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INTRODUCTION 

The theory of two-sided ideals in a von Neumann algebra A has been 

studied by several authors (Wright [28], Wils [27] and others). One 

of the most important of these ideals is certainly the closed two

sided ideal generated by the finite projections relative to A. The 

elements of this ideal are called compact operators relative to A 

and it has been shown (cf. [5] , [13] and [21]) that these operators 

behave somewhat like the ideal of compact operators on a Hilbert 

space. In two papers, [5] and [6] , Manfred Breuer laid the f oun

dat ions of a generalized theory of Fredholm operators relative to a 

von Neumann algebra where classical results such as 

(i) "the Fredholm alternative" due to F. Riesz, which says that 

I - T is Fredholm of index zero if T is compact, 

( ii) a well-known Riesz decomposition theorem for compact 

operators 

and 

(iii) a well- known characterization of Fredholm operators due to 

Atkinson 

were generalized to a von Neumann algebra A. He also defined an 

index map on the set of all Fredholm elements relative to A , with 

values in a commutative ordered group referred to as the index group 

of A. Working in von Neumann algebras with Segal measures, Son is 

extended several classical properties on the ideal of relatively 

compact elements including results such as the Calkin theorem and the 

minimax theorem for singular and characteristic numbers (cf. [21]). 

He also introduced the notion of the infinite (essential) spectrum of 

a self- adjoint element in the algebra. Kahal then showed that the 

geometric definition for compact operators in [21] is also valid for 
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general von Neumann algebras. In [13] he generalized most of the 

classical characterizations of compact operators. 

Using a notion of finite nullity, Kaftal gave a useful characteri

zation of semi- Fredholm operators and also extended some results on 

the essential spectra. Kaftal also studied a notion of weak con

vergence relative to a semifinite von Neumann algebra, which he used 

to extend the classical Hilbert characterization for relatively com

pact operators (cf. [ 14] ) . By replacing weak convergence with rela

tive weak convergence in a classical theorem due to Wolf, Kaftal 

obtained a characterization of a more general class than the left 

Fredholm operators in A called the (relatively) almost left Fredholm 

operators (cf. [14] and [15]). In [23], the basic theory of measures 

of noncompactness and applications to Fredholm operators were extended 

to von Neumann algebras. In [24] Riesz operators relative to the 

ideal of compact elements rn A were studied. Characterization 

theorems as well as a Riesz decomposition theorem for these operators 

were deduced. 

In [17] Olsen developed a complete Fredholm and semi-Fredholm theory 

relative to an arbitrary closed ideal I. She defined an index func

tion relative to I by using a relative dimension function defined on 

the project ions of A ( due to Tomiyama, cf. [ 17] , Theorem 5. 1) . If 

the ideal is contained in the ideal of relatively compact operators, 

the index map enjoys all the desired properties, e.g. it is invariant 

under perturbations by elements of I, locally constant on components 

of the Fredholm elements, etc. If the ideal is not contained in the 

relatively compact ideal, however, then these properties fail to hold 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

3 

and Olsen showed how to modify this index map in such a way that these 

properties were recovered. In this thesis we will continue the study 

of closed two- sided ideals rn a van Neumann algebra, not only by 

looking into the structure of these ideals, but by using them rn 

several applications to the theory of van Neumann algebras. For 

example, one of the main objects of this thesis is to develop a Riesz 

theory relative to any closed two-sided ideal in a van Neumann algebra 

by proving some characterization theorems of relatively Riesz 

operators and then use this to prove a Riesz decomposition theorem. 

Let us now describe the thesis in more detail. 

Section 1 contains a summary of our notation as well as those basic 

facts concerning von Neumann algebras which will be used throughout 

the thesis. Some proofs of results, scattered throughout the litera

ture, are also given. 

In section 2 we give a useful characterization theorem for the ele

ments in any closed two-sided ideal in a van Neumann algebra A. A 

similar result was proved by Kaftal for the ideal of relatively com

pact elements in A (cf. [13] , Theorem 1. 3). The main purpose of 

this section is to consider three specific examples of closed two

sided ideals, namely, the ideal of operators compact relative to the 

van Neumann algebra, the ideal consisting of the compact operators 

contained in A and the ideal of the so called Rosenthal operators 

relative to A. In the Banach space setting the Rosenthal operators 

play an important role with respect to the geometry of certain Banach 

spaces. In this situation it is known that every compact operator is 

a Rosenthal operator and restricted to Hilbert spaces every bounded 

linear operator is Rosenthal. It is interesting that in our setting 
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of relatively Rosenthal operators, there is no general relationship 

between the ideals of (relatively) compact operators and (relatively) 

Rosenthal operators. We shall only consider these three ideals in a 

semifinite algebra with a non-zero type I direct summand. The reason 

why this restriction on A is required, will become clear from the 

definitions of these ideals. These three ideals will also be used to 

obtain factorization results as well as a duality theorem. 

In the third section we deduce geometrical characterizations as well 

as a spectral characterization for the quotient norm on A/I, where 

I is any closed ideal in A. We then prove some characterization 

theorems on the semi-Fredholm elements relative to I. In particular, 

if I= K and A has a non-large center, we characterize the semi

Fredholm operators in terms of the left and right topological divisors 

of zero in the Calkin algebra. In doing this we show that in this 

case the topological and algebraic (left, resp. right) di visors of 

zero in the Calkin algebra coincide. 

As was mentioned before, Olsen extended the Fredholm theory towards an 

arbitrary closed two- sided ideal in A. In section 4 we use this 

Fredholm theory to define rn a very natural way a class of Riesz 

operators relative to a closed ideal I. An operator TE A will be 

called Riesz relative to I if T - H is Fredholm relative to I 

for every ,\ -; 0. We shall see that results similar to those known 

for the classical case still hold. These results will be used in the 

sequel to obtain some characterization theorems for Riesz operators 

and a Riesz decomposition theorem in some special cases. Whereas in 

the classical case the theory of Riesz operators has an intimate 
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connect ion with spectral theory, it should be noted that in our re

presentation we do not use spectral theory at all. Actually one can 

not hope to obtain any results on the spectrum of a Riesz operator, 

for instance if A is a finite algebra and r the ideal of rela

tively compact elements in A , then it will turn out that all 

elements of A will be Riesz relative to the ideal K. One can thus 

find Riesz operators with spectral properties very different from the 

classical case. We conclude section 4 by showing that the class of 

Riesz operators relative to K behaves well under reduction with 

respect to central projections as well as under decompositions of the 

van Neumann algebra. Similar results for the class of compact and 

Fredholm operators relative to K were obtained by Kaftal (cf. [15], 

2.1, 2.2). 

In section 5 we give a few characterization theorems for a Riesz 

operator relative to a closed two- sided ideal I. In particular it 

contains a geometrical characterization of the relative Riesz ope

rators. This may be considered as the main result of section 5, since 

it allows one to obtain a Riesz decomposition theorem for some speci

fic cases in the last section of this thesis. 

We conclude this thesis with section 6, proving a Riesz type of decom

position for Riesz operators relative to some specific ideals. A 

similar theorem was proved (to a certain extent) for compact operators 

(relative to A) by Breuer (cf. [5], Theorem 2), and a complete decom

position theorem can be found in a paper of Breuer and Butcher (cf. 

[7], Theorem 3). It should be noted that our decomposition depends 

heavily on a characterization theorem of Riesz operators (proved in 

section 5) and the techniques used in [5] and [7]. 
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1. PRELIMINARIES 

Unless otherwise stated, we shall use the following notation through

out the thesis: Let H be a complex Hilbert space and C(H) the 

algebra of all bounded linear operators on H. If ~ is a subset of 

C(H), then its commutant ~, is defined as the set of all TE C(H) 

satisfying ST= TS for all SE~- A *-subalgebra A of C(H) is 

called a von Neumann algebra if A'' = A. Further, let Z : = A n A' 

be the center of A. We denote by 1'(A) the complete lattice of 

projections in A with the usual order relation E ~ F iff EF = E 

(E, F E 1'( A)) . The rel at ions rv and ~ on 1'( A) are defined by 

* * Erv F iff E = U U, F = UU for some U EA, and E ~ F (i.e. E 

is of smaller dimension than F) iff Erv G ~ F for some GE 1'(A). 

An element E E 1'(A) is called finite relative to A, if for every 

F E 1'(A) the relations E rv F and F ~ E imply E = F (cf. [25] , 

Chapter V for properties of the projection lattice 1'(A) of A). 

We state a lemma on the projection lattice 1'(A) which will be used 

rn a Riesz decomposition theorem, and a proof can be found in the 

literature. 

1.1 Lemma (cf. [5], Lemma 10) 

Let (E ) _ be a non-decreasing sequence in 1'(A). If n n-1,2, ... 
the supremum E of this sequence is finite, it follows that 

00 

inf(E ,F) = sup{inf(E ,F)ln=1,2, ... } for all FE 1'(A). 
oo n 

If T E A, let T = UITI denote the polar decomposition of T rn 

C(H), let NT be the projection onto the null space of T 1n C(H), 
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and let RT denote the projection onto the closure of the range of T. 

* 1/2 * Then ITI :=(TT) and U are in A, thus Rr = U U and 
* Rr* = UU = I - NT are also in A with Rr N RT*· The following two 

lemmas will be needed in the sequel. 

1. 2 Lemma (cf. [13], Lemma 2.5) 

Let TE A, E ) 0 and p = E[O,E) ( where E is the spectral 
E 

measure of ITI). Then: 

(a) IITxll < tllxll for every 0 f x E P (H) 
E 

(b) IITxll > tllxll for every X E (I - p ) (H) . 
E 

Proof We prove (a): If E is the spectral measure of ITI, then we 

pass from this spectral measure to a spectral resolution {E,\} of 

ITI by letting E,\ = E(-00,1'). Then if x E PE(H) it follows that 

2 2 E 2 
II Tx II = 111 T I x II = f ,\ d ( E ,\ x , x) 

0 

(b) follows similarly. o 

The following subsets of P(A) will play an important role in many of 

the proofs of our results: 

1.3 Definition ([28], 2.1) 

A subset 10 of 1 ( A) is ca l led a p- idea l if i t s a t is fies the 

following conditions: 

(a) E,F E 10 implies sup(E,F) E 10 
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(b) EE P0, FE P(A) with F ~ E imply FE Po 

(c) EE Po, F NE imply FE Po· 

We state a lemma (due to F.B. Wright) which gives one great insight 

into the structure of ideals in von Neumann algebras. 

1.4 Lemma ([28], 2.1 and 2.2) 

Let I be a two- sided ideal in A, then I n P(A) ZS a 

p- idea l. Hore over, if I is a c lose d idea l in A and J is 

the ideal generated by In P(A), then J = 1. 

It is well-known that if 1 is the ideal generated by the finite pro

jections in A, then T E 1 iff Rr is a finite projection and 

TE r (K is the closed two-sided ideal generated by the finite pro-

j ect ions) iff T is the norm limit of a sequence (T) n for which 

Rr is finite. Call T E A "finite" relative to a closed two- sided 
n 

ideal 1 when llr EI. If 10 ={TE A: llr E 1} (i.e. 10 is the 

set of finite elements relative to I) then we can use the above 

results of Wright to prove a similar result for any closed two- sided 

ideal, such as the one just mentioned for the ideal K of relative 

compact operators: 

1. 5 Lemma ( cf . [ 12] , 6 . 9 .4 9 ( i i) ) 

Let 1 be any closed two-sided ideal zn A, then I zs the 

norm closure of 10 . 

Proof Since 1 n P(A) is a p-ideal it is straightforward to see that 

10 is a two-sided ideal in A with 10 c 1. Hence r0 c 1. On the 
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other hand, since 1 n 1'(.A) = 10 n 1'(.A) it follows from Lemma 1. 4 

that 1 c 10 . D 

Olsen extended the Fredholm theory towards an arbitrary closed two

sided ideal 1 in A in a very natural way: Let ~1 :A--+ A/1 be 

the canonical quotient map. An operator T E A is called a left 

Fredholm operator ( relative to 1) if ~ 1(T) is left invertible in 

A/1. We denote this class of operators by t+ and if the reference 

to A and 1 is necessary we denote this set by t+(A,1). The class 

t- of right Fredholm elements is defined in an obvious similar way. 

An operator TE A is called a Fredholm operator (relative to 1) if 

TE t := t- n t+. In [17] (section 4), Olsen proved several equiva

lent characterizations of the Fredholm and left (right) Fredholm 

elements relative to 1 which are useful. For TE A let 

m1(T) = inf q(~(ITI)), where q(•) denotes the spectrum. 

1.6 Proposition (cf [17], Theorem 4.5) 

Let 1 be a closed ideal in A, with ~1 :A--+ A/1. Then the 

following are equivalent: 

(a) TE t+ 

(b) IT I E t 

* 
(c) 

(d) the range of T contains the range of I - E for 

some projection E in 1 (then also NT E 1). 

In that same paper, Olsen defined an index function relative to an 

arbitrary closed two-sided ideal 1. In doing this she made use of a 

relative dimension function defined on the projections of A (due to 
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Tomiyama, cf. [17], Theorem 5.1) and a characterization of the closed 

ideals of A by W. Wils. Since only a few properties of this func

tion will be used (similar to those of the classical index), we shall 

not deem it necessary to define it. However, a very nice exposition 

of the index function can be found rn [17]. Other definitions and 

notations will be introduced as needed, primarily at the beginning of 

each section. The reader is referred to [10] and [25] for basic 

information concerning von Neumann algebras and to [ 4] , [8] and [ 11] 

for a development of the classical Riesz-Schauder theory. 
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2. ON CLOSED 1\1O-SIDED IDEALS IN VON NEUMANN ALGEBRAS 

In this section we make use of three examples of closed two- sided 

ideals in a van Neumann algebra A to obtain factorization theorems 

as well as a duality theorem. Let K(H) denote the ideal of compact 

operators on H, then clearly An K(H) is a closed two-sided ideal 

in A which is contained in the closed two-sided ideal K of compact 

operators relative to A. In order to define the third ideal we need 

the notion of a relatively weak Cauchy sequence which was introduced 

by Kaftal for semifinite algebras (cf. [14]). We call a norm-bounded 

sequence relatively weak Cauchy if for every finite 

projection P in A the sequence (Px) n is Cauchy in norm. 

2.1 Definition 

An operator TE A will be called relatively Rosenthal if it 

maps bounded sequences in H onto sequences which have rela-

tively weak Cauchy subsequences. 

these operators by Q. 

lie denote the class of all 

Whenever the reference to A is necessary, we shall write Q(A) , 

K(A), etc. instead of Q, K, etc. It will be shown that Q is a 

closed two-sided ideal in A. 

2.2 Remarks 

1. The notion of a Rosenthal operator between Banach spaces can 

be found in [19]. These operators were used to prove useful 

factorization results (cf. [19], 3.2.4). 

2. To avoid trivial cases for these ideals, we assume that A 

is semi£ ini te and contains a type I direct summand. We 
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assume semif ini te since rn the case of a purely infinite 

algebra A n K(H) = r = {O}. Moreover, by [14], the ele

ments of Q can only be defined for semif ini te algebras. 

Also, if A contains no type I direct summand one has 

that A n K(H) = {O}. This follows since in that case A 

contains no minimal projections and hence no projections 

with finite euclidean dimension. 

Before we study these ideals in more detail we show that a similar 

result as the one proved by Kahal for the ideal r of relatively 

compact operators actually holds for any closed two-sided ideal in A 

(cf. [13], Theorem 1.3). This proposition will be used several times 

in section 2 and in section 4. It should be noted that the proof of 

our result is more or less the same as the one by Kaftal. In proving 

this we need the following lemma: 

2.3 Lemma (cf. [13], Lemma 1.2) 

Let TE A and Q E 1(A) be such that Q(H) f T(H). Then there 

exists a PE 1(A) such that P N Q and T is one to one from 

P(H) onto Q(H). 

2.4 Proposition 

Let I be a closed two-sided ideal in A and V the unit ball 

of H. Then the following conditions are equivalent. 

(a) TE J 

(b) For every 

bounded set 

E > 0 there is a projection PEE I and a 

N c P (H) such that for every x E T(U) 
E E 

there is a y E NE with llx - YII < E 

(c) If Q E 1(A) and Q(H) c T(H) then Q EI 
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(d) If PE P(A) and T is bounded from below on P(H), then 

P E I 

( e) For every E > 0 there zs a P E P(A) such that IITPII < E 

and I-P E I. 

Proof Let (a) hold with TE I and f > 0 be given. Then by Lemma 

1. 5 there exists an S E I with Rs E I and IIT - SIi < c If we 

choose N = S(U) and P = Rs condition (b) follows easily. 
f f 

If (b) holds we show that (c) follows: If Q E P(A) and Q(H) c T(H), 

then let PE P(A) be the projection, given by Lemma 2.3 such that T 

is one to one from P (H) onto Q (H) . Let N = Q (H) n U. The 

restriction of T to P(H) has a bounded inverse, thus 

Tj; (N) f_ P (H) is bounded. It is clear that in (b) we could have 

replaced U with any bounded subset of H. As N = T(Tj; (N)), 

condition (b) implies that for every t > 0 there exist a projection 

P EI and a bounded set N c P (H) such that if x EN there is a 
f f f 

y E N with llx-yll < E. Hence for every x E U there is a y E N 
f f 

such that IIQx - P Qxll = inf IIQx - YII < f. Since P EQ E I it 
E yEP (H) 

f 

follows that Q is in the closed ideal I. 

We now show that (c) implies (d): Let PE P(A) be such that T is 

bounded from below on P(H) and let Q = Rrr· Since 

Q(H) = TP(H) c T(H), Q E I, and since T is one to one from P(H) 

onto Q(H), we obtain NTP = I - P. Hence Q = RTP rv I - NTP = P 

and the result follows by Lemma 1.4. 

Let (d) hold and t > 0 be given. If we choose P = E[O,t:), 

condition (e) follows from Lemma 1.2. 

That (e) implies (a) is trivial. D 
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* is a closed two- sided ideal in a C -

algebra and T is a positive element 1n I, then T1/ 2 E 1 
' 

(cf. 

[22] , E. 3 .19) . In the case where I is an ideal in a von Neumann 

algebra we can make use of the proposition mentioned above to prove 

the same result. In fact if TE I is positive, let {EA} be the 

spectral resolution for T. Then it is clear that T is bounded from 

below on (I - EA)(H) for every A IO (use the spectral representa

tion for T). Hence by (d) of the proposition one has that I-EA EI 

for every A > 0. Since IIT1/ 2 - r112 (I-EA) II < -IX for every A > 0, 

it follows.that r112 EI. Hence by using the polar decomposition of 

an operator we obtain: 

2 . 5 Corollary 

Every closed two-sided ideal I zn A is idempotent (i.e. 

2 I = I). 

2.6 Remark 

In 2.5 we cannot do without the closedness of I. In fact it is 

easy to find examples of non- closed two- sided ideals for which 

this corollary fails to hold: If A= C(f2) and 
* 

)I = {T E A: tr(T T) < oo} (i.e. JI is the two- sided ideal of 

Hilbert- Schmidt operators rn A), then )I 
2 

= M (the trace 

class of A), and clearly M 1 JI. 

Let us continue to consider the class Q of relatively Rosenthal 

operators. It is well-known that if A= C(H) every operator of A 

is Rosenthal, hence Q = C(H). It is thus important to ask for which 

types of von Neumann algebras Q is strictly contained in A. We 
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illustrate this with an example that shows that such von Neumann 

algebras do exist. 

2.7 Example 

Consider f ( the algebra of all bounded sequences) as a con-
oo 

crete von Neumann algebra on f2. This can be done by means of 

the representation ~=f -+ £(£2):(x) 1--+ ~(x ), where 
oo n n 

It then fallows that Q = c0 which is 

certainly strictly contained in f . 
00 

Moreover, it can be seen 

from the following lemma that for any finite von Neumann algebra 

A one has Q =An K(H). 

The following lemma is actually a summary of a few results appearing 

in [14]. Since we shall use this lemma throughout this section, we 

state it without any proof. By inspection of the proofs in [14], it 

is clear that we may replace relatively weak convergence with 

relatively weak Cauchyness. In doing this one needs the fact that a 

Hilbert space H is weakly sequentially complete. 

2.8 Lemma 

(a) Relatively weak Cauchyness implies weak convergence. 

(b) Strong convergence and relatively weak Cauchyness coincide 

iff A is finite. 

(c) Veak convergence and relatively weak Cauchyness coincide iff 

all finite projections of 

dimension. 

A have finite euclidean 

(d) T E r iff T maps relatively weak Cauchy sequences onto 

strong converging ones. 
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Once we have shown that Q IS a closed two-sided ideal, we charac

terize those von Neumann algebras for which Q is strictly contained 

in A. 

2.9 Proposition 

Q is a closed two-sided ideal zn A. 

Proof It fallows straight£ orwardly from its definition and Lemma 

2.8(d) that Q is a two- sided ideal in A. To show that Q is 

norm-closed, choose an arbitrary sequence (T) m 
In Q converging 

uniformly to T and let (xn) be a bounded sequence in H. By using 

a "diagonal method" we can construct a subsequence of 

( xn) such that for every fixed pas it i ve integer m, is 

relatively weak Cauchy. Let c = sup llxn II and E > 0 be given. 
n 

Then there exists an £ E IN such that IIT - Tell < E /3c and for any 

finite projection P in A there exists an n0 E IN 

IIPTfyi - PTcY)I < E/3 for all i,j > no. Thus from 

for all i,j > n0, the result follows. 

2.10 Proposition 

such that 

IIPTy. - PTy · 11 
I J 

< E 

D 

Q = A if and only if An K(H) = K, (i.e. iff all the finite 

projections have finite euclidean dimension). 

Proof Suppose Q = A and suppose there exists a finite projection P 

In A with infinite euclidean dimension, then we can choose in P(H) 

an infinite orthonormal sequence (x) which converges weakly to zero 
n 

but has no relative weak Cauchy subsequence since 

IIPx - Px II = llx - x II = /J, for all n :/: m. n m n m 
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Hence I ~ Q - a contradiction. The converse follows directly from 

Lemma 2.8(c). □ 

2.11 Remark 

This proposition shows that there is a large class of von Neumann 

algebras such that Q -/- A which thus makes it worthwhile to 

study the ideal Q rn A. In fact if A contains a type II 

direct summand, then clearly Q -/- A. Comparing the ideals 

An t(H), r and Q we obtain the following relations where the 

arrows point from the smaller ideal to the larger ones. 

r Q 

" / An t(H) 

It is easy to find examples which illustrate that the above inclusions 

are strict. Moreover in general r and Q are incomparable. For 

instance Example 2.7 shows that if we choose A= £
00 

then Q ¥ K and 

if A is a type I
00 

factor r ¥ Q. The following proposition 

enables one to construct an example for which no inclusion holds. 

2.12 Proposition 

Let 
n 

A= EB A. 
i=l 1 

be a direct sum of a finite number of von 

n 
Neumann algebras on the Hilbert space H = EB H .. The following 

i=l 1 

equalities hold: 
n 

Q(A) = EB Q(.A.) 
. 1 1 l= 

(a) 

n 
(b) An K(H) = EB A- n t(H.). . 1 1 1 l= 
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Proof By inspection of the proofs it will be clear that it suffices 

to prove the result for the case n = 2: 

(a) Let TE Q(A), then T = T1 © T2 where T1 E A1 and T2 E ~

We show that Ti E Q(Ai), i=1, 2. Suppose (y n) c H1 is a bounded 

sequence and let x : = y © 0 for each n. Since T E Q(A), the n n 

sequence (Txn) has a weak Cauchy subsequence relative to A, say 

It is then clear that is weak Cauchy relative to 

A1 . To show that T2 E Q(~) follows in exactly the same way. On 

the other hand suppose T = T1 © T2 where T. E Q(A.), 
1 1 

i=1,2. Let 

be a bounded sequence. Since H = H1 © H2 one has that 

(zn) c H2 are clearly also 

the sequence (T1yn) has a 

say (T1y ). Similarly 
Ilk 

X = y © Z , n n n where 

bounded sequences. 

(yn) c H1 and 

Since T 1 E Q ( A1 ) , 

weak Cauchy subsequence relative to 

T2 E Q(~) implies that (T2z ) 
Ilk 

relative to ~' say (T2zm). Then 

A-finite iff P. 
1 

are Ai-finite, it 

Cauchy relative to A. 

has a weak Cauchy subsequence 

since P := P1 © P2 E 1(A) is 

is clear that (Tx) m is weak 

(b) We prove this result by using Proposition 2.4(c): Suppose 

T = T 1 © T 2 E A n ,t ( H) , where Ti E Ai ( i = 1 , 2) . Let Q 1 E 1 ( A1 ) 

with Q1(H1) c T1(H1). Then if we let Q = Q1 © 0 it is clear that 

Q E 1(A) with Q(H) c T(H). By 2.4(c) Q has finite euclidean 

dimension, hence Q1 has finite euclidean dimension. Hence by using 

2.4(c) again, we have T1 E A1 n !(H1). Similarly T2 E ~ n !(H2). 

The converse inclusion follows by using exactly the same arguments. 

□ 
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2 .13 Remarks 

1. A similar result is known for the ideal l of relatively 

compact operators (cf. [15] , Proposition 2. 2). Thus if we 

let A1 = f 
00 

and let ~ be a type 1
00 

factor, then it 

follows from Example 2.7 that Q(A) = c0 ffi 12 and 

l(A) = £
00 

ffi l(~)- This example shows that there exist von 

Neumann algebras for which Q cl and l c Q. 

2. It is interesting to ask whether Proposition 2.12 can be 

extended to infinite direct sums. The answer to this 

question is no. For if A. = .C(H.), 
1 1 

00 

where H. = { for 
1 

each i E ~, then clearly A:= ffi A. = f and . 1 1 00 l= 
00 00 

H := ffi H. = t 2 . Hence Q(A) = c0 and ffi Q(A-) = f. 
·1 1 ·1 1 00 l= l= 

Result (b) is also not true for infinite direct sums. 

Exactly the same example can be used to illustrate this 

fact. 

We have seen that there exist examples of von Neumann algebras for 

which Q c l and examples for which l c Q. The following propo

sition states necessary as well as sufficient conditions for the 

inclusions to hold. 

2.14 Proposition 

(a) Q cl if and only if Q =An l(H) 

(b) l c Q if and only if l =An l(H) (i.e. if and only if 

Q = A). 

Proof If Q =An l(H) it can be seen from our diagram (cf. page 18) 

* that Q cl. Conversely suppose TE Q; then ITI =UTE Q, where 
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T = UITI is the polar decomposition for T. Moreover, the arguments 

used in proving Corollary 2.5 imply that ITl 1/ 2 E Q. Now if we let 

(xn) c H be bounded, then there exists a subsequence such 

that is relatively weak Cauchy. From our assumption 

that Q f r and Lemma 2.8(d) it follows that is norm 

convergent. Hence ITI EA n K(H) which implies that TE An K(H). 

Thus Q c A n K(H), and since A n K(H) c Q always holds, (a) is 

proved. Result (b) follows similarly. □ 

2.15 Remark 

There are non-trivial examples of von Neumann algebras where all 

three of these ideals coincide. For instance, let A be a 

* n 
finite dimensional C -algebra - i.e. A= m C(H.) where 

. 1 1 l= 

dim(Hi) < oo for each 1 (cf. [12], Proposition 6.6.6). Then 
n 

Q(A) = m Q(C(H.)) = A and K(A) =An K(H) = A, where 
. 1 1 

H = 
n 
m 

i=l 

l= 

H . . 
1 

We can now make use of Corollary 2.5 to obtain another factorization 

theorem: 

2.16 Theorem 

For the ideals K, Q and A n K(H), the following holds: 

K·Q = A n K(H). 

Proof Let S E r, T E Q and (xn) c H be a bounded sequence. It 

follows by the definition of Q and Lemma 2.8(d) that 

norm convergent subsequence, hence STE An K(H). 

(STx) has a n 
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Conversely, since A n K(H) f ,t and A n K(H) c Q, it follows from 

Corollary 2.5 that An K(H) c K·Q. □ 

We have seen from our diagram on page 18 that both Q and ,t contain 

the ideal A n K(H). An interesting corollary of our factorization 

theorem is that An K(H) = ,t n Q. 

2 . 1 7 Corollary 

Let Q, K and A n K(H) be the three ideals under considera-

tion. Then Q n ,t =An K(H). 

Proof We only need to show that Q n ,t c An K(H). This is actually 

straightforward: Clearly Q n ,t is a closed two-sided ideal in A. 

Thus by Corollary 2.5 and Theorem 2.16 one has 

Q n r = (Q n r) 2 f K·Q =An K(H). D 

2.18 Remark 

This corollary actually implies that the only finite projections 

contained in Q, are those which have finite euclidean dimen

sion. Combining the theorem and its corollary we obtain 

K·Q =Kn Q. In the theory of operator ideals on Banach spaces 

necessary conditions were found for two closed operator ideals ll 

and B to satisfy the following equality, ll o B = ll n B (cf. 

[19], p 407). Now if I and J are closed two-sided ideals in 

A we easily obtain ( as in the proof of Corollary 2 .17) that 

I·J =In J = J·I. 

Comparing Theorem 2 .16 with factorization theorems in the theory of 

operator ideals on Banach spaces, it seems as if A n K(H) plays a 
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similar role than that of the compact operators and r that of the 

completely continuous ones (cf. [19], Part 1, section 3). If 

A= C(H) it is well-known that the dual of r is A* where A* is 

the predual of A. In general van Neumann algebras this is not true 

for if A= f 
00' 

(note that 

A*= f 1). However, since An K(f2) = c0, we know that 
* (An l(f2)) = £1. We now show a representation theorem for the dual 

of An l(H) in general. 

Let A* be the predual of A and let 1 be the tr(C(H), £(H) *) 

closure of An l(H). Then since A is ~(£(H), £(H)*) closed, one 

has that 1 is contained in A. 

2 .19 Theorem 

The dual of A n K(H) is J{, where J{ = {f I 1 f E £(11) *}. 

Proof We apply the general duality theory of Banach spaces to 

A n l(H), considered as a subspace of the Banach space K(H), to 

obtain (A n l(H) / = £(H) */ (A n K(H)) O ( where (A n l(H)) 0 is the 

polar of An K(H) in £(H)*). Consider the dual pair (£(H), £(H)*). 

It then follows from the bipolar theorem that 1 =(An l(H))oo_ 

Hence 1° =(An l(H)) 0 . Now if we define t:£(H)*/IO _. M by 

0 t ( f + 1 ) = f I l' it is clear that t is a well- defined bounded 

linear bijection with llt(f + t°) II ~ llf + t°11. We prove that t is 

an isometry. Let f E £(H) * be such that llf + 1 °11 = 1. Using the 

Hahn-Banach theorem we can choose a bounded linear functional 

£(H)*, such that 11~11 = ~(f) = 1 and ~(g) = 0 for any 
* Since £(H) = (£(H)*) , there exists a TE £(H) such that 

IITII = f (T) = 1 and g(T) = 0 for any g E 1°. 

~ on 
0 g E I . 
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It follows that T E JJO = J, therefore lliii ( f + Jl) II = llf I 1 11 ~ f (T) = 1. 

□ 

2.20 Remarks 

1. Suppose A is a factor. In view of Remark 2.2 A must be 

of type I. It is well-known that the ~(£(H),£(H)*)-closed 

ideals in A are of the form AE, where E is a projec

tion in Z := A n A' . Hence I = A and it can thus be 
* seen from the theorem that (An K(H)) = A*. 

2. An interesting problem would be to characterize those alge-

* bras for which (An K(H)) = A*, and to find a represen-

tation theorem for the dual of K rn general von Neumann 

algebras. 
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3. ON THE I-ESSENTIAL NORM AND APPLICATIONS TO FREDHOLM 

OPERATORS RELATIVE TO ANY CLOSED IDEAL I 

Let I be any closed two-sided ideal in A and let 

a(T+I) := inf IIT-SII be the quotient norm on A/1. Recall that if 
SEI 

1r1 : A~ A/I is the canonical quotient map then the I- essential 

spectrum u1(T) of TE A is defined by the spectrum of 1r1(T) 1n 

A/1. Then the I-essential spectral radius is the spectral radius of 

1r 1 (T) rn A/1 (i.e. r 1(T) = max{ I,\ I : ,\ E u 1 (T)}). In this sect ion we 

obtain geometrical characterizations as well as a spectral characteri

zation for the quotient norm a. We then apply these results to prove 

a few characterization theorems on semi- Fredholm operators in A 

relative to 1. An interesting application is to study the semi

Fredholm operators in case A has a non-large center with respect to 

the ideal K. We show that in this case the semi-Fredholm operators 

relative to K can be characterized in terms of the left and right 

topological divisors of zero in A/K. In doing this we also prove 

that the topological and algebraic (left, resp. right) di visors of 

zero in A/K coincide. 

A part of the results appearing 1n this section have been published 

for the case 1 = K (see [23]). 

3.1 Definition 

Let 1 be a closed two-sided ideal zn A. The I-essential 

seminorm a on A is defined by 

a(T) := a(T+J) 
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3.2 Remark 

It is clear that a measures the degree of non- I- ness of an 

operator in the sense that it vanishes precisely on the ideal 1. 

In the classical theory of operators between Banach spaces Lebow and 

Schechter [16] studied examples of measures of noncompactness on 

£(X,Y) (the space of bounded linear operators from a Banach space X 

to Y). They proved that for any of their measures 8 the following 

conditions hold: 

(i) 8 is a seminorm on £(X,Y) 

(ii) 8(T) = 0 iff T is a compact operator 

(iii) 8(T) ~ IITII 

(iv) 8(ST) ~ 8(S)8(T) if TE £(X,Y) and SE £(Y,Z). 

In the following theorem we prove that in the case of a von Neumann 

algebra .A., a is the only seminorm on A satisfying similar con-

ditions. 

3.3 Theorem 

Let 1 be any closed two-sided ideal in A. The 1- essential 

seminorm zs the only mapping 8 : .A. ~ IR satisfying the fol

lowing conditions 

(i) 8 zs a seminorm on A 

(ii) 8(T) = 0 iff TE 1 

(iii) 8(T) ~ IITII for T E .A. 

(iv) 8(ST) ~ 8(S)8(T) for S,T E .A.. 

* Proof Since a induces a C - algebra norm on A/I, it is well- known 

that conditions (i) - (iv) hold. 
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Conversely, let 8 be any mapping on A satisfying (i) - (iv) and 

let T E A. It follows directly from conditions (i) and (ii) that 

8(T) = 8(T+S) for every s E I. Hence, by using (iii) it follows 

that 8(T) ~ a(T). To prove equality, one needs to show that 

r 1(T) < 8 (T) . In order to do so we show that if ,\ E { such that 

8(iT) < 1 then I - iT EI 
1 + 1 Suppose I - 1T ¢ I and choose c > 0 so small that 8(1T) + c < 1. 

Then by using Proposition 1.6, Lemma 1.2 and [17], Proposition 4.2 we 

can find a projection Q ¢ I such that ll(I - tT)Q II < c. 
E A E 

Since 8(QE) = 8((1 - iT)QE + }TQE) < E + o(}T) < 1 and QE is a 

projection it follows that 8(QE) = 0, hence QE E I - a contra

diction. If I - }T ¢ I-, then I - (}T/ ¢ 1+. So by using a 

similar argument as the one above we obtain a contradiction. Thus 

I - }TE I- n 1+ = I. Hence if O j ,\ E u1(T) (i.e. I - }T ¢ t) it 

follows by the argument above that IAI ~ 8(T). Hence r1(T) ~ 8(T). 

By using the polar decomposition of an operator 1n A it follows di

rectly from condition (iii) that 8(T) = 8(1TI) and a(T) = a(ITI). 

Hence 

a(T) = a(ITI) = r1(1TI) < 8(ITI) = 8(T) D 

With this uniqueness theorem in hand we can prove a few characte

rization theorems for the I-essential seminorm on A. 

First of all we need to generalize the concept of a finite E- net 

(suggested in [13] and [21]) to any closed two-sided ideal I: 
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3 .4 Definition 

1. A bounded set NE c H will be called an E-net (relative 

to I) for a fixed subset Q c H if there exists a projec

tion PE in I such that NE f PE(H) and for each x E Q 

there exists a y E NE with llx - YII < E. 

2. If an E-net relative to I exists for a subset Q f H, we 

define 

q(Q) := inf{E > OI there exists an E-net for n}, otherwise 

we define q(Q) = oo. 

3.5 Lemma 

A set Q c H is bounded if and only if q(Q) < oo. 

Proof If n is bounded, let E = sup{ llxll + 1 Ix E n}. By taking 

NE= {O} and PE= 0 one trivially has q(Q) < E. 

Conversely, suppose q (Q) = d < oo and let 8 > 0 be given. Then 

there exist an E > 0 and an E-net N for Q such that 
€ 

d ~ E < d+b. Now let x E Q. Then there exists a y EN such that 
E 

llx - YII < E, hence llxll ~ d + sup{IIYII I y E NE}. □ 

3.6 Remarks 

1. It should be noted that the existence of an E-net for a set 

Q which is equivalent to boundedness of Q is obviously 

independent of the specific van Neumann algebra as well as 

the specific ideal I. However the value q(Q) depends on 

the specific van Neumann algebra and ideal I. For example, 

let A = £00 and let 11 = {(x.) E £00
: X, = Q 

1 1 
for all 
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2 
Let Q = { (y i) E e : I y 1 I ~ 1, I y 2 I ~ 1, y i = 0 for all 

i ~ 3}. Relative to the ideal Ij we denote q(Q) by 

qj(n). It is easy to verify that 

q1(n) = 1 and q2(n) = o. 

2. Let 1 = !. Then, in the terminology of [13] Q 1s 

A-relatively compact iff q(Q) = 0. 

3.7 Theorem 

Let I be any closed two-sided ideal in A. Then 

a(T) = inf{E > 0 there exists a projection 

I - P E 1 and 11 TP 11 < f} 

p with 

Proof Let ,(T) := inf{E > 0 : there exists a projection P with 

I-P E I and IITPII < E}. We show that , satisfies (i) - (iv) of 

Theorem 3. 3. We first have to show that , is a seminorm: Since 

trivially ,(T) ~ IITII, 1 is finitely valued. Now let 0 =I- ,\ E { 

and f > 0 be given. Then there exists a Pf E 1'(.A) such that 

I-Pf EI and IITPfll ~ E/1-\I + ,(T). Hence IIATPfll ~ f + l-\l,(T). 

This implies that ,(AT) ~ IAl,(T). The reverse inequality follows in 

an exactly similar way. Further let S,T EA and f > 0 be given. 

Then there exist projections Pf and Qf with both (I-Pf) and 

(I-Q) elements of I such that 
f 

Let 

that 

Hence 

11 TP f 11 ~ i ( T) + f / 2 ; 11 SQ f 11 ~ i ( S) + f / 2 ( 1 ) 

R = inf (P , Q ) , then since 1 n 1'(A) is a p- ideal it follows 
f f f 

I-R E 1 and 
f 

1(T+S) ~ 1(T) + 1(S). It follows directly from Proposition 2.4 

that ,(T) = 0 if and only if TE 1. Hence it remains only to show 

property (iv). Let S,T EA and f > 0 be given. Then there exist 
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projections P , Q as above such that (1) holds. Let 
E E 

and R = inf(P ,F ). Then since 
E E E 

I-FE= Rp r*(I-Q) N R(I-Q )TP ~ I - QE, it follows from Lemma 1.4 
E E E E 

that I-F EI. From that same lemma we have that 
E 

I-R = sup(I-P ,I-F ) E I. 
E E E 

For x E RE(H) we have that x E PE(H) and 

Tx = TPEFEx = QETPEFEx = QETx implies that Tx E QE(H). 

Hence IISTREII = IISQETREII 

< IISQEII IITREII 

< (,(S) + E/2)(,(T) + E/2), 

from which property (iv) follows. □ 

In the following Corollary we give a spectral characterization for the 

I-essential seminorm a. 

3.8 Corollary 

Let T E A. and E be the spectral measure of ITI. Then 

a(T) = inf{E > 0 : I - E[O,E) EI}. 

Proof Let E > 0 be such that I - E[O,E) EI. If we let P = E[O,E) 

it follows from Lemma 1. 2 that IITPII ~ c Thus 

a(T) ~ inf{E > 0 : I-E[O,E) EI}. 

Conversely, let P E 1'(A.) be such that I-P E I and IITPII < c Then 

one has for PE = I - E [O, E) that IITxll ~ E llxll for every x E PE (H) . 

Hence inf (P ,PE) = 0 and we obtain from the parallelogram law (cf. 

[25], Chapter V, 1.6) that P < I-P, thus P EI (cf. Lemma 1.4). 
E N E 

Hence inf{E > 0 : I-E[O,E) EI}~ a(T). □ 
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By using Theorem 3.7 we obtain the following geometrical characteri

zation for a. 

3.9 Theorem 

a(T) = q(T(U)), where V is the unit ball zn H. 

Proof Let P(T) := q(T(U)). For µ > 0 given, there exist an E > 0 

and an E-net N for T(U) such that E ~ P(T) + µ. Then there 
E 

exists a projection P E I such that for each x E U there is a 
E 

y EN C P (H) 
E - E 

IITx - YII < E. 

with 

Hence inf IITx - YII < E 
yEPE(H) 

for each 

x E U. Thus II (I-P E)TII ~ P(T) + µ. 

Let F = Np T and R = inf(I-P ,F ). Then TRc = (I-Pc)TRc and we 
E E E EE L LL 

obtain Since I-R = sup(P ,I-F) EI 
E E E 

it follows from Theorem 3.7 that a(T) ~ P(T). 

For the converse inequality let µ > 0 be given. Then there exists a 

projection Rµ such that 

(1) 

Let E = ,(T) + µ. If we then let PE= ftrQ 
E 

where Q = I - R and 
E µ 

further let NE = TQE (U), we have an E- net N for T(U). Thus 
E 

P(T) ~ a(T). D 

With this in hand we prove the following -proposition which gives an 

interesting representation of the quotient norm on the algebra A/I. 

3.10 Proposition 

Let TE A, then a(T) = infllTR1_811-
SEI 
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Proof For E > 0 given, there exists a projection P 1n A such 
E 

that I-PEE I and IITPEII s a(T) + E (cf. Theorem 3.7). 

Then clearly inf IITRI- sll s a(T) + c 
SEI 

Conversely, suppose SE I then clearly I-SE t and by [17], 

Theorem 4.7 it follows that I - RI-S (= N *) is an element of I. 
I-S 

Thus a(T) s IITRI- sll- Hence a(T) s infllTRI- sll- □ 
SEI 

By using the quantity q defined in Definition 3.4 we are able to 

give a characterization theorem for the left Fredholm operators 1n A. 

In order to do so we need the following lemma: 

3.11 Lemma 

For bounded sets 0,¢ f H and TE A one has 

(i) q(O + ¢) s q(O) + q(¢) 

(ii) q(T(O)) s IITllq(O) 

Proof ( i) Let E > 0 be given. By direct application of the 

definition of q there exists a µ-net for n such that 

µ < q(Q) + E/2. Similarly we can choose a o-net for t with 

o < q(t) + E/2. If we let a= o + µ, N =Ni'+ N and 
a u µ 

P = sup (Pi', P ) it fallows easily by application of Definition 3 .4 
a u µ 

that N is an a-net for Q + t. Hence 
a 

q(Q + t) < q(O) + q(t) + E. 

(ii) Let E > 0 be given. By definition of q there exists a µ-net 

such that µ < q(O) + c If we let o = IITIIµ, N0 = T(Nµ) and 

P0 = RrP it is clear that N0 is a o-net for T(O). Hence 
µ 

q(T(Q)) s IITll(q(Q) + E). Since E > 0 has been chosen arbitrarily, 

the result follows. D 
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3.12 Theorem 

TE i+ iff there exists a constant c > 0 such that 

q(T(n)) ~ cq(n) for all bounded subsets O c H. 

Proof For TE t+ let T = UITI be the polar decomposition. Then, 

from Proposition 1.6 we have that ITI Et and hence there exists an 

SE A such that SITI - I:= RE 1. By using Lemma 3.11 it follows 

that 

q(n) = q((SITI - R)(O)) 

~q(SITl(O)) 
* 

= q(SU T(Q)) 

~ IISllq(T(n)) 

for all bounded subsets n c H. 

Conversely, suppose the condition holds and T ¢ t+. Choose E such 

that O < E < c. By Proposition 1.6, Lemma 1.2 and [17], Proposition 

4.2 there exists a projection 

0 = QE(U) it follows that 

Q ¢ 1 such that 
E 

q(T(n)) < IITQEII < c From the condition we however get 

q(T(O)) ~ c > E : a contradiction, hence TE t+. 

IITQ II < E. 
E 

For 

D 

Recall (cf. Remark 3.6) that if 1 = r we have that q(O) = 0 if and 

only if O is A- relatively compact. Hence as a direct corollary 

from the theorem above we- obtain: 

3. 13 Corollary 

Let T E i+(A,!). The only bounded sets which T maps onto 

A- relatively compact sets are those which are A- relatively 

compact. 
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3.14 Remark 

Suppose X and Y are Banach spaces, then Yood (cf. [29]) 

showed that operators in i+(X,Y) are characterized by the fact 

that the only bounded sets which they map into compact sets are 

those whose closures are compact. It is not known whether 3.13 

is a characterization for i+ (A,K) in general. However, with 

certain conditions on A we shall see that 3 .13 characterizes 

left Fredholm operators relative to r. 

3.15 Proposition 

Let A be a semifinite von Neumann algebra with a non- large 

center (i.e. any sequence of mutually orthogonal infinite central 

proy'ections is finite). Then TE i+(A,K) if and only if the 

only bounded sets which T maps onto A- relatively compact sets 

are those which are A-relatively compact. 

Proof From Corollary 3 .13 it is sufficient to prove the converse 

implication. It was proved by Kaftal that if A is semifinite with 

non-large center, then t+(A,K) ={TE A: if PE A is a projection 

such that TP E K then P E K} (cf. [15], Proposition 1. 7). Now, 

let TE A be such that the only bounded sets mapped onto sets that 

are A-relatively compact, are already A-relatively compact. If 

T ¢ i+ (A,K), there exists an infinite projection P E A such that 

TP Er. If we let Q = P(U) we get q(T(Q)) = 0, but q(Q) = 1 : a 

contradiction. D 

It was shown by Pfaffenberger [18] that under certain conditions on a 

Banach space X the left and right Fredholm operators can be charac

terized respectively in terms of the algebraic left and right zero

di visors of the Calkin algebra. 
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Subsequently, again under additional conditions on X, it was shown 

by Lebow and Schechter [16] (cf. also [2] and [3]) that the left and 

right topological zero-divisors coincide with the algebraic left and 

right zero-divisors, respectively. After some preliminaries we show 

that similar results hold in a semi-finite von Neumann algebra with 

non-large center. 

Let 1 be any closed two-sided ideal in A. We shall denote by Sf 

the set of all topological left di visors of zero in the quotient 

algebra A/1, 1.e. ~1(T) E Sf if there exists a normalized sequence 

(~1(Sn)) such that lim ~1(T)~1(Sn) = 0. The set of right 
n-+oo 

topological divisors of zero is defined in an obvious similar way. We 

shall also denote by Zf (resp. Zr) the set of left (resp. right) 

algebraic divisors of zero in A/1. 

Consider the classes 

~+(A,1) ={TE A if PE P(A) and TP E 1 then PE 1} 

~- (A,1) ={TE A if PE P(A) and PT E 1 then PE 1}. 

Kaftal studied these classes in the case where 1 = K (cf. [15]). 

3.16 Proposition 

(i) ~+(A,1) = ~11((Z£)c) 

(ii)~- (A,1) = ~11((Zr)c) 

(( )c denotes set complementation) 

Proof (i) Let TE ~+(A,1), then ~1(T) E (Z£)c. For if not, there 

exists an S ¢ 1 such that TS E 1. Since S ¢ 1 it follows from 

Proposition 2.4(c) that there exists a projection f ¢ 1 such that 

P(H) c S(H). Then TP E 1, for if Q E P(A) such that Q(H) c TP(H) 

it follows that Q (H) c TS (H) . Hence Q E 1 (by 2 .4 ( c)) and by 
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applying 2.4(c) again, we have that TP EI, so since TE ~+(A,1), 

PE I, a contradiction. 

Conversely, let T E 1r11 ( (Z 1) c), then T E ~+ (A,1). For if not, 

there exists a projection 

1r1(T) E Zf , a contradiction. 

p ¢ I such that TP EI. 

* (ii) It is trivial to show that TE•+ iff T E •- and 

Hence 

T E 1r 11 ( (Z ,) c) if f T * E 1r11 ( (Zr) c) . Hence (ii) fallows directly 

from (i). D 

3.17 Theorem 

Let A be a semi-finite von Neumann algebra with non- large 

cent er. Then 

(i) t+(A,K) = 1ri
1((Sf)c) and Sf= Zf 

(ii) t- (A,K) = 1ri1((Sr)c) and Sr= Zr. 

Proof ( i) Recall that a(T) = inf IIT - KII
KEK 

If 1r r(T) E Sf then by 

definition there exists a sequence (Sn) c A with a(Sn) = 1 and 

lim a(TS) = 0. Thus + for if TE t+(A,K) T ¢ t (A,K), one can n n~oo 
choose a left Fredholm inverse RE A such that a(TSn) ~ 1/IIRII for 

every n E IN. We hence have the incl us ions ( the second one being 

trivial) : 

t+(A,K) f 7rr1((Sf)c) f 7rr1((Zf)c). 

To conclude (i), it suffices to show the inclusions 

1ri1((z,)C) f t+(A,K) and sf f zf. 

The first inclusion follows directly from Proposition 3.16 and [15], 

Proposition 1. 7. For the second inclusion, suppose 1rr(T) E (Zf)c. 

From the first inclusion it then follows that 

TE t+(A,K) f 1rr1((Sf)c), and hence 1rr(T) E (Sf)c. 
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(ii) follows trivially by noting that TE•- (A,!) 

and 

* iff T E i+ (A,!) 

D 

3.18 Remark 

It is clear from the proof of Theorem 4.19 that the inclusions, 

t+(A,!) f ~i1((Sp)c) and •- (A,!) f ~i1((Sr)c) 

hold for any von Neumann algebra A. We shall illustrate with an 

example that von Neumann algebras do exist for which the equali

ties of the theorem do not hold. 

3.19 Example (cf. [15], Example 1.8) 

Let A be a purely infinite von Neumann algebra and let (P n) 

be an infinite sequence of mutually orthogonal non-zero projec 

00 

tions such that I= E P . 
n=1 n 

Let 
00 

T= E 1/n Pn. 
n=1 

Then T ~ 0 and E[0,E) = b p 
1/n<E n 

is 

infinite for every E > 0. So T ¢ i+(A,!) (cf. Proposition 

1.6, Lemma 1.2 and [17] Proposition 4.2). If there exists an 

SE A such that ~r(T)~r(S) = 0, then 
00 

TS= E 1/n PnS E ! = {0}. 
n=1 

Thus for each n E IN, P nS = 0, from which it follows that 

S = 0 and therefore ~r(S) = 0. 

D 

We conclude this section by defining a few other quantities related to 

semi- Fredholm operators. Let a be the 1- essential seminorm on A 

and let Q ¢ 1 be any projection in A. 
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We define 

AQ(T) .- inf{a(TP) P ~ 1 and P ~ Q} 

3.20 Proposition 

Let 1 be any closed ideal in A. Then 

Proof Let E be the spectral measure for ITI and for any E > 0 

take Q = E[m1 (T) - E, m1 (T) + E]. Then Q ~ 1 and 

a(TQ) ~ m1 (T) + E. Hence A1(T) ~ m1 (T). For the other direction let 

E > 0 be given and choose S = ITIE[m1(T) - E,oo). Since 
* 1/2 a(TR) = a(RSS R) ~ (m1(T) - E)a(R) for any RE A, 

it follows that A1(T) ~ m1(T). D 

3.21 Proposition 

Let S,T E A be such that a(S) < m1 (T). Then T and T + S 

are left Fredholm relative to 1 and index (T) = index (T+S). 

Proof For all S,T EA (thus also for S and T chosen as above), 

it fallows that 

(1) 

To see this, let E > 0 be given and let Q ~ 1 be any projection 1n 

A. Then there exists a projection PE~ 1 such that PE~ Q and 

a(SPE) < AQ(S) + E. 

Hence, 

m1(T+S) ~ a(TPE) + a(SPE) ~ a(TQ) + AQ(S) + E ~ a(TQ) + a(S) + E 

Since E > 0 was chosen arbitrarily, it follows that 

m1(T+S) ~ a(TQ) + a(S). 

Thus, by taking the infimum over all projections Q ~ 1, relation (1) 

follows. 
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Since a(T) < m1(T), it follows from (1) that 

0 < m1 (T) - ra(S) ~ m1 (T+rS) for any r E [0,1]. 

Hence, by Proposition 1.6 it is clear that + T+rS Et. Since the 

index map is locally constant on t+, the result follows. o 

3.22 Corollary 

Let T E t and S E A be such that a(S) < m1 (T). Then 

T+S Et. 

Proof From Proposition 3.21 and [17], Theorem 4.7(vi) it suffices to 

show that N * E 1. From [17], Proposition 9.3 there exists a 
(T+S) 

central projection P such that PI is completely noncompact in PA, 

and (I-P)I is an ideal contained in the ideal of relatively compact 

elements of (I-P)A (cf. [17], 9.2 for the definition of a completely 

noncompact ideal). Let i be the index map relative to (I-P)I and 

let I be the index map relative to PI. Then if we use the notation 

in [17], 11.1 we denote by 1 := i ffi I the index map relative to 1, 

where 1 = PI ffi (I-P)I. From Proposition 3.21 we have seen that 

1(T) = 1(T+S). Hence 

i(TP) = i((T+S)P) and I(T(I-P)) = I((T+S)(I-P)). 

Since TP E t(PA,PI) and T(I-P) E t((I-P)A,(I-P)I) it follows from 

[17], 5.17 and 10.1 that 

(T+S)P E t(PA,PI) and (T+S)(I-P) E t((I-P)A,(I-P)I). 

Hence 

N * E PI and N * E (I-P)I. 
(T+S) P (T+S) (I-P) 
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Since 

PN * ~ N * and (I-P)N * ~ N * 
(T+S) (T+S) P (T+S) (T+S) (I-P) 

it follows that 

PN * E PI and (I-P)N * E (I-P)I. 
(T+S) (T+S) 

Thus N *EI. □ 
(T+S) 
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4. RIESZ OPERATORS RELATIVE TO A CLOSED TilO-SIDED IDEAL IN A 

VON NEUMANN ALGEBRA 

In this sect ion we define Riesz operators in a natural way via the 

Fredholm operators relative to any closed two-sided ideal 1 1n A. 

The results are similar to those known for the classical case and they 

will be used in the sequel to prove characterization theorems of Riesz 

operators as well as a Riesz decomposition theorem (cf. [8] and [ 11] 

for the classical theory of Riesz operators). 

Let 1r1 :A-+ A/1 be the quotient map. Recall that in section 3 we 

called the spectrum of 1r1(T) the I-essential spectrum and denoted it 

by q1 (T) and the I-essential spectral radius was denoted by r1 (T). 

An operator TE A will be called a Riesz operator (relative to 1) 

if H-T E cl> for every ,\ f 0. Since q1 (T) = {,\ E (:H-T ~ cl>} it 

follows that T is Riesz iff q1 (T) = {0}. We shall denote the set 

of all Riesz operators by 1 and if the reference to A and 1 is 

necessary we denote this set by 1(A,1). 

4.1 Remarks 

1. It is clear that TE 1(A,1) 

Let 1 O = { T E A : Rr E 1} . 

iff lim ( inf IITn - s11) l/n = 0. 
n---too SE1 

Then by Lemma 1. 5 we may re-

place 1 with 10 in this characterization of Riesz ope

rators. 

2. For any T E 1 one has r 1 (T) = 0. Thus f ram the remark 

above it follows that 1 c 1. There are many cases where 

this inclusion is strict. 
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3. If 1 = {O}, the Riesz operators coincide with the quasi

nilpotent operators in A, and if 1 = A it is clear that 

1 = A. The theory of Riesz operators in both these cases is 

trivial. 

From the remark above, we have seen that 1 c 1. In the following 

proposition we show that if J is any other two-sided ideal such that 

1 f J f l(A,1), then 1 = J. 

4.2 Proposition 

1 is the largest two-sided ideal contained zn l(A,1). 

Proof We first show that every Riesz projection is an element of 1. 

Thus, let E E 1'(A) n l(A,1). Then, since En = E for each n E IN 

it follows from 

lim ( inf II En - Sil) l/n = 0 
n---100 SE1 

that inf IIE - Sil = O, which implies that E E 1 n 1'(A). 
SE1 

Now let J be any two- sided ideal such that 1 c J c l(A,1). Then 

the argument above implies that J n 1'(A) c 1 n 1'(A). It follows from 

Lemma 1.4 that J f 1, hence J = 1. □ 

We list a few properties of the class l(A,1) of relatively Riesz 

operators. 

4.3 Proposition 
* (a) For TE A we have that TE 1 if and only if T E 1. 

(b) 1 is stable under perturbations of elements of 1 (i.e. if 

TE 1 and SE 1, then T+S E 1). 
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Proof From the fact that 1 is a self-adjoint ideal 1n A we have 

for any TE A and SE 1 that 
* 

r1(T) = r1(T) and r1(T + S) = r1(T). 

Hence (a) and (b) follow directly. □ 

Actually we can show that the class of Riesz operators is stable only 

under perturbations of elements of I. 

For any subset B fA we define the perturbation class of B by 

P(B) ={TE A: T+S EB for all SE B}. 

4.4 Proposition 

The perturbation class of 1(A,I) is the ideal I. 

Proof Let Q(A/1) be the class of quasinilpotent elements of A/1. 

From a theorem due to Zemanek (cf. [4], BA 2.8) we have 

rad(A/1) = {~1(T):T EA and ~1(T) + Q(A/1) c Q(A/1)} 

= {~1(T):T EA and T+S E 1 for all SE 1} 
* Since A/I is a C -algebra rad(A/1) = {O}, it then follows that 

I= ~11(rad(A/I)) ={TE A:T+S E 1 for all SE 1} 

= P(1) □ 

The set 1(A,I) is not necessarily an ideal in A. In fact, for the 

case where A= £(H) (H a separable Hilbert space) and I= r, 
' 

examples to show this can be found in [11] (cf. [11], Example 3.6). 

We can, however, show the following result which also holds for the 

classical case. We denote by [S, T] the commutator of S and T, 

1. e. [S, T] = ST - TS. 
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By using the well-known property that in any Banach algebra the rela

tions r(xy) ~ r(x)r(y) and r(x + y) ~ r(x) + r(y) hold for any two 

commuting x and y, one easily obtains the following. 

4.5 Proposition 

(a) If SE 1, TE A and [S,T] EI then ST,TS E 1. 

(b) If S,T E 1 and [S,T] EI then T+aS E 1 for any a EC. 

(c) If a sequence (Tn) of Riesz operators is uniformly conver-

gent to T E A and if [Tn, T] E I for all n E IN then 

TE 1. 

4.6 Corollary 

Let T E 1. Then the closed algebra generated by T is con

tained in 1. 

We now prove a generalization of the classical Wey 1 theorem which 

states that if TE C(H) and KE!, then ur(T) = ur(T + K). 

4.7 Proposition 

If TE A, SE 1 and [S,T] EI then u1 (T+S) = u1 (T). 

Proof For any two commuting elements x, y in a Banach algebra it is 

well-known that u(x+y) f u(x) + u(y). In particular we have that 

u1 (T+S) f u1 (T) + u1(S). 

By assumption u1(S) = {O}. Hence u1 (T+S) c u1(T). 

□ 
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The fallowing result gives a converse for the proposition mentioned 

above. 

4.8 Proposition 

Let SE A. If u1(T+S) = u1(T) for every TE A with 

[S, T] E 1, then S E 1. 

Proof Choose any TE t such that [S,T] E 1. Since u1(T+S) = u1(T) 

we clearly have that 

0 E {A:T-AI Et}= {A:T+S-AI Et}. 

Hence T+S Et. By choosing T = Al (A j 0) the conditions of the 

proposition are satisfied. Thus it follows that S+AI Et for every 

A j 0, which proves the proposition. o 

These two propositions mentioned above can be used to prove a charac

terization of relatively Riesz operators in a von Neumann algebra A. 

4.9 Corollary 

SE 1 iff T+S Et for all TE t for which [S,T] EI. 

Proof Let S E 1 and T E t with the property that [S, T] E I. 

Then we know that 0 ~ u1(T) = u1(T+S), thus T+S Et. 

Since [AI,S] = 0 for every A, the converse is trivial. o 

By application of this theorem we obtain the following result which 

will be used in the sequel. 

4.10 Proposition 

For TE A we have that TE 1 iff Tn E 1 for any (and hence 

for all) n E IN. 
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Proof If T E 1 and n E IN, then Tn E 1 follows trivially from 

Proposition 4.5. 

Conversely, if Tn E 1 it follows by definition that 

lim a(Tnk)l/nk = 0. 
k~oo 

Since r1(T) = lim a(Tk)l/k is finite one clearly has that 
k~oo 

D 

For the Riesz operators we obtain a functional calculus similar to the 

classical case. The proof of this result is simply a transposition to 

van Neumann algebras of Theorem R.1.3 in [4]. 

4.11 Proposition 

Let f be a holomorphic function on an open set V containing 

o-(T) with f (0) = 0. Then 

(a) If TE 1 then f(T) E 1. 

(b) If f(T) E 1 and f does not vanish on o-(T)\{O} it 

follows that TE 1. 

Proof (a) From our assumptions it follows that f(T) = Tg(T) where 

g is holomorphic on U and [T,g(T)] = 0. Then (a) follows directly 

from Proposition 4.5(a). 

(b) Since o-1 (T) f o-(T) (cf. [13], Proposition 3.1 for the case 

1 = K, for the general case the proof is similar), the functional 

calculus in A/1 shows that ~1(f(T)) = f(~1(T)), and by the spec

tral mapping theorem f(o-1 (T)) = o-1(f(T)) = {O}. By hypothesis f 

does not vanish on o-(T)\{O}, leaving o-1(T) = {O} as the only pas-

sibility. D 
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* In any unital C -algebra B it is known that <1(xy)\{O} = <1(yx)\{O} 
* and <1(uxu )\{O} = <1(x)\{O} hold for x,y EB and u EB unitary. 

The following proposition therefore follows: 

4.12 Proposition 

(a) TSE 1 if and only if STE 1. 

(b) If S and T are unitary equivalent, then SE 1 if and 

only if TE 1. 

One can easily see from the next proposition that if a von Neumann 

algebra contains quasinilpotent operators which are not contained in 

1, then 1 is properly contained in 1. 

4.13 Proposition 

If SE 1 and TE A is quasinilpotent, then S+T E 1. 

Proof This clearly follows from 

1/n 1/n 1/n 
ll1r1 (T+S)nllA/I = ll1ri(T)nllA/I ~ IITnll for all n E IN. □ 

4.14 Remark 

* 
By the well-known West decomposition theorem (cf. [4], C 2.1) the 

converse of this proposition holds in the case where A = £(11) 

and 1 = K. It is an open problem whether this is true in 

general von Neumann algebras. A partial converse can be obtained 

by using a result of Akemann and Pedersen [1]: If TE A with 

Tn E I for some n E IN (note that in this case T E 1 by 

4.10), then T = S + Q where SE 1 and Q is nilpotent. This 

follows from the fact that [1], 4.3 implies that there exists an 

SE 1 such that (T-S)n = 0. 
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In [5], Breuer proved a generalized Fredholm alternative which states 

that I - T is Fredholm of index zero if T E !. Using the index 

theory of Olsen (cf. [17]), we prove a similar result for the Riesz 

operators relative to any closed two-sided ideal 1 in A. 

4.15 Proposition (Generalized Fredholm alternative) 

If T E A zs Riesz relative to 1, then I - T zs Fredholm 

relative to 1 with index zero. 

Proof By definition I-ATE t for all A j 0. Since the index map 

on t is locally constant (cf. [17], Theorems 11.10 and 11.12), it 

is clear that the index is constant on {I-ATjA E [0,1]} and the 

result follows. D 

+ -Let ts= t U t. Since the set of elements ts is the class of all 

operators which are left or right invertible modulo 1, one trivially 

notes that an element of 1 cannot be contained in ts. Actually one 

can show that not even a Riesz operator can be contained 1n ts. 

4.16 Proposition 

If TE ts then T ~ 1l. 

Proof If T E t+, it is clear that r 1(T) > 0. Hence T ~ 1l. If 

* + * then T Et and similarly T ~ 1l. Thus by Proposition 4.3 

D 

The following theorem characterizes the elements of an arbitrary 

closed ideal 1 in A. 
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4.17 Theorem 

Let I be any closed two-sided ideal in A. Then T E I iff 

STE 1 for each SE I. 

Proof Let J = {T E A: ST E 1 for each S E I}. It is clear that 

If J f 1. Hence the theorem will follow from Proposition 4.2 if we 

can show that J is a two- sided ideal in A. Since I is a self

adjoint subset of A and TS E 1 iff ST E 1 (cf. Proposition 

4 .12), one has that J is self- adjoint. Thus it suffices to show 

that J is a left ideal. 

Clearly aT E J for a EC and TE J. 

Let T1 and T2 be elements of J. We show that T1+T2 E J: 

Take any SE I, then there exists an RE I such that 

~1 (SR) = ~1 (RS) = ~1 (I). 

Since T2 E J, ST2 E 1 and hence ST2 - Al EI for every A j 0. 

Let RA= T2 - AR. Then, since 

~1 (RA) = ~1 (R(ST2 - Al)) 

it is clear that RAE I for every A j 0. Hence, for every A j 0, 

there exists an SA E I such that ~1 (RASA) = ~1 (SARA) = 1cj(I) and 

so 

also 

Since 

~1 (SA(T1 +RA))= ~1 (SAT1 + I); 

SAT1 +IE I, hence T1 +RAE I. 

T1+RA = T1 + T2 - AR and ~1 (S(T1+T2) - Al)= ~1 (S(T1+RA)) 

for every A j 0, it follows that S(T1 + T2) E 1. 

Hence T1+T2 E J. 

Let S be a non- zero element of A and T E J. Then S can be 

written as a sum of two regular elements of A, hence as a sum of two 

elements of I, say S = S1 + S2. Then clearly S1T and S2T are 

elements of J. Thus ST= S1T+S2T E J. □ 
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In the last two results of this sect ion we show that the class of 

Riesz operators relative to r behaves well under reduct ion with 

respect to central projections as well as under decompositions of the 

von Neumann algebra. 

Similar results for other classes were obtained by Kaftal (cf. [15], 

2 .1 and 2. 2). Let E be a central projection in A. For T E A, 

let us identify TE with its restriction TEIE(H) to E(H), i.e. let 

us identify the algebra .AE c A with the reduced algebra .AE. 

4.18 Lemma 

Vith the notation above one has that 1(.A,l)E = 1(.AE,K(AE)). 

Proof Let T E 1(.A,K)E and ,\ / 0 be given. There exists an 

S E 1(.A,K) such that T = SE. Then S,\ := H - S is invertible 

modulo r, i.e. there exists an such that 

SjS,\ E I+l. Hence 

ES,\ESj E E+rE and ESjES,\ E E+rE. 

By [15] , Lemma 2 .1 we know that rE = l(AE) and therefore ,\E-T 

(= ES,\) is invertible modulo l(AE). Hence TE 1(AE,r(AE)). 

Conversely, suppose TE 1(.AE,r(.AE)) and ,\ / 0. Then 

s,\ := E - jT E t(AE,r(AE)). 

Thus there exists an such that 

SjS,\ E E+rE. 

Let A,\= S,\+I-E and B,\ = Sj+I-E. Then A,\,B,\ EA such that 

A,\B,\ E I+l and B,\A,\ EI+!. 

and 

1 Thus I - JT = A,\ E t(.A,l) for all ,\ / 0. Hence T E 1(.A,K) and 

since T = TE, we have that TE 1(A,K)E. D 
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Let I be an index set and let A= Ee A. be the direct sum of von 
iEI 1 

Neumann algebras Ai (cf. [10], Part I, Chapter 2, Section 2). We 

may identify the identity of Ai with a central projection 

and A. with AE .. Denote by Ee 1(A.,K.) the set 
1 1 iEI 1 1 

{TE A:TE. E 1(A.,K.)}. 
1 1 1 

E. EA 
1 

For L c I we may identify 

_E
1
e Ai in an obvious way. 

lE 

E e A. with a closed subalgebra of 
. L i lE 

4.19 Proposition 

1(A,K) c Ee 1(A. ,r.) and equality holds if at most finitely 
- iEI 1 1 

many Ei are infinite. 

Proof The inclusion follows directly by application of Lemma 4.18. 

Suppose then that E. 
1 

is finite for all 1 ~ J, where J is some 

finite subset of I. Let TE Ee 1(A.,K.) and ,,\ / 0. 
iEI l l 

1 Then if T = Ee T. one has that s. , := E. - TT· E t(A.,K.) from 
iEI 1 1," 1 " 1 1 1 

which it fallows that there exist 

that 

For 1 ~ J we may choose s~ " = 0, 
1' 

S,,\ = Ee S. ,,\ . I i, lE 
and 

and K. , ,K~ , E K. 
l,A l,A 1 

such 

and K~ ,,\ = K. ,,\ = -E .. 
1, 1, 1 

Let 

s~ = Ee s~ ,,\. 
. I i' lE 

s, 
,,\ is an element of A since it actually reduces to a finite sum by 

our choices of s ~ ,,\. Then clearly, s"s~ EI+ Ee r. =I+ r 
1' . I i lE 

[15], 2.2). Similarly S~S,,\ EI+!. 
1 Since S,,\ = I - 1T, it follows that TE 1(A,K). 

(cf. 

D 
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5. GEOMETRICAL CHARACTERIZATIONS OF RIESZ OPERATORS RELATIVE TO A 

CLOSED TWO-SIDED IDEAL IN A VON NEUMANN ALGEBRA 

In section 4 we proved some characterizations of Riesz operators 

relative to any closed ideal 1 1n A. In order to obtain a Riesz 

decomposition theorem we need a geometrical characterization of Riesz 

operators which is similar to a result of Smyth where Riesz operators 

on a general Banach space are characterized: 

An operator TE £(X) is Riesz if and only if for every E > 0 there 

exists an n E IN such that Tn(U) has a finite En-net, where U is 

the unit ball of X (cf. [4], 0.3.5). In proving this result a some

what laborious machinery of vector sequence spaces was needed. The 

proof of our result for general von Neumann algebras also gives an 

elegant proof of Smyth's result for the £(H)-case. 

For an operator T in a von Neumann algebra A the following proper

ty (referred to as property A) will be used to characterize the 

Riesz operators relative to 1. 

A. For every E > 0 there exist an n E IN, a projection P E 1 
f 

and a bounded set NE f Pf(H) such that for each x EU there 

exists a y E N with IITnx - YII < En. (Here and in the fol
f 

lowing U will denote the unit ball of H.) 

5.1 Lemma 

If TE A has property A then Tm also has property A for 

all m E IN. 

Proof Without loss of generality we may assume that Tm f. 0. For 

E > 0, put 8 = E / II Tm- 1
11- By assumption there exist an n E IN, a 
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projection P0 EI and a bounded set N0 f P0(H) such that for each 

w E u there exists a z E No with IITnw - zll < on. 

Let NE = IITm- l llnN O and PE = P 0• Then for x E U there exists a 

□ 

5.2 Theorem 

Let TE A. Then TE 1 if and only if T has property A. 

Proof Let TE 1 and E > 0. Then by Remark 4.1(1) we have that 

lim (inf IITn - s11 1/n) = 0 ' where Io = {S E A:Rs E I}. Hence there 
n-100 SE10 

exist an n E ™ and an sf E Io such that 

(1) 

then P E 1 and N 
f f 

is a bounded 

subset of p (H). 
f 

By (1) This 

proves property A. 

Conversely, suppose T has property A. We are going to show that 

there exists a subsequence of { inf llTn - SIi l/n} which converges to 
SEI n 

zero, implying that the I-essential spectral radius of T vanishes. 

Let E > 0 be given. Then there exist an n E ™, a projection 

P E 1 and a bounded set N c P (H) such that for every x E U 
f f - f 

there 

Thus 

X E U, 

Since 

t > 0 

is a y E N with IITnx - YII < En. 
f 

IITnx - P Tnxll = inf IITnx - wll < En. 
E wEP (H) 

f 

hence IITn - PE Tnll ~ En. 

P E 1 and therefore P Tn E 1, 
f f 

there exists an n E ™ such that 

This holds for every 

it follows that for any 

We 
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now find the zero converging subsequence recursively: There exists an 

n1 E IN such that ( inf 11Tn1 - Sil) l/ni < 1. Since Tn1 + 1 has property 
SEI 

A by Lemma 5.1, there exists an m1 E IN such that 

( inf II ( Tn 1 + 1 ) m1 _ SI I) 1 / m 1 < ( 1 / 2) n 1 + 1 
SEI 

(2) 

Let n2 = (n1 + 1)m1. Then clearly n1 < n2 and from (2) it follows 

that 

Repeating this argument one finds a monotone increasing sequence of 

positive integers n1 < n2 < n3 < ... Ilk< ... such that 

nk 1/nk 
for every k E IN. inf IIT - SIi < 1/k □ 

SEI 

5.3 Remarks 

1. It should be noted that in the case where A = C(H) and 

1 = K(H) property A coincides with the notion of a finite 

En-net for Tn(U) (cf. [4], §0.3 for the definition of an 

E-net). Hence TE 1 iff for every E > 0 there exist an 

n E IN and vectors {u1 , ... ,uk} c H such that 

k 
Tn(U) c U {u. + EnU}. 

. 1 1 l= 

2. If A is a von Neumann algebra such that A n K(H) =I {O} 

and if we let 1 = A n K(H) then T E 1(A.,1) clearly 

implies that for every E > 0 there exists an n E IN such 

that Tn(U) has a finite En-net. However, for the converse 

it seems that one should require more. For instance, if for 

every E > 0 there exists an n E IN such that Tn(U) has 
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a finite En_ net { u1 , ... , uk} and for this net it is true 

that the projection onto span{u1 , ... ,uk} is an element of 

A, then TE 1(A,1). 

From the proof of Theorem 5.2 we have: 

5 .4 Corollary 

T E 1 if and only if for every E > 0 there exist an n E IN 

and a projection Q E 1'(A) such that IIQTnll ~ En and I-Q E I. 

Proof If TE 1 it has property A. Now if we put Q = I - p 
E 

In 

the converse part of the proof of Theorem 5. 2 the condition holds. 

Clearly the condition implies property A and the result follows. 

D 

With Theorem 5.2 in hand, we are now able to give the following result 

on the class of Riesz operators. 

5.5 Proposition 

Let S,T E A be commuting. If T E 1 and S(H) c T(H) then 

SE 1. 

Proof Let E > 0 be given. Under the conditions of the theorem 

there exists an a> 0 such that for any n E IN one has 

Sn(U) c anTn(U) 

(cf. [ 4] , 0 .4. 1 and O .4. 3) . 

Since T E 1 there exist an n E IN, a projection 

(1) 

P E I and a 
E 

bounded set N c P (H) such that for each x EU there is a y EN 
E - E f 

with 
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(2) 

Let x EU, then it follows from (1) that there exists a z EU such 

that 

n 
11snx - tlTnzll < -½ . 

By (2) there exists a w E NE such that llanTnz - anwll < (2)n . 

By noting that the set 

bounded the result follows. 

anN c P (H) 
E E 

lS 

□ 
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6. A DECOMPOSITION THEOREM FOR RIESZ OPERATORS RELATIVE TO 

SPECIFIC CLOSED IDEALS IN A VON NEUMANN ALGEBRA 

In [5] and [7], the sequences of the null and range projections of 

the elements (I-T)n, n=1,2,3, ... , where TE r were studied. The 

well-known decomposition theorem of F. Riesz for compact operators was 

generalized to von Neumann algebras. With our geometrical characte

rization 5.4 of Riesz operators in hand, we can use the techniques of 

[5] and [7] to obtain a Riesz type of decomposition for Riesz opera-

tors relative to specific closed ideals in a semi-finite von Neumann 

algebra A. For 

N n := N 

Rn := R 

Note that 

T E A let 

Fn := Nn+1 - N 
(I-T)n n 

Gn ·- R - Rn+1 
(I-T)n 

.- n 

is non-decreasing (i.e. 

n=0,1,2, ... 

n=0,1,2, ... 

N < N 1 for all n - n+ 

n=0,1,2, ... ) and (Rn) is non-increasing (i.e. Rn+!~ Rn for all 

n=O, 1 , 2 , ... ) . 

The range projection Rr will be called (relatively) cofinite if 

I - Rr is finite. 

6.1 Remark 

If A= l(H), this definition of cofiniteness coincides with the 

classical definition (i.e. the range of the projection is co

finite). 

The following lemma will be crucial in the proof of the Riesz decompo

sition theorem. 
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6.2 Lemma 

Vith the notation above 

(a) N TkN = TkN n+r n n 

(b) FnTkFn = Fn 

(c) R TkR = TkR n n+r n+r 

(d) GnTkGn = Gn 

57 

for n=0,1,2, ... r=O, 1, 2, ... k=1,2, ... 

Proof (a) Since (I-T)n+lNn+l = 0, for any n=0,1,2,3, ... , it 1s 

obvious that 

Nn(I-T)Nn+l = (I-T)Nn+l (1) 

By multiplying (1) from the right with Nn it follows that 

NnTNn = TNn. For any r E ~ we have that 

N TN = N TN N = TN N =TN. n+r n n+r n+r n n+r n n 

This proves (a) for k = 1. In general the relation (a) follows by 

induction on k: Suppose Nn+rTkNn = TkNn. Then 

(b) From (1) it follows that (I-N )TN 1 = F. By multiplying from n n+ n 

both sides with Fn it follows immediately that FnTFn = Fn. If 
k k k E ~, then FT F = (N 1 - N )T (N 1 - N) n n n+ n n+ n 

= ( N - N ) Tk- 1 N n+1 n n+1 
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= ( I - N ) Tk- 1 N n n+1 

= F n 

(c) and (d) follow similarly by using the relation 

Rn+l(I-T)Rn = (I-T)Rn. This relation follows from the fact that 

□ 

6.3 Remark 

From the relations in Lemma 6.2 it follows that for each k E ~ , 

is invertible in the reduced algebra AN =NAN n n n 

Since TkN = N TkN it is clear that TkN E A 
n n n' n Nn By using 

the binomial formula and Lemma 6.2(a) one can write the relation 

(I - T)nNn = 0 in the form Nn - TSn = 0 with Sn E AN . 
n 

Hence T has a right inverse in AN. The existence of a left 
n 

inverse can be proved similarly. Now since 

k k-1 k- 2 ( k TN = T NTN = T NTN TN = ... = TNn) n n n n n n 

is invertible in ~, 
n 

vertible in AN for any k E IN. 
n 

6.4 Theorem 

it follows that 

Let TE 1(A,!). Then the following hold: 

(a) N is relatively finite and Rn relatively cofinite n 

(b) If N = sup N and R = inf R then N (H) and 
00 nEIN n 00 nEIN n 00 

are invariant under Tk for any k E ~ 

is lll-

R (H) 
00 
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(c) N is relatively finite and R relatively cofinite, with 
00 00 

N N I-R 
00 00 

(d) inf(N ,R) = 0 and sup(N ,R) = I. 
00 00 00 00 

Proof 

(a) Since TE 1(A,K), it is clear that I - TE t(A,K). From [13], 

Theorem 2.2 N1 1s relatively finite and R1 relatively cofinite. 

For n E IN, n > 1 it follows by using the binomial formula and 

Proposition 4.5 that 

(I - T)n = I - T0 with T0 E 1(A,K). 

The argument above implies that Nn is relatively finite and Rn 

relatively cofinite. 

(b) If we let r = 0 1n Lemma 6.2(a) and (c), and take the strong

operator limit on both sides we get 

N TkN = TkN and R TkR = TkR (k E IN) 
00 00 00 00 00 00 

( c) By Corollary 5 .4 there exist a project ion E E r and a k E IN 

such that 

Since F 
n 

IITk - ETkll < 1/3 

k *k 
=FT F =FT F , and n n n n 

F - F ETkF r*kEF = (F - F ETkF) + (F -
n n n n n n n n 

k 
- (F n - F n ET F n )( F n -

(1) 

it follows from (1) that 

IIFn - FnETkFnT*kEFnll < 7/9, n=0,1,2,3,... (2) 

Hence 1s invertible 1n the reduced algebra 
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AF = FnAFn for each n=0,1,2, .... Let S~ be the inverse of Sn 
n 

1n AF .Now for any x EH it follows that 
n 

00 2 00 2 
~ IISnxll = ~ IISnx - F nx + F nxll 

n=1 n=1 

~ [ (~) 2 
+ 1] ~ IIF nxll 2 

n=1 
~ kjjNooxll2 

2 7 2 
~ kllxll where k = (g) + 1 

Since the set {Snx : n E IN} is an orthogonal set it follows that 

S = ~ Sn is strong- operator convergent. Similarly one shows that 

s, = ~ S~ is strong-operator convergent. 

Moreover, it is clear that S, S' are contained 1n AN 
00 

:=NAN and 
00 00 

N = SS' = S'S 
00 

(3) 

Since A is semi-finite and E E r, there exists a semi-finite 

normal trace T on A such that r(E) < oo (cf. [20] , Lemma 2. 5. 3). 

Since 
* K ={TE A:r(T T) < oo} is a two-sided ideal it is clear that 

T 

k *k 
r(N ET T EN) < oo. 

00 00 

Thus, since T it fallows that 

(the last equality follows from [10], Part I, Chapter 6, Section 1, 

Proposition 2). Hence, r(S) < oo and relation (3) imply that 

(4) 

Since A is semi-finite there exists a faithful family of semi-finite 

normal traces {ri}iEI such that ri(E) < oo (cf. [20], Lemma 2.5.3). 

Then, (4) implies that r.(N) < oo for all i EI. Hence, by using 
1 00 

[20], 2.5.3 again, it follows that N is finite relative to A. 
00 
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By Proposition 4.15 we have that I - T is Fredholm (relative to K) 

with index zero. Using the binomial formula and Proposition 4.5 it 

follows that (I - T)n is Fredholm with index zero for each n E ~

Hence 

N NI - R for all n=0,1,2, .... 
n n 

Since all the projections Nn are finite relative to A, Proposition 

2.4.2 in [20] implies that 

Fn N Gn for all n=0,1,2, .... 

Hence 
00 00 

N = ~ Fn N ~ G = I - R 
00 n=0 n=0 n 00 

(5) 

(d) Let T(k) = I - (I - T)k, then Nk =NIT and Rk = RI T . 
- (k) - (k) 

Define R~k) = inf(Rnk'Nk). By using Lemma 1 in [6] we obtain 

N(n+1)k - Nnk N R~k) (6) 

Since N
00 

is finite, the reduced algebra AN is finite. For any 

finite normal trace ~ on AN one has 
00 

00 

By the normality of ~, relation (6) and [5], Lemma 9 it follows that 

inf(R
00

,Nk) = 0 for all k. 

Hence by Lemma 1.1 we have that 

inf(N ,R) = 0. 
00 00 

Using (5) and [25] (Chapter V, 1.6) we obtain 

I - R N sup(R ,N ) - R ~ I - R 
00 00 00 00 00 

(7) 

Since I - R is finite relative to A relation (7) implies that 
00 

sup(R ,N) = I. □ 
00 00 

It is well- known that the sequences (Nn) and (Rn) eventually 

become stationary in the classical case (i.e. the C(H) case). The 
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following example shows that this is not always the case 1n general 

von Neumann algebras. 

6.5 Example 
00 

Let A= b EB £(H) 
n=1 n 

where H = H n is a separable Hilbert 

space. Let Tk E £(H) be defined by 
oo k+1 

Tk( b x.¢.) = x1¢1 + b (x. - x._ 1)¢. , 
·1 11 ·2 1 1 1 l= l= 

where {¢iii E ~} is any orthonormal basis for H. It is easy 

to see that 

NIT j N 2 f ... f N k+1 = N k 
- k (I-Tk) (I-Tk) (I-Tk) +r 

for all k,r E ~-
00 

Let I:= b EB I where I = I for all n E ~ and 
n=1 n n 

00 

T := b EB T. Then TE K(.A) c 1(.A,K). However 
n=1 n 

N k j N k+ for all k,r E ~-
(I-T) (I-T) r 

6.6 Remarks 

1. Similar results such as [7], Theorem 3 (iii) and Theorem 4 

also hold for the class of relatively Riesz operators. 

Since the proofs are exactly the same, we omit them. 

2. An interesting question to ask is whether a similar result 

such as Theorem 6. 4 can be proved for the class of Riesz 

operators relative to any closed two-sided ideal I in A, 

and if not, to characterize those ideals for which such a 

theorem holds. 

We give a partial answer to the question raised in the remark above. 
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6.7 Proposition 

Let 1 be a strong-operator-closed two-sided ideal contained in 

K. Then, if TE 1(A,1) the following hold: 

(a) Nn E 1 and I-Rn E 1 

(b) N
00

(H) and R
00

(H) are invariant under Tk for any k E ™ 

I- R E 1 with N N I- R 
00 00 00 

(c) N E 1, 
00 

(d) inf(N ,R) = 0 and sup(N ,R) = I. 
00 00 00 00 

Proof 

(a) and (b) follow by a similar proof as Theorem 6.4(a), by using 

[17], Theorem 4.7 and Proposition 4.5. 

(c) By using Corollary 5.4 we can, as in the proof of Theorem 6.4(c), 

obtain elements S and S' such that N = SS' = S'S (cf. Theorem 
00 

6.4 relation(3)). Since 1 is strong-operator-closed and S is a 

strong-operator limit of elements in 1, it follows that N E 1. 
00 

Since (I-T)n is Fredholm relative to 1 with index zero for each 

n E ™, it follows from [17], 5.1(ii) and 4.12 that 

Nn NI - Rn for all n=0,1,2, ... 

Since 1 f K, all the Nn are finite relative to A and we obtain 

as in the proof of 6.4(c), that 

I - R N N . 
00 00 

(d) Since 1 f K, l(A,1) f l(A,K). Thus for R~k) = inf(Rnk'Nk) we 

can apply Lemma 1 in [6] to obtain 

N(n+1)k - Nnk N R~k)_ 

Consider the reduced algebra AN. This algebra is finite, hence we 
00 

can proceed as in the proof of 6.4(d) to obtain (d). D 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

64 

REFERENCES 

[1] 

[2] 

[3] 

Akemann, C.A., Pedersen, G.K. : Ideal perturbations of 
* elements in C -algebras. Math. Scand. 41(1977), 117-139. 

Astala, K. , Ty 11 i, H. - 0. : On the bounded compact approxi

mation property and measures of noncompactness. J. Funct. 

Anal. 70(1987), 388-401. 

On semi-Fredholm operators and the Calkin 

algebra. J. London Math. Soc. 34(1986), 541-551. 

[4] Barnes, B.A., Murphy, G.J., Smyth, M.R.F., West, T.T. : Riesz 

and Fredholm theory in Banach algebras. London: Pitman Adv. 

Puhl. Program 1982. 

[5] Breuer, M. : Fredholm theories rn von Neumann algebras I. 

Math. Ann. 178(1968), 243-254. 

[6] : Fredholm theories in von Neumann algebras II. 

Math. Ann. 180(1969), 313-325. 

[7] ____ , Butcher, R. S. : A generalized Riesz- Schauder 

decomposition theorem. Math. Ann. 203(1973), 211-230. 

[8] Caradus, S.R., Pfaffenberger, W.E., Yood, B. : Calkin algebras 

and algebras of operators on Banach spaces. New York: Marcel 

Dekker 1974. 

[9] De Pagter, B., Schep, A. R. : Measures of noncompactness of 

operators in Banach lattices. J. Funct. Anal. 78(1988), 31-55. 

[10] Dixmier, J. : Von Neumann algebras. Amsterdam: North-Holland 

1981. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

65 

[11] Dowson, H.R. : Spectral theory of linear operators. London: 
Academic Press 1978. 

[12] Kadison, R.V., Ringrose, J.R. : Fundamentals of the theory of 

operator algebras II. New York: Academic Press 1986. 

[13] Kaftal, V. : On the theory of compact operators in von Neumann 

algebras I. Indiana Univ. Math. J. 26(1977), 447-457. 

[14] ____ : Relative weak convergence in semifinite von 

Neumann algebras. Proc. Amer. Math. Soc. 84(1982), 89-94. 

[15] 
algebras. 
50- 70. 

Almost Fredholm operators in von Neumann 

Integral Equations and Operator Theory 5(1982), 

[16] Lebow, A., Schechter, M. Semigroups of operators and 

measures of noncompactness. J. Funct. Anal. 7(1971), 1-26. 

[17] Olsen, C.L. : Index theory in von Neumann algebras. Mem. 

Amer. Math. Soc. 47-294, 1984. 

[18] Pfaffenberger, W.E. : On the ideals of strictly singular and 
inessential operators. Proc. Amer. Math. Soc. 25(1970), 

603-607. 

[19] Pietsch, A. : Operator ideals. Amsterdam: North-Holland 1980. 

* * [20] Sakai, S. : C - algebras and W - algebras. New York: Springer 

1971. 

[21] Sonis, M.G. : On a class of operators 1n von Neumann algebras 

with Segal measure on the projectors. Math. USSR Sbornik 

13(1971), 344-359. 

[22] Strati la, S., Zsido, L. : Lectures on von Neumann algebras. 

Tunbridge Wells: Abacus Press 1979. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

66 

[23] Stroh, A., Swart, J. : Measures of noncompactness of operators 
in von Neumann algebras. Indiana U. Math. J., to appear. 

[24] A Riesz theory in von Neumann algebras. 

Submitted for publication. 

[25] Takesaki, M. : Theory of operator algebras I. New York: 
Springer 1979. 

[26] Tylli, H.-0. : On the asymptotic behaviour of some quantities 

related to semi- Fredholm operators. J. London Math. Soc. 

31(1985), 340-348. 

* [27] WiJs, W. : Two-sided ideals in W -algebras. J. fiir die Reine 

und Angewandte Math. 242-4(1970), 55-68. 

[28] Wright, F.B. : A reduction for algebras of finite type. 
Ann. Math. 60(1954), 560-570. 

[29] Yood, B. : Properties of 1 in ear transformations preserved 

under addition of a completely continuous transformation. 

Duke Math. J. 18(1951), 599-612. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Promoter 

Department 

Degree 

67 

Closed two-sided ideals in a von Neumann 

algebra and applications 

by 

Anton Stroh 

Professor J Swart 

Mathematics and Applied Mathematics 

PhD 

SUMMARY 

The aim of this thesis is to study closed two-sided ideals in a von 

Neumann algebra A, not only by looking into the structure of these 

ideals, but by using them in several applications on the theory of von 

Neumann algebras. For example, one of the main objects of this thesis 

is to develop a Riesz theory relative to any closed ideal rn a von 

Neumann algebra by proving some characterization theorems of rela

tively Riesz operators and then to use this to prove a Riesz decom

position theorem. 

Section 1 contains the definitions of some basic facts concerning von 

Neumann algebras used throughout this work. The main issue of section 

2 is to consider three specific examples of closed two-sided ideals in 

a semifinite algebra with a non-zero type I direct summand, namely the 

ideals of operators compact relative to the von Neumann algebra, the 

ideal of compact operators contained rn A and the ideal of the so 

called Rosenthal operators relative to A. These ideals are used to 

obtain factorization results as well as a duality theorem. 
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In the third section we deduce geometrical characterizations as well 

as a spectral characterization for the quotient norm on A/1, where 

1 is any closed ideal in A. We then prove some characterization 

theorems on the semi-Fredholm elements relative to 1. In section 4 

Riesz operators relative to a closed two-sided ideal are defined. The 

results in this section are similar to those known for the classical 

case and they are used in the sequel to prove characterization theo

rems for relatively Riesz operators as well as a Riesz decomposition 

theorem. In section 5 a geometrical characterization of Riesz ope

rators relative to any closed ideal is proved. This geometrical 

characterization is used in section 6 to obtain a Riesz decomposition 

theorem for Riesz operators relative to specific closed ideals in a 

semifinite van Neumann algebra. 
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algebra en toepassings 
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OPSOMIING 

Die doel van hierdie proefskrif is om geslote tweesydige ideale in 'n 

von Neumann algebra A te ondersoek. Die struktuur van sulke ideale 

word bestudeer deur byvoorbeeld karakteriseringstellings v1r die ele

mente van sulke ideale te bewys. Hierdie stellings lei dan tot ver

skeie toepassings in die teorie van von Neumann algebras. Ons toon 

onder andere aan dat Riesz operatore op 'n natuurlike wyse relatief 

tot enige geslote ideaal gedef inieer kan word en bewys dan karak

teriseringstell ings van sulke operatore wat lei tot 'n Riesz

ontbindingstelling. 

Afdeling 1 bevat die nodige def inisies asook die basiese feite ten 

opsigte van von Neumann algebras wat deurgaans gebruik word. In 

afdeling 2 word die struktuur van drie spesifieke voorbeelde van ge

slote tweesydige ideale in 'n semi-eindige algebra met 'n nie-nul tipe 

I direkte sommand ondersoek, nl die ideaal van kompakte opera tore 

relatief tot A, die ideaal van kompakte operatore bevat in A en die 

sogenaamde Rosenthal operatore relatief tot A. Hierdie ideale word 
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gebruik om f aktoriseringstell ings sowel as 'n duali tei tstell ing te 

bewys. 

In die derde afdeling bewys ans geometriese karakteriserings sowel as 

'n spektraalkarakterisering vir die kwosientnorm op A/1. Hierdie 

resultate word dan gebruik om semi-Fredholm operatore relatief tot 

enige geslote ideaal in A te karakteriseer. 

Riesz operatore relatief tot enige geslote ideaal word in die vierde 

afdeling bestudeer. Die resultate word dan in afdelings 5 en 6 

gebruik om geometriese karakteriserings van Riesz operatore sowel as 

'n Riesz-ontbindingstelling te bewys. 
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