <n, withrank(d;) =1, (:=1,...,k).
Let S be a finite dimensional Banach algebra generated by
{1,a1,...,an,b1,...,b%.}

39

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



From Remark A.20 we see that S is a direct sum of its radical, Rad(S) and a
semi-simple Banach algebra A,. That is,

S = Rad(S) & A,.
We thus have
a; = air ® ais, (air € Rad(S) ,ais € 4,), i =1,...,n).
and
b; = b;r & b;s, (b,',- € Rad(S') ,b,'_, € A_,), (Z =1,... ,n).
We claim that
als,...,ans

are mutually orthogonal idempotents, for, a? = a; implies, by using the fact
that Rad(S) is an ideal and the uniqueness of the direct sum decomposition,
that a,?s = ajs. So, ays,...,0,s are idempotents.

For mutual orthogonality we use exactly the same argument. So, ai,a;, =
0. Note that a;s # 0, otherwise a; = a;r and that will mean, by Remark A.4,
that r(air) = 0, because a;r € Rad(S). Since a;, is an idempotent, this will
mean that a;r = 0.

That rank(ais) = 1, is just a routine check.

Let b1s,...,bqs, (¢ < k) be non-zero elements among the by, ..., bxs. Sim-
ilarly, rank(bj,) =1, (j = 1,...,q) as elements of A,.

Lastly, we also have

a; =a15+ ...+ aps

4.6
=b13+...+bq3. ( )

This is motivated by the fact that
a=bi+...+by=(bir+...+bgr)® (brs+ ...+ bys),

and
a=(a1r+...+anr)® (015 + ... + ans)-

Since A, is a finite dimensional semi-simple algebra,

4, =a0®...0d00...0d0 .. .0dD,

where ag-lj) is a di by dr matrix repeated rp times in the direct sum. Hence,

Remark 2.20 gives
rank(a;,) = rirank(al)) + ... + rprank(al?).
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Since aj,’s are rank one mutually orthogonal matrices, it follows that

n

rank(a,) = Zrank(ajs) =n.

=1

Thus, we have contradicted the assumption that ¢ < k < n and equation (4.6).
Therefore, rank(a) = n as required and this completes the proof of the theorem.
o

Corollary 4.14. Let ay,...,a, be mutually orthogonal idempotents in A
of finite ranks. Then,

rank(a; + ...+ a,) = rank(ay) + ... + rank(a,).

Proof. Using Proposition 4.13, we can write each a; as a sum of rank one
mutually orthogonal idempotents a;;’s. Equation (4.5) of Proposition 4.13 tells
us that rank(a; + ...+ a,) = rank(a;) + ... + rank(a,).

o
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5. THE SPECTRAL POINT SEQUENCE, APPROXIMATION
NUMBERS AND THEIR PROPERTIES

Throughout this section A denotes a Banach algebra endowed with a unit
element 1 unless otherwise stated.

To generalise Yamamoto’s Theorem to a general Banach algebra setting,
we need to make an extensive study of the properties that the spectrum of an
element in a Banach algebra possesses regarding the finite multiplicity property
points. We now introduce the notion of a spectral point sequence.

Let z € A. Let r(z) be the spectral radius of z. Consider the following set:

S1={z:|z| =r(z)} N o(x). (5.1)

If the set S; is comprised of only finite multiplicity spectral points of z, we then
set

pi(z) = r(z), (i =1,...,n),

where n is the sum of the multiplicities of the finite multiplicity spectral points
of z in S;. If S; has some spectral points of z with infinite multiplicities, we set

pi(z) =r(z), (¢ =1,2,...).
In the former case we continue by considering z; = (1 —e€)z(1 —e) as an element

of the algebra (1 — e)A(1 — €), where e is the sum of the Riesz idempotents
corresponding to the points in S;. It is worth noting that r(z;) < r(z), because

@\ = o((1 - e)a(1 - <)),
because o.4c(exe) = Si, by part (d) of Proposition 4.11. We consider the set
Sy ={z:|2| =r(z1)} ﬂ o(z1).
If S2 consists only of finite multiplicity spectral points of z;, we set

/‘n+i($) = r(xl ), (7' =1,...,m1),

where n; is the sum of the multiplicities of the points of S;. Otherwise, we set

pnti(z) = r(z1), ((=1,2,...).

Continuing like this, we obtain the sequence

m@) 2 paa) > ... (5.2)
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of non-negative numbers called the spectral point sequence of .

The sequence (5.2) can either be infinite or finite. It can be finite if o(z)
is comprised of only a finite number of points of finite multiplicity and this is
the case when the Banach algebra A is finite dimensional and semi-simple, see
Proposition A.19.

We use n(z) to denote the length of the sequence (5.2).
Definition 5.1. Let z € A. The j** approzimation number of z is given
by
aj(z) = inf{||z — y|| : y € A,rank(y) < j}.

Properties of approximation numbers for elements of B(X), where X is a
Banach space have been thoroughly investigated in the literature, see for instance
monographs [6] and [13].

In the next lemma we state and prove some properties of approximation
numbers for elements of A, necessary for the proofs of the main result in this
thesis.

Lemma 5.2, Let z, y € A.

(a) If m > n then am(z) < an(z), and a1(z) = ||z||;

(b) am+n-1(zy) < am(z)an(y);

(¢) amtn-1(z +y) < am(z) + an(y);

(4) am(zy) < an(@ly]l and an(zy) < an()lz]l

(e) if z is an idempotent of rank at least m then am(z) > 1.

Proof. (a) Follows trivially from Definition 5.1.

(b) Let € > 0 and ,§ € A be given such that rank(Z) < m and rank(§) < n
with ||z — Z|| < am(z) + € and ||y — §|| < an(y) + €. Using Proposition 2.2 it
follows that

rank(Z(z — §) + z§) < rank(&(y — §)) + rank(zg)
< rank(&) + rank(§)
<m+n-—1.
We thus have,
am4n-1(zy) =inf{]|zy — 2| : z € A4, rank(z) <m+n —1}

< lley = (#(y — §) + =)l

= |ley — &y + 2§ — =7||

= [l=(y — 9) - Z(y — )l

=|i(z = 2)(y - 9l

<llz = Z|l-lly - gll

< (am(z) + €)(an(y) + ¢€)-
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Therefore, since € > 0 was chosen arbitrarily,

am+n-1(2y) < am(z)an(y).

(c) Let € > 0 and let Z,§ € A be such that rank(Z) < m and rank(j) < n
and ||z — Z|| < am(z) + £ and |ly — §|| < an(y) + 5.
Since rank(Z + §) < m +n — 1, it follows that
tmin-1(2+y) <z +y — (8 +7)
=llz+y—Z -4l
= l(z - &)+ (y — 9l
< le— 2|+ lly — gl
< am(z)+ an(y) + e
Hence,
am4n—1(Z +Y) < am(z) + an(y).
(d) From (b) with n = 1 and using (a), we get

am(zy) < am(z)ar(y)
= am(2)|lyl-

Similarly, with m = 1, we get,
an(zy) < an(y)llz].

(e) We prove this by contradiction. Suppose z is an idempotent of rank at
least m and ap(z) < 1. Then, there is a y € A with rank(y) < m such that
llz — y|| < 1. It then follows that 1 — z + y is invertible. So,

m < rank(z)
= rank(z¢(l — z + y)(1 -z + ) ")
< rank(z(1 — z + y))
= rank(zy)
< rank(y)

<m,

which yields a contradiction.

Lemma 5.3. Let z € A and define the number
ek(:c) - Sup{”y“_l k< rank(:vy) < oo,(y.r)2 =yz,z € A}a (k= 1)'
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If the set of all y € A such that k < rank(zy) < oo and (y:lf:)2 = yzx 18 emply, we
leave ex undefined. Note that this happens when rank(z) < k. If ex(z) ezists,
then ex(z) < ax(z).

Proof. Note that
llyz|l = ||(yz)(y)ll

< Nly=lllly=|-

Therefore, ||yz|| > 1. Thus, ||y|| > ||z||~!. So, if the set of such y’s is non-empty,
ex(z) < ||z|| < oo. Let € > 0 be given and let y satisfy

ex(z) — € < |ly|| 7Y, rank(yz) > k and (yz)* = yz.

Then, by Lemma 5.2,
1 < ap(zy)

< ax(@)llyl-
So,
ex(z) — e < |lyllI ™
< ar(z).

Therefore, ex(z) < ag(z).
@)

The following sequence of lemmas paves a way for the proofs of the main
result, Theorem 5.9, to be stated later in the section.

Lemma 5.4 ([12], Lemma 4.5). Let ¢ € A and let {un(z)}32, be the
spectral point sequence of z where n(z) < oo. Let n be a positive integer not
greater than n(z). Then,

. 1
lim sup,,_,o (an(2™))™ < pn(z).

Proof. Let e be the sum of the Riesz idempotents corresponding to the
spectral points of z with absolute value strictly greater than p,(z). Since each
such a spectral point is of finite multiplicity, rank(e)< oco. Let k = rank(e). By
definition of p,(z) and part (a) of Lemma 5.2, k < n. So, for any non-negative
integer m,

an(z™) < ag41(z™), because k <k —1impliesk+1<n
< ||lz™ — ex™||, because rank(ez™) < k< k+1
— (1 = &)™)

By the spectral radius formula and properties of the Riesz idempotents, we have

A 1= e = lim 1= e)a(1 - )"

= pn(z).
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Therefore,
. L . L
Tim_(an(e™)¥ < lim (1 - )™

= pn(2).

Theorem 5.5 ([2], page 46). Let z € A. Suppose a ¢ o(z). Then,

diSt(OZ, O'(CE)) = :((T}E:T;.

Proof. Let 2 be an open set containing o(z), but not a. Then f(A) = L5
is holomorphic on €. So, o((a — z)™') = {== : X € o(=)}. In particular,

) =su . oz
(=)™ = sup{ 5 A € o(a)
1
inf{la — A|: X € o(z)}
1
dist(a,o(z))’

Corollary 5.6. If 0 is not in o(z) and go = min{|A|: A € do(z)}, then

1
r(z7l) = —.
Ho

Proof. In Theorem 5.5, let & = 0. Thus,

-
dist(0,0(z))
1

Ho

'r(a:_l) =

Lemma 5.7. Let y € A. Let € R*. Then,

1 . . . I\
lim ||y"‘||"1'- = = implies that lim (Jy™||™")™ = 8.
m— oo m—0o0

B

Proof. We have

li m—1ym li Ly*
Jim (™ I7)% = Jim (o)
1

iMoo [ly™|| =

= 8.
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m]

Lemma 5.8 ([12], Lemma 4.6). Leta € A, {pn(a)}32, be the spectral point
sequence of a and n(z) < co. Let n < n(a) be given and suppose p,(a) > 0. Let
k denote the sum of the multiplicities of the spectral points of a with absolute
value at least pn(a). Then,

ex(a™) exists, for allm € Z* and 1iminf(ek(a"’))# > pr(a).

Proof. Let e be the sum of the Riesz idempotents corresponding to the
spectral points of a with absolute value greater than or equal to pp(a). By
Corollary 4.14, rank(e) = k. By Theorem 4.12, eAe is a Banach algebra with
norm ||.||¢, equivalent to ||.|| on A. Moreover, oc4c(eae) consists of all A € o(a)
such that |A| > pi(a), the inequality following from the nature of the sequence
(5.2). So, 0 ¢ 0cac(eae). This says that eae is invertible in eAe, that is, there
is a b € A such that

(eae)(ebe) = (ebe)(eae) = e.

By part (c) of Theorem 4.6,
eae = ea.

Thus,
(ebe)(eae) = (ebe)(ea)

= (ebe)a.

Therefore, for every m € Z*, (ebe)™a™ = e. To see that ex(a™) is defined, let
y = (ebe)™ then

((¥)a™)* = (y)a™ and rank(a™(y)) 2 k-
In this case rank(a™(y)) = rank(e) = k, so ex(a™) is well defined. In fact,
ex(a™) > ||(ebe)™|| ", by the definition of ex(a™).

Since
ebe = (eae) ™" in ede,

it follows that

r(ebe) = #k—l(aj’ by Corollary 5.6.
Thus,
lim ||(ebe)m||j‘— = —1—, which is Beurling's formula.
m—oo pi(a)
So,
lim l|(ebe)™||= = -ukl(—a), because ||.||e is equivalent to ||.||.
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Therefore,
1
pr(a) = lim ||(ebe)™||"*)™, by Lemma 5.7.
So,
lim inf(||(ebe)m||_1)'_:‘- < liminf (ek(a"‘))J"T, because ||(ebe)™|| ! < ex(a™),
that is,
L
lim (]|(ebe)™||”H)™ < liminf(ek(am))#.
Thus,
1
pr(a) < liminf (ex(a™))™.
o

We are now in a position to state the main result of this paper and prove a
special case thereof. A proof for the general case is relegated to the next section.

Theorem 5.9 ([12], Theorem 4.2). Let a € A, and let {pun,(a)}32, be the
spectral point sequence of a, where n(a) < oo. Define p(a) = limj_. pj(a) if
n(a) = oo, otherwise, p(a) = pin(a)(a).

(a) Assume n(a) = oco. Then, for every n such that pn(a) > p(a), we have

limm oo (an(a™))™ = pn(a), (5.3)

and if pn(a) = p(a) then,

3

< u(a). (5.4)

lim sup,,_, o (an(a™))

(b) Assume n(a) < oo. Then, equation (5.3) holds for every n < n(a).
Proof. (a) Let n € Z' be given.

lim (an(am))# < pn(a), by Lemma 5.4.

So, the inquality (5.4) always hold. If p,(a) > p(a), then let k be the sum of
the multiplicities of the spectral points with absolute value at least pn(a). We
observe that pi(a) = pn(a) and k > n. So,

pn(a) < lim inf(ek(am))"%, just by Lemma 5.8,
1
< liminf (ap(a™))™, from Lemma 5.3,
< limsup (an (am))%

m—0o0

< pn(a), by Lemma 5.4.
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That is,

lim inf (an(am))—'lg = limsup (an(am))% = pn(a).

So,
lim (an(a™))™ = pn(a),

and so, part (a) is proved.
(b) If un(a) > 0, then the above argument applies just fine. If pn(a) = 0,

Lemma 5.4 says that

3=

limsup (a,(a™))™ < pn(a) =0.

Therefore,
1 1
lim (a,(a™))™ = limsup (ap(a™))™ =0.
Whence,
].1 Oo(an(am))’-n' =0= un(a).

m—

m]

To explore the inequality (5.4) further, some work will need to be done and
in the next section we look into that.
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6. THE SPECTRAL RADIUS PROPERTY FOR BANACH
ALGEBRAS

So far we have explored the limiting behaviour of (a,(a™ ))%, for a fixed
n as m increases, for the case n(a) < oo and for the case n(a) = oo with
pn(a) > w(a). For the case pn(a) = p(a), with n(a) = oo, we do the work in
this section. As mentioned in the introduction, Nylen and Rodman conjectured
that in this case we have equality with limsup replaced by ltmit. We prove the
truth of their conjecture in this section.

"'“

To formulate the general result, we first investigate 5", the norm closure of
finite rank elements of a Banach algebra A. We will consider the factor algebra

A/P_’ll'". We will use ox(a) to denote the spectrum of a + F‘Jl‘” and rx(a) to
denote its spectral radius, where a+Fﬂ'” is an element of A/F‘J{'". Also let ||a|| &
denote the norm of a + Flll'”.

Theorem 6.1. Let a € A and let axo(a) = limg_,o0 ar(a). Then,

(a) ao(a) = inf{|la — y|| : y € Fa}, the distance from a to Fjy.

(b) Let Ko = {a € A: axc(a) =0}. Then,

K4 is a norm closed two — sided ideal in A and

Al _ k.

Proof. (a) Obviously
inf{|la — y|| : rank(y) < oo} < ar(a) for each k.
Hence
inf{|la — y|| : rank(y) < oo} < inf ax(a)
= acol(a).
For the opposite inequality, let y € A be such that rank(y) < oco. Suppose

rank(y) < k. Then
lla —yll 2 ax(a) 2 aco(a).

Hence
inf{]|la — y|| : rank(y) < oo} > aco(a).

Whence
dist(a, Fa) = aco(a).

(b) We first show that K4 is norm closed.
Let {z,}32; be a convergent sequence with z,, € K4, for all n. Say z, — z.
So, given € > 0, there is an N > 0 such that ||z, — z|| < € whenever n > N.

But,
a2k-1(z — Tn + o) < ax(z — ) + ax(z,), by Lemma 5.2(c).
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That is,
az2k-1(z) < ar(z — zn) + ar(zn)
< ai(z — zn) + ax(zn), by Lemma 5.2(a),
= ||z — zn|| + ak(zs), by Lemma 5.2(a).

So,
klim azk—1(z) < ||z — zn|| + klim ap(zn)-
That is,
oo(2) < ||z = Za| + Goo(2n)
= ||z — z,|| because ¢, € K4 implies that ac(z,) = 0.
So,

Jim ae() < lim [l |
= 0.

Therefore, as(z) < 0, which implies that as(z) = 0. Hence, 2 € K4. Whence,
K 4 1s norm closed.

We next show that K4 is a two-sided ideal in A. Let z,y € K 4. So,

azn-1(z — y) < an(z) + an(y).

Therefore,
lim azn-1(z —y) < lim a,(z)+ lim an(y).
That is,
oo(Z — Y) < @oo(T) + oo (¥),
=0.
So,
z—y € Ky.

Let 2 € K4 and z € A. So, an(z2) < an(z)||z]|, by Lemma 5.2(d). Therefore,

oo(22) < aco(2)||2]|

=0.
Therefore,
zz € Kg4.
Similarly,
zz € Ka4.
Therefore, K 4 is a two-sided ideal of A.
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If £ € Fu,say rank(z) < k. Then ax(z) = 0. Hence aoo(z) = infy ax(z) = 0.
Thus Fiy C K4. Let x € F'J,i'”. Since K 4 is closed, it follows that Fﬁ'" C Kyu.
For the reverse inclusion, let € K4. So, aco(z) = 0. It then follows from
(a) that
inf{Jlz -yl : y € Fa} = 0.

Whence,
Ka =PI,

=]

Remark 6.2. In the proof of Theorem 6.1 (a), it is also clear that ac.(a) =
inf{|la — y|| : y € K4}, which is the norm of the Banach algebra A/K 4. Also, if
A = B(X), with X a Banach space having the approximation property, that is

F(X)“'" = K(X), then K4 will be the ideal of the compact operators on X.
o

In the following theorem we will provide conditions on a Banach algebra
such that the inequality (5.4) becomes equality, with limsup replaced by limst.

Theorem 6.3 ([12], Theorem 5.1). Let a € A be such that the spectral
point sequence {pn(a)}3L, of a has an infinite length, with limit p(a) and that
for some integer n,

tn(a) = u(a) = sup{|A| : A € ca(a) and A is not an f.m. spectral point.}(6.1)
(Herein, f.m. stands for finite multiplicity.)
Assume that

ric(a) = (a). (6.1)
Then,
1
lim (an(a™))™ = pn(a).
Proof. For any n € Zt,
liminf (an(a™))™ = liminf (inf{||a™ — z|| : rank(z) < n})™
> liminf(inf{||a™ — x||7§-' : rank(z) < 00})
m—00
= lim inf (an(am))'%"
> liminf(inf{}|a™ — :v||'$'- rx € Ka})
m—00
= liminf||a™ + K4||™

=rg(a)
= pn(a).
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But,
lim sup (an(a™))™ < pin(a).

m—00

So,
liminf (an(a™))* < limsup (an(a™))™
< pn(a).
Whence,
. myy L
Jim_(an(@™)™ = pin(a).
o)

Note that from the above proof of Theorem 6.3, and Lemma 5.4, we have
ri(a) < liminf (an(a™)™ < pn(a).
m—00

So, the following inequality always hold:

rx(a) < p(a), (6.2)

where p(a) is as in Theorem 6.2.

Definition 6.4. A Banach algebra A is said to have the spectral radius
property if
ri(a) = p(a),

for every a € A for which {pn(a)}32, s an infinite length spectral point sequence
with limit p(a) attained by pr(a), for some integer k.

We will need the following lemma to prove that finite dimensional algebras
have the spectral radius property.

Lemma 6.5 ([12], Lemma 5.5). Suppose for a € A there is an element b €
A such that ab i3 an idempotent of infinite rank. Then,

aco(a) = [lallx > [[B]I 7.

Proof. We show that if e is an idempotent of infinite rank, then ||e||x > 1.
Suppose ||e||x < 1. There is a finite rank element z such that ||e — z|| < 1. So,
1 — e + z is invertible. As such,

e=e(l—e+:1c)(1—e+:1:)"1
=ex(l—e+z)".
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Therefore,
rank(e) < rank(z)

< 00.

Thus, we have a contradiction, because, by assumption, rank(e) = oo. Since ab
is an idempotent of infinite rank, it follows that

l|adl|x > 1.
So,
1 < ||adl|x
< llallkllbllx
< llallx|12]l-
Therefore,

llallx > |[o]| 7.
m}

Theorem 6.6 ([12], Theorem 5.4). Suppose the spectral point sequence of
a € A 1is infinite, and for some n, pn(a) = p(a). Suppose further that there
i3 an isolated point A\ € o(a) such that |A\| = p(a) and the corresponding Riesz
idempotent e i3 of infinite rank, then

k(@) = (o).
Proof. Suppose p(a) = 0. Obviously, since rx(a) < p(a), no work needs
to be done in this case.

We now Suppose p(a) > 0. Since 0 ¢ ocac(aea), it follows that eae is
invertible in eAe. Let ede be the inverse of eae in eAe.

By Corollary 5.6, since ge4c(aea) = {A}, we have

A7 = limm oo [l (ede)™ | % (6.3)

Recall that e commutes with a. So e = aede = a™(ede)™, which is an
idempotent for any m € Z*. By Lemma 6.5, with ™ playing the role of a and
(ede)™ playing the role of b, we get

la™l|x = [l(ede)™ || 7. (6.4)
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Using equality (6.3) and inequality (6.4) and Beurling’s formula we have,

1
ri(a) = lim |la"||%

. ny—1y %
> lim (||(ede)™| ™)

= lim [|(ede)™|| ™=

; 1
= lim —'—'—ﬁ'
"% |i(ede)” ||
= |\l
That is,
r(a) 2 |A|
= p(a).
So, we have
ri(a) = p(a),

because, from inequality (6.2), we always have rx(a) < u(a).
o

Corollary 6.7. Let A be a finite dimensional Banach algebra. Then, A
has the spectral radius property.

Proof. We first claim that if A is finite dimensional, then z € A implies
that z is algebraic.

Let a € A be such that {y,(a)}32, is an infinite length spectral point
sequence with limit p(a) attained by ui(a), for some integer k. Consider B =
{a® : n=1,2,...}. Note that a™ € A, (n = 1,2,...). Since dim(A) < oo, only
a finite number of elements of B are linearly independent over C. So, there is a
polynomial P(z) such that P(a) = 0. Therefore, a is algebraic and the claim is
established. By Corollary 2.3, o(a) is a finite set. Whence, applying Theorem

6.6, the result follows.
D

In the rest of this section we will use our own techniques to show that
B(X) has the spectral radius property and exploit the same idea to show that
any Banach algebra with a unit element also has the spectral radius property.

To accomplish this we will make use of the standard results on Riesz theory
and Fredholm theory for Banach algebras. Since this theory is involved and
well established in the literature, see [3] and [5], we will use the results without
proofs.

We call an element © € A inessential if its spectrum o4(z) is at most
countable with zero being the only possible accumulation point. An ideal con-
sisting only of inessential elements is called an inessential ideal. It follows from
Corollary 2.3 that F4 is an inessential ideal. Clearly the norm closure of any
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inessential ideal will also be inessential. As such, K4 is an inessential norm

closed ideal of A.

From [3], Section R, we see that Fredholm theory and Riesz theory in A
is carried out relative any inessential two-sided ideal of A. For our purpose
we consider Fredholm theory and Riesz theory relative to K4. We call z € A
Fredholm relative to K4 if z + K4 is invertible in A/K 4. We will denote the
class of Fredholm elements of A by ®(A). We call z € A Rieszif rx(z) = 0 and
denote the class of Riesz elements of A by R(A).

It is a direct consequence of the above definitions that £ € R(A) if and only
if ox(z) = {0} if and only if A — z € ®(A) for all A # 0.

Remark 6.8. If A = B(X), then it is clear from [3], Theorem O.2.2 that
invertibility modulo F4 = F(X) is equivalent to invertibility modulo K(X).
Since FI(X) C K4 C K(X), in general, it will follow that the Riesz and Fredholm
elements relative K 4 as we defined them, coincide with the classical Riesz and
Fredholm operators. In fact rx(z) and ox(z) are exactly the essential spectral
radius and the essential spectrum respectively.

We call A € C a Fredholm pointof € Aif \—z € ®(A) and wecall A € C
a Riesz point if either A ¢ o(z) or if A is an isolated Fredholm point of o(z), see
[3] Section R.

We will need the following theorem to prove that B(X), where X is a
Banach space, has the spectral radius property.

Theorem 6.9 ([3], Theorem R.2.4). Let z € A. Then, every Fredholm point
of z lying in Oo(z) is isolated.

a]

Theorem 6.10. Let A = B(X), where X 1s a Banach space. Then A has
the spectral radius property.

Proof. Let T € B(X), with the spectral point sequence {u;(T)}32, of
infinite length, satisfying pm(T) = limp—co pn(T), for some integer m. The
essential spectral radius of T has the following property:

rk(T) < pm(T), which is just inequality (6.2).

So, we only need to show that pm(T) < rg(T).
Recall that the essential spectrum of T is given by

ok (T) = o(T + K(X))
— o(T\{) € o(T) : A— T € $(A)}.

Consider the set
S={Aea(T): |\ >rx(T)}.
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Suppose S = (). In this case we have
|A]| < rg(T), for all X € o(T).

Therefore, pm(T) < rg(T). We thus have pm(T) = rx(T).

Now we suppose S # (). We show that all elements of S are contained in
0op(x)(T). Suppose not. Then there exists a point A € S\Oop(x)(T). Hence
we can find a neighbourhood U C opg(x)(T) which contains A. (We can even
assume that U ¢ o (T)). Now we let

to = sup{t|(1 + €)A € o(T) for all € < t}.

Then (1 +1t9)) € o(T') because o(T) is closed. Moreover (1+to)A € 0o(T)[) S.
Hence (1 + to)A is isolated by Theorem 6.9 which gives a contradiction by the
definition of t9. It follows from Theorem 6.9 that S consists only of isolated
points. Let Ao € S and consider p(Ag, T'), the spectral projection corresponding
to Ag. Let T be a rectifiable curve enclosing no other point of ¢(T') other than
Ao. We thus have

p(Xo, T) + K(X) = p(Xo, T + K(X))
_ 5%/;(,\——T+K(X))_ld,\

= 0, by the Cauchy’s Integral Theorem, as Ag ¢ ok (z).

So, p(Xe,T) € K(X), which means that p(Ae,T) € F(X), since any compact
projection is of finite rank. Whence, )¢ is a finite multiplicity point. Therefore,
A € S implies that ) is a finite multiplicity point. So, pm(T) = u(T) < rx(T)
and the theorem is established.

a]

The idea of the proof of Theorem 6.10 will be used to show that any Banach
algebra with a unit element has the spectral radius property.

Lemma 6.11. Let I be a two-sided ideal of A and let x € A. Suppose
p # 0 is isolated in ga(z). If the Riesz idempotent e, corresponding to p is in
I then ey, €1.

Proof. The subalgebra e, I'lle, of A is closed. So, it is a Banach algebra
with identity e,. Also, e, ]e, is a dense two-sided ideal in e, I I-lle,,. Clearly,
euI_"'"eu =eule,,
for if not then we can find a proper maximal ideal J containing e,Ie,. Since
J is closed and dense in e,,,I_"'"e#, it has to be all of e,,I_"'"e,“ which yields a
contradiction. So,
ey € e,,I_"'"e,,

= eule,

cl.
That is, e, € I as wanted.
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Theorem 6.12. Let A be a Banach algebra with a unit element 1. Then,
A has the spectral radius property.

Proof. Let a € A, with the spectral point sequence given by {un(a)}32,
with n(a) = o0, and pm(a) = lim,_. pn(a), for some integer m. From inequal-
ity (6.2), we always have

ri(a) < pm(a). (6.5)

So, we only need to show that y,,(a) < ri(a). Remember that
ok(a) = ca(a)\{) € 04(a): (A —a) € ®(4)}.
Consider the set
S ={X€oa(a):|A>rr(a)}.

If S =0, then |A| < rg(a) for all A € 04(a). Therefore, pm(a) < ri(a).

Now we suppose S # . We show that all elements of S are contained in
00 4(a). Suppose not. Then there exists a point A € S\0o4(a). Hence we can
find a neighbourhood U C 04(a) which contains A\. (We can even assume that
U ¢ ok(a)). Now we let

to = sup{t | (1 + €)X € o(a) for all € < t}.

Then (1 + to)A € o(a) because o(a) is closed. Moreover (1 + to)A € do(a)() S.
Hence (1 + to)A is isolated by Theorem 6.9 which gives a contradiction by the
definition of ¢o. It follows from Theorem 6.9 that S consists only of isolated
points. Let Ag € S and consider p(Ao, a), the spectral idempotent in A corre-
sponding to Ag. Let I' be a simple rectifiable curve enclosing no other point of
o4(a) other than Ag. Thus,

p(AO, a) + KA = P(/\O, a+ KA)
=1 _ -1
=5 /F(/\ a+ Kjs) dA

=0, by the Cauchy’s Integral Theorem, as A\¢ ¢ ox(a).

Therefore,
po,a) € Ka = FIN.

So, by Lemma 6.11, p(Ag,a) € F4. Therefore, Ag is a finite multiplicity point.
We thus have A € S implies that A is a finite multiplicity point of o 4(a). There-
fore,
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pm(a) < ri(a). (6.6)

Inequalities (6.5) and (6.6) yield,
ric(a) = u(a).

Whence, A has the spectral radius property.
a]

We have shown that any Banach algebra with unit has the spectral radius
property. Hence, C*-algebras do have the property. Nylen and Rodman in [2]
proved that any C*-algebra with unit has the spectral radius property. Their
proof makes use of the reduced atomic representation of C*-algebras. To con-
clude this thesis we would like to mention that the representation used in (3],
Theorem C*.4.3, gives a much more elegant proof that a C*-algebra with a unit
element has the spectral radius property. We state Theorem C*.4.3 without
proof. It was shown in [14], that Fi4 = Soc(A), where Soc(A) = {0} if A has no
minimal left or right ideals. Otherwise if A has minimal ideals and the smallest
left ideal containing all minimal left ideals coincides with the smallest right ideal
containing all minimal right ideals and we call this two-sided ideal the socle of
A, denoted by Soc(A).

Theorem 6.13 ([3], Theorem C*.4.3). Let A be a C*-algebra. there is a
faithful *-(and therefore isometric) representation (o, H) of A on a Hilbert space
H with the following properties:

(a) p(Soc(A)) = F(H) (N ¢(A),

(b) p(Soc(A)) = K(H)( ¢(A),

(c) ¢(R(A)) = R(H) [ ¢(A),

(d) p(®(A)) = ®(H)(¢(A) if A is unital.

m]

Theorem 6.14. Let A be a C*-algebra with a unit element. Then, A has
the spectral radius property.

Proof. We may assume that A is a C*-subalgebra of B(H) and that
Ka=K(H)()A

The map
b: AJK4 — B(H)/K(H)

defined by
Y(a+ K4) =a+ K(H)
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is a *-isomorphism. Hence ¥(A/K ) is a C*-subalgebra of B(H)/K(H). That

oa/ka(a+ Ka) = opuy k)(v(a) + K(H))

follows from a well-known fact in C*-algebra theory, namely that the spectrum
of an element in a C'*-algebra is the same as the spectrum with respect to any
C*-subalgebra containing that element.

From Theorem 6.9, B(H) has the spectral radius property. It follows from
Theorem 6.13(a) and the fact that c4(a) = opu)(p(a)) that A has the spec-
tral radius property as well: Suppose A¢ is an isolated point of o4 with finite
multiplicity. Then, since ¢ is a C*-algebra isomorphism,

¢(p(X0,a)) = p(Xo, p(a)),

where in each case p()o,.) is the spectral projection corresponding to Ag. From
Theorem 6.13(a) p(Ao, @) is finite rank if and only if p(Ao, ¢(a)) is finite rank.
=}
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APPENDIX

The following standard facts and definitions have been relegated to this
section, the appendix, merely to facilitate the flow of the presentation of the
main results.

Definition A.1. Let A be a unital Banach algebra over C. Let X be a
Banach space over C.

(i) We define a non-zero irreducible representation of A on X namely 7 to
be a homomorphism from A into B(X) such that {0} and X are the only
invariant subspaces under m(a) for alla € A. We say 7 1s continuous

if there is a constant C such that ||7(a)|| < C||al.

(i) We define a primitive ideal to be a kernel of some continuous irreducible
representation of A and we denote the set of such ideals by I1 4.

(7it) An algebra A is primitive if {0} is a primitive ideal of A.
(wv) The radical of an algebra A, denoted by Rad(A), is defined to be the

intersection of the kernels of all continuous irreducible representations

of A. If there are no primitive ideals we define Rad(A) = A.

(v) An algebra A is semi-simple if Rad(A) = {0}.

Theorem A.2. Let A be an algebra with unit 1. Then the following are
identical:

(a) the intersection of all mazimal left ideals of A,

(b) the intersection of all mazimal right ideals of A,

(c) the set of z such that 1 — zz is invertible in A, for all z € A,

(d) the set of z such that 1 — zz 13 invertible in A, for all z € A.

Proof. The equivalence of (c¢) and (d) follows from the fact that o 4(zz) U
{0} = o 4(z2z) U {0}. We only show the equivalence of (a) and (c) as that of (b)

and (d) is shown analogously.

Let z be in the intersection of all maximal left ideals of A. If 1 — 2z is not
invertible then A(1 — zz) is a left ideal of A, so it is contained in some maximal

left ideal Iy. Then 2z € Iy and 1 — 2z € Iy. So 1 € I,. That is I, = A, which

yields a contradiction.

For the converse, suppose that 1 — zz is invertible for all z € A. If z is not
in the intersection of all maximal left ideals, it means that there is a maximal
left ideal Jy such that z ¢ Jy. Then Iy + Az = A and as a result 1 — zz € Jy,
which yields a contradiction because it will imply that 1 € Jy.

o

Let I be a maximal left ideal of A. It is closed , so
X =A/I
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is a Banach space for the norm defined by
lllalll = inf lla + ull,

where @ = a 4+ I is an element of A/I. There is a natural representation 7 of A
on X defined by

n(z)a = Ta.

This continuous representation is called the left reqular representation associated
to I. It is irreducible because I is a maximal left ideal. The kernel of the
representation is

ker(n) =(I:A)={z:z2€ A,zACI}.

The following theorem provides the characterization of the radical in terms
of irreducible representations for Banach algebras.

Theorem A.3. Let A be a Banach algebra with unit 1. Then,

(a) for every irreducible representation m of A there is a mazimal left ideal
I such that ker(m) = (I : A), as a result, ker(r) is a closed two-sided

ideal of A,

(b) the radical of A, Rad(A), equals any of the sets described in

Theorem A.2

Proof. (a) Let 7 be an irreducible representation of A on a complex vector
space X and let a # 0 be in X. Then

F={n(z)a:z € A}
contains & and it is invariant under 7, so F = X. Let
I={z:z€ A, n(z)a =0}

Because F' = X, we have I # A, so I is a left ideal of A. Let J be a proper left
ideal of A containing I. Then either J = I or {n(z)a : ¢ € J} is different from
{0} and is invariant under w. So {m(z)a : z € J} = X. As a result, there is an
e € J such that m(e)a = a, so ze — z € I for all z € A. Then for any z € A we
have

c=(z—we)t+zeclI+JCJ,

so that A = J and that yields a contradiction. As a result I is a maximal
left ideal. Clearly ker(mw) C (I : A). If 2 € (I : A), then zA C I and thus
n(z)r(y)a = 0 for every y € A. As a result we have 7(z)X = {0}, whence
m(z) = 0. That is z € ker(r).

(b) If z € Rad(A) then zA C Rad(A) C I for all maximal left ideals I. Asa
result thereof, z € (I : A) for all maximal left ideals I. It follows from (a) that =
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is in the intersection of the kernels of all continuous irreducible representations

of A.

For the converse, if  is in the intersection of the kernels of all continuous
irreducible representations of A then z € (I : A) for all maximal left ideals I.
Whence, £ = z1 € I for all such I, and thus z € Rad(A).

m]

Remark A.4. Let A be an algebra with a unit 1. Parts (c) and (d)
of Theorem 2 yields that the radical, Rad(A), of A is contained in the set of
quasi-nilpotent elements of A.

=]

Remark A.5. We note that if 7 : A — B(X) is a continuous irreducible
representation of A, then m(1) is the identity operator I in B(X) for if this is not
true, we will have 7(1)X to be a closed subspace of X which is invariant under
n(a) for every a € A. To see closedness, suppose n(1)z, — y. So m(1l)z, =
7(1)w(l)z, — 7(1)y. So y € m(1)X. This contradicts the irreducibility of =.

D

Remark A.6. It is worth noting that if an algebra A is primitive then
it is semi-simple. This follows from the fact that {0} € II4 which implies that
Rad(A) = Npen, P = {0}. Whence, by Definition A.1 (v), A is semi-simple.

o

Definition A.7 We call an algebra A semi-prime if uzu = 0 for allz € A
implies that u = 0.

Remark A.8. Let A be a semi-prime algebra. Let J be a left ideal or
right ideal of A. Then J? = {0} implies that J = {0}. To see this let y € J.
So yzy € J? for all z € A. That is yzy = 0 for all z € A. From Definition A.7
y = 0. Since y was arbitrarily chosen from J, we conclude that J = {0}.

o

Definition A.9. Let A be any algebra.

(i) An idempotent in A is an element p such that p* = p.

(is) A minimal idempotent in A 13 a non-zero idempotent p such that
pAp is a division algebra and we denote the set of all such idempotents by
Min(A)

Definition A.10. A right ideal R of an algebra A is minimal if R # {0}
and if for any right ideal Ry C R, either Ry = {0} or Ry = R. Analogously, a
left ideal L of A is minimal if L # {0} and if for any left ideal Ly C L, either
L1 = {0} or Ll = L.

Lemma A.11 ([4], Lemma 6). Let A be a semi-prime algebra.

(i) If e € Min(A) then Ae is a minimal left ideal of A.

(ii) If € € Min(A) then eA is a minimal rigth ideal of A.
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Proof. (i) Suppose that e € Min(A). Let J be a non-zero left ideal of A
with J C Ae. By the contraposition of Remark A.8, J2 # {0}. So there are
elements ae and be of J such that aebe # 0. It follows that ebe # 0. Since
edAe is a division algebra, there exists a ¢ € eAe such that cebe = e. Then
Ae = Acebe C Abe C J, and so Ae is a minimal left ideal.

(ii) This part of the lemma follows by an analogous argument as in (i).

0
Lemma A.12 ([3], Theorem BA.3.5). Let A be a semi-simple algebra.
If e € Min(A), then there 13 a unique P, € I14 such that e ¢ P,.

Proof. Let e € Min(A). So,
P={zeA : zACA(l-¢)}
is a primitive ideal because,
7 : A — B(Ae)

defined by
7(a)be = abe

is an irreducible representation of A on Ae with kernel P,. The irreducibility
follows since e is minimal. Thus, e ¢ P,, because e € P, implies that

w(e)Ae = ede = {0},

which will yield a contradiction.
If PeIly and e ¢ P, then P Ae = {0}, because by Lemma A.11 Ae is
a minimal left ideal. Hence, Pe = {0}, because Pe C P()Ae = {0}. If z € P,
then, obviously, zA C P. So, zAe = {0}. It then follows that z € P, and thus
P C P.. But P.Ae = {0} C P. So, either Ae C P or P, C P, again this follows
from the fact that both P, and Ae are left ideals, see for instance Lemma A.11.
But P[) Ae = {0}. Therefore, P. C P which yields that P, = P.
o

Proposition A.13 Let A be a semi-ssmple algebra with a unit element 1.
Then A 1s semi-prime.

Proof. Let z € A. Suppose zyz = 0 for all y € A. So yzyr = 0. That is
r((yz)?) = 0. This implies that (r(yz))? = 0. So we have r(yz) = 0. That is
yz € Q(A) for all y € A. By Lemma 3.1 we have z € Rad(A) = {0}. That is

z = 0. Thus A is semi-prime.
u}

Lemma A.14 ([2], Lemma 4.2.2). Let A be a Banach algebra and 7 be
a continuous irreducible representation of A on a Banach space X. Then, C =

{T : T eB(X), Tn(z) =m(z)T, for all x € A} is isomorphic to C.
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Proof. Obviously C is a closed subalgebra of B(X) containing the identity.
Let T # 0 be in C. Then,
Tr(z)(X) = n(2)T(X) C T(X), for every z € A.
This says T(X) is invariant under 7. Thus, T(X) = X. Also, ker(T') is invariant
under 7, but ker(T) = X is not possible. So, T is an invertible linear operator.
By the Open Mapping Theorem, T is invertible in B(X) and its inverse satisfies
T-'r(z) = 7(2)T, (= € 4).

So, T~! € C. Therefore, C is a division algebra and the result follows from the
Gelfand-Mazur Theorem.
]

Lemma A.15 ([2], Lemma 4.2.3). Let 7 be a continuous irreducible repre-
sentation of A on a Banach space X. If x1 and x2 are linearly independent in
X, then there is an element a € A such that w(a)z, =0 and w(a)z, # 0.

Proof. Suppose that 7(z)z; = 0 implies that 7(a)zs = 0. Let

Li={z : € A;m(z)z; =0}, (:=1,2).
Clearly, L, and L, are both maximal left ideals and Ly C Ls. So, L; = L, = L.
The linear mappings
T;: A/L - X,
defined by

T(a) = n(a)zi, (i =1,2),

are bounded and bijective. Let D = TT; !, which is a bounded linear operator
on X. Let y € X and suppose that y = m(b)z1. Then, we have

m(a)Dy = m(a)T, Ty (v)
= m(a)T2(d)
= w(a)7(b)z2

= n(ab)z2,

and

Drn(a)y = ToTy 'n(ab)z,
= Ty(ab)
= m(ab)z,.
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So,

Dr(a)y = m(a)Dy, (a € A).

By Lemma A.14, there is a scalar A # 0 such that D = AI. Then, T> = ATy. So,
taking a = 1, we get z3 = Az;, contradicting the independence of z; and z,.
o

Lemma A.16 ([2], Lemma 4.2.4). Let A be a Banach algebra. Let 7 be a
continuous irreducible representation of A on a Banach space X. If xq,...,2,
are linearly independent in X then there is an element a € A such that

m(a)z; =0, (:=1,...,n—1), and w(a)z, # 0.

Proof. Lemma A.15 tells us that this Lemma holds true for n = 2. We
thus carry out the proof by induction. Suppose n > 2 and the result holds for
n - 1. So, there is an a; € A such that n(a1)z; = 0,(¢: = 1,...,n — 2), and

w(a1)z, # 0.
If 7(a1)zn-1 = 0, then we are done.

If 7(a1)Zn-1 and 7(a1)z, are linearly independent. Then, by Lemma 3.17,
there is an a3 € A such that

7r(a2 )7r(a1 )zn—l = 0,

and
n(az)m(ay)zn # 0.

So,

a=aza; will do .

We now suppose that Ar(a1)zn,—1 = 7(a1)zn, for some 0 # XA € C. The
vectors ry,...,Tp—1,A\Tpn—1 — T, are linearly independent. So, there is an a3 €
A such that 7(az)z; =0, (¢ = 1,...,n — 2), and 7(a3)(A2n-1 — z,) # 0. If
7(a3)zn-1 = 0 we are done, we thus suppose it is not. If 7(a3z)z,—1 and w(a3)z,
are linearly independent, there is an a4 € A such that 7(as)7(a3)zn—1 = 0 and
n(aq)m(as)zn, # 0. Then, a = aga;z does it. So, suppose to the contrary that
an(az)zn—1 = m(az)z,. By assumption, Ar(az)zn—1 # m(as)zn. So, A # a.
Since m(as)zn—1 # 0, there is an a5 € A such that m(as)m(a3)zn—1 = m(a1)zn-1.

By taking a = a; — asas, we get m(a)z; =0,(: =1,...,n — 1), and

w(a)z, = m(a1)z, — 7(as)w(az)zn
= Am(a1)Zn-1 — am(asasz)Tn—1
= (A — a)m(a1)rn-1
#0, as A —a # 0 and 7(a1)zn—1 # 0.

66

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



We next use the sequence of Lemmas we have just established, to prove the
Jacobson Density Theorem.

Theorem A.17 ([2], Theorem 4.2.5). Let A be a Banach algebra. Let 7 be
a continuous irreducible representation of A on a Banach space X. If zq,...,z,
are linearly independent in X and if y1,...,yn are in X, then there isa € A
such that

m(a)zi =y, (t=1,...,n).

Proof. By Lemma A.16, there is a by € A such that n(b)z; = 0if i # k
and 7w(bg)zr # 0. So there is a cx € A such that 7(cg)m(bx)zx # yr. We then
take

a=cbi+...+cibn

and the theorem follows.
o

Corollary A.18. Let A be a finite dimensional Banach algebra. Let 7 be
a continuous irreducible representation of A on a Banach space X. Then m 1s
onto.

Proof. Let T € B(X). Let {z1,...,2,} be a basis for X. By Theorem
A.17, there exists an a € A such that 7(a)z; = Tz; for : = 1,...,n. Whence
n(a) =T.

0

Proposition A.19. Let A be a finite dimensional semi-simple Banach
algebra over C. Then

A= M, (O)®...0 M, (C),

for some integers ny,...,Ny,.

Proof. We recall that II denotes the set of all primitive ideals of A. Let
P € I14. The algebra A/P has a faithful continuous irreducible representation
on a Banach space X over C. Clearly the dimension of X is finite. By Corollary
A.18, A/P is isomorphic to B(X). But B(X) & M,,(C) as the dimension of X
is finite. Particularly, A/P has a unit element and has no bi-ideals other than
{0} and A/P. Thus P is maximal.

Since A is finite dimensional and A is semi-simple, there is a finite subset
{P1,...,Pn} of 14 with N, Pi = {0} and we suppose that this set is chosen
so that m is as small as possible.

Let J; = [VzxiPx- Then J; is a non-zero bi-ideal and P; N Ji = {0}. Since
P; is maximal, we have

A=P,d J;.
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This implies that J; is isomorphic to A/P;. Therefore J; is a minimal bi-
ideal of A and has a unit element e;. We prove that

A=05&...0 Jn.

Let a € A. There exist j; € J; and p; € P; such that a = j; + p1. Then there
exist j, € J2 and p; € P, such that p; = j2 + p2. Since J, C P;, we have
P2 = p1 — j2 € P1, ps € Pi[)P;. We next have p; = j3 + ps with j3 € J;3 and
p3s € Py () P2() Ps. Continuing this process, we arrive at pj—1 = jm + pm with
Jm € Jm and py, € Pi()...[)Pm = {0}. That is a = j; +... jm. That this sum
is direct follows from the equation A = J; @ P;. Since a was arbitrarily chosen
from A, we have

A=010...0 Jn.
Since each J; is isomorphic to A/P; = M,,,(C), we conclude that

A2 M, (C)®...d M, (C).

Remark A.20. If the Banach algebra in Proposition A.19 is finite dimensi-
nal but not necessarily semi-simple but with a non-empty set of primitive ideals,
we have

A=01®...0 Jn ® Rad(A).
But A;,=J1®...9 Jn, is semi-simple. So

A=A, ® Rad(A),

where A, is a semi-simple algebra. If the set of primitive ideals is empty we
have Rad(A) = A, hence we still have the decomposition of A into a direct sum
of a semi-simple algebra and its radical, where the semi-simple algebra in this
case is just A, = {0}.

o
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NOTATIONS

Let X,Y be Banach spaces. Let A be a Banach algebra with B C A. Let
Z be a subset of a vector space V.

rank(z)

primitive-rank(z)

dim(X)
Xl
L(X,Y)
L(X)
B(X,Y)
B(X)
T(X)
F(X)
K(X)
®(X)
R(X)
®(4)
R(A)
Soc(A)
r(a)

The rank of z € A

The primitive-rank of z € A
The dimension of X

The dual space of X

Linear operators on X into Y
Linear operators on X into X
Bounded operators on X into Y
Bounded operators on X into X
The range of T € B(X,Y)
Finite rank operators in B(X)
Compact operators in B(X)
Fredholm operators in B(X)
Riesz operators in B(X)
Fredholm elements of A relative to the closure of the ideal I in A
Riesz elements of A relative to the closure of the ideal I of A
The socle of A

The spectral radius of a € A

The spectrum of a € A

The resolvent set of a € A

The set of all minimal idempotents of A

The set of all primitive ideals of A

The norm closure of B in A

A star isomorphism

An algebra isomorphism

Direct sum

The kernel of 3

The algebra of all n x n matrices with entries in C

Bounded sequences {z,}, where z, € X

The boundary of Z

The distance from z € V to Z

Invertible elements of A

Finite rank elements of A

The norm closure of F4 in A

The field of complex numbers

The field of real numbers

The positive integers

The Natural numbers

The radical of A
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SUMMARY

The aim of this thesis is to study the asymptotic relation between the
approximation numbers and isolated spectral points with finite multiplicity in a
general Banach algebra setting.

In 1967 T. Yamamoto was the first to show that such asymptotic results hold
for the algebra of n by n matrices with entries in the complex field. About twenty
years later Edmunds and Evans found a meaningful extension of Yamamoto’s
Theorem for bounded operators on a Banach space.

After an extensive study of the notion of finite rank elements, we extend
Yamamoto’s Theorem to a general Banach algebra setting. Recently, Nylen and
Rodman proved a special case of the result by showing that Yamamoto’s Theo-
rem holds for Banach algebras with the spectral radius property and conjectured
that any Banach algebra possesses this property. In this thesis we prove their
conjecture in the affirmative.
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OPSOMMING

Die doel van hierdie verhandeling is om in 'n Banach-algebra die asimp-
totiese verbande tussen die approksimasiegetalle en die geisoleerde eiewaardes
met eindige multiplisiteit te bestudeer.

Hierdie verbande vir die algebra van n by n-matrikse is in 1967 deur T.
Yamamoto bewys en is twintig jaar later deur Edmunds en Evans veralgemeen
na operatore op 'n Banach-ruimte.

Nadat 'n volledige studie van elemente met eindige rang in 'n Banach-
algebra gemaak word, bewys ons dat Yamamoto se stelling veralgemeen kan
word na enige Banach-algebra. Hierdie studie los onder andere 'n oop probleem
van Nylen en Rodman, op naamlik dat elke Banach-algebra die spektraal-radius
eienskap het.
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