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SYNOPSIS 

Abstract evolution problems of type 

lim B u = y 
t-;Q+ f f 

(1) 

are considered in this study. The E- subscript is used to indicate that 

these problems are seen as perturbations of an evolution problem 

d at (Bu)= Au, t > O 
(2) 

lim Bu = y, 
t-;Q+ 

where the pair of operators <AE,Bt> tends, in some sense, to the pair 

<A,B> as e tends to zero. 
a common Banach space X. A 

f 

All operators are linear and have domains in 

and B map into a Hilbert space Y and 
€ € 

A and B into a Hilbert space Y. 

One aspect of this study is to identify sets of initial conditions for 

which unique solutions for (1) and (2) exist. If solutions for (1) and (2) 

exist, both map (O,cn) into the Banach space X and the convergence, with 

respect to some norm in X, of the solution of (1) to that of (2) as E 

tends to zero, is feasible. 

As Y and Y need not necessarily be the same, another aspect of the 
f 

study is to identify initial values y E y 
€ f 

for (1) and y E Y for (2) 

such that the above convergence can be established. 
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To show that unique solutions exist the notion of a B-evolution, as 

developed by Sauer in [S1] is used. This is a generalization of the 

concept of a semigroup. A B-evolution of bounded operators 

{S(t) : t > O}, with generating pair <A,B> can be interpreted as a 

solution operator for the evolution problem (2) as the solution for (2) is 

given by 

u(t) = S(t)y, t > 0. 

In [S2] Sauer constructed a Friedrichs extension <A,B> for a pair 

<A 0 , B0 >, with respect to a third operator C0 • For the special case 

C0 = B0 the closed pair <-A,B> is shown to be the generating pair of a 

holomorphic B-evolution in Y. 

In this study this procedure is adapted for more general situations. The 

two special cases C0 = B0 and C0 = A0 + wB 0 are considered separately 

and sufficient conditions are given for the Friedrichs extension to be the 

generating pair of a holomorphic B-evolution. 

These results are then applied to prove existence results for 

(i) Sobolev equations, including pseudo-parabolic and generalized 

biharmonic equations, and 

(ii) dynamic boundary value problems. 

For all these examples the solutions are given by holomorphic B-evolutions 

for which contour integral representation exist [S1]. These will be used 

to establish convergence results for the evolution equations (1) and (2). 

For strongly continuous semigroups a corollary of the Trotter-Kato Theorem 

states that the pointwise convergence of semigroups is equivalent to the 

pointwise convergence of the resolvent operators for the infinitesimal 

generators. 

For a B-evolution S(t) the concept of a generalized resolvent operator 

P(A) for the generating pair <A,B> was introduced in [S1] as 

P(A) = (AB- A)- 1 • 
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In this study is shown that for holomorphic B-evolutions the convergence of 

B- evolutions may be linked to the convergence of generalized resolvent 

operators. As Y and Y need not necessarily be the same space, this 
f 

result lacks the simplicity of the Trotter-Kato Theorem. 

This result is applied to three examples. In all three cases equations (1) 

and (2) are of different types. Also, in the first example Y = Y for 
f 

all In the second example Y c Y for all 
.f -

In the final example Y c Y with Y independent of f. 
f f 

if 
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In this study is shown that for holomorphic B-evolutions the convergence of 

B- evolutions may be linked to the convergence of generalized resolvent 

operators. As Y and Y need not necessarily be the same space, this 
f 

result lacks the simplicity of the Trotter-Kato Theorem. 

This result is applied to three examples. In all three cases equations (1) 

and (2) are of different types. Also, in the first example Y = Y for 
f 

all In the second example Y c Y for all 
.f -
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f f 
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SilEV!TTING 

Abstrakte evolusie vergelykings van die volgende tipe word in hierdie 

studie ondersoek: 

(1) 

lim Bu= y. 
t-+0+ € € 

Die €-onderskrif dui aan dat die probleem beskou word as 'n steuring van 'n 

evolusie vergelyking 

waar die paar operatore 

d at (Bu)= Au, t > 0 

lim Bu= y 
t-+0+ 

<A ,B > neig na die paar <A,B> 
€ € 

(2) 

as neig na 

0. Alle operatore is lineer en het definisieversamelings in 'n 

gemeenskaplike Banachruimte X. A en B het waardes in 'n 
€ € 

Hilbertruimte Y en A en B het waardes in 'n Hilbertruimte Y. 
€ 

Een aspek van hierdie studie is om beginwaardes te bepaal, waarvoor 

eenduidige oplossings vir (1) en (2) bestaan. Oplossings van (1) en (2) 

beeld ( 0 ,m) af in die Banachruimte X en di t is dus sinvol om die 

konvergensie van die oplossings van (1) na die oplossing van (2) te 

ondersoek. Aangesien Y en Y nie noodwendig dieselfde ruimte is nie, 
€ 

is deel van die ondersoek om beginwaardes y E y 
€ € 

vir (1) en y E Y vir 

(2) te bepaal, waarvoor die konvergensie aangetoon kan word. 
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Om aan te toon dat eenduidige oplossings bestaan, word die begrip van 'n 

B-evolusie, soos ontwikkel deur Sauer in [S1], gebruik. Dit is 'n 

veralgemening van die semigroep-begrip. 'n B-evolusie van begrensde 

operatore {S(t) : t > O}, met genererende paar <A,B>, word 

geinterpreteer as 'n oplossingsoperator vir die evolusie vergelyking (2) 

want die oplossing vir (2) word gegee deur 

u(t) = S(t)y, t > 0. 

In [S2] word 'n Friedrichs- ui tbreiding <A ,B> 

<A0 ,B0 > met betrekking tot 'n derde operator C0 

vir 'n paar opera tore 

gekonstrueer. Vir die 

spesiale geval C0 = B0 word aangetoon dat die geslote paar <-A,B> die 

genererende paar vir 'n holomorfe B-evolusie in Y is. 

In hierdie studie word die prosedure in [S2] 
toepassings. Die twee spesiale gevalle C0 = B0 

aangepas vir algemener 

en C0 = A0 + wB 0 word 

afsonderlik beskou en in elke geval word voorwaardes gegee waaronder 

<-A,B> die genererende paar vir 'n holomorfe B-evolusie is. 

Hierdie resultate word dan toegepas om bestaanstellings te bewys vir 

(i) Sobolev-vergelykings, wat pseudo-paraboliese en veralgemeende 

biharmoniese vergelykings insluit, en 

(ii) dinamiese randwaarde probleme. 

Vir 'n holomorfe B-evolusie bestaan 'n kontoerintegraalvoorstelling [S1]. 

Hierdie voorstellings word gebruik om die konvergensie van oplossings van 

(1) na die van (2) aan te toon. 

Vir st erk kontinue semigroepe volg uit die Trotter- Kato- stelling dat die 

puntsgewyse konvergensie van semigroepe ekwivalent is aan die puntgewyse 

konvergensie van die resolventoperatore van die infinitesimale generatore 

van die semigroepe. 

Vir 'n B- evolusie met genererende paar <A,B> word die veralgemeende 

resolventoperator P(A) in [S1] gedefinieer deur P(A) = (AB - A)- 1 • Vir 

holomorfe B-evolusies word in hierdie studie aangetoon dat die konvergensie 
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van B- evolusies verband hou met die konvergensie van die ooreenstemrnende 
veralgemeende resolventoperatore van die genererende pare. Omdat Y en 

€ 

Y nie noodwendig dies elf de is nie, is die resul taat minder eenvoudig as 

die Trotter-Kato-stelling. 

Die konvergensie-stelling word op drie voorbeelde toegepas waar (1) en (2) 

in elke geval van verskillende tipes is. Ook is Y = Y vir alle t, 1n 
€ 

die eerste voorbeeld; Y CY vir alle 
€ 

in die tweede voorbeeld; 

voorbeeld. 

en, Y c Y vir alle 
€ 

in die laaste 
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CHAPTER 1 
INTRODUCTION 

Abstract evolution problems of type 

lim Bu= y 
t-tO+ € € 

(1.1) 

are considered in this study. The €- subscript is used to indicate that 
these problems are seen as perturbations of an evolution problem 

d at (Bu) = Au, t > 0 
(1.2) 

lim Bu= y, 
t-tO+ 

where the pair of operators 

<A,B> as € tends to zero. 
a common Banach space X. A 

€ 

<A ,B > tends, in some sense, to the pair 
€ € 

All operators are linear and have domains in 
and B map into a Hilbert space Y and 

€ € 

A and B into a Hilbert space Y. 

One aspect of this study is to identify sets of initial conditions for 
which unique solutions for (1.1) and (1.2) exist. If solutions for (1.1) 
and (1.2) exist, both map (O,m) into the Banach space X and the 
convergence, with respect to some norm in X, of the solution of (1.1) to 
that of (1.2) as € tends to zero, is feasible. 

As Y and Y need not necessarily be the same, another aspect of the 
€ 

study is to identify initial values y E y 
€ € 

for (1.1) and y E Y for 

(1.2) such that the above convergence can be established. 

The existence of solutions is dealt with in Chapter 2. The not ion of a 
B-evolution, as developed by Sauer in [S1] is used. This is a 
generalization of the concept of a semigroup. A B- evolution of bounded 
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operators {S ( t) : t > 0}, with generating pair <A, B>, from a Banach 
space Y into a Banach space X can be interpreted as a solution operator 
for the evolution problem (1.2) as the solution for (1.2) is given by 

u(t) = S(t)y, t > 0. 

A summary of results from [S1] that are used in this study is provided in 
Section 2.1. An important property of the generating pair <A,B> is that 
the operators are jointly closed. This joint closedness does not imply 
that both operators are closed. 

In [S2] Sauer constructed a Friedrichs extension <A ,B> for a pair 
<A0 ,B 0 >. The procedure includes introducing a third operator C0 for 

which the expression 

(1.3) 

yields a norm I [ ] I in a subspace of the Banach space X. The inner 
product in Y is denoted by (,) and w is a non-negative constant. If 
(1.3) yields a strong enough norm a closed extension <A,B> of <A0 ,B 0>, 

with respect to C0 , exists. 

For the special case C0 = B0 the closed pair <-A,B> is shown to be the 

generating pair of a holomorphic B- evolution in Y. A review of these 
results is provided in Section 2.2.1. 

In Sections 2.2.2 - 2.2.4 a generalization of [S2] is presented. For the 
expression in (1.3) to be a norm certain conditions of symmetry have to be 
satisfied. Using ideas from [LM] the procedure in [S2] is adapted for 
situations with less symmetry. The two special cases C0 = B0 and 

are considered separately and sufficient conditions are 

given for the Friedrichs extension to be the generating pair of a 
holomorphic B-evolution. 
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These results are then applied to prove existence results for 
(i) Sobolev equations and 

(ii) dynamic boundary value problems. 

Evolution equations of Sobolev type 

Mu'+ Lu= O, t > 0 

lim u = a 
t-tO+ 

(1.4) 

were first introduced by Sobolev [So] . Except for the difference in 
initial conditions, evolution equations of type (1.2) are equivalent to 
Sobolev equations of type (1.4) if M is a closed operator. 

A systematic treatment of the Sobolev equations is presented by Showalter 
( [Sh 1] , [Sh 2]) . His approach is to find conditions for the operator 
-M- 11 to be the infinitesimal generator of a semigroup, after having 
extended the operators L and M separately. 

In our approach L and M are extended jointly. For these extended 
operators the properties of the operator LM- 1 yield stronger results than 
those in [Sh 2]. This fact is illustrated in Section 2.3.3 with an example 
supplied by Showalter [Sh 3]. 

Existence and regularity results for the Dirichlet problem for an elliptic 
partial differential operator of arbitary order are needed for these 
examples. [P] and [F] are used for reference purposes. 

In [S2] the dynamic boundary value problem 

atu = Lu in n X (O,m) 

at(7oU) = -Lvu on an x (O,m) 

lim <U,7oU> = y E L2 (fi) X L2 (8fi) 
t-tO+ 
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is considered. n is a bounded open set in Rn with smooth boundary an. 
L is a second order symmetric differential operator. Lv is the co-normal 

derivative associated with L at the boundary an, and 70 is the trace 

operator. In [S2] is shown that a unique solution for (1. 5) exists for 
every y E 12 (fl) X 12 (an); 12 (n) and 12 (an) being spaces of square 
integrable functions on n and an respectively. 

In Sections 2.4.2 and 2.4.3 evolution problems of type (1.5) are 
considered, with L 

(i) not necessarily symmetric and 
(ii) having additional lower order terms. 

In both these cases it is proved that a unique solution for (1.5) exists 
for every y E L2 (n) X L2 (an). 

Finally, in Section 2.4.4, a dynamic boundary value problem of type 

atu = Lu in n X (O,rn) (1.6) 

at (7oU + k2 (x)Lvu) = -Lvu on an x (O,rn) 

is considered. This type of boundary condition results from a contact 
condition between the domain n and the boundary an. A one-dimensional 
example was solved in [Fu] by means of eigenfunction expansions of boundary 
value problems involving a spectral parameter which also occurs in the 
boundary condition. 

In Section 2.2.4 we apply results from Section 2.2.2 to show that (1.6) has 
a unique solution for every initial condition in L2 (fl) x H

1h(an). The 

space Hl/2 (an) is a Sobolev space defined in [L] . Existence and 
regularity results for regular elliptic boundary value problems as 
developed in [L] are used. 

In Section 2.2 several special cases are considered depending on the 
boundedness and symmetry properties of the different operators. The 
examples that are presented in Section 2.3 and 2.4 cover the whole spectrum 
of these cases. 
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The question of convergence is the next issue to be considered. 

For all the evolution equations that will be presented in Sections 2.3 and 
2.4 the solutions are given by holomorphic B-evolutions. From [S1] follows 
that contour integral representation exist for those B-evolutions. These 
will be used to establish convergence results for the evolution equations 
( 1. 1 ) and ( 1. 2) . 

For strongly continuous semigroups (C0- semigroups) a corollary of the 

Trotter- Kato Theorem [P, p 87] states that if En (t) is a sequence of 

equi- continuous C0- semigroups in a Banach space X and E(t) is a 

C0-semigroup in the same Banach space X, then the pointwise convergence 

of En(t) to E(t) for t > 0 is equivalent to the pointwise convergence 

of R(A ,An) to R(A ,A); R(A ,An) and R(A ,A) denote the resolvent 

operators for the infinitesimal generators An and A of En ( t) and 

E(t) respectively. 

For a B- evolution S(t) the concept of a generalized resolvent operator 
P(A) for the generating pair <A,B> was introduced in [S1J as 
P(A) = (,.\B- A)- 1 • 

The Trotter-Kato Theorem suggests the possibility that the convergence of 
B- evolutions may be linked to the convergence of generalized resolvent 
operators. 

For holomorphic B- evolutions a result of this nature is presented in 
Section 3.2. As Y and Y need not necessarily be the same space, this 

f 

result lacks the simplicity of the Trotter-Kato Theorem. 

The result in Section 3.2 is applied to three examples: 

(i) the convergence of the solutions of pseudo-parabolic equations to the 
solution of a related parabolic equation; 
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(ii) the convergence of the solutions of generalized "biharmonic" 
equations to the solution of a related parabolic equation; and 

(iii) the convergence of the solutions for dynamic boundary value problems 
with imperfect contact to the solution of the related problem with perfect 
contact. 

In the first example y = y 
€ 

for all with Y t- Y 
€ 1 € 2 

with Y independent of €. 
€ 

for all €. 

if 

In the second example 

In the final example 

y C y 
€ 

y C y 
€ 

A special case of the first example has been solved in [T]. The Yosida­
approximation for the semigroup generated by the elliptic operator was used 
and only self-adjoint operators are considered. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

7 

CHAPTER 2 
EXISTENCE OF SOLUTIONS 

2.1 Evolution equations and holomorphic B-evolutions. 

In this section results on B-evolutions from Sauer [Si] are quoted. Only 

the holomorphic case is dealt with as this is sufficient for the examples 

we consider later. 

Let X and Y be complex Banach spaces and let B be a linear operator 

with domain D(B) C X and values in Y. A family {S(t) : t > O} of 

bounded linear operators defined on Y is called a B-evolution [Si, p 298] 

if 

S(t)[Y] c D(B) for all t > 0 
and 

S(t + s) = S(t)BS(s) for all s,t > O. 

Associated with any B- evolution is a semigroup {E(t) : t > O} of linear 
operators in Y defined by 

E(t) = BS(t), t > 0. 

S(t) is called strongly continuous if E(t) is a semigroup of class C0 • 

S(t) is uniformly bounded if there is a constant M > 0 such that 

II S ( t) 11 ~ M for t > 0. 

The Laplace transform P(A) of a strongly continuous, uniformly bounded 

B-evolution S(t) is defined for A with Re A> 0 by 

P(A)y = [ e-AtS(t)y dt for all y E Y. 
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A strongly continuous, uniformly bounded B-evolution is called of type L 
if 

P(A)y E D(B) for all ye Y and all A with Re A> O 

and 

The infinitesimal generator A of a B-evolution S(t) is defined as 
follows: 

Ahx := h- 1 (BS(h)B - B)x for x E D(B) and h > 0 

x E D(A) if Ax:= lim Ahx exists. 
h--+O 

A B- evolution S (t) of type L is determined uniquely by the pair of 
linear operators <A0 ,B 0> with A0 and B0 the restrictions of A and 

B to D = Rg(P(A)), the range of P(A). D does not depend on A with 
Re A> 0. [S1, p 292 & 293] 

<A0 ,B 0 > is called the generating pair of the B-evolution S(t) 

is the infinitesimal generator of the associated semigroup E(t). 

B-evolutions yield solutions to certain evolution equations. 

and A B- 1 
0 0 

Theorem 1 [S1, p 293] Let y E Rg(B 0 ) and u(t) = S(t)y. Then 

u(t) ED and 

d at (B 0u) = A0u 

lim B0u = y. 
t--+0 + 

Also, if y E Y such that S(t)y E D and u(t) is any solution of the 
initial value problem then u(t) = S(t)y. By a solution we mean a function 
u with values u(t) ED for all t > O, and B0u differentiable for all 

t > 0 with respect to the norm topology in X. 
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A B-evolution is holomorphic if the associated semi-group E(t) is 
holomorphic [P, p 61 & 62]. 

For a holomorphic B-evolution Theorem 1 remains valid for any y E Y and 
the B-evolution is also a B0-evolution. [S1, p 298] 

It is important to know if a given pair of operators <A 0 ,B 0 > is the 

generating pair of a holomorphic B-evolution of type L. 

Theorem 2 [S1, p 296] Let <A0 ,B0> be a pair of operators with a common 

domain D c X and values in Y. <A 0 ,B 0> is the generating pair of a 

holomorphic B0-evolution of type L in Y if and only if 

B0 has a bounded inverse 

A0 B01 generates a uniformly bounded holomorphic semigroup in Y. 

Remark 

The uniform boundedness of the semigroup is not a serious restriction. If 
the semigroup E(t) is not uniformly bounded there still are w > 0 and 

M > 0 such that 

IIE(t)II < Mewt, t > 0 [P, p 4, Th 2. 2] 

and then 

is the infinitesimal generator of a uniformly bounded semigroup. Iy is 

the identity map in Y. 

From Theorem 2 it is clear that <A0 - wB 0 , B0> is the generating pair of 

a holomorphic B0-evolution S(t) of type L. 
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Let y E Y and u(t) = S(t)y. From Theorem 1 

d at (B 0u(t)) = (A0 - wB 0 )u(t), t > 0 

lim B0u(t) = y. 
t~o+ 

Let v(t) = ewtu(t). Then 

d at (B 0v(t)) = A0v(t), t > 0 

lim B0v(t) = y. 
t~o+ 

2. 2 Holomorphic B- evolutions and the Friedrichs extension of a pair of 

operators. 

2.2.1 Introduction 

Sauer [S2] presented another set of sufficient conditions for a pair of 
operators <A,B> to be the generating pair of a holomorphic B-evolution of 
type L. The conditions were obtained by constructing a Friedrichs 
extension of a pair of operators <A0 ,B 0 >. 

For reference purposes the main results of [S2] are quoted. 

Let X be a complex Banach space and Y a complex Hilbert space. A0 , B0 

and C0 are linear operators with a common domain D0 c X and map into 

Y. Define the bilinear forms R0 and S0 as follows: 

R0 (u,v) .- (A0u, C0v) 

S0 (u,v) .- (B 0u, C0v) 

with (· ,·) denoting the inner product in Y. 

u,v E D0 

II II and II llx will denote the norms in Y and X respectively. 
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Assume that: 

1. R0 and S0 are Hermitian. 

2. R0 and S0 are nonnegative. 

3. For some w ~ 0 the form [,] with 

[ u, v] : = R0 ( u, v) + wS O ( u, v) 

is positive definite on D0 in the sense that there exists c > 0 

such that 

I [u] 1
2 

.- [u,u] > cllullx for all u E Do. 

4. The mapping 

X E <Do ' II llx> --+ X E <Do ' I [ ] I> 

is injective in the sense that if {xn} C D0 is a Cauchy- sequence in 

I [ ] I and II xn II X --+ 0 , then I [ xn] I --+ 0 • 

5. C0 [D 0 ] is dense in Y. 

6. B0 and C0 are bounded in the norm I []I. 

Under these conditions a closed extension 

constructed on a subspace D with D0 c D c X. 

of is 

A pair of operators <A,B> 
{xn} in D with xn --+ x 

is called closed if for a convergent sequence 
in X, Axn --+ y and Bxn --+ z in Y it 

follows that x ED, Ax= y and Bx= z. The operators A and B are 
also called jointly closed. 

In the special case C0 = B0 it was shown that <A,B> is the generating 

pair of a holomorphic B-evolution of type L if the following additional 
assumption is satisfied. 
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7. For some k > 0 

So(u,u) = 11Boull 2 > k2 llullx for all u E Do-

This technique will be extended to situations with less symmetry. An 

approach similar to that of Lax and Milgram [LM] will be used. The special 

cases C0 = B0 and C0 = A0 + wB 0 will be considered. 

2.2.2 Construction 

Let X be a complex Banach space and Y a complex Hilbert space. A0 , B0 , 

C0 and N0 are linear operators with a common domain D0 c X which map 

into Y. Define bilinear forms R0 , S0 and T0 as follows: 

R0 (u,v) .- (A0u, C0v) 

S0 (u,v) .- (B 0u, C0v) 

T0 (u,v) .- (N0u, C0v) u,v E D0 • 

In this case a closed extension for the pair is 

constructed. A0 is regarded as the "symmetric" part of an operator in the 

sense of Assumption F2 below. N0 is regarded as the "anti-symmetric" part 

of the same operator. 

illustration. 

The example in Section 2.4.2 serves as an 

This extension for <A 0 + N0 , B0 > is constructed under a boundedness 

condition on See Assumption F8 below. A closed extension for 

<A 0 ,B 0> can be constructed under the same condition with these extensions 

not necessarily defined on the same subspace of X. 

If a stricter boundedness condition on N0 (see Assumption F9 later on) is 

assumed the closed extensions for <A0 + N0 , B0> and <A0 ,B0> are defined 
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on the same subspace of X. Also, A0 and N0 can be extended separately 

and the sum of these extensions equals the extension of A0 + N0 • See 

Theorem 4 below. 

The example in Section 2.4.3 serves as an illustration. In that case the 
operator N0 is used for some lower order terms of a differential 

operator. 

Assume that: 

Fl. For some w ~ 0 the form [·,·] with 

[ u, v] : = R0 ( u, v) + wS O ( u, v) u,v E D0 

is Bermi t ian. 

F2. Re S0 (u,u) > 0 for all u E D0 • 

F3. The form [ , ] is positive definite on D0 in the sense that there 

is some c > 0 such that 

I [u] 1
2 := [u,u] ~ cllullx for all u E Do. 

F4. The mapping x E <D 0 , II llx> --+ x E <D 0 , I [ ] I> is injective in the 

sense that if {xn} C D0 is a Cauchy- sequence in I [ J I and 

F5. C0 [D 0 ] is dense in Y. 

F6. B0 and C0 are bounded in I []I. 

F7. For some 6 ~ 0 and O ~ E < 1 
Re T0 (u,u) > - El [u] 1

2 - 6 Re S0 (u,u) for all u E D0 • 

F8. T0 is bounded in I [ ] 1-
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Theorem 3 

3 .1 For some subspace D with D0 C D C X 

extension <A,B> on D of <A0 ,B0 >. 

3. 2 For some subspace D' with D c D' c X 0 

extension <M,B'> on D' of <A 0 + N0 , B0>. 

there exists a closed 

there exists a closed 

The proof of this theorem follows from the following lemmas. 

Let D1 denote the completion of D0 with respect to I []I. 

Lemma 1 The bilinear forms R0 , S0 , T0 and the operators B0 and C0 

may be extended by continuity to R, S, T and B1 and C1 on D1 • 

F6 and F8 imply that R0 , S0 and T0 are bounded forms with respect to 

I[·] I and B0 and C0 are bounded operators. 

For complex A let 

Q(u,v;A) := R(u,v) + AS(u,v) 
V(u,v;A) := R(u,v) + T(u,v) + AS(u,v); u,v E D1 • 

For A real 
Re Q ( u , u ; A ) = I [ u] I 2 + (A w) Re S ( u , u) 

and 
Re V(u,u;A) = I [u] 1

2 + (A - w)Re S(u,u) + Re T(u,u) for all u E D1 • 

Using F7 
Re V(u,u;A) > (1 - €) I [u] I 2 + {A - w - o)Re S(u,u) for all u E D1 • 
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For A~ w 

Re Q(u,u;A) ~ I [u] 1
2 for all u E D1 (2-1) 

and for A~ w1 = w + 8 

Re W(u,u;A) ~ (1 - €)1 [u] 12 for all u E D1 • (2- 2) 

By the Lax-Milgram lemma [LM] for A~ w there exists for given y E Y a 
unique qy E D1 such that 

(2- 3) 

Also for A> w1 and given y E Y there exists a unique wy E D1 such 

that 

Define for the linear operators 

Lemma 2 For A ~ w1 and µ ~ w1 

and 

Proof From the identities 
(y,C 1v) = Q(qy,v;A) = R(qy,v) + AS(qy,v) 

= Q(qy,v;µ) - (µ - A)S(qy,v) 

= Q(qy,v;µ) - (µ - A)(B 1 qy,C 1 v) 

we conclude that 
Q(qy,v;µ) = (y + (µ - A)B 1qy,C 1v) 

= (y + (µ - A)B 1PQ(A)y,C 1v). 

(2-4) 

and 
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From the definition of Pq(µ) 

qy = Pq(µ)(y + (µ - A)B 1Pq(A)y) 

or 

Similarly, for y E Y, 
(y,C1v) = W(wy,v;A) 

= R(wy,v) + T(wy,v) + AS(wy,v) 

= W(wy,v;µ) - (µ - A)S(wy,v) 

= W(wy,v;µ) - (µ - A)(B1wy,C1v) 

and therefore 
W(wy,v;µ) = (y + (µ - A)B 1wy,C1v) 

= (y + (µ - A)B 1Pw(A)y,C1v). 

From the definition of Pw(µ) 

WY= Pw(µ)(y + (µ - A)B1Pw(A)y) 

or 

Lemma 3 For A~ w1 the operators Pq(A) and Pw(A) are invertible and 

the ranges Rg(Pq(A)) and Rg(Pw(A)) are independent of A. 

Proof If Pq(A)y = uy = 0 for some y E Y it follows from the definition 

of Pq(A) that (y,C1v) = 0 for all v E D1. From Assumption F5 that 

C0 [D 0 ] is dense in Y it follows that C1 [D 1] is also dense in Y as 

C1 [D 1] J C0 [D 0]. Therefore y = 0 and Pq(A) is invertible for A~ w1. 

In a similar way it follows that Pw(A) is invertible for A> w1. 
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To prove the second statement let u E Rg(PQ(A)) for some A~ w1 • Then 

u = PQ(A)y for some y E Y. 

From Lemma 2 for µ ~ w1 

for 

u = PQ(µ)y + (µ - A)PQ(µ)B 1PQ(A)y 

= PQ(µ)(y + (µ - A)B 1PQ(A)y) 

= PQ(µ)y' 

Similarly, Rg(PwP)) is independent of 

Define D = Rg(PQ(A)) for A~ W1, and 

D' = Rg(PwP)) for A ~ "'1. 

A for A ~ "'1. 

For A~ w1 , µ ~ w1 define the operators A and B on D as 

A • - (µ - A f 1 
( µP ij1 (A ) - AP ij1 ( µ) ) 

B .- (A - µ)- 1 (Pij1 (A) - Pf(µ)). 

Define, also, the operators M and B' on D' as 

M .- (µ - A)-l(µPvlP) - APvl(µ)) 

B' .- (A - µ)-l(P\/(A) - pVl(µ)). 

Lemma 4 The operators A, B, M and B1 are independent of A and µ. 

Pij 1 (v) = vB + A for v ~ w1 and 

Pv 1 (v) = vB' + M for V ~ W1· 
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Proof For u ED, v ED and A and µ as in the definition of A and B 
Q(u,v;A) = ((AB+ A)u,C 1v) 

and 
Q(u,v;µ) = ((µB + A)u,C 1v). 

The identity 
(µ - v)Q(u,v;A) + (v - A)Q(u,v;µ) + (A - µ)Q(u,v;v) = 0 

yields 
Pij 1 (v) = vB + A for v ~ w1 • 

Also, for u ED', v ED' and A and µ as in the definition of M and 
B' 

and 

The identity 
(µ - v)V(u,v;A) + (v - A)V(u,v;µ) + (A - µ)V(u,v;v) = 0 

yields 
V(u,v;v) = ((vB' + M)u,C 1v) for all v E D1 

andt~s 
Pv 1 (v) = vB' + M for V ~ W1· 

Proof For u,v E D0 

Q(u,v;A) = ((AB 0 + A0 )u,C0v) 

andt~s 
PQ(A)(AB 0 + A0 )u = u ED. 

This proves that D0 c D or B0 c B and A0 c A. D c D1 follows from 

the definition of D. From Lemma 4 Pij 1 (v) = vB + A for all v ~ w1 • 
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For u E D0 , l/1 ~ "'1 ' ll 2 ~ "'i, V 1 f l/2 

Pf (v 1 )u = v1Bu +Au= v1B0u + A0u 

and Pf (v2 )u = v2Bu +Au= v2B0u + A0u. 

It follows that (v 2 - v1 )Bu = (v 2 - v1 )B 0u. 

Hence Bu= B0u 

and Au= A0u. 

A and B extend A0 and B0 respectively. 

That B1 extends B follows from Lemma 2. 

For any u ED, u = PQ(J)y for some y E Y. 

or 

Similarly, for u,v E D0 

or 
Pw(J)(JB 0 + N0 + A0 )u = u 

and therefore D0 c D' or B0 c B' and A0 + N0 c M. 

D' c D0 follows from the definition of D'. 

From Lemma 4 Pv 1 (v) = vB' + M for all V ~ "'1· 

B' and M extend B0 and A0 + N0 respectively. 

B' c B1 follows from Lemma 2. 

Lemma 6 The pairs of operators <A,B> and <M,B'> are both closed. 
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Proof For A~ w1 the operators PQ(A) and Pv(A) are all bounded. Ve 

prove this for Pv(A). The proof for Pq(A) is similar. [S2, p 244]. 

For A~ w1 and y E Y, from (2-2) and (2-4), 

I [Pv(A)y] 1
2 ~ Re V(Pv(A)y,Pv(A)y;A) 

= Re(y,C1Pv(A)y) 

< l(Y,C1PvP)Y)I 

< IIYII IIC1PvP)yll 

From Assumption F6 

and from Assumption F3 we conclude that 

For the inverse operators 

[Y, p 79] . 

and are closed. 

From Lemma 4 this implies AB+ A and AB'+ M are closed for A~ w1 • 

But if AB + A is closed for at least two non- zero complex numbers the 

pair <A,B> is closed [S1, p 295]. Similarly for <M,B'>. 

Proof of Theorem. 3 In Lemmas 1, 2, 3 and 4 the validity of the 

definitions of the subspaces D and D' and the operators A, B, M and 

B' is shown. 

In Lemmas 5 and 6 it is show that <A,B> and <M,B'> are closed 

extensions of <A0 ,B 0> and <A0 + N0 , B0> respectively. This completes 

the proof. 
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Under the additional assumption: 

F9 N0 is bounded in I [ ] I , 
stronger results for these extensions are obtained. 

Note that Assumptions F6 and F9 imply F8 which now becomes superfluous. 

The operator N0 may be extended by continuity to N1 on D1 and T0 

may be extended to T with 

The following result now holds. 

Theorem 4 If F9 is satisfied 
B' = B and M =A+ N 

with N0 c NC N1 • 

Proof Ve first show that D = D'. For any u ED' and A> w1 there is 

a y E Y -with Pv(A)y = u. 

Therefore from (2-4) 

V(u,v;A) = R(u,v) + T(u,v) + AS(u,v) = (y,C 1v) for all v E D1 , 

and 

Q(u,v;A) = R(u,v) + AS(u,v) = (y,C 1v) - T(u,v) 

= (y - N1u,C 1v) for all v E D1 • 

From (2- 3) 

PQ(A)(y - N1u) = u 

and 

Similarly D c D' and thus D = D'. As B c B1 and B' c B1 this shows 

that B' = B. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

22 

For any u E D0 

Nu= Mu - Au= {A 0 + N0 )u - A0u = N0u 

and 

N0 c N. 

For u ED= D' 

V{u,v;A) ={{AB+ M)u,C 1v) for all v E D1 

and 

This yields 

V(u,v;A) - Q(u,v;A) = (Nu,C 1v) for all v E D1 • 

But also 

V(u,v;A) = R(u,v) + AS(u,v) + T(u,v) 

= Q(u,v;A) + (N 1u,C 1v) 

or 

As C1 [D 1 ] is dense in Y from Assumption F5 

{N 1u - Nu,C 1v) = 0 for all v E D1 

yields 

N1u = Nu for all u ED= D' 

or 

For the closed pairs <A,B> 
B'-evolutions B or B' 
assumption is sufficient: 

or <M,B'> to be generating pairs of B- or 
must have a bounded inverse. The fallowing 

F10 For some k > 0, IIB0 ull > kllullx for all u E D0 • 
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Theorem 5 If F10 is satisfied 

IIB 1 ull ~ kllullx for all u E D1. 

Proof For any there is a sequence 

I [un - u] I-+ 0 as n-+ w. 

From Assumption F3 

cllun - ullx: ~ I [un - u] I 2 -+ 0 as n -+ w 

and from Assumption F6 for some b > 0 

IIBoun - B1ull = 11B1 (un - u)II ~ bl [un - u] I -+ 0 as n-+ w. 

From Assumption F10 

0 ~ 11B o ull 2 
- k2 llunllx: -+ IIB1 ull 2 

- k2 llullx: as n -+ 00 • 

Corollary 1 B and B1 have bounded inverses. 

Proof B c B1 and B' c B1 • 

In order to proceed the operator C0 will have to be specified. 

2.2.3 Special case 1 C0 = B0 

In this case R0 (u,v) = (A 0u,B 0v) 

S0 (u,v) = (B 0u,B0v) 

T0 (u,v) = (N0u,B0v). 

Assumption F2 is satisfied as 

ReS 0 (u,u) =IIB 0ull 2 ~O for all uED0 • 

Assumption F1 is satisfied if and only if R0 is Hermitian. 

with 
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Theorem 6 Let C0 = B0 and assume that F1 - F8 and F10 are satisfied. 

Then -M(B')- 1 is the infinitesimal generator of a holomorphic semigroup 

in Y. 

Proof Let L = -M(B'f 1 - w1ly. The operator L is well-defined as 

Corollary 1 yields that (B')- 1 exists. 

For the domain D(L) of L is known that D(L) = Rg(B') J B0 [D 0 ] = C0 [D 0], 

and from Assumption F5 then follows that D(L) is dense in Y. 

For ,\ > 0 
,\ly - L = (,\ + w1)ly + M(B')- 1 

= ((,\ + w1)B' + M)(B')- 1 

= pWl(,\ + W1)(B')-l 

and hence 

(Aly - Lf 1 = B'Pw(,\ + w1) 

is defined on Y. 

We will now show that this resolvent operator is bounded. 

For u ED' and f = B'u let 
p = ((,\ + w1)B'u + Mu,B'u) 

with 

Then 

= ,\IIB'ull 2 + w1S(u,u) + R(u,u) + T(u,u) 

= Allfll 2 + q 

q = R(u,u) + w1S(u,u) + T(u,u), w1 = w + o. 

Re q = I [u] 1
2 + 6S(u,u) + Re T(u,u) 

and from Assumption F7 

Re q ~ ( 1 - E ) I [ u] I 2 
• 

From Assumption F8 

llm qi = llm T(u,u) I < IT(u,u) I ~ ml [u] 1
2 

for some m > 0. 
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Define K(0) := {v EC: larg vi ~ 0}. 

For 0 = arctan (1 ~ f) <; we have shown q E K(0) for all u ED'. 

The lemma in the Appendix now implies that for any ¢, 0 < ¢ < ; - 0 

there is some c(~) > 0 with 

But IPl 2 ~ IIP + w1 )B'u + Mull 2 llfll 2 and this yields 

II (A + "'1 ) B 'u + Mull 2 ~ c ( ¢) p I 2 II f 112 

or, equivalently, 

II (Aly - L)fll ~ c( !b/ /2 IIHII for all f E D(L) and all A E K(; + ¢). 

This implies for the resolvent set p(L) of L that 

p(L) 2 {A : A> O} 
and then from a well-known result in spectral theory ([F, p 73, problem 4]) 

p(L) 2 K(; + ¢). 

This proves that L is the infinitesimal generator of a uniformly bounded 

holomorphic semigroup in Y. [P, p 61 & 62]. 

-M(B'f 1 = L + w1Iy is the infinitesimal generator of a holomorphic 

semigroup in Y. 

Theorem 7 Let C0 = B0 and assume that F1 - F8 and F10 are 

satisfied. Then <-M - w1B' ,B'> is the generating pair of a holomorphic 

B-evolution S(t) of type L in Y. 

Proof From Corollary 1 B' has a bounded inverse and from the proof of 

Theorem 6 L = - (M + w1 B') (B' )- 1 is the infinitesimal generator of a 

uniformly bounded holomorphic semi group in Y. The result fallows from 

Theorem 2. 
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Theorem 8 Let C0 = B0 and assume that F1 - F8 and F10 are 

satisfied. For· any y E Y let 
u(t) = ew1tS(t)y. 

Then u is the unique solution to 

h (B'u(t)) = -Mu(t) 

lim B'u(t) = y. 
t-+0+ 

Proof See the remark in Section 2.1. 

Remarks 

1. Let C0 = B0 and assume Fl - F10. Then M(B'f 1 = (A + N)B- 1 and 

<-A - N - w1B,B> will be the generating pair of a holomorphic B-evolution 

S(t) of type L. For y E Y and u(t) = ew1ts(t)y 

h (Bu(t)) = - (A+ N)u(t) 

lim Bu(t) = y. 
t-+0+ 

2. For N0 = 0 Assumption F7 is satisfied for 6 = 0. In the proof of 

Theorem 6 m = 0 and O = 0 imply that any value for ¢, 0 < ¢ <; may 

be used. In this case these results specialize to the results of Sauer 
[S2] . 

3. In the proof of Theorem 6 is shown that p(L) J K(; + ¢). This 

implies that p(-M(B')- 1 ) ~ {A : A - w1 E K(i + ¢)}. 

2.2.4 Special case 2 C0 = A0 + wB 0 

In this case R0 (u,v) = (A0u,A0v + wB 0v) 

S0 (u,v) = (B 0u,A0v + wB 0v) 

T0 (u,v) = (N0u,A0v + wB 0v) 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

27 

Assumption Fl is satisfied for any w ~ 0 as 
[u,v] = (C 0u,C0v). 

Assumption F2 is satisfied if and only if for some w ~ 0 
Re (B 0 u,A0 u) ~ - wllB 0 ull 2 for all u E D0 • 

C0 is bounded in I [ ] I as IIC 0ull 2 = I [u] 1
2

• 

A0 = C0 - wB 0 and from Assumption F6 follows that A0 is bounded in 

I [ ] I and may be extended by continuity to Ai on Di. In this case 

R(u,v) = (Aiu,C 1v) for all u,v E D1 • 

Lemma 7 Ac Ai. 

Proof Q(u,v;A) = (ABu + Au,Civ) for all u ED, v E D1 

and Q(u,v;A) = R(u,v) + AS(u,v) 
= (Aiu+ ABiu,Civ) for all u,v E Di. 

For u ED 
(Aiu - Au,Civ) = 0 for all v E D1 

and as C1 [Di] is dense in Y, this yields Aiu= Au for all u ED. 

The following two additional assumptions are needed. 

F11 For some 0, 0 ~ 0 <; 
S0 (u,u) E K(O) for all u E D0 • 

F12 B0 [D 0 ] is dense in Y. 

Note that Assumption F11 implies F2 which now becomes superfluous. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

28 

In the results that follow we assume that N0 = 0. This is done because 

the bilinear form 
operators. 

[ ' ] remains Hermitian even for nonsymmetrical 

Theorem 9 N0 = 0 and assume that F3 - F6, 

F11 - F12 are satisfied. Then -An- 1 is the infinitesimal generator of a 

holomorphic semigroup in Y. 

Proof Let L = -An- 1 - wiy. 

The operator L is well-defined as Corollary 1 yields that n- 1 exists. 

For the domain D(L) of L it is known that 

D(L) = Rg(B) J Rg(B 0 ) 

and from Assumption F12 follows that D(L) is dense in Y. 

For ,,\ > 0 

..\Iy - L = (..\ + w)Iy + An- 1 

= ((..\ + w)B + A)B- 1 

= Pf(,,\ + w)n- 1 

and hence 

(..\Iy - L)- 1 = BPQ(,,\ + w) 

is defined on Y. 

We now show that this resolvent operator is bounded. 

For u ED and f = Bu let 

p = ((,,\ + w)Bu + Au,Bu) 

with 

= ..\IIBull 2 + (Au + wBu,Bu) 

= ..\llfll 2 + q 

q = S(u,u), the complex conjugate of S(u,u). 
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Assumption F11 implies that q E K(O) for all u ED and the lemma in the 
Appendix that for any ¢, 0 < ¢ <; - 0 there is some c(¢) > 0 with 

As in the proof of Theorem 6 this implies that L 

generator of a uniformly bounded holomorphic 
[P, p 61 & 62] . 

is the infinitesimal 
semigroup in Y. 

-AB- 1 = L + wly is the infinitesimal generator of a holomorphic semigroup 

in Y. 

Theorem 10 Let C0 = A0 + wB 0 , N0 = 0 and assume that F3 - F6, 

F10 - F12 are satisfied. Then <-A - wB,B> is the generating pair of a 
holomorphic B-evolution S(t) of type L in Y. 

Proof From Corollary 1, B has a bounded inverse and from the proof of 
Theorem 8 L = - (A+ wB)B- 1 is the infinitesimal generator of a uniformly 
bounded holomorphic semigroup in Y. The result follows from Theorem 2. 

Theorem 11 Let C0 = A0 + wB 0 , N0 = 0 and F3 - F6, F10 - F12 are 

satisfied. For any y E Y let u(t) = ewtS(t)y. Then u is the unique 
solution to 

~ (Bu(t)) = -Au(t) 

lim Bu(t) = y. 
t-+0+ 

Proof The result follows from Theorem 10 and the remark in Section 2.1. 

Remark 

In the proof of Theorem 9 

p(L) ~ K(; + ¢). 

This implies that p(-AB- 1 ) J {A A - w EK(;+¢)}. 
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2.3 Sobolev equations 

2.3.1 Formulation of the problem 

In this section the results of Section 2. 2 will be applied to a Sobolev 

equation 

8t(M(x,D)u) = -L(x,D)u, u = u(x,t), x En, t > O, 

aau = o, 0 ~ lal < max {m,£}, x E an, t > o, (2.5) 

M(x,D)u(x,t)lt=O = y(x), XE n. 

n is a bounded domain in Rn with a Ceo- boundary an. M and L are 

uniformly strongly elliptic partial differential operators of order 2m 
and 2l respectively with coefficients sufficiently smooth. [F, p 1,2]. 

In order to formulate the initial boundary value problem as an evolution 
equation of the type discussed in Sections 2 .1 and 2 .2 we need the 

following function spaces. 

Hk (n) denotes the Sobolev space of complex-valued functions with all 

derivatives up to order k square integrable. [F, p 33]. 

H~ (n) is the closure of C~ (n) in Hk (n), C~ (n) being the space of 

infinitely differentiable functions with compact support in n. The norm 

in Hk(n) is denoted by II Ilk• 

In the space L2 (n) of square integrable functions the norm is denoted by 

II II n and the inner product by ( , ) n . 

Define a linear operator M with domain D(M) c H2 m(n) 
Rg(M) c L2 (n) by 

(Mu)(x) = M(x,D)u(x). 

and range 
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Likewise, the linear operator L with D(L) c H2 l(n) and Rg(L) c L2 (fi) 

is defined by 

(Lu)(x) = L(x,D)u(x) [F, p 70] . 

The initial boundary value problem (2.5) is then formulated as 

d at (Mu(t)) = -Lu(t), t > 0 

lim Mu(t) = y 
t-+0+ 

(2.6) 

The boundary condition in generalized form is incorporated by the 
requirement that u(t) E H~(n), k = max {m,l}. 

The two cases m ~ l and m < l are treated separately. 

In both cases we assume that M is positive definite in the sense that for 
some c1 > 0 

For M and L the following a priori inequalities are well- known 
[F, p 68] . 

For some k1 > 0 and k2 > 0 

and 

From (2.7) and (2.8) 
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or 

(2.10) 

It is also clear that for some m1 > 0 and l 1 > 0 

(2 .11) 

and 

(2.12) 

Also, for some m2 > 0 and £2 > O, 

(2.13) 

and 

(2.14) 

2.3.2 The case m ~ l 

Note that the pseudo-parabolic equations (m = l) are included as a 
special case. 

We use the results of Sections 2 .1 and 2. 2 to prove the existence of a 
unique solution to the initial value problem (2.6). 

Using the notation of Section 2.2, let 

and 

B0 = M0 = Mino' the restriction of M to D0 , 

A0 = L0 = Lino' the restriction of L to D0 • 

For C0 = A0 + wB 0 and N0 = 0, we show that Assumptions F3 - F6 and 

F10 - F12 are satisfied and that Theorem 11 applies. 
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Assumption F3 

We have to show that for some w ~ 0 there is a c > 0 such that 

For any w > 0, u1M0 + 10 is a uniformly strongly elliptic operator of 

order 2m. From the a priori inequality [F, p 68] there is some 

From (2.7) and (2.14) 

Re (wM0u + L0u,u)n ~ wc 1 llull! - l 2 llull} ~ (wc 1 - l 2 )llull! 

for all u E H~(fi) n H2m(n). (2.16) 

From (2.15) and (2.16) it easily follows that the assumption is satisfied 

for u1 > £2/c 1 with c = c(w) = 81/k4 (1 + 81), 81 = wc 1 - £2 > 0. 

Assumption F4 

We have to show that if { un} c H~ (fl) n H2 m (fl) is a Cauchy- sequence in 

I [ ] I and llunl1 2m-+ O, then I [unJ I -+ 0. 

Note that from Assumption F3, (2.11) and (2.12) for u1 > l 2 /c 1 

Hence, I [ ] I is equivalent to the H2 m(n)-norm and the assumption is 
satisfied. 
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Assumption F5 

We have to show that 

is dense in L2 (fi). 

Indeed, for w > l 2/c 1 , wM0 + L0 is positive definite and wM0 + L0 is a 

bijection from onto [F, p 71] . Hence 

Assumption F6 

We have to show that B0 = M0 is bounded in I []I. 

From (2.11) and Assumption F3 for w > l 2 /c 1 

Assumption F10 

We have to show that for some k > O, 

11B o ull = IIMo ulln ~ kllull for all U E Ho (n) n H2 m (n) . 
2m 

It follows directly from (2.10). 

Assumption F11 

We have to show that for some 0, 0 ~ 0 <; 
S0 (u,u) = (M0u,L0u + wM0u)n E K(O) for all u E H0(fi) n H2m(n). 
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From (2.11) and (2.12) 

IIm (M0u,L0u + wM 0u)nl = IIm (M0u,L 0u)nl 

< I (Mou,Lou)nl 

~ ml l1llull~m for all U E H~(n) n H2m(n). 

From (2.10), (2.11) and (2.12) 

Re(Mou,Lou + wMou)n ~ - I (Mou,Lou)n I + wllMoulln 

~ -ml l1llull~m + w/k~llull~m for all U E H~(n) n H2m(n). 

For w > m1£1k~ let 62 = w/k~ - m1£1 > 0. The assumption is satisfied 

for w > m1£1k~ with 0 = arctan (m1£1/62). 

Assumption F12 

Ve have to show that Rg(M0 ) is dense in L2(fi). 

Rg(M0 ) = {M0u: u E H~(n) n H2m(n)}. From (2.7) M0 is positive definite 

and therefore a bijection from H~(n) n H2m(n) onto 12 (fl). [F, p 71]. 

Remarks 

I [ ·] I is equivalent 1. In this case 

D0 = H~(fi) n H2m(n) is a closed subspace in 
to the 

H2m(n) 

construction in Section 2.2 Hence 

H2m(n)-norm. 
and in the 

and 

2. From Theorem 10 is the generating pair of a 

holomorphic M0-evolution S(t) of type L on L2(fi). 
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3. Note that for Assumption F3 to hold, we need 

w > ldc1 

and for Assumption F11 to hold, we need 

4. If L is positive definite in the sense that for some c2 > 0 

condition (2.17) is superfluous since then 

Re (wM0u + L0u,u)n ~ wc 1 llull! + c2 llnll} > wc 1 llull! 

for all u E H~(fi) n H2 m(n) 

and Assumption F3 is satisfied for all w > 0. 

Theorem 12 For m ~ l and any y E L2 (n) the unique solution to 

is given by 

}i (Mu(t)) = -Lu(t), t > 0 

lim Mu(t) = y 
t-+0+ 

(2.17) 

(2.18) 

(2.19) 

with S(t) the holomorphic M0 - evolution of type L with generating pair 

Proof. The result follows directly from Theorem 11. 
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Remark 

In Theorem 12 the solution u may also be written as 

u(t) = S1 (t)y 

with S1 (t) the holomorphic M0-evolution with generating pair <-L 0 ,M0 >. 

From the remark on p 23 

p(-L0M01
) 2 {A : A - w E K(f + ~)}. 

2.3.3 The case m < l 

In this case we assume that L is positive definite in the sense that 

(2.19) is satisfied. Choosing X, Y and D0 is more involved than in the 

previous case. 

M is a bijection from H~(fi) n H2 m(n) onto L2 (fi) and L a bijection 

from H{(n) n H2l(n) onto L2 (fi). Inequality (2.10) is used to show that 

Assumption F10 is satisfied and hence we choose X = H2m(n). The boundary 

condition implies that D0 ~ H~(fi). Hence D0 ~ H~(n) n H2 l(n). Note that 

V = M [H[ (fl) n H2 £ (n) J need not be dense in 12 (n) as the orthogonal 

complement 

need not be trivial. 

Let Y = Cl (M [H; ( n) n H2 £ ( n)] ) , the closure being with respect to the 

L2 {fi)-norm. Let D0 = 1- 1 [Y]. 

For this choice of Y and D0 it has been show in [VJ that: 
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Do ( Ht(n) n H2 l(n) ( X 

Y = M[H~m(n)J for l ~ 2m 

Y = M[Ht(n) n H2m(n)J for m < l < 2m 

Cl(Rg(M0 )) = Y 

Rg(wM0 + L0 ) = Y for w > 0. 

Ve assume that for some 0, 0 ~ 0 < ;, 

(2.20) 

Ve will present examples of pairs of operators that satisfy this condition 
at the end of this section and also in Chapter 3. 

For and we show that 

Assumptions F3 - F6 and F10 - F12 are satisfied and that Theorem 11 
applies. 

Assumption F3 

we have to show that for some w ~ 0 there is a c > 0 with 

For any w ~ 0, wM0 + L0 is a uniformly strongly elliptic operator of 

order 2l. From the a priori inequality [F, p 68] there is some 
k4 = k4 (w) > 0 such that 

(2.21) 

From (2. 7) and (2 .19), as llullm ~ llulll 

Re(wM0u + L0u,u)n > (wc 1 + c2 )llull! 

> c2 llull! for all u E D0 • (2.22) 
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From (2.22) 

C2llulln < C2llull! ~ Re(wMou + Lou,u)n 

< I (wM0u + L0u,u)nl 

< llwMou + Loullnllulln for all u E Do. 

Combining this with (2.21) 

The assumption is satisfied for any w ~ 0 with c = c2 /k 4 (1 + c2 ), as 

!lull ~ !lull /J for all u E D0 • 2 m 2 {. 

Assumption F4 

Ve have to show that if { un} c D0 is a Cauchy- sequence in I [ ] I and 

llunl1 2m-+ O, then I [unJ I -+ 0. 

Note that from Assumption F3 and (2.11) and (2.12) for w ~ 0 

Hence I [ ] I is equivalent to the H2 l(n)-norm and the assumption is 

satisfied as llull ~ !lull /J for all u E D0 • 
2 m 2 {. 

Assumption F5 

Ve have to show that 

is dense in Y. 
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The proof of this result is given in [VJ and is repeated here. 

For w ~ O, from (2.7) and (2.19) 

As wM + L is a uniformly strongly elliptic operator on Hf (fl) n H2 l (n), 

this implies that wM +Lis a closed bijection from H;(n) n H2l(n) c L2 (fi) 

onto 12 (n) ( [F, p 71]). Hence for any y E Y c 12 (n) there exists a 
u E Hf(n) n H2 l(n) with 

wMu +Lu= y 

or 
Lu= y - wMu. 

As Mu E Y for u E H1(n) n H2 l(n) this yields Lu E Y, i.e. u E D0 • 

This shows that wM0 + 10 is a bijection from D0 onto Y. 

Assumption F6 

We have to show that B0 = M0 is bounded in I []I. 

From (2.11) and Assumption F3, for w ~ 0 

Assumption F10 

We have to show that for some k > 0 

This follows directly from (2.10) as 
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Assumption F11 

Ve have to show that for some 0, 0 ~ 0 < f 

For any w ~ 0 and O as in (2.20) 

is contained in K(O) for all u E D0 as (M0u,L 0u)n = (L 0u,M0u)n , the 

complex conjugate of (L 0u,M0u)n· 

Assumption F12 

Ve have to show that Rg(M0 ) is dense in Y. 

The proof of this result is given in [VJ and is repeated here. 

It is sufficient to proof that the orthogonal complement of Rg(M0 ), 

is trivial. 

For w ~ 0 and any f E Rg(M0 )l. c Y there is some u E D0 with 

(wM0 + L0 )u = f. Then (f,M0u) = 0 reduces to 

The last inequality follows from (2.20). 
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f = wM0u + L0u = 0. 

Remarks 

42 

M0u = O, implies u = 0 and hence 

1. In this case I [] I is equivalent to the H2 l(n)-norm. D0 = 1- 1 [Y] 

is a closed subspace in H2 l (fi) and in the construction in Section 2. 2 

D1 = D0 = D. Hence A= A0 = L0 and B = B0 = M0 • 

2. The choice w = 0 is allowed and from Theorem 10 <- L0 ,M0 > is the 

generating pair of holomorphic M0-evolution S(t) of type L on Y. 

3. Note that the Hilbert space Y depends on the operator M. 

4. All the assumptions are also satisfied for X = L2 (fi). 

Theorem 13 For m < l and any y E Y the unique solution to 

d at (Mu(t)) = -Lu(t), t > O 

lim Mu(t) = y 
t-10+ 

is given by 

u(t) = S(t)y 

with S(t) the holomorphic M0-evolution of type L with generating pair 

<-Lo ,Mo>· 

Proof. The result follows directly from Theorem 11. 

Ve conclude this section with an example, supplied by Showalter [Sh3] , 

which illustrates that the joint extension of the operators leads to 

stronger results than those in [Sh 1] where the operators are extended 

separately. 
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In [Sh 1] the evolution problem 

Mu'= -Lu, t > 0 

lim u = a 
t--+0+ 

with M and L uniformly strongly elliptic operators, of orders 2m and 

2£ respectively, are considered. For the main existence result 

[Sh 1, p 89, Th 3] one of the conditions is that there exists a 0, 

0 < 0 <; such that 

with 

(Lu,Mu)n E K(O) for all u EV 

aj -1 u = O on an, O < j < l}. 
11 

all is the normal derivative on an. 

For the Laplace operator 6, consider M = -6 and L = 6 2 • 

Then V = {u E Crn(IT) : u =au= 0 on an} and 
11 

(Lu,Mu) 0 = J lv(~u)l 2 
-

n 

v denotes the gradient operator. 

As there is no control on the last term the above condition cannot be 

satisfied. 

In (2.20) the same type of assumption is used but on the smaller set D0 • 

Consider the special case with M formally self- adjoint and positive 

definite and L = M2 • This includes the above example. \Te show that 

Condition (2.20) is satisfied for this example. 
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As I., = 2m, D0 c H~m(n) n H4m(n). Also, for u E D0 it follows that 

L M2 E Y d th . t {0 n} c H0
2 m(n) n H4 m(n) 0u = 0u an ere ex1s s a sequence " with 

As M is positive definite this implies that {wn} converges to a 

w E H~m(n) with M~u = Mw. 

For u E D0 , 

As M is self-adjoint 

This yields, from (2.7), 

As Re(w,Mw)n = (w,Mw)n this yields that Condition (2.2) is satisfied with 

0 = o. 

Finally we remark that in [Fi] the biharmonic case was solved by means of 
eigenfunction expansions. The same set of permissible initial conditions 
was found ([Fi, p 254]). 

2.4 Dynamical boundary value problems 

2.4.1 Introduction 

In [S2] the following dynamic boundary value problem is discussed. 
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Btu= Lu, u = u(x,t), x En, t > 0 

x e an, t > o (2.23) 

n is a bounded domain in Rn with smooth boundary an. L is a symmetric 
second order differential operator 

n 
Lu .- I; Bi (aij (x) aj u) 

i ,j=1 

with the coefficients aij real-valued, 

a-. = a-. 
1 J J 1 

and 

ai j E c(]) (IT) , i, j = 1 , 2, ... , n. 

L is uniformly strongly elliptic in the sense that for some c1 > 0 

n 
I; aij (x)eiej > C11e1 2 for all e E Rn and XE n. 

i ,j=1 

(2.24) 

(2.25) 

Lv is the co-normal derivative associated with L at the boundary an. v 

is the unit outward normal vector on an. 

n 
~ aij (x)vi (x)aj u. 

i ,j=1 

10 is the trace operator. [L, p 41] 

The problem is formulated as an abstract evolution equation by choosing 

and defining A0 and B0 on D0 by 
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and 

It is then shown that for C0 = B0 Assumptions 1 - 7 of Section 2. 2 are 

satisfied, and hence for any 

the unique solution to 

is given by 

~ (Bu(t)) = Au(t), t > 0 

lim Bu(t) = y 
t-io+ 

u(t) = S(t)y 

with S(t) the holomorphic B-evolution of type L generated by <-A,B>, 
the Friedrichs extension of <-A0 ,B0 >. 

In this section various generalizations of problem (2.23) are presented. 

2.4.2 Non-symmetric case 

The boundary value problem (2.23) is considered with smooth complex-valued 
coefficients a-. for the differential operator L. The symmetry lJ 

condition (2.24) is dropped and we assume that L is uniformly strongly 
elliptic in the sense that for some c1 > 0 

n 
Re t aij (x)eiej > C11e1 2 for all e E Rn and XE IT. 

i ,j=1 
{2.26) 
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* Let L denote the formal adjoint of L [F, p 3]; 

The co-normal derivative 1* associated with 1* at the boundary an is 
V 

given by 

n 
1;u .- ~ ajdx)vdx)Bju. 

i ,j=1 

As in Section 2.4.1 choose 

and define operators A0 , B0 , C0 and N0 by 

2A 0u := <- (L + L*)u, (L + L*)u> 
V V 

B0u = C0u := <u,70u> 

2N0u := <- (L - L*)u, (Lv - L;)u> for all u E D0 • 

2 -Note that for u,v E D0 = C (fi) integration by parts is valid and if (,)an 

denotes the inner product in L2 (8fi), 

(2.27) 

and 

(2.28) 

We show that Assumptions F1 - F8 and F10 are satisfied and hence that 

Theorems 7 and 8 apply. 
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Assumption F1 

Ve have to show that for some w ~ 0, 

Hermitian. 

S0 (u,v) = (B 0u,B0v) is Hermitian. 

2R0 (u,v) = (2A 0u,B 0v) 

[u,v] = S0 (u,v) + wR0 (u,v) is 

= (-Lu - L*u,v)n + (Lnu + L!u,70v)an· 

From (2.27) and (2.28) 

2R0 (u,v) = 

which is easily shown to be Hermitian. 

Assumption F2 

Ve have to show that Re S0 (u,u) ~ O for all u E D0 • 

This is satisfied trivially as S0 (u,u) = IIB 0ujj:. 

Assumption F3 

Ve have to show that for some w ~ 0 there is a c > 0 with 

I [u] 12 = Ro(u,u) + wSo(u,u) ~ cllulln for all u E C2 (fi). 

For u E D0 and w ~ 0 

R0 (u,u) + wS 0 (u,u) 

1 n 
=2. ~ ((aijaiu,aju)n + (ajiaiu,aju)n) + wl1Boull 2 

1,J=l 
n 

=Re.~ (aijaiu,aju) + wllulln + wll7oullan. 
1 ,J=1 
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From (2.26) 

For any w > 0 this yields 

I [u] 1
2 ~ wllulln for all u E Do = C2 (IT). 

Assumption F4 

Ve have to show that if { un} c D0 is a Cauchy- sequence in I [ ] I and 

llunlln -+ 0, then I [ unJ I -+ 0. 

From the proof of Assumption F3, for c = min {c 1 ,w}, 

I [u] 1
2 ~ cllullf for all u E D0 • (2.29) 

Also, for some k1 > 0 

(2.30) 

as the trace operator 70 is a bounded operator from the Sobolev space 

H1 (fl) into 12 (Bfl). [L, p 41]. 

Hence, for some k2 > O, 

This shows that I [ ] I is equivalent to the H1 (fl)-norm on D0 and if 

{un} is a Cauchy sequence in I [] I there exists some u E H1 (fl) with 
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If llunlln -+ 0 this implies that u = 0 and I [ unJ I -+ 0 as n -+ en. 

Assumption F5 

We have to show that 

is dense in L2 (fi) X L2 (8n). 

This is a special case of a result in [VR, p 58]. 

Assumption F6 

We have to show that B0 is bounded in I []I. 

and, from (2.30) and (2.29), 

11Boull 2 ~ (1 + knllull~ < (1 + kn/c1 I [u] 1
2

• 

Assumption F7 

We have to show that for some 8 ~ 0 and O ~ e < 1 

Re T0 (u,u) ~ -el [u] 1
2 - 8 Re S0 (u,u) for all u E D0 • 
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For u E D0 

2T0 (u,u) = (2N0u,B 0u) 

= (-Lu+ L*u,u)n + (Lvu - 1:u,70u)an 
n 

=. ~ ((aijaiu,aju)n - (ajiaiu,aju)n) 
l ,J=1 

n 
= i Im ~ (aij Biu,Bju)n . 

i ,j=1 

This shows that Re T0 (u,u) = 0 for all u E D0 and that the assumption 

is satisfied with 6 = 0 and € = 0. 

Assumption F8 

Ve have to show that T0 is a bounded form with respect to I []I. 

From 

n 
2T0 (u,u) = i Im ~ ( a i j a i u , 8 j u) n 

i ,j=1 

it is clear that T0 is bounded with respect to the H1 (fi)-norm which is 

equivalent to I []I. 

Assumption F10 

Ve have to show that for some k > 0 

11B 0 ull ~ kllulln for all u E D0 • 

This follows directly as 

for all u E D0 • 
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Remarks 

1. As 8 = 0 in Assumption F7, it follows that w1 = w + 8 = w. 

2. As I [ ] I is equivalent to the H1 {fi)-norm, it follows that 
D1 = H1 {fi) and D' c H1 {fi) in the construction of the Friedrichs 

extension <M,B'> of <A0 + N0 ,B 0 >. 

3. Note that A0 + N0 = <-1,1
11
> and that this operator is extended to M. 

4. As D1 = H1 {fi) it follows that 

B1u = <u,70 u> for all u E H1 (fi) 

and, as B' c B1 , also that 

B'u = <u,70u> for all u ED'. 

5. As N0 = <i {1* - 1), ½ {1
11 

- 1;)> and I [ ] I is equivalent to the 

H1 {fi )- norm the stricter boundedness assumption F9 will usually not be 
satisfied. 

6. If 1 is symmetric, in the sense that aij = aji for all i and J, 

it follows that N0 = 0 and hence M = A. Also, as Assumption F7 is 

satisfied for 8 = 0 and f = O, it follows from the proof of Theorem 6 

that 

for any ¢ with O < ¢ <;. 

Theorem 14 For 1 and 1
11 

as above and any y E 12 (n) x 12 (an) the 

unique solution to 
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d ctf <u,,0u> = -Mu, t > O 

lim <u,70u> = y 
t-+O+ 

is given by 

with S(t) the holomorphic B'-evolution of type L with generating pair 

<-M - wB' ,B'>. The pair <M,B'> is the Friedrichs extension of 

<Ao + No,Bo>· 

Proof The result follows directly from Theorem 8. 

2.4.3 Lover order terms 

In this section the boundary value problem (2.23) is considered with some 

lower order terms added to the differential operator. 

n 
~ ai (aij (x) aj u) 

i ,j=1 

n 
.- ~ ai(x)Biu + a(x)u. 

i=1 

Assume that all coefficients are smooth real-valued functions on IT and 

that the symmetry condition (2.24) and the uniform strong ellipticity 

condition (2.25) hold. 

The co- normal derivative 

remains unchanged. 

As in Section 2.4.1 choose 

L 
V 

associated with L 

and define operators A0 , B0 , C0 and N0 by 

at the boundary an 
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A0u .- <- 11 u,1
11

u> 

B0u = C0 u .- <u,70u> 

N0u .- <-12u,0> for all u E D0 • 

Again, integration by parts is valid for u,v E D0 = C2(IT) and 

(2.31) 

The operator A0 is a special case of the operator A0 defined in Section 

2.4.2. * This is clear by noting that 1 = 1 in Section 2.4.2 if a-. lJ is 

real-valued and aij = ~i• As the same operators B0 and C0 are used 

in Section 2 .4.2 this implies that Assumptions F1 - F6 
satisfied in this case. 

and F10 are 

Ve proceed to show that Assumption F7 and the stricter boundedness 
Assumption F9 are also satisfied. 

Assumption F7 

Ve have to show that for some 8 > 0 and O $ € < 1 

Re T0 (u,u) ~ -€1 [u] 12 - 8 Re S0 (u,u) for all u E D0 • 

For u E D0 

T0 (u,u) = (-12u,u)n 

and 

IT0 (u,u)I $ 1112 ulln llulln • 

12 is a bounded operator in the H1 (n )- norm and as I [ J I is equivalent 

to the H1 (fl)-norm, for some C2 > 0 
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The well-known inequality for real numbers a, b and n > 0 

yields 

Choose f = nc 2 /2 < 1 and 8 = c2/2n and note that 

Then 

and the assumption is satisfied. 

Assumption F9 

Ve have to show that N0 is bounded in I []I. 

For u E D0 , N0u = <L 2u,0> and 12 is bounded in the H1 (fi)-norm. Hence 

the assumption is satisfied as I [] I is equivalent to the H1 (fi)-norm. 

Remarks 

1. As I [ J I is equivalent to the H1 (fi)-norm it follows that 

D1 = H1 (fi) in the construction of the Friedrichs extension <M,B' > of 

<A0 + N0 ,B 0 >. As Assumption F9 is satisfied, from Theorem 4 D = D' and 

the extension <M,B'> =<A+ N,B>. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

56 

This extension is determined by the extension <A,B> of <A0 ,B 0>. To find 

N the operator N0 is extended by continuity to N1 on D1 and then N1 

is restricted to D, the domain of A and B. 

2. As D1 = H1 (fi) it follows as in Section 2.4.2 that B1u = <u,;0 u> 

for all u E D1 = H1 (fi) and hence that Bu= <u,;0 ,u> for all u ED. 

Theorem 15 For L and L as. above and any y E 12 (n) x 12 (an) the 
'II 

unique solution to 

d at <u,;0u> = - (A+ N)u, t > 0 

lim <u,;0u> = y 
t-10+ 

is given by 

with S(t) the holomorphic B-evolution of type L with generating pair 

<- (A + N) - w1B,B>. The pair <A + N,B> is the Friedrichs extension of 

<Ao+ No,Bo>· 

Proof The result follows directly from Theorem 8 and the first remark in 
Section 2.2.3. 

2.4.4 Dynamic boundary condition for imperfect contact 

Consider the following boundary value problem: 

Btu= Lu, u = u(x,t), x En, t > 0 

atu = -L'l/u, U = U(x,t), x E an, t > 0. 
(2.32) 
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The domain n and the operators L and 1
11 

are taken as - in Section 

2.4.1. 

Note that U( • ,t) is defined only on an and that (2.32) reduces to 

(2.23) if U = 1oU. 

The dynamic boundary value problem (2.32) can be derived by using a 

conservation law approach. The domain n and the boundary an are treated 

separately with u and U representing the conserved quantity in n and 

an respectively. 

A diffusion process in n gives rise to the first equation in (2.32). 

In the boundary condition -L u 
11 

quantity into the boundary an. 
represents the flux of the preserved 

The trace 7 0 u of u on the boundary an and the value of U are 

related through some contact condition. Ve assume that the flux into the 

boundary is proportional to the difference between 70u and U; 

(2.33) 

with k a smooth function on an such that for some o > O, k(x) > o > 0 

for all X E an. 

Intuitively, k-+ 0 implies 70u-+ U on an which may be interpreted 

as perfect contact between n and an. On the other hand k-+ rn implies 

L
11
u-+ 0 on an and therefore that 70u and U are independent and that 

there is no interaction between the processes in n and an. The case 

k-+ 0 is dealt with in Section 3.5. 

This contact condition (2. 33) yields the dynamic boundary value problem 

(2.32) as 
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The Sobolev space H
1 I 2 (an) 

H
1 /2 (an) is denoted by II II 1 /2 

is defined in [L, p 34] . The norm in 

and the inner product by ( , ) 1;
2

• 

Define operators A0 , B0 , N0 and C0 by 

<-Lu,L u> 
11 

B0u .- <u,U> = <u,70u + k2L
11

u> 

N0u := 0 

C0u := A0u + wB 0u =<-Lu+ w, L
11
u + wU> for all u E D0 = C2 (IT). 

Note that the notation U := 70 u + k2L
11
u is used as it simplifies the 

presentation of the calculations below. 

Ve show that Assumption F3 to F6 and F10 to F12 are satisfied and that 
Theorem 11 applies. 

These proofs are based on standard results for the elliptic boundary value 
problem 

-Lu+ w = f in fl (2.34) 

Results from [L, p 148- 165] may be used if the operator - L + w is 
properly elliptic in fi and the boundary operator (1 + wk2 )L

11 
+ w70 is 

normal on an and covers the operator - L + w on an. 
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The operator -L + w is a uniformly strongly elliptic operator on IT and 
hence also properly elliptic, [L, p 110-111]. 

A boundary operator 

n 
Mu = E mj aj u + m0 7 0 u 

j=l 

with mj E Crn(an) for j = 0,1, ... ,n is normal on an if 

n 
_E mj (x)ej f O for all x E an 
J=1 

and all e f O and normal to an at x. [L, p 113] 

For the boundary operator (1 + wk 2 )Lv + w70 

and 

n 
E m. (xH• = . 1 J J J= 

n 
E ai j ( x) vi ( x) , 

i=1 

n 

j = 1,2, ... ,n 

(1 + wk 2 (x)) E aij (x) vi (x) ej . 
i,j=1 

If e is normal to an at X 

e = ± l!lv(x) 
and 

n n 
E mj (xHj = ±(1 + wk 2 (x))le1- 1 E aij (xHiej . 

i,j=1 i,j=1 

The ellipticity condition (2.25) now yields that the boundary operator is 

normal on an. 

From a result (formulated as a problem) in [F, p 76] follows that if µ is 

a nontangential smoothly varying direction on an and 
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then M covers any second order properly elliptic operator on an. (In 

[F] if a boundary operator M covers a differential operator it is said to 

be complimentary.) 

For the boundary operator (1 + wk 2 )Lv + w10 we choose the direction µ(x) 

at X E an by 

n 
= (1 + wk 2 (x)) ~ aij (x)vi (x) 

i=1 

µ is a nontangential direction as 

n 
µ(x)•v(x) = ~ (1 + wk 2 (x))aij (x)vdx)vj (x) 

i ,j=1 

> (1 + wk 2 (x))c 1 > 0. 

This follows from (2.25). 

The a priori estimate [L, p 149] yields that there exists some 

c = c(w) > 0 such that 

Consider the set 

-Lu + w = 0, Lu+ wU = O}. 
V 

Proposition N = {O}. 

Proof For any u E Crn(fi) 

(-Lu + w,u)n = 
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and hence 

This yields that for u EN 

From (2.25) 

L u = -
V 

61 

t.,J 

1 + wk 2 
'You • 

(2.36) 

As u e crn (fi) , and k2 (x) > O for all x e an equation (2. 36) implies 

that if w > 0 

'You = 0 on an (2.37) 

and 
n 
~ 11aiulln = o. 

i=l 
(2.38) 

From (2.37) and a result in [F, p 39] we conclude that u e H~(fi). 

But on H~(n) the expression 

is a norm equivalent to the usual Sobolev space norm. This follows easily 

from the Poincare inequality. [GT, p 157]. 

From (2.38) we conclude that u = 0 and hence N = {O}. Note that w > 0. 
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This proposition has some important implications. Firstly, the a priori 

inequality (2.35) may be improved ([L, p 161]) to 

(2.39) 

Concerning the existence of solutions for the boundary value problem (2.34) 

one must note that because of the symmetry condition (2.24) the same 

problem may be chosen as a formal adjoint problem. 

As N = {O} we conclude from the existence theorem [L, Th 5.3, p 164] that 

the boundary value problem (2. 34) has a unique solution in H2 (fi) for 

every <f,g> E L2 (n) x H
1

/ 2 (8fi). 

Assumption F3 

Ve have to show that for some w ~ 0 there is a c > 0 with 

l[u]l 2 = IIAou + wBoull 2 

= II- Lu + wlln + IILZ/u + wUll 1 / 2 

> cllull ~ for all u E C2 (fi) . 

This follows directly from the a priori inequality (2.39) for any w > 0. 

Assumption F4 

Ve have to show that if { un} c D0 is a Cauchy sequence in I [ ] I and 

llunlln -+ 0, then I [ unJ I -+ 0. 

From Assumption F3 { un} is also a Cauchy sequence in H2 (n) and as 

H2 (n) is complete there is some u E H2 (fi) with 

From llunlln -+ 0 we know that u = 0. 
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Finally, there is a c2 > 0 such that 

as the mapping from u E H2 (fi) to <-Lu+ w, Lvu + wU> E L2 (n) X H
1

/ 2 (8fi) 

is continuous. [L, p 148] 

Assumption F5 

We have to show that 

For any <f ,g> E 12 (fi) x Hi/2 (Bn) it has been shown that there exists a 
unique v· E H2 (n) with 

-Lv + wv = f 
L v + wV = g. 

11 

As D0 = C2 (fi) is dense in H2 (n) there exists a sequence {un} c C2 (fi) 

with 

llun - vii 2 --t O as n --t rn. 

This yields 

11 CO Un - <f ' g> 11
2 

= 11 w ( Un - V) - L ( Un - V) 11 n 
+ II L ( Un - V) + W (Un - V) 11 ~ / 

11 2 

and from (2.40) 
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Assumption F6 

Ve have to show that B0 is bounded in I[·] I. 

11B o ull 2 = llulln + IIUII i; 
2 

~ c2llull~ 

and as I [ ] I is equivalent to the H2 ( n )- norm this shows that the 
assumption is satisfied. 

Assumption F10 

Ve have to show that for some k1 > 0 

This follows directly as 

Assumption F11 

Ve have to show that for some 0, 0 ~ 0 <;, 
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= 

= 
i ,j=1 

(1 ) (1 2 -- k
2 

U,7ou an - k
2 

70u,U) 1;
2 

for all u E D0 = C (n). 

For any 1/ > 0 

and this yields 

The trace operator 70 is a bounded operator from the Sobolev space H1 (fi) 

into H
1 /2 (an) [L, p 41] and hence for some k1 > O 

As k(x) > 8 > 0 for all x E an, 

This yields 
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k 1/ 
Choose 1/ > 0 such that m = c1 - ½ (+) 2 > 0. Then 

Choose 1 
1JJ > max {c1, -- } then 

2112 82 

Re S0 (u,u) = Re(B 0u, A0u + wB 0u) 

= wllB 0ull~ + Re(A0u,B 0u) 

= w(llulln + IIUlli/2) + Re(Aou,Bou) 

~ m(llulli + II½ Ulli ;) for all u E D0 • 

Also 

IIm S0 (u,u)I = IIm (A0u,B 0u)I 

= I(!__ U,7ou)an + (!__ 7ou,U)1; I 
k2 k2 2 

~ mi(JI} Ul!~/2 + 11} 10ul!~/2) 

and from (2.41) 

m2 
Let O = arctan (-), then (2.42) and (2.43) yield 

m 

S0 (u,u) E K(0) for all u E D0 = C2 (IT). 

Assumption F11 

Ve have to show that 

(2 .42) 

(2 .43) 
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Assume that for some <f,a> E L2 (fi) x H
1

/ 2 (8fi) 

or 
(2.44) 

As C~ (fi) is dense in 12 (fi) there exists a sequence { wn} c C~ (fl) c D0 

such that 

llwn - flln -+ o as n -+ (D. 

From (2 .44) 

This implies 

llflln = (f ,£ - wn)n 

~ llf lln llf - "'nlln -+ 0 as n -+ CD 

and hence 
f = 0. 

Equation (2.44) is reduced to 

2 -(a,U) 1;
2 

= 0 for all u E D0 = C (fi). 

The boundary value problem 

(2 .45) 
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-Lu+ u = f in n 
k2Lvu + 7oU = g on an 

has a unique solution u E H2 (fi) for any <f,g> E L2 (fi) x H
1

/ 2 (Bfi). This 
can be shown exactly as it was done for the boundary value problem (2.34). 

Hence, for any a E H
1

/ 2 (Bfi) there exists a u E H2 (fi) with 

-Lu + u = 0 

U = k2Lvu + 70u = a. 

As C2 (fi) is dense in H2 (fi) there exists a sequence {wn} C D0 with 

and then also 

From (2.45) 

llalli/2 = (a, a - Vn)1/2 
< llall1/2 Ila - Vnll 1/2 -i O as n -i CD 

and hence 
a= 0. 

Remarks 
1. I [] I is equivalent to the H2 (fi)-norm and therefore D1 = H2 (fi). The 

regularity of solutions of elliptic boundary value problems yields that 

D = D1 = H2 (fi). 

2. Assumption F10 is satisfied for 
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{ _1_} w > max c1 , 
2rj2 52 

with c1 as in (2.25) 

8 such that k(x) ~ 8 > 0 for all x E an 

and n2 < 282c1/ki, k1 as in (2.41). 

Theorem 16 For L and 1
11 

as above and any y E 12 (n) x H
1 /2 (an) the 

unique solution to 

is given by 

with S(t) 

<-A - wB;B>. 

h <u,70u + k2 L
11

u> = <Lu,-L
11

u> 

lim <u,70u + k2L u> = y 
t~Q+ ll 

the ho l om o rp h i c B- e v o l u t ion of type L w i th genera t in g pa 1, r 

The pair <A,B> is the Friedrichs extension of <A0 ,B 0 >. 
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CHAPTER 3 
CONVERGENCE OF SOLUTIONS 

3.1 .B-evolutions and the convergence of solutions of evolution equations 

Consider the following initial value problem for an evolution equation 

d at (Bu)= Au 

lim Bu = y. 
t-+O+ 

(3.1) 

Assume that <A ,B> is the generating pair of a holomorphic B- evolution 

S(t) in a Banach space Y. For any y E Y the unique solution to (3.1) 

is given by 

u(t) = S(t)y, t > 0. 

Consider also a sequence of initial value problems 

d 
at (Bnu) = Anu 

lim4- Bnu = Yn· 
t-+O 

(3.2) 

For n E ™ (3.2) is regarded as a perturbation of (3.1). Assume that the 

pairs <An,Bn>, n E ™ are generating pairs of holomorphic Bn-evolutions 

Sn(t) in the ·Banach spaces Yn. For any Yn E Yn the unique solution to 

(3.2) is given by 

In the examples the domains Dn of <An ,Bn>, n E ™ and D of <A ,B> 

are subspaces of the same Banach space X while <An ,Bn>, n E ™ and 

may map into different Hilbert spaces 

respectively. 

n E ™ and y 
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Because the Bn- evolutions Sn (t), n E IN and the B- evolution S(t) all 

map into X the question of the convergence of the solutions un(t) of 

(3.2) to the solution u(t) of (3.1) may be studied with respect to some 
norm in X. 

If Yn f Y part of the question is to identify initial values Yn E Yn, 

n E ™ for (3.2) such that 

3.2 Convergence of holomorphic B-evolutions and generalized resolvent 

operators 

For C0- semigroups the convergence of a sequence of semigroups may be 

obtained from the convergence of the resolvent operators of the 
infinitesimal generators. 

We quote the relevant results from Pazy [P]. 

We write A E G(M,w) if A is the infinitesimal generator of a 

IIE(t)II ~ Mewt, t > 0. C0-semigroup {E(t) : t > O} with 

For A complex, R(A,A) = (AI - A)- 1 is the resolvent operator for A. 

Theorem 1 

space with 
(Trotter-Kato theorem [P, p 87]) Let X be a complex Banach 

En(t), n E IN a sequence of C0-semigroups in X. An is the 

infinitesimal generator of En(t) and An E G(M,w), n E IN. If for some 

Ao with Re Ao> w 

and 
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( b) Rg ( R (A O ) ) is dens e in X , then the re is a uni qu e A E G ( M , w) w i th 

R(A 0 ) = R(A 0 ,A). For the semigroup E(t) generated by A 

En(t)x-+ E(t)x as n-+ rn 

for all x EX and t ~ 0. 

This .convergence is uniform in t on bounded intervals. 

Theorem 2 [P, p 85] Let A,An E G(M,w) and E(t) and En(t) be the 

semigroups generated by A and An respectively. The following two 

properties are equivalent: 

(a) For every x EX and A with Re A> w, 

R(A,An)x-+ R(A,A)x as n-+ rn. 

(b) For every x EX and t ~ 0 

En(t)x-+ E(t)x as n-+ rn. 

These results suggest that the convergence of B-evolutions may be linked to 

the convergence of the generalized resolvent operators. 

The examples which will be presented in the rest of this chapter fit into 

the following abstract formulation. 

Let X be a complex Banach space. Y and Yn, n E ™ are complex Hilbert 

spaces. <An ,Bn> is the generating pair of a holomorphic Bn- evolution 

Sn(t) of type L on Yn. An and Bn are defined on Dn C X. <A,B> is 

the generating pair of a holomorphic B-evolution S(t) of type L on Y. 

A and B are defined on D c X. 

The Laplace transform Pn(A) of Sn(t) is defined for all A E p(AnB~ 1
), 

the resolvent of AnB~ 1 , by 
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Pn(,.\) is also the generalized resolvent operator of the pair <An,Bn>· 

[S1, p 292] 

Similarly for ,.\ E p(AB- 1 ) 

If S (t) is a holomorphic B- evolution of type L in Y there is a 

contour integral representation for S(t). [Sl, p 298] 

1 J ,.\t S(t)y = 2~
1 

e P(,.\)yd,.\ for all y E Y. (3.3) 

r 

If with r may be chosen as 

r = r1 u r2 u r3 with 

r1 = {re- i01 : 0 < r 0 ~ r < rn} 

r2 = {r0 e i0 
- 01 < 0 < 01} (3.4) 

ra = {rei01 : r 0 ~ r < rn} [P, p 30, 61] . 

There is also a constant m > 0 such that 

IIP(,.\)Yllx ~ TJT IIYII for all y E Y and ,.\ E K(0 1 ) • (3.5) 

See [S3, p 36] . 
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If there is some 01 with ; < 01 < ~ such that 

and (3.6) 
CD 
n p(AnB~ 1

) J K(0 1 ) 
n=1 

the contour integral representation of Sn(t) is 

(3. 7) 

with r as in (3.4) independent of n. 

Remark 

The integrals in (3. 3) and (3. 7) are line integrals of vector valued 

functions along the curve r and should be understood in the following 

sense. 

Define a function h with h: (-CD,CD) ---i r by I sroe- ill,, - CD ( s < -1 

h(s) = eis01 -1 < s ~ 1 ro ' 
iO 1 < sr0e 1 , S ( CD • 

Then r = p E C ,\ = h(s), s E (-CD,CD)} and h is called a paramete­

rization of r. 

For a function f defined on r and with values in some Banach space X 

the line integral along r is defined by 

J f(A)dA := J~rn f(h(s))h'(s)ds. 
r 

(3.8) 
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See [R, p 217]. 

The vector valued integral in (3.8) exists if and only if 

[ llf(h(s))h' (s)llxds < ., 

and then 

11J f(,\)d,\llx = 11[ f(h(s))h'(s)dsll ~ [ llf(h(s))h'(s)llxds . (3.9) 
r 

See [Y, p 133]. 

We quote Lebesgue's dominated convergence theorem which will be used to 

prove Theorem 4 below. 

Theorem 3 [R, p 2 7] Suppose f
0 

is a sequence of complex measurable 

functions on a measurable space X such that 

f(x) = lim f 0 (x) 
Il-+CD 

exists for every x EX. If there is a function G with J IGI <., such 

X 

that 

lfn(x) I ~ IG(x)I for n = 1,2, ... ,x EX 

then 

J lfl <., and lim J f 0 = J f. 
X n-+rn X X 

Remark 

In [R] it is required that lfn(x)I ~ G(x) for all x EX. The same proof 

applies if lfn(x)I ~ IG(x)I is required. 

The following theorem is the main result of this section. 
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Theorem 4 Let Sn(t), n E IN and S(t) be holomorphic Bn- and 

B- evolutions of type L on Banach spaces Yn and Y respectively. 

Suppose that Sn(t) and S(t) all map into a Banach space X and that 

(3.6) is satisfied for the generating pairs of Sn(t) and S(t). If there 

is a sequence {Yn}, Yn E Yn and some y E Y such that 

(a) IIPn(,\)yn - P(A)yllx -t O as n -t rn for all ,\ E r 

and 

(b) IIPnP)Ynllx ~ g(,\) for all A E r with g such that 

then 

Jet Re Ag(A)dA exists for all t > 0 
r 

IISn(t)yn - S(t)Yllx -t O as n -t rn for all t > 0. 

From (3.8) and (3.9) 

For every s E (-rn,rn) Condition (3.10) implies that lim fn(s) = 0. 
Il-+a:, 

Also, from (3.11) and (3.5) 

(3.10) 

(3.11) 

(3.12) 
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This yields 

If n ( s) I < I G ( s) I for all s E (- rn, rn) • 

Finally 

with h- 1 r-+ (-rn,rn) the inverse function for h. 

Note that 

and therefore 

Condition (3.11) yields that 

From Theorem 3 we conclude that 

lim Jrn fn(s)ds = 0 
n-+rn - rn 
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and from {3.12) that 

lim IISn(t)yn - S(t)Yllx = 0 for all t > o. 
n-+rn 

Remark 

If {3.10) and (3.11) are satisfied in another norm on X, the result 

remains valid with the convergence being in that norm. 

Theorem 4 will now be applied to some examples. 

3.3 Pseudo-parabolic and parabolic equations 

In [T] it is shown that a pseudo-parabolic initial value problem may in a 

certain sense be regarded as a perturbation of a parabolic initial value 

problem. 

Two second order self- adjoint elliptic partial differential operators M 

and L are considered. A parabolic and a pseudo- parabolic problem are 

formulated on the same bounded domain G c ~n in the usual abstract way as 

d at u = Lu, t > 0 

lim u = u0 
t-+O+ 

and 

d 1 d at uA - IM at uA = LuA, t > O 

lim uA = u0 • 
t-+O+ 

It is then shown that, under suitable ellipticity and boundedness 

conditions on M and L, for t ~ 0 and u0 E H5(G) n H2 {G) 

lim lluA(t) - u(t)lln = O. 
A-+CD 
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Ve will show that similar results follow from Theorem 4. Ve consider 

elliptic operators of arbitrary order and prescribe initial conditions as 

needed for B-evolutions. 

Ve use the notation of Section 2.3 and consider the pseudo-parabolic case 

(m = l). lie assume that the operators M and L satisfy all the 

conditions in Section 2.3.1. Ve also assume that L is positive definite 

in the sense of {2.19). This may be done without loss in generality. 

Let X = L2 (fi) 

Don= D0 = H~{fi) n H2m(n) 

and Yn = Y = L2 {fi) for n E ™· 

Choose An= -L0 

1 and B = M = - M0 + I 0 n n n 

with I 0 the restriction to D0 of the identity operator in L2 {fi). M0 

and L0 are as in Section 2.3.1. 

Note the difference in notation in Section 2. 2 and Section 3. 2. In the 

construction of the Friedrichs extension the generating pair of the 

B-evolution is <-A,B> whereas in Section 3.2 the typical generating pair 

is taken as <A,B>. 

From. Theorem 12 in Chapter 2 and the subsequent· remark <-Ln ,Mn> is the 

generating pair of a holomorphic Mn-evolution Sn(t) in Yn = L2 {fi). The 

solution to 

d at {Mnu) = -Lnu, t > 0 

lim Mn u { t) = y 
t--tO+ 

is given by 

for all y E Yn = L2 {fi). 
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For the parabolic problem 

d at u = -L0u, t > 0 

lim u(t) = y 
t-+O+ 

the solution is given by 

u(t) = E(t)y 

for all y E Y = L2 (fl). 

{E(t) : t > O} is the uniformly bounded holomorphic semigroup on Y with 

infinitesimal generator -L0 • [P, p 211] 

Intuitively, we expect for y E L2 {fl) and t > 0 that 

lim Sn(t)y = E{t)y 
n-+rn 

with the convergence in the L2 {fl)-norm. We prove this result by showing 

that Theorem 4 applies to this situation. 

The semigroup {E(t) : t > O} is a holomorphic I 0-evolution of type L on 

with generating pair <-L 0 ,I0 >. The generalized resolvent 

operator P{A) reduces to the resolvent operator R{A,-L 0 ) = (AI+ L0 )- 1 • 

Also, for some 01 , with ; < 01 < ~ 

and a contour integral representation for E{t) is given by 

1 J At E{t)y = 2n e R(A,-L 0 )ydA for all y E Y {3.13) 

r 
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with · r as in ( 3 . 4) . [P , p 30 , p 211] 

Next we show that Condition (3.6) is satisfied for AnB~ 1 = -LnM~ 1
• 

From Remarks 3, 4 and 5 in Section 2.3.2 follows that 

(3.14) 

with wn the parameter that is used in constructing the Friedrichs 

extension <-Ln,Mn>· This parameter depends on n as can be seen from the 

following inequalities. 

Hence 

Re(Mnu,u)n ~ ½ c1llull! for all U E H~(n) n H2 m(n) (3.15) 

and 

(3.16) 

From (3.14) and (3.15) 

(3.17) 

and 

(3.18) 

From (2.10) and (3.18) 

1/k3 llull 2 m ~ IIMo ulln = nil½ Mou + u - ulln 
~ n(IIMnulln + llulln) 
~ 2nl1Mnulln 
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and hence 

(3.19) 

From (2.11) 

II Mn ull n < ( m 1 / n) II ul I 2 m + II ull n 

( ((m1 + n)/n)llull2m for all U E H~(n) n H2m(n). (3.20) 

The parameter wn must satisfy Condition (2.17) which follows from (3.19) 

and (3.20) as 

It is clear that wn---+ rn as n---+ rn and that (3.14) is not sufficient to 

prove that Condition (3.6) is satisfied. 

A slightly better result is obtained by noting that from (2.12) and (3.19) 

IILnM~ l Ylln ( £ 1 IIM~ l YII 2 l 

< l 1 11 M~ 1 YI I 2 m 

< 2nk3l1IIYlln for all y E L2 (fi). 

This shows that is a bounded operator on with 

As before this is not sufficient to prove that Condition (3.6) is satisfied 
as 2nk3l 1 ---+ rn as n---+ rn. 

Ve now show that Condition (3.6) is satisfied in some cases. 
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From (2.7) and (2.14) 

For n E IN 

Also, from (2.19) and (2.14) for n E IN 

(3.22) 

Consider for n E IN, A EC and v E H~(fi) n H2m(n) 

Assume that O + ~ < ;. From the lemma in the Appendix 

and 

From (3.16) 

and this yields 
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For A> 0 the operator AMn + Ln is uniformly strongly elliptic of order 

2m and positive definite in the sense that 

and the operator AMn + Ln is a bijection from H~(n) n H2 m(n) onto 

12 (fi). 

From {3.23) it is clear that for A> O, (AMn + Ln)- 1 exists and 

For A EK{;+¢) 

IIPMn + Ln)vlln > Pl ✓ 1 - /3 2 llvlln for all VE H~{n) n H2 m{n) 

and as in the proof of Theorem 6 in Chapter 2 this yields 

This means that Condition (3.6) is satisfied for 01 =; + ¢ on condition 

that O + <p < ;. 

A contour integral representation for Sn(t) is given by 

S0 (t)y = 2;
1 
J eAt(AMn + L0 )-

1ydA 
r 

with r as in (3.4) with ; < 01 <; + ¢. 

(3.24) 

r does not depend on n and the same value for 01 may be used in (3.24) 

and {3.13). 
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Ve now proceed to show the conditions of Theorem 4 are satisfied for this 

example. 

For any fixed ,\ E r and y E 12 (fi) = Y, let Yn be a sequence, 

Yn E Yn = L2 (fi) with 

IIY n - Ylln -+ 0 as n -+ m. 

Let vn =(,\Mn+ Ln)- 1Yn = Pn(,\)yn 

and 

Then 

and 

(3.25) 

(3.26) 

The regularity of solutions of elliptic boundary value problems yields that 

v E H~(n) n H2m(n) and hence that M0v is well-defined. [F, p 67] 

and from (3.23) 

I A I ✓ 1 - /3 2 llwnlln < IPMn wn + Ln wnlln 

and < IIYn - Ylln + ¼ l!AMo vlln . 

This shows that 
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if 

IIYn - Ylln -+ 0 as n-+ CD; 

or that Condition (3.10) is satisfied if IIYn - Ylln -+ 0 as n-+ CD. 

Also, from (3.25) and (3.23) for A Er 

IIP n P)Ynlln = llvnlln < (IA I/ 1 - ,82 
)-

1 IIAMn vn + Ln vnlln 

= (Pl ✓ 1 - .82
)-

1 l1Ynlln 

~ clAl- 1 for all n E ™ 

as {Yn} is a convergent, and hence bounded sequence in L2 (n). 

As J etRe AIAl- 1 dA < w for all t > 0 this shows that Condition (3.11) 

r 
is satisfied. 

This completes the proof of the following result. 

Theorem 5 Let Mo and Lo be positive definite 

elliptic operators of order 2m and let 0 + ~ < ; 

in (3.21) and (3.22). For Yn E L2 (fl) and 

IIYn - Ylln -+ 0 as n -+ CD, and t > 0 

11 Un ( t ) - u ( t) II n -+ 0 as n -+ CD 

if un is the solution of 

uniformly strongly 

with 0 and ~ as 

y E L2 (fl) with 
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and u is the solution of 

d at u = -L0u, t > 0 

lim u = y. 
t-+O+ 

For the case m > l most of the arguments above remain valid. Note that 

in Section 2.2.3 the cases m = l and m > l are not treated separately. 

The only difference appears when we have to show that Condition (3.10) is 

satisfied. In this case for v in (3.26) the regularity of the solution 

only yields that v E H~(n) n H2 l(n) and therefore M0v is not 

necessarily well-defined. 

If y E H2 m- 2 l(fi) in (3.26) we know that v E H2 m(n) [F, p 67] and the 

same arguments as above apply and the following theorem·follows. 

Theorem 6 Let M0 and L0 be positive definite uniformly strongly 

elliptic operators of order 2m and 2£, 2m ~ 2£, and let O + '{J < f 
(3.21) and (3.22). For y E H2 m- 2 l(n) and 

-- 0 as n-+ rn, and t > 0 

with 0 

Yn E L2 (fi) 
and 
with 

'fJ as in 

IIYn - Ylln 

11 Un ( t ) - u ( t ) II n -+ 0 as n -+ rn 

if un is the solution of 

and u is the solution of 

d at (u) = -L 0u, t > 0 

lim u = y. 
t-+O+ 
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3.4 A generalized biharmonic equation 

In this section we consider a Sobolev equation of the type discussed in 

Section 2.3.3 and the convergence of solutions to the solution of a related 

parabolic equation. 

Ve assume that the operator M satisfies all the conditions in Sect ion 

2.3.1 and additionally that M is formally self-adjoint, i.e. 

(Mu,v)n = (u,Mv)n for all u,v E H~(fi) n H2m(n). 

For n E ™, consider the evolution problem 

Let 1 Mnu = ii Mu+ u 

and Lu= M2u. n 

~(¾Mu+ u) = -M2u, t > 0 

lim (!Mu+ u) = y 
t-+O+ n 

As in Section 2.3.3 we choose 

X = L2 (fi) 

Yn = Mn[H~m(n)J = {f E L2(fi) 

Do n = L - 1 [Y n] 

(3.27) 

(3.28) 

= {u E H~m(n) n H4m(n) M2u = ¾ Mw + w for some w E H~m(fi)} c X 

Lon= M21 = M(Mln ) Don On 

Ve still have to show that Ln is positive definite in the sense of (2.19) 

and that the pair <Lon,Mon> satisfies Condition (2.20). 
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89 

~ k 3 2 II u 11 ~ m f Or all u E H ~ m ( n ) n H 4 m ( n ) . 

(L 0nu,M0nu)n = (M2u, ¾Mu+ u)n 

= ¾ (M2u,Mu)n + (Mu,Mu)n 

because of the self- adjointness of M. Also, for u E D0 n there exists 

some 

(3.29) 

which yields 

From (3.27) 

and from (3.29) 

From (2.7) and (3.27) 
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For u E Don from (3.30) 

and 

Im(Lonu,Monu)n ~ I (ii, Mu)nl 

~ -
1
- llwlln + ½ IIMulln 

2n2 

and hence 

(3.31) 

This shows that Condition (2 .20) is satisfied for the pair of operators 

<1on,Mon>· 

Theorem 13 of Chapter 2 yields that <-L 0n,Mon> is the generating pair of 

a uniformly bounded M0n-evolution Sn(t) in Yn. 

For any y E Yn the unique solution to (3.28) is given by 

Note that from the Remark on p 23 and Remark 2 of Section 2.3.3 

(3.32) 

Ve compare the solution of (3.28) with the solution of the parabolic 

problem 
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d M2 cit u = - u, 

lim u = y. 
t-+O+ 

t > 0 
(3.33) 

From (3.27) and (2.10) follow, as before that L is positive definite, 

i.e. Re(Lu,u) ~ k:i 2 llull~m for all u E H~m(n) n H4m(n). 

The theory of elliptic operators then yields that -L is the infinitesimal 
generator of a uniformly bounded holomorphic semigroup E(t) on Y = L2 (fi) 
[P, p 211] and 

p(-L) J K(Oi) (3.34) 

For any y E L2 (fi) the solution to (3.33) is given by 

u(t) = E(t)y, t > 0. 

As in Section 3.3 the semigroup 
I-evolution by type L on Y = L2 (fi) 
generalized re sol vent operator P ( .,\) 
R(.,\,-L) =(.,\I+ L)- 1 • 

{E(t) : t > O} is a holomorphic 
with generating pair <-L,I>. The 
reduces to the resolvent operator 

Note that for the generalized biharmonic problem (3.28) only initial 
conditions y E Yn c Y = 12 (fi) may be prescribed whereas the parabolic 

problem (3.33) is solved for all initial conditions y E Y = L2 (fl). 

In this case we show that the convergence of solutions of (3.28) to the 
solution of (3. 33) follows from Theorem 4 for some specified initial 
conditions. 
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Clearly, from (3.32) and (3.34), Condition (3.6) is satisfied. 

For A Er, let 

and 
V = P(A)y. 

Then 

and 

Then 

(3.35) 

Ve now proceed to show that llwnlln -+ 0 as n -+ rn which implies that 

Condition (3.10) is satisfied. 

(3.36) 
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From {3.27) 

As IIMwlln ~ 0 and llwlln + ¼ {Mw, w) n ~ 0, the lemma in the Appendix yields 

with -l = cos (; + ¢) for some ¢, 0 < ¢ <;. 

Hence 

and from (3.36) 

Combining (3.37) and (3.35) yields 

c I A I llwnlln ~ IIYn - Ylln + 1¾111Mvlln 

= ¼ (IIMYlln + I A I IIMvlln) 

because of the choice of Yn· 

For fixed A Er it is clear that llwnlln ---t O as n ---t (I). 

From (3.37) also follows that 

IIPnP)ynlln = llvnlln ~ (clAlf 1
IIA(vn + ¼ Mvn) + M

2
vnlln 

= (clAlf 1 11Yn11n · (3.38) 
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The sequence {Yn} converges in L2 (fi) as 

1 IIY n - Ylln = n IIMYlln 

and hence {Yn} is bounded in L2 (fl). 

From (3.38) 

As Jet Re AIAl- 1dA < ro for all t > 0 this shows that Condition (3.11) 

r 
is satisfied. 

This completes the proof of the following result. 

Theorem 6 Let M be a positive definite formally self- ad)°oint uniformly 

strongly elliptic operator. For any y E H~m(n) and Yn =½My + y and 

t > 0 

llun (t) - u(t) lln -+ 0 as n -+ rn 

if un is the solution of 

and u the solution of 

d M2 of u = - u, 

lim u = y. 
t--10+ 

t > 0 
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3.5 A dynamic boundary value problem for imperfect contact 

In Section 2.4.4 it has been shown that for any y E L2 (n) x H
1h(an) a 

unique solution exists for 

~ <u,70u + k2 Lvu> = <Lu,-Lvu>, t > 0 

lim <u,70u + k2Lvu> = y. 
t-+O+ 

(3.39) 

A condition we need to be able to apply the B-evolution theory, is that 
k(x) ~ 6 > O for all x E an and some real o. 

In Section 2.4.2 was shown that for any y E 12 (n) x 12 (an) 
solution exists for 

d cit <u,70u> = <Lu,-Lvu>, t > 0 

lim <u,70u> = y. 
t-+O+ 

Ve assume that the symmetry condition (2.24) is satisfied. 

a unique 

(3.40) 

Intuitively, we expect the solution of the initial value problem (3.39) to 
converge to the solution of (3.40) if k(x)--+ 0 for all x E an. 

For a special choice of k we now show that Theorem 4 applies. 

Let k!(x) = ! for all XE an and n E ~­n 

From Section 2.4.4 we know that for any y E L2 (fi) x H
1

/ 2 (an) the unique 
solution to 

d 1 cit <U,7oU + n Lvu> = <Lu,-Lvu>, t > 0 (3 .41) 

lim <u,70u + ¼ Lvu> = y 
t-+O+ 

is given, for all n E ~, by 
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with 

generating pair <-An - wnBn,Bn>· <An,Bn> is the Friedrich extension of 

<Aon,Bon>· Aon and B0n are defined by 

for all u E Don= C2 (IT). 

wn is the parameter used in the construction of the Friedrichs extension. 

From Remark 2 in Section 2.4.4 

with 

and c1 as in (2.25), k1 as in (2.41). 

For k~(x) = ! we have 

with· 

82 = 1 and these conditions reduce to n n 
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For n large 

and hence 

(J)Il --+ CD aS n --+ CD. 

As in Section 3.3 the construction of the Friedrichs extension yields 

and this is not sufficient to show that Condition (3.6) is satisfied. 

We proceed to show that Condition (3.6) is satisfied. 

and 

(Anu + ;\Bnu,Bnu) 
L2 (n)xL 2 (Bn) 

=(-Lu+ ;\u,u)n + (Lvu + ;\Un,un)an 
n 

= . ~ (aijaiu,Bju)n + ;\(u,u)n - (Lvu,70u)an + (Lvu,Un)an + ;\(Un,un)an 
l ,J=1 

n 
= A(llulln + 11un11an +. ~ (aijaiu,aju)n + nllUn - 1oullan 

l,J=1 

=Ar+ q with q ~ O, r ~ 0. 

From the lemma in the Appendix for any ¢ with O < ¢ <; 

I (Anu + ABnu,Bnu) I 
L2 (n)xL 2 (Bn) 

> C ( ¢) I A I ( 11 u II n + 11 un II an ) 

= c ( ¢) I A I 11 B u 11 2 for all A E K (; + ¢) . 
n L 2 ( fi ) x L 2 ( an ) 
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This yields 

IIAnu + ,rnnull ~ c(¢) IA I IIBnull 
L2 (fi)xL 2 (an) L2 (fi)xL 2 (an) 

for all u E H2 (fi), A EK(;+¢). 

and 

11B null ) llulln for all U E H2 (n) 
1 2 ( n ) x 12 ( an ) 

we conclude 

IIAnu+ABnull 1; ~c(¢)1AI llulln 
12 ( n ) x H 2 ( an ) 

For A> 0 the regular elliptic boundary value problem 

-Lu+ AU= f in n 
Lu+ AUn = g on an 

l/ 

(3 .43) 

(3 .44) 

has a unique solution u E H2 (fi) for every <f,g> E L2 (fi) x H
1
h(an). 

This implies that PnP) = (An+ Un)- 1 : yn = L2 (fi) X H
1
h(an) --+ L2 (n) 

exists for A > 0. From (3.44) follows that Pn(A) is bounded. This 

yields 

As in the proof of Theorem 6 of Chapter 2 from (3.44) we also conclude that 

for all n E IN 

for any ¢ with O < ¢ < ;. This shows that Condition (3.6) is satisfied 

for the pair <An,Bn>· 
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Turning to problem (3.40), we know from Section 2.4.2 that for any 
y E Y = L2 (n) x L2 (8fi) the unique solution to (3.40) is given by 

u(t) = S(t)y, t > 0. 

S(t) is the holomorphic B-evolution on Y = L2 (fi) x L2 (8fi) with 

generating pair <-A - wB ,B>. <A ,B> is the Friedrichs extension of 
<A0 ,B 0>. A0 and B0 are defined by 

A0 u = <- Lu ,Lvu> 

Bou= <U,1oU> for all u E Do = C2 (IT) C 12 (fi) = X. 

From the symmetry condition (2.24) follows that 

construction of the Friedrichs extension. 

Hence from Remark 6 in Section 2.4.2 

in the 

Any "'> 0 may be used in the construction of the Friedrichs extension and 

This shows that Condition (3.6) is satisfied. 

Ve proceed to show that the conditions of Theorem 4 are satisfied. 

Choose r as in (3.4) with ; < 01 <; + ¢. 

In the construction of the Friedrichs extension <A ,B> the operator 
C0 = B0 is used. This implies that for y = <a, a> E 12 (fl) x 12 (an) and 

u ED C H1 (fl) 
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if and only if {in the notation of Section 2.2) 

In this case this reduces to 

n 
E ( ai j ai u, aj v) n + A ( u, v) n + A ( 10 u, 10 v) an 

i ,j=1 

= (a,v)n + (a,7ou)an for all v E H1 (n). 

(3 .45) 

For any y = <a, a> E 12 {fi) x 12 (an) = Y there is a sequence { an} 1n 

H
1 /2 (an) with 

11 an - all an ----t o as n ----t a. (3 .46) 

For this choice of Yn we show that Condition (3.11) is satisfied. 

For n E ™, from (3.43), follows 

= IIA u + AB u II 
n n n n 12(n)x12(an) 

~ C ( ¢) I A I II B n Un 11 
12 ( n ) x 12 ( an ) 

{3 .47) 

~ c(¢) IA I llunlln for all A E K(; + ¢) 

or 

The sequence { an} converges in 12 (an) and is therefore a bounded 

sequence. 
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This yields, finally, 

M 
II p n (A )y n 11 n < C ( ¢) I A I for all A E r ' n E IN . 

As Jet Re AIAl- 1dA < rn for all t > 0 this shows that Condition {3.11) 
r 

is satisfied. 

To show that Condition (3.10) is satisfied, let 
wn = un - u = Pn(A)Yn - P(A)y. 

if unn := .! L u n 11 n + "foUn. 

Hence 

(-Lun + AUn,v)n + (Lvun + AU~,,ov)an 

= (a,v)n + (an,"foV)an for all VE H1 (fi). 

This reduces to 

From (3.45) and (3.48) follows 

n 
~ ( ai j 8 i W n , aj V) fl + A ( W n , V) fl + A ( "f OW n , "f o V) an 

i ,j=1 

(3.48) 
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and if v = wn, for n E ™, 

n 
~ (aijaiwn,ajwn)n + A(llwnlln + ll'rownllan) 

i,j=l (3 .49) 

= (an - a, 7oWn)an - A(U~ - 7oUn, 7oWn)an 

In order to show that llwnlln -+ 0 as n -+ co we need a bound on 

II u~ - 7 o Un 11 fi f Or n E ™ . 

For any v E H2 (fl) 

(-Lun + Aun,v)n + (Lvun + AU~,Vn)an 

= (a,v)n + (an,vn)an 

For v = un this can be written as 

n 
A(llunlln + IIU~llan) + ~ (aij aiun,ajun)n 

i ,j=l 

+ nllU~ - 7oUn11an = (a,un) + (an,U~) an . 

For A EC, q ~ 0 and r ~ 0 

Hence 

n 
~ (aij aiun,ajun)n + nllU~ - 7oUn11an 

i ,j=l 

From (3.47) 
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The sequence {an} converges in L2 (an) and hence is a bounded sequence. 

This yields 

(3.50) 

Returning to (3.49) we note that the left hand side is of the form Ar+ q 
with r ~ 0 and q ~ 0. From the lemma in the Appendix for any ¢ with 

0 < ¢ <; there is a constant c(¢) > 0 such that for all A E K(2 + 7) 

or 

This yields 

and hence also 

C ( ¢) I A I 11 w n 11 n $ ( 11 an - a 11 an + p I 11 u~ - 10 Un 11 an) I 110 w n 11 an 

$ c ( p) jA I ( II an - a II an + I A I 11 u~ - 1 o Un 11 an ) 2 

or 

For A Er, from (3.46) and (3.50), we conclude that 
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This shows that Condition (3.10) is satisfied for 

y = <a,a>. 

This completes the proof of the following result. 

and 

Theorem 7 Let L and Lv be the operators defined in Section 2.4.4. 

For any y = <a,a> E L2 (n) X L2 (8fi) = y and 

Yn = <a,an> E 1 2 (fi) X H
1 /2 (8fi) = yn with llan - all an ---t O as n ---t a, 

and t > 0 

11 Un ( t ) - u ( t ) II n ---t O as n ---t rn 

if un is the solution of 

d 1 at <U,7oU + n Lvu> = <Lu,-Lvu>, t > 0 

lim <u,70u +!Lu>= <a,an> 
t~Q• n V 

and u is the solution of 

d at <u,70u> = <Lu,-Lvu>, t > 0 

lim <u,70u> = <a,a> . 
t~o• 
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APPENDIX 
AN INEQUALITY FOR COIPLEI NUIBERS 

C denotes the set of complex numbers and K(O) = {z EC larg zl < O}. 

Lemm.a 

Let Q,\ = ,\r + 4 and r E K(<p), 4 E K(O) with <p ~ O, 0 ~ 0 and 

0 + <p < ;. For any ¢ 

-l =cos(;+ 0 + <p + ¢). Then 

such that 

Proof. IQ,\1 2 = l,\rl 2 + 141 2 + 21,\rl l4lcos(arg(,\r) - arg 4). 

For ,\EK(;+¢) 

and 

Hence 

and 

- ; - ¢ - <p < arg ( ,\ r) < ; + ¢ + <p, 

- 0 < arg 4 < 0 

- ; - 0 - tp - ¢ < arg ( ,\ r) - arg 4 < ; + 0 + <p + ¢. 

cos(arg(,\r) - arg 4) >cos(;+ 0 + tp + ¢) = -l, 

IQ,\1 2 > l,\rl 2 + 141 2 
- 2£1,\rl 141 

~ (ll,\rl - 141) 2 + (1 - £2 )Prl 2 

> (1 - £2) pr I 2. 

let 
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