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Die soeke na 'n Fourierreeks-voorstelling vir die adatoom-oppervl~k 

wisselwerkingspotensiaal by 'n kristaloppervlak is ongetwyfeld van die 

allergrootste belang. Betroubare inligting aangaande numeriese waardes 

vir die Fourierkoeffisiente is 'n voorvereiste vir vordering met die 

oplossing van baie probleme in oppervlakfisika. Sulke probleme is 

byvoorbeeld, verstrooiing vanaf kristalvlakke, die berekening van die 

termodinamiese eienskappe van geadsorbeerde atome, fase-oorgange in 

geadsorbeerde lagies, asook epitaksie. 

Die doel van hierdie studie was om die betrokke Fourierkoeffisiente 

van die ewewigswisselwerkingspotensiaal ¢ (x,y) en van die ewewigshoogte 
e 
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z . (x,y) van •n argon atoom by 'n (0011 argon kristaloppervlak te be­
min 

paal. 'n Lennard-Jones (6-12) potensiaal is gebruik. Die omvang van die 

berekeninge het die afknotting van die Fourierreeks genoodsaak. 

Die vorm van die reeks vir ¢ (x,y), onderhewig aan die sirrrrnetrie 
e 

eienskappe wat deur die substraat afgedwing word, is analities afgelei 

deur van 'n suiwer wiskundige benadering, asook van die meer fisiese 

benadering van die omgekeerde rooster formalisme gebruik te maak. 

Daar is 'n rekenaarprogram geskryf om die ewewigs-wisselwerkingsenergie 

¢e(x,y) by enige punt in 'n twee-dimensionale eenheidsel bokant die 

kristallyne substraat te bereken. Die afknotting van die kristal by 

Sa, is deur rekenbeperkings genoodsaak en geregverdig deur die feit 

dat die waarde van¢ (x,y) by die oorsprong met minder as 0,3% verander 
e 

indien die radius van Sana 6a vermeerder word, waar a die rooster­

parameter is. 

Alle berekeninge is uitgevoer deur 144 datapunte te gebruik; meer data­

punte het weinig bygedra om die akkuraatheid te verhoog. Die insluiting 

van hoer orde harmonieke het die waardes wat vir die laer orde koeffi­

siente verkry 1.s, nie wesenlik beinvloed nie. Die Fourier koeffisiente 

konvergeer vinnig na nul met harmoniese orde; die groottes van die 

vyfde orde koeffisiente is slegs omtrent 0,04% van die eerste orde 

koeffisiente. 

Waardes vir die koeffisiente in 'n een-dimensionale snit, wat verkry 

is deur y =0 te stel in die twee-dimensionale voorstelling, is bevestig 

deur gebruik te maak van analitiese een-dimensionale uitdrukkings 

afgelei deur Hildebrand. 
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Die berekende desorpsie energie Ed en die oppervlakdiffusie 

aktiveringsenergie E van 'n geadsorbeerde atoom vergelyk goed met die a 

wat deur Bacigalupi en Neustadter bereken is. Ed en Ea kan verkry 

word deur gebruik te maak van Fourier benaderings wat by lae ordes 

afgeknot is. Ten einde redelike resultate vir die waarde van die 

horisontale kragkonstante k te verkry, moet ten minste derde orde xy 

harmonieke in die benadering ingesluit word. 

Die koeffisiente in die berekende Fourierreeks-voorstelling vir die 

ewewigshoogte konvergeer ook redelik vinnig na nul, alhoewel daar meer 

variasie in die groottes van die ho~r orde ko~ffisiente is. Dit kan 

moontlik aan numeriese afrondingsfoute toegeskryf word. Daar is 

aangetoon dat die ewewigshoogte by 'n adsorpsie posisie 0,52815a is 

wat 'n effense ontspanning van die (OOJ} oppervlak verteenwoordig in 

ooreenstemming met vroeere werk van L.CoA. Stoop. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

( i V) 

SUMMARY 

COMPUTED FOURIER SERIES REPRESENTATIONS OF THE INTERACTION 

POTENTIAL OF AN ARGON ATOM ON AN ARGON CRYSTAL SURFACE 

Promotor 

External Examiner 

Department 

by 

Paulina Maria Stoop 

Prof. J.Ao Snyman 

Prof. C.A.B. Ball 

Applied Mathematics 

Dissertation submitted for the degree Magister Scientiaeo 

Undoubtedly the quest for a Fourier series representation of the adatom­

surface interaction potential at a crystal surface is of paramount 

importance. Reliable knowledge of the Fourier coefficients is a 

prerequisite for progress in the solution of many problems in surface 

physics. Such problems are for example, scattering from crystal 

surfaces, the evaluation of the thermodynamic properties of adsorbed 

atoms, phase transitions in adsorbed layers and epitaxy. 

The purpose of this study was to calculate the relevant Fourier 

coefficients of the equilibrium interaction potential¢ (x,y) and for 
e 

the equilibrium height z . (x,y) of an argon atom above a (001) argon 
min 
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crystal surface using a Lennard-Jones (6-12) potential. The extent of 

the numerical computations necessitated truncation of the Fourier series. 

The form of the series for¢ (x,y), subjected to the symmetry proper-
e 

ties imposed by the substrate, was derived analytically using a purely 

mathematical approach and the more physical approach of the reciprocal 

lattice formalism. 

A computer program was written to evaluate the equilibrium interaction 

energy¢ (x,y) at any point in a two-dimensional unit cell above the e 

crystal substrate. Truncation of the crystal at Sa (a being the lattice 

parameter} was also necessitated by computational limitations and was 

justified by the fact that increasing the radius from Sa to 6a altered 

¢ (x,y) at the origin by less than 0,3%. e 

All calculations were carried out using J44 data points; using more 

data resulted in negligible increase of accuracy. Inclusion of higher 

order harmonics do not significantly influence the values obtained for 

the lower order coefficients. The Fourier coefficients converge 

rapidly to zero with harmonic order; the magnitudes of fifth order 

coefficients are only about 0,04% of those of the first order 

coefficients. 

Values for coefficients in a one-dimensional section, obtained by 

putting y =0 in the two-dimensional representation, were verified 

using analytical one-dimensional expressions derived by Hildebrand. 

The calculated desorption energy Ed and the surface migration 
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activation energy E of an adsorbed atom compared well with those 
a 

calculated by Bacigalupi and Neustadter~ Ed and Ea can be obtained 

using Fourier approximations truncated at low orders. In order to 

obtain fair results for the value of the lateral force constant k 
xy' 

at least third order harmonics must be included in the approximation. 

The coefficients in the computed Fourier series representation of the 

equilibrium height also converge to zero fairly rapidly, but with more 

variance in the magnitudes of the higher order coefficients. This is 

possibly partly due to rounding off errors. It was shown that the 

equilibrium height at an adsorption site was 0,52815a which represents 

a slight outward relaxation of the (001) surface planes. This agrees 

well with previous work by L.C.Ao Stoop. 
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1. INTRODUCTION 

In recent years surface physics has moved into the forefront of 

scientific progress. A great variety of processes of great 

scientific and technological interest, such as epitaxial growth, 

occur at surfaces and interfaces between materials. This progress 

was greatly stimulated by the development of sophisticated surface 

characterisation techniques, e.g. scanning tunneling microscopy [I]. 

This technique permits the observation of individual surface atoms 

and allows the resolution of both surface topography and electronic 

structure and is expected to contribute greatly to our understanding 

of surface phenomena [2]. 

The adatom-substrate interaction potential plays a decisive role in 

many surface processes. Some efforts have been directed towards the 

development of specifically designed surface interaction potentials. 

They are expected to be different from the atom-crystal potential 

in the bulk crystal. Mostoller and Rasolt [ 3], for example, 

introduced screened pair potentials for simple metal surfaces within 

the linear response theory. Morrison et al [ 4] investigated induced 

dipole contributions to the potential in the surface region of an 

ionic solid. However, the absence of reliable experimental data on 

such properties as surface, binding, adsorption and migration energies 

has greatly handicapped the development of such specifically designed 

surface potentials. The implementation of bulk based potentials had 

been the only reasonable alternative. 

The pairwise interaction approach, where only two-body forces are 
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taken into account, appears to be widespread in surface science 

[ 5]. Mostly preference is given to potentials of a simple mathe­

matical form, like the Lennard-Jones (6-12) pair potential [6,7,8,9]. 

During the last 20 to 30 years computer simulation techniques have 

also been used extensively to achieve understanding of surface 

phenomena. Bacigalupi and Neustadter [ 7] applied the Lennard-Jones 

(6-12) interaction potential to the calculation of adsorption energy 

of an atom at each of a network of sites within a surface unit cell 

for each of the eight highest surface density planes of an fee 

crystal. Broughton and Gilmer [ 6] calculated surface excess free 

energies and stresses for the (111), (100) and (110) faces of an 

fee crystal using molecular dynamics techniques. These authors also 

applied the latter technique to study three aspects of the crystal­

fluid interface, viz. the bulk properties [IO], structures of the 

fee (111), (100) and (110) crystal-vapour interfaces [11], as well 

as the dynamical properties of fee crystal-vapour systems [12]. 

L.C.A. Stoop [13] employed Monte Carlo techniques in an investigation 

of the lateral interactions within a silver monolayer on a W(IIO) 

surface. Snyman and Snyman [14] proposed a simple parameterised and 

truncated Fourier representation for the substrate interaction 

potential on the (III) face of an fee metal. This was used in a 

model to attempt to relate, at atomic level, the orientation of the 

adatoms in an epitaxial overgrowth monolayer to the physical properties 

of the adatoms and that of the substrate. Bruch and Venables [IS] 

developed a theoretical description of the distorted structures in 

adlayer lattices in terms of the amplitudes of the Fourier expansion 

of the adatom-substrate interaction potential. It was also shown 
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by W.A. Steele [ 8 l that the interaction potential of a gas atom 

with a solid whose surface consists of a single type of exposed 

lattice plane, can be expressed as a two-dimensional Fourier series 

within a plane parallel to the surface. 

Indeed, there are many problems whose solution would be greatly 

facilitated if an analytical representation for the adatom-substrate 

interaction potential were available, particularly if the potential 

were expressed as a Fourier series [ 8]. Such a problem is, for 

example, that of predicting the angular distribution of atoms in an 

atomic beam which is scattered from a crystal surface. A Fourier 

expansion of the potential is also necessary in the evaluation of 

the thermodynamic properties of adsorbed atoms. These properties 

are obtained from integrals (partition functions) of functions of 

the energy of atom-solid interaction, gas-solid interaction and 

the atom-atom interaction for clusters of atoms on the surface. 

The computation of bound-state energies of atoms on rare gas 

crystalline substrates, or exposed graphite basal planes, will be 

greatly facilitated by the existence of a Fourier series represen­

tation of the interaction potential. 

Knowledge of the (numerical) value of the Fourier coefficients is 

also of the utmost importance in the theory of epitaxy [16]. In 

this phenomenon (epitaxy) the orientation of a single crystal B 

which grows on the surface of a single crystal A is primarily 

determined by the atomic arrangement of the surface of A on which 

growth proceeds. As growth is an adatom-by-adatom process the B 

atoms will be preferably adsorbed at the minima of the atom (B)­

crystal (A) interaction potentialo The theory shows that each 
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Fourier term competes for a specific orientation of crystal Band 

that the competing strength is the larger the larger the relevant 

Fourier coefficient [17]. Epitaxy is not only of fundamental but 

also of great technological interest as it is used in electronic 

and optoelectronic devices. 

The present study is restricted to the problem of determining a 

Fourier series representation of the (gas) atom-crystal interaction 

potential energy on a single crystalline surface; specifically the 

interaction energy of an argon atom with the (001) face of an 

argon crystal. A Lennard-Jones type pairwise interaction model is 

used to simulate the interaction between the gas atom and the 

substrate. In this study the dependence of the interaction energy 

on both the distance from the surface and the displacement parallel 

to the surface are investigated. The dependence of the gas-solid 

potential on the perpendicular distance is acconnnodated implicitely 

in the Fourier approximation by allowing relaxation of an adatom 

only in a direction perpendicular to the crystal surface. Thus the 

computed two-dimensional Fourier series is an approximation of the 

equiubtc..ium interaction potential. 

A detailed description of the model, used in the present study, is 

given in Chapter 2. Chapter 3 contains a description of the 

numerical procedure adopted. The numerical results of computer 

experiments are presented and discussed in Chapter 4, with particular 

emphasis on the derived quantities, e.g. desorption and activation 

energy. An elaboration on the importance of the technique developed 

here and its wider application in surface science is also given. 
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20 THE MODEL 

2.1. Introduction 

In this chapter the origin and form of attractive, as well as repulsive 

forces between atoms of the rare gas elements are discussed. After 

considering the effect of many-body forces and quantum effects, the 

Lennard-Jones (6-12) pairwise potential is chosen as a realistic inter­

action potential to model the interaction between argon atoms. The 

merit of using a bulk based potential like the Lennard-Jones (6-12) 

potential in studying surface properties, is mentioned. 

Furthermore a detailed exposition of the model is given with particular 

reference to representation of the surface and the equilibrium interaction 

potential of a reference atom above the surface of a crystalline substrate. 

It is shown that, under the same synnnetry conditions, the Fourier series 

representation of the equilibrium interaction potential derived using the 

physical approach of the reciprocal lattice is equivalent to the represen­

tation obtained by following a purely mathematical approach. A Fourier 

series representation of the same form as that of the equilibrium 

interaction potential is also derived for the equilibrium height. 

2.2. Interatomic interaction: Lennard-Jones (6-12) pair potential 

In many respects the inert gases with their closed-shell electron configu­

rations form the simplest known crystals. The solid noble gases, except 

for helium, all crystallise in monatomic fee Bravais lattices. The electron 

configuration of each atom is only slightly deformed in the solid~ 
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The existence of condensed phases for the rare gas elements shows 

that there are attractive interactions between closed-shell atoms. 

These attractive forces, the so-called van der Waals or fluctuating 

dipole forces, are very weak. Qualitatively the physical origin of 

these cohesive forces arises from the fact that the charge distributions 

on the atoms in the crystal are not rigid. Although the average charge 

distribution in a single rare gas atom is spherically synnnetric, at any 

instant there may be a net electric dipole moment as the electrons are 

in motion around the nucleus. The time-average electric moments never­

theless should vanish. The instantaneous dipole moment of magnitude 

p
1 

of one atom induces an electric field E of magnitude 2p
1
/r 3 at the 

centre of a second atom at a distance r from the centre of the first 

atom. This electric field will in turn induce an instantaneous dipole 

moment of magnitude p2 , proportional to p
1 

on the second atom, ioe. 

( 2. 1) 

The constant of proportionality a is known as the electronic polari­

zability, and is, by the above definition, the dipole moment per unit 

electric field. Since two dipoles have an energy of interaction 

proportional to the product of their moments divided by the cube of 

the distance between them [18], the potential energy of the dipole 

moments may be written as 

1 Zpl P2 
U(r) ~ - -- [ ] 4m: 3 

o r 

2 
l apl 

= - -[-] 
TIE: 6 ' o r 

where s
0 

is the permittivity of free space. The minus sign is 

characteristic of attractive interaction. Since the potential energy is 

proportional to p2
, its time-average does not vanish, although the 

1 
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average value of Ei is zero. 

In general the interaction is expressed as [22] 

U(r) = 
C 
6 

r 
(2.3) 

-6 
Because of the r dependence the interaction falls off rapidly with 

distance, and the force of interaction is very weak. This explains 

the low melting and boiling points of the condensed noble gases [ 19]. 

The interaction between two noble gas atoms also has a repulsive 

component, arising primarily from the overlap of electronic charge 

distributions as two atoms approach one another closely. The 

repulsive interaction can be understood in terms of the Pauli exclusion 

principle. According to this principle no two electrons can be in the 

same quantum state. Thus, the electron distributions of closed-shell 

atoms can overlap only if some of the electrons are partially promoted 

to unoccupied higher energy states, thereby increasing the total 

energy of the system. This introduces a repulsive contribution to the 

interaction [ 23]. 

Two forms of the repulsive part of the interatomic potential which most 

commonly appear in the literature are the Born-Mayer [25] potential and 

the repulsive term of the Lennard-Jones potential. The Born-Mayer 

potential has an exponential dependence and is given by 

= Cb. b. exp (- r .. /0, 345) , 
l. J l.J 

(2.4) 

where C -12 _ 10 erg and b. and b. are characteristic constants 
l. J 
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associated with the interacting atoms i and j respectively. The 

repulsive term of the Lennard-Jones (6-12) potential [26] is given by 

cp (r) = B 
1 2 ' r 

(2.5) 

where Bis a positive constant and r is the distance between centres of 

mass of the two atoms. The exponential Born-Mayer potential has the 

undesirable property that it approaches a finite value as r approaches 

zero. This is quite unrealistic [27] since the nuclei of the two atoms 

cannot occupy the same space. The repulsive term (2.5) and the 

attractive term (2.3) constitute a simple but nevertheless realistic 

representation of the interaction potential of two spherical non-polar 

particles, like two inert gas atoms. The total potential energy of two 

atoms at separation r is usually written as 

cp (r) (2.6) 

where£ is the depth of the potential well and cr is the distance at 

which cf>(r) = O. The dependence of¢ on r is illustrated in Fig. 2al. 

0,6 

0,4 

0,2 

2.0 r ;a 
0 

-0, 1 

-0,2 

Fig. 2.1. The Lennard-Jones (6-12) potential (Eq. 2.6) [ 21]. 
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It must be stressed that the exponent of the repulsive term was chosen 

to be 12 purely on the grounds that the number must be larger than 6 

to allow for repulsion as r tends to zero and that with this choice 

the thermodynamic properties of neon, argon, krypton and xenon in the 

gas phase could be well reproduced by this potential using suitable 

values for the empirical parameters sand a [28]. These parameters can 

be determined experimentally from independent measurements in the gas 

phase. In addition, the analytic simplicity resulting from such a 

choice is definitely also a great advantage. 

A Lennard-Jones (6-12) pairwise potential will be used in this study 

to model interaction between argon gas atoms. Although consideration 

of only two-body interactions seems to give a good description of the 

interaction potential in the case of rare gas atoms in the gas phase, 

caution must be exercised when considering its application to rare gas 

solids. At higher particle densities the interaction between the 

atoms in the crystal cannot accurately be represented as the sum of 

pair potentials. It is essential that many-body interactions be taken 

into account as well. 

In the case of argon excellent agreement with the thermodynamic 

properties of the condensed phase is obtained if in addition third­

order triple dipole (Axilrod-Teller-Muto) three-body interactions are 

included [29]. It has been shown that third-order dipole-quadrupole 

interactions and fourth-order triple-dipole interactions [30] make 

small contributions which fortuitously seem to cancel out almost 

completely [31] in calculations of the properties of liquid argon. 

It has also been suggested that the Lennard-Jones potential should be 

regarded as an e66ec.live pair potential rather than as a ;tJr_ue pair 
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potential [32,33]. This is particularly true in the case of argon. 

In spite of the call for caution it is generally agreed [34,35] that 

the pairwise interaction represented by the Lennard-Jones (6-12) 

potential dominates in the case of an argon atom on an argon crystal. 

It is therefore justified, also in view of mathematical simplicity, 

to ignore the second order contributions of many-body interactions in 

the model being used in this studyo 

The values of the parameters€ and a which are used in the calculation 

of the interaction potential are those reconnnended by Maurits and 

Rurrnnens [36]. In Table I values for the€ and a, for argon, obtained 

from gas viscosities, as well as correlation techniques are listed. 

TABLE I 

Lennard-Jones parameters a (in A) for argon based on 

viscosity and calculated by empirical correlations, 

and recorrnnended values for a and€ (in eV) [36]. 

ORIGIN a(in A) € (in eV) 

Franck 3,426 

Viscosity Hirschfelder et al 3,442 

based Svehla 3,542 

values Tee, G.otoh and Stewart 3,434 

Linakis and Bowrey 3,320 

Halkiadakis and Bowrey 3,302 

Calculated Stiel and Thodos 3,460 
by emperical 

correlations 
Tee, Gotoh and Stewart 3,432 

Recorrnnended 

values 
Maurits and Rummens 3,465 9,7803 X 10 

-3 
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The values that were used to determine the reconnnended values are 

italicised in Table I. These parameters were considered reliable 

and they form a basis with which the calculated parameters are 

compared. 

Quantum kinetic energy also plays a role of varying importance in 

determining the total cohesive energy of the rare gas solids and 

consequently in determining the potential above the solid. Even at 

zero temperature the ion cores of the noble gas atoms cannot be 

perfectly localised with zero kinetic energy at the lattice points, 

as this violates the Heisenberg uncertainty principle. If an ion 

core is confined to a region ~x in one dimension, then, according to 

the uncertainty principle, the related spread in momentum ~(mv) will 

be at least equal to h/2n~x, where his Planck's constant the kinetic 

energy of the core will then be of order h 2 /M(~x) 2
, where Mis the 

mass of the core. This energy is known as zero-point kinetic energyo 

It makes a positive contribution towards the cohesive energy and 

reduces the binding. However, zero-point kinetic energy becomes less 

important with increasing mass as is illustrated by the value of 0,19 

for the de Boer parameter [20] A for Argon. The de Boer parameter is 

a measure of the importance of quantum effects in noble gases. The 

de Boer parameter squared, A2
, is roughly the ratio of the lu_netiQ 

ene.Jtgy of zero-point motion of an atom to the value of the attractive 

interaction energy. It is clear that the value of the zero-point 

kinetic energy is only about 3,61% of that due to the attractive 

component of the Lennard-Jones (6-12) potential. Thus, the effect of 

zero-point motion is comparatively small in the case of argon and 

neglecting this effect still yields a realistic model. 
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The usefulness of simple potentials like the Lennard-Jones (6-12) 

potential in studying various bulk properties has been established 

beyond doubt. However, extending their application to surface 

problems is questionable as atoms in the surface layer do not 

experience the same forces as those in the bulk. This imbalance of 

forces induces displacements and polarizations of the atoms near the 

surface of a crystal. If more precise calculations are to be performed, 

a specifically designed surface potential should be usedo Experimental 

data on properties like surface, binding and adsorption energies on 

which such a potential could be based, is neither readily available, nor 

reliable. From the literature it appears that no suitable simple sur­

face potential exists. Consequently, the Lennard-Jones (6-12) bulk 

pair potential, of which the shortcomings have already been acknowledged, 

will be employed here to approximate the interatomic interactions both 

in the crystal and on the surface. 

2.3. Surface representation 

In the present study possibly the simplest representation of a surface 

1.s assumed, namely that of a "rigid planar array of exposed atoms having 

the same stoichiometry, lattice spacing and lattice synnnetry as the 

bulk" [37] o No attempt will be made to take into account the surface 

phenomena of multilayer relaxation or surface reconstructiono This 

should not affect the realism of the model too severely as low-energy 

diffraction data for clean fee metal surfaces [38,39] indicates that 

there is little relaxation on the {100} surface. Relaxation calculations 

made by R.A. Johnson [39], using a model based on nearest-neighbour 

central forces and volume-dependent energy terms, suggested that the 
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displacement of the {100} surface plane inanfcc metal is zero. As 

argon also crystallises in anfcc Bravais lattice, it is reasonable 

to assume that there will be very little relaxation on the {001} 

surface of such a crystalo 

In the present model the x-y Cartesian reference plane passes through 

the centres of the {001} surface atomso The origin O is fixed at a 

point lying at the centre of a surface atom. The x-axis extends along 

a row of atoms spaced a distance£= a/12 apart, a being the lattice 

constanto The z-axis is positive along the outward normalo (See 

Fig. 2.2.)o The position of an atom A in the crystal, as depicted in 

Fig. 2o2, is given by 

£J, aK/2) ; Keven or zero 
(2. 7) 

£J, aK/2 )+ (£/2, 9.,/2, 0); K uneven., 

The crystal to be referred to as the substrate is modelled by a rigid 

lattice of point particles interacting independently with a reference 

adatom at P according to a 6-12 Lennard-Jones pairwise potential. The 

energy contributions are accordingly additive. If ¢pJ is the value of¢ 

for the interaction between the adatom at P(xp, Yp, zp) and an atom at 

J(xJ, yJ' zJ) in the substrate at a distance ~J from P, ¢pJ may be 

computed using (2.6) and (2.7): 

where 

(2.9) 
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Fig. 2.2. Diagram indicating the relative positions of the reference 

adatom P above the crystal substrate and an arbitrary atom 

A in the crystal substrate with respect to the chosen system 

of axes. 
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The total energy of the reference atom at Pis thus given by 

(2.10) 

where the sunnnation is taken over all the atoms in the substrate 0 In 

the actual computation a cutt-off radius R = Sa, where a is the lattice 

parameter for argon, was introduced setting ¢PJ equal to zero for 

~J > Ro This approximation is needed because of computational limi­

tations and is justified by the fact that an increase of the cut-off 

radius from Sa to 6a increases the calculated equilibrium interaction 

energy of an atom at the origin by less than 0,3%. The adoption of a 

comparatively small cut-off radius reduces the computational time 

considerably. Thus the part of the solid argon crystal substrate which 

effectively generates the potential at a point near the origin, is in 

the form of a hemisphere with radius Sa as depicted in Fig. 2.3(a). 

z 

Fig. 2.3(a) The cut-off distance is taken Sa for all positions 

considered in the unit cell. 
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2.40 Equilibrium interaction potential 

The equilibrium interaction potential near the surface of the crystal 

may now in principle be computed in the following manner: The two­

dimensional surface unit cell, with side length i, is overlayed by a 

mesh of grid points as shown in figure 2o3(a) and (b). At each of 

these grid points (x,y) and at a fixed height z above the surface, 

the interaction potential¢ (z) of a reference atom with the atoms of xy 

the substrate in the hemispherical region below may be calculated 

using equations (2.8) and (2.10). Clearly¢ (z) will vary with z (see xy 

Fig. 2.4) and the equilibrium interaction potential, i.e.¢ (z . ) xy min 

= minimum, occurs 

d¢ 
(~) = o. 

dz z . min 

at a height z. defined by min 

(2.11) 

In practice the value of z . and therefore also of the equilibrium 
min 

interaction potential¢ (z . ) is determined by allowing the reference xy min 

atom to vary its position in the z-direction until the minimum value of 

¢ (z) is attained. (See Fig. 2.3(b)). xy 

Thus for each grid point(x.,y.), i = 1, ••• , n and j = 1, ••• , m 
i J 

a z . (x.,y.) and an associated¢ (z . ) are computed. We now define 
min i J xi y i min 

the set of values 

¢ (x.,y.) = ¢ (z . ). 
e i J xiyi min 

(2.12) 

The discrete values ¢ (x.,y.) may now be used as data for the calcula­
e i J 

tion of the Fourier coefficients of a two-dimensional Fourier series 
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z 

X 

I 

Reference atom P is constrained to motion 
along the vertical line 

Fig. 2.3(b) The two-dimensional surface unit cell is overlayed 

by a mesh of grid points and the reference atom P 

is constrained to motion along vertical lines 

passing through the grid points. 
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(x,y) = (0,0) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.2 0,6\ 1,0 1,4 1,8 
I 

Fig. 2.4. Variation of potential energy of an atom along the vertical 

for three positions in the surface unit cell of the {001} 

face of an fee lattice. 

2.0 
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representation of ¢e(x,y), the equilibrium interaction potential, 

varying continuously with position (x,y). 

Similarly, a continuous Fourier series representation of the surface 

z . (x,y), of minimum potential energy, can also be calculated from min 

the discrete values z . (x.,y.). 
min i J -

Details of the way in which the Fourier coefficients are calculated 

are given in Chapter 3o 

2.50 Fourier series representation of the equili~rtum interaction 

potential ¢e(x,y) 

In deciding on a form for a two-dimensional Fourier series represen­

tation of the equilibrium interaction potential ¢e(x,y), the inherent 

syrmnetry of the argon crystal surface must be taken into account. 

The symmetry of the model is reflected by relationships that exist for 

the Fourier coefficients. From a practical point of view, it is 

desirable to retain only the linearly independent coefficients in a 

Fourier series representation of¢ (x,y) as this will greatly reduce 
e 

the computational effort. The derivation of such a Fourier series 

representation can be approached in two ways, either from a physical 

or from a purely mathematical point of view. Both these approaches 

will be considered. 

2.5.1. The synnnetry of the model 

In the present model it is assumed that the argon crystal is a semi­

infinite perfect crystal, the atomic arrangement forming a regular 
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array. The {001} substrate surface of the fee crystal may accordingly 

be represented by a square two-dimensional unit cell, repeating itself 

with period Sl = a/12. along the <110> and <Tio> directions as shown 

in Fig. 2.5. These directions are respectively chosen as the x and y 

directions for the two-dimensional Fourier series representation of 

the surface potential. It is reasonable to assume that the equilibrium 

interaction potential should be a periodic function with the same 

periodicity and symmetry as the Bravais lattice of the underlying 

substrate surface. This lattice has a fourfold rotational symmetry. 

Thus the following conditions hold for the equilibrium interaction 

potential¢ (x,y): 
e 

¢e(x,y) = ¢ (-x -y) e , , (2.13a) 

¢e(x,y) = ¢e(-y, x) ' 
(2ol3b) 

and 

¢e(x,y) = ¢ (y' -x) • e 
(2.13c) 

Equation (?.ol3c) is implied by (2ol3a) and (2.13b). From equation 

(2.13a) it is clear that¢ (x,y) is an even function. A further 
e 

symmetry condition exists in the argon crystal lattice, viz. a mirror 

plane passing through the origino (See Fig. 2.5). With a twofold 

axis and one mirror plane, there is automatically a second mirror plane 

normal to the first. The implications for¢ (x,y) are that 
e 

(2. 14a) 

and 

(2.14b) 
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Fig. 2.5. The {OOI} surface of an fee crystal. 

~
1 

and ~
2 

are chosen as primitive surface 

vectors in real physical space. 

2.5.20 The mathematical approach 

According to Weinberger [40]any continuously differentiable function 

f(x,y) of two variables periodic with period 2TI in both variables i.e. 

f(x + 2TI,y) = f(x,y + 2TI) = f(x,y) (2.15) 

has a uniformly convergent Fourier series 

f(x,y) 
I 1 co 
-
4 

a + -
2 

~ [ a cos my + b sinmy] 
oo m=l om om 

I co 
+ - ~ [ a cos nx + c sin nx] 

2 n=l no no 

co co 

+ ~ ~ [ a cos nx cos my + b cos nx sin my 
n= I m= I run run 

+ c sin nx cos my + d sin nx sin my] 
run run 

(2.16) 
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with 

_I ITT TT 
a = I f (x, y) cos nx cos mydxdy, run 2 -TT -TT 

TT 

b = _I ITT ITT f(x, y) cos nx sin mydxdy, 
nm 2 -TT -TT 

TT 

C = 
nm 

_I ITT ITT 
2 -TT -TT f(x, y) sin nxcos mydxdy, 

TT 

d = _I ITT ITT f(x, y) sinnx sin mydxdy. 
nm 2 -TT -TT 

TT 

For a function F(x,y) which is periodic with period 1 in both x and y 

(normalized coordinates) the Fourier series will be of the form 

F(x,y) 
1 1 00 

= -4 a + -
2 

:r [ a cos 2TTmy + b sin 2TTmy] 
oo m=l om om 

1 00 

+ - :r [ a cos 2TTnx + c sin 2TTnx] 
2 n=l no no 

00 00 

+ :r :r [ a cos 2TTnx cos 2TTmy + b cos 2TTnx sin 2TTmy 
n= 1 m= 1 run run 

+ c sin2TTnx cos 2TTmy + d sin2TTnx sin2TTmy] (2. 18) 
run run ' 

where the relationship between the normalised and absolute coordinates 

(x' ,y') are given by x 

(2.18) are of the forms: 

x'/£ and y = y'/t. The constants in equation 

I ! 
a 2 2 

run = 4 I , I I F (x, y) cos 2TTnx cos 2TTmydxdy, 
-:z -:z 

I½ 
! 

b = 4 I2 F(x,y) cos 2TTnx sin 2TTmydxdy, 
nm I I -:z -:z 

(2 0 19) 
I I 

C = 4 I 2 I2 F (x, y) sin 2TTnx cos 2TTmydxdy, 
nm I _! -:z 2 

I I 

d = 4 I 2 I2 F(x,y) sin2TTnx sin2TTmydxdy. 
nm -½ -½ 
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If in addition F(x,y) is an even function, it follows from the above 

that the constants b = 0 = c , and that the constants b = O = c 
run run om no 

Thus 

F(x,y) I I 00 

= 4 aoo + 2 L 
m=l 

00 

a cos 2TTmy om 

+ - L a cos 2TTnx 
2 n=l no 

00 00 

+ L L [ a cos 21Tnx cos 21Tmy + d sin 21Tnx sin 21Tmy] • 
n=l m=l run run 

Suppose F(x,y) = F(-y,x). Then 

(2,20) 

I I oo oo oo oo 
- a + - L a cos 21Tmy + - L a cos 21Tnx + L ~ [ a cos 21Tnx cos 21Tmy 
4 oo 2 m=l om 2 n=l no n=l m=l nm 

+ d sin 21T nx sin 21Tmy] 
nm 

I oo I oo oo oo 
= -

4 
a

00 
+ - La cos21Tmx + - La cos21Tn(-y) + L L [a cos21Tn(-y)cos 21Tmx 

2 m=l om 2n=l no n=l m=l nm 

+ d sin 21Tn ( -y) sin 21Trnx] • 
nm (2.21) 

The above implies that the Fourier coefficients satisfy certain synnnetry 

relationships. By comparing the first two series on both sides of 

equation (2o21) it follows that 

a . = a. - c., 
01. 1.0 1. 

i =1,2, ••• 00 (2.22) 

Now consider the last series on the right hand side of equation (2.21) and 

change dunnny indices; 
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00 00 

L L [ a cos 2TTn(-y) cos 2TTmx + d sin 2TTn(-y) sin 2TTmx] 
n= I m= I run run 

00 00 

= L L [ a cos 2TTny cos 2TTmx + d sin 2TTn(-y) sin 2TTmx] 
n=I m= I nm nm 

00 00 

= L L [ a cos 2TTmy cos 2TTnx + d sin 2TTm(-y) sin 2TTnx] 
m=I n=I mn mn 

00 00 

= L L [ a cos 2TTmy cos 2TTnx - d sin 2TTmy sin 2TTnx] • 
m=I n=l mn mn 

(2.23) 

By comparing the last series on the left hand side of equation (2.21) 

with equation (2.23), itis seen that 

a a 
nm mn 

and (2.24) 

d = - d 
nm mn 

On using the relation (2.22), equation (2.20) reduces to 

I I 00 

F(x,y) = 4 a + 2 L C COS 2TTmy 
00 

m=l 
m 

I 
00 

+- L C cos 2TTnx 
2 n=l 

n 

00 00 

+ L L[a cos2TTnxcos2TTmy + d sin2TTnxsin2TTmy] (2.25) 
n= I m= I run nm 

If furthermore 

E(x,y) = F(x,-y) (2.26a) 

and 

F(x,y) = F(-x,y), (2.26b) 
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and condition (2.26b) is applied to equation (2.25), we obtain: 

F(x,y) 
I oo 

= 4 aoo + 2 L 
m=l 

00 00 

c [ cos 2TTmy + cos 2TTmx] 
TI)_ 

+ L L [ a cos 2TTnx cos 2TTmy + d sin 2TTnx sin 2TTmy] 
n= I m= I nm nm 

I I 00 

= 4 aoo + 2 L 
m=l 

00 00 

c [cos 2TTmy + cos 2TTm(-x)] 
m 

+ L L [ a cos 2TTn(-x) cos 2TTmy + d sin 2TTn(-x) sin 2TTmy] 
n= I m= I nm nm 

= F(-x,y) (2. 27) 

This reduces to 

00 00 
00 00 

L L d sin 2TTnx sin 2TTmy 
n=l m=l nm 

L L - d sin 21Tn (x) sin 2TTmy. 
nm 

n=l m=l 
(2.28) 

By comparing the lefthand and righthand sides of the above equation it 

follows that 

d nm - d • nm 

This can only be true if d 
nm 

using equation (2.26a). 

(2.29) 

0. The same result can be deduced by 

Thus a Fourier series representation for a function that has the same 

continuity and symmetry properties as the equilibrium interaction 

potential¢ (x,y) must be of the form 
e 
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I 00 

F(x,y) = 4 a + 2 ~ c (cos 2TTmy + cos 2TTmx) 
00 m=l m 

00 00 

+ ~ ~ a cos 2TTnx cos 2TTmy. (2.30) 
n=l m=l nm 

2.5.3. The physical approach 

An identical representation for the potential may be obtained by 

adopting alternative arguments more in keeping with the philosophy of 

solid state physics and crystallography. In this approach, which is 

briefly dealt with below, the potential representation is developed 

via the reciprocal lattice of the crystal. 

As a regular infinite perfect crystal substrate is assumed in the model, 

the equilibrium interaction potential¢ (r) of an atom above the 
e -

substrate, should be a periodic function with the periodicity of the 

Bravais lattice of the underlying substrate surface, i.e. 

(2.31) 

for all surface lattice vectors T. Any function which is invariant 

under all surface lattice translations T may be expressed as a Fourie-

series 

iG·r 
e - -

where Q is any reciprocal lattice translation vector in the two­

dimensional reciprocal lattice and r is any surface vector in real 

space (24]. In particular 

(2.32) 
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¢ (r) 
e -

iG•r 
e - -

Consider Fig. 2.5. 
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The vectors a 
-1 

.... 
= £x and a 

-2 
= £y, where ..Q, = a 

✓2 

(2.33) 

and 

a is the lattice parameter, may be chosen as primitive surface vectors 

in real physical space. The reciprocal lattice vectors corresponding 

to a and a are given by 
-1 -2 

b 21T .... 
-1 =TX and b 21T .... 

-2 =Ty (2.34) 

Let G = h b 
-1 

and r = where the h,k are integers. 

It follows that 

G·r 21T (hx + ky) . 

Hence 

<P (r) = 
e -

iG•r 
e - -

~ A. 21ri(hx+ky) 
~ -nke • 

h,k 

However, equation (2.36) can also be written as follows: 

(2.35) 

(2.36) 

A. i2TI (hx + ky) 
-nk e = 

h,k =- 00 

CX) 

~ [ 1\i ei2TI(hx +ky) A -i2TI(hx +ky) 
~ + -h -ke 

h k=l k ' 
' 

i2TI (-kx + hy) A. i2TI (kx - hy )] 
+ A-kh e +_l<. -he 

' 

~ [ A i21Tky -i21rky] + ~ ke +A ke 
k=l o o,-

(2.37) 

Applying the inversion symmetry condition (2.13a) to equation (2.36) 
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yields the result: 

00 

~ A. ei2TI(hx+ky) = 
h k -nk 

00 

~ A. i2TI[ h(-x) + k(-y)] 
-11.k e 

' 
h,k 

= f A. e -i2TI (hx + ky) 
h k -nk 

' 

00 

= ~ A 
-h,-k 

-h,-k 

from which it follows that 

i2TI(hx + ky) 
e ' 

If now only those terms in the sum of which ~k and A-h,-k are the 

coefficients are considered, we may write 

A. i2TI(hx +ky) A -i2TI(hx +ky) 
-nk e + -h,-k e 

(2.38) 

(2.39) 

= ¾k[ cos 2TI (hx + ky) + i sin 2TI (hx + ky)] + A-h,-k[ cos 2TI(-h (x) + (-k)y) 

+ i sin 2TI( (-h)x + (-k)y)] 

= ~k[ cos 2TI (hx + ky) + i sin 2TI (hx + ky)] + A-h,-k[ cos 2TI (hx + ky) 

- i sin 2TI(hx + ky] 

2Ahk cos 2rr (hx + ky) . (2.40) 

Similarly it follows that 
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ei27T(kx-hy) = 
~-h 

' 
2A_kh cos 27T (-kx + hy) . (2.41) 

In view of equations (2.40) and (2.41), the expression for the equili­

brium interaction¢ (x,y) simply becomes 
e 

00 00 

~ 2¾k cos 27T(hx + ky) + ~ 2A_kh cos 2n(-kx + hy) 
h,k=J h,k=l 

+A 
00 

Using the symmetry condition (2.13b), viz. ¢e(x,y) = ¢e(-y,x), 

yields 

A. i2TI(hx+ky) 
-nk e = 

h, k= - 00 

00 
; A. i27T (-hy + kx) 

-nk e 
h, k= - 00 

A i2TI (hy + kx) 
-hk e 

-h,k=-00 

00 

+oo i27T(ky+hx) 
~ A-kh e 

-k,h=-00 

and it can be deduced that 

Thus equation (2.42) can be simplified further: 

00 

~ 2~k[ cos 2TI (hx + ky) + cos 2TI ( -kx + hy)] 
h,k= I 

(2.42) 

(2.43) 

(2.44) 

+~[A i2nky +A e-i2nky] + i [~ ei27Thx+ A_h e-i21rhx] 
ok o ,-k , - I o o k=l n-

+ A 
00 
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00 

+ L 2A
0

k cos 21rky + L 2¾
0 

cos 21rhx 
k=l h=l 

00 

+ L 2¾k[cos 21r(hx + ky) + cos 21r(-kx + hy)] 
h,k=l 

00 00 

+ L 2A
0

k cos 21rky + L 2¾
0 

cos 21rhx 
k=l h=l 

00 

+ L 2¾k[ cos 21rhx cos 21rky - sin 21rhx sin 21rky 
h,k=l 

+ cos 21rkxcos 21Thy + sin21Tkx sin21Thy] o (2.45) 

The first two series in equation (2.45) may be rewritten as follows: 

00 00 

L 2A
0

k cos 21rky + L 2¾
0 

cos 21rhx 
k= I h= l 

00 

= - L 2 h=l 
Ch(cos 2TThy + cos21Thx) (2 0 46) 

where 

Ch = 4Aoh = 4¾o• 
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Also for the last series in equation (2.45) we obtain: 

00 

1: 2A. 
h k= I -nk[ cos 2TThx cos 2TTky - sin 2TThx sin 2TTky , 

+ cos 2TTkx cos 2TThy + sin 2TTkx sin 2TThy] 

00 00 

= 1: Dhk cos 2TThx cos 2TTky + 1: Ehk sin 2TThx sin 2TTky, 
h,k=l h,k=l 

where 

It therefore follows that 

00 

= -4
1 

D + _l :r Ch[ cos 2TThx + cos 2TThy] 
oo 2 h= I 

00 

+ 1: Dhk cos 2TThx cos 2TTky + Ehk sin 2TThx sin 2TTky] • 
h,k=l 

(2.47) 

(2.48) 

(2.49) 

If the two perpendicular mirror planes passing through the origin in 

the argon crystal lattice are taken into account, it follows that 

(2.50) 

and thus Ehk = O. The simplest expression for the equilibrium inter­

action potential satisfying the synnnetry conditions described in 

paragraph 2.5.I. is therefore: 
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l l 00 

= 4 D
00 

+ 2 L Ch(cos 2Tihx +cos 2Tihy) 
h=l 

00 

+ L 
h,k=l 

[ D cos 2Tihx cos 2Tiky] • 
hk 

(2.51) 

By comparing equation (2.30) and (2.51) it is clear that the Fourier 

series representation for the equilibrium interaction potential 

¢ (x,y), which was derived by means of reciprocal lattice formalism, 
e 

is of the same form as the representation for an even function F(x,y) 

with four fold symmetry and a mirror plane passing through the origin 

which was obtained by mathematical analysis. From a physical, as well 

as mathematical point of view, it is therefore justified to assume 

equation (2.51) as Fourier series representation for the equilibrium 

interaction potential above the substrate. Also,it has merit to put 

the details of the techniques on record. 

206. Fourier series representation of the equilibrium height 

In paragraph 2.5 the assumption is made that the equilibrium inter­

action potential¢ (x,y) is a periodic function with the same periodicity 
e 

and synnnetry as the underlying substrate surface Bravais latticeo The 

same applies to the equilibrium height z . (x,y). The function z . (x,y) min min 

should also be invariant under all surface lattice translations [241, 

and have the same period and synnnetry properties as¢ (x,y). 
e 

Thus it 

is justified to assume a Fourier series representation H. (x,y) for min 

z . (x,y) which is of the same form as that of¢ (x,y), viz. 
min e 

l I 
00 

H. (x,y) =-
4

B +-
2 

L Bh[cos 2Tihx + cos2Tihy] 
min oo h= 1 

00 

+ L [ Bhk cos 2Tihx cos 2Tiky] • 
h,k=l 

(2.52) 
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All arguments concerning convergence, approximation by a partial 

sum and applicability of optimization methods pertaining to the 

equilibrium interaction potential¢ (x,y), discussed in the next 
e 

chapter also apply in the case of the equilibrium height z . • 
min 
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3 0 NUMERICAL PROCEDURE 

3 .1. Introduction 

In this chapter the question of convergence of the two-dimensional 

Fourier series representation of the interaction potential, and the 

validity of a partial sum approximation containing a small number of 

terms is addressed. The applicability of the least squares and 

minimization methods to the present problem, as well as the details of 

the experimental methodology adopted in this study, will be discussed. 

3.2. The truncated Fourier series representation 

The ultimate goal of this study is to compute the coefficients for a 

two-dimensional Fourier series representation 

I I 00 

Fe (x,y) = 7;A
00 

+ 2 ~ ~[ cos 21Thx + cos 21Thy] 
h=l 

00 

+ ~ [ ¾k cos 21Thx cos 2rrky] 
h,k=l 

( 3. I) 

of the equilibrium interaction potential¢ (x,y) of an argon atom on an 
e 

argon crystal surface. However, in practice only a finite number of 

terms in this series can be computed. It is therefore important to know 

that the series in (3.1) does indeed converge, hopefully rapidly, to 

¢e(x,y), so that partial sums of the series, containing a small number 

of terms, will give a good approximation to¢ (x,y). According to 
e 

Weinberger [41] the complete two-dimensional Fourier series converges 

absolutely and uniformly to¢ (x,y) as a double series if¢ (x,y) is e e 
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continuous and continuously differentiable, and if the squares of its 

second order partial derivatives have finite integrals. From a physical 

point of view we expect~ (x,y) to be a smooth continuous function 
e 

satisfying the above mentioned n~~U~aJty conditions, so that it can 

indeed be approximated by a partial sum 

N' 
( . 1 1~ [ ] F x,y) = -4 A + - ~ Ah cos 2TThx + cos 2TThy 

e oo 2h=l 

N' 
+ ~ ~k [ cos 2TThx cos 2TTky] (3. 2) 
h,k=l 

to be referred to as a "truncated" Fourier series. The question 

concerning the number of terms needed in this partial sum in order to 

give a good approximation, will be discussed in a subsequent section. 

The Fourier coefficients have to be determined numerically as no simple 

analytical derivation of expressions for Fourier coefficients in two 

dimensions could be found. The method of least squares for fitting a 

chosen function to specific data is employed in the calculation of the 

Fourier coefficients. 

3o3. The least squares method 

This method can be used when the value of a function Y(x), xEu{n, is 

known at a finite number of points x., i = 1,2, ••• , M, while the exact 
l. 

mathematical form of Y(x) is unknown. By using the set of data points 

{(x.,Y.), i = 1,2, ••• , M}, it is required to select a specific 
l. l. 

function f from a family of known functions such that the fit between 

Y and f is "best" in some sense [ 42] • 

In general it is assumed that f is of the form 
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(3 .3) 

where the k parameters a 1 , ••• , ak define the family of functions. It 

is now assumed that a "best" fit is obtained if the parameters, a., are 
J 

selected so that: 

M 

~
2 = t [Yi - f(a

1
, a 2 , oo•, ak, xi)] 2 = minimum. 

i=l 

One way to achieve this is to require that 

3~2 
-- = o, 3a. 

J 

j =1,2, o••, k, 

(3.4) 

(3. 5) 

which yields k simultaneous equations. These equations have to be 

solved for the a., in order to determine a "best" or "least squares" 
J 

approximate expression for the true function Y(x), with 

(3.6) 

where the superscript* pertains to the solution of equations (3o5). 

The two-dimensional Fourier representation is now consideredo For 

convenience x E Ot 2 is denoted by (x,y). In the present study the 

exact form of the equilibrium interaction potential¢ (x,y) is the 
e 

unknown function Y. For reasons of symmetry and other considerations 

which have been discussed above, it is assumed that¢ (x,y) can be 
e 

expressed as a two-dimensional truncated Fourier series of the form 

I I N' 
F (A,x,y) = 7 A +-

2 
~ A [ cos 2TThx + cos 2nhy] 

e ,_ '+ oo h=l -11 

N' 
+ ~ [ ¾k cos 2TThx cos 2TTky] • 
h,k=l 

(3. 7) 
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This series in unknown coefficients A= {Ai} now constitute the 

family of functions f(~,x). 

For each grid point (x.,y.) a discrete value of the equilibrium 
i J 

interaction potential¢ (x.,y.) is calculated using the relation: 
e i J 

N 
¢ (x. ,y.) = L 4€[ (~)12 

- (;3__J)6] , 
e i J J ~J --p 

where 

(3.9) 

and the sum is taken over the finite number of atoms contained in the 

hemispherical part of the substrate with radius Sa and centre at 

(x.,y.) (See Fig. 2.3(a)~ This is the calculated data to which the 
i J 

chosen form of the function F (A,x,y) (in the present study, the 
e ,_ 

truncated Fourier series) is to be fitted by selecting the components 

of~ using the criterion 

M 
L 

i=l 
[ Data 2 

¢ (x. , y.) - F (A , ••• , A__, x. , y.)] = 
e i J e 1 -l.< i J 

minimum. (3. 10) 

In the present study a modified Levenburg-Marquardt algorithm is used 

to minimize the sum of squares. This method eliminates the need for 

explicit derivatives. In general the number, M, of data points will 

greatly exceed the number K of parameters (A
00

, ¾' ¾k). 
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3.4. The Golden Section search technique [43] 

This method is a one-dimensional optimization direct search method which 

can be used when the position z* of the minimum (or maximum) of a 

unimogal function f(z) of one independent variable z within a closed 

interval a~ z ~bis to be determined. The technique comprises the 

following: The function of which the extremum is to be determined, is 

evaluated at a number of points. These data are used to estimate the 

approximate location of the desired extremum. The search is continued 

until the absolute difference in successive computed values off is 

smaller than E, where E > o defines the desired accuracy. 

From equations (2.8) and (2.10) it is clear that the interaction potential 

¢p of a reference atom P will vary with its height z above the sub-

strate, x and y being fixed. Accordingly ¢pis a function of only one 

independent variable Zo Computing the sum over all the atoms in the 

hemispherical region of the substrate contributing to the potential at 

P, it is found, not surprisingly from a physical point of view, that 

cpp is also a unimodal function (see Figo 2.4) in the region of interest. 

Therefore the Golden Section search method can be applied to 
p p 

determine an approximate value for z . and¢ (z . ) min xy min 

3.5. Methodology of the experiments 

= cp (x,y). 
e 

The suit of programmes developed to carry out the numerical computa­

tions proved to be surprisingly simple. It must however be noted 

that for the actual minimization two IMSL [44] subroutines ZXGSN and 

ZXSSQ were employed. ZXGSN is based on the Golden Section search 

technique, and ZXSSQ uses a modified Levenburg-Marquardt least squares 
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algorithm. (See appendices A and B). 

A schematic representation of the numerical procedure followed in 

this study in the determination of the Fourier coefficients ¾k and 

Bhk and the height at which the equilibrium occurs, is presented 

below. Also indicated on the diagram is the method used to compute 

approximate values for¢ (x,y) and z . (x,y) at any point (x,y) in 
e min 

the two-dimensional surface unit cell, using the computed Fourier 

coefficients. 

In calculating the equilibrium interaction potential¢ (x.,y.) at 
e i J 

each mesh point (x. ,y.), the interval in which the minimum of ¢(x.,y.) 
i J . i J 

is to be located is specified as 

0 ,095 a ~ z ~ 2 a • 

The length of the final subinterval containing the minimum is specified 

-8 
as I, 9 x IO a. 

The convergence criteria of the subroutine ZXSSQ, which is used to 

minimize the sum of squares of the m2 differences[¢ (x. ,y.) -F (A ,x. ,y.)] 
e i J e "' 1 J 

and m2 differences [ z . (x. ,y.) - H . (B, x. ,y.)] respectively, at the 
min i J min -- 1 J 

m2 data points, is manipulated in such a way that convergence be achieved 

only if on two successive iterations the parameter estimates~ and~ 

respectively, agree component by component to 7 significant digits. The 

values of the coefficients in the truncated Fourier series F and H. e min 

have now been obtained. It is now possible to calculate values of F 
e 

and H . at any grid point (x,y) in the surface unit cell. min 
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Flow Diagram of Numerical Procedure 

I. Coordinates of substrate atoms which contribute towards the 

interaction potential are generated using eq. (2.7), and then 

stored. 

2. Coordinatesofgrid points {(xi,Yj)/i=I, ••• m; j=l, ••• m} 

overlaying a two-dimensional unit cell with centre at the 

origin are generated. 

3. For each grid point(xi,YJ·), ¢ (x.,y.) = ¢x, y,(z . ) and z . e 1 J 1• J min min 
is determined using subroutine ZXGSN and eqs. (2.8) and (2. 10). 

4. x. ,y., z . (x.,y.) and¢ (x. ,y.) are stored for each point 
1 J min 1 J e 1 J 

(x. ,y.). 
1 J 

I 
I. x. ,y. and¢ (x. ,y.) are read for 

1 J e 1 J 
each grid point. 

2. Subroutine ZXSSQ is used to mini­

mize the sum of squares of the m2 

differences 

[¢ (x.,y.)-F (A, x.,y.)] 
e 1 J e ~ 1 J 

at the m2 points in the mesh, 

where each F (x.,y.) is a function 
e 1 J 

of K variables (the Fourier coef-

ficients Ahk which have to be 

determined). 

3. The Fourier coefficients Ahk are 

stored. 

l 
I. The Ahk are read. 

2. The coordinates of the grid point 

{ (xi, y j) / i = I , . . . p; j = I , . . . p} 

overlaying the two-dimensional unit 

cell with centre at the origin are 

generated. 

3. Fe(xi,Yj) is calculated at each of 

the points (xi,Yj), using equation 

(3.2) and the calculated values Ahk' 

4. xi, Yj, Fe(xi,Yj) for each point 

(xi,Yj) are stored. 

\ 
I. Xi,Yj and zmin (xi,Yj) are read 

for each grid point. 

2. Subroutine ZXSSQ is used to mini­

mize the sum of squares of the m2 

differences 

[z. (x.,y.)-H. (B, x.,y.)] 
min 1 J min~ 1 J 

at the m2 points in the mesh, 

where each H . (x. ,y.) is a function 
min 1 J 

of K variables (the Fourier coef-

ficients Bhk which have to be 

determined). 

3. The Fourier coefficients Bhk are 

stored. 

l 
I. The Bhk are read. 

2. The coordinates of the grid point 

{(x.,y.)/i= I, ... p; j = I, ... p} 
1 J 

overlaying a two-dimensional unit 

cell with centre at the origin are 

generated. 

3. H. (x. ,y.) is calculated at each of 
min 1 J 

the points (xi,Yj), using an equation 
similar to (3.2) and the calculated 
values of Bhk· 

4. x.,y. and H. (x.,y.) for each point 
1 J min 1 J 

(x.,y.) are stored. 
1 J 
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4. NUMERICAL RESULTS AND DISCUSSION 

4.1. Introduction 

In this chapter the ability to calculate values of F and H. at any 
e min 

grid point in the surface unit cell, is used to investigate the varia-

tions with position of¢ and z . accepting that F an H. are 
e min e min 

adequate representations of¢ and z • respectively. F can also be e min e 

utilised to calculate certain derived quantities like the desorption 

energy Ed of an adsorbed atom, the activation energy for surface 

migration E and the force constant k* for transverse (in xy-plane) 
a T 

atomic vibrations in positions of stable equilibrium, i.e. at the 

minima of the¢ surface. 
e 

4.2. The Fourier coefficients Ahk 

The specific form of the truncated Fourier series representation for 

the equilibrium interaction potential¢ (x,y) used in the experiments is 
e 

n 
F (x,y) 

e 

n 
I 1 ~ (1\ ) ( = -4 A + -4 + A

0
h cos 2TThx + cos2TThy) 

oo h=l o 

n 
+ ~ ¾k cos 2TThx cos 2TTky ( 4. I) 
h,k=l 

where the truncation is after terms of order n. The order n of a 

Fourier coefficient ¾k is defined ash+ k. 

There are at least two factors that could influence the values of the 

calculated Fourier coefficients ¾k" The first is the number of data 

points (x.,y.) used in the calculations, and the second the order at 
i J 

which the series is truncated. 
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In the first series of experiments the number of data points is increased 

from JOO to 256, using F4 (x,y)o The results of these experiments are 
e 

listed in Table 4.1. 

TABLE 4.1. 

Fourier coefficients Ahk obtained using 100, 144, 196 and 256 data points 

Number. of 100 144 196 256 Order data points 

0 A 00 14 -0,42310 D-01 -0,42310 D-01 -0,42310 D-01 -0,42310 D-01 

A o/4 0,5893 D-02 0,5892 D-02 0,5892 D-02 0,5892 D-02 

1 
A 1 o/4 0,5893 D-02 0,5892 D-02 0, 5892 D-02 0,5892 D-02 

A 02 14 -0, 121 7 D-02 -0,1216 D-02 -0,1216 D-02 -0,1216 D-02 

2 All -0,1108 D-02 -0, 1107 D-02 -0,1107 D-02 -0, 1107 D-02 

A20/4 -0,1217 D-02 -0, 1216 D-02 -0,1216 D-02 -0,1216 D-02 

A 03/4 0,310 D-03 0,307 D-03 0,307 D-03 0,307 D-03 

Al 2 0,241 D-03 0,241 D-03 0,241 D-03 0,241 D-03 
3 

A21 0,241 D-03 0,241 D-03 0,241 D-03 0,241 D-03 

A3 o /4 0,310 D-03 0,307 D-03 0,307 D-03 0,307 D-03 

A 04 / 4 -0,94 D-04 -0,86 D-04 -0,86 D-04 -0,86 D-04 

Al3 -0,62 D-04 -0,62 D-04 -0,62 D-04 -0,62 D-04 

4 A22 -0,48 D-04 -0,49 D-04 -0,49 D-04 -0,49 D-04 

A31 -0,62 D-04 -0,62 D-04 -0,62 D-04 -0,62 D-04 

A40 /4 -0,94 D-04 -0,86 D-04 -0,86 D-04 -0,86 D-04 

We observe that the sign of the coefficients alternate with order and that 

¾k = ¾h which is consistent with the four fold symmetry of the model. To 

the specified accuracy of 7 significant digits, the calculated values for the 
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Fourier coefficients do not change as the number of data points are 

increased above 144. Thus 144 data points seem adequate both from 

point of view of accuracy,as well as economy in computer time. 

The second series of experiments, where the order n of the truncation 

is increased from 3 to 6, is carried out using 144 data pointso The 

results of this group of experiments are displayed in Table 4.2. 

From these results it follows that the inclusion of higher order 

harmonics does not alter the values of the lower order Fourier coef­

ficients when working to an accuracy achievable by 7 significant 

digits. 

The important question as to the rapidity at which the Fourier coeffi­

cients converge to zero with harmonic order, can now be considered. 

From the results displayed in Table 4.2. it follows numerically that 

the second order coefficients are approximately 4 to 5 times smaller 

than the first order coefficients, and that the third order coeffi­

cients are likewise about 4 times smaller than the second order ones. 

It is evident that the magnitude of the coefficients decreases rapidly 

with harmonic order. In fact, the magnitudes of the 5th order coeffi­

cients are only about 0,04% of those of the first order coefficients. 

This rapid convergence is what one could expect from such welbehaved 

functions as are displayed in Fig. 4.5. 

Rieder and Stocker [45] investigated the interaction potential of the 

atoms with a{II0} surface of Pd. They concluded from boundstate­

resonance measurements that the ratio of the amplitude of the second 

and first order harmonic terms of the Fourier series is about 0,2. 
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TABLE 4.2 

Fourier coefficients Ahk calculated for approximations truncated at the 3rd, 
4th, 5th and 6th order terms respectively using 144 data points. 

Order Fourier 
of trun coeffi- F3 Fi+ Fs FG 
cation cients e e e e 

0 A /4 00 -0,42310 D-01 -0,42310 D-01 -0,42310 D-01 -0,42310 D-01 

A /4 0,5892 D-02 0,5892 D-02 0,5892 D-02 0,5892 D-02 
I 

01 

Al0/4 0,5892 D-02 0,5892 D-02 0,5892 D-02 0,5892 D-02 

A /4 
02 -0, 1216 D-02 -0, 1216 D-02 -0, 1216 D-02 -0,1216 F-02 

2 All -0, 1107 D-02 -0, 1107 D-02 -0, 1107 D-02 -0, 1107 D-02 

A ').0/4 -0, 1216 D-02 -0, 1216 D-02 -0, 1216 D-02 -0, 1216 D-02 

A 03/4 0,307 D-03 0,307 D-03 0,307 D-03 0,307 D-03 

A 
12 

0,241 D-03 0,241 D-03 0,241 D-03 0,241 D-03 

3 
A 0,241 D-03 0,241 D-03 0,241 D-03 0,241 D-03 

21 

A30/4 0,307 D-03 0,307 D-03 0,307 D-03 0,307 D-03 

A04 /4 -0,86 D-04 -0,86 D-04 -0,86 D-04 

A -0,62 D-04 -0,62 D-04 -0,62 D-04 
1 3 

4 A -0,49 D-04 -0,49 D-04 -0,49 D-04 
22 

A -0,62 D-04 -0,62 D-04 -0,62 D-04 
3 1 

A40 /4 -0,86 D-04 -0,86 D-04 -0,86 D-04 

A0/4 0,28 D-04 0,28 D-04 

A O, I 7 D-04 o, 17 D-04 
11+ 

A O, I I D-04 0, 11 D-04 
5 23 

A O, I I D-04 0, 11 D-04 
32 

A O, I 7 D-04 0, I 7 D-04 
1+1 

Aso/4 0,28 D-04 0,28 D-04 

A0/4 -0,8 D-05 

A -0,5 D-05 
1 5 

A -0,2 D-05 21+ 

6 A 
3 3 

-0, I D-05 

A -0,2 D-05 
I+ 2 

A -0,5 D-05 
5 1 

A&o/4 -0,8 D-05 
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This is in near agreement with the present results, if somewhat 

unexpected, because of the metallic substrate, but it is certainly 

encouraging! 

4.3. A special case: The one-dimensional problem 

For a one-dimensional Fourier approximation of a function of period 

2TI but with its values known at a discrete set of 2N+ I equally 

spaced points in a period, analytical expressions for the Fourier 

coefficients were derived by Hildebrand [46]. The equilibrium 

interaction potential¢ (x,O) along the x-axis is known to be an 
e 

even function of period£. According to Hildebrand 

n 
¢ e (x,O) ~ GH(x) = A +, :r (1\ cos 2nkx + Bk sin 2nkx), 

o k=l 

where n ~ N and 

I A = 2N 0 

1\ = 
N 

I 
~ = 2N 

Bk = N 

N 
:r ¢ (x ) , 

p=-N+l e p 

N 
L ¢ (x ) cos 2nkx , 

p=-N+l e p p 

N 
L ¢ (x ) cos 2TINx 

p=-N+ I e p p 

N 
L ¢ ( x ) sin 2nkx 

p=-N+l e p p 

because¢ is an even function). 
e 

This reduces to 

n 
¢ (x,i) ~ GH(x) = A + t A. cos 2nkx, 

e o k= I -l< 

(k =I= O,N) 

(4.2) 

(4.3) 

( 4. 4) 
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where the coefficients are given by equations (4.3). The two­

dimensional Fourier series representation to the order n for¢ (x,y) 
e 

used in this study is 

n 
F (x,y) 

e 

I I n 
= - A + -

4 
L (A. + A

0
h)(cos 2TThx + co~2TThy) 

4 oo h=I -no 

n 
+ L ¾k cos 2TThx cos 2TTky 
h,k=I 

Thus along the x-axis (with y=O and k=O) one obtains the one-

dimensional truncated Fourier representation 

n 
F (x,O) 

e 

n 
= F 

O 
+ L F h cos 2TThx 

h=I 

where 

1 1 n 
F = - A + - L A. 

o 4 oo 2 h=l -no 
and 

3 
Fh = 2 ¾o 

(4.5) 

(4.7) 

Clearly equations (4.4) and (406) are of the same formo Fourier 

coefficients~ calculated using equations (4.3), as well as the 

corresponding coefficients Fh, calculated for the two-dimensional 

problem are displayed in Table 4.3. 

Clearly there is and should be excellent agreement between the results 

obtained by the two methods. This strengthens our confidence in the 

present computed Fourier coefficients in two-dimensional 

representations. 
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TABLE 4.3 

Coefficients calculated using Coefficients calculated using 
Hildebrand's analytical expressions numerical least squares method 

A -0,037393 F -0,037393 
0 0 

A 0,004978 F 0,004976 
1 1 

A -0,001015 F -0, 001011 
2 2 

A 0,000257 F 0,000255 
3 3 

A -0,000077 F -0,000071 
4 4 

4.4. Truncation of the Fourier series representation 

The following important question may now be considered: At what order 

should a Fourier series be truncated in order that it still gives a 

good approximation of¢ (x,y)? The standard error [47], defined as 
e 

cS = 

p 
~ 

i=l 
p 

(4.8) 

where the T. are the position vectors of the grid points used in the 
i 

calculation and pis the number of data points, should provide a good 

measure of the accuracy of the approximation Fn(x,y). In the present 
e 

study 49 data points in the first quadrant have been used (See Fig. 4.1). 

The resultsof calculations of the standard error cS for F1
, F2 F 3 F4 

e e' e' e 

and F5 are depicted by means of the histogram in Fig. 4.2 where the 
e 

primary computed values have been used for¢ . It is evident that the 
e 

standard error is greatly reduced if second order harmonics are also 
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Fig. 4.1. First quadrant of unit cell showing the location 
of data points used in standard error calculations. 

l 1,0 

0,5 

0 

-:-:-:-:-:-:-:-:-:-:-:-:-•,· 
:::::::::::::::::::::::::::: 
············ ·············· 

2 

: ... 
3 4 5 

Highest order of Fourier harmonics included 

Fig, 4.2. Histogram illustrating the dependence of the standard 

error o on the order of the truncation. 
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included in the approximation. 

In Fig. 4.3 we show cross-sections through the potential energy 

surfaces at y = 0 as represented by <P (x,O), F1 (x,O), F2 (x,O) and 
e e e 

F 3 (x,O) respectively. Curves for F4 (x,O) and F 5 (x,O) are not shown 
e e e 

since they are indistinguishable from <P (x,O). The figure illus­
e 

trates how rapidly the Fourier series representation converges to 

<P (x,y) with increasing order of truncation. 
e 

If only first order terms are included in the approximation the 

-3 
standard error is as small as 1,56 x 10 eV. This corresponds to a 

standard percentage error of less than 4%, where the standard percen­

tage error 6% is defined as 

(4.9) 

The maximum percentage error in this case is about 10%. 

5 
On the basis of the evidence presented here F is an excellent approxi­

e 

mation to <P • However, when we use this in an analysis with the view 
e 

of predicting the properties of adsorbed layers, for example, the 

mathematical complexity is formidable. From a physical point of view 

important properties of the relevant systems are largely determined 

by the synnnetry only and perhaps whether a certain Fourier order is 

significant or not. The exact values of the Fourier coefficients are 

then useful but not essential. In such cases much physical informa-

tion can be derived from series truncated after the first order. 

Naturally for an adequate description of physical phenomena all 
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Fig. 4.3. Cross-sections through the potential energy surfaces 

as represented by ¢e(x,y), F1 (x,y), F2 (x,y) and e e 

F3 (x,y) at y = O. 
e 
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significant terms must be included in the series. Reliable knowledge 

of Fourier coefficients will thus greatly improve the accuracy of 

models used in the description of a large category of physical 

phenomena. 

4.5. Desorption and activation energy 

In Fig. 4.5 intersections of a "vertical" plane (parallel to the x-axis) 

with the potential energy surface F5 (x,y) through y=O, i/4 and i/2 are 
e 

shown illustrating the variation of the potential energy with position 

in the unit cell. The three positions where the atom-solid interaction 

energy is of particular interest, are denoted by S, SP and A 

respectively in Fig. 4.4 [8]. 

y 

s -----~SP------

(f12 ,o) 
SP A .,_----~SPr--..... X 

0 

S ----- SP 1-----------4 S 

Fig. 4.4. Surface unit cell. The points denoted by A 

indicate the positions of the atoms in the 

surface plane of the substrate; adsorption 

sites are denoted by S; and saddle points in 

the potential function by SP. 
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------() 

Surface unit cell indicating 
where cuts were made 

0 

F/ (x,y) [ eV] 

-1 
-0,1 lC 10 

-0,2 lC 10 
-1 

-1 
-0,3 lC 10 

-1 
-0,4 lC 10 

y=O 

-0,5 lC 10 
-1 

-1 
-0,6 lC 10 

Fig. 4.5. Vertical cuts (parallel to the x-axis) through the 

potential energy surface F5 (x,y) at y =O, i/4 and i/2. 
e 

X 
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A corresponds to positions on top of a surface atom (maximum insta­

bility); SP to a saddle point and S to an adsorption site (minimum 

energy). 

The desorption energy Ed of an adsorbed atom is the energy necessary 

to completely desorb it from a minimum energy position (adsorption 

site). Such a position is the point with coordinates (£/2, £/2) in 

the two-dimensional unit cell, denoted by Sin Fig. 4.4. The self­

desorption energy of an argon atom can be read from the graph in 

Fig. 4.5 and is seen to be 0,0592 eV. (See Fig. 4.6). 

The activation energy for surface migration of an atom is the 

potential barrier that an adsorbed atom must overcome to move from 

one preferred adsorption site to a neighbouring one. The points 

denoted by SP in Fig. 4.4 represent the minimum energy barriers that 

separate adsorption sites (denoted by S). The activation energy E 
a 

for surface migration of an argon atom onan argon crystal surface can 

also be read from the graph in Fig. 4.5. This is the energy difference 

between the SP- and S-type point, i.e. 

= 0,01546 eV. 

This may be confirmed with reference to Fig. 4.6. 

Bacigalupi and Neustadter [ 7] used the Lennard-Jones (6-12) inter-

action potential to calculate the adsorption energy of an atom on the {I00} 

plane of an fee crystal substrate. From detailed topographical maps showing 

lines of equal adsorption energy, the maximum desorption energy and 
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5 
Fe (x,y) [ eV] 

0 X 

-I 
-0,1 x 10 

-1 
-0,2 x 10 

Ed = 0,0592 eV 

-I 
-0,3 x 10 

-I 
-0.4 x 10 

y=O 

-1 
-0,5 x 10 

E0 = 0,01546 eV 

-I y = ~2 
-0,6 x 10 

Fig. 4.6. Desorption energy Ed and activation energy for surface 

migration Ea for an argon atom on a {001} argon crystal 

surface. 
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minimum activation energy were determined for different ratios of 

a/a. Their normalized values for these energies are listed in 

Table 4.3. 

TABLE 4.3 

Surface adsorption parameters for fee {100} surface 

a I a = 0. 60 a/a =0. 70 

Ed/4E E /4E a Ed/4E E /4E a 

1,387 0,437 1,633 0,37 

In the present study the value a/a= 0,6587 was used. The norma­

lised activation energy E /4E and the normalised desorption energy 
a 

Ed/4E are found to be 0,395 and 1,513 respectively. These values 

are in agreement with the calculated values of Bacigalupi and 

Neustadter as should be expected. Also 4E = 0,0391212 eV. 

4.6. The lateral force constant kxy for motion parallel to the 

surface 

The two-dimensional Fourier series representation derived in this 

study can be utilised to compute a lateral force constant k 
xy 

Approximating the potential about the minimum by a two-dimensional 

harmonic oscillator model, k is given by the second derivative of 
xy 

the potential function calculated at the minimum. Consider the 

following Fourier approximation of the potential in absolute 

coordinates. 
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I I 
3 

I 
3 

F 3 = -A + - ~ A. cos ( 21T hx' / £) + 2 ~ A cos ( 2nb y ' / £) 
e 4 oo 2h=l -no h=J oh 

Hence 

h+k=3 
+ ~ [1\k cos (2TThx' /£) cos (2TTky' /£)]. 
h,k=l 

(2TT/£) 2 A cos (21Ty' /£) cos (2TTx' /£) 
1 1 

A [ ( 2 TT/£ )2 co S ( 4TT y ' / £) COS ( 2TT X' / £) 
1 2 

+ (4TT/£) 2 cos (2TTy'/£) cos (4TTx'/£)]. 

The gas-solid energy is a minimum at point S (see figure 4.5) with 

coordinates (£/2, £/2). The value of the force constant k at 
xy 

point Sis 0,0452554 eV/(A) 2 which is equivalent to 525 °K/(A) 2 • 

However, the value of k = 32F /3(x') 2 computed using a Fourier 
xy e 

series approximation, is strongly dependent on the number of Fourier 

terms included in the approximation as can be seen from Table 4.4, 

where values of the force constant computed for approximations 

including first, second and third order Fourier terms respectively 

are listed. This is not surprising since our assumption of ignoring 

the variation in z, implicit in F , is probably not valid. 
e 

W.A. Steele [8] developed an analytic expression for pairwise additive 

gas-solid energies and utilised this expression to calculate minimum 

energies and lateral force constants for gas atoms on the (001) faces 
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TABLE 4.4 

Values of the force constant calculated using approxi­

mati ans with increasing higher order of truncation • 

Highest order terms 
included in Fourier k [ eV / (A) 2 ] k [°K/(A) 2 ] 

approx. of potential xy xy 

1 0,016814 195 

2 0,033853 393 

3 0,0452554 525 

Minimum energies and force constants for gas atoms on 

the (100) face of an fee crystal [8]. 

cr /a gs -1 

z . /a 
min 1 

u 
. s 

min s 

k 
xy 

gs 

0,85 I, 00 

0,627 0,843 

-5,500 -6,601 

2072 214 

In the present study the following values were obtained for the 

corresponding quantities: 

cr/a = 0,9316 
-1 

z 
min/~ 1 

= 0,7467 

min F3 /s = -6,135 e 

k xy = 525. 
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of an fee crystal. The values he obtained are listed in Table 4.5. 

This is in reasonable agreement with the findings of Steele. 

4.7. Truncated Fourier series representation of the equilibrium 

height zmin 

The specific form of the truncated Fourier series representation of z . 
min 

used in the calculations is 

n 
H . (x,y) 
nnn 

I I n 
= - B + -4 L (Bh + B h) (cos 2TThx + cos 2TThy) 

4 oo h=l o o 

n 
+ L Bhk cos 2TThx cos 2TTky. 
h,k=l 

The computation of the Bhk precedes in the same manner as that of the 

¾k as can be seen from paragraph 3.5~ 

A series of computer experiments is carried out, using 144 data points, 

to determine the effect of the inclusion of succesively higher order 

coefficients. The results are displayed in Table 4.6. We note that 

the constant term and the first order coefficients are positive. From 

the first to the fifth order the sign of the coefficients alternate 

with order. However, some sixth order coefficients are positive while 

others are negative. This is probably a consequence of limiting the 

calculations to 7 significant digits. 

In Fig. 4.7 cross-sections are made through the equilibrium (height) 

surface H6
• (x,y) at y =O, y = £/4 and y = £/2 respectively. The 

min 

equilibrium height at a position directly above an atom in the surface 

plane of the substrate is 0,70379ao At an adsorption site the 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

59 

I Order of G3 Gi+ Gs GG 
coefficients e e e e 

0 Boo/4 0,63449 DO 0,63449 DO 0,63449 DO 0,63449 DO 

B0 /4 0,41279 0-01 0,41279 0-01 0,41279 0-01 0,41279 0-01 
1 

B1/4 0,41279 0-01 0,41279 0-01 0,41279 0-01 0,41279 0-01 

B
0
/4 -0, 7142 0-02 -0, 7142 0-02 -0, 7142 0-02 -0, 7142 0-02 

2 B 11 -0 ,3107 0-02 -0 ,3107 0-02 -0 ,3107 0-02 -0,3107 0-02 

B2/4 -0, 7142 0-02 -0, 7142 0-02 -0, 7142 0-02 -0, 7142 0-02 

B /4 0,1797 D-02 0,1797 
0 3 0-02 0,1797 0-02 0, 1797 0-02 

B12 0,629 0-03 0,629 0-03 0,629 0-03 0,629 0-03 
3 

B 0,629 0-03 0,629 0-03 0,629 0-03 0,629 0-03 21 

B30/4 0,1797 0-02 0,1797 0-02 0,1797 0-02 0,1797 0-02 

Bo i+ /4 -0,492 0-03 -0 ,492 0-03 -0,492 0-03 

B 1 3 -0,144 0-03 -0,144 0-03 -0,144 0-03 

4 B -0,99 0-04 -0,99 0-04 -0,99 0-04 22 

B -0,144 0-03 3 1 -0,144 0-03 -0,144 0-03 

B /4 -0,492 0-03 -0,492 0-03 -0,492 0-03 
t+ 0 

Bos /4 0 ,162 0-03 0,162 0-03 

B 0,42 0-04 0,42 0-04 11+ 

B23 0,0 0-06 0,0 0-06 
5 

B32 0,0 0-06 0,0 0-06 

B 0,42 0-04 0,42 0-04 
l+l 

BS O /4 0,162 0-03 0,162 0-03 

Bo6 /4 -0,73 0-04 

Bis -0,13 0-04 

B2i+ 0,3 0-05 

6 B -0,91 0-04 3 3 

Bi+ 2 0,3 0-05 

Bs1 -0,13 0-04 

B6o /4 -0,73 0-04 
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6 
Hmin (multiples of a) 

0,8 

0,5 

04 

-f;. 
2 

Fig. 4.7. Vertical cuts (parallel to the x-axis) through the 

equilibrium (height) surface H6
• (x,y) at y= 0, £/4 

m1. n 
and £/2. 

y=O 

X 
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equilibrium height is 0,52815a. The value is- slightly larger than 

the separation 0,5a of the (001) atomic planes, This deviation 

from the bulk lattice spacing thus exhibits an outward relaxation 

[43] of the (001) surface planes. This agrees with previous studies 

by L.C.Ao Stoop [ 9]. 

4.80 Conclusions 

The overall objectives of this study, namely to construct a Fourier 

series representation for the equilibrium interaction potential of an 

argon atom with a (001) argon crystal surface, as well as a Fourier 

series representation for the equilibrium height of a reference atom 

above the crystal substrate,have successfully been met. This was only 

possible and accomplished by the development of a computational 

methodology for calculating the numerical values of the Fourier coef­

ficients in two-dimensional Fourier series representations. Having 

constructed the necessary tools, in the form of computer programs, it 

will now be comparatively easy to extend the work to more complicated 

systems involving for example other faces of fee crystal substrates, as 

well as other lattice systems such as bee and hcc. 

Application of the computational technique to the special case of an 

argon atom on an argon crystal surface, illustrated to what extent 

important information can be derived from such a simple model. From 

computer experiments performed to investigate the influence on the 

numerical values of the Fourier coefficients when using Fourier approxi­

mations of the interaction potential truncated at increasing higher 

orders, it has been concluded that inclusion of higher order harmonics 

do not significantly alter the values of the lower order Fourier 

coefficients. The Fourier coefficients converged rapidly to zero with 
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harmonic order. This may not be true to the same extent for other 

systems. For more accurate approximations, increasingly higher order 

harmonics can easily be retained in the Fourier representation. (See 

eq. (4.1) and Table 4.2 for the relevant values of the coefficients). 

Indeed, we conclude that a series truncated after the fifth harmonic is 

an excellent approximation to the equilibrium interaction potential by 

any numerical standard. 

From the fact that values for the coefficients in a one-dimensional 

representation obtained by putting y =0 in the two-dimensional represen­

tation were verified using analytical expressions for the Fourier 

coefficients in a one-dimensional representation derived by Hildebrand 

[46), we concluded that our results may be viewed with confidence. 

It was shown that satisfactory values of the desorption and activation 

energies of an adsorbed atom (compared to the work of Bacigalupi and 

Neustadter [7]), can be obtained using Fourier approximations truncated at 

low orders (see Fig. 4.3). It turned out that the lateral force constant 

k for motion parallel to the surface is more sensitive to the trunca-
xy 

tion of the Fourier approximation. In order to obtain fair results when 

compared with calculations performed by Steele [8], at least third order 

harmonics must be included in the approximation. The sensitivity of the 

lateral force constant is probably due to the second order derivatives 

involved in its calculation. 

The computed Fourier coefficients of the equilibrium height also 

converge to zero fairly rapidly with increasing order, although there 

is more variance in the magnitudes of the coefficients in a specific 
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order, particularly from the fifth and higher orders onwards. This 

may be partly due to numerical rounding errors. A slight outward 

relaxation of the (001) surface plane was observed as the equilibrium 

height at an adsorption site was 0,52815a as compared to the distance 

of 0,5a between substrate layers. This agrees with previous work by 

L.C.Ao Stoop [ 9). 

The possibilities of the present numerical model are by no means 

exhausted. It is planned to extend this work to calculations of the 

vertical force constant, as well as the contribution of different 

substrate atom layers towards the equilibrium interaction potential 

at the surface. 

Although the present study was only concerned with the computation of 

a Fourier series representation for the equilibrium interaction 

potential at the (O0J} face of an fee crystal, its real impact lies in 

the fact that a numerical technique for the calculation of Fourier 

coefficients in two-dimensional Fourier series representations, 

implicitely also incorporating the third dimension, has been developed 

and proven. It is the intention to extend this technique to calculate 

the interaction potential at a wide selection of faces for several 

crystal structures, using more realistic interatomic potentials, 

possibly including the effects of many-body forces and zero-point 

kinetic energy. The outcome of such calculations will contribute 

greatly towards our understanding of surface phenomena. 
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APPENDIX A 

Algorithm 

ZXGSN computes to the desired accuracy, the independent variable value 
that minimizes a unimodal function of one independent variable, where 
a known finite interval contains the minimum, using the Golden Section 
search technique. 

Graphically, the function to be minimized is of the following form. 

F (X) 

The number of iterations required to compute the minimizing value to 
accuracy TOL is the greatest integer less than or equal to 

ln u~n +l 

ln(l-C) 

and C = (3-/5)/2. 

The first two test points are v 1 and v 2 , are defined to be 

v 1 =A+ C * (B-A) 

V2 = B - C * (B-A) 

where C = (3-/5)/2 

If F(V
1

) is less than F(V2 ), the minimizing value is in (A,v
2
). 

In this case Bis set to v 2 , v 2 becomes the new v1 and v
1 

becomes 

A+C*(B-A). If F{V
1

) is greater than or equal to F(V
2
), the minimizing 

value is in {v1 ,B). In this case A is set to v 1 , v 1 is set to v
2 

and 

v 2 becomes B-C*(B-A). 

The algorithm continues in an analogous manner where only one new test 
point is computed at e,ach step. 

This process continues until the desired accuracy, TOL, is achieved. 
XMIN is set to the point producing the minimum value for the current 
iteration. 
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Athough, mathematically, the algorithm always produces the minimizing 
value to the desired accuracy, numerical problems may be encountered. 
If Fis "too flat" in part of the region of interest, the function may 
appear constant to the computer in that region. Terminal error 131 
indicates that this problem has occurred. The user may rectify the 
problem by relaxing the requirement on TOL, modifying (scaling, etc.) 
the form of F, or executing the program in a higher precision. 

See references: 

1. Brent, Richard P., Algorithms for Minimization Without Derivatives, 
Prentice-Hall, Inc., Englewood Cliffs, 1973, Chapter 5. 

2. Hausman, Jr., R. F., "Function optimization on a line segment by 
Golden Section", Lawrence Radiaticn Laboratory, University of 
California-Livermore, April, 1971. 

3. Spang, III, H. A., "A review of minimization techniques for non­
linear functions", SIAM Review, 4(4)1962, 357-359. 
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APPENDIX B 

Algorithn 

ZXSSQ is a finite difference, Levenberg-Marquardt routine for solving 
nonlinear least squares problems. The problem is stated as follows: 

given M nonlinear functions f 1 ,f 2 , ..• ,fM of a vector parameter x, 

2 2 2 
minimize f 1 (~) + f 2 (~) + ..• + fM(~) 
over x 

where x = (x1 ,x2 , ... ,xN) is a vector of N parameters to be 

estimated. 

When fitting a nonlinear model to data, the functions f. should be de 
fined as follows: 1 

where 

i f. (x) = y. - g(x;v ) 
i ~ i 

i=l, 2, ..• ,M (i.e., the residuals) 

y. 
i 

is the i-th observation of the dependent variable, 

vi= (vi,v;, ... ,v~V) is a vector containing the i-th obser­

vation of the NV independent variables, and 

g is the function defining the nonlinear model. 

ZXSSQ is based on a modification of the Levenberg-Marquardt algorithrr 
which eliminates the need for explicit derivatives. 

Let x 0 be an initial estimate of x. A sequence of approximations to 

the minimum point is generated by 

where 

n+l n 
X = X 

J is the numerical Jacobian matrix evaluated at xn 
n 

D is a diagonal matrix equal to the diagonal of JTJ 
n n n for IOP'l'j=0. 

a is a positive scaling constant (Marquardt parameter) 
n 

When forward differences are used, the Jacobian is calculated by 

1 -
1 

[ f. ( x+ h. u. ) - f . ( x) ] 
lj 1 ~ J ~ J J. ~ 

where u. is the j-th unit vector and h.=max(lx. l,O.l) •eps 112 
~J J J 

(see scaling comments in Programming Note 2), where eps is the rela-
tive precision of floating point arithmetic. For central difference: 
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1 
2 h 

[ f . ( X + h . u . ) - f . ( x- h . u . ) ] 
. i - J~J i - J~J 
J 

is used. To minimize the number of function evaluations required for 
nonzero IOPT, a rank one update to the Jacobian matrix is used where 
appropriate: 

where 

See references: 

n 
- X 

J n 

1. Brown, K. M., and Dennis, J. E., "Deri va ti ve free analogues of the 
Levenberg-Marquardt and Gauss algorithms for nonlinear least squares 
approximations", Numerische Mathematik, 18, 1972, 289-297. 

2. Brown, K. M., "Computer oriented methods for fitting tabular data 
in the linear and nonlinear least squares sense", Department 
of Computer, Information, and Control Sciences, TR No. 72-13, 
University of Minnesota. 

3. Levenberg, K., "A method for the solution of certain non-linear 
problems in least squares", Quart.~- Math., 2, 1944, 164-168. 

4. Marquardt, D. W., "An algorithm for least-squares estimation of 
nonlinear parameters", J. SIAM, 11(2)1963. 
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