
Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

ROLFES, HERMANN

THE NUMERICAL SOLUTION OF TURBULENT FLOW IN

THREE-DIMENSIONAL CURVILINEAR CO-ORDINATES

MKng OP 1992

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THE NUMERICAL SOLUTION OF TURBULENT

FLOW IN THREE- DIMENSIONAL CURVILINEAR
CO - ORDINATES

by

Hermann Rolfes

Dissertation presented in partial fulfilment

of the requirements for the degree of

MASTER OF MECHANICAL ENGINEERING

in the Department of Mechanical Engineering

University of Pretoria

Pretoria

August 1992

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THE NUMERICAL SOLUTION OF TURBULENT FLOW IN

THREE - DIMENSIONAL CURVILINEAR CO - ORDINATES

by

Hermann Rolfes

Promoter: Prof J A Visser

Department: Mechanical Engineering

Degree: Master of Mechanical Engineering

ABSTRACT

Many fluid flow applications that exist in engineering practice can be

solved by means of numerical techniques. Most of these problems require

complete three-dimensional modelling of flow in· complex curvilinear

geometries. This motivated the development of a numerical model for the

solution of three-dimensional turbulent flow based on a general curvilinear

co-ordinate system.

Three-dimensional turbulent flow is described by six highly non-linear

partial differential equations. These include the three momentum

equations, the continuity equation and the two equations of the k - £

turbulence model. In order to apply the conservation principles in the

above equations to general curvilinear co-ordinates, transformat_ion

relations are used in formulating the equations in terms of general

curvilinear form.

A finite volume numerical approach is used to discretize the relevant

equations into a linear form. The equations are then solved simultaneously

by an iterative process. A segregated approach based on the SIMPLE

algorithm is used for this purpose whereby pressures and velocities are

calculated separately. Due to the application of the segregated approach,

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

decoupling between pressures and velocities occurs. A specific

interpolation scheme is implemented whereby strong pressur~velocity

coupling is ensured. Turbulence effects are included by calculating an

additional turbulent viscosity, which has the effect of increasing the

effective fluid viscosity. The computer program (3DFLO) is written in

Fortran 77 and executed on an IBM f550 computer.

After each stage of the development process, various test cases were solved

to verify the accuracy of the code. It is shown that the numerical results

compare favourably to analytical, experimental and previous numerical

results. The code was then applied to the modelling of thre~imensional

atmospheric boundary layer flow over and around arbitrary shaped

buildings. The use of non-orthogonal boundary fitted grids enabled the

exact conformation of sharp ridge geometry and pitched roof inclines. The

numerical predictions are in good agreement with full scale measurements

and prove to be superior to previous numerical predictions. This can be

mainly attributed to an improved representation of physical flow

boundaries and to complete three-dimensional modelling.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIE NUMERIESE OPLOSSING VAN TURBULENTE VLOEI
II

IN ORIE - DIMENSIONELE KROML YNIGE KOORDINATE

deur

Hermann Rolfes

Promotor: Prof J A Visser

Departement: Meganiese Ingenieurswese

Graad: Magister in Meganiese Ingenieurswese

UITTREKSEL

Vele vloeiprobleme kom in die ingenieurspraktyk voor, wat moeilik sonder

die hulp van numeriese modelle opgelos kan word. Hierdie probleme gaan

meestal gepaard met turbulensie en bestaan in die werklikheid gewoonlik in

komplekse drie--dimensionele geometriee. Dit het aanleiding gegee tot die

ont wikkeling van 'n numeriese model vir die oplossing van drie­

dimensionele turbulente vloei in nie-uniforme gebiede.

Drie--dimensionele laminere vloei word beskryf deur vier nie-lineere

partiele differensiaalvergelykings naamlik die drie momentum vergelykings

en die kontinuiteitsvergelyking. Wanneer vloei egter turbulent is, word

verder ook van 'n turbulensie sluitingsmodel gebruik gemaak. In hierdie

studie word die k-f model gebruik wat uit twee verdere differentiaal­

vergelykings bestaan. Om te verseker dat die behoudsbeginsels waarop die

bogenoemde vergelykings gebasseer is steeds geld wanneer in nie-uniforme

gebiede gewerk word, word die vergelykings getransformeer relatief tot 'n

algemene kromlynige koordinaatstelsel.

Die numeriese tegniek wat vir die oplossing van die vergelykings gebruik

word is 'n eindige volume metode. Hiervolgens word elkeen van die

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

vergelykings gediskretiseer waarna <lit op 'n iteratiewe basis opgelos word.

Die oplosalgoritme, wat op die SIMPLE metode gebaseer is, behels die

afsonderlike oplossing van snelhede en drukke wat lei tot swak koppeling

tussen die veranderlikes. Derhalwe word van 'n spesiale interpolasie

metode gebruik gemaak ten einde voldoende koppeling te bewerkstellig.

Die effek van turbulensie word in berekening gebring deur 'n addisionele

turbulente viskositeit te bereken wat gevolglik die effektiewe vloeier

viskositeit verhoog. Wanneer vloei in komplekse geometriee opgelos word,

word van grenspassende roosters gebruik gemaak sodat realistiese vloei ·

gebiede akkuraat nageboots kan word. Die rekenaar program (3DFLO) is

ontwikkel in Fortran 77 en word op 'n IBM f550 rekenaar uitgevoer.

Gedurende die ontwikkeling van die model, is <lit na elke ontwikkelingsfase

geverifieer deur standaard toetsgevalle, waarvoor daar korrekte oplossings

beskikbaar is, op te las. In alle gevalle toon die huidige resultate goeie

ooreenkoms met analitiese, eksperimentele en aanvaarde numeriese

resultate. Die model is voorts toegepas op die modellering van

atmosferiese grenslaag vloei oar en random geboue van arbitrere vorm.

Volledige drie-dimensionele simulasie tesame met die akkurate modellering

van dak geometriee het tot gevolg <lat die huidige resultate beter korrelleer

met volskaal metings as enige van die vorige voorspellings.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

ACKNOWLEDGEMENTS

I am deeply endebted to the following people for their assistance during the

course of this study:

Prof J A Visser for his guidance and continued assistance over the past two

years. He not only contributed heavily on technical level but also strongly

influenced my personal development.

Charles Crosby for his valued advice concerning numerical methods and his

strong interest in my topic of research.

Louis Le Grange for getting me started on transformation to curvilinear

co-ordinates and for the friendly manner in which he was always prepared

to help me.

My parents for their continued support and motivation which were always

sincerely appreciated,

and particularly to Liesel for always standing by me with love and

encouragement.

Last of all, my Almighty Creator without Whom this would not have been

possible.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TABLE OF CONTENTS

Abstract

Uittreksel

Acknowledgements

CHAPTER 1 : INTRODUCTION

1.1 The problem considered

1.2 Review of related literature

1.2.1 General overview

1.2.2 General curvilinear co-ordinates

1.2.3 Fluid flow turbulence

1.2.4 Flow over arbitrary shaped buildings

1.2.5 Numerical solution algorithms

1.3 The need for this study

1.4 The outline of the study

CHAPTER 2 : THEORETICAL INVESTIGATION

2.1 Preamble

2.2 The governing equations

2.3 Transformation to curvilinear co-ordinates

2.4 The turbulence equations

2.5 Summary

1

3

5

8

12

15

19

20

21

22

24

27

32

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CHAPTER 3 : NUMERICAL MODELLING

3.1

3.2

3.3

3.4

3.5

Preamble

Discretization equations

Pressure correction procedure

Pressure-velocity coupling

Boundary conditions

3.5.1 General boundary conditions

33

35

38

39

42

3.5.2 Boundaries applicable to flow over buildings 45

3.6

3.7
Solution algorithms

Summary

CHAPTER 4 : PROGRAM APPLICATIONS

4.1

4.2

4.3

4.4

4.5

4.6

Preamble

Two-dimensional laminar flow

Three-dimensional laminar flow

Three-dimensional turbulent flow

Flow over buildings

Summary

CHAPTER 5 : CONCLUSION

5.1

5.2

5.3

Synopsis

Conclusions and Contributions

Recommendations for further research

NOMENCLATURE

REFERENCES

47
50

51

52

57

61

63

75

77
78

81

83

86

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

APPENDICES

Appendix A : Derivation of the General Transport Equation

Appendix B : Transformation to Curvilinear Co-ordinates

Appendix C : Turbulent Small Scale Fluctuations

Appendix D : Differencing and Discretisation

Appendix E : The Pressure Correction Equation

Appendix F : Discretization of Turbulence Equations

Appendix G : Computer Program 3DFLO

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CHAPTER! INTRODUCTION

1.1 The problem considered

Tue rapid development of computer technology during the last decade, have

resulted in growing emphasis being placed on the use of numerical methods

for solving complex engineering problems. Such applications present a cost

effective alternative to experimental testing by evaluating different design

alternatives during the development stage. The numerical solution of fluid

flow problems further contribute to improve the understanding of

complicated flow phenomena.

In general, practical flows in engineering occur in non-uniformly shaped

regions. The inability of classical co-ordinate systems to accurately model

flow in such regions, motivated the search for methods to solve fluid flow by

using a general curvilinear co-ordinate system. This enables the exact

conformation of physical flow boundaries and removes inaccuracies due to

boundary approximating assumptions.

1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

Many applications exist where the ability of a computer code to model fluid

motion in randomly shaped regions is especially useful. One of these is the

simulation of wind flow over obscurely shaped buildings. With sufficient

knowledge of the wind flow patterns in a certain area, such a computer code

can provide detailed information regarding the velocity field and pressure

distribution surrounding any proposed building at that location. This

enables the study of wind loads on building structures and reflects the

expected wind micro climate associated with those structures.

Like most practical flow situations, the flow around buildings is turbulent.

The general fluid flow equations used to calculate laminar flow are therefore

no longer valid and an additional closure model is required to include the

effect of turbulence. The aim of the study is thus to develop a numerical

model which is able to simulate turbulent flow over arbitrary geometries -

more specific, the modelling of wind flow over obscurely shaped buildings.

2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

1.2 Review of related literature

1.2.1 General overview

For many centuries, engineers have struggled with the solution of

fluid flow problems. Until recently most problems were solved using

either analytical or empirical methods based on experimental

measurements. The limitations of these methods inspired the search

for improved solution procedures. In the early 20th century, a few

pioneers started using numerical methods to solve fluid flow problems

[l]. In those days calculations had to be done by hand which required

enormous amounts of time and effort. The advent of the digital

computer made it possible to obtain numerical solutions with much

greater ease. It resulted in increased interest in computational

techniques applicable to fluid dynamic problems.

According to the literature, the actual beginning of computational

fluid dynamics can be attributed to Richardson [2) in 1910, who

presented a point iterative scheme for the solution of the Laplace

equation. For the first time, problems requiring solution by

relaxation were distinguished from those which required marching

schemes. In 1940, Southwell (3) introduced a relaxation scheme which

made use of point residuals in the calculation of the dependent flow

variables. The method was applied to solving incompressible, viscous

flow over a cylinder. During the same time, a great deal of research

was done on the evaluation of the stability of numerical methods.

This resulted in the Von Neumann method [4] which is still the most

3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

commonly used method for determining the stability of numerical

solution procedures today [1].

In 1972, Patankar [5] developed the so-called SIMPLE algorithm for

the calculation of pressure and velocity distributions describing an

entire flow field. A number of similar methods were consequently

developed and it will be shown later (Section 1.2.5), that this family

of solution algorithms is still the most popular for solving elliptic fluid

flow problems today.

The aspect of fluid flow turbulence also attracted the attention of a

number of engineers and researchers [6]. In an attempt to describe

the phenomenon of turbulence in fluid motion, various mathematical

models have been developed. These closure models are included in a

numerical model when turbulent flows are calculated. The most

popular group of turbulence models to date, are the turbulent

viscosity models which are based on the calculation of an effective

fluid viscosity to include turbulent effects. A discussion of these and

other turbulence models will be presented in Section 1.2.3

With the increasing complexity of modern engineering technology, it

has become necessary to accurately model fluid flow in randomly

shaped regions. In an attempt to address this issue, a so-called

general curvilinear co-ordinate system is used to replace classical

co-ordinate systems. Current research is aimed at employing general

curvilinear boundary fitted grids to model almost any

thr~imensional fluid flow problem.

4

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

1.2.2 General curvilinear co-ordinates

The development of new solution methodologies is one of the primary

pacing items in computational fluid dynamics today. With the

current rate of progress in this discipline, as well as with grid

generation techniques and the enhancements in computing ability, it

is now practical to simulate complicated fluid dynamic phenomena

associated with realistic geometries [7]. Classical co-ordinate systems

such as cartesian or cylindrical co-ordinates are limited in the extent

to which randomly shaped spaces can be modelled. When co-ordinate

lines do not conform the boundaries of the physical region, difficulties

occur at these boundaries. It requires the tiresome interpolation of

the values for the dependent variables at points closest to the

boundaries. The process is not only time-consuming but decreases

the accuracy of the solution.

The restrictions inherent to classical co-ordinate systems motivated

the search for methods which enable the solution of fluid flow

problems in realistic geometries. Wenquan et al. [8], developed a

numerical model for the calculation of flow along arbitrarily twisted

stream surfaces. The model makes use of a stream function-vorticity

method in calculating two-dimensional velocity components. It

includes a general curved surface fitting scheme to represent curved

surfaces in turbo-machines. Cunsolo et al. [9] also used a stream

function-vorticity method to model fluid flow in general

non-orthogonal grid reference systems. The extension of these stream

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

function-vorticity methods to three dimensions are, however, not

straight forward, which leaves pressure-velocity methods to be

considered.

Greyvenstein [10] applied a finite difference pressure-velocity method

for the solution of elliptic flow by using orthogonal curviline?'r

co-ordinates. The use of such a system leads to the simplification of

the equations of motion describing the problem and also avoids

discretization errors coupled with non-orthogonal methods.

According to Raithby et al. [11], boundary conditions can be applied

more simply and with greater accuracy when the co-ordinate system

is orthogonal. On the other hand, non-orthogonal grids can be

generated with much greater ease, especially when randomly curved

three-dimensional spaces are modelled. The aim is therefore to make

use of non-orthogonal co-ordinates and to find ways and means of

circumventing the above mentioned difficulties.

Ramachandra and Spalding [12] presented a non-orthogonal

finite-difference formulation for three-dimensional duct flows with

arbitrary cross sections. Swanson [13] noted, that while Ramachandra

et al. (12] transformed cross-stream dimensions from polar

co-ordinates, cross section planes remained orthogonal in the

streamwise direction. This limited the model to duct flow

applications where there is only one direction of main transverse flow.

Swanson [13] extended the model to solve incompressible flow in

pump impellers and diffusers and obtained good agreement between

the elliptic- and an inviscid solution.

6

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

A number of other workers also identified the need for a numerical

model that is generally applicable to most practical fluid flow

problems [7,14,15]. Rhie and Chow [15] presented a finite volume

numerical method for the solution of two-dimensional incompressible,

steady Navier Stokes equations, in general curvilinear co-ordinates.

The method is applied to two-dimensional turbulent flows over

airfoils, with and without trailing edge separation. Numerical

methods introduced by Thompson [16] were used in generating

boundary fitted grids and the results obtained compared favourably

with available experimental data. Thompson further used differential

geometry to define the expressions required for transforming the

partial differential equations into general co-ordinates.

Based on the same curvilinear principles, Le Grange [17] developed a

computer code for the simulation of polymer melt flow in a mould

during the injection moulding process. Although this model was

extended to three dimensions, it was limited to the simulation of

laminar flows. The model included the solution of the energy

equation which presented the ability of predicting viscous heating

effects. The results obtained were in good agreement with predictions

by commercial codes and available measurements. According to Le

Grange [17], the method is applicable to non-orthogonal grid

reference systems but the accuracy decreases when grids become

severely non-orthogonal. No quantitative limits for

non-orthogonality were, however, specified.

7

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

1.2.3 Fluid flow turbulence

Very few practical flows can be classified as being laminar. Especially

in fluids with low viscosities, such as atmospheric air motion over

building structures, fluid flow turbulence is prevalent. A numerical

model that is applied to simulate such flow situations should provide

for the effect of turbulence. This can be done by the inclusion of a

mathematical turbulence model next to the partial differential

equations describing laminar fluid flow.

Turbulence can be defined as a three-dimensional time-dependent

motion in which vortex stretching causes velocity fluctuations

between a minimum determined by viscous forces, and a maximum

determined by the flow boundary conditions [18]. It is the usual state

of fluid motion except at low Reynolds numbers, and is associated

with higher values of friction drag and steeper pressure drops than

laminar flow. The diffusion rate of a scalar quantity is usually greater

in turbulent flow which gives the impression of an increased fluid

viscosity [19].

Despite this knowledge of turbulence, it has been recognized for more

than 50 years that the understanding of turbulent flows is actually

very incomplete. A quotation attributed to Sir Horace Lamb in 1932

[1] might be appropriate: "I am an old man now, and when I die and

go to Heaven there are two matters on which I hope for

enlightenment. One is quantum electrodynamics and the other is the

8

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

turbulent motion in fluids. And about the former I am rather

optimistic." Today, 60 years later, many scientists and researchers

probably still feel the same way.

It can, however, be said that some progress has been made in trying

to understand and predict turbulent fluid motion. It has been widely

proposed that turbulent flow could be regarded as having an enhanced

viscosity, a turbulent (or eddy) viscosity which presents similar effects

as noted previously. Boussinesq [20], suggested that this value be

constant and that the equations of mean motion become identical to

those applicable for laminar flow. The value for this turbulent

viscosity had to be determined from comparisons with experimental

measurements. This approach did not prove adequate for wall

bounded flows as the turbulent viscosity must vary with position,

from a large value in the mainstream to be zero at the walls [19].

The simplest turbulence model to account for the variability of the

turbulent mixing length with the use of only one empirical constant,

is Prantl's mixing length model [l]. The basic idea in this model is

that a fluid element, displaced perpendicularly to the main flow

direction from its original position, would retain its original

streamwise velocity. The major physical assumption underlying this

hypothesis is that streamwise pressure forces and viscous stresses are

unimportant, which may be shown justifiable for three-dimensional

eddies that are flat in the sense that their streamwise dimensions are

much greater than their cross-stream dimensions [19]. Prantl' s

algebraic formula treats the turbulent viscosity as a scalar and gives

9

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

qualitatively correct trends, particularly near the wall. There is

increasing experimental evidence, however, that in the outer layer, the

turbulent viscosity should be treated as a tensor (ie. dependent on the

direction of strain) in order to provide the best agreement with

measurements. For flows in corners or in other geometries where a

single "transverse" direction is not clearly defined, Prantl's formula

must be further modified [18].

A large number of more complicated turbulence models have been

proposed since Prantl's initial work. In 1972, Launder and Spalding

[6] introduced the so-called k-t: turbulence model which applies to

fully turbulent flows. The model entails the solution of two additional

partial differential equations for the turbulence quantities k and t:,

which are used to calculate the turbulent viscosity. Several authors

sought to devise turbulence model equations which are valid

throughout the laminar, semi-laminar and fully turbulent regions.

Launder and Spalding [21] recommend a separate pair of equations

applicable to low Reynolds number flows. The model differs from the

original method in that viscosity now influences levels of k and f in

two additional ways. Firstly, laminar diffusive transport becomes of

increasing importance near the walls and secondly, extra destruction

terms are included which become significant in transitional areas. For

a complete discussion of this model, the reader is referred to

reference [21].

Gosman and Ideriah [22], explains the handling of the k-t: model at

various boundary conditions. In the near vicinity of fixed wall

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

boundaries the use of wall functions to determine the value of t is

proposed. These values reach a maximum at the walls where the

turbulence dissipation rate is very large. Concerning the kinetic

energy near solid walls, the direct application of the effect of the wall

shear force on the kinetic energy transport equation is suggested. At

fixed walls, an additional shear force term is added to the streamwise

momentum equation to represent the effect of flow becoming laminar

at these locations. Despite the dependence of the method on empirical

data, many other authors [7,10,14,15,18,23-28] successfully applied

the techniques described by Launder et al. [21] and Gosman et al. [22]

and presented results that are in good agreement with experimental

measurements.

Many other turbulence models have been proposed such as algebraic

stress models, Reynolds stress models, large eddy simulations and the

full Navier Stokes equations [29]. Although the latter completely

describes turbulent fluid motion, the small scale of turbulence could

require approximately 10
5

grid points. for the simulation of 1 cm
3

of

typical turbulent flow [l]. Of all the above mentioned methods only

Reynolds stress models possibly offer a better approximation than the

k-t method.

Unlike the other methods mentioned, Reynolds stress models are not

restricted by the Boussinesq approximation relating turbulent stresses

to rates of mean strain (effective viscosity), but makes use of a great

number of model partial differential equations to directly determine

turbulent shear stresses independent of empirical constants. It would

11

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

seem therefore that these Reynolds stress models ought to have the

best chance of emerging as "ultimate" turbulence models if success is

to be achieved at all through time-averaged Navier-Stokes equations.

Nevertheless, these models must still utilize approximations and

assumptions in modelling terms which presently cannot be measured.

These models are perhaps still in their infancy and it may be some

time yet· before they have been refined and tested to the point that

they become commonplace in engineering practice [1].

1.2.4 Flow over arbitrary shaped buildings

The satisfactory environmental performance of a building can depend

critically upon the prediction and control of its wind microclimate.

The design of an energy efficient building, for instance, requires a

predictive understanding of its microclimate and particularly of the

interaction between the wind, the building and its surroundings.

Equally, comfort conditions in the spaces around and between

buildings depend upon the wind speeds within them and their

usefulness is determined in part by the adequate control of wind. In

both cases there is a need to determine during design, the patterns of

wind flow which will be generated by the proposed forms and layouts

of buildings.

Wind flow around buildings has been investigated with scale models

and wind tunnels for some time [30]. This process is expensive and

time-consuming. Many workers have done full scale experimental

12

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

measurements on existing buildings of various shapes in order to

predict wind flows over similar buildings under design [31-34].

Instruments for such experiments are very sensitive and costly and

the setup of these devices take many hours. It would be ideal to

model the wind effects on buildings numerically rather than have to

contend with the problems associated with most experiments.

The question naturally arises whether a computer simulation of wind

flow around a building can accurately reproduce the information

obtained from wind tunnel and full scale measurements. Acceptable

agreement between numerical predicted and full scale measurements

for wind flow over a film clad greenhouse was obtained by Meyer

et al. [25], who made use of a tw~imensional finite difference

computer model. Many other authors also presented numerical

predictions of sufficient accuracy by using two-dimensional computer

codes [26,35-38]. Crosby [18] applied a cartesian two-dimensional

numerical model to simulate airflow through and around permeable

windbreaks. Obstructions in the flow field were treated by

prescribing very small porosities over the solid region and the

resulting velocity and pressure distributions around house shaped

buildings presented good agreement with experiments. These models

are, however, limited in the extent to which three-dimensional effects

can be included in the predictions.

The need to apply three-dimensional modelling to flow over buildings

was identified by Hanson et al. [39] and by Paterson et al. (40].

Subsequently other workers also recognized the advantages of

13

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

complete three~imensional simulation (27,28,41,42). In all the cases

acceptable numerical results were presented. The numerical models

used by these authors were, however, all limited to cartesian

co-ordinates and square buildings. Similar to Haggkvist et al. (42],

inclined roofs were represented by stepping the cartesian grid as

shown below in Figure 1.1.

Figure 1.1 Stepped representation of an inclined roof

Inaccuracies occur at these surfaces as a result of the uneven, stepped

incline. Ironically this is the most sensitive and important part of the

numerical solution. These difficulties can be removed by using

boundary conforming grids to represent the exact regions.

Although acceptable correlation between numerical predictions and

full scale measurements for single span pitched roof buildings were

presented by a number of authors (18,42], no evidence could be found

14

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

of numerical simulations on multi-span buildings. This could mean

that such a problem requires either three-<limensional modelling or

better representation of roof inclines, or both. In fact, no evidence

could be found in the literature of three-<limensional numerical

modelling, applied to body fitted grids in predicting atmospheric air

motion over buildings.

1.2.5 Numerical solution algorithms

In the quest to solve the highly non-linear partial differential

equations describing turbulent fluid flow, many solution procedures

have been developed. Probably the most popular of them all is the

SIMPLE algorithm (Semi-Implicit Method for Pressure Linked

Equations) introduced by P atankar [5]. It entails the segregated

solution of the pressures and velocities in an iterative manner. The

values are then adjusted by calculating pressure and velocity

corrections from the continuity equation. In order to improve the

rate of convergence, the algorithm was modified and lead to the

SIMPLER (Revised) procedure.

In 1984 Van Doornmaal and Raithby [43] introduced several

modifications to the SIMPLE method that both simplified its

implementation and reduced solution costs. The SIMPLEC algorithm

removed the need for under-relaxation of the pressure corrections and

arguably followed a more consistent approach in the manipulation of

the pressure correction equation. In a comparison between the above

15

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

mentioned three algorithms for two test cases, it was found that the

new method reduced the computational effort of the original SIMPLE

method by up to 50% using the same grid, differencing scheme and

convergence parameters.

A new general segregated approach for solving a linear set of

equations for pressure and velocity, which had better characteristics

than previous segregated methods, were presented by Van Doornmaal

et al. (44]. This method permits previous segregated methods to be

derived from the same general equations and provides a means of

qualitatively assessing the approximations introduced. The

SIMPLEX method addressed the issue of degradation of segregated

methods with grid refinement. It was concluded that the cost of the

additional computational effort required by the SIMPLEX method,

may be compensated for by its rate of convergence, that does not

degrade with grid refinement.

In 1990, Thiart (45] presented a new difference method which removes

the need for staggered grids in fluid dynamic computations. The

method prevents pressure checkerboarding, as described by

Patankar [5], through a differencing scheme that incorporates the

influence of pressure on velocity gradients. The most important

advantages of the SIMPLE based SIMPLEN method (for

Non-staggered grids) are ease of programming and the relative ease

with which boundary conditions can be applied. Following this

development, Thiart published an improved differencing scheme for

his original algorithm later the same year (46]. The method was

16

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

extended by also upwinding cross-stream fluxes in addition to the

upwinding of the source terms, and showed that the method is

superior in accuracy compared to the previous method.

Other researchers also joined in the search for algorithms applicable

to finite volume non-staggered grids. Rhie and Chow [15] presented a

finite difference formulation, in which spurious pressure modes are

detected and suppressed by a specific interpolation scheme. The

scheme ensures strong pressure-velocity coupling by including

pressure at consecutive points into the interpolation of cell wall

velocities, which are needed to solve the pressure correction equation.

Differencing of the local pressure gradient terms at these walls is then

done over only one space interval instead of two. It was proven for

some test cases that this procedure showed better convergence

behaviour than the original SIMPLE method.

Other solution procedures such as the PISO (Pressure-Implicit

Split-Operator) algorithm do not yet enjoy the same popularity as

the SIMPLE family of methods. Benodekar et al. [23] used this

algorithm in the prediction of turbulent flow over surface mounted

ribs. The algorithm uses a two-stage predictor-corrector sequence

which satisfies continuity and linearized momentum equations at each

cycle more closely than hitherto. It resulted in an improved

computational efficiency of three to four fold.

17

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

1.3 The need for this study

From the literature survey it is evident that computer models are fast

becoming commonplace in engineering practice. Numerical models are

becoming particularly popular for the solution of fluid flow problems that

occur in nature and industry. These methods offer suitable alternatives to

time-consuming and expensive experimental methods. Many of the flow

problems encountered in practice, involve complex geometrical configurations

and most of them require three-dimensional modelling to enable realistic

simulation. A need is therefore identified to use three-dimensional boundary

fitted grids and curvilinear co-ordinates when flow in arbitrary shaped

regions is modelled.

Although many commercial codes exist that can simulate flow in randomly

curved regions, they are not only expensive but often limited in applicability.

Due to the complexity of the equations governing fluid motion, some

simplifying assumptions are usually made during the development of these

codes. Whether they be restricted to the solution of laminar flow, steady

state or incompressible flow, the fact remains that they are seldom applicable

to most practical engineering fluid flow problems. Without access to the

source code, it is als~ not possible to modify the code for special applications.

This provided the need to locally develop a general fluid flow code, that is

applicable to laminar and turbulent fluid motion in realistic geometries.

One application for which numerical methods are becoming increasingly

popular is the study of wind flow around buildings. Many workers used

two-dimensional approximations, which were not always adequate, while

18

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

other three-dimensional simulations were hampered by the geometrical

restrictions inherent to fixed cartesian and orthogonal curvilinear

c~rdinate systems. A general three-dimensional fluid flow code based on

curvilinear c~rdinates is therefore required to include complete

three-dimensional effects in the simulation and to enable exact

representation of building structures thereby avoiding previous geometrical

approximations of pitched roof ridges.

The code is further needed in order to simulate wind flow around multi-span

pitched roof buildings - something which has evaded researchers in the past.

This could lead to an interesting and unique contribution to the current

knowledge of wind loads on and flow around arbitrary shaped buildings.

1.4 The outline of the study

The purpose of this study is to develop a three-dimensional computer code

for the solution of laminar and turbulent flow in realistic geometries. The

numerical model is based on a general three-dimensional curvilinear

co-ordinate system and allows the use of non-orthogonal boundary

conforming grids representing arbitrary curved regions.

In Chapter 2 a theoretical investigation into the mathematical models

describing three-dimensional turbulent flow is provided. In Appendix A the

derivation of a momentum equation from first principles is presented from

which a General Transport Equation is formulated. The transformation

19

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

INTRODUCTION

relations utilized in transforming this equation relative to general

co-ordinates is also discussed in this chapter, followed by an investigation of

the k-f turbulence model.

The above mentioned equations can, however, not be solved analytically.

This presents the need to solve them numerically. The methods used and the

assumptions made in linearizing these equations for numerical solution are

discussed in Chapter 3. It also deals with the algorithms utilized in

obtaining the numerical solution and attends specifically to the application of

the different boundary conditions.

In Chapter 4 the results obtained from the computer simulations are

compared to analytical and experimental data. The model is extensively

verified for laminar as well as turbulent flows whereafter it is used to

calculate flow over real buildings. The results obtained are compared with

published full scale measurements of flow fields around buildings. The

information is used to calculate dynamic pressure coefficients required to

determine the effect of wind loads on buildings.

Chapter 5 concludes the report by presenting a summary of the thesis, a list

of the main contributions of the study as well as the important conclusions

drawn from the study. Finally a list is given of some related areas for further

research which were identified during the course of this study.

20

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CHAPTER2 THEORETICAL INVESTIGATION

2.1 Preamble

Laminar fluid motion can in general be described by a number of partial

differential equations. These include a momentum equation for each of the

velocity components and the continuity equation. By solving these partial

differential equations, velocities and pressures can be calculated at any point

within the flow region. For turbulent flow, a closure model is required to

include the effect of turbulence in the fluid. In this study, a turbulent

viscosity model is used which entails the solution of two additional partial

differential equations.

The above mentioned equations derived for classical co-ordinate systems are,

however, not applicable to the solution of flow in arbitrary curved regions.

To solve flow in such curved regions, the governing flow equations should be

cast into a general curvilinear form. This is done by applying transformation

relations, developed from the principles of vector and tensor analysis, in the

transformation from cartesian to general curvilinear co-ordinates. In this

21

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

chapter, the relevant equations which include the momentum, continuity and

turbulence equations, as well as the transformation relations used, are

considered.

2.2 The Governing Equations

In an attempt to define fluid flow behaviour, several workers derived

equations by which exact solutions for specific fluid flow problems could be

obtained. This eventually lead to the formulation of the well-known

Navier - Stokes equations describing complete elliptic fluid motion. The

equations describe the law of conservation of momentum for a finite control

volume as shown in Figure 2.1.

(x+~x,y+~y,z+~z)

y

z
(x,y,z) ~x

'-------~
X

Figure 2.1 A general finite control volume element

22

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

The complete derivation of one of the momentum equations (for u-velocity)

relative to cartesian c~rdinates is given in Appendix A. The same

conservational principles also apply to the other two velocity components.

These equations can be summarized by formulating the general transport

equation, given below, which is independent of a co-ordinate system.

~(p</>) = - V • (pv</>) - V • (fV</>) + s4> (2.1)

The equation is presented in vector form with </> representing any one of the

thr~imensional velocity components, r the diffusion coefficient and s4>

the source term which may contain pressure and gravity forces.

In addition to the momentum equations, fluid flow also obeys the law of

conservation of mass. This implies that the total mass transferred into a

control volume as shown in Figure 2.1, should equal the mass flux out of the

volume plus the mass accumulated therein. Based on this principle, the

continuity equation is derived. In vector notation the equation can be

written as:

~(p) =-V • (pv) (2.2)

where v represents the complete velocity vector consisting of the three

velocity components (u,v,w).

The continuity equation can be combined with the momentum equations to

present a mathematical model whereby three-dimensional laminar fluid flow

can be calculated.

23

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

The equations presented above are general and independent of a co-ordinate

system. Before the solution of these general equations can be addressed, the

equations should be completely quantified relative to a reference co-ordinate

system. For this purpose a general curvilinear co-ordinate system is used.

In the next section, the process of formulating the equations in terms of

general curvilinear co-ordinates is described.

2.3 Transformation to curvilinear co-ordinates

The choice of a co-ordinate system for the solution of three-dimensional

fluid flow is very important because it affects the accuracy as well as the

efficiency of the solution. Classical co-ordinate systems, such as cartesian

and cylindrical co-ordinates, are limited in the extent to which obscurely

shaped flow regions can be modelled. To overcome the restrictions inherent

to such systems, a general curvilinear co-ordinate system is used.

For the solution of flow in general curvilinear co-ordinates, the governing

equations are also required in the general form. The equations are

transformed from classical to curvilinear co-ordinates. This is done using

certain concepts from differential geometry and tensor analysis (16,48]. An

arbitrarily shaped region is thereby transformed into a uniform calculation

domain. (Figure 2.2)

24

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

Flow region Calculation domain

Figure 2.2 Effective transformation of the physical region by

transforming the governing equations

Thompson [16] states the relationship between a cartesian co-ordinate

system and a curvilinear co-ordinate system in the form of the relationship

between their respective base vectors,

a. =r. (i = 1,2,3)
1 {I

(2.3)

where ~ represents the covariant base vectors relative to a curvilinear

co-ordinate system while r consists of the cartesian unit vectors.

25

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

y

X

Figure 2.3 Contravariant base vectors relating cartesian to

curvilinear c~rdinates

The complete argument of transforming cartesian co-ordinates to curvilinear

co-ordinates is explained in Appendix B where the covariant base vectors are

utilized in defining expressions for arc length, surface area and volume

element. These expressions are used in determining transformation relations

for the differential operators occurring in the general transport equation.

Mathematical expressions for gradient (V¢), divergence (V•¢) and for the

individual partial derivatives of velocity, are derived in Appendix B and

given below.

26

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

Gradient:

Divergence:

Derivatives:

In curvilinear co-ordinates, the general transport equation can be written as

follows:

(2.7)

where e, T/ and (represent the three-dimensional curvilinear space

co-ordinates while the vectors U,E,F and G contain the convection, diffusion

and pressure terms as defined in Appendix B.

2.4 The Turbulence Equations

Fluid flow turbulence is a phenomenon of great importance in many fields of

engineering and science. As most flows encountered in nature are turbulent,

a good understanding of its fundamental mechanisms is a necessity. It does,

however, present some of the most difficult problems both in the

fundamental understanding of its physics and in practical applications.

27

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

Turbulent fluid motion can be described as an irregular condition of flow in

which the various quantities show a random variation in time and space

co-ordinates, so that statistically distinct average values can be discerned.

A better idea of what is meant can be gained from Figure 2.4, where the

small scale fluctuations around a mean value (¢) for any of the dependent

variables is shown.

t

Figure 2.4 Small scale fluctuations in turbulent flow

By now assuming that each of the dependent variables consist of an average

value and a fluctuating value, as shown below, the Navier Stokes equations

previously discussed, can be adapted to represent turbulent fluid motion.

u=u + u'

p=p + p'

V =v + V
1

p =p + p'

w=w + w'

28

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

The complete argument is presented in Appendix C. It is shown that the

momentum equations, which where derived from Newton's universal

conservational principles, remain valid for turbulent flows with the mere

substitution of the laminar viscosity by an effective viscosity. The effective

viscosity is defined as the sum of the laminar and turbulent viscosities.

(2.8)

In this study the k-t: turbulence model is applied in the calculation of the

turbulent viscosity value (µt). The model entails the solution of two

additional partial differential equations, one for the turbulence dissipation

rate (t:) and the other for the kinetic energy of turbulence (k). The

turbulence equations which are also independent of a co-ordinate system are

given below.

"-v,,-1 '-v--1
time convection diffusion production dissipation

- t: (2.10)

"-v,,-1 '--v-/
time convect ion d if f us ion prod u c t ion d is s ipation

By solving the above partial differential equations for the unknown variables,

the value of the turbulent viscosity can be calculated by

(2.11)

29

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

The constants Cµ, C1, C2, O"f. and O"k occurring in equations (2.9) and (2.10)

are empirical and do not have fixed values. Their values differ slightly for

various fluid flow applications and is published widely for these cases. For

most general fluid flow problems the following numerical values are

commonly assigned to each of the constants [18,24-28].

C µ = 0.09, C1 = 1.44, C2 = 1.92, (j f. = 1.0 and (jk = 1.33

When atmospheric boundary layer flow is considered, the following set of

values are proposed [25].

The k-f. turbulence model is, however, only valid for fully turbulent flows.

Close to solid walls, there are inevitably regions where the local Reynolds

number is so small that viscous effects predominate over turbulent ones [1 O].

Special attention is required at these regions. The greatest concern is not for

the values on the walls but for the values right next to the wall which are in

the flow field. Many authors successfully applied wall function methods

developed by Spalding [21] and Gosman [22] by which wall shear stresses are

calculated.

These viscous shear stresses are dominant in the sub-layer adjoining the wall

where the flow is laminar and the local Reynolds number (y +) is low. The

local Reynolds number is defined by the following equation:

+ Cl/4 1/2 / y =y p k µ
p µ (2.12)

30

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

For a local Reynolds number of lower than 11,6 the shear stress can be

calculated by

T =-µ V /y ,
w t p

(2.13)

where y represents the distance from the solid wall and v the tangential
p t

velocity at this distance from the wall. When the local Reynolds number is

greater than 11,6 the shear stress is described by

1/4 1/2 +
T =(pC k 11,v)/(ln(ty)

w µ t
(2.14)

Near solid walls, the partial differential equation describing k is modified

somewhat by replacing the dissipation and production terms by the following

expression, which depends on the wall shear stress.

(2.15)

In the above equation, y. represents the direction perpendicular to the wall
I

so that y is measured in this direction. The value of t close to the wall can
p

also be calculated as a function of the wall shear stress according to the

equation below, where K represents the Von Karman constant.

c3/\ 1/2

i = ___.__µ __
KY

p

(2.16)

This outlines the basic mathematics behind the two equation k-t turbulence

31

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

THEORETICAL INVESTIGATION

model. The numerical application as well as the treatment of solid wall and

other turbulence boundaries will be discussed in Chapter 3.

The k-f turbulence model does not describe turbulent fluid motion from its

basic principles since it depends on empirical values. It does, however,

provide a useful compromise between accuracy and computability and is

therefore the most widely used mathematical method for describing fluid flow

turbulence in engineering practice today.

2.5 Summary

Turbulent fluid motion are described by six partial differential equations.

They are the three momentum equations, the continuity equation and the

two turbulence equations. Each of these equations is based on Newton's

universal law of conservation for the transport of scalar-variables and can be

represented by a General Transport Equation. To solve turbulent fluid flow

in curvilinear co-ordinates and in realistic geometries, transformation

relations are used to formulate the governing equations in terms of general

curvilinear co-ordinates.

Due to the non-linearity of the equations, they cannot be solved analytically

for complex flow situations without making a large number of simplifying

assumptions. The equations are, in fact, also interdependent and require

simultaneous solution. In order to avoid such assumptions, the following

chapter will deal with the aspects of developing a numerical solution method

for solving the equations considered in this study.

32

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CHAPTER3 NUMERICAL MODELLING

3.1 Preamble

In the previous chapter, the appropriate differential equations describing

turbulent fluid flow in three-dimensional curvilinear co-ordinates were

discussed. The next step is the development of a solution procedure which

can be applied to obtain a numerical solution to the governing partial

differential equations.

Two basic approaches can be followed to solve the partial differential

equations numerically, namely finite element and finite difference methods.

Although the ability of finite element ~ethods for irregular grids have been

recognized for some time, a number of difficulties have hampered progress in

its application to fluid flow problems [5]. The main difficulty concerns the

upwind nature of convection which is poorly addressed when straightforward

finite element methods are used. These methods further often employ the

direct simultaneous solution of all the equations, which is a expensive

process. Alternatively, a finite difference method, which offers a better

33

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

physical interpretation of fluid flow behaviour, can be used. Considerable

progress has been made in applying finite difference methods to randomly

shaped regions. By transforming the equations relative to general curvilinear

co-ordinates (Section 2.3), flow in arbitrary curved regions can be

adequately modelled. Due to the above considerations, the finite difference

approach is used in this study to obtain a numerical solution to

three-dimensional turbulent flow in curvilinear co-ordinates.

The first step in the development of a computational model, is the

discretization of the differential equations relative to the problem. The

process of obtaining linear discretization equations for the dependent

variables will be discussed in Section 3.2. In Section 3.3 a pressure correction

equation is derived from the equation of continuity, which is used to enforce

the law of conservation of mass upon the flow field. As a result of the finite

volume approach used during discretization and the separate solution of

pressures and velocities, decoupling between the pressure and velocity fields

occur. An interpolation scheme to remedy the situation is discussed in

Section 3.4.

In order to ensure realistic simulation of any practical flow situation, the

physical boundary conditions applicable to the problem should be correctly

implemented in the numerical model. Section 3.5 deals with a number of

general boundary conditions applicable to most flow situations, including

flow over real buildings.

Once the above processes have been considered, a method is required

whereby the values of the dependent variables can be obtained numerically

34

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

at discrete points throughout the calculation domain. In Section 3.6, a

method for separately solving each of the linearized equations is presented.

Finally the entire solution algorithm for calculating turbulent fluid flow is

given.

3.2 Discretization Equations

In order to calculate numerical values for the variables describing fluid flow,

the governing equations should be discretized. This entails the use of finite

differences to replace the partial derivatives in time and space occurring in

the governing equations. The finite differences are obtained by evaluating

the variables at discrete points throughout the field. In this way the highly

non-linear partial differential equations are linearized.

In the discretization process, the control volume formulation is used. This is

done to ensure that the conservation principle, which serves as the basis in

the derivation of the General Transport Equation (2.1),is preserved [17]. A

two-dimensional representation of the arrangement of these control volumes

surrounding grid points is shown in Figure 3.1.

It is shown that the whole domain is covered with non-overlapping control

volumes so that the boundaries of the region are exactly matched by a

combination of control volume boundaries. This feature becomes useful when

obstructions in the flow field have to be delt with, as such obstructions can

be closely conformed by the cell boundaries. In setting up such an

35

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

--0 - - e-

l I

- l--

Figure 3.1 Typical representation of a control volume

arrangement associated with a finite volume methods

arrangement, a double refined grid is initially generated by positioning the

grid points at the intersections of grid lines. Exact transformation values can

then be calculated at cell wall boundaries instead of being determined by

interpolation between values of neighbouring majour grid points. This

improves the accuracy of the transformation values used in the differential

equations to describe control volume geometries. In Figure 3.1 the control

volume boundaries are therefore represented by the solid grid lines.

One such control volume is shown in Figure 3.2 where the position of the grid

point under consideration is defined relative to its neighbours. It is assumed

that the value at point P is only influenced by values at the points in its

immediate surroundings [5].

36

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

w -------+---+->

s

eB

Figure 3.2 A typical finite control volume element

The General Transport Equation is integrated over the control volume

above. It is assumed that the density is constant over the whole volume and

that cell wall velocities govern the mass flow over the whole face. These

velocities are evaluated by applying linear interpolation between major

points. A general form of the discretization equation is obtained for the

calculation of the value at point P.

The coefficients of the neighbouring points represent convection and diffusion

flux while the source term b contains information concerning grid

deformation and pressure effects. The coefficient a; represents the time

dependence of the specific variable in cases where unsteady flow is modelled.

37

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

3.3 Pressure correction equation

A difficulty exists in calculating the velocity field using the expressions

developed above. This is due to the fact that the pressure field is unknown.

No explicit equation for obtaining the pressure exists, and therefore a special

procedure for the calculation of the pressure field should be considered. A

well documented segregated approach can be followed whereby pressure

corrections are calculated with the use of the continuity equation [5].

If the pressure field is explicitly known, only the velocity field needs to be

calculated. In the equation below, ¢ represents the values of any of the

three-dimensional velocity components (u,v,w) to be calculated, and P the

known correct pressures. The coefficients B<P, c<P and o<P involve density,

area and metric coefficients and s¢ represents the source terms.

¢ = b a ¢ + B <Pp + C <Pp + D <Pp + S ¢
p nb nb e 'f/ (

(3.2)

Usually the pressure field is not known explicitly, and approxiµiate velocities

* * (¢) are calculated by guessing an initial pressure distribution (P).

* * /4* /4* /4* /4 ¢ = b a ¢ + B lf'p + C lf'p + D lf'p + S If'
p nb nb e 'f/ (

(3.3)

However, in general these velocities do not satisfy the continuity equation

and a net mass source is produced instead. In order to remove this mass

* source, the velocity values (¢) can be corrected by a correction ¢".

(3.4)

38

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

By replacing velocity values (u,v,w) in the continuity equation by the sum of

* * * the approximate values and the corrections (u + u",v + v",w + w"), an

equation is obtained whereby the pressure corrections can be calculated.

According to Rhie and Chow [15] the cross derivatives of the pressure

correction can be neglected if the grid is nearly orthogonal. For a detailed

discussion the reader is referred to Appendix E.

Application of the discretization principles developed in Section 3.2 leads to

the final equation for the calculation of the pressure correction at point P as

a function of its neighbouring point values.

a P" =b a P" + S
p p nb nb

(3.5)

where S represents the local imbalance of mass and gives an indication of

how well the principle of conservation of mass is satisfied.

3.4 Pressure-velocity coupling

A finite volume approach to finite differences implies the calculation of all

the dependent variables at the major grid points. This differs from the

staggered grid approach which was used by Patankar [5] in the derivation of

the solution algorithms of the next section. The use of the staggered grid

arrangement involves the calculation of pressures and turbulence values at

major grid points while velocity components are calculated at corresponding

control volume surfaces [10,24]. This technique can, however, not be applied

39

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

when considering the equations in general curvilinear co~rdinates, since the

three-dimensional velocity components u, v and w are not related to control

volume surface orientations.

The straightforward application of the mentioned algorithms to the finite

volume method results in the occurrence of oscillatory pressure fields. The

major source of this instability is the second~rder centered difference

approximation for the pressure gradient at point P.

(3.6)

This means that the pressure at point P has no influence on the finite volume

expression for the pressure derivative during the calculation of the velocity at

point P. This causes the decoupling between the pressure and velocity fields.

As an alternative approach, a special method for the treatment of locally

linearized convection terms at the control volume surfaces, was introduced

by Rhie et al. [15]. These terms are calculated by linear interpolation

between adjacent point values. This interpolation causes the decoupling of

* the pressures and velocities. Consider the equations used in calculating up

*
and uE.

(3. 7a)

(3. 7b)

40

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

* By linear interpolation for the value of u , 1~e-pressure variations cannot
e

be detected. One may remedy the situation by correcting the pressure

derivative through a 1~e-difference scheme on the cell boundary to yield

(3.8)

where the overbar denotes linearly interpolated values and EE indicates the

value at the grid point situated east of point E (East).

By applying this procedure prior to the solution of the pressure correction

equation strong pressure-velocity coupling is ensured.

3.5 Boundary Conditions

Once the mathematical equations describing any fluid flow problem have

been correctly manipulated to enable numerical solution, only the boundary

conditions affect the accuracy of the solution. The real effects influencing the

physical flow situation must be modelled accurately to ensure that the

numerical solution reflect the practical problem.

The different boundary conditions that are applicable to this study are

discussed in two parts. First, the general boundary conditions applicable to

most fluid flow problems are presented, followed by the boundary conditions

applicable to flow over buildings. Special attention is given to the turbulence

and velocity profiles in the atmospheric boundary layer.

41

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

3.5.1 General boundary conditions

a) Inflow boundaries

Values for dependent variables that are specified at inflow boundaries

are usually determined experimentally by measurement. Fixed values

include the three velocity components and the two turbulence

properties. In modelling incompressible flow, pressure boundaries are

usually not specified and are left to find their own values as

determined by the flow field. Pressures on inflow boundaries are often

set equal to or on a constant gradient with the numerically calculated

pressures immediately downstream.

b) Solid walls

Most practical flow situations are bounded at some point by a fixed

wall. At this wall, velocities tangential and perpendicular to the wall

are zero. In Figure 3.3 an element next to a fixed wall is shown. The

velocities at the western cell wall (w) are made zero when calculating

the values at point P.

Since the pressure correction is not a measurable physical entity, the

values are not known at the walls. When the pressure correction

coefficient a is set equal to zero, the value on the wall has no
w

influence on the pressure corrections in the flow field. Within the flow

region, the pressure corrections find their own values and eventually

approach zero when the final solution is obtained.

42

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

w

Figure 3.3 Control volume at fixed wall boundary

Due to the finite volume method used, the pressure on the wall is

required in solving the velocities at point P. The assumption is made

that the pressure on the wall equals the pressure at point P, hence a

zero gradient.

The turbulence model used in this study, is valid only for fully

turbulent flows. Close to solid walls, there are inevitably regions

where the local Reynolds number is so small that viscous effects

predominate over turbulent ones [21]. In these cases, the value of the

kinetic energy of turbulence (k) on the wall is theoretically zero, as

the fluid film adjoining the wall is stationary. Due to the extremely

large gradients that occur in these areas, the use of a zero gradient for

k gives a better approximation [10,24]:

43

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

~- = 0 , (perpendicular to the wall.
l

The value of f at the wall is very large, as the dissipation rate of

turbulent energy on the wall is virtually infinite. The wall function

method is also used to calculate the value of fp- Where necessary,

the value on the wall is then set equal to the value of the immediate

neighbouring point in the flow region. For both turbulence quantities,

the wall coefficient (a) is set equal to zero so that it does not
w

adversely affect the flow field.

c) Symmetriral planes

It is common practice to model only half of the problem if the flow

region and the applicable boundary conditions are symmetrical.

Values on opposite sides of the plane coincide and therefore zero

gradients are used for all the flow variables .

.gf _ = 0 , (perpendicular to the wall
1

Where ¢ represents any one of the dependent variables.

d) Constant velocity boundaries

These boundaries occur when the fluid is in contact with a moving

wall, as in the case of the driven cavity (sliding lid) problem, or where

the flow is bounded by neighbouring freestream velocity. For these

cases, fixed velocities are specified and zero gradients are used for k, f

and the pressure corrections. For freest ream boundaries, velocities are

44

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

specified in such way that mass flow across these boundaries is

prevented. Its application should be carefully investigated to ensure

that the boundary condition is representative of the real boundary. In

the case of modelling flow over buildings, the boundary should be

placed far enough from the building to ensure that that the flow field

around the building is not influenced.

e) Outflow boundaries

At a first glance one might underestimate the importance of outflow

boundaries. Although they are usually situated downstream, an

incorrect implementation could lead to inaccurate upstream numerical

results and could even prevent convergence. The outflow boundary

should ensure that global mass conservation is enforced. In most

cases zero gradients are used for all the flow quantities and the

velocities are adjusted to obey overall continuity.

3.5.2 Boundaries applicable to flow over buildings

Of great importance to the numerical simulation of wind motion over

buildings is the correct specification of the boundary layer profiles.

These profiles are usually dependent on the unique terrain associated

with the problem. Large amounts of empirical data describing the

nature of velocity and turbulence profiles in the atmospheric boundary

layer exist. Two widely accepted empirical relations describing

boundary layer flow are the logarithmic and the power law, the latter

used during this study. The equation describing the boundary layer

velocity profiles is:

45

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

(3.9)

where V(y) is the mean horizontal wind speed component at a height

y and V is the mean horizontal wind speed at a reference height
ref

h . The exponent a is the mean wind speed exponent which is
ref

dependent on the upstream terrain roughness. Values of a are widely

published in the literature [53].

According to Scruton [53], the inflow length scale values for

atmospheric longitudinal turbulence L are approximated by the

following empirical relation:

L(y)=151 (y/10) 0 (3.10)

where L(y) is the turbulence length scale in the flow direction at

height y. This upstream length scale is included in the numerical

model via inflow values for the turbulent dissipation rate t(y). The

relationship between t(y) and L(y) is defined by [6]:

3/2
t(y) = [CD p k(y)] I L(y) (3.11)

where CD is a constant, with value 0,07 for full scale atmospheric

turbulence [25].

46

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

An empirical relation can also be used to approximate the turbulence

intensity I(y) of natural wind at the inflow boundary. Scruton [53]

states the relation as:

1/2
I(y) = (6,7 k) V /V(y)

s ref
(3.12)

where k is a surface roughness parameter which is a measure of the
s

kinetic of the surface friction coefficient of the upstream terrain. The

values for the kinetic energy of turbulence k(y) at the inflow boundary

can be obtained from the following relation between k(y) and I(y)

given by:

k(y) = 0,5 [I(y) V(y)]
2

(3.13)

Fixed values for V(y),E(y) and k(y) at the inflow boundary, are

calculated using the equations presented above. Cross-stream

velocities are set equal to zero while zero gradients are applied to

pressures at these boundaries.

3.6 Solution algorithms

The general discretization equation derived in the previous section is not

linked to any particular method of calculation. A suitable method for solving

the linearized equations, for each of the dependent variables, at every point

throughout the flow region is now required.

47

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

The simplest method is to make use of a Gauss-Seidel point-by-point

iteration scheme. When large three-dimensional grids are used, this method

becomes very time-consuming and inefficient in the spreading of the

influence of boundary conditions. A better method is to use the

TDMA-solver (Tri-Diagonal Matrix Algorithm) [5] whereby variables along

a grid line are directly calculated. In two or more dimensions, the solver is

applied in an iterative manner whereby variables are calculated line-by-line

while sweeping across the calculation domain. The method is not perfectly

suited for three-dimensional problems, but it can be improved by varying

the sweeping direction for every solution of the field. This method speeds up

the introduction of the boundary conditions and are used in this study.

When unstructured grids are used, the method is not applicable and a direct

solver becomes essential.

At this stage it is appropriate to consider the entire solution algorithm

required to solve the complete set of discretization equations. Usually the

pressures, velocities and turbulence values are unknown and a special

procedure is necessary in order to obtain a solution. One such a solution

procedure is the SIMPLE algorithm which was introduced by Patankar [5].

This method forms part of a group of segregated methods whereby the

pressures and velocities are solved in an uncoupled manner. The process as it

is applied in the current model is briefly outlined below.

*

*

*

*

* Guess initial pressure field p

* * * Solve momentum equations to obtain u , v and w

Interpolate velocities for pressure-velocity coupling

Solve the pressure correction equation for p"

48

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

*

*

*

*

*

NUMERICAL MODELLING

*
Calculate pressure field (p = p + p 11

)

*
Correct velocities (u = u + u 11

)

Solve turbulence equations (k and t)

Calculate new viscosity

*
Return to the first step using p as p

For a detailed discussion of the pressure correction equation the reader is

referred to Appendix E. The complete algorithm is also presented in [5].

Many alternative SIMPLE-based methods are also available, such as

SIMPLER, SIMPLEC, SIMPLEX and SIMPLEN which basically apply the

same process with minor modifications for specific applications [45].

According to Van Doornmaal et al. [44] the SIMPLE method is inconsistent

in neglecting the underlined term in the equation below, during the

derivation of the pressure correction equation.

a u 11 = ~ a u11 + ~p 11

p p nb nb

A SIMPLEC method is presented by introducing a consistent approximation

by subtracting lli u" on both sides of the above equation and neglecting the
nb e

term, underlined below, i_nstead.

(a - b a) u 11 = b a (u 11
- u 11

) + ~p"
p nb e nb nb p

The method further removes the need for pressure under-relaxation and

proves to be more efficient than the SIMPLE method. Both of the methods

49

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NUMERICAL MODELLING

were applied during the study and a comparison revealed an improvement of

almost 30% in calculation time with the SIMPLEC method. A detailed

description of this method is presented in (44].

3.7 Summary

In this chapter, the development of the numerical model for the simulation of

turbulent fluid flow in three-dimensional curvilinear co~rdinates was

described. Issues of discretization and linearization of the equations to

enable their numerical solution were also discussed. A model was developed

for the iterative solution of the governing equations of Chapter 2. A special

interpolation scheme was included into the model to ensure strong

pressure-velocity coupling. A segregated solution method based on the

SIMPLE algorithm was suggested for the solution of the linearized equations

while a TOMA-solver was proposed for the actual solution for each of the

dependent variables at various nodes. Finally, the relevant boundary

conditions and their implementation into the computer code were discussed.

50

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CHAPTER4 PROGRAM APPLICATIONS

4.1 Preamble

Tue mathematical and numerical procedures developed in the previous

chapters form the basis of the computer program 3DFLO. The development

of the code can be divided into the following phases:

I. The development of a tw~imensional laminar fluid flow code in

general curvilinear co-ordinates.

II. The extension of the model to simulate thre~imensional laminar

fluid flow in curvilinear co-ordinates.

III. The incorporation of a turbulence model to account for turbulent

effects in the fluid.

In order to establish confidence in the accuracy of the code it needs to be

verified by solving various test cases. In this chapter, the test cases used to

verify each new development phase, are discussed. Finally the code is

applied in studying wind flow behaviour around arbitrary shaped buildings.

51

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

4.2 Two-dimensional laminar flow (Phase I)

On completion of Phase I, laminar flow between two parallel plates is

modelled. The problem can be considered two-dimensionally if it is assumed

that the plates are large compared to the distance between them. Near the

middle, the flow is effectively two-dimensional as it is largely unaffected by

the boundary conditions in the third dimension. As a result of viscous

friction at the solid walls, velocity gradients exist in the boundary layer.

The two boundary layers increase in height in the downstream direction and

gradually merge to eventually result in a fully developed velocity profile.

Figure 4.1 compares the numerically predicted velocity distribution to the

analytical solution for the same application given by Schlichting [4 7] and to a

previous numerical result by Le Grange [17].

D/Do

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

U/Uo
-4-- Numerical (3DFL0) ~ Analytical * Previous Numerical

Figure 4.1 Fully developed velocity profile of laminar channel flow

52

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

For ease of reference, the results are presented in dimensionless form. U 0

represents the constant stream-wise inlet velocity and D0 the distance

between the two plates. The fully developed velocity profile predicted by

the numerical code compares favourably to the analytical solution and to a

previous numerical result. This indicates the ability of the code to model

two-dimensional laminar flow.

In testing the curvilinear abilities of the code, the problem of

two-dimensional laminar channel flow, as discussed above, is solved by using

two different grid reference systems. Figure 4.2 shows a classical cartesian as

well as a curvilinear grid reference system representing the same flow region.

111111111111111 I I I I I I I

' , C I I \ I

Figure 4.2 Cartesian and Curvilinear grids for the same region

53

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

In the solution of the curvilinear grid, cross derivative terms are included to

describe the curvilinear geometrical effects. For classical cartesian

c~rdinates these terms are all equal to zero and therefore have no

influence. In both cases the same velocity profile for a fully developed

laminar channel flow is predicted which confirms the applicability of the code

to general curvilinear c~rdinates.

In order to demonstrate the ability of the numerical model to predict

recirculating laminar flow, the solution of flow in a two-dimensional driven

cavity is considered. Such a cavity is shown below in Figure 4.3. It is

indicated that the flow is bounded by three fixed walls and a sliding lid

which drives recirculation of the fluid. The problem can be assumed to be

two-dimensional when the depth dimension is sufficiently large compared to

the other two dimensions of the cavity.

Height C
I ◄ ... 1

Width

Figure 4.3 Schematic representation of the driven cavity problem

54

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

For a low Reynolds number (Re = 1) the complete velocity distribution and

the centreline velocities are given in Figures 4.4a and 4.4b. The results

compare favourably to data published by Al-Sanea, Pun and Spalding [49].

~ (/~ ., • r • ~, \) ' \' ~ { ~ .,, _. -- " \ 1 1.·'
' ~ ~· \' J I I , - - - - ' ,-\ ' I ., ' t\~\,' \ ••-,-4·••J ~.,,, .•
4

' \ \ \ ' ' ' ~ • • ~ ~ ' I j ll. ~ i •
• \ ' \ ' ' " - - ¥ "' ,1 I I ., ', J ' A~'''''''-~~////~~' y
A\\\\,,,~--~/////t f V
A~~,,,,,~--~~ ✓ ,///j tV
A•\'''''----~-~,, I ,v
Al\~\'''----~,~/- I rV
A J. (l.lt\"-'-'-----..-6'"/I ~ r r V

A ~ ~ ~ ~ ~ '' - ~ - - I.I#~ , ~ r V

A ~ t- ~ ~ ~ • ~ - - • • • A ~ ~ ~ t, ~ y

A ~t-1t•,.,.,.,.._•••••"'" t,~V

,. ,. ~ ~ ~ -- "' ~ ~ ~

"f "'°.,..~ _. .. •••""••"'~A
~ • ~ ~ ~ ~ _. C C _. C C C C ~ ,I,, • C

't•., A ~ .. c_.c .. cc_.cc,V,-.•'

Figure 4.4a Driven cavity velocity distribution (Re = 1)

-0.3
V/Uo

-0.2

-0.1

0

0.1

0.2

0.3

0
D/Do

~ Numerical (3DFL0) ~ Previous numerical

Figure 4.4b Driven cavity centreline velocity (Re = 1)

55

1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

Good agreement is found by relating the position of the centre of rotation

and the overall flow pattern. Each of the four different walls of the cavity

are moved in turn to check the symmetry of the code. The flow fields

generated in this way turn out to be identical.

The results are verified quantitatively by comparing the predicted velocity

profile (vertical velocities) on the horizontal centreline to an accepted

numerical solution [49] as shown in Figure 4.4b.

For an increased Reynolds number (Re = 400) the velocity distribution and

the vertical velocities on the horizontal centreline are presented in Figures

4.5a and 4.5b.

Figure 4.5a Driven cavity velocity distribution (Re = 400)

56

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

It can be seen that the centre of rotation moves downstream and somewhat

away from the moving wall. This numerical solution is again found to be in

good agreement with an accepted numerical solution presented by Al-Sanea,

Pun and Spalding [49]. The good agreement between the results, suggests

that the code is accurate in predicting two-dimensional laminar flow.

V/Uo
-0.2.-----------------.---------------.

0.3 ._ _ _._ __ .___ _ ___._ __ ..__ _ __,_ __ ...___ _ __._ ____ _ ___._ _ ___,

0
D/Do

~ Numerical (3DFLO) -+- Previous numerical

Figure 4.5b Driven cavity centreline velocity (Re = 400)

4.3 Three-dimensional laminar flow (Phase II)

As a next step in the development process, the code is the extended to model

three-dimensional laminar flow. Verification of this phase is done by

considering the problem of three-dimensional laminar recirculating flow over

a backward facing step.

57

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

A schematic representation of the problem is given below in Figure 4.6.

Flow enters the working section between two horizontal and two vertical

plates and flows across a vertical step with a height of one third of the total

distance between the top and bottom plates. The horizontal plates are

45 mm apart while the working section has a width of 305 mm between the

vertical plates. At the step, the flow breaks away from the wall and forms a

zone of recirculating flow behind the step. At some distance downstream of

the step, the flow re-attaches to the bottom plate and eventually results in a

fully developed velocity profile.

Top

Flow

c=:) 1
15mm T 305mm

step Bottom

Figure 4.6 Flow across a backward facing step

The modelled section shown above corresponds to the section which was used

by Denham and Patrick [50] for experimental measurements. The

comparison between the predicted and the measured velocities at different

locations behind the backstep is shown in Figure 4. 7. The numerical as well

as the experimental results were obtained at a Reynolds number of 229,

referenced to the height of the step.

58

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

3

2

D/ho

1

0
0 2

PROGRAM APPLICATIONS

4

U/Uo o

6

X/ho
- Inflow profile -,IE- Numerical (3DFL0)

8 10 12

◊ Experimental

Figure 4.7 Velocity profiles behind a backward facing step (Re= 229)

The predicted stream-wise velocity profiles at various distances behind the

step closely match the measured values. The predicted re-attachment

length of approximately eight times the step height (8h) does however differ
0

from the measured re-attachment length (9h). This could be attributed to
0

the discretization process, where partial derivatives are replaced by finite

differences. The differencing scheme that is used in this process, affects the

accuracy of the final solution, particularly in areas where recirculating flow

occurs. The predicted re-attachment length does, however, compare

favourably with a previous numerical prediction for this application by

Visser (24].

59

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

Considering the above discrepancy between numerical and experimental

results, it is interesting to evaluate the effect of various differencing schemes

on the accuracy of the solution. Five different schemes (See Appendix D) as

described by Patankar (5], are compared by evaluating the numerical results

obtained in each case to analytical or experimental solutions. For

two-dimensional flow between parallel plates, the resulting velocity profiles

obtained by implementing each of the differencing techniques in turn, hardly

varies at all. In the case of modelling two-dimensional laminar recirculating

flow over a backward facing step, meaningful differences in accuracy is

observed. This can be seen by comparing the flow re-attachment lengths

behind the step.

Differencing
Upwind Central

Expo-
Hybrid

Power Bxperi-
Scheme nential law mental

Re-attachment
6,8h

0
6,Sh

0 length 7ho 8h
0

8h 0
9h

0

Table 4.1 Influence of differencing scheme on re-attachment length

In Table 4.1 above, the predicted lengths as well as the experimentally

measured distance at a Reynolds number of 229, are presented. It is shown

that the Power law and the Hybrid differencing schemes provide superior

accuracy compared to centered and upwind differencing schemes. This

coincides with Patankar's theoretical comparison between these methods.

Throughout the rest of this study, the Power law scheme is therefore

employed.

60

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

4.4 Three-dimensional turbulent flow (Phase III)

Very few fluid flow applications in engineering practice can be adequately

represented by laminar flow. In order to model turbulent fluid flow, a

turbulence closure model is required. The k-f turbulence model, as

discussed in the previous chapters, is used for this purpose. Before applying

the code to the simulation of full-scale atmospheric turbulence, it is

necessary to verify the accuracy of the code in the prediction of turbulent

flows. This is done by validating the numerical predictions against

experimental results for cases of turbulent flow. The problem considered for

this purpose, is the solution of turbulent flow over a backward facing step.

The current flow conditions differ from the laminar problem, addressed in

Section 4.3, in that the Reynolds number (Re) is increased to 3025. This

Reynolds number lies, however, close to the transition region from laminar to

turbulent flow. At this point, the flow becomes extremely sensitive to small

disturbances resulting from experimental measurements. For this reason

Denham et al. [51] made use of laser anemometry to measure the velocity

distribution in turbulent flow over a backstep.

Measured velocity profiles published by Denham et al. [51] were used to

prescribe inflow velocities for the numerical simulation. Based upon this

input, the complete velocity distribution behind the step is calculated. In

Figure 4.8, the numerical solution is compared to the measured data at

various distances behind the step.

61

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

2

D/ho

1

PROGRAM APPLICATIONS

U /U o .__I _ _..__ _ ___.

2

0

4

X/ho
6

- Inflow profile -¼- Numerical (3DFL0)

8

◊ Experimental

Figure 4.8 Velocity profiles behind a backward facing step (Re = 3025)

It can be seen that the numerically predicted values compare favourably with

the measured values at corresponding locations behind the step. The

predicted reattachment length of 6,4h is also in good agreement with the
0

measured length of 7h . Two possible reasons for this difference can be
0

noted. The first being the differencing scheme applied during discretization

which affects the accuracy of the solution in recirculation zones. Secondly,

the turbulence model may be inadequate for the Reynolds numbers which lie

so close to the transitional region. The k-t turbulence model applies

specifically to fully turbulent flows and numerical predictions in the

transitional region is known to be inaccurate. For engineering application,

the results do, however, prove to be sufficiently accurate.

62

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

After this series of verifications, it can now be concluded that the numerical

model is able to predict fully turbulent recirculating fluid flow with

acceptable accuracy. The code will now be used to simulate atmospheric air

motion around arbitrary shaped buildings.

4.5 Wind flow over buildings

Complete knowledge of the velocity fields and pressure distribution

surrounding buildings are of great importance to the engineer and the

architect. This information can be obtained by simulating the complete

problem with the use of a computer code. Many workers contributed to

improving the understanding of wind flow patterns around buildings by

developing computer simulation codes. These methods were, however, all

limited in the extent to which arbitrary geometries conformed to the

orthogonal co-ordinate systems they employed. The exact geometry of an

inclined house roof and a sharp ridge can only be modelled with the use of a

non-orthogonal curvilinear grid reference system. In this section

three-dimensional atmospheric air motion around arbitrary shaped buildings

are simulated by applying appropriate curvilinear co-ordinates.

The first building to be considered is an ordinary pitched roof building with a

roof set at an incline of 26°, as shown in Figure 4.9. The total span width of

the house is 6,4 m and it has a length of 21,3 m. The ridge of the roof is at a

height of 3,9 m. It should be noted that due to the symmetrical properties of

the problem, only half of the entire flow field is modelled . This building is

selected because full-scale pressure measurements are available in the

63

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

literature [52], and previous tw~imensional numerical simulations had

already been carried out [18]. In determining the inflow boundary layer

profile a mean wind speed exponent of 0,15 is used to correspond with the

measurements.

Symmetry plane

Wind flow direction

Figure 4.9 Single span pitched roof building

A two-dimensional cross-section of the three-dimensional grid, used in

modelling the problem, is shown in Figure 4.10. In order to maintain

simplicity, the largest part of the flow region is covered with rectangular

control volumes. Above the roof of the building, the elements are, however,

non-orthogonal which makes it possible to represent the exact physical

geometry of the inclined roof. In the close vicinity of the building the

elements are smaller in order to improve the accuracy with which the

complicated flow in these areas can be calculated. The elements gradually

increase in size as the distance from the building increases. Behind the

building, the diagonal grid lines are extended beyond the leeward wall which

leads to better simulation of the flow behaviour on the leeward side of the

ridge.

64

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

Figure 4.10 Cross-section of 3D grid around a single span building

-

Figure 4.11

------ - ==----------

'
.... ---

ZY-plane velocity distribution on symmetry plane

65

....
:: --

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

The complete velocity distribution on the symmetry plane surrounding the

building is presented in Figure 4.11. Atmospheric air approaches the

building according to prescribed boundary layer profiles. As the air hits the

windward wall of the building a recirculation zone is formed. This forces the

flow upward onto the roof of the building. Due to the control volume grid

arrangement above the building, the figure might suggest that the flow goes

up and then down again as it passes the ridge. A careful study of the

velocity vectors does, however, show that this is not the case and that only

an upward deflection is indicated. At the ridge of the roof, the flow breaks

away from the surface and forms a large zone of primary recirculation behind

the building. Smaller zones of secondary recirculation are also observed

behind the ridge and the leeward wall. The effect of this flow pattern on the

pressures around the building is reflected in the next paragraph.

1.0 ,---------------------------r-------,

u O •·······

0

Cp

-1.0-... .

front + back
-2.0.________.______.__...._____,___._______.______._ _ _,__ ___ ...____.____.__...,____.___.L--__.____.____,

-1.0 0 1.0
Z/span

D Full scale meas. ◊ Numerical (Previous) -+- Numerical (3DFL0)

Figure 4.12 Single span pressure coefficients (Middle)

66

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

The numerical results obtained from the current model are compared with

full-scale experimental measurements by Wells and Hoxey [52], and

presented graphically in Figure 4.12. The figure shows pressure coefficients

on the middle section (symmetry plane) of the building in Figure 4.9.

The graph is presented in dimensionless form of pressure coefficient versus

span-wise position. The pressure coefficient CP is calculated from

Equation 4.1, where P is the pressure on the surface of the building , Pref is

the upstream pressure at ridge height and V ref is the upstream velocity also

at ridge height.

p -P
C = _________ re _____ f_

p
p V /2

ref

(4.1)

In order to present the pressures on the walls of the buildings on the same

figures, they are included as values less than -1 (windward wall) and values

greater than 1 (leeward wall) of the dimensionless span-wise position

Z/Span. Z is the distance measured in either direction from the ridge while

the Span represents the total distance between the building edge and the

ridge in the middle of the section.

It can be seen from the figure above, that the pressure distributions on the

windward section of the roof were predicted more accurately than those from

previous work. It is, however, noted that towards the ridge, the current

predicted values drift slightly away from the full-scale measurements. This

can be explained by considering the interdependence between pressures and

velocities in the numerical model. Point velocities are calculated by

67

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

including the effect of pressure differences between neighbouring points while

pressure corrections are, in turn, calculated using interpolated velocity values

on the cell walls. These velocities are interpolated by applying pressure

differences between consecutive grid points. The low pressure spike,

occurring behind the ridge, therefore, has a lowering effect on the upstream

pressures. Theoretically this is not incorrect, and the problem can only be

overcome by excessive grid refinement. This would limit the effect to the

close vicinity of the ridge, to correspond with expected practical effects.

On the leeward side, the previous prediction, the measured values and the

current prediction of the pressure coefficients differ only slightly. The

current model indicates the occurrence of a low pressure spike immediately

behind the ridge of the roof. This is due to the break-away of flow at the

ridge. The resulting suction leads to flow recirculation, and hence a low

pressure spike. Visser et al. (38] also indicated the occurrence of such a spike

while numerical predictions by Crosby [18] did not. In neither of these two

cases, where cartesian co-ordinates were used, could the exact geometry of

the roof ridge be modelled as accurately as in the current model and the

results, therefore, depend largely on the staggering of grid points to

approximate the ridge geometry. Although a full-scale measurement at this

point is unfortunately not available, it is the opinion of the author that the

current numerical result can be accepted with confidence.

The advantage of three-dimensional modelling is that it enables the study of

atmospheric air flow behaviour at the building edge where flow is strongly

influenced by three-dimensional effects. The complete velocity distribution

on a ZY-plane at the building edge is shown in Figure 4.13.

68

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

--

Figure 4.13 ZY-plane velocity distribution at building edge

The velocity field differs from the field in Figure 4.11 in that a recirculation

zone behind the building is not present. At this point, the flow is dominated

by flow break-away and recirculation in the third dimension.

The numerical results at the building edge can be evaluated quantitatively

by comparing them with full-scale measurements. The Figure 4.14 shows

pressure coefficient versus span-wise position (Z/Span) on a ZY-plane at the

edge of the building.

69

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

1.0 ,-----------------------------,.--------,

....... ◊ ...

*
0

Cp

-1.0 t-·······························

front

-1.0 0
Z/span

1.0

◊ Full scale meas. ~ Numerical (3DFLO)

Figure 4.14 Single span pressure coefficients (Building edge)

back

It can be seen that the current numerical prediction correlates favourably

with the full-scale measurements in absolute value as well as in trend. The

slight variation may be ascribed to the insufficient modelling of turbulence at

the edge where the flow is highly sensitive and unsteady. One limitation

affecting the three-dimensional modelling, is that due to limited computer

memory, the grid size cannot be refined indefinitely. This factor may

contribute to the slight discrepancies observed. On the whole, the results

still remain acceptable for most engineering applications.

The second building to be considered, is shown below in Figure 4.15. The

building has a double span pitched roof with the all inclines set at angles of

26°. The span width is 12,8 m and the building has a length of 39,6 m. The

ridge is 7,1 m high, the valley 4,25 m and the eave stands at height of 3,4 m.

70

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

Wind flow direction

Figure 4.15 Double span pitched roof building

A literature survey provided no evidence of previous numerical simulations

on a building of this shape. This motivated the use of the current code to

model such a complex building in an attempt to establish the accuracy and

applicability of the current model to practical engineering fluid flow

problems. Due to symmetry only half of the problem is modelled, as is

shown in Figure 4.15 above. A zero gradient symmetry boundary condition,

as discussed in Chapter 4, is imposed on the symmetry plane. The inflow

boundary layer profiles where determined, as explained in Section 3.5.2, by

using a value of 0,21 for the mean wind speed exponent (a). This

corresponds to conditions under which Wells et al. [52] did full-scale

experimental measurements on such a building.

A cross-section of the three-dimensional grid generated for this problem, is

shown below in Figure 4.16. Once again the grid is cartesian, except above

71

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

the building, where boundary fitting non-orthogonal control volume

elements are used. The finite volume cells are small near the building to

enable accurate modelling of boundary layer flow on the building walls.

They increase in size at larger distances from the building where the flow is

less complex.

Figure 4.16 Cross-section of 3D grid around double span building

In Figure 4.17, the preqicted symmetry plane velocity distribution

surrounding the building is presented. Similar to the flow field around the

previous single span building, zones of recirculating flow are observed in front

of and behind the building, with a small zone of secondary recirculation right

behind the leeward wall. An additional zone of recirculation is identified in

the valley between the ridges of the roof. This is a result of flow break-away

at the first ridge. The break-away of flow at the second ridge leads to the

formation of the large zone of primary recirculation.

72

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

- ----------

Figure 4.17 Symmetry plane velocity distribution around double span building

The numerical prediction is quantitatively verified by comparing the

pressures around the building to the full-scale experimental measurements of

Wells and Hoxey [52]. Figure 4.18 presents a graph of pressure coefficient

(Cp) versus span-wise position (Z/Span). The pressure coefficients are

calculated by using Equation 4.1 with V ref and Pref obtained at a ridge

height of 7,1 m. Pressures on windward and leeward walls are included in

the graph at span-wise values of less that -1 and greater than 1 respectively.

73

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

Front Ridge Valley Ridge Back
1..--------------~----------~~

◊ ◊
0.5

+

-2 '-------------~-----------~
-1.0 0 1.0

Z/Span

◊ Full scale meas. -+- Numerical (3DFL0)

Figure 4.18 Double span pressure coefficients (symmetry plane)

The figure shows that the current numerical predictions are in good

agreement with available full-scale measurements. Two outstanding aspects

noted from the figure, are the occurrences of low pressure spikes behind the

ridges. As explained earlier, this is a result of flow break-away at the ridge,

which has the effect of suction on the roof. Unfortunately experimental

measurements at these points are not available. Wells and Hoxey [52] do not

give a reason for the absence of a measurement, but it is believed that it

might be a result of highly unsteady experimental readings due to repeated

flow de-attachment and' re-attachment at these points. As explained

previously, the low pressure following the first ridge is, once again,

responsible for the discrepancy between the measured and predicted pressures

on the windward positive incline towards the ridge.

74

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

Considering the valley section of the roof (between ridges), it can be seen

that the pressures remain relatively low and steady due to the existence of a

recirculation zone. From the low pressure coefficients on the second incline

towards the second ridge, it is evident that the flow is not allowed to

re-attach to the roof. Therefore the break-away at the second ridge is not

so abrupt and clearly defined, and, therefore, the low pressure spike behind

the second ridge is not as intense as before. On the leeward decline towards

the end of the building, the numerical prediction in the recirculation zone

closely corresponds to the full-scale measurements for that section.

By comparing the absolute values of the pressure coefficients as well as the

trends, overall good agreement between the numerical prediction and the

full-scale measurements is obtained.

4.6 Summary

Before any computer code can be applied with confidence to practical

problems, it has to be verified by comparing the predicted results with

analytical solutions, experimental measurements or accepted numerical

results. In this chapter, various fluid flow test cases were modelled to test

the accuracy of the current numeric.al model at different phases throughout

the development process. The results provided in this chapter presented

good agreement in all of the case studies considered.

The model was then applied to the simulation of wind flow over different

buildings. Complete turbulent atmospheric boundary layer flow was

75

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PROGRAM APPLICATIONS

simulated in three dimensions with the use of boundary-fitted grids. It

included the simulation of complete three-dimensional turbulent

recirculation, which made it possible to determine the influence of end effects

on the wind loads. The predictions were compared to full-scale

measurements and the model was shown to be superior to previous

two-dimensional cartesian approximations for this purpose.

76

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CHAPTERS CONCLUSIONS

5.1 Synopsis

The steady increase in computer capabilities, combined with the growing

need for highly specialized engineering technology, present many

opportunities for the use of numerical methods today. Particularly in the

field of Fluid Dynamics, numerical methods are becoming exceedingly

popular for the solution of practical fluid flow problems. Many researchers

developed theoretical models describing different aspects of fluid flow

behaviour. The need was recognized to include these models in the

development of a computer code that is generally applicable to most fluid

flow problems in nature and in industry.

The current model is based on a finite volume numerical method for the

solution of the partial differential equations describing thr~imensional

turbulent flow. These equations include the full Navier-Stokes equations,

the continuity equation and two turbulence equations of the k-t turbulence

model. In order to enable the solution of flow in regions of arbitrary

77

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CONCLUSION

geometrical shape, the equations are transformed to general curvilinear

co-ordinates. The equations are discretized and linearized and are solved

simultaneously by an iterative process. The solution algorithm based on the

SIMPLE method and employs a specific interpolation scheme to ensure

strong pressure-velocity coupling. The computer code 3DFLO provides

complete information on the velocities, pressures and turbulence quantities as

final results.

The model has been validated by extensive verification of the predicted

results against analytical, experimental and numerical data at each stage of

the development process. The method was then applied to the modelling of

atmospheric air motion over and around angularly shaped buildings. The

numerical predictions compared favourably with available full-scale

measurements of pressure distributions on pitched roof buildings. The main

conclusions drawn from the study, as well as the main contributions of the

study, is presented in the following section.

5.2 Conclusions and Contributions

This study leads to a number of conclusions regarding the development of the

numerical model. Each of these will be noted and discussed in this section.

* A comparison of the numerical results, obtained by applying a

number of different finite differencing schemes, shows that the Power

Law scheme as proposed by Patankar [5], provides numerical results

of superior accuracy. Particularly where recirculating flow is

78

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

*

*

*

CONCLUSION

considered, a significant improvement is observed when using this

scheme. The difference in accuracy is less severe when a simple

channel flow is considered. This numerical finding agrees with

Patankar's analytical comparison between the schemes.

During the development of the model, two similar though different

solution algorithms were applied for the segregated solution of

pressures and velocities. The difference between the two methods

(SIMPLE and SIMPLEC) are discussed in Section 4.5. A comparison

using identical differencing schemes and convergence parameters,

indicates an acceleration in convergence using the SIMPLEC

algorithm. An increase in solution efficiency of around 30% is

obtained for all fluid flow problems considered.

The good agreement between the experimental results and the

numerical prediction for various bench-mark test cases, indicate the

accuracy of the code 3DFLO in predicting laminar and turbulent fluid

flow in three dimensions. In all cases considered, the accuracy of the

numerical results coincides with the accuracies of previous numerical

models.

Close correlation of the numerical predictions with full-scale

measurements of pressure coefficients surrounding different buildings,

further confirms the ability of the code to model flow in and around

arbitrary curvilinear geometries.

79

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

*

CONCLUSION

Numerical results of pressure fields surrounding the buildings show

that complete thr~imensional modelling provide better results

than previous tw~imensional approximations. This is due to a

more complete simulation of the real physical problem, including

thr~imensional effects.

The application of the computer code 3DFLO to the simulation of wind flow

around arbitrary shaped buildings leads to a number of contributions which

are outlined below.

*

*

*

*

For the first time, atmospheric boundary layer flow over buildings

was modelled in three dimensions using curvilinear boundary

conforming grids.

The use of boundary fitted grids in precisely represe~ting inclines and

declines on building roofs leads to a more accurate prediction of

pressure coefficients and resulting wind loads on pitched roof

buildings.

The ability to exactly model the sharp ridge geometry on building

roofs, leads to an improved understanding of flow phenomena in the

near vicinity of the ridge. The existence of a low pressure spike

immediately behind the ridge is confirmed.

Three-dimensional modelling made it possible to study wind loading

on pitched roof building edges. For the first time pressure

80

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

*

*

CONCLUSION

distributions at building edges (in the third dimension) were

numerically predicted with accepted accuracy.

The effect of wind flow around multispan pitched roof buildings were

modelled successfully for the first time. The results indicate that

three-dimensional effects strongly influence flow patterns in the

downstream direction behind the first ridge.

Throughout the course of this study, the wind approach angle was

constant (right form the front of the building). With the current

model it is now possible to vary the direction of wind flow across the

buildings in the computer simulations to correspond with reality.

5.3 Reoommendations for further research

During the course of this study several areas justifying further research were

identified. These are briefly outlined below.

*

*

A great need exists for the combination of a numerical grid generation

scheme with the current flow model in order to improve the

userfriendliness of the code and avoid tiresome file transferring.

An even greater need exists for the development and implementation

of a more effective numerical solver for three-dimensional purposes to

replace the current TOMA-solver. This would improve the efficiency

of the code by decreasing and economizing on computer running time.

81

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

*

*

*

*

*

CONCLUSION

The energy equation can be incorporated into the current model to

enable the solution of fully compressible flows. The model would then

be able to solve supersonic flows that is characteristic of aeronautical

applications.

Special attention should be given to the prescription of outflow

boundary conditions where the outflow surface is not perpendicular to

one of the cartesian velocity components. A problem arises with the

enforcement of continuity across angular control volumes at outflow

boundaries. This prevents complete convergence of the numerical

solution.

It will be profitable to extend the model to make use of unstructured

grids especially where flow around buildings are considered. This

would enable the grid to be dense in areas around the building but

course at large distances form the buildings where flow is less

complex. In such a way the number of grid points can be greatly

decreased, resulting in more efficient computer modelling.

The use of adaptive grids should be investigated for extending the

model to the solution of free surface flows. It would also increase the

accuracy of the solution in high gradient areas.

The modelling of flow over arbitrary shaped buildings with variable

wind approach angle should be investigated.

82

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NOMENCLATURE

Roman Alphabet

a. Covariant base vector
I

a Discretization equation coefficients

b Discretization equation source term

B <l>,c <l>,D <I> Pressure correction coefficients for variable </>

c1 ,c2,c µ Turbulence constants

C
0

Constant for atmospheric boundary layer profile

E,F,G,U General vectors defined in Appendix B

I Turbulence intensity

J Jacobian of the transformation

k Kinetic energy of turbulence

k Surface roughness parameter
s

r 3D space vector made up by cartesian unit vectors

P Point pressures

href Reference height for boundary layer profiles

L Length scale values for atmospheric turbulence

u X-direction velocity component

v Y-direction velocity component

w Z-direction velocity component

Vref Reference velocity

v t Velocity tangential to solid wall

S <I> Source term in </>--equation

t Time

y + Local Reynolds number

83

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

y P Perpendicular distance from the wall to the node point

x,y ,z Cartesian three-dimensional space co-ordinates

Greek Alphabet

p

µ

T
w

K,

V

r

Superscripts

0

Mean wind speed exponent

Turbulence dissipation rate

Density

Fluid viscosity

Wall shear stress

Von Karman constant

Three-dimensional velocity vector

Representing any of the dependant scalar variables

Representing any 3D vector

Difference between consecutive grid nodes

Del operator

Diffusion coefficient

General curvilinear three-dimensional space co-ordinates

Turbulence constants

Partial derivatives to any variable 0

Equals 1,2 or 3 for each of the general co-ordinate axes

Indicates fluctuating value due to small scale turbulence

Indicates average value

Value at previous time step

84

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

*

"

Subscripts

e1
eff

lam

t

P,p

e,w,n,s,t,b

Approximate values (guessed)

Corrections

Equals 1,2 or 3 for each of the general co-ordinate axes

Partial derivative to ei
Indicates effective value

Indicates laminar flow

Indicates turbulent flow

Grid point under consideration

Indicates cell wall positions

E, W, N, S, T, B Indicates neighbouring grid points

85

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

REFERENCES

1. ANDERSON, D.A., TANNEHILL, J.C. and PLETCHER, R.H.;

Computational Fluid Mechanics and Heat Transfer, Hemisphere

Publishing Corporation, USA, 1984.

2. RICHARDSON, L.F.; The Approximate Arithmetical Solution by

Finite Difference of Physical Problems Involving Differential

Equations, with an Application to the Stresses in a Masonry Dam,

Philos. Trans., Royal Society, London, Ser. A, Vol. 210, pp 307-357.

3 SOUTHWELL, R.V.; Relaxation Methods in Engineering Science,

Oxford University Press, London, 1940.

4. O'BRIEN, G.G., HYMAN, M.A. and KAPLAN, S.; A Study of the

Numerical Solution of Partial Differential Equations, Journal of Math.

Phys., Vol. 29, pp 223-251, 1950.

5. PATANKAR, S.V.; Numerical Heat Transfer and Fluid Flow,

Hemisphere Publishing CorpOration, New York, 1980.

6. LAUNDER, B.E. and SPALDING, D.B.; Lectures in Mathematical

Models of Turbulence, Academic Press, London, 1972.

7. KWAK, D. and CHAKRAVARTHY, S.R.; A Three-Dimensional

Incompressible Navier-Stokes Flow Solver Using Primitive Variables,

AIAA Journal, Vol. 24, No. 3, pp 390-396, 1985.

86

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

8. WENQUAN, W.U. and HAOYO, Y.U.; General Curved Surface

Fitting and Calculation of Flow Along Arbitrarily Twisted Stream

Surface, ASME Journal, 85-GT-97, 1985.

9. CUNSOLO, D. and ORLANDI, P .; Accuracy in Non Orthogonal Grid

Reference Systems, Aerodynamics Institute of Rome, Italy, 1978.

10. GREYVENSTEIN, G.P.; Snelheidsdruk Numeriese Metode vzr die

Berekening van Tweedimensionele Elliptiese Vloei, Ph.D. Dissertation,

University of Pretoria, 1981.

11. RAITHBY, G.D., GALPIN, P.F. and VAN DOORNMAAL, J.P.;

Prediction of Heat and Fluid Flow in Complex Geometries using

General Orthogonal Coordinates, Numerical Heat Transfer, Vol. 9, pp

125-142, 1986.

12. RAMACHANDRA, V. and SPALDING, D.B.; A Non-orthogonal

Finite Difference Formulation for Three-dimensional Duct Flows,

HTS/78/1, Imperial College, Feb.1978.

13 SWANSON, B.W.; Solutions of the Three-Dimensional Equations in

Non-Orthogonal Coordinates to Calculate the Flow in a Log Spiral

Impeller, ASME Journal, 82-GT-268, 1982.

87

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

14. ANDO, Y., FUJIMORI, T., TOH, H., KA WAI, M., MASUKO, A.

and MIY AMAE, S.; Development of Three-Dimensional Numerical

Analysis Code {VEGA-3) for Turbulent Flow Field with Heat/Mass

Transfer Phenomena, IHI Engineering Review, Vol.22, No. ~' 1989

15. RHIE, C.M. and CHOW, W.L.; Numerical Study of the Turbulent

Flow Past an Airfoil with Trailing Edge Separation, AIAA Journal, 22

Nov., 1983.

16. THOMPSON, J.F., WAR.SI, Z.U.A. and MASTIN, C.W.; Numerical

Grid Generation Foundations and Applications, Elsevier Science

Publishing Co. Inc.,New York, 1985.

17. LE GRANGE, L.A.; Numerical Simulation of Polymer Melt Flow in a

Mould using a Boundary-Fitted Coordinate System, Thesis for Master

in Engineering, PU for CHE, Vanderbijlpark, 1990.

18. CROSBY, C.P.; The Numerical Prediction of Airflow through and

around Permeable Windbreaks and Buildings, Dissertation presented

for Master's degree, University of Pretoria, 1989.

19. LANDAHL, M.T. and MOLLO-CHRISTENSEN, E.; Turbulence and

Random Processes in Fluid Mechanics, Cambridge University Press,

Cambridge, 1986.

20. BOUSSINESQ, J.; Essai Sur La Theorie Des Eaux Courantes, Mem.

Presentes Acad. Sie., Paris, Vol. 23, pp46, 1877

88

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

21. LAUNDER, B.E. and SP ALDING,D.B.; The Numerical Computation

of Turbulent Flows, Computer Methods in Applied Mechanics and

Engineering, pp. 269-289, North-Holland Publishing Company, 1974.

22. GOSMAN, A.D. and IDERIAH, F.J.K.; A General Computer

Program for Two-Dimensional, Turbulent, Recirculating Flows,

Imperial College, London, 1976.

23. BENODEKAR, R.W., GODDARD, A.J.H., GOSMAN, A.D. and

ISSA, R.I.; Numerical Prediction of Turbulent Flow over Surface

Mounted Ribs, ASME Journal, 83-FE-13, 1983.

24. VISSER, J.A.; Numerical Modelling of Combustion, Ph.D.

Dissertation, University of Pretoria, 1989.

25. MATHEWS, E.H. and MEYER, J.P.; Numerical Modelling of Wind

Loading on Film Clad Greenhouse, Building and Environment,

Pergamon Journals Ltd., Great Britain, 1987.

26. MATHEWS, E.H.; Prediction of the Wind Generated Pressure

Distribution around Buildings, Journal of Wind Engineering and

Industrial Aerodynamics, 29, Silsoe, UK., 225-233, 1988.

27. MURAKAMI, S. and MOCHIDA, A.; Three-Dimensional Numerical

Simulation of Turbulent Flow Around Buildings using the k-t

Turbulence Model, Building and Environment, Vol. 24, No. 1,

pp 51-64, 1989.

89

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

28. PATERSON, D.A. and APELT, C.J.; Simulation of Wind Flow

Around Three-Dimensional Buildings, Building and Environment,

Vol.24, No. 1, pp 39-50, 1989.

29. HAINES, A.B.; Turbulence Modelling, Working Party Report,

Aeronautical Journal, pp 269-277, Aug./Sept. 1982.

30. SAVORY, E. and TOY, N.; Hemispheres and Hemisphere-Cylinders

in Turbulent Boundary Layers, Journal of Wind Engineering and

Industrial Aerodynamics, vol.23, pp 345-364, 1986.

31. HOXEY, R.P. and RICHARDSON, G.M.; Measurements of Wind

Loads on Full-Scale Film Plastic Clad Greenhouses, J .of Wind Eng.

and Ind. Aerod., no. 16, pp57-83, 1984.

32. HOXEY, R.P. and RICHARDSON, G.M.; Wind Loads on Film

Plastic Greenhouses, J.of Wind Eng. and Ind. Aerod., no. 11,

pp225-237, 1983.

33. HOXEY, R.P. and POLLARD, P.R.; Full-Scale Measurements of

Wind Loads on Full-Scale Film Plastic Greenhouses, NIAE,

Departmental Note, G/1003/04025.

34. ROBERTSON, A.P., HOXEY, R.P. and MORAN, P.; A Full-Scale

Study of Wind Loads on Agricultural Ridged Conapy Roof Structures

and Proposals for Design, J .of Wind Eng. and Ind. Aerod., no. 21,

pp167-205, 1985.

90

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

35. HANSON, T., SMITH, F., SUMMERS, D.M. and WILSON, C.B.;

Computer Simulation of Wind Flow around Buildings, Computer

Aided Design, Vol. 14, 1982.

36. HANSON, T., SUMMERS, D.M. and WILSON, C.B.; Numerical

Modelling of Wind Flow over Buildings in Two Dimensions,

International Journal for Numerical Methods in Fluids, Vol. -4,

pp25-41, 1984.

37. SUMMERS, D.M., HANSON, T. and WILSON, C.B.; A Random

Vortex Simulation of Wind Flow over a Building, International

Journal for Numerical Methods in Fluids, Vol. 5, pp849-871, 1985.

38. MATHEWS, E.H., CROSBY, C.P., VISSER, J.A. and MEYER,

J.P.; Numerical Prediction of Wind Loads on Buildings, J .of Wind

Eng. and Ind. Aerod., no. 31, pp241-250, 1988.

39. HANSON, T., SUMMERS, D.M. and WILSON, C.B.; A

Three-Dimensional Simulation of Wind Flow around Buildings,

International Journal for Numerical Methods in Fluids, Vol. 6,

pp113-127, 1986.

40. PATERSON, D.A. and APELT, C.J.; Computation of Wind Flows

over Three-Dimensional Buildings, J.of Wind Eng. and Ind. Aerod.,

no. 24, pp193-213, 1986.

91

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

41. SUMMERS, D.M., HANSON, T. and WILSON, C.B.; Validation of a

Computer Simulation of Wind Flow over a Building Model, Building

and Environment, Vol. 21, pp97-lll, 1986.

" 42. HAGGKVIST, K., SVENSSON, U. and TAESLER, R.; Numerical

Simulations of Pressure Fields Around Buildings, Building and

Environment, Vol. 24, pp65-72, 1989.

43. VAN DOORNMAAL, J.P. and RAITHBY, G.D.; Enhancements of

the Simple Method for Predicting Incompressible Fluid Flows,

Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.

44. VAN DOORNMAAL, J.P. and RAITHBY, G.D.; An Evaluation of

the Segregated Approach for Predicting Incompressible Fluid Flows,

Presented at the National Heat Transfer Conference, Colorado,

August 4-7, 1985.

45. THIART, G.D.; Finite Difference Scheme for the Numerical Solution

of Fluid Flow and Heat Transfer Problems on Non-staggered Grids,

Numerical Heat Transfer, Part B, Vol. 17, pp. 43-62, 1990.

46. THIART, G.D.; Improved Finite Difference Scheme for the Solution of

Convection-Diffusion Problems with the Simplen Algorithm,

Numerical Heat Transfer, Part B, Vol. 18, pp. 81-95,1990.

47. SCHLICHTING, H; Boundary-Layer Theory, Seventh Edition,

McGraw-Hill, 1979.

92

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

48. MINKOWYCZ, W.J., SPARROW, E.M., SCHNEIDER, G.E. and

PLETCHER, R.H.; Handbook of Numerical Heat TransJer, A

Wiley-Interscience Publication, New York, 1988.

49. AL-SANEA, S.A., PUN, W.M. and SPALDING, D.B.; Computation

of Two-Dimensional Elliptic Flows, Including Heat Transfer,

Imperial College of Science and Technology, HTS/78/5, London, 1978.

50. DENHAM, M.K.and PATRICK, M.A.; Laminar Flow over a

Downstream-Facing Step in a Two-Dimensional Flow Channel,

Transactions of the Institution of Chemical Engineers, Vol. 52, 197 4

51. DENHAM, M.K., BRIARD, P. AND PATRICK, M.A.; A

Directionally-sensitive Laser Anemometer for Velocity Measurements

in Highly Turbulent Flows, Journal of Physics E, Scientific

Instruments, Vol. 8, 1975.

52. WELLS, D.A. and HOXEY, R.P.; Measurements of Wind Loads on

Full-scale Glasshouses,Journal of Wind Engineering and Industrial

Aerodynamics 16, Silsoe, UK., 139-167, 1980.

53. SCRUTON, C.; An introduction to wind effects on structures, Oxford

University Press, 1981.

93

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GENERAL TRANSPORT EQUATION

APPENDIX A

DERJV ATION OF GENERAL TRANSPORT
EQUATION

In this appendix the x-momentum equation is derived from basic principles

in cartesian c~rdinates. The equation is then written in the general form

of the transport equation which is valid for the conservation of mass, energy

as well as momentum. These equations describe the velocity profiles and

pressure distribution in any laminar flow situation. It will be shown in

Appendix D that this equation is also applicablein the case of the turbulence

equations of the k-f turbulence model, used to describe turbulent flows.

Llz
z

X

(x+Llx,y+Lly ,z+Llz)

Lil (x,y,z)

Figure A.I A cartesian finite control volume element

A.l

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GENERAL TRANSPORT EQUATION

For a volume element ~x~y~z as shown in Figure A.l the momentum

balance can be written as follows.

Rate of momentum accumulation - rate of momentum in

+ rate of momentum out

+ sum of forces acting on system (A. l)

The complete three-dimensional unsteady behaviour of momentum into and

out of the control volume in Figure A.I will be considered.

The first mechanism whereby momentum enters or leaves the control volume

is by means of bulk fluid flow or rather convection. The rate at which the

x-component of momentum enters the face at x is given by

pv v I ~y~z ,
XX X

and the rate at which it leaves the control volume at x+~x is

pv v I + A ~y ~z .
XX X uX

Similar to this, the rate of x-momentum in at y and at z are

pv v I ~x~z and y X y

pv v I ~y~x
Z X Z

A.2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GENERAL TRANSPORT EQUATION

respectively, and the rate at which x-momentum leaves at faces y+~y and

z+~z are given by the following two expressions.

pv v I + A ~xLlz y X y uy

pv v I +A ~y~x
Z X Z uz

The nett convective x-momentum flow into the control volume element can

now be determined by subtracting the outflow x-momentum from the total

inflow x-momentum. The total convective x-momentum contribution to

the element can be written as follows.

pv v I + pv v I + A ··l ~y Llz + XXX XXX u.x.

pv v I + pv v I + A LlxLlz +
yxy yxyu}

pv v I + pv v I + A Lly Llx
Z X Z Z X Z uz (A.2)

The second mechanism by which x-momentum can enter the control volume

is by means of diffusion (molecular transport), or better explained as a result

of shear forces acting on the element. Similar to the convective

x-momentum inflow, the gain of x-momentum as a result of the shear forces

can be expressed by

r I LlyLlz
XX X

and the loss of x-momentum through molecular transport can be written as

A.3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GENERAL TRANSPORT EQUATION

The total contribution to the x-momentum of the element as a result of

shear forces, caused by viscous action in the fluid, can now be written as

follows:

rxxlx + rxxlx+~xi~y~z +

Tyxly + Tyxly+~y ~x~z +

Tzx I z + rzxl z+Liz}LiyLix (A.3)

Momentum is also transported to the control volume element by the forces

acting on the element. In most cases the only important forces are those

arising from the fluid pressure and the effect of gravity. The influence of

these forces in the x-direction is:

(A.4)

Finally, the rate of accumulation of x-momentum in the control· volume

element can be expressed as

(A.5)

By now combining the contribution of each of the four mechanisms of

momentum transfer, the x-component of the equation of motion in cartesian

co-ordinates can be obtained.

A.4

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GENERAL TRANSPORT EQUATION

-[M rxx] +~[Tyx] +M Tzx]]-~+pgx
(A.6)

By making use of vector and tensor calculus the equation can be generalized

to give

~(pv) = - (V • pvv) - Vp - (V • r) + pg . (A.7)

As previously mentioned, similar equations for the y- and z-momentum

components and also for the continuity equation can be derived by applying

the law of mass conservation. The same can be done for the energy equation

but does not form part of this study. The equations can be summarised by a

General Transport Equation given below,

~(p</>) = - V • (pv ¢) - Vp - (rv ¢) + S ¢ (A.8)

where ¢ represents any one of the dependent variables u,v,or w with r the

diffusion coefficient and s¢ the source term.

A.5

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

APPENDIX B

TRANSFORMATION TO CURVILINEAR
CO-ORDINATES

In order to solve thr~imensional flow in curvilinear co-ordinates the

governing equations are transformed into at set of equations that is

generally applicable to a non-orthogonal control volume element, as shown

in Figure B.l. In this section the transformation relations from cartesian

co-ordinates to a general curvilinear co-ordinate system is developed by

using certain concepts from differential geometry and vector and tensor

analysis. The equations are transformed in such a way that the cartesian

velocity components (u,v,w) are maintained as the dependent variables.

\ /',.. _________ _
_ ,,,,/

//_,,,,/

Figure B.1 General curvilinear finite control volume

B.1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

Partial derivatives with respect to cartesian c~rdinates are related to

partial derivatives with respect to curvilinear c~rdinates by the chain

rule which can be written as

(i = 1,2,3) , (B.l)

where A is a scalar-valued function. In order to relate the two

co-ordinate systems, the covariant base vectors are evaluated as

a. = r . (i = 1, 2 ,3) ,
I el

(B.2)

where the curvilinear co-ordinates are represented by ei (i = 1,2,3), and

the superscript i indicates the base vector corresponding to the ei

co-ordinate. In partial derivative form, the expression for the base vectors

can be written as follows.

(i = 1,2,3; i,j,k cyclic) (B.3)

The differential increments of arc length, surface and volume, which are

needed in the formulation of the derivative operators can now be

developed. An increment of arc length on a co-ordinate line along which

ei varies, is given by

(B.4)

B.2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

An increment of area on a co-ordinate surface of constant l is given by

(B.5)

and a volume increment is given by

(B.6)

The Jacobian of the transformation is evaluated as follows:

(B.7)

Expressions for the derivative operators, such as gradient, divergence, curl

and Laplacian are obtained by applying the Divergence Theorem to a

differential volume increment bounded by co-ordinate surfaces. For any

tensor A the Theorem gives

(B.8)

where n is the outward directed unit normal to the closed surface S

enclosing the volume V. For a differential surface element lying on a

co-ordinate surface, equation (B.5) gives

(B.9)

B.3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

with the choice of sign being dependent on the location of the volume

relative to the surface. Considering a differential element of volume, {N,

bounded by six faces lying on co-ordinate surfaces, equation (B.6),(B. 7)

and (B.9) lead to

where oS l and bS1 indicate the elements on two sides of which ei is

constant and which are located at larger and smaller values, respectively,

of ei.

Proceeding to the limit as the element of volume shrinks to zero, an

expression is obtained for the divergence in the conservative form,

3
V • A = J b [(aJ. x ¾c) • A] ci .

i=l ~
(B.11)

It is important to note that since the conservative form of the divergence

and of the gradient and Laplacian to follow, is obtained directly from the

closed surface integral in the Divergence Theorem, the use of conservative

difference forms for these derivative operators is equivalent to using

difference forms for that closed surface integral. Therefore, the finite

volume difference formulation can be implemented by using these

B.4

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

conservative forms directly in the differential equations of motion without

the necessity of returning to the integral form of the equation of

motion. [10]

Equation (B.8) is also valid with A replaced by a scalar A and the dot

product by simple multiplication. The conservative form of the gradient

follows directly from equation (B.11) as

3
VA= J ~ [(aJ. x 3,c)A] ti .

i=l 1.:,

(B.12)

By replacing A by VA in equation (B.12) the expression for the Laplacian

is as follows:

(B.13)

(i,j,k) cyclic & (l,m,n) cyclic

By making use of these transformation relations, the general transport

equation derived in appendix A,

%t-(p</>) = - V•(pv</>) - Vp - V•(rV¢) + s<I> , (B.14)

can be transformed to curvilinear co-ordinates. Complete transformation

and expansion lead to the following set of equations that are used to

describe three-dimensional flow in curvilinear co-ordinates.

B.5

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

Let (ei, i = 1,2,3) be substituted by (e,r,,() and (xi, i = 1,2,3) by (x,y,z).

M¥] + k[}(exE + eyF + ezo)]
+ ~[j(qxE + 1/l + 11zG)]

+ ~dj((XE + (YF + (ZG)] = 0 (B.15)

where the U ,E,F and G vectors are given by

[
pv l F- puv -r

- pv 2 + p ~y T

puw - r YY
yz

G - puw - r

[

pw l - xz . puv - r
pw2 + p rzr

zz

The transformation values and the shear stresses are defined as follows:

ex = J (y T/z ,-y (z 1/)

Tix= -J(y e,-y (2 e)

(= J (y cZ -y z c)
X 1:,1/ T/1:,

ey = -J(xT/z ,-x,zT/)

Tly = J(xe(-x(ze)

(=-J(xcz -x zc)
y 1:,1/ T/1:,

B.6

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TRANSFORMATION RELATIONS

Txx = jµ[2[exu(+ T/XUT/ + (xud - [eyv(+ T/yV(+ (yvd

- [ezw(+ TJZWT/ + (zwd]

Tyy = jµ[2[eyv(+ T/YVT/ + 'ld - [exu(+ T/xU(+ (xud

- [ezw(+ T/ZWT/ + (zwd]

Tzz = jµ[2[ezw(+ T/ZWT/ + (zwd - [exu(+ T/xU(+ (xud

- [eyv (+ TJYVT/ + (yv d]
rxy = µ[(yu(+ T/YUT/ + (yu(+ (xv (+ TJxV T/ + (xv d
Tyz = µ[(zv(+ TJZVT/ + (zv(+ (yw(+ TJYWT/ + (ywd

Txz = µ[(zu(+ T/ZUT/ + (zu(+ (xw(+ T/XWTJ + (xwd

B.7

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SMALL SCALE FLUCTUATIONS

APPENDIX C

SMALL SCALE TURBULENCE FLUCTUATIONS

A very similar equation as the one obtained in Appendix B also applies to

turbulent flow. The only difference is the occurrence of small scale

fluctuations in the flow field. In this section the laminar x-momentum

equation is modified to provide for these small scale fluctuations due to

turbulence.

Let each dependent variable consist of an average value as well as a

fluctuating term. The variables considered can therefore be written as

follows:

u=u + u'

V =v + V
1

w=w + w'

p=p + p'

p=p + p'

By replacing the variables in the laminar equation (C.l) with the above

expressions,

C.l

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SMALL SCALE FLUCTUATIONS

+ ~ }[11xPU2
] + }[vuv] + }[11zPUW]

+ k }[Cx11u2
] + }[(yPuv] + }[(zpuw] - Su (C.1)

the following equation for compressible turbulent flows can be derived:

i-[co + p')(U + u')]

M[(/ii+ p')(U + u')(U + u') + (/ii+ p')(U + u')(V + v')

+ (if1 + p')(U + u')(w + w')]

M[11/ii + p')(U + u')(U + u') + 11/P + p')(ii + u')(V + v')

+ 11/ii + p')(U + u')(w + w')]

M[C/ii + p')(U + u')(U + u') + C/P + p')(U + u')(V + v')

+ C/P + p')(U + u')(w + w')] = Su , (C.2)

where Su (the right hand side of the equation) consists of the pressure and

cross derivative terms. These terms are not influenced by the small scale

fluctuations since the dependent variables are merely replaced by their time

averages. Therefore, only the right hand side of the equation will be

considered in detail.

By applying the time averages for each variable, the time averaged form of

the right hand side of the momentum equation is obtained.

C.2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SMALL SCALE FLUCTUATIONS

RH: idpu + p' u'] + M[ex(puu + 2p'u 'ii+ Pu 'u')

+ ~ (pu v + p' u 'v + p 'u v ' + pu ' v ') y

+ ez (puw + p' u I w + p' iiw I + Pu I w I)]

+ Zl)H IJx(puu + 2p' u 'ii+ Pu 'u')

+ TJ (pu v + p' u 'v + p 'u v ' + pu ' v ') y

+ IJz(puw + p'u 'W + p'iiw' + Pu 'w')]

a 1[(- - -) + a(J ~x puu + 2p' u' u + pu' u'

+ ((pu v + p' u ' v + p 'u v ' + pu ' v ') y

+ (z(puw + p'u'W + p'iiw' + Pu'w')] (C.3)

By now assuming that p' is equal to zero, the above expression is reduced to

RH: ~[pu] + M[ex(puu + Pu I u I) + ey(puv + Pu 'v I) + ez(puw + Pu 'w I)]

+ ~ [TJX (puu + pu I u I) + T/ (pu V + pu I V I) + T/z (pu w + pu I w I)]

T/ - y - -

+ k}[ex(puu + iiu'u') + (/puv + Pu'v') + (z(puw + Pu'w')]

(C.4)

The underlined terms in equation (C.4) are the new terms that result from

the provision for small scale fluctuations and is the only addition to the

laminar equation that was derived in Appendix B, necessary for solving

turbulent flow. Each of these terms can, in turn, be represented by a shear

force (or diffusion) term by making use of the turbulent viscosity µt.

(C.5)

C.3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SMALL SCALE FLUCTUATIONS

By combining the above with the other diffusion terms, the final equation

that describes the conservation of x-momentum is

M¥] + k[j(exE + eyF + eza)]

+ ¾r;[j(IJXE + l]YF + l]ZG)]

+-k(j{cxE+ Cl+ (ZG)] =O, (C.6)

where the U,E,F and G vectors are as in Appendix Band new expressions for

the shear stresses are defined as follows:

T xx = jµeff[2 [exu(+ IJXUIJ + (xud - [(yv (+ IJYV (+ (yv d

- [ezw(+ IJZWIJ + (zwd]

Tyy = jµeff[2[eyv(+ IJYVIJ + (yvd- [exu(+ IJxU(+ (xud

- [ezw e + 1/ZW 1/ + (zw d]
Tzz = jµeff[2 [(zw (+ 11zw 1/ + (zw (] - [(xu(+ IJxU(+ (xud

- [eyv (+ 1/YVIJ + (yv d]

Txy = µeff (u(+ IJYUIJ +(Yu(+ (xv (+ IJXVIJ + (xv d

r yz = µeff ~ z v ~ + 1/ z v 1/ + (z v (+ ~y w ~ + 1/y w 1/ + (y w (l
T xz = µ eff ~ z U (+ 1/Z UT/ + (z U (+ ~X W (+ 'TJX W 'T/ + (X W (

C.4

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SMALL SCALE FLUCTUATIONS

The effective viscosity in the above expressions is now defined as the sum of

the laminar and the turbulent viscosities:

(C.7)

The same procedure can be followed for they- and z-momentum equations

which finally result in the replacement of the laminar viscosity µ by the the

effective viscosity µeff•

C.5

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

APPENDIX D

DIFFERENCING AND DISCRETIZATION

In order to solve the partial differential equations that describe

three-dimensional flow in curvilinear c~rdinates numerically, the

equations have to be discretized. In this section a finite volume approach is

used to obtain the linear finite difference expressions. This method entails

the integration of the partial differential equations over a finite control

volume. The general x-momentum equation describing turbulent flow, with

respect to curvilinear co-ordinates, is discretized and the y- and

z-momentum equations are treated similarly. The principles described in

this section apply to the discretization of the General Transport Equation

which includes the k and i equations describing turbulence properties as well

as the continuity equation.

From Appendix A the complete x-momentum .equation relative to a

curvilinear co-ordinate system can be written as

of[~] + of [½[ex[pu2+p-r xx] + ey [puv-rxy] + ez [puw-rxz]]]

+~rt[qx[pu2+p-rxx] + qy[puv-rxy] + qz[puw-rxz] J l
+~rt[(x[pu2+p-rxx] + (y[puv-Txy] + (z[puw-Txz]] l = 0 (D.1)

D.l

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

with the shear forces being

Txx = iµeff [2 [(xu(+ 7/XUI/ + (xud - [(yv (+ 7/YV (+ (l d

- [(ZII (+ 7/Zl/7/ + (z\]]
rxy = µeff[(yu(+'f/YU'//+(yu(+(xv(+'f/XV'f/+(xv(]

T xz = µeff [ezu(+ 'TJZU'TJ + (zu(+ (xw e + 'f/XW'TJ + (xw d

and the transformation values e , e , e etc. evaluated as described in
X y Z

Appendix B. By substituting the expressions as above, and by ordering the

convection, diffusion, pressure and cross derivative terms, the left hand side

of the equation becomes

LH: J[~] + ~[½[(xpu
2

+ (Ypuv + (zpuw - µ[ie! + e: + (i]~]]

+ ~[}['1xPU
2

+ 7/yPUV + '1zPU11 - µ[jl/! + 7/: + 7/i];]]

+ ~[J[(xpu2
+ (yPuv + (zpuw - µ[j(! + (: + (i]~]] , (D.2)

while the rest of the equation goes into the source term on the right hand

side:

RH:

D.2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

+ BB5~ + BB6~ + BB7~ + BBS~] l
a[!!:.[au au av av -orj J BB9~ + BB10a(+ BB11~ + BB12orj

+ BB13~ + BBl~ + BB15~ + BB16~]]

a[!!:.[au au av av - ~ J BB17orj + BB18a(+ BB19~ + BB20orj

+ BB21~ + BB22~ + BB23~ + BB24t] l (D.3)

The BB-values are evaluated as follows:

aa2 = - !e , -e , -e ,
vXX yy ZZ

- 4 BB 11 - - .,., e -, e -, e
vXX yy ZZ

- 2 BB19 - .,., e -, e
v X y y X

- 1 BB21 - - .,-((
v X y

- 2 BB23 - .,-(1J -(1J
v X Z Z X

D.3

- 2 BB4 - .,.e 11 -e 11 v X y y X

- 1 BB6 - - .,-(e
v X Z

- 2 BBS - .,-((-e (
v X Z Z X

4
aB1s = - .,.17 e -11 e -11 e

vXX yy ZZ

2 BB20 = .,-(1J -(1J
v X y y X

2 aa22 = .,., e -, e
v X Z Z X

- 1 B824 - - .,-((
v X Z

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

Referring to Eq. (D.2) the following concepts can now be defined:

Convection flux: F c = (pu + (pv + (pw
~ X y Z

F = 7J pu + 7J pv + 7J pw
7J X y Z

FI' = (pu + (pv + (pw
1:, X y Z

Diffusion flux: De= µeff je~ + e~ + e~ I b.(

D 1/ = µeff jTJ~ + 1/~ + 1/~ I fiTJ

D (= µ eff j(~ + (~ + (~ / b. (

Peel et Number:

The Peclet Number is the ratio of the strength of convection to the strength

of diffusion. The magnitude of the Peclet Number influences the

differencing.

Differencing scheme

Central Difference

Upwind Difference

Hybrid Difference

Power law Difference

Exponential Difference

D.4

Formula for A(IP I)
1 - o.5 IP I
1

« o, 1 - o.5 IP I »
« o, (1 - 0.1 IP I)5

I P I / [exp(I P I) - 1]

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

Following Patankar [15], the use of this number is implemented by

calculating the function value A as indicated in the table above.

The operator « x, y » means "select the greater of x and y". Programming

the differencing schemes in such a way, enables the comparison and the

optimal use of the various differencing schemes. It should be noted that this

type of differencing is applied only to the main convection and diffusion parts

of the equation, and the pressure and cross derivative terms are subsequently

discussed. Patankar [5] recommends the power law scheme as a good

compromise bet ween accuracy and economy of calculation.

By making use of the expressions developed so far, the discretized equation

for a general curvilinear control volume can be written as follows:

where

ae = D eA(IP e I) + «-F e,o»

aw= DwA(IP w I)+« F w,o»

an= DnA(Ip n I) +·«-F n,0»

as = D sA(IP s I) + « F s,o»

ab= DbA(I Pb I) + «-F b,o»

af = D f A (I Pf I) + « Ff' o»

a~ = p
0

/ D..t , and

D.5

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

Using the expressions for convection and diffusion flux developed earlier, the

values at the control volume walls are determined in the following way:

since~~, ~T/ and ~(are equal to unity.

The equations, relevant to this study, contain several first derivatives, for

example, the unsteady term in the x-momentum equation. At grid point P,

this term can be discretized as:

where ~t represents the time interval in the solution of unsteady flow

problems, and J is the Jacobian of the transformation, as calculated in

Appendix B. Another first order derivative is the pressure term that form

part of the source term in Eq. (D.3) The three pressure terms are treated by

applying the central difference scheme between opposite cell walls.

Therefore, the pressures used, are linearly interpolated at the control volume

walls.

The terms

D.6

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

are discretized as

[j ~x p w -j ~x p e] + [½ TJX p s -j TJX p n] + [½ (X p f -j (X p b] '
w w e e s s n n ff b b

~e ~TJ ~,

but with the dimensions in the calculation domain,~~, ~TJ and ~(, taking

the value of unity due the method of transformation used, it can be further

reduced to

[e P - e P] + [TJ P - TJ P] + [, Pf - , Ph] xw w x e e x8 s xn n xf xb

Referring to Equation (D.3), the cross derivative terms are all treated

similarly and therefore only one of the discretizations will be provided.

Consider the diffusion term of coefficient BBl:

The expression BBl is evaluated at opposing cell walls as follows:

- 4 BB 1 - - -e TJ - e TJ - e TJ
e 3 xe xe Ye Ye ze ze

BB 1 = -1e TJ - e TJ - e TJ
W 3x X y y Z Z w w w w w w

Discretizing the first derivative leads to

D.7

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DIFFERENCING AND DISCRETIZATION

and discretization of the second derivative, completely expanded, provides

the final difference expression as given below:

The velocity values at the control volume corners u etc. are determined by ne

linear interpolation between the eight surrounding grid points. Each of the

terms in the difference equation has now been evaluated, and the

discretization equations can, therefore, be solved to determine the point

values of the dependent variables.

D.8

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TURBULENCE SOURCE LINEARIZATION

APPENDIX E

DISCRETIZATION OF TURBULENCE EQUATIONS

The partial differential equations included in the k-t turbulence model are

given below. The equations are presented in the generalized vector form

independent of a c~rdinate system. They describe the turbulent kinetic

energy (k) and the turbulence dissipation rate (t) from which an additional

turbulent viscosity can be calculated.

(E.1)

(E.2)

The above equations, which are also based on the general conservation

principle, are discretized using the same procedures as described in Appendix

D for the discretization of the General Transport Equation. This applies for

the unsteady-, the convection- and the diffusion terms (the first three

terms) in the above equation. Further attention is given to the discretization

of the source term which is made up by the production- and the dissipation

terms (last two terms) in each of the two equations.

Spalding [2] and Gosman [4] describe a specific linearization process of the

source terms which provides stability to the solution and also yields accurate

approximations. This process is briefly considered for each of the turbulence

quantities.

E.1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TURBULENCE SOURCE LINEARIZATION

For the k~quation the source term is:

(E.3)

The linearization is as follows:

(E.4)

where

c~ = [C2pt + ½µl] , and (E.5)

kp

(E.6)

For the t~quation the source term

(E.7)

is linearized as follows:

' S =-C t+B
€ p (E.8)

where

(E.9)

E.2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

TURBULENCE SOURCE LINEARIZATION

(E.10)

This leads to the final discretization equation

(E.11)

(E.12)

On fixed wall boundaries the source term in the k~quation is replaced by

the term below (as discussed in Section 2.3), in order to obtain a better

description of the effect of wall shear stresses.

(E.13)

where v t is the velocity tangential to the wall and the partial derivative with

respect to 8s represents the distance and direction perpendicular to the wall.

The same form of linearization of the source term is applied to the relation

above, which yields

I

CP = Cµvtp2kwbs (E.14)

Jr
w

(E.15)

where & represents the distance, perpendicular from the point of the

adjoining control volume to the wall.

E.3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PRESSURE CORRECTION EQUATION

APPENDIX F

THE PRESSURE CORRECTION EQUATION

Following Patankar's SIMPLE method, the continuity equation is used to

derive a pressure correction equation. The pressure corrections are used to

adjust the pressure field and to calculate velocity corrections. Its main

function is, therefore, to enforce the law of conservation of mass by adjusting

the velocity distribution to comply with the existing pressure field.

In curvilinear co-ordinates the continuity equation is:

(F.l)

and can be discretized using the same principles as for the General Transport

Equation in Appendix D. Applying the finite volume approach in

discretizing each of the terms as indicated below

e Pu
Xe e e exp u w w w

J J
e w

and by let ting

F.l

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PRESSURE CORRECTION EQUATION

and
~ p Bu - Xw w

w--Y-'
w

the continuity equation can be written in the following differenced form:

1 [P - po]
J 2St

(F.2)

The reader is referred to Appendix D for expressions for the cell wall

velocities (eg. u). Expanding the pressure terms included in those
p

expressions leads to

apup = 1: anbunb + [{x p w - {x p e]
w e

+ [11x p s - 7/x p n]
s n

+ [(xtf- (x/b] + Su · (F.3)

A similar expression is also valid for the newly calculated velocity values

* (u) that are obtained after the solution of the momentum equations
p

F.2

(F.4)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PRESSURE CORRECTION EQUATION

These velocities are, however, not the correct velocities that satisfy the law

of conservation of mass, and can ultimately be corrected by assuming that

the correct velocities consist of a calculated value plus a correction (u'),

*
u = u + u' . (F.5)

Substituting equations (F.3) and (F.4) into (F.5), an expression for the value

of the velocity correction at point p is obtained as a function of the pressure

correction derivatives (P'):

-(F.6)

Similar expressions can be obtained for each of the cell wall velocities in

equation (F.2). Substitution and differencing of the pressure correction

derivatives at neighbouring grid points yield a discretization equation from

which the pressure corrections throughout the flow field can be calculated:

a p, = ~ a p, + a op, o + SP .
p p nb nb p p

(F. 7)

The source term SP gives a indication of the extent to which continuity is

satisfied, as it presents the local mass inbalance due to the newly calculated

velocity field, and is commonly used in evaluating convergence parameters.

Its theoretical value is zero when complete convergence is achieved.

F.3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

APPENDIX G

THECOMPUTERPROGRAM3DFLO

*-lrlrlr**AAhhhAk*****'irlr-lrldrlr-lrlrlr***-frlr-lrlrlrlrk*irlr-lrlf****

* *
* 3333 DODD FFFFF L 000 *
* 3 3 D D F L 0 0 *
* 33 D D FFF L 0 0 *
* 3 3 D D F L 0 0 *
* 3333 DODD F LLLLL 000 *
* *
* THIS PROGRAM SOLVES 3D COMPRESSIBLE *
* LAMINAR OR TURBULENT FLOWS IN *
* CURVILINEAR CO-ORDINATES *
* *
* DEVELOPED BY *
* *
* HERMANN ROLFES *
* *

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00001

Program MAIN
*******·k-lc-!c,'cic*,'ric*ic*******-lc-lc*-lc*****-lc·lc*-lc*ic-lc*******.,''**ic**ic*********.,'r,'c*ic-lc***

INCLUDE 'COMM'

*=====================================
CHAPTER 1 INPUT AND INITIALIZATION ***'''*******ir·lrir*

~•,.~-~===================================

*** Input of fluid and geometrical data

Call INPUT
Call GEOM
Call PROP
Call OBSTR

*** Choose restart option

if(irstart.eq.l)Call RESTART
write(*,*)'Read complete!'

*** Award initial boundary conditions

Call SETBND
RESTKEN = 0.1
RESEPS = 0.1
if(iturb.eq.l)Call EFFVISC

c if(irstart.eq.l)Call PROP

*** Interpolate the velocities for the first iteration

Call INTPOL
Cal.L STEP
Call BOUND
Call INTPOL

*** Calculate mass flow rate at the inflow boundary

Call MASSIN
write(* ,4)Re

4 FORMAT(/,lX, 'REYNOLDS NUMBER (RE)=' ,F9.1)
if(iglobal.eq.l)write(*,2)fmin

2 FORMAT(lX, 'INLET MASSFLOW = ',E12.4,' (KG/S)')
if(isetup.eq.l)then
Call OUTPUT
Call PLOTOUT
write(*,*)'********** Check initial setup **********'
stop
endH

******i'****-lc*
"l'r=====================================

CHAPTER 2 SOLUTION OF THE FLOW FIELD ****1b'r*****.,'ddr*

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*** A new time step starts here

ntime = 0.0
1000 ntime = ntime + 1

time= time+ delt

do 20 i = 1,in
do 20 j = 1, jn

do 20 k = 1,kn
vxold(i,j,k) = vx(i,j,k)
vyold(i,j,k) = vy(i,j,k)
vzold(i,j,k) = vz(i,j~k)
ppold(i,j,k) = pp(i,j,k)
epsold(i,j,k) = eps(i,j,k)
tkenold(i,j,k) = tken(i,j,k)

20 continue

*** A new iteration of the total flow field starts here

if(irstart.ne.l)then
l.sweep = 0. 0
iwrite = 0.0

endif
write(*,l)isweep,imax,ccheck

1 format(/,lx, 'ISWEEP = ',I4,2X, 'IMAX = ',I4,2X,
* 'CCHECK = ',El0.4,/)

200 isweep = isweep + 1
iwrite = iwrite + 1

*** Update current corrected velocity values to star values
*** before solving for new star values

do 40 i = 1,in
do 40 j = 1,jn

do 40 k = 1, kn
vxstar(i,j,k) = vx(i,j,k)
vystar(i,j,k) = vy(i,j,k)
vzstar(i,j,k) = vz(i,j,k)

40 continue

PAGE 00002

*---
*** STEP 1 : Solve the momentum equation for star w-velocities
*---

Call WCOEFF

*** Sweeping in I - direction

if(kisweep.eq.O) goto 55
do 50 k = 2,knml

do 50 i = 2,inml
do 50 mm= 1,mobs(i,k)
njend = jjend(mm,i,k)
njbeg = jjbeg(mm,i,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

Call WPREPI (i,k,njend,njbeg)
Call TDtfAI (i,k,vzstar,njend,njbeg)

50 continue

*** Sweeping in J - direction

55 if(kjsweep.eq.O) goto 65
do 60 k = 2,knml

do 60 j = 2,jnml
do 60 11 = 1,lobs(j,k)
niend = iiend(ll,j,k)
nibeg = iibeg(ll,j,k)
Call WPREPJ (j,k,niend,nibeg)
Call TDMAJ (j,k,vzstar,niend,nibeg)

60 continue

PAGE 00003

*---
*** STEP 2 : Solve the momentum equation for star v-velocities

*--· ----------------------------·---------------------------------------

65 Call VCOEFF

*** Sweeping in I - direction

if(kisweep.eq.O) goto 75
do 70 k = 2,knml

do 70 i = 2,inml
do 70 mm= 1,mobs(i,k)

njend = jjend(mm,i,k)
njbeg = jjbeg(mm,i,k)
Call VPREPI (i,k,njend,njbeg)
Call TDMAI (i,k,vystar,njend,njbeg)

70 continue

** Sweeping in J -direction

75 if(kjsweep.eq.O) goto 85
do 80 k = 2,knml

do 80 j = 2,jnml
do 80 11 = 1,lobs(j,k)
niend = iiend(ll,j,k)
nibeg = iibeg(ll,j,k)
Call VPREPJ (j,k,niend,nibeg)
Call TDMAJ (j,k,vystar,niend,nibeg)

80 continue

*---
fr** STEP 3 : Solve the momentum equation for star u-velocities

*---
85 Call UCOEFF

*** Sweeping in I - direction

if(kisweep.eq.O) goto 95

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

do 90 k = 2,knml
do 90 i = 2,inml

do 90 mm= 1,mobs(i,k)
njend = jjend(mm,i,k)
njbeg = jjbeg(mm,i,k)
Call UPREPI (i,k,njend,njbeg)
Call TDMAI (i,k,vxstar,njend,njheg)

90 continue

** Sweeping in J -direction

95 if(kjsweep.eq.O) goto 105
do 100 k = 2,knml

do 100 j = 2,jnml
do 100 11 = 1,lobs(j,k)
niend = iiend(ll,J,k)
nibeg = iibeg(ll,j.k)
Call UPREPJ (j, k. n i ~nd, n-f hpg)
Call TDMAJ (j,k,vxst-:Rr,n·i0n(l,nibeg)

100 continue

PAGE 00004

*---
*** STEP 4 : Interpolate the velocities at the cell walls with
*** strong pressure - velocity coupling
*---

105 Call INTPOLV

*---
*** STEP 5 : Solve the pressure correction equation
*---

Call PCOEFF

do 106 ip = 1,npress

*** Sweeping in I - direction

do 120 k = 2,knml
do 120 i = 2,inml

do 120 mm =1,mobs(i,k)
njend = jjend(mm,i,k)
njbeg = jjbeg(mm,i,k)
Call PPREPI (i,k,njend,njbeg)
Call TDMAI (i,k,pcor,njend,njbeg)

120 continue

*** Sweeping in J - direction

do 130 k = 2,knml
do 130 j = 2,jnml

do 130 11 = l,lobs(j,k)
niend = iiend(ll,j,k)
nibeg = iibeg(ll,j,k)
Call PPREPJ (j,k,niend,nibeg)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

Call TDMAJ (j,k,pcor,niend,nibeg)
130 continue

*** Apply zero gradient boundaries for pressure corrections
*** ~lso at boundaries than are not implicitly solved

131 do 110 k = 1,kn
do 110 j = 1,jn

do 110 i = 1,in

*** Back and front ends

pcor(i,j,1) = pcor(i,j,2)
pcor(i,j,kn) = pcor(i,j,knml)
if(jbound(i,j,k).eq.O.and.jbound(i,j,k-1).eq.nbnd)

* pcor(i,j,k-1) = pcor(i,j,k)
if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nhnd)

* pcor(i,j,k+l) = pcor(i,j,k)

110 continue

106 continue

PAGE 00005

*---
*** STEP 6 : Correct the pressures and velocities
*---

Call ADJUST

*---
*** STEP 7 : Adjust velocities on outflow boundaries
*---

Call BOUND

*---
*** STEP 8 : Interpolate pressures and velocities
*---

Call INTPOL
if(iturb.eq.O)goto 190

*---
*** STEP 9 : Solve the kinetic energy turbulence equation - k

*---
Call GAMM

do 135 it= 1,nturb

Call KCOEFF

*** Sweeping in I - direction

do 140 k = 2,knml

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

do 140 i = 2,inml
do 140 mm =1,mobs(i,k)
njend = jjend(mm,i,k)
njbeg = jjbeg(mm,i,k)
Call KPREPI (i,k,njend,njbeg)
Call TDMAI (i,k,tken,njend,njhP,g)

140 continue

*** Sweeping in J - direction

do 150 k = 2,knml
do 150 j = 2,jnml

do 150 11 = 1,lobs(j.k)
niend = iiend(ll,j,k)
nibeg = iibeg(ll,j,k)
Call KPREPJ (j,k,niend,nibeg)
Call TDMAJ (j,k,tkPn,ni.end,nih0g)

150 continue

PAGE 00006

*---
*** STEP 10 : Solve the d.is~iption t-11rb11lence equation - epsilon

*---
Call ECOEFF

*** Sweeping in I - direction

do 160 k = 2,knml
do 160 i = 2,inml

do 160 mm =1,mobs(i,k)
njend = jjend(mm,i,k)
njbeg = jjbeg(mm,i,k)
Call EPREPI (i,k,njend,njbeg)
Call TDMAI (i,k,eps,njend,njbeg)

160 continue

*** Sweeping in J - direction

do 170 k = 2,knml
do 170 j = 2,jnml

do 170 11 = 1,lohs(j,k)
niend = iiend(ll,j,k)
nibeg = iibeg(ll,j,k)
Call EPREPJ (j,k,niend,nibeg)
Call TDMAJ (j,k,eps,niend,nibeg)

170 continue

*** Apply turbulence back and front zero gradients

do 180 k = 1, kn
do 180 j = l,jn

do 180 i = 1,in

eps(i,j,kn) = eps(i,j,knml)
if(jbound(i,j,k).eq.0.and.jbound(i,j,k-1).eq.nbnd)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* eps(i,j,k-1) = eps(i,j,k)
if(jbound(i,j,k).eq.0.and.jbound(i,j,k+l).eq.nbnd)

* eps(i,j,k+l) = eps(i,j,k)
tken(i,j,kn) = tken(i,j,knml)
if(jbound(i,j,k).eq.O.and.jbound(i,j,k-1).eq.nbnd)

* tken(i,j,k-1) = tken(i,j,k)
if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nbnd)

* tken(i,j,k+l) = tken(i,j,k)
if(jbound(i,j,k).ne.O)goto 180
vmuturb(i,j,k) = (cmu*rhop(i,j,k)*tken(i,j,k)**2)/eps(i,j,k)

180 continue

PAGE 00007

*---
*** STEP 12 : Interpolate fork and epsilon
*---

if(igrid.eq.O)Call INTPOLKE

135 continue

*---
*** STEP 11 : Determine the new effective viscosity
*---

Call EFFVISC

*---
*** STEP 12 : Test for convergence
*---

if(iwrite.eq.nwrite)then
!WRITE= 0.0

190 WRITE(*,3)ISWEEP,DIFFX,DIFFY,DIFFZ,DIFFP,DIFFTKEN,DIFFEPS
WRITE(9,3)ISWEEP,DIFFX,DIFFY,DIFFZ,DIFFP,DIFFTKEN,DIFFEPS

3 FORMAT (lX, I 5 , lX, ' X=' , E 9 . 3 , lX, 'Y=' , E 9 . 3 , lX, -
* 'Z=' ,E9.3,1X, 'P=' ,E9.3,1X, 'K=' ,E9.3,1X, 'E=' ,E9.3)

ENDIF

rmax = dmaxl(diffx,diffy,diffz,diffp)
if(isweep.lt.imax.and.rmax.gt.ccheck)goto 200
if(rmax.gt.ccheck)then
wrHe(*,*)' ! ! ! ! ! ! ! NO CONVERGENCE ! ! ! ! ! ! ! '
else
write(*,*)'!!!!!!! CONVERGENCE ACHIEVED !! ! ! !!! '
endif

*** Output required data

Call OUTPUT
Call PLOTOUT

goto 10000
9000 write(*,*)'!!! CANNOT OPEN OUTPUT FILE IN MAIN!!!'

stop

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO

10000 Close(9)
Close(19)
Close(8)

stop
end

FORTRAN Al Universiteit van Pretoria PAGE 00008

Subroutine INPUT
*****i'*****i'************icic-lc**ir-k,'r*i'r,'r'1'r,'rir,'r****-lr*ic*"l'r"l'rir,'r****"''rir***"kic**ic**"''cic,'c*

*** In this subroutine reads the input data

INCUIDE I COMM I

read(4,'(a)')dummy
read(4, '(a)')dummy
read(4,*)in,inml,jn,jnml,kn,knml
inm2 = in-2
jnm2 = jn-2
knm2 = kn-2

read(4, '(a)')dummy
read(4,*)kapecl,iglobal,isetup,irstart,iturb,igrid

read(4, '(a)')dummy
read(4,*)cl,c2,sigmk,sigme,cmu,cappa,epsinit,tkeninit

read(4, '(a)')dummy
read(4,*)kisweep,kjsweep,nwrite,relax,relaxt,ccheck,imax

_read(4, '(a)')dummy
read(4,*)delt,npress,nturb,kfst,kbst,istep,jstep

read(4, '(a)')dummy
read(4,*)rho,vmulam

read(4, '(a)')dummy
read(4,*)velmean,chardim

read(4, '(a)')dummy
read(4,*)vxinit,vyinit,vzinit

Re= rho*velmean*chardim/vmulam
great= 1.0d40
tiny = 1. Od-30

goto 10000
9000 write(ic, *)' ! ! ! CANNOT OPEN INPUT DATA FILE IN INPUT ! ! ! '

stop

10000 return
end

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00009

**************i'r-lr-lr*****,'r*-lr-lr·k-lr******i'r,'r*ir***,'r**i'r**i'r-lr**,'r-lr-lr*-lrir,'rir***,'r***-,'r**-lr*
Subroutine RESTART

*"'r**"'r-lr*i't:,'~-lt:-l<"*****"''r**i'r-i'c*·k,'r*-i'c*****-lc-lc***-lr-lr,'r-lr,'r-i'r*****-;'r-lri'r-lr**-lr-lr**i'r,'r********-i'r***

*** In this subroutine reads the restart input data

INCLUDE 'COMM'

write(*,*)'********** READING RESTART DATA

read(13,*)ninml,njnml,nknml,isweep
if (ninml. ne. inml. or. njnml. ne. jnml. or. nknml. ne. knml) then
write(*,*)'!!! We have a major f -up in RESTART !!! '
stop

endif

if(iturb.eq.l)then
do 20 k = 2,knml

do 20 j = 2,jnml
do 20 i = 2,inml
read(13,*)x(i,j,k),y(i,j,k),z(i,j,k),tken(i,j,k),eps(i,j,k)
read(13,*)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k),viscp(i,j,k)

20 continue
endif

if(iturb.eq.O)then
do 30 k = 2,knml

do 30 j = 2,jnml
do 30 i = 2,inml
read(13,*)x(i,j,k),y(i,j,k),z(i,j,k)
read(13,*)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k)

30 continue
endif

goto 10000
9000 wrHe(1r, *)' ! ! ! UNABLE TO OPEN RESTART FILE ! ! ! '

stop

10000 return
end

Subroutine PROP
,'r******-lr**-lt:***·k,'r-lr**-lr-lr,'r*-lr**·k*-lr**********''r*,'r*****-;'r,'r,'r**-lr-lr-lr-;'t:*-lr-lr-lr·k*-lr*-lr-lc,'r,'r**"''

*** This subroutine awards fluid properties

INCLUDE 'COMM'

do 10 k = 1,kn
do 10 j = 1, jn

do 10 i = 1,in

viscp(i,j,k) = vmulam

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

•visce(i,j ,k) = vmulam
viscn(i,j,k) = vmulam
viscb(i,j ,k) = vmulam

rhop(i,j,k) = rho
rhoo(i,j,k) = rho
rhoe(i,j,k) = rho
rhon(i,j,k) = rho
rhob(i,j,k) = rho

10 continue

*** Effective viscosity on inflow boundary

return
end

PAGE 00010

Subroutine OBSTR
-lr**********-lr********''r*-lr-lr*******-lr-lr****-lr-lr-;'r-i'r*'>'r******"'r-lr,'r,'r-lr*,'r*-;'r'>'r-lr*-lr'>'r,'r-lr*'>'r-lr-lr*-lr

INCLUDE 'COMM'

*** This subroutine controls solving around obstructions

Dimension istart(20),istop(20),jstart(20),jstop(20),
* kstart(20),kstop(20)

***--
*** Part 1 identifies internal and wall obstructions
***--

*** Read obstruction input data

read(4,'(a)')dummy
read(4,*)nmatls,nomts,nrfunk

do 10 k = 1,kn
do 10 j = 1, jn

do 10 i = 1, in
np(i,j,k) = 1

10 continue

do 20 nr = 1,nrfunk
read(4, '(a)')dummy
read(4,*)istart(nr),istop(nr),jstart(nr),jstop(nr),

* kstart(nr),kstop(nr)
20 continue

*** Find the nodes that fall within this physical obstruction

do 30 k = 1,kn
do 30 j = 1, jn

do 30 i = 1, in
do 30 nr = 1,nrfunk

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3D.FLO FORTRAN Al Universiteit van Pretoria

if(i.ge.istart(nr).and.i.le.istop(nr).and.
* j.ge.jstart(nr).and.j.le.jstop(nr).and.
* k.ge.kstart(nr).and.k.le.kstop(nr))then

np(i,j,k) = nmatls
endif

30 continue

PAGE 00011

-- Part 2 determines TDMA limits
***--
*** FOR SWEEPING IN I - DIRECTION

do 60 k = 2,knml
do 60 i = 2,inml

m = 0.0
itel = 0.0
do 70 j = 1, jn

*** In case of inflow and outflow boundaries

lf(j.eq.1.and.np(i,j,k).le.nomts)then
itel = itel + 1
1 = 1 + 1
jjbeg(m,i,k) = j

endif

if(j.eq.jn.and.np(i,j,k).le.nomts)then
itel = 0.0
jjend(m,i,k) = j

endif

if(np(i,j,k).le.nomts)goto 70

if(np(i,j,k).gt.nomts.and.np(i,j+l,k).le.nomts.
* and.itel.eq.O)then

*

itel = itel + 1
m = m + 1
jjbeg(m,i,k) = j
goto 70

endif

if(np(i,j,k).gt.nomts.and.np(i,j-1,k).le.nomts.
and.itel.eq.l)then

itel = 0.0
jjend(m,i,k) = j

endif

70 continue
mobs(i,k) = m

60 continue

*** FOR SWEEPING IN J - DIRECTION

do 80 k = 2,knml

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

do 80 j = 2,jnml
1 = 0.0
itel = 0.0
do 90 i = 1,in

*** In case of and outflow boundaries

90

80

if(i.eq.1.and.np(i,j,k).le.nomts)then
itel = itel + 1
I = I + 1
iibeg(l,j ,k) = i

endif

if(i.eq.in.and.np(i.j,k). lP.nomts)then
itel = 0.0
iiend(l,j ,k) = i

endif

if(np(i,j,k).le.nomts)gnt0 90

if(np(i,j,k).gt.nomts.and.np(i+l,j,k).le.nomts.
* and.itel.eq.0)then

itel = itel + 1
I = 1 + 1
iibeg(l,j ,k) = i
goto 90

endif

if(np(i,j,k).gt.nomts.and.np(i-1,j,k).le.nomts.
* and.itel.eq.l)then

itel = 0.0
iiend(l,j ,k) = i

endif

continue
lobs(j,k) = I

continue

FOR SWEEPING INK

do 100 j = 2,jnml
do 100 i = 2,inml

n = 0.0
itel = 0.0
do 110 k = 1,kn

- DIRECTION

*** In case of and outflow boundaries

if(k.eq.1.and.np(i,j,k).le.nomts)then
itel = itel + 1
n = n + 1
kkbeg(n,i,j) = k

endif

if(k.eq.kn.and.np(i,j,k).le.nomts)then

PAGE 00012

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

.FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

itel = 0.0
kkend(n,i,j) = k

endif

if(np(i,j,k).le.nomts)goto 110

if(np(i,j,k).gt.nomts.and.np(i,j,k+l).le.nomts.
and.itel.eq.O)then

itel = itel + 1
n = n + 1
kkbeg(n,i,j) = k
goto 110

endif

if(np(i,j,k).gt.nomts.and.np(i,j,k-1).le.nomts.
* and.itel.eq.l)then

itel = 0.0
kkend(n,i,j) = k

endif

110 continue
nobs(i,j) = n

100 continue

PAGE 00013

-- Part 3 produces an output of the obstruction data
***--

kx = 1
jx = -1
if(kn.gt.18) kx
if(kn.gt.36) kx
if(kn.gt.54) kx
if (kn. gt. 72) kx

write(9,22)

do 120 i = 1,in
write(9,25)i

=
=
=
=

do 120 kkk = 1,kx
write(9,,'r)' '
kend = 18*kkk
kbeg = kend-17

2
3
4
5

if(kend.gt.kn) kend = kn
write(9,24) (kk,kk = kbeg,kend)
write(9,21)
do 130 j = jn,1,jx
write(9,23)j,(np(i,j,kk),kk = kbeg,kend)

130 continue
120 continue

21 format(6x,74('-'))
22 format(//lx, 'FLOW FIELD (NM)'/)
23 format(lx,I2,' I' ,23(1x,I3))
24 format(lx,' J/K = ',23(I2,2x))

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

25 format(/,lx, 'I-SURFACE NO. ',I3)

return
end

Subroutine UCOEFF

PAGE 00014

-/c-:'c-,•,-.,~-•--,•~.,•~~•,.~•,..,•r*-lr*-,'r*-lr-i'r*****-lr-i'c-ldri'r*-lr*-lr***-i'r**-lr-lr,'r-,'r***-lr-lr*-lr**"'r-lr-i'r-{c-,'c**''r*,'r*-,'r,'r*-lr*-lr-lr-lr-,'r*

*** n,is subroutine calculates the coefficients to solve the
**''" ,,-velocity components

TNCLUDE 'COMM'

*** Set all the constants equal to zero

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
an(i,j,k) = 0.0
as(i,j,k) = 0.0
ae(i,j,k) = 0.0
aw(i,j,k) = 0.0
ab(i,j,k) = 0.0
af(i,j,k) = 0.0
apu(i,j,k) = 0.0
apo(i,j,k) = 0.0
source(i,j,k) = 0.0
resux(i) = 0.0
resuy(j) = 0.0
resuz(k) = 0.0

10 continue

*** Calculate the coefficients

*
*

*
*

*
*

diffx = 0.0
do 20 k = 2,knml

do 20 j = 2,jnml
do 20 i = 2,inml

if(jbound(i,j,k).gt.O)goto 20
ii= i-1
jj =
kk =

conve

convw

convn

convs

j-1
k-1

=
+
+
=
+
+
=
+
+
=

rhoe(i,j,k)*(exixe(i,j,k)*ue(i,j,k)
exiye(i,j,k)*ve(i,j,k)
exize(i,j,k)*we(i,j,k))/tjace(i,j,k)

rhoe(ii,j,k)*(exixe(ii,j,k)*ue(ii,j,k)
exiye(ii,j,k)*ve(ii,j,k)
exize(ii,j,k)*we(ii,j,k))/tjace(ii,j,k)

rhon(i,j,k)*(etaxn(i,j,k)*un(i,j,k)
etayn(i,j,k)*vn(i,j,k)
etazn(i,j,k)*wn(i,j,k))/tjacn(i,j,k)

rhon(i,jj,k)*(etaxn(i,jj,k)*un(i,jj,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

**''r

-Ir

*

*
*

*
*

+
+

convb =
+
+

convf =
+
+

etayn(i,jj,k)*vn(i,jj,k)
etazn(i,jj,k)*wn(i,jj,k))/tjacn(i,jj,k)

rhob(i,j,k)*(zetxb(i,j,k)*ub(i,j,k)
zetyb(i,j,k)*vb(i,j,k)
zetzb(i,j,k)*wb(i,j,k))/tjacb(i,j,k)

rhob(i,j,kk)*(zetxb(i,j,kk)*ub(i,j,kk)
zetyb(i,j,kk)*vb(i,j,kk)
zetzb(i,j,kk)*wb(i,j,kk))/tjacb(i,j,kk)

cliffe = visce(i,j,k)*(exiye(i,j,k)**2 + exize(i,j,k)**2
* + 4*(exixe(i,j,k)**2)/3)/(tjace(i,j,k)*delexie(i,j,k))

diffw = visce(ii,j,k)*(exiye(ii,j,k)**2 + exize(ii,j,k)**2
* + 4*(exixe(ii,j,k)**2)/3)/(tjace(ii,j,k)*clelexie(ii,j,k))

cliffn = viscn(i,j,k)*(etayn(i,j,k)**2 + etazn(i,j,k)**2
* + 4*(etaxn(i,j,k)**2)/3)/(tjacn(i,j,k)*cleletan(i,j,k))

cliffs= viscn(i,jj,k)*(etayn(i,jj,k)**2 + etazn(i,jj,k)**2
* + 4*(etaxn(i,jj,k)**2)/3)/(tjacn(i,jj,k)*cleletan(i,jj,k))

cliffb = viscb(i,j,k)*(zetyb(i,j,k)**2 + zetzb(i,j,k)**2
* + 4*(zetxb(i,j,k)**2)/3)/(tjacb(i,j,k)*clelzetb(i,j,k))

cliff£= viscb(i,j,kk)*(zetyb(i,j,kk)**2 + zetzb(i,j,kk)**2
* + 4*(zetxb(i,j,kk)**2)/3)/(tjacb(i,j,kk)*delzetb(i,j,kk))

pecle = dabs(conve/diffe)
peclw -· clabs(convw/cliffw)
pecln = dabs(convn/cliffn)
peels = dabs(convs/diffs)
peclb = clabs(convb/cliffb)
peclf = dabs(convf/clifff)

Determine the f.inte difference coefficients

ae(i,j,k) = cliffe*apecl(pecle) + clmaxl(-conve,zero)
aw(i,j,k) = d.i.ffw":-apecl(peclw) + clmaxl(convw,zero)
an(i,j,k) = cliffn*apecl(pecln) + dmaxl(-convn,zero)
as(i,j,k) = cliffs*apecl(pecls) + clmaxl(convs,zero)
ab(i,j,k) = diffb*apecl(peclb) + clmaxl(-convb,zero)
af(i,j,k) = difff*apecl(peclf) + dmaxl(convf,zero)
apo(i,j,k) = rhoo(i,j,k)/(clelt*tjac(i,j,k))
apu(i,j,k) = ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k)

* + ab(i,j,k) + af(i,j,k) + apo(i,j,k)

*** Calculate the source term coefficients

bble=visce(i,j,k)*(4*exixe(i,j,k)*etaxe(i,j,k)/3
* + exiye(i,j,k)*etaye(i,j,k)
* + exize(i,j,k)*etaze(i,j,k))/tjace(i,j,k)
bblw=visce(ii,j,k)*(4*exixe(ii,j,k)*etaxe(ii,j,k)/3

* + exiye(ii,j,k)*etaye(ii,j,k)
* + exize(ii,j,k)*etaze(ii,j,k))/tjace(ii,j,k)
bb2e=visce(i,j,k)*(4*exixe(i,j,k)*zetxe(i,j,k)/3

* + exiye(i,j,k)*zetye(i,j,k)
* + exize(i,j,k)*zetze(i,j,k))/tjace(i,j,k)
bb2w=visce(ii,j,k)*(4*exixe(ii,j,k)*zetxe(ii,j,k)/3

* + exiye(ii,j,k)*zetye(ii,j,k)
* + exize(ii,j,k)*zetze(ii,j,k))/tjace(ii,j,k)

PAGE 00015

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00016

bb3e=visce(i,j,k)*exiye(i,j,k)*exixe(i,j,k)/(3*tjace(i,j,k))
bb3w=visce(ii,j,k)*exiye(ii,j,k)*exixe(ii,j,k)/(3*tjace(ii,j,k))
bb4e=visce(i,j,k)*(exiye(i,j,k)*etaxe(i,j,k)

* 2*exixe(i,j,k)*etaye(i,j,k)/3)/tjace(i,j,k)
hb4w=visce(ii,j,k)*(exiye(ii,j,k)*etaxe(ii,j,k)

2*exixe(ii,j,k)*etaye(ii,j,k)/3)/tjace(ii,j,k)
hh5e=visce(i,j,k)*(exiye(i,j,k)*zetxe(i,j,k)

2*exixe(i,j,k)*zetye(i,j,k)/3)/tjace(i,j,k)
hh5w=visce(ii,j,k)*(exiye(ii,j,k)*zetxe(ii,j,k)

2*exixe(ii,j,k)*zetye(ii,j,k)/3)/tjace(ii,j,k)
hb6e=visce(i,j,k)*exize(i,j,k)*exixe(i,j,k)/(3*tjace(i,j,k))
bb6w=visce(ii,j,k)*exize(ii,j,k)*exixe(ii,j,k)/(3*tjace(ii,j,k))
bb7e=visce(i,j,k)*(exize(i,j,k)*etaxe(i,j,k)

2*exixe(i,j,k)*etaze(i,j,k)/3)/tjace(i,j,k)
bb7w=visce(ii,j,k)*(exize(ii,j,k)*etaxe(ii,j,k)

2*exixe(ii,j,k)*etaze(ii,j,k)/3)/tjace(ii,j,k)
bb8e=visce(i,j,k)*(exize(i,j,k)*zetxe(i,j,k)

* 2*exixe(i,j,k)*zetze(i,j,k)/3)/tjace(i,j,k)
bb8w=visce(ii,j,k)*(exize(ii,j,k)*zetxe(ii,j,k)

* 2*exixe(ii,j,k)*zetze(ii,j,k)/3)/tjace(ii,j,k)

bb9n=viscn (i, j, k)''t-(4*etaxn (i, j ,k)*exixn(i, j, k) / 3
* + etayn(i,j,k)*exiyn(i,j,k)
* + etazn(i,j,k)*exizn(i,j,k))/tjacn(i,j,k)
bb9s=viscn(i,jj,k)*(4*etaxn(i,jj,k)*exixn(i,jj,k)/3

* + etayn(i,jj,k)*exiyn(i,jj,k)
* + etazn(i,jj,k)*exizn(i,jj,k))/tjacn(i,jj,k)
bbl0n=viscn(i,j,k)*(4*etaxn(i,j,k)*zetxn(i,j,k)/3

* + etayn(i,j,k)*zetyn(i,j,k)
* + etazn(i,j,k)*zetzn(i,j,k))/tjacn(i,j,k)

b b 10 s =vis en (i , j j , k) * (4 ""'et axn (i , j j , k) * z et xn (i , j j , k) / 3
* + etayn(i,jj,k)*zetyn(i,jj,k)
* + etazn(i,jj,k)*zetzn(i,jj,k))/tjacn(i,jj,k)
bblln=viscn(i,j,k)*(etayn(i,j,k)*exixn(i,j,k)

* 2*etaxn(i,j,k)*exiyn(i,j,k)/3)/tjacn(i,j,k)
bblls=viscn(i,jj,k)*(etayn(i,jj,k)*exixn(i,jj,k)

* 2*etaxn(i,jj ,k)*exiyn(i,jj ,k)/3)/tjacn(i,jj ,k)
bbl2n=viscn(i,j ,k)*etayn(i,j ,k)*etaxn(i,j ,k)/(3'1'rtjacn(i,j ,k))
b b 12 s =vis en (i , j j , k) *et a yn (i , j j , k) .,,re t axn (i , j j , k) / (3* t j acn (i , j j , k))
bh13n=viscn(i,j,k)*(etayn(i,j,k)*zetxn(i,j,k)

* 2*etaxn(i,j,k)*zetyn(i,j,k)/3)/tjacn(i,j,k)
bbl3s=viscn(i,jj,k)*(etayn(i,jj,k)*zetxn(i,jj,k)

* 2*etaxn(i,jj,k)*zetyn(i,jj,k)/3)/tjacn(i,jj,k)
bb14n=viscn(i,j,k)*(etazn(i,j,k)*exixn(i,j,k)

* 2*etaxn(i,j,k)*exizn(i,j,k)/3)/tjacn(i,j,k)
bb14s=viscn(i,jj,k)*(etazn(i,jj,k)*exixn(i,jj,k)

* 2*etaxn(i,jj,k)*exizn(i,jj,k)/3)/tjacn(i,jj,k)
bbl5n=viscn(i,j,k)*etazn(i,j,k)*etaxn(i,j,k)/(3*tjacn(i,j,k))
bblSs=viscn(i,jj,k)*etazn(i,jj,k)*etaxn(i,jj,k)/(3*tjacn(i,jj,k))
bbl6n=viscn(i,j,k)*(etazn(i,j,k)*zetxn(i,j,k)

* 2*etaxn(i,j,k)*zetzn(i,j,k)/3)/tjacn(i,j,k)
bh16s=viscn(i,jj,k)*(etazn(i,jj,k)*zetxn(i,jj,k)

* 2*etaxn(i,jj,k)*zetzn(i,jj,k)/3)/tjacn(i,jj,k)

hb17b=viscb(i,j ,k).,,r(4*zetxb(i,j ,k).,,rexixb(i,j ,k)/3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00017

* + zetyb(i,j,k)*exiyb(i,j,k)
* + zetzb(i,j,k)*exizb(i,j,k))/tjacb(i,j,k)
bb17f=viscb(i,j,kk)*(4*zetxb(i,j,kk)*exixb(i,j,kk)/3

* + zetyb(i,j,kk)*exiyb(i,j,kk)
* + zetzb(i,j,kk)*exizb(i,j,kk))/tjacb(i,j,kk)

bb18b=viscb (i, j, k)* (4*zetxb (i, j, k)i'retaxb (i, j, k) / 3
* + zetyb(i,j,k)*etayb(i,j,k)
* + zetzb(i,j,k)*etazb(i,j,k))/tjacb(i,j,k)
bb18f=viscb(i,j,kk)*(4*zetxb(i,j,kk)*etaxb(i,j,kk)/3

* + zetyb(i,j,kk)*etayb(i,j,kk)
* + zetzb(i,j,kk)*etazb(i,j,kk))/tjacb(i,j,kk)
bbl9b=viscb(i,j,k)*(zetyb(i,j,k)*exixb(i,j,k)

* 2*zetxb(i,j,k)*exiyb(i,j,k)/3)/tjacb(i,j,k)
bb19f=viscb(i,j ,kk)*(zetyb(i,j ,kk)''c-exixb(i,j ,kk)

* 2*zetxb(i,j,kk)*exiyb(i,j,kk)/3)/tjacb(i,j,kk)
bb20b=viscb(i;j,k)*(zetyb(i,j,k)*etaxb(i,j,k)

* 2*zetxb(i,j,k)*etayb(i,j,k)/3)/tjacb(i,j,k)
hb20f=viscb(i,j ,kk)*(zetyb(i,j ,kk),'.-etaxb(i,j ,kk)

* 2*zetxb(i,j,kk)*etayb(i,j,kk)/3)/tjacb(i,j,kk)
bb2lb=viscb(i,j,k)*zetyb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k))
bb21f=viscb(i,j,kk)*zetyb(i,j,kk)*zetxb(i,j,kk)/(3*tjacb(i,j,kk))
bh22b=viscb(i,j,k)*(zetzb(i,j,k)*exixb(i,j,k)

* 2*zetxb(i,j,k)*exizb(i,j,k)/3)/tjacb(i,j,k)
bb22f=viscb(i,j,kk)*(zetzb(i,j,kk)*exixb(i,j,kk)

* 2*zetxb(i,j,kk)*exizb(i,j,kk)/3)/tjacb(i,j,kk)
bb23b=viscb(i,j,k)*(zetzb(i,j,k)*etaxb(i,j,k)

* 2*zetxb(i,j,k)*etazb(i,j,k)/3)/tjacb(i,j,k)
bb23f=viscb (i, j, kk)* (zetzb (i, j, kk)'""etaxb (i, j, kk)

* 2*zetxb(i,j,kk)*etazb(i,j,kk)/3)/tjacb(i,j,kk)

*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

bb24b==viscb(i,j,k)*zetzb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k))
bb24f=viscb(i,j,kk)*zetzb(i,j,kk)*zetxb(i,j,kk)/(3*tjach(i,j,kk))

ssl

ss2

= exixe(ii,j,k)*pie(ii,j,k)/tjace(ii,j,k)
- exixe(i,j,k)*pie(i,j,k)/tjace(i,j,k)
+ etaxn(i,jj,k)*pin(i,jj,k)/tjacn(i,jj,k)
- etaxn(i,j,k)*pin(i,j,k)/tjacn(i,j,k)
+ zetxb(i,j,kk)*pib(i,j,kk)/tjacb(i,j,kk)
- zetxb(i,j,k)*pib(i,j,k)/tjacb(i,j,k)
= bble*(une(i,j,k) - une(i,jj,k))
- bblw*(une(ii,j,k) - une(ii,jj,k))
+ bb2e*(ube(i,j,k) - ube(i,j,kk))
- bb2w*(ube(ii,j,k) - ube(ii,j,kk))
+ bb3e*(vy(i+l,j,k) - vy(i,j,k))/delexie(i,j,k)
- bh3w*(vy(i,j,k) - vy(ii,j,k))/delexie(ii,j,k)
+ bb4e*(vne(i,j,k) - vne(i,jj,k))
- bb4w*(vne(ii,j,k) - vne(ii,jj,k))
+ bb5e*(vbe(i,j,k) - vbe(i,j,kk))
- bb5w*(vbe(ii,j,k) - vbe(ii,j,kk))
+ bb6e*(vz(i+l,j,k) - vz(i,j,k))/delexie(i,j,k)
- bb6w*(vz(i,j,k) - vz(ii,j,k))/delexie(ii,j,k)
+ hb7e*(wne(i,j,k) - wne(i,jj,k))
- bb7w*(wne(ii,j,k) - wne(ii,jj,k))
+ bb8e*(wbe(i,j,k) - wbe(i,j,kk))
- bb8w*(wbe(ii,j,k) - wbe(ii,j,kk))

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

ss3 = bb9n*(une(i,j,k) - une(ii,j,k))
* - hh9~,'f(une(i, jj ,k) - une(ii,jj,k))
* + 1-.l,; ''.;1~'-(unb(i,j ,k) - unb(i,j,kk))
-/e h h 10 s * (un b (i , j j , k) - unb(i,jj,kk))

~ bblln*(vne(i,j,k) vne(ii,j,k))
·i"i - bblls*(vne(i,jj,k) vn e (ii , j j , k))
* + bb12n*(vy(i,j+l,k) - vy(i,j,k))/deletan(i,j,k)

* - bb12s*(vy(i,j,k) - vy(i,jj,k))/deletan(i,jj,k)
* + bbl3n*(vnb(i,j,k) - vnb(i,j,kk))
* - bbl3s*(vnb(i,jj,k) - vnb (i, j j, kk))
* + bb14n*(wne(i,j,k) - wne(ii,j,k.))
* - bb14s*(wne(i,jj,k) - wn e (ii , j j , k))
* + bb15n*(vz(i,j+l,k) - vz(i,j,k))/deletan(i,j,k)
* - bbl5s*(vz(i,j,k) - vz(i,jj,k))/deletan(i,jj,k)

* + bb16n*(wnb(i,j,k) - wnb(i,j,kk))
* - bb16s*(wnb(i,jj,k) - wnb (i, j j , kk))

ss4 = bb17b*(ube(i,j,k) - ube(ii,j,k))
* - bbl7f*(ube(i,j,kk) - ube(ii,j,kk))
* + bbl8b*(unb(i,j,k) - unb(i,jj,k))
* - bb18f*(unb(i,j,kk) - unb (i, j j , kk))
'ir + bbl9b*(vbe(i,j,k) - vbe(ii,j,k))
* - bb19f*(vbe(i,j,kk) - vbe(ii,j,kk))

* + bb20b*(vnb(i,j,k) - vnb(i,jj,k))
* - bb20f*(vnb(i,j,kk) - vnb (j_ , j j , kk))
-Ir + bb2lb*(vy(i,j,k+l) - vy(i,j,k))/delzetb(i,j,k.)

* - bb21f*(vy(i,j,k) - vy(i,j,kk))/delzetb(i,j,kk)
* + bb22b*(wbe(i,j,k) - wbe (ii, j, k))
* - bb22f*(wbe(i,j,kk) - wbe(H,j,kk))
* + bb23b*(wnb(i,j,k) - wnb(i_,jj,k))
* - bb23f*(wnb(i,j,kk) - wnb(i,jj,kk))
* + bb24b*(vz(i,j,k+l) - vz(i,j,k))/delzetb(i,j,k)
* - bb24f*(vz(i,j,k.) - vz(i,j,kk))/delzetb(i,j,kk)

source(i,j,k) = ssl + ss2 + ss3 + ss4

res= apu(i,j,k)*vx(i,j,k) - apo(i,j,k)*vx(i,j,k)
* - ae(i,j,k)*vx(i+l,j,k) - aw(i,j,k)*vx(ii,j,k)
* - an(i,j,k)*vx(i,j+l,k) - as(i,j,k)*vx(i,jj,k)
* - ab(i,j,k)*vx(i,j,k+l) - af(i,j,k)*vx(i,j,kk)
* - source(i,j,k)
diffx = diffx + dabs(res)
resux(i) = resux(i) + dabs(res)
resuy(j) = resuy(j) + dabs(res)
resuz(k) = resuz(k) + dabs(res)

20 continue

return

PAGE 00018

c--
Entry UPREPI (iii,kkk,jne,jnb)

c--

*** This section prepares the TDMA coefficients

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

sweeping in I - direction

jnbl = jnb + 1
jnel = jne - 1

jb = jbound(iii,jnb,kkk)
aaj(jnb) = 1.0
bbj(jnb) = bu(jb)
ccj(jnb) = 0.0
ddj(jnb) = cu(jb)

do 30 j = jnbl,jnel
aaj(j) = apu(iii,j,kkk)/relax
bbj(j) = an(iii,j,kkk)
ccj(j) = as(iii,j,kkk)
ddj(j) = ae(iii,j,kkk)*vxstar(iii+l,j,kkk)

* + aw(iii,j,kkk)*vxstar(iii-1,j,kkk)
* + ab(iii,j,kkk)*vxstar(iii,j,kkk+l)
* + af(iii,j,kkk)*vxstar(iii,j,kkk-1)
* + apo(iii,j,kkk)*vxold(iii,j,kkk) + source(iii,j,kkk)
* + apu(ii1,j,kkk)*vxstar(iii,j,kkk)*(l-relax)/relax

30 continue

jb = jbound(iii,jne,kkk)
aaj (jne) = 1. 0
bbj(jne) = 0.0
ccj(jne) = bu(jb)
ddj(jne) = cu(jb)

return

PAGE 00019

c--
Entry UPREPJ (jjj,kkk,ine,inb)

c--
*** This section prepares the TDMA coefficients
*** sweeping in J - direction

inbl = inb + 1
inel = ine - 1

jb = jbound(inb,jjj,kkk)
aai(inb) = 1. 0
bbi(inb) = bu(jb)
ccj_(inb) = 0.0
ddi(inb) = cu(jb)

do 40 i = inbl,inel
aai(i) = apu(i,jjj,kkk)/relax
bbi(i) = ae(i,jjj,kkk)
cci(i) = aw(i,jjj,kkk)
ddi(i) = an(i,jjj,kkk)*vxstar(i,jjj+l,kkk)

* + as(i,jjj,kkk)*vxstar(i,jjj-1,kkk)
* + ab(i,jjj,kkk)*vxstar(i,jjj,kkk+l)
* + af(i,jjj,kkk)*vxstar(i,jjj,kkk-1)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO

*
*

40 continue

FORTRAN Al Universiteit van Pretoria

+ apo(i,jjj,kkk)*vxold(i,jjj,kkk) + source(i,jjj,kkk)
+ apu(i, jjj, kkk)*vxstar (i, j jj, kkk)* (1-relax) /relax

jb = jbound(ine,jjj,kkk)
aai(ine) = 1.0
bbi(ine) = 0.0
cci(ine) = bu(jb)
ddi(ine) = cu(jb)

return
end

PAGE 00020

Subroutine VCOEFF
*ic*icicirir****ir*-lc***"'r**ic*****-lc******-lc*·ld'cic,'r,'c*,'c*-ic,'r*ic-!c*.,'r.,•c-1c*****"'c.,'c-!c,'c*.,'r*-lr*,'r·lridr*

*** This subroutine calculates the coefficients to solve the
*** v-velocity components

INCLUDE 'COMM'

*** Set all the constants equal to zero

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
an(i,j,k) = 0.0
as(i,j,k) = 0.0
ae(i,j,k) = 0.0
aw(i,j,k) = 0.0
ab(i,j,k) = 0.0
af(i,j,k) = 0.0
apv(i,j,k) = 0.0
apo(i,j,k) = 0.0
source(i,j,k) =0.0
resvx(i) = 0. 0
resvy(j) = 0.0
resvz(k) = 0.0

10 continue

*** Calculate the coefficients

diffy = 0.0
do 20 k = 2,knml

do 20 j = 2,jnml
do 20 i = 2,inml

if(jbound(i,j,k).gt.O)goto 20
ii = i-1
jj = j-1
kk = k-1

conve = rhoe(i,j,k)*(exixe(i,j,k)*ue(i,j,k)
* + exiye(i,j,k)*ve(i,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* + exize(i,j,k)*we(i,j,k))/tjace(i,j,k)
convw = rhoe(ii,j,k)*(exixe(ii,j,k)*ue(ii,j,k)

* + exiye(ii,j,k)*ve(ii,j,k)
* + exize(ii,j,k)*we(ii,j,k))/tjace(ii,j,k)

convn = rhon(i,j,k)*(etaxn(i,j,k)*un(i,j,k)
* + etayn(i,j,k)*vn(i,j,k)
* + etazn(i,j,k)*wn(i,j,k))/tjacn(i,j,k)

convs = rhon(i,jj,k)*(etaxn(i,jj,k)*un(i,jj,k)
* + etayn(i,jj,k)*vn(i,jj,k)
* + etazn(i,jj,k)*wn(i,jj,k))/tjacn(i,jj,k)

convb = rhob(i,j,k)*(zetxb(i,j,k)*ub(i,j,k)
* + zetyb(i,j,k)*vb(i,j,k)
* + zetzb(i,j,k)*wb(i,j,k))/tjacb(i,j,k)

convf = rhob(i,j,kk)*(zetxb(i,j,kk)*ub(i,j,kk)
* + zetyb(i,j,kk)*vb(i,j,kk)
* + zetzb(i,j,kk)*wb(i,j,kk))/tjacb(i,j,kk)

diffe = visce(i,j,k)*(exixe(i,j,k)**2 + exize(i,j,k)**2
* + 4*(exiye(i,j,k)**2)/3)/(tjace(i,j,k)*delexie(i,j,k))

diffw = visce(ii,j,k)*(exixe(Ji,j,k)**2 + exize(ii,j,k)**2
* + 4*(exiye(ii,j,k)**2)/3)/(tjace(ii,j,k)*delexie(ii,j,k))

diffn = viscn(i,j,k)*(etaxn(i,j,k)**2 + etazn(i,j,k)**2
* + 4*(etayn(i,j,k)**2)/3)/(tjacn(i,j,k)*deletan(i,j,k))

cliffs= viscn(i,jj,k)*(etaxn(i,jj,k)**2 + etazn(i,jj,k)**2
* + 4*(etayn(i,jj,k)**2)/3)/(tjacn(i,jj,k)*deletan(i,jj,k))

diffb = viscb(i,j,k)*(zetxb(i,j,k)**2 + zetzb(i,j,k)**2
* + 4*(zetyb(i,j,k)**2)/3)/(tjacb(i,j,k)*delzetb(i,j,k))

difff = viscb(i,j,kk)*(zetxb(i,j,kk)**2 + zetzb(i,j,kk)**2
* + 4*(zetyb(i,j,kk)**2)/3)/(tjacb(i,j,kk)*delzetb(i,j,kk))

pecle = dabs(conve/diffe)
peclw = dabs(convw/diffw)
pecln = dahs(convn/diffn)
peels = dabs(convs/diffs)
peclb = dabs(convb/diffb)
peel£ = dabs(convf/difff)

Determine the finte difference coefficients

ae(i,j,k) = diffe*apecl(pecle) + dmaxl(-conve,zero)
aw(i,j,k) = diffw*apecl(peclw) + dmaxl(convw,zero)
an(i,j,k) = diffn*apecl(pecln) + dmaxl(-convn,zero)
as(i,j,k) = diffs*~pecl(pecls) + dmaxl(convs,zero)
ab(i,j,k) = diffb*apecl(peclb) + dmaxl(-convb,zero)
af(i,j,k) = difff*apecl(peclf) + dmaxl(convf,zero)
apo(i,j,k) = rhoo(i,j,k)/(delt*tjac(i,j,k))
apv(i,j,k) = ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k)

* + ab(i,j,k) + af(i,j,k) + apo(i,j,k)

*** Calculate the source term coefficients

bble=visce(i,j,k)*(4*exiye(i,j,k)*etaye(i,j,k)/3
* + exixe(i,j,k)*etaxe(i,j,k)
* + exize(i,j,k)*etaze(i,j,k))/tjace(i,j,k)
bblw=visce(ii,j,k)*(4*exiye(ii.,j,k)*etaye(ii,j,k)/3

PAGE 00021

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00022

* + exixe(ii,j,k)*etaxe(ii,j,k)

* + exize(ii,j,k)*etaze(ii,j,k))/tjace(ii,j,k)
bb2e=visce(i,j,k)*(4*exiye(i,j,k)*zetye(i,j,k)/3

* + exixe(i,j,k)*zetxe(i,j,k)
* + exize(i,j,k)*zetze(i,j,k))/tjace(i,j,k)
bb2w=visce(ii,j,k)*(4*exiye(ii,j,k)*zetye(ii,j,k)/3

* + exixe(ii,j,k)*zetxe(ii,j,k)
* + exize(ii,j,k)*zetze(ii,j,k))/tjace(ii,j,k)
bb3e=visce(i,j,k)*exiye(i,j,k)*~xixe(i,j,k)/(3*tjace(i,j,k))
bb3w=visce(ii,j,k)*exiye(ii,j,k)*~xixe(ii,j,k)/(3*tjace(ii,j,k))
bb4e=visce(i,j,k)*(exixe(i,j,k)*~taye(i,j,k)

* 2*exiye(i,j,k)*Ptaxe(i,j,k)/3)/tjace(i,j,k)
bb4w=visce (ii, j, k)* (ex:i.xe (ii,_;. k) 1'retaye (ii, j, k)

* 2*exiye(ii,j,k)*etaxe(ii,j,k)/3)/tjace(ii,j,k)
bb5e=visce (i, j, k)* (exixe (i , j, k)·'0 7,~tye (i, j, k)

2*exiyP(i,j,k)~~0txe(i,j,k)/3)/tjace(i,j,k)
bb5w=visce(ii,j ,k) 1'r(exixe(ii,j .J..))''"zetye(ii,j ,k)

* 2*exiye(ii.j,k)*zetxe(ii,j,k)/3)/tjace(ii,j,k)
bb6e=visce(i,j,k)*exfz0(i,j,~)~oxiye(i,j,k)/(3*tjace(i,j,k))
bb6w=visce(ii,j,k)*exize(ii,j,k)*exiye(ii,j,k)/(3*tjace(ii,j,k))
bb7e=visce(i,j,k)*(exize(i,j,k)*etaye(i,j,k)

* 2*exiye(i,j,k)*etaze(i,j,k)/3)/tjace(i,j,k)
bb7w=visce(ii,j,k)*(exize(ii,j,k)*etaye(ii,j,k)

* 2*exiye(ii,j,k)*etaze(ii,j,k)/3)/tjace(ii,j,k)
bb8e=visce (j_, j, k).,,r (exize (i, j, k)*zetye (i, j, k)

* 2*exiye(i,j,k)*zetze(i,j,k)/3)/tjace(i,j,k)
bb8w=visce(ii,j,k)*(exize(ii,j,k)*zetye(ii,j,k)

* 2*exiye(ii,j,k)*zetze(ii,j,k)/3)/tjace(ii,j,k)

bb9n=viscn(i,j,k)*(4*etayn(i,j,k)*exiyn(i,j,k)/3
* + etaxn(i,j,k)*exixn(i,j,k)
* + etazn(i,j,k)*exizn(i,j,k))/tjacn(i,j,k)
bb9s=viscn(i,jj,k)*(4*etayn(i,jj,k)*exiyn(i,jj,k)/3

* + etaxn(i,jj,k)*exixn(i,jj,k)
* + etazn(i,jj,k)*exizn(i,jj,k))/tjacn(i,jj,k)
bbl0n=viscn(i,j,k)*(4*etayn(i,j,k)*zetyn(i,j,k)/3

* + etaxn(i,j,k)*zetxn(i,j,k)
* + etazn(i,j,k)*zetzn(i,j,k))/tjacn(i,j,k)
bbl0s=viscn(i,jj,k)*(4*etayn(i,jj,k)*zetyn(i,jj,k)/3

* + etaxn(i,jj,k)*zetxn(i,jj,k)
* + etazn(i,jj,k)*zetzn(i,jj,k))/tjacn(i,jj,k)
bblln=viscn(i,j,k)*(etaxn(i,j,k)*exiyn(i,j,k)

* 2*etayn(i,j,k)*exixn(i,j,k)/3)/tjacn(i,j,k)
bblls=viscn(i,jj,k)*(etaxn(i,jj,k)*exiyn(i,jj,k)

* 2*etayn(i,jj ,k)*exi.xn(i,jj ,k)/3)/tjacn(i,jj ,k)
bb12n=viscn(i,j,k)*etayn(i,j,k)*etaxn(i,j,k)/(3*tjacn(i,j,k))
bb 12s=viscn (i, j j, k)*etayn (i, j j, k)-,'retaxn (i, j j, k) / (3*tj acn (i, j j, k))
bbl3n=viscn(i,j,k)*(etaxn(i,j,k)*zetyn(i,j,k)

* 2*etayn(i,j,k)*zetxn(i,j,k)/3)/tjacn(i,j,k)
b b 13 s =vis en (i , j j , k) * (et axn (i , j j , k) * z et yn (i , j j , k)

* 2*etayn(i,jj,k)*zetxn(i,jj,k)/3)/tjacn(i,jj,k)
bbl4n=viscn(i,j,k)*(etazn(i,j,k)*exiyn(i,j,k)

* 2*etayn(i,j,k)*exizn(i,j,k)/3)/tjacn(i,j,k)
bbl4s=viscn(i,jj,k)*(etazn(i,jj,k)*exiyn(i,jj,k)

* 2*etayn(i,jj,k)*exizn(i,jj,k)/3)/tjacn(i,jj,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FORTRAN Al Universiteit van Pretoria PAGE 00023

bb15n=viscn(i,j,k)*etazn(i,j,k)*etayn(i,j,k)/(3*tjacn(i,j,k))
bbl5s=viscn(i,jj,k)*etazn(i,jj;k)*etayn(i,jj,k)/(3*tjacn(i,jj,k))
hbl6n=viscn(i,j,k)*(etazn(i,j,k)*zetyn(i,j,k)

* 2*etayn(i,j,k)*zetzn(i,j,k)/3)/tjacn(i,j,k)
bb16s=viscn(i,jj,k)*(etazn(i,jj,k)*zetyn(i,jj,k)

1, 2*etayn(:f ,jj ,k) 1rzetzn(i,jj ,k)/3)/tjacn(i,jj ,k)

bbl 7b=viscb (i, j, k) ,,, (41<zet:yr(i • j, k)-,\-exiyb (i, j, k) /3
* + ~etxb(f .j,k)*exixb(i,j,k)
* + zetzb(i.J,k)*exizb(i,j,k))/tjacb(i,j,k)
bbl7f=viscb(i,j ,kkt'r(41rzetyH i. ,j ,kk)*exiyb(i,j ,kk)/3

* + zetxh(i,j,kk)*exixb(i,j,kk)
* + zptzb(i,j,kk)*exizb(i,j,kk))/tjacb(i,j,kk)
bb18b=viscb(i,j,k)*(4*zetyb(i,j,k)*etayb(i,j,k)/3

* + zetxb(i ,j,k)*etaxb(i,j,k)
* + zetzb(i,j,k)*etazb(i,j,k))/tjach(i,j,k)
bb18f=viscb(i,j,kk)*(4*zetyb(i,j,kk)*etayb(i,j,kk)/3

* + zetxb(i,j,kk)*etaxb(i,j,kk)
* + z0!.zh(i,j,kk)*etazb(i,j,kk))/tjacb(i,j,kk)
bbl9b=viscb(i,j ,k)"''"(zetxh(_ i ,j ,k)*exiyb(i,j ,k)

* 2*zetyb(i,j,k)*exixb(i,j,k)/3)/tjacb(i,j,k)
bb19f=viscb(i,j,kk)*(zetxb(i,j,kk)*exiyb(i,j,kk)

* 2*zetyb(i,j,kk)*exixb(i,j,kk)/3)/tjacb(i,j,kk)
bb20b=viscb(i,j,k)*(zetxb(i,j,k)*etayb(i,j,k)

* 2*zetyb(i,j,k)*etaxb(i,j,k)/3)/tjacb(i,j,k)
bb20f=viscb(i,j ,kk) 1'r(zetxb(i,j ,kk)*etayb(i,j ,kk)

* 2*zetyb(i,j,kk)*etaxb(i,j,kk)/3)/tjacb(i,j,kk)
bb21b=viscb(i,j,k)*zetyb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k))
bb2lf=viscb(i,j,kk)*zetyb(i,j,kk)*zetxb(i,j,kk)/(3*tjacb(i,j,kk))
bb22b=viscb(i,j,k)*(zetzb(i,j,k)*exiyb(i,j,k)

* 2*zetyb(i,j,k)*exizb(i,j,k)/3)/tjacb(i,j,k)
bb22f=viscb(i,j,kk)*(zetzb(i,j,kk)*exiyb(i,j,kk)

* 2*zetyb(i,j,kk)*exizb(i,j,kk)/3)/tjacb(i,j,kk)
bb23b=viscb(i,j,k)*(zetzb(i,j,k)*etayb(i,j,k)

* 2*zetyb(i,j,k)*etazb(i,j,k)/3)/tjacb(i,j,k)
bh23f=viscb(i,j,kk)*(zetzb(i.,j,kk)*etayb(i,j,kk)

* 2*zetyb(i,j,kk)*etazb(i,j,kk)/3)/tjacb(i,j,kk)

*
*
*

*
*

*
*
*

*
*
*
*
*

bb24b=viscb(i,j,k)*zetzb(i,j,k)*zetyb(i,j,k)/(3*tjacb(i,j,k))
bb24f=visch(i,j,kk)*zetzb(i,j,kk)*zetyb(i,j,kk)/(3*tjacb(i,j,kk))

ssl

ss2

= exiye(ii,j,k)*pie(ii,j,k)/tjace(ii,j,k)
- exiye(i,j,k)*pie(i,j,k)/tjace(i,j,k)
+ etayn(i,jj,k)*pin(i,jj,k)/tjacn(i,jj,k)
- etayn(i,j,k)*pin(i,j,k)/tjacn(i,j,k)
+ zetyb(i,j,kk)*pib(i,j,kk)/tjacb(i,j,kk)
- zetyb(i,j,k)*pib(i,j,k)/tjacb(i,j,k)
= bble*(vne(i,j,k) - vne(i,jj,k))
- bblw*(vne(ii,j,k) - vne(ii,jj,k))
+ bb2e*(vbe(i,j,k) - vhe(i,j,kk))
- bb2w*(vbe(ii,j,k) - vbe(ii,j,kk))
+ bb3e*(vx(i+l,j,k) - vx(i,j,k))/delexie(i,j,k)
- bb3w*(vx(i,j,k) - vx(ii,j,k))/delexie(ii,j,k)
+ bb4e*(une(i,j,k) - une(i,jj,k))
- bb4w*(une(ii,j,k) - une(ii,jj,k))
+ bb5e*(ube(i,j,k) - ube(i,j,kk))

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*
*
*
*
*
'>'r

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
.,•,:

*
.,•r

*
*
*

ss3

- bb5w*(ube(ii,j,k)
+ bb6e*(vz(i+l,j,k)
- bb6w*(vz(i,j,k)
+ bb7e*(wne(i,j,k)
- bb7w*(wne(ii,j,k)
+ bb8e*(wbe(i,j,k)
- bb8w*(wbe(ii,j,k)

= bb9n*(vne(i,j,k)
- bb9s*(vne(i,jj,k)
+ bblOn*(vnb(i,j,k)
- bblOs*(vnb(i,jj,k)
+ bblln*(une(i,j,k)
- bblls*(une(i,jj,k)
+ bb12n*(vx(i,j+l,k)
- bb12s*(vx(i,j,k)
+ bb13n*(unb(i,j,k)
- bb13s*(unb(i,jj,k)
+ bb14n*(wne(i,j,k)
- bbl4s*(wne(i,jj,k)
+ bb15n*(vz(i,j+l,k)
- bb15s*(vz(i,j,k)
+ bb16n*(wnb(i,j,k)
- bb16s*(wnb(i,jj,k)

ss4 = bbl7b*(vbe(i,j,k)
- bb17f*(vbe(i,j,kk)
+ bbl8b*(vnb(i,j,k)
- bb18f*(vnb(i,j,kk)
+ bbl9b*(ube(i,j,k)
- bbl9f*(ube(i,j,kk)
+ bb20b*(unb(i,j,k)
- bb20f*(unb(i,j,kk)
+ bb2lb*(vx(i,j,k+l)
- bb21f*(vx(i,j,k)
+ bb22b*(wbe(i,j,k)
- bb22f*(wbe(i,j,kk)
+ bb23b*(wnb(i,j,k)
- bb23f*(wnb(i,j,kk)
+ bb24b*(vz(i,j,k+l)
- bb24f*(vz(i,j,k)

- ube(ii,j,kk))
- vz(i,j,k))/delexie(i,j,k)
- vz(ii,j,k))/delexie(ii,j,k)
- wne (i, j j, k))
- wne (ii, j j, k))
- wbe (i, j, kk))
- wbe(ii,j,kk))

- vne (ii , j , k))
- vne (ii, j j, k))
- vnb (i , j , kk))
- vnb(i,jj,kk))
- un e (ii , j , k))
- une(ii,jj,k))
- vx(i,j,k))/deletan(i,j,k)
- vx(i,jj,k))/deletan(i,jj,k)
- unb(i,j,kk))
- unb(i,jj,kk))
- wne(ii,j,k))
- wne(ii,jj,k))
- vz(i,j,k))/deletan(i,j,k)
- vz(i,jj,k))/deletan(i,jj,k)
- wnb (i , j , kk))
- wnb (i, j j , kk))

- vbe (ii, j, k))
- vbe(ii,j,kk))
- vnb(i,jj,k))
- vnb(i,jj,kk))
- ube (ii, j , k))
- ube(ii,j,kk))
- unb (i, j j , k)) ·
- unb(i,jj,kk))
- vx(i,j,k))/delzetb(i,j,k)
- vx(i,j,kk))/delzetb(i,j,kk)
- wbe(ii,j,k))
- wbe(ii,j,kk))
- wnb(i,jj,k))
- wn b (i , j j , kk))
- vz(i,j,k))/delzetb(i,j,k)
- vz(i,j,kk))/delzetb(i,j,kk)

source(i,j,k) = ssl + ss2 + ss3 + ss4

res= apv(i,j,k)*vy(i,j,k) - apo(i,j,k)*vy(i,j,k)
* - ae(i,j,k)*vy(i+l,j,k)_- aw(i,j,k)*vy(ii,j,k)
* - an(i,j,k)*vy(i,j+l,k) - as(i,j,k)*vy(i,jj,k)
* - ab(i,j,k)*vy(i,j,k+l) - af(i,j,k)*vy(i,j,kk)
* - source(i,j,k)
diffy = diffy + dabs(res)
resvx(i) = resvx(i) + dabs(res)
resvy(j) = resvy(j) + dabs(res)
resvz(k) = resvz(k) + dabs(res)

20 continue

PAGE 00024

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00025

return

c--
Entry VPREPI (iii,kkk,jne,jnb)

c--

*** This ~ection pi-0pares the TDMA coefficients
*** sweeping in J - direction

jnbl = jnb + 1
jnel = jne - l

jb = jbonnd(i ii, jnb, kkk)
aaj(jnb) = 1. 0
bbj(jnb) = bv(jb)
ccj(jnb) = 0.0
ddj(jnb) = cv(jb)

do 30 j = jnbl,jnel
aaj(j) = apv(iii,j,kkk)/relax
bbj(j) = an(iii,j,kkk)
ccj(j) = as(iii,j,kkk)
ddj(j) = ae(iii,j,kkk)*vystar(iii+l,j,kkk)

,~ + aw(iii,j ,kkk)*vystar(iii-1,j ,kkk)
* + ab(iii,j,kkk)*vystar(iii,j,kkk+l)
* + af(iii,j,kkk)*vystar(iii,j,kkk-1)
* + apo(iii,j,kkk)*vyold(iii,j,kkk) + source(iii,j,kkk)
* + apv(iii,j,kkk)*vystar(iii,j,kkk)*(l-relax)/relax

30 continue

jb = jbound(iii,jne,kkk)
aaj(jne) = 1. 0
bbj (jne) = 0. 0
ccj(jne) = bv(jb)
ddj(jne) = cv(jb)

return

c--
Entry VPREPJ (jjj,kkk,ine,inb)

c--
*** This section prepares the TDMA coefficients
*** sweeping in J - direction

inbl = inb + 1
inel = ine - l

jb = jbound(inb,jjj,kkk)
aai(inb) = 1. 0
bbi(inb) = bv(jb)
cci(inb) = 0.0
ddi(inb) = cv(jb)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*
*
*
*
*

do 40 i = inbl,inel
aai(i) = apv(i,jjj,kkk)/relax
bbi(i) = ae(i,jjj,kkk)
cci(i) = aw(i,jjj,kkk)
ddi(i) = an(i,jjj,kkk)*vystar(i,jjj+l,kkk)

+ as(i,jjj,kkk)*vystar(i,jjj-1,kkk)
+ ab(i,jjj,kkk)*vystar(i,jjj,kkk+l)
+ af(i,jjj,kkk)*vystar(i,jjj,kkk-1)
+ apo(i,jjj,kkk)*vyold(i,jjj,kkk) + source(i,jjj,kkk)
+ apv(i,jjj,kkk)*vystar(i,jjj,kkk)*(l-relax)/relax

40 continue

jb = jbound(ine,jjj,kkk)
aai(ine) = 1.0
bbi(ine) = 0.0
cci(ine) = bv(jb)
ddi(ine) = cv(jb)

return
end

PAGE 00026

Subroutine WCOEFF
-l'"''*·i'<·k-lr-lr~'r-lr-lr***,'r**·k,'r*****-lrlc*-lr**"''-lr**'''***,'''''-Jr****-lr-ldr,'r,'r-lr-lr-Jr-,'c-lrir*ir'i'r-lr·k*·lr-lc**,'r*,'r,'r

*** This subroutine calculates the coefficients to solve the
*** w-velocity components

INCLUDE 'COMM'

*** Set all the constants equal to zero

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
an(i,j,k) = 0.0
as(i,j,k) = 0.0
ae(i,j,k) = 0.0
aw(i,j,k) = 0.0
ab(i,j,k) = 0.0
af(i,j,k) = 0.0
a pw (i , j , k) = 0 . 0
apo(i,j,k) = 0.0
source(i,j,k) =0.0
reswx(i) = 0.0
reswy(j) = 0.0
reswz(k) = 0.0

10 continue

*** Calculate the coefficients

diffz = 0. 0
do 20 k = 2,knml

do 20 j = 2,jnml
do 20 i = 2,inml

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

-;(

*

*
*

*
*

*
*

*
*

*
*

if(jbound(i,j,k).gt.O)goto 20
ii = i-1
jj = j-1
kk = k-1

cnnve = rhoe(i,j,k)*(exixe(i,j,k)*ue(i,j,k)
+ exiye(i,j,k)*ve(i,j,k)
+ exize(i,j,k)*we(i,j,k))/tjace(i,j,k)

convw = rhoe(ii,j,k)*(exixe(ii,j,k)*ue(ii,j,k)
+ exiye(ii,j,k)*ve(ii,j,k)
+ exize(ii,j,k)*we(ii,j,k))/tjace(ii,j,k)

convn = rhon(i,j,k)*(etaxn(i,j,k)*un(i,j,k)
+ etayn(i,j,k)*vn(i,j,k)
+ etazn (i, j, k)*wn (i, j, k)) / tj a.en (i, j, k)

convs = rhon(i,jj,k)*(etaxn(i,jj,k)*un(i,jj,k)
+ etayn(i,jj,k)*vn(i,jj,k)
+ etazn(i,jj,k)*wn(i,jj,k))/tjacn(i,jj,k)

convb = rhob(i,j,k)*(zetxb(i,j,k)*ub(i,j,k)
+ zetyb(i,j,k)*vb(i,j,k)
+ zetzb(i,j,k)*wb(i,j,k))/tjacb(i,j,k)

convf = rhob(i,j,kk)*(zetxb(i,j,kk)*ub(i,j,kk)
+ zetyb(i,j,kk)*vb(i,j,kk)
+ zetzb(i,j,kk)*wb(i,j,kk))/tjacb(i,j,kk)

diffe = visce(i,j,k)*(exixe(i,j,k)**2 + exiye(i,j,k)**2
* + 4*(exize(i,j,k)**2)/3)/(tjace(i,j,k)*delexie(i,j,k))

diffw = visce(ii,j,k)*(exixe(ii,j,k)**2 + exiye(ii,j,k)**2
* + 4*(exize(ii,j,k)**2)/3)/(tjace(ii,j,k)*delexie(ii,j,k))

diffn = viscn(i,j,k)*(etaxn(i,j,k)**2 + etayn(i,j,k)**2
* + 4*(etazn(i,j,k)**2)/3)/(tjacn(i,j,k)*deletan(i,j,k))

diffs = viscn(i,jj,k)*(etaxn(i,jj,k)**2 + etayn(i,jj,k)**2
* + 4*(etazn(i,jj,k)**2)/3)/(tjacn(i,jj,k)*deletan(i,jj,k))

diffb = viscb(i,j,k)*(zetxb(i,j,k)**2 + zetyb(i,j,k)**2
* + 4*(zetzb(i,j,k)**2)/3)/(tjacb(i,j,k)*delzetb(i,j,k))

difff = viscb(i,j,kk)*(zetxb(i,j,kk)**2 + zetyb(i,j,kk)**2
* + 4*(zetzb(i,j,kk)**2)/3)/(tjacb(i,j,kk)*delzetb(i,j,kk))

pecle = dabs(conve/diffe)
peclw = dabs(convw/diffw)
pecln = dabs(convn/diffn)
peels = dabs(convs/diffs)
peclb = dabs(convb/diffb)
peclf = dabs(convf/difff)

Determine the finte difference coefficients

ae(i,j,k) = diffe*apecl(pecle) + dmaxl(-conve,zero)
aw(i,j,k) = diffw*apecl(peclw) + dmaxl(convw,zero)
an(i,j,k) = diffn*apecl(pecln) + dmaxl(-convn,zero)
as(i,j,k) = diffs*apecl(pecls) + dmaxl(convs,zero)
ab(i,j,k) = diffb*apecl(peclb) + dmaxl(-convb,zero)
af(i,j,k) = dHff*apecl(peclf) + dmaxl(convf,zero)
apo(i,j,k) = rhoo(i,j,k)/(delt*tjac(i,j,k))

PAGE 00027

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*** Adjust main flow direction for turbulent flows near the wall
*** by making use of a additional shear force term

apx = 0.0
if(iturb.ne.l) goto 15
if(vz(i,j,k).lt.O.OOOl)goto 15

if(jbound(i,j,k).eq.O.and.jbound(i+l,j,k).eq.nbnd)then
exiss = (exix(f,j,k)+exly(i,j,k)+exiz(i,j,k))/tjac(i,j,k)
apx = dabs(tm,w(i,j .k1 1'rpxfss/vz(i,j ,k))

endif
if (jbound(i, _j, k). eq. 0 . .nn<i. jbound(i-1, j ,k). eq. nbnd)then
exiss = (ex ix (i, j, k) 1-0xiy (i, j, k)+exiz (i, j, k)) /tj ac (i, j, k)
apx = dabs (t rmw(i, j, k).,,rP.xiss/vz (i, j, k))

endif
if(jbound(i,j,k).eq.0.And.jbound(i,j+l,k).eq.nbnd)then
etass = (etRx(i,j,k)~nt~y(i,j,k)+etaz(i,j,k))/tjac(i,j,k)
apx = dabs(t;:111w(i,j.k)''~etass/vz(i,j,k))

endif
if(jbound(i,j,k).eq.0.nnd.jbound(i,j-1,k).eq.nbnd)then
etass = (etRx(i,j,k)+etay(i,j,k)+etaz(i,j,k))/tjac(i,j,k)
apx = dabs(tauw(i,j,k)*etass/vz(i,j,k))

endif

15 apw(i,j,k) = ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k)
* + ab(i,j,k) + af(i,j,k) + apo(i,j,k) + apx

*** Calculate the source term coefficients

bble=visce (i, j, k)* (4"rexize (i, j, k)*etaze (i, j, k) / J
* + exixe(i,j,k)*etaxe(i,j,k)
* + exiye(i,j,k)*etaye(i,j,k))/tjace(i,j,k)

bblw=visce (ii., j, k)"r(4*exize (ii, j, k)*etaze (ii, j, k) /3
* + exixe(ii,j,k)*etaxe(ii,j,k)

PAGE 00028

* + exiye(ii,j,k)*etaye(ii,j,k))/tjace(ii,j,k)
bb2e=visce(i,j,k)*(4*exize(i,j,k)*zetze(i,j,k)/3

* + exixe(i,j,k)*zetxe(i,j,k)
* + exiye(i,j,k)*zetye(i,j,k))/tjace(i,j,k)
bb2w=visce(ii,j,k)*(4*exize(ii,j,k)*zetze(ii,j,k)/3

* + exixe(ii,j,k)*zetxe(ii,j,k)
* + exiye(ii,j,k)*zetye(ii,j,k))/tjace(ii,j,k)
bb3e=visce(i,j,k)*exize(i,j,k)*exixe(i,j,k)/(3*tjace(i,j,k))
bb3w=visce(ii,j,k)*exize(ii,j,k)*exixe(ii,j,k)/(3*tjace(ii,j,k))
bb4e=visce(i,j,k)*(exixe(i,j,k)*etaze(i,j,k)

* 2*exize(i,j,k)*etaxe(i,j,k)/3)/tjace(i,j,k)
bb4w=visce(ii,j,k)*(exixe(ii,j,k)*etaze(ii,j,k)

* 2*exize(ii,j,k)*etaxe(ii,j,k)/3)/tjace(ii,j,k)
bb5e=visce(i,j,k)*(exixe(i,j,k)*zetze(i,j,k)

* 2*exize(i,j,k)*zetxe(i,j,k)/3)/tjace(i,j,k)
bb5w=visce(ii,j,k)*(exixe(ii,j,k)*zetze(ii,j,k)

* 2*exize(ii,j,k)*zetxe(ii,j,k)/3)/tjace(ii,j,k)
bb6e=visce(i,j,k)*exize(i,j,k)*exiye(i,j,k)/(3*tjace(i,j,k))
bb6w=visce(ii,j,k)*exize(ii,j,k)*exiye(ii,j,k)/(3*tjace(ii,j,k))
bh7e=visce(i,j,k)*(exiye(i,j,k)*etaze(i,j,k)

* 2*exize(i,j,k)*etaye(i,j,k)/3)/tjace(i,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00029

bb7w=visce(ii,j,k)*(exiye(ii,j,k)*etaze(ii,j,k)
* 2*exize(ii,j,k)*etaye(ii,j,k)/3)/tjace(ii,j,k)
bb8e=visce(i,j,k)*(exiye(i,j,k)*zetze(i,j,k)

* 2*exize(i,j,k)*zetye(i,j,k)/3)/tjace(i,j,k)
bb8w=visce(ii,j,k)*(exiye(ii,j,k)*zetze(ii,j,k)

* 2*exize(ii,j,k)*zetye(ii,j,k)/3)/tjace(ii,j,k)

bb9n=viscn(i,j,k)*(4*etazn(i,j,k)*exizn(i,j,k)/3
* + etaxn(i,j,k)*exixn(i,j,k)
* + etayn(i,j,k)*exiyn(i,j,k))/tjacn(i,j,k)
bb9s=viscn(i,jj ,k)*(4''retA7.n(i,jj, k.)*exizn(i,jj ,k)/3

* + etaxn(i,jj,k)*exixn(i,jj,k)
* + etayn(i,jj,k)*~xiyn(i,jj,k))/tjacn(i,jj,k)
bbl0n=viscn(i,j,k)*(4*etazn(i,j,k)*zetzn(i,j,k)/3

* + etaxn(i,j,k)*zetxn(i,j,k)
* + etayn(i,j,k)*zetyn(i,j,k))/tjacn(i,j,k)
bblO~=viscn(i,jj,k)*(4*etazn(i,jj,k)*zetzn(i,jj,k)/3

* + etaxn(i,jj,k)*zetxn(i,jj,k)
* + etayn(i,jj,k)*zetyn(i,jj,k))/tjacn(i,jj,k)
bblln=viscn(i,j ,k)*(etaxn(i,j ,k),'rexizn(i,j ,k)

* 2*etazn(i,j,k)*exixn(i,j,k)/3)/tjacn(i,j,k)
bblls=viscn(i,jj,k)*(etaxn(i,jj,k)*exizn(i,jj,k)

* 2*etazn(i,jj,k)*exixn(i,jj,k)/3)/tjacn(i,jj,k)
bbl2n=viscn(i,j,k)*etazn(i,j,k)*etaxn(i,j,k)/(3*tjacn(i,j,k))
bb12s=viscn(i,jj,k)*etazn(i,jj,k)*etaxn(i,jj,k)/(3*tjacn(i,jj,k))
bbl3n=viscn(i,j,k)*(etaxn(i,j,k)*zetzn(i,j,k)

* 2*etazn(i,j,k)*zetxn(i,j,k)/3)/tjacn(i,j,k)
bbl3s=viscn(i,jj,k)*(etaxn(i,jj,k)*zetzn(i,jj,k)

* 2*etazn(i,jj,k)*zetxn(i,jj,k)/3)/tjacn(i,jj,k)
bb14n=viscn(i,j,k)*(etayn(i,j,k)*exizn(i,j,k)

* 2*etazn(i,j,k)*exiyn(i,j,k)/3)/tjacn(i,j,k)
bbl4s=viscn(i,jj,k)*(etayn(i,jj,k)*exizn(i,jj,k)

* 2*etazn(i,jj,k)*exiyn(i,jj,k)/3)/tjacn(i,jj,k)
bblSn=viscn(i,j ,k)*etazn(i,j ,k)*etayn(i,j ,k)/(3'>'rtjacn(i,j ,k))
bb15s=viscn(i,jj ,k)*etazn(i,jj ;k)','retayn(i,jj ,k)/(3*tjacn(i,jj ,k))
bbl6n=viscn(i,j,k)*(etayn(i,j,k)*zetzn(i,j,k)

* 2*etazn(i,j,k)*zetyn(i,j,k)/3)/tjacn(i,j,k)
bbl6s=viscn(i,jj,k)*(etayn(i,jj,k)*zetzn(i,jj,k)

* 2*etazn(i,jj,k)*zetyn(i,jj,k)/3)/tjacn(i,jj,k)

bbl7b=viscb(i,j,k)*(4*zetzb(i,j,k)*exizb(i,j,k)/3
* + zetxb(i,j,k)*exixb(i,j,k)
* + zetyb(i,j,k)*exiyb(i,j,k))/tjacb(i,j,k)
bb17f=viscb(i,j,kk)*(4*zetzb(i,j,kk)*exizb(i,j,kk)/3

* + zetxb(i,j,kk)*exixb(i,j,kk)
* + zetyb(i,j,kk)*exiyb(i,j,kk))/tjacb(i,j,kk)
bbl8b=viscb(i,j,k)*(4*zetzb(i,j,k)*etazb(i,j,k)/3

* + zetxb(i,j,k)*etaxb(i,j,k)
* + zetyb(i,j,k)*etayb(i,j,k))/tjacb(i,j,k)
bb18f=viscb(i,j,kk)*(4*zetzb(i,j,kk)*etazb(i,j,kk)/3

* + zetxb(i,j,kk)*etaxb(i,j,kk)
* + zetyb(i,j,kk)*etayb(i,j,kk))/tjacb(i,j,kk)
bbl9b=viscb(i,j,k)*(zetxb(i,j,k)*exizb(i,j,k)

* 2*zetzb(i,j,k)*exixb(i,j,k)/3)/tjacb(i,j,k)
bbl9f=viscb(i,j,kk)*(zetxb(i,j,kk)*exizb(i,j,kk)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00030

* 2*zetzb(i,j,kk)*exixb(i,j,kk)/3)/tjacb(i,j,kk)
bb20b=viscb(i,j,k)*(zetxb(i,j,k)*etazb(i,j,k)

* 2*zetzb(i,j,k)*etaxb(i,j,k)/3)/tjacb(i,j,k)
bb20f=viscb(i,j,kk)*(zetxb(i,j,kk)*etazb(i,j,kk)

* 2*zetzb(i,j,kk)*etaxb(i,j,kk)/3)/tjacb(i,j,kk)
bb21b=viscb(i,j,k)*zetzb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k))
bb2lf=viscb(i,j,kk)*zetzb(i,j,kk)*zetxh(i,j,kk)/(3*tjacb(i,j,kk))
bb22b=viscb(i,j,k)*(zetyh(i,j,k)*exizb(i,j,k)

* 2*zetzh(i,j,k)*exiyb(i,j,k)/3)/tjacb(i,j,k)
bb22f=viscb(i,j,kk)*(zetyb(i,j,kk)*exizb(i,j,kk)

* 2*zetzb(i,j,kk)*exiyb(i,j,kk)/3)/tjacb(i,j,kk)
bb23b=viscb(i,j,k)*(zetyb(i,j,k)*etazb(i,j,k)

* 2*zetzb(i,j,k)*etayb(i,j,k)/3)/tjacb(i,j,k)
bb23f=viscb(i,j,kk)*(zetyb(i,j,kk)*etazb(i,j,kk)

* 2*zRtzb(i,j,kk)*etayb(i,j,kk)/3)/tjacb(i,j,kk)
b b 2 4 b=v is c b (i , j , k) * z e t ;,; h(:i , j , k) .,,r 7. et y b (i , j , k) / (3 ir t j a c b (i , j , k))
bb24f=viscb (i, j, kk)*ze t· zh (i., j, kv. p'rzetyb (i, j, kk) / (3*tj acb (i, j, kk))

ssl = exize(ii,j,k)*pfP(ii.j,k)/tjace(ii,j,k)
* - exize(i,j,k)*pie(i,j,k)/tjace(i,j,k)
* + etazn(i,jj,k)*pin(i,jj,k)/tjacn(i,jj,k)
* - etazn(i,j,k)*pin(i,j,k)/tjacn(i,j,k)
* + zetzb(i,j,kk)*pib(i,j,kk)/tjacb(i,j,kk)
* - zetzb(i,j,k)*pib(i,j,k)/tjacb(i,j,k)

ss2 = bble*(wne(i,j,k) - wne(i,jj,k))
* - bblw''"(wne(ii,j,k) - wne(ii,jj,k))
* + bb2e*(wbe(i,j,k) - wbe(i,j,kk))
* - bb2w*(wbe(ii,j,k) - wbe(ii,j,kk))
* + bb3e*(vx(i+l,j,k) - vx(i,j,k))/delexie(i,j,k)
* - bb3w*(vx(i,j,k) - vx(ii,j,k))/delexie(ii,j,k)
* + bb4e*(une(i,j,k) - une(i,jj,k))
* - bb4w*(une(ii,j,k) - une(ii,jj,k))
* + bb5e*(ube(i,j,k) - ube(i,j,kk))
* - bb5w*(ube(ii,j,k) - ube(ii,j,kk))
* + bb6e*(vy(i+l,j,k) - vy(i,j,k))/delexie(i,j,k)
* - bb6w*(vy(i,j,k) - vy(ii,j,k))/delexie(ii,j,k)
* + bb7e*(vne(i,j,k) - vne(i,jj,k))
* - bb7w*(vne(ii,j,k) - vne(ii,jj,k))
* + bb8e*(vbe(i,j,k) - vbe(i,j,kk))
* - bb8w*(vbe(ii,j,k) - vbe(ii,j,kk))

ss3 = bb9n*(wne(i,j,k) - wne (ii, j, k))
* - bb9s*(wne(i,jj,k) - wn e (ii , j j , k))
ir + bbl0n*(wnb(i,j,k) - wnb(i,j,kk))
* - bbl0s*(wnb(i,jj,k) - wnb (i , j j , kk))
* + bblln*(une(i,j,k) - une(ii,j,k))
* - bblls*(une(i,jj,k) - un e (ii , j j , k))
* + bbl2n*(vx(i,j+l,k) - vx(i,j,k))/deletan(i,j,k)
* - bbl2s*(vx(i,j,k) - vx(i,jj,k))/deletan(i,jj,k)
* + bb13n*(unb(i,j,k) - unb (i, j, kk))
* - bb13s*(unb(i,jj,k) - unb(i,jj,kk))
* + bb14n*(vne(i,j,k) - vn e (ii , j , k))
* - bb14s*(vne(i,jj,k) - vn e (ii , j j , k))
* + bblSn*(vy(i,j+l,k) - vy(i,j,k))/deletan(i,j,k)
* - bb15s*(vy(i,j,k) - vy(i,jj,k))/deletan(i,jj,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

1r + bb16n*(vnb(i,j,k) - vnb(i,j,kk))
* - bb16s*(vnb(i,jj,k) - vnb(i,jj,kk))

ss4 = bb17b*(wbe(i,j,k) - wbe(ii,j,k))
* - bb17f*(wbe(i,j,kk) - wbe (ii, j , kk))
* + bb18b*(wnb(i,j,k) - wnb (i, j j, k))
* - bb18f*(wnb(i,j,kk) - wnb (i , j j , kk))
* + bb19b*(ube(i,j,k) - ube(ji ,j,k))
* - bb19f*(ube(i,j,kk) - ube (i i , J , kk))
* + bb20b*(unb(i,j,k) - unh(i.jj,k))
* - bb20f*(unb(i,j,kk) - unh(i ,Jj,kk))
* + bb21b*(vx(i,j,k~l) - vx(i,j,k))/delzetb(i,j,k)
* - bb21f*(vx(i,j,k) - vx(J,j,kk))/delzetb(i,j,kk)

* + bb22b*(vbe(i,j,k) - vhd ii, j, k))
* - bb22f*(vbe(i,j,kk) - vbP. (i i , j , kk))
* + bb23b*(vnb(i,j,k) vnh (i , .i j , k))
* - bb23f*(vnb(i,j,kk1 - vn h r 1 . jj , kk))
* + bb24b*(vy(i,j,k+l) - vy(i,j,k))/delzetb(i,j,k)
* - bb24f*(vy(i,j,k) - vy(i,j,kk))/delzetb(i,j,kk)

source(i,j,k) = ssl + ss2 + ss3 + ss4

res = apw(i,j ,k)*vz(i,j ,k) - apo(i,j ,k)''rvz(i,j ,k)
* - ae(i,j,k)*vz(i+l,j,k) - aw(i,j,k)*vz(ii,j,k)
* - an(i,j,k)*vz(i,j+l,k) - as(i,j,k)*vz(i,jj,k)
* - ab(i,j,k)*vz(i,j,k+l) - af(i,j,k)*vz(i,j,kk)
* - source(i,j,k)
diffz = diffz + dabs(res)
reswx(i) = reswx(i) + dabs(res)
reswy(j) = reswy(j) + dabs(res)
reswz(k) = reswz(k) + dabs(res)

20 continue

return

PAGE 00031

c--
Entry WPREPI (iiiskkk,jne,jnb)

c--

'Ye This section prepares the TDMA coefficients
*** sweeping in I - direction

jnbl = jnb + 1
jnel = jne - 1

jb = jbound(iii,jnb,kkk)
aaj(jnb) = 1. 0
bbj(jnb) = bw(jb)
ccj(jnb) = 0.0
ddj(jnb) = cw(jb)

do 30 j = jnbl,jnel
aaj(J) = apw(iii,j,kkk)/relax
bhj(j) = an(iii,j,kkk)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

30

-Jr

*
*
*
*

ccj(j)
ddj (j)

continue

= as(iii,j,kkk)
= ae(iii,j,kkk)*vzstar(iii+l,j,kkk)
+ aw(iii,j,kkk)*vzstar(iii-1,j,kkk)
+ ab(iii,j,kkk)*vzstar(iii,j,kkk+l)
+ af(iii,j,kkk)*vzstar(iii,j,kkk-1)
+ apo(iii,j,kkk)*vzold(iii,j,kkk) + source(iii,j,kkk)
+ apw(iii,j,kkk)*vzstar(iii,j,kkk)*(l-relax)/relax

jh = jbound(iii,jne,kkk)
aaj(jne) = 1. 0
bbj(jne) = 0.0
ccj(jne) = bw(jb)
ddj(jne) = cw(jh)

return

PAGE 00032

c--
Entry WPREPJ (ijj,kkk,ine,inb)

c--

*** This section prepares the TDMA coefficients
*** sweeping in J - direction

inbl = inb + 1
inel = ine - 1

jb = jbound(inb,jjj,kkk)
aai(inb) = 1.0
bbi(inb) = bw(jb)
cci(inb) = 0.0
ddi(inb) = cw(jb)

do 40 i = inbl,inel
aai(i) = apw(i,jjj,kkk)/relax
bbi(i) = ae(i,jjj,kkk)
cci(i) = aw(i,jjj,kkk)
ddi(i) = an(i,jjj,kkk)*vzstar(i,jjj+l,kkk)

* + as(i,jjj,kkk)*vzstar(i,jjj-1,kkk)
* + ab(i,jjj,kkk)*vzstar(i,jjj,kkk+l)
* + af(i,jjj,kkk)*vzstar(i,jjj,kkk-1)
* + apo(i,jjj,kkk)*vzold(i,jjj,kkk) + source(i,jjj,kkk)
* + apw(i,jjj,kkk)*vzstar(i,jjj,kkk)*(l-relax)/relax

40 continue

jb = jbound(ine,jjj,kkk)
aai(ine) = 1.0
bbi(ine) = 0.0
cci(ine) = bw(jb)
ddi(ine) = cw(jh)

return
end

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00033

Subroutine PCOEFF
ir*,'r*ir**ir,'r***i'r***-lr,'r**ir-lr**ir*,''**"'rir*ir,'r*ir****ir**,'rir**ir,'rir,'r,'r,'r*ir***ir,'r***irir**

*** This subroutine calculates the coefficients to solve the pressure
*** correction equation

INCLUDE 'COMM'

*** At each new time step the pressure corrections are zero
*** bacause the correct pressure field is known

do 10 k = 1,kn
do 10 j = 1, jn

do 10 i = 1,in
pcor(i,j,k) = 0.0

10 continue

*** Set all the constant~ P.q1rnl to zero

diffp = 0.0
do 20 k = 2,knml

do 20 j = 2,jnml
do 20 i = 2,inml
ae(i,j,k) = 0.0
aw(i,j,k) = 0.0
an (j_ , j , k) = 0 . 0
as(i,j,k) = 0.0
ab(i,j,k) = 0.0
af(i,j,k) = 0.0
app(i,j,k) = 0.0
bb(i,j,k) = 0.0

20 continue

*** Calculate the finite difference coefficients

*
*

do 30 k = 2,knml
resp(k) = 0.0
do 30 j = 2,jnml

do 40 i = 2,inml
if(jbound(i,j,k).gt.O)goto 40
ii = i-1
jj = j-1
kk = k-1

if(jbound(i,j,k).eq.0.and.jbound(i+l,j,k).ne.O)then
aae = 0.0
ae (i, j , k) = 0. 0

else
apue
apve
apwe
aae =

=
=
=

(apu(i,j,k)+apu(i+l,j,k))/2
(apv(i,j,k)+apv(i+l,j,k))/2
(apw(i,j,k)+apw(i+l,j,k.))/2

rhoe(i,j,k)*(exixe(i,j,k)*exix(i,j,k)/apue
+exiye(i,j,k)*exiy(i,j,k)/apve
+exize(i,j,k)*exiz(i,j,k)/apwe)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit va.n Pretoria

* /(tjace(i,j,k)*tjac(i,j,k))
ae(i,j,k)=rhoe(i,j,k)*(exixe(i,j,k)*exix(i+l,j,k)/apue

* +exiye(i,j,k)*exiy(i+l,j,k)/apve
* +eY.ize(i,j ,k)*exiz(i+l,j ,k)/apwe)
* /(tjace(i,j,k)*tjac(i+l,j,k))

endif

if(jbo1md(i .j ,k) .eq.O.and.jbound(i-1,j ,k) .ne.O)then
a.aw = r· n
f-lW (: . '. , ~-) = 0 . 0

else
apuw = (apu(i,j,k)+apu(ii,j,k))/2
apvw = (apv(i,j,k)+apv(ii,j,k))/2
apww = (apw(i,j,k)+apw(ii,j,k))/2
aaw = rhoe(ii,j ,k)''"(exixe(ii,j ,k) 7"exix(i,j ,k)/apuw

* +exiye(ii,j,k)*exiy(i,j,k)/apvw
* +exize(ii,j,k)*exiz(i,j,k)/apww)
* /(tjace(ii,j,k)*tjac(i,j,k))

aw(i,j,k)=rhoe(ii,j,k)*(exixe(ii,j,k)*exix(ii,j,k)/apuw
* +exiye(ii,j,k)*exiy(ii,j,k)/apvw
* +exize(ii,j ,k).,,"exiz(ii,j ,k)/apww)
* /(tjace(ii,j,k)*tjac(ii,j,k))

endif

if(jbound(i,j,k).eq.0.and.jbound(i,j+l,k).ne.O)then
aan = 0.0
an(i,j,k) = 0.0

else
apun = (apu(i,j,k)+apu(i,j+l,k))/2
apvn = (apv(i,j,k)+apv(i,j+l,k))/2
apwn = (apw(i,j,k)+apw(i,j+l,k))/2
aan = rhon(i,j,k)*(etaxn(i,j,k)*etax(i,j,k)/apun

* +etayn(i,j,k)*etay(i,j,k)/apvn
* +etazn(i,j,k)*etaz(i,j,k)/apwn)
* /(tjacn(i,j,k)*tjac(i,j,k))

an(i,j,k)=rhon(i,j,k)*(etaxn(i,j,k)*etax(i,j+l,k)/apun
* +etayn(i,j,k)*etay(i,j+l,k)/apvn
* +etazn(i,j,k)*etaz(i,j+l,k)/apwn)
* /(tjacn(i,j,k)*tjac(i,j+l,k))

endif

if(jbound(i,j,k).eq.O.and.jbound(i,j-1,k).ne.O)then
aas = 0.0
as(i,j,k) = 0.0

else
apus .= (apu(i,j,k)+apu(i,jj,k))/2
apvs = (apv(i,j,k)+apv(i,jj,k))/2
apws = (apw(i,j,k)+apw(i,jj,k))/2
aas = rhon(i,jj,k)*(etaxn(i,jj,k)*etax(i,j,k)/apus

* +etayn(i,jj,k)*etay(i,j,k)/apvs
* +etazn(i,jj,k)*etaz(i,j,k)/apws)
* /(tjacn(i,jj,k)*tjac(i,j,k))

as(i,j,k)=rhon(i,jj,k)*(etaxn(i,jj,k)*etax(i,jj,k)/apus
* +etayn(i,jj,k)*etay(i,jj,k)/apvs
* +etazn(i,jj,k)*etaz(i,jj,k)/apws)

PAGE 00034

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* /(tjacn(i,jj,k)*tjac(i,jj,k))
endif

if(jbound(i,j ,k) .eq.0.and.jbound(i,j ,k+l) .ne.0)then
aab = 0.0
ab(i,j,k) = 0.0

else
apub = (apu(i,j,k)+apu(i,j.k+l))/2
apvb = (apv(i,j,k)+apv(i,j.k~l))/2
apw b = (a pw (i , j, k) + a pw (i , j . k+ 1)) / 2
aab = rhob(i,j,k)*(zetxb(i,_j,k)*zetx(i,j,k)/apub

* +zetyb(i ,j,k)*zety(i,j,k)/apvb
* +zetzb(l,j,k)*zetz(i,j,k)/apwb)
* /(tjacb(i,j,k)*tjac(i,j,k))

ab(i,j,k)=rhob(i,j,k)*(zetxh(L,j,k)*zetx(i,j,k+l)/apub
* +zetyh(i,j,k)*zety(i,j,k+l)/apvb
i(+zet7,h(i. ,j ,k)*zetz(i,j ,k+l)/apwb)
* / (t j Ac h (i_ , j , k) i(t j ac (i, j , k+ 1))

endif

if (jbound(i, j, k). NJ. 0. a.nrt. _ihound(i, j ,k-1). ne. 0)then
aaf = 0.0
af(i,j,k) = 0.0

else
apuf = (apu(i,j ,lr1-l-:1p11(-i ,j ,kk))/2
apvf = (apv(i,j,k)+apv(i,j,kk))/2
apwf = (apw(i,j,k)+apw(i,j,kk))/2
aaf = rhob(i,j,kk)*(zetxb(i,j,kk)*zetx(i,j,k)/apuf

* +zetyb(i,j,kk)*zety(i,j,k)/apvf
* +zetzb(i,j ,kk)*zetz(i,j ,k)/apwf)
* /(tjacb(i,j,kk)*tjac(i,j,k))

af(i,j,k)=rhob(i,j,kk)*(zetxb(i,j,kk)*zetx(i,j,kk)/apuf
* +zetyb(i,j,kk)*zety(i,j,kk)/apvf
* +zetzb(i,j,kk)*zetz(i,j,kk)/apwf)
* /(tjacb(i,j,kk)*tjac(i,j,kk))

*
*

*

*
*
*

*
*
*

*
*

endif

app(i,j,k) = aae + aaw + aan + aas + aab + aaf

dens= (rhoo(i,j,k)-rhop(i,j,k))/(delt*tjac(i,j,k))
beast=

bwest =

- (exixe(i,j,k)*ue(i,j,k)
+exiye(i,j,k)*ve(i,j,k)
+exize(i,j,k)*we(i,j,k))*rhoe(i,j,k)/tjace(i,j,k)

+ (exixe(ii,j,k)*ue(ii,j,k)
+exiye(ii,j,k)*ve(ii,j,k)
+exize(ii,j,k)*we(ii,j,k))*rhoe(ii,j,k)/tjace(ii,j,k)

bnorth =
- (etaxn(i,j,k)*un(i,j,k)

+etayn(i,j,k)*vn(i,j,k)
+etazn(i,j,k)*wn(i,j,k))*rhon(i,j,k)/tjacn(i,j,k)

bsouth =
+ (etaxn(i,jj,k)*un(i,jj,k)

+etayn(i,jj,k)*vn(i,jj,k)

PAGE 00035

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00036

* +etazn(i,jj,k)*wn(i,jj,k))*rhon(i,jj,k)/tjacn(i,jj,k)

jr

-Ir

*

*
*
*

bback

bfront

=

=

- (zetxb(i,j,k)*ub(i,j,k)
+zetyb(i,j,k)*vb(i,j,k)
+zetzb(i,j,k)*wb(i,j,k))*rhob(i,j,k)/tjacb(i,j,k)

+ (zetxb(i,j,kk)*ub(i,j.kk)
+zetyb(i,j,kk)*vb(J.j,kk)
+zetzb(i.j,kk)*wl,(i,j,kk))*rhob(i,j,kk)/tjacb(i,j,kk)

bb(i,j,k) = beast~hwest+hnorth+bsouth+bback+bfront+dens

resp(k) = resp(k) + dAhs(bh(i ~J,k))
diffp = diffp + dabs(bb(i,j.kl)

40 continue
30 continue

diffp = diffp/fmin

return

c--
Entry PPREPI (iii,kkk,jne,jnb)

c--

*** This section prepares the TOMA coefficients
*** sweeping in I - direction

jnbl = jnb + 1
jnel = jne - 1

jb = jbound(iii,jnb,kkk)
aaj(jnb) = 1.0
bhj(jnb) = bp(jb)
ccj(jnb) = 0.0
ddj(jnb) = cp(jb)

do 60 j = jnbl,jnel.
aaj(j) = app(iii,j,kkk)
bbj(j) = an(iii,j,kkk)
ccj(j) = as(iii,j,kkk)
ddj(j) = ae(iii,j,kkk)*pcor(iii+l,j,kkk)

* + aw(iii,j,kkk)*pcor(iii-1,j,kkk)
* + ab(iii,j,kkk)*pcor(iii,j,kkk+l)
* + af(iii,j,kkk)*pcor(iii,j,kkk-l)+bb(iii,j,kkk)

60 continue

jb = jbound(iii,jne,kkk)
aaj (jne) = 1. 0
bbj(jne) = 0.0
ccj(jne) = bp(jb)
ddj(jne) = cp(jb)

return

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00037

c--
Entry PPREPJ (jjj,kkk,ine,inb)

c--

*** This section prepares the TDMA coefficients
*** sweeping in J - direction

inbl = inb +- 1
inel = ine - 1

jb = jbound(inb,jjj,kkk)
aai(inb) = 1.0
bbi(inb) = bp(jb)
cci(inb) = 0.0
ddi(inb) = cp(jb)

do 70 i = inbl,inel
aai(i) = app(i,jjj,kkk)
bbi(i) = ae(i,jjj,kkk)
cci(i) = aw(i,jjj,kkk)
ddi(i) = an(i,jjj,kkk)*pcor(i,jjj+l,kkk)

* + as(i,jjj,kkk)*pcor(i,jjj-1,kkk)
* + ab(iii,j,kkk)*pcor(i,jjj,kkk+l)
* + af(iii,j,kkk)*pcor(i,jjj,kkk-l)+bb(i,jjj,kkk)

70 continue

jb = jbound(ine,jjj,kkk)
aai (ine) = 1. 0
bbi(ine) = 0.0
cci(ine) = bp(jb)
ddi(ine) = cp(jb)

return
end

Subroutine GAMH
-in':**1':ir*ir-ir**i'r·k-ir-.'r,'r**i':1:**1r.,'(irir*1r**ir·lr*,'r,'r**.,'(.,'(*1r·kirir1rir,'r"l'dr**''r-,'rir1r,'(-,'(,'r·lr*1r1r,'r1(.,'(

INCLUDE 'COMM'

restken = 0.0
reseps = 0.0

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
if(jbound(i,j,k).ne.O)goto 10

ii = i-1
jj = j-1
kk = k-1

dudx = tjac(i,j,k)*(exixe(i,j,k)*ue(i,j,k)/tjace(i,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* - exixe(ii,j,k)*ue(ii,j,k)/tjace(ii,j,k)
* + etaxn(i,j,k)*un(i,j,k)/tjacn(i,j,k)
* - etaxn(i,jj,k)*un(i,jj,k)/tjacn(i,jj,k)
* + zetxb(i,j,k)*ub(i,j,k)/tjacb(i,j,k)
* - zetxb(i,j,kk)*ub(i,j,kk)/tjacb(i,j,kk))

dudy = tjac(i,j,k)*(exiye(i,j,k)*ue(i,j,k)/tjace(i,j,k)
* - exiye(ii,j,k)*ue(ii,j,k)/tjace(ii,j,k)
* + etayn(i,j ,k)'"'un(i,j ,k)/tjacn(i,j ,k)
* - etayn(i,jj,k)*un(i,jj,k)/tjacn(i,jj,k)
* + zetyh(i,j ,k)-''"nh(i,j ,k)/tjacb(i,j ,k)
* - zetyh(i,j,kk)*ub(i,j,kk)/tjacb(i,j,kk))

dudz = tj ac (i, j, k)''t (ex iv .. (i., j, k)"'c-11e (i, j, k) /tj ace (i, j, k)
* - exizc(ii,j,k)*ue(ii,j,k)/tjace(ii,j,k)
* + etazn(i.j,k)*un(i,j,k)/tjacn(i,j,k)
* - etazn(Cj_j,k)"l''"un(j ,jj,k)/tjacn(i,jj,k)
* + zetzb(i,j,k)*ub(i,j,k)/tjacb(i,j,k)
* - zetzb(i. j ,kk),'c-11h(i,j ,kk)/tjacb(i,j ,kk))

dvdx = tjac(i,j,k)*(exixe(i, Lk)"''"v'-'(; ,j,k)/tjace(i,j,k)
* - exixe(ii,j,k)*ve(ii,j,k)/tjace(ii,j,k)
* + etaxn(i,j,k)*vn(i,j,k)/tjacn(i,j,k)
* - etaxn(i,jj,k)*vn(i,jj,k)/tjacn(i,jj,k)
* + zetxb(i,j,k)*vb(i,j,k)/tjacb(i,j,k)
* - zetxb(i,j,kk)*vb(i,j,kk)/tjacb(i,j,kk))

dvdy = tjac(i,j,k)*(exiye(i,j,k)*ve(i,j,k)/tjace(i,j,k)
* - exiye(ii,j,k)*ve(ii,j,k)/tjace(ii,j,k)
* + etayn(i,j,k)*vn(i,j,k)/tjacn(i,j,k)
* - etayn(i,jj,k)*vn(i,jj,k)/tjacn(i,jj,k)
* + zetyb(i,j,k)*vb(i,j,k)/tjacb(i,j,k)
* - zetyb(i,j,kk)*vb(i,j,kk)/tjacb(i,j,kk))

dvdz = tjac(i,j,k)*(exize(i,j,k)*ve(i,j,k)/tjace(i,j,k)
* - exize(ii,j,k)*ve(ii,j,k)/tjace(ii,j,k)
* + etazn(i,j,k)*vn(i,j,k)/tjacn(i,j,k)
* - etazn(i,jj,k)*vn(i,jj,k)/tjacn(i,jj,k)
* + zetzb(i,j,k)*vb(i,j,k)/tjacb(i,j,k)
* - zetzb(i,j,kk)*vb(i,j,kk)/tjacb(i,j,kk))

dwdx = tjac(i,j,k)*(exixe(i,j,k)*we(i,j,k)/tjace(i,j,k)
* - exixe(ii,j,k)*we(ii,j,k)/tjace(ii,j,k)
* + etaxn(i,j,k)*wn(i,j,k)/tjacn(i,j,k)
* - etaxn(i,jj,k)*wn(i,jj,k)/tjacn(i,jj,k)
* + zetxb(i,j,k)*wb(i,j,k)/tjacb(i,j,k)
* - zetxb(i,j,kk)*wb(i,j,kk)/tjacb(i,j,kk))

dwdy = tjac(i,j,k)*(exiye(i,j,k)*we(i,j,k)/tjace(i,j,k)
* - exiye(ii,j,k)*we(ii,j,k)/tjace(ii,j,k)

*
-,'c

*
*

dwdz =
*
*

*
,'c

*

+ etayn(i,j,k)*wn(i,j,k)/tjacn(i,j,k)
- etayn(i,jj,k)*wn(i,jj,k)/tjacn(i,jj,k)
+ zetyb(i,j,k)*wb(i,j,k)/tjacb(i,j,k)
- zetyb(i,j,kk)*wb(i,j,kk)/tjacb(i,j,kk))

tjac(i,j,k)*(exize(i,j,k)*we(i,j,k)/tjace(i,j,k)
- exize(ii,j,k)*we(ii,j,k)/tjace(ii,j,k)
+ etazn(i,j ,k),1;-wn(i,j ,k)/tjacn(i,j ,k)
- etazn(i,jj,k)*wn(i,jj,k)/tjacn(i,jj,k)
+ zetzb(i,j,k)*wb(i,j,k)/tjacb(i,j,k)
- zetzb(i,j,kk)*wb(i,j,kk)/tjacb(i,j,kk))

PAGE 00038

Gamma(i,j,k) = 2*(dudx**2) + 2*(dvdy**2) + 2*(dwdz**2) + dudy**2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* + dudz**2 + dvdx**2 + dvdz**2 + dwdx**2 + dwdy**2
* + 2*dudy.,'rdvdx + 2*dvdz1'rdwdy + 2*dwdx-;'rdudz

restken = restken + tken(i,j,k)
reseps = reseps + eps(i,j,k)

10 continue

return
end

PAGE 00039

Subroutine KCOEFF
*-lr***-lr*****-lr*-lr*******-lr***-lr***-ldr****-lr-lr***-,'r****-,'r*-,'r*·ldr-,'r-,'r*-,'r-,'r-lr*-,'r*****-,'r*-lr*-lr**

*** This subroutine calculates the coefficients to solve the
*** kinetic energy turbulence equation

INCLUDE 'COMM'

*** Set all the constants equal to zero

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
an (.i , j , k) = 0 . 0
as(i,j,k) = 0.0
a.e (i , j , k) = 0 . 0
aw(i,j,k) = 0.0
ab(i,j,k) = 0.0
af(i,j,k) = 0.0
apk(i,j,k) = 0.0
apo(i,j,k) = 0.0
source(i,j,k) = 0.0

10 continue

*** Calculate the coefficients

*
*

*
*

*

do 20 k = 2,knml
do 20 i = 2,inml

do 20 j = 2,jnml

if(jbound(i,j,k).gt.O)goto 20
ii = i-1
jj = j-1
kk = k-1

conve = (exixe(i,j,k)*ue(i,j,k)
+ exiye(i,j,k)*ve(i,j,k)
+ exize(i,j,k)*we(i,j,k))*rhoe(i,j,k)/tjace(i,j,k)

convw = (exixe(ii,j,k)*ue(ii,j,k)
+ exiye(ii,j,k)*ve(ii,j,k)
+ exize(ii,j,k)*we(ii,j,k))*rhoe(ii,j,k)/tjace(ii,j,k)

convn = (etaxn(i,j,k)*un(i,j,k)
+ etayn(i,j,k)*vn(i,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*

*
*

*
*

*
*

convs

convb

convf

+ etazn(i,j ,k)*wn(i,j ,k)).,'rrhon(i,j ,k)/tjacn(i,j ,k)
= (etaxn(i,jj,k)*un(i,jj,k)
+ etayn(i,jj,k)*vn(i,jj,k)
+ etazn(i,jj,k)*wn(i,jj,k))*rhon(i,jj,k)/tjacn(i,jj,k)
= (zetxb(i,j,k)*ub(i,j,k)
+ zetyb(i,j,k)*vb(i,j,k)
+ zetzb(i,j,k)*wb(i,j,k))*rhob(i,j,k)/tjacb(i,j,k)
= (zetxb(i,j,kk)*ub(i,j,kk)
+ zetyb(i,j,kk)*vb(i,j,kk)
+ zetzb(i,j,kk)*wb(i,j,kk))*rhob(i,j,kk)/tjacb(i,j,kk)

diffe = (exixe(i,j,k)**2+exiye(i,j,k)**2+exize(i,j,k)**2)
* *vmuturb(i,j,k)/(tjace(i,j,k)*delexie(i,j,k)*sigmk)

diffw = (exixe(ii,j,k)**2+exiye(ii,j,k)**2+exize(ii,j,k)**2)
* *vmuturb(i,j,k)/(tjace(ii,j,k)*delexie(ii,j,k)*sigmk)

diffn = (etaxn (i, j, k)**2+etayn (i, j, k)-lr*2+etazn (i, j, k)Mrz)
* *vmuturb(i,j ,k)/(tjacn(i,j ,k) 1rdeletan(i,j ,k)*sigmk)

cliffs= (etaxn(i,jj,k)**2+etayn(i,jj,k)**2+etazn(i,jj,k)**2)
* *vmuturb(i,j,k)/(tjacn(i,jj,k)*deletan(i,jj,k)*sigmk)

diffb = (zetxb(i,j,k)**2+zetyb(i,j,k)**2+zetzb(i,j,k)**2)
* *vmuturb(i,j,k)/(tjacb(i,j,k)*delzetb(i,j,k)*sigmk)

difff = (zetxb(i,j,kk)**2+zetyb(i,j,kk)**2+zetzb(i,j,kk)**2)
* *vmuturb(i,j,k)/(tjacb(i,j,kk)*delzetb(i,j,kk)*sigmk)

*** First calculate the source term coefficients

*
*
*

*
*
*

*
*
*

*
*
'l'r

*
*
*

*
*

ssl = 0.0
ss2 = 0.0
ss3 = 0.0
if(igrid.eq.l)goto 15

bble

bblw

bb2e

bb2w

bb3n

bb3s

= (exixe(i,j,k)*etaxe(i,j,k)
+ exiye(i,j,k)*etaye(i,j,k)
+ exize(i,j,k)*etaze(i,j,k))

* vmuturb (i,j,k)/(tjace(i,j,k)*sigmk)
= (exixe(ii,j ,k).,'retaxe(ii,j ,k)
+ exiye(ii,j,k)*etaye(ii,j,k)
+ exize(ii,j,k)*etaze(ii,j,k))

* vmuturb (i,j,k)/(tjace(ii,j,k)*sigmk)
= (exixe(i,j,k)*zetxe(i,j,k)
+ exiye(i,j,k)*zetye(i,j,k)
+ exize(i,j,k)*zetze(i,j,k))

* vmuturb (i,j,k)/(tjace(i,j,k)*sigmk)
= (exixe(ii,j,k)*zetxe(ii,j,k)
+ exiye(ii,j,k)*zetye(ii,j,k)
+ exize(ii,j,k)*zetze(ii,j,k))

* vmuturb (i,j,k)/(tjace(ii,j,k)*sigmk)

= (etaxn(i,j,k)*exixn(i,j,k)
+ etayn(i,j,k)*exiyn(i,j,k)
+ etazn(i,j,k)*exizn(i,j,k))

* vmuturb (i,j,k)/(tjacn(i,j,k)*sigmk)
= (etaxn(i,jj,k)*exixn(i,jj,k)
+ etayn(i,jj,k)*exiyn(i,jj,k)
+ etazn(i,jj,k)*exizn(i,jj,k))

PAGE 00040

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

-Ir

bb4n
*
*
-i'r

hh4s
Jr

-Ir

*

bb5b
-rr

*
-Ir

bb5£
-i'r

*
-Ir

bb6b
*
*
*

bb6f
*
*
*

ssl
,'r

*
*

ss2
*
*
*

ss3
*
-Ir

*

* vmuturb (i,j,k)/(tjacn(i,jj,k)*sigmk)
= (etaxn(i,j,k)*zetxn(i,j,k)
+ etayn(i,j,k)*zetyn(i,j,k)
+ etazn(i,j,k)*zetzn(i,j,k))

* vmuturb (i,j,k)/(tjacn(f ,j,k)*sigmk)
= (etaxn(i,jj,k)*zetxn(i,jj.k)
+ etayn(i,jj,k)*zetyn(i,jj.k)
+ etazn(i,jj,k)*zetzn(i,j),k))

* vmuturb (i,j ,k)/(tjacn(i ._jj ,k)*sigmk)

= (zetxb(i,j,k)*exixb(i,j,k)
+ zetyb(i,j ,k).,,'"e.xiyh(i ,_j ,k)
+ zetzb(i,j,k)*exizh(i,).k))

* vmuturb (i ,j,k)/(1 _i,1•·h(i,j,k)')'rsigmk)
= (z et x b (f • j ~ k k) * P Y i .'-: i"' (j_ , j , k k)
+ zetyb(i,j,kk)*exiyb(i,j,kk)
+ zetzb(i,j,kk)*exizb(i,j,kk))
* vmuturb (i,j,k)/(tjacb(i,j,kk)*sigmk)

= (zetxb(i,j,k)*etaxb(i,j,k)
+ zetyb(i,j,k)*etayb(i,j,k)
+ zetzb(i,j,k)*etazb(i,j,k))
* vmuturb (i,j ,k)/(tjacb(i,j ,k)*sigmk)

= (zetxb(i,j,kk)*etaxb(i,j,kk)
+ zetyb(i,j,kk)*etayb(i,j,kk)
+ zetzb(i,j,kk)*etazb(i,j,kk))

* vmuturb (i,j,k)/(tjacb(i,j,kk)*sigmk)

= bble*(tkenne(i,j,k) - tkenne(i,jj,k))
- bblw*(tkenne(ii,j,k) - tkenne(ii,jj ,k))
+ bb2e*(tkenbe(i,j,k) - tkenbe(i,j,kk))

bb2w*(tkenbe(ii,j,k) tkenbe(ii,j ,kk))

= bb3n*(tkenne(i,j,k) - tkenne(ii,j,k))
- bb3s*(tkenne(i,jj,k) - tkenne(ii,jj ,k))
+ bb4n*(tkennb(i,j,k) - tkennb(i,j,kk))
- bb4s*(tkennb(i,jj,k) - tkennb(i,jj,kk))

= bb5b*(tkenbe(i,j,k) - tkenbe(ii,j,k))
- bb5f*(tkenbe(i,j,kk) - tkenbe(ii,j,kk))
+ bb6b*(tkennb(i,j,k) - tkennb(i,jj,k))
- bb6f*(tkennb(i,j,kk) - tkennb(i,jj,kk))

PAGE 00041

15 ccp = (c2*eps(i,j,k)*rhop(i,j,k)
* + O.S*Gamma(i,j,k)*vmuturb(i,j,k))/(tken(i,j,k)*tjac(i,j,k))

bbb = 1.S*Gamma(i,j,k)*vmuturb(i,j,k)/tjac(i,j,k)
* + (c2-l)*rhop(i,j,k)*eps(i,j,k)/tjac(i,j,k)

*** Determine the main finite difference coefficients

*** Eastern boundaries

if(jbound(i,j,k).eq.O.and.jbound(i+l,j,k).eq.nbnd)then
ae(i,j,k) = 0.0
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5
dwall = dabs(etay(1,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

exiss = (exix(i,j,k)+exiy(i,j,k)+exiz(i,j,k))/tjac(i,j,k)
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5)

* *dwall/vmulam
if(Reloc.gt.11.6)then
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam

* /(dwall*dlog(eps(i,j,k)*Reloc)))
else
tauw(i,j ,k) = dabs(-vmulam-,'<'tvel/dwall)

endif
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*exiss

* /(tauw(i,j,k)*tjac(i,j,k))
bbb = tauw(i,j,k)*tvel*exiss/tjac(i,j,k)

else
AE(I,J,K) = DIFFE + DMAXl(-CONVE,ZERO)

endif

*** Western boundaries

if(jbound(i,j,k).eq.O.and.jbound(i-1,j,k).eq.nbnd)then
aw (i , j , k) = 0 . 0
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5
dwall = dabs(etay(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
exiss = (exix(i,j,k)+exiy(i,j,k)+exiz(i,j,k))/tjac(i,j,k)
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5)

* *dwall/vmulam
if(Reloc.gt.11.6)then
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam

* /(dwall*dlog(eps(i,j ,k) 1'<'Reloc)))
else
tauw(i,j,k) = dabs(-vmulam*tvel/dwall)

endif
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*exiss

* /(tauw(i,j,k)*tjac(i,j,k))
bbb = tauw(i,j,k)*tvel*exiss/tjac(i,j,k)

else
AW(I,J,K) = DIFFW + DMAXl(CONVW,ZERO)

endif

*** Northern boundaries

if(jbound(i,j,k).eq.O.and.jbound(i,j+l,k).eq.nbnd)then
an(i,j,k) = 0.0
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
etass = (etax(i,j,k)+etay(i,j,k)+etaz(i,j,k))/tjac(i,j,k)
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5)

* *dwall/vmulam
if(Reloc.gt.11.6)then
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam

* /(dwall*dlog(eps(i,j,k)*Reloc)))
else
tauw(i,j,k) = dabs(-vmulam*tvel/dwall)

endif
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*etass

* /(tauw(i,j,k)*tjac(i,j,k)+tiny)

PAGE 00042

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

bbh = tauw(i,j,k)*tvel*etass/tjac(i,j,k)
else
AN(I,J,K) = DIFFN + DMAXl(-CONVN,ZERO)

endif

*** Southern boundaries

if (jbound (i, j, k). eq. 0. and. j bound (i, j -1, k). eq. nbnd) then
as(i,j,k) = 0.0
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
etass = (etax(i,j,k)+etay(i,j,k)+etaz(i,j,k))/tjac(i,j,k)
Reloc = (cmu**0.25)*rhop(i,_j.k)*(dabs(tken(i,j,k))**0.5)

* *dwall/vmulam
if(Reloc.gt.11.6)then

tauw (i, j, k) = dah" (-caprAfrt.vP.1 *Re loc.,."vmulam
* / (dwall.,,,.rl hg(eps (i, .i, k)'l'rReloc)))

else
tauw(i,j ,k) ~ dabsf-vmuJ.a.m,'rtvel/dwall)

en.di£
ccp = cmu*tvP. I 1'<rhop (i, j, k)il"l'r2*tken (i, j, k)iretass

* / (tauw(J, _i, k)*tjac(i, j, k)+tiny)
bbb = tauw(i,j,k)*tvel*etass/tjac(i,j,k)

else
AS(I,J,K) = DIFFS + DMAXl(CONVS,ZERO)

endif

*** Back boundaries

if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nbnd)then
ab(i,j,k) = 0.0
tvel = (vx(i,j,k)**2+vy(i,j,k)**2)**0.5
dwall = da.bs(exix(i,j ,k)*etay(i,j ,k)/(2i'rtjac(i,j ,k)))
zetss = (zetx(i,j,k)+zety(i,j,k)+zetz(i,j,k))/tjac(i,j,k)
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5)

* *dwal 1/vmula.m
if(Reloc.gt.ll.6)then
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam

* /(dwall*dlog(eps(i,j,k)*Reloc)))
else
tauw(i,j ,k) = dabs(-vmulam-lrtvel/dwall)

endif
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*zetss

* /(tauw(i,j,k)*tjac(i,j,k))
bbb = tauw(i,j,k)*tvel*zetss/tjac(i,j,k)

else
AB(I,J,K) = DIFFB + DMAXl(-CONVB,ZERO)

endif

*** Front boundaries

if(jbound(i,j,k).eq.0.and.jbound(i,j,k-1).eq.nbnd)then
af(i,j,k) = 0.0
tvel = (vx(i,j,k)**2+vy(i,j,k)**2)**0.5
dwall = dabs(exix(i,j,k)*etay(i,j,k)/(2*tjac(i,j,k)))

PAGE 00043

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

zetss = (zetx(i,j,k)+zety(i,j,k)+zetz(i,j,k))/tjac(i,j,k)
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5)

* *dwall/vmulam
if(Reloc.gt.11.6)then
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam

* /(dwall*dlog(eps(i,j,k)*Reloc)))
else
tauw(i,j,k) = dabs(-vmulam*tvel/dwall)

endif
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*zetss

* /(tauw(i,j,k)*tjac(i,j,k)+tiny)

*

bbb = tauw(i,j,k)*tvel*zetss/tjac(i,j,k)
else
AF(I,J,K) = DIFFF + DMAXl(CONVF,ZERO)

endif

apo(i,j,k)
apk(i,j ,k)

= rhoo(i,j,k)/(delt*tjac(i,j,k))
= ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k)
+ ab(i,j,k) + af(i,j,k) + apo(i,j,k) + ccp

source(i,j,k) = ssl + ss2 + ss3 + bbb

20 continue

return

PAGE 00044

c--
Entry KPREPI (iii,kkk,jne,jnb)

c--
-Ir** This section prepares the TOMA coefficients
*** sweeping in I - direction

jnbl = jnb + 1
jnel = jne - 1

jb = jbound(iii,jnb,kkk)
aaj(jnb) = 1. 0
bbj(jnb) = bk(jb)
ccj(jnb) = 0.0
ddj(jnb) = ck(jb)

do 30 j = jnbl,jnel
aaj(j) = apk(iii,j,kkk)/relaxt
bbj(j) = an(iii,j,kkk)
ccj(j) = as(iii,j,kkk)
ddj(j) = ae(iii,j,kkk)*tken(iii+l,j,kkk)

* + aw(iii,j ,kkk)*tken(iii-1,j ,kkk)
* + ab(iii,j,kkk)*tken(iii,j,kkk+l)
* + af(iii,j,kkk)*tken(iii,j,kkk-1)
* + apo(iii,j,kkk)*tkenold(iii,j,kkk) + source(iii,j,kkk)
* + apk(iii,j,kkk)*tken(iii,j,kkk)*(l-relaxt)/relaxt

30 continue

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

jb = jbound(iii,jne,kkk)
aaj(jne) = 1. 0
bbj(jne) = 0.0
ccj(jne) = bk(jb)
ddj(jne) = ck(jb)

return

PAGE 00045

c--
Entry KPREPJ (jjj,kkk,ine,inb)

c--

*** This section prepares the TDMA coefficients
*** sweeping in J - direction

inbl = inb + 1
inel = ine - 1

jb = jbound(inb,jjj,kkk)
aai(inb) = 1. 0
bbi(inb) = bk(jb)
cci(inb) = 0.0
ddi(inb) = ck(jb)

do 40 i = inbl,inel
aai(i) = apk(i,jjj,kkk)/relaxt
bbi(i) = ae(i,jjj,kkk)
cci(i) = aw(i,jjj,kkk)
ddi(i) = an(i,jjj,kkk)*tken(i,jjj+l,kkk)

* + as(i,jjj,kkk)*tken(i,jjj-1,kkk)
* + ab(i,jjj,kkk)*tken(i,jjj,kkk+l)
* + af(i,jjj,kkk)*tken(i,jjj,kkk-1)
* + apo(i,jjj,k.kk')*tkenold(i,jjj,kkk) + source(i,jjj,kkk)
* + apk(i,jjj,kkk)*tken(i,jjj,kkk)*(l-relaxt)/relaxt

40 continue

jb = jbound(ine,jjj,kkk)
aai(ine) = 1.0
bbi(ine) = 0.0
cci(ine) = bk(jb)
ddi(ine) = ck(jb)

return
end

Subroutine ECOEFF
************ir********''r-,'r**ir**''r*-;'r•lr-;b'rici:i:ir-;'r-;'cir*,'r*ic*ir,'r*-,'c-,':icir**''dc-;'r*-;':-i'dc**''c,'r,'dc*ir*

*** This subroutine calculates the coefficients to solve the
*** epsilon turbulence equation

INCLUDE 'COMM'

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: JDFLO FORTRAN Al Universiteit van Pretoria

*** Set all the constants equal to zero

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
an(i,j,k) = 0.0
as(i,j,k) = 0.0
ae(i,j,k) = 0.0
aw(i,j,k) = 0.0
ah(i,j,k) = 0.0
a f (i ·, j , k) = 0 . 0
ape(i,j,k) = 0.0
apo(i,j,k) = 0.0
source(i,j,k) = 0.0

10 continue

*** Calculate the coefficients

do 20 k = 2,knml
do 20 i = 2,inml

do 20 j = 2,jnml

if(jbound(i,j,k).gt.O)goto 20
ii = i-1
jj = j-1
kk = k-1

conve = (exixe(i,j,k)*ue(i,j,k)
* + exiye(i,j,k)*ve(i,j,k)
* + exize(i,j ,k.)*we(i,j ,k))''rrhoe(i,j ,k)/tjace(i,j ,k)

convw = (exixe(ii,j,k)*ue(ii,j,k)
* + exiye(ii,j,k)*ve(ii,j,k)
* + exize(ii,j ,k)*we(ii,j ,k))*rhoe(ii,j ,k)/tjace(ii,j ,k)

convn = (etaxn(i,j,k)*un(i,j,k)
* + etayn(i,j,k)*vn(i,j,k)
* + etazn(i,j,k)*wn(i,j,k))*rhon(i,j,k)/tjacn(i,j,k)

convs
*
*

convb
*
*

convf
*
*

diffe
*

diffw
*

diffn
*

cliffs
*

diffb

= (etaxn(i,jj,k)*un(i,jj,k)
+ etayn(i,jj,k)*vn(i,jj,k)
+ etazn(i,jj,k)*wn(i,jj,k))*rhon(i,jj,k)/tjacn(i,jj,k)
= (zetxb(i,j,k)*ub(i,j,k)
+ zetyb(i,j,k)*vb(i,j,k)
+ zetzb(i,j,k)*wb(i,j,k))*rhob(i,j,k)/tjacb(i,j,k)
= (zetxb(i,j,kk)*ub(i,j,kk)
+ zetyb(i,j,kk)*vb(i,j,kk)
+ zetzb(i,j,kk)*wb(i,j,kk))*rhob(i,j,kk)/tjacb(i,j,kk)

= (exixe(i,j,k)**2+exiye(i,j,k)**2+exize(i,j,k)**2)
*vmuturb (i, j, k) / (tj ace (i, j, k),'rdelexie (i, j, k) 1"s igme)

= (exixe(ii,j,k)**2+exiye(ii,j,k)**2+exize(ii,j,k)**2)
*vmuturb(i,j,k)/(tjace(ii,j,k)*delexie(ii,j,k)*sigme)

= (etaxn (i, j, k)**2+e tayn (i, j, k)**2+etazn (i, j, k)-ldC'2)
*vmuturb(i,j,k)/(tjacn(i,j,k)*deletan(i,j,k)*sigme)

= (etaxn(i,jj,k)**2+etayn(i,jj,k)**2+etazn(i,jj,k)**2)
*vmuturb(i,j,k)/(tjacn(i,jj,k)*deletan(i,jj,k)*sigme)

= (zetxb(i,j,k)**2+zetyb(i,j,k)**2+zetzb(i,j,k)**2)

PAGE 00046

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* *vmuturb(i,j,k)/(tjacb(i,j,k)*delzetb(i,j,k)*sigme)
difff = (zetxb(i,j,kk)**2+zetyb(i,j,kk)**2+zetzb(i,j,kk)**2)

* 1<'vmuturb(i,j ,k)/(tjacb(i,j ,kk)*delzetb(i,j ,kk)*sigme)

*** First calculate the source term coefficients

*
*
·i'C'

*
*
*

*

*
*

*
"l'r

*

*
*
*

*
*
*

*

*
*

*
*
*

*
*
*

*
*
*

"l'r

ssl = 0.0
ss2 = 0.0
ss3 = 0.0
if(igrid.eq.l)goto 15

bble

bblw

bb2e

bb2w

bb3n

bb3s

bb4n

bb4s

bb5b

bb5f

bb6b

= (exixe(i,j,k)*etaxe(i,j,k)
+ exiye(i,j,k)*etaye(i,j,k)
+ exize(i,j,k)*etaze(i,j,k))

* vmuturb(i,j,k)/(tjace(i,j,k)*sigme)
= (exixe(ii,j,k)*etaxe(ii,j,k)
+ exiye(ii,j,k)*etaye(ii,j,k)
+ exize(ii,j,k)*etaze(ii,j,k))

* vmuturb (i, j, k) / (tj ace (ii, j, k)'>'<'s igme)
= (exixe(i,j,k)*zetxe(i,j,k)
+ exiye(i,j,k)*zetye(i,j,k)
+ exize(i,j,k)*zetze(i,j,k))

* vmuturb(i,j,k)/(tjace(i,j,k)*sigme)
= (exixe(ii,j,k)*zetxe(ii,j,k)
+ exiye(ii,j,k)*zetye(ii,j,k)
+ exize(ii,j,k)*zetze(ii,j,k))

* vmuturb(i,j,k)/(tjace(ii,j,k)*sigme)

= (etax.n(i,j ,k)*exixn(i,j ,k)
+ etayn(i,j,k)*exiyn(i,j,k)
+ etazn(i,j,k)*exizn(i,j,k))

* vmuturb(i,j,k)/(tjacn(i,j,k)*sigme)
= (etaxn(i,jj,k)*exixn(i,jj,k)
+ etayn(i,jj,k)*exiyn(i,jj,k)
+ etazn(i,jj,k)*exizn(i,jj,k))

* vmuturb(i,j,k)/(tjacn(i,jj,k)*sigme)
= (etaxn(i,j,k)*zetxn(i,j,k)
+ etayn(i,j,k)*zetyn(i,j,k)
+ etazn(i,j,k)*zetzn(i,j,k))

* vmuturb(i,j,k)/(tjacn(i,j,k)*sigme)
= (etaxn(i,jj,k)*zetxn(i,jj,k)
+ etayn(i,jj,k)*zetyn(i,jj,k)
+ etazn(i,jj,k)*zetzn(i,jj,k))

* vmuturb(i,j,k)/(tjacn(i,jj,k)*sigme)

= (zetxb(i,j,k)*exixb(i,j,k)
+ zetyb(i,j,k)*exiyb(i,j,k)
+ zetzb(i,j,k)*exizb(i,j,k))

* vmuturb(i,j ,k)/(tja.cb(i,j ,k)i<'sigme)
= (zetxb(i,j,kk)*exixb(i,j,kk)
+ zetyb(i,j,kk)*exiyb(i,j,kk)
+ zetzb(i,j,kk)*exizb(i,j,kk))

* vmuturb(i,j,k)/(tjacb(i,j,kk)*sigme)
= (zetxb(i,j,k)*etaxb(i,j,k)
+ zetyb(i,j,k)*etayb(i,j,k)

PAGE 00047

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al UniversiteH van Pretoria

* + zetzb(i,j,k)*etazb(i,j,k))
* * vmuturb(i,j,k)/(tjacb(i,j,k)*sigme)

bb6f = (zetxb(i,j,kk)*etaxb(i,j,kk)
* + zetyb(i,j,kk)*etayb(i,j,kk)
* + zP-tzb(i,j,kk)*etazb(i,j,kk))
* ~,,. i ·•rnturb(i,j ,k)/(tjacb(i,j ,kk)*sigme)

::;~ 1 - :,!., le''.-(epsne(i,j ,k) epsne(i,jj,k))
bblw*(epsne(ii,j,k) epsne(ii,jj,k))

"';': + bb2e*(epsbe(i,j,k) epsbe(i,j,kk))

* - bb2w*(epsbe(ii,j,k) - epsbe(ii,j,kk))

ss2 = bb3n*(epsne(i,j,k) epsne(ii,j,k))
* - bb3s*(epsne(i,jj,k) - epsne (ii, j j, k))
* + bb4n*(epsnb(i,j,k) - epsnb(i,j,kk))
-ir - bb4s*(epsnb(i,jj,k) - epsnb(i,jj,kk))

ss3 = bb5b*(epsbe(i,j,k) - epsbe(ii,j,k))
* - bb5f*(epsbe(i,j,kk) - epsbe(ii,j,kk))
* + bb6b*(epsnb(i,j,k) - epsnb(i,jj,k))
* - bb6f*(epsnb(i~j,kk) - epsnb(i,jj,kk))

15 ccp = (2*c2-l)*eps(i,j,k)*rhop(i,j,k)/(tken(i,j,k)*tjac(i,j,k))
bbb = (cl*Gamma(i,j,k)*vmuturb(i,j,k)

* + (c2-l)*rhop(i,j,k)*eps(i,j,k))*eps(i,j,k)
* /(tken(i,j,k)*tjac(i,j,k))

*** Determine the main finite difference coefficients

*** Eastern boundaries

if(jbound(i,j,k).eq.O.and.jbound(i+l,j,k).eq.nbnd)then
ae(i,j,k) = 0.0
dwall = dabs(etay(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall)
ccp = great
bbb = great*epsmu

else
AE(I,J,K) = DIFFE + DMAXl(-CONVE,ZERO)

endif

*** Western boundaries

if(jbound(i,j,k).eq.0.and.jbound(i-1,j,k).eq.nbnd)then
aw(i,j,k) = 0.0
dwall = dabs(etay(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
epsmu = (cmu**O. 75)1r (dabs (tken(i, j, k))**1. 5) / (cappa'""dwall)
ccp = grea.t
bbb = great*epsmu

else
AW(I,J,K) = DIFFW + DMAXl(CONVW,ZERO)

endif

·k** Northern boundaries

PAGE 00048

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

if(jbound(i,j,k).eq.O.and.jbound(i,j+l,k).eq.nbnd)then
an(i,j,k) = 0.0
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall)
ccp = great
bbb = great*epsmu

else
AN(I,J,K) = DIFFN + DMAXl(-CONVN,ZERO)

endif

*** Southern boundaries

if(jbound(i,j,k).eq.O.and.jbound(i,j-1,k).eq.nbnd)then
as(i,j,k) = 0.0
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k)))
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall)
ccp = great
bbb = great*epsmu

else
AS(I,J,K) = DIFFS + DMAXl(CONVS,ZERO)

endif

*** Back boundaries

if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nbnd)then
ab(i,j,k) = 0.0
dwall = dabs(exix(i,j,k)*etay(i,j,k)/(2*tjac(i,j,k)))
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall)
ccp = great
bbb = great*epsmu

else
AB(I,J,K) = DIFFB + DMAXl(-CONVB,ZERO)

endif

*** Front boundaries

*

if(jbound(i,j,k).eq.0.and.jbound(i,j,k-1).eq.nbnd)then
af(i,j,k) = 0.0
dwall = dabs(exix(i,j,k)*etay(i,j,k)/(2*tjac(i,j,k)))
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall)
ccp = great
bbb = great*epsmu

else
AF(I,J,K) = DIFFF + DMAXl(CONVF,ZERO)

endif

apo(i,j,k)
ape(i,j,k)

= rhoo(i,j,k)/(delt*tjac(i,j,k))
= a.e(i,j,k) + aw(.i,j,k) + an(i,j,k) + as(i,j,k)
+ ab(i,j,k) + af(i,j,k) + apo(i,j,k) + ccp

source(i,j,k) = ssl + ss2 + ss3 + bbb

20 continue

return

PAGE 00049

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00050

c--
Entry EPREPI (iii,kkk,jne,jnb)

c--

This section prepares the TDMA coefficients
sweeping in I - direction

jnbl = jnb + 1
jnel = jne - 1

jb = jbound(iii,jnb,kkk)
aaj (jnb) = 1. 0
bbj(jnb) = be(jb)
ccj(jnb) = 0.0
ddj(jnb) = ce(jb)

do 30 j = jnhl,jnel
aaj(j) = ape(iii,j,kkk)/relaxt
bbj(j) = an(iii,j,kkk)
ccj(j) = as(iii,j,kkk)
ddj(j) = ae(iii,j,kkk)*eps(iii+l,j,kkk)

* + aw(iii,j,kkk)*eps(iii-1,j,kkk)
* + ab(iii,j,kkk)*eps(iii,j,kkk+l)
* + af(iii,j,kkk)*eps(iii,j,kkk-1)
* + apo(iii,j,kkk)*epsold(iii,j,kkk) + source(iii,j,kkk)
* + ape(iii,j,kkk)*eps(iii,j,kkk)*(l-relaxt)/relaxt

30 continue

jb = jbound(iii,jne,kkk)
aaj (jne) = 1. 0
bbj(jne) = 0.0
ccj(jne) = be(jb)
ddj(jne) = ce(jb)

return

c--
Entry EPREPJ (jjj,kkk,ine,inb)

c-----------------------~--
*** This section prepares the TDMA coefficients
*** sweeping in J - direction

inbl = inb + 1
inel = ine - 1

jb = jbound(inb,jjj,kkk)
aai(inb) = 1. 0
bbi(inb) = be(jb)
cci(inb) = 0.0
ddi(inb) = ce(jb)

do 40 i = inbl,inel
aai(i) = ape(i,jjj,kkk)/relaxt

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

40

bbi(i)
cci(i)
ddi(i)

*
*
*
*
*

continue

= ae(i,jjj,kkk)
= aw(i,jjj,kkk)
= an(i,jjj,kkk)*eps(i,jjj+l,kkk)
+ as(i,jjj,kkk)*eps(i,jjj-1,kkk)
+ ab(i,jjj,kkk)*eps(i,jjj,kkk+l)
+ af(i,jjj,kkk)*eps(i,jjj,kkk-1)
+ apo(i,jjj,kkk)*epsold(i,jjj,kkk) + source(i,jjj,kkk)
+ ape(i,jjj,kkk)*eps(i,jjj,kkk)*(l-relaxt)/relaxt

jb = jbound(ine,jjj,kkk)
aai(ine) = 1.0
bbi(ine) = 0.0
cci(ine) = be(jb)
ddi(ine) = ce(jb)

return
end

Subroutine SOLVE

PAGE 00051

-lr·k•k-,'r-lr-lr***-lr**-lr*-lr****-lr*-,'r-lr-lr*-,'r*-lr**-lr***-lr-lr-i'r-,'r-,'r*-lr**"''r*-i'r~'r**-lr**-i'r,'r-lr,'r-lr-lr-,'r-lr-lr**-lr-,'r-,'r-,'r·k*

*** This subroutine solves the flow with TDMA

INCLUDE 'COMM'

c--
Entry TDMAI (ii,kk,fi,nje,njb)

c--

*** TDMA along a North-South strip

njbl = njb + 1
njel = nje - 1

ppj(njb) = bbj(njb)/aaj(njb)
qqj(njb) = ddj(njb)/aaj(njb)

do 10 j = njbl,nje
denom = aaj(j) - ccj(j)*ppj(j-1)
ppj(j) = bbj(j)/denom
qqj(j) = (ddj(j) + ccj(j)*qqj(j-1))/denom

10 continue

fi(ii,nje,kk) = qqj(nje)
do 20 j = njel,njb,-1
fi(ii,j,kk) = ppj(j)*fi(ii,j+l,kk) + qqj(j)

20 continue

return

c--
Entry TDMAJ (jj,kk,fi,nie,nib)

c--

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*** TDMA along a East-West strip

nibl =nib+ 1
niel = nie - 1

ppi(nib) = bbi(nib)/aai(nib)
qqi(nib) = ddi(nib)/aai(nib)

do 30 i = nibl,nie
denom = aai(i) - cci(i)*ppi(i-1)
ppi(i) = bbi(i)/denom
qqi(i) = (ddi(i) + cci(i)*qqi(i-1))/denom

30 continue

fi(nie,jj,kk) = qqi(nie)
do 40 i = niel,nib,-1
fi(i,jj,kk) = ppi(i)*fi(i+l,jj,kk) + qqi(i)

40 continue

return
end

Subroutine ADJUST

PAGE 00052

-lc**-lci'r*•k-;'r,'c,'c-,'r-lr·k*****''cic**-lrir-,'r,'r,'rir*-ldr,'r-,'c**-ldr*ir,'r*"l'rir*-lrir*ir**-ld:,'ridr,'r**-lri:*-lr-;'c***''rir*-,'r*

*** This subroutine corrects the pressures and the velocities
*** for cellwise continuity

INCLUDE 'COMM'

do 10 k _= 2,knml
do 10 i = 2,inml

do 20 j = 2,jnml
if(jbound(i,j,k).gt.O)goto 20.

*** Correct the pressures

pp(i,j,k) = pp(i,j,k) + pcor(i,j,k)

*** Correct the velocities

vxcor = (exix(i-1,j,k)*pcor(i-1,j,k)/tjac(i-1,j,k)
* - exix(i+l,j,k)*pcor(i+l,j,k)/tjac(i+l,j,k)
* + etax(i,j-1,k)*pcor(i,j-1,k)/tjac(i,j-l,k)
* - etax(i,j+l,k)*pcor(i,j+l,k)/tjac(i,j+l,k)
* + zetx(i,j,k-l)*pcor(i,j,k-1)/tjac(i,j,k-1)
* - zetx(i,j,k+l)*pcor(i,j,k+l)/tjac(i,j,k+l))/(2*apu(i,j,k)
* *(1/relax - 1))

vxstar(i,j,k) = vxstar(i,j,k) + vxcor

vycor = (exiy(i-1,j,k)*pcor(i-1,j,k)/tjac(i-1,j,k)
* - exiy(i+l,j,k)*pcor(i+l,j,k)/tjac(i+l,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* + etay(i,j-1,k)*pcor(i,j-1,k)/tjac(i,j-1,k)
· * - etay(i,j+l,k)*pcor(i,j+l,k)/tjac(i,j+l,k)

* + zety(i,j,k-l)*pcor(i,j,k-1)/tjac(i,j,k-1)
* - zety(i,j,k+l)*pcor(i,j,k+l)/tjac(i,j,k+l))/(2*apv(i,j,k)
* *(1/relax - 1))

vystar(i,j,k) = vystar(i,j,k) + vycor

vzcor = (exiz(i-1,j,k)*pcor(i-1,j,k)/tjac(i-1,j,k)
* - exiz(i+l,j,k)*pcor(i+l,j,k)/tjac(i+l,j,k)
* + etaz(i,j-1,k)*pcor(i,j-1,k)/tjac(i,j-1,k)
* - etaz(i,j+l,k)*pcor(i,j+l,k)/tjac(i,j+l,k)
* + zetz(i,j,k-l)*pcor(i,j,k-1)/tjac(i,j,k-1)
* - zetz(i,j,k+l)*pcor(i,j,k+l)/tjac(i,j,k+l))/(2*apw(i,j,k)
* *(1/relax - 1))

vzstar(i,j,k) = vzstar(i,j,k) + vzcor

20 continue
10 continue

do 40 k = 2,knml
do 40 j = 2,jnml

do 40 i = 2,inml
if(jbound(i,j,k).gt.O)goto 40
vx(i,j,k) = vxstar(i,j,k)
vy(i,j,k) = vystar(i,j,k)
vz(i,j,k) = vzstar(i,j,k)

40 continue

return
end

PAGE 00053

*-lr-lr*********************·lr*******-lr*,'r**-lr**-lr****-lr**-lr****-lr*-lr*·i'r*******-lr,'r****
Function APECL (peclet)

-lr**-lr*****-ldr*-,'r*-,'r***i'r***-lr-;'r-lr**''r*,'r***-lr*,'r***"'r***i'r-lr***-lr-lr*-lr*****i'r-lr*,'r******·lr,'r·k*

*** This function selects the type of differencing

INCLUDE 'COMM'

*** Central difference
if(kapecl.eq.1) apecl = 1.0-0.S*peclet

*** Upwind difference
if(kapecl.eq.2) apecl = 1.0

*** Hybrid difference
if(kapecl.eq.3) apecl = dmaxl(zero,l.0-0.5*peclet)

*** Power law difference
if(kapecl.eq.4) apecl = dmaxl(zero,(1.0-0.l*peclet)**S)

*** Exponential difference
if(kapecl.eq.S)then
if(peclet.eq.zero)peclet = 0.00000001
apecl = peclet/(exp(peclet)-1.0)
endif

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00054

end

Subroutine INTPOLV
*****-lr*****-lr**************-lr******-lr**-lr**-lr****-lr**"Tr-lr-lr-lr**-lr*****-lr*-;~-lr***-lr****

*** This subroutine interpolates th~ velocities at the cell walls

INCLUDE 'COMM'

*** (u,v,w) - Velocities represe11ts interpolated velocities between
*** major grid points and (vx,vy,vz) - velocities are the
*** calculated velocities

*** Interpolate velocities on EA8tern ~~11 walls

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 11 = 1,lobs(j,k)
nie2 = iiend(ll,j,k) - 2
nibl = iibeg(ll,j,k) + 1
do 10 i = nibl,nie2
ue(i,j,k) = vxstar(i+l,j,k)*fl(i,j,k)

* + vxstar(i,j,k)*(l-fl(i,j,k))
ve(i,j,k) = vystar(i+l,j,k)*fl(i,j,k)

* + vystar(i,j,k)*(l-fl(i,j,k))
we(i,j,k) = vzstar(i+l,j,k)*fl(i,j,k)

* + vzstar(i,j,k)*(l-fl(i,j,k))
10 continue

*** Interpolate velocities on Northern cell walls

do 20 k = 2,knml
do 20 i = 2,inml

do 20 mm= 1,mobs(i,k)
nje2 = jjend(mm,i,k) - 2
njbl = jjbeg(mm,i,k) + 1
do 20 j = njbl,nje2
un(i,j,k) = vxstar(i,j+l,k)*f2(i,j,k)

* + vxstar(i,j,k)*(l-f2(i,j,k))
vn(i,j,k) = vystar(i,j+l,k)*f2(i,j,k)

* + vystar(i,j,k)*(l-f2(i,j,k))
wn(i,j,k) = vzstar(i,j+l,k)*f2(i,j,k)

* + vzstar(i,j,k)*(l-f2(i,j,k))
20 continue

*** Interpolate velocities on Backward facing cell walls

do 30 j = 2,jnml
do 30 i = 2,inml

do 30 nn = 1,nobs(i,j)
nke2 = kkend(nn,i,j) - 2
nkbl = kkbeg(nn,i,j) + 1
do 30 k = nkbl,nke2
ub(i,j,k) = vxstar(i,j,k+l)*f3(i,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* + vxstar(i,j,k)*(l-f3(i,j,k))
vb(i,j,k) = vystar(i,j,k+l)*f3(i,j,k)

* + vystar(i,j,k)*(l-f3(i,j,k))
wb(i,j,k) = vzstar(i,j,k+l)*f3(i,j,k)

* + vzstar(i,j,k)*(l-f3(i,j,k))
30 continue

*** Interpolation at Eastern cell walls for strong
*** pressure-velocity coupling

do 40 k = 2,knml
do 40 j = 2,jnml

do SO 11 = 1,lobs(j,k)
nie2 = iiend(ll,j,k) 2
nie3 = iiend(ll,j,k) 3
nibl = iibeg(ll,j,k) + 1
nib2 = iibeg(ll,j,k) + 2
if(nie3.lt.nib2)goto 40
do 60 i = nib2,nie3
I= i-1
ue(i,j,k) = ue(i,j,k)

* - (exixe(l,j,k)*pie(l,j,k)/tjace(l,j,k)
* - exixe(i,j,k)*pie(i,j,k)/tjace(i,j,k))/(2*apu(i,j,k))
* - (exixe(i,j,k)*pie(i,j,k)/tjace(i,j,k)

PAGE 00055

* - exixe(i+l,j,k)*pie(i+l,j,k)/tjace(i+l,j,k))/(2*apu(i+l,j,k))
* + (exix(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - exix(i+l,j,k)*pp(i+l,j,k)/tjac(i+l,j,k))
* /((apu(i,j,k)+apu(i+l,j,k))/2)

ve(i,j,k) = ve(i,j,k)
* - (exiye(l,j,k)*pie(l,j,k)/tjace(l,j,k)
* - exiye(i,j,k)*pie(i,j,k)/tjace(i,j,k))/(2*apv(i,j,k))
* - (exiye(i,j,k)*pie(i,j,k)/tjace(i,j,k)
* - exiye(i+l,j,k)*pie(i+l,j,k)/tjace(i+l,j,k))/(2*apv(i+l,j,k))
* + (exiy(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - exiy(i+l,j,k)*pp(i+l,j,k)/tjac(i+l,j,k))
* /((apv(i,j,k)+apv(i+l,j,k))/2)

we(i,j,k) = we(i,j,k)
* - (exize(l,j,k)*pie(l,j,k)/tjace(l,j,k)
* - exize(i,j,k)*pie(i,j,k)/tjace(i,j,k))/(2*apw(i,j,k))
* - (exize(i,j,k)*pie(i,j,k)/tjace(i,j,k)
* - exize(i+l,j,k)*pie(i+l,j,k)/tjace(i+l,j,k))/(2*apw(i+l,j,k))
* + (exiz(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - exiz(i+l,j,k)*pp(i+l,j,k)/tjac(i+l,j,k))
* /((apw(i,j,k)+apw(i+l,j,k))/2)

60 continue
SO continue
40 continue

*** Interpolation at Northern cell walls for strong
*** pressure-velocity coupling

do 70 k = 2,knml
do 70 i = 2,inml

do 80 mm= 1,mobs(i,k)
nje2 = jjend(mm,i,k) - 2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

nje3 = jjend(mm,i,k) - 3
njbl = jjbeg(mm,i,k) + 1
njb2 = jjbeg(mm,i,k) + 2
if(nje3.lt.njb2)goto 70
do 90 j = njb2,nje3

m = j-1
un(i,j,k) = un(i,j,k)
(etaxn(i,m,k)*pin(i,m,k)/tjacn(i,m,k)
etaxn(i,j,k)*pin(i,j,k)/tjacn(i,j,k))/(2*apu(i,j,k))

* - (etaxn(i,j,k)*pin(i,j,k)/tjacn(i,j,k)

PAGE 00056

* - etaxn(i,j+l,k)*pin(i,j+l,k)/tjacn(i,j+l,k))/(2*apu(i,j+l,k))
* + (etax(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - etax(i,j+l,k)*pp(i,j+l,k)/tjac(i,j+l,k))
* /((apu(i,j+l,k)+apu(i,j,k))/2)

vn(i,j,k) = vn(i,j,k)
* - (etayn(i,m,k)*pin(i,m,k)/tjacn(i,m,k)
* - etayn(i,j,k)*pin(i,j,k)/tjacn(i,j,k))/(2*apv(i,j,k))
* - (etayn(i,j,k)*pin(i,j,k)/tjacn(i,j,k)
* - etayn(i,j+l,k)*pin(i,j+l,k)/tjacn(i,j+l,k))/(2*apv(i,j+l,k))
* + (etay(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - etay(i,j+l,k)*pp(i,j+l,k)/tjac(i,j+l,k))
* /((apv(i,j+l,k)+apv(i,j,k))/2)

wn(i,j,k) = wn(i,j,k)
* - (etazn(i,m,k)*pin(i,m,k)/tjacn(i,m,k)
* - etazn(i,j ,k)-,"t-pin(i,j ,k)/tjacn(i,j ,k))/(2*apw(i,j ,k))
* - (etazn(i,j,k)*pin(i,j,k)/tjacn(i,j,k)
* - etazn(i,j+l,k)*pin(i,j+l,k)/tjacn(i,j+l,k))/(2*apw(i,j+l,k))
* + (etaz(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - etaz(i,j+l,k)*pp(i,j+l,k)/tjac(i,j+l,k))
* /((apw(i,j+l,k)+apw(i,j,k))/2)

90 continue
80 continue
70 continue

*** Interpolation at Backward facing cell walls for strong
*** pressure-velocity coupling

do 100 j = 2,jnml
do 100 i = 2,inml

do 110 nn = 1,nobs(i,j)
nke2 = kkend(nn,i,j) - 2
nke3 = kkend(nn,i,j) - 3
nkbl = kkbeg(nn,i,j) + 1
nkb2 = kkbeg(nn,i,j) + 2
if(nke3.lt.nkb2)goto 100
do 120 k = nkb2,nke3

n = k-1
ub(i,j,k) = ub(i,j,k)

* - (zetxb(i,j,n)*pib(i,j,n)/tjacb(i,j,n)
* - zetxb(i,j,k)*pib(i,j,k)/tjacb(i,j,k))/(2*apu(i,j,k))
* - (zetxb(i,j,k)*pib(i,j,k)/tjacb(i,j,k)
* - zetxb(i,j,k+l)*pib(i,j,k+l)/tjacb(i,j,k+l))/(2*apu(i,j,k+l))
* + (zetx(i,j,k)*pp(i,j,k)/tjac(i,j,k)
* - zetx(i,j,k+l)*pp(i,j,k+l)/tjac(i,j,k+l))
* /((apu(i,j,k+l)+apu(i,j,k))/2)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00057

vb(i,j,k) = vb(i,j,k)
* -
* -
* -
* -
* +
* -
*

(zetyb(i,j,n)*pib(i,j,n)/tjacb(i,j,n)
zetyb(i,j,k)*pib(i,j,k)/tjacb(i,j,k))/(2*apv(i,j,k))

(zetyb(i,j,k)*pib(i,j,k)/tjacb(i,j,k)
zetyb(i,j,k+l)*pib(i,j,k+l)/tjacb(i,j,k+l))/(2*apv(i,j,k+l))

(zety(i,j,k)*pp(i,j,k)/tjac(i,j,k)
zety(i,j,k+l)*pp(i,j,k+l)/tjac(i,j,k+l))
/((apv(i,j,k+l)+apv(i,j,k))/2)

* -
* -
* -
* -
* +
* -
*

wb(i,j,k) = wb(i,j,k)
(zetzb(i,j,n)*pib(i,j,n)/tjacb(i,j,n)
zetzb(i,j,k)*pib(i,j,k)/tjacb(i,j,k))/(2*apw(i,j,k))

(zetzb(i,j,k)*pib(i,j,k)/tjacb(i,j,k)
zetzb(i,j,k+l)*pib(i,j,k+l)/tjacb(i,j,k+l))/(2*apw(i,j,k+l))

(zetz(i,j,k)*pp(i,j,k)/tjac(i,j,k)
zetz(i,j,k+l)*pp(i,j,k+l)/tjac(i,j,k+l))
/((apw(i,j,k+l)+apw(i,j,k))/2)

120 continue
110 continue
100 continue

130 return
end

Subroutine INTPOL
****,'r*****irir******,'r***,'r***ir****,''******·lrir*,'r,'r****,'rir*i'r-;'r,'dr·k*,'r*irir*****irir·k,'ri:*

*** This subroutine interpolates the pressures and the velocities

INCLUDE 'COMM'

*** Interpolate velocities and pressure on Eastern cell walls

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 11 = 1,lobs(j,k)
niel = iiend(ll,j,k) - 1
nie2 = iiend(ll,j,k) - 2
nib= iibeg(ll,j,k)
nibl = iibeg(ll,j,k) + 1
pie(nib,j,k) = pp(nibl,j,k)
pie(niel,j,k) = pp(niel,j,k)
do 10 i = nibl,nie2
ue(i,j,k) = vx(i+l,j,k)*fl(i,j,k)

* + vx(i,j,k)*(l-fl(i,j,k))
ve(i,j,k) = vy(i+l,j,k)*fl(i,j,k)

* + vy(i,j,k)*(l-fl(i,j,k))
we(i,j,k) = vz(i+l,j,k)*fl(i,j,k)

* + vz(i,j,k)*(l-fl(i,j,k))
pie(i,j,k) = pp(i+l,j,k)*fl(i,j,k)

* + pp(i,j,k)*(l-fl(i,j,k))
if(j.eq.jnml)goto 10
ffa = (1-fl(i,j+l,k))*((f2(i,j,k)+f2(i+l,j,k))/2)
ffb = fl(i,j+l,k)*((f2(i,j,k)+f2(i+l,j,k))/2)
ffc = fl(i,j,k)*(l-(f2(i,j,k)+f2(i+l,j,k))/2)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

ffd = (1-fl(i,j,k))*(l-(f2(i,j,k)+f2(i+l,j,k))/2)
une(i,j,k) = ffa*vx(i,j+l,k) + ffb*vx(i+l,j+l,k)

+ ffc*vx(i+l,j,k) + ffd*vx(i,j,k)
vne(i,j,k) = ffa*vy(i,j+l,k) + ffb*vy(i+l,j+l,k)

+ ffc*vy(i+l,j,k) + ffd*vy(i,j,k)
wne(i,j,k) = ffa*vz(i,j+l,k) + ffb*vz(i+l,j+l,k)

+ ffc*vz(i+l,j,k) + ffd*vz(i,j,k)
i() continue

*

*

*

*

*

*

*

Interpolate velocities and pressure on Northern cell walls

do 20 k = 2,knml
do 20 i = 2,inml

do 20 mm= 1,mobs(i,k)
njel = jjend(mm,i,k) - 1
nje2 = jjend(mm,i,k) - 2
njb = jjbeg(mm,i,k)
njbl = jjbeg(mm,i,k) + 1
pin(i,njb,k) = pp(i,njbl,k)
pin(i,njel,k) = pp(i,njel,k)
do 20 j = njbl,nje2
un(i,j,k) = vx(i,j+l,k)*f2(i,j,k)

+ vx(i,j,k)*(l-f2(i,j,k))
vn(i,j,k) = vy(i,j+l,k)*f2(i,j,k)

+ vy(i,j,k)*(l-f2(i,j,k))
wn(i,j,k) = vz(i,j+l,k)*f2(i,j,k)

+ vz(i,j,k)*(l-f2(i,j,k))
pin(i,j,k) = pp(i,j+l,k)*f2(i,j,k)

+ pp(i,j,k)*(l-f2(i,j,k))
if(k.eq.knml)goto 20
ffa = (1-f3(i,j+l,k))*((f2(i,j,k)+f2(i,j,k+l))/2)
ffb = f3(i,j+l,k)*((f2(i,j,k)+f2(i,j,k+l))/2)
ffc = f3(i,j,k)*(l-(f2(i,j,k)+f2(i,j,k+l))/2)
ffd = (1-f3(i,j,k))*(l-(f2(i,j,k)+f2(i,j,k+l))/2)
unb(i,j ,k) = ffa*vx(i,j+l,k) + ffb*vx(i,j+l,k+l)

+ ffc*vx(i,j,k+l) + ffd*vx(i,j,k)
vnb(i,j,k) = ffa*vy(i,j+l,k) + ffb*vy(i,j+l,k+l)

+ ffc*vy(i,j,k+l) + ffd*vy(i,j,k)
wnb(i,j,k) = ffa*vz(i,j+l,k) + ffb*vz(i,j+l,k+l)

+ ffc*vz(i,j,k+l) + ffd*vz(i,j,k)
20 continue

PAGE 00058

*** Interpolate velocities and pressure on Backward facing cell walls

do 30 j = 2,jnml
do 30 i = 2,inml

do 30 nn = 1,nobs(i,j)
nkel = kkend(nn,i,j) - 1
nke2 = kkend(nn,i,j) - 2
nkb = kkbeg(nn,i,j)
nkbl = kkbeg(nn,i,j) + 1
pib(i,j,nkb) = pp(i,j,nkbl)
pih(i,j,nkel) = pp(i,j,nkel)
do 30 k = nkbl,nke2
ub(i,j,k) = vx(i,j,k+l)*f3(i,j,k)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

* + vx(i,j,k)*(l-f3(i,j,k))
vb(i,j,k) = vy(i,j,k+l)*f3(i,j,k)

* + vy(i,j,k)*(l-f3(i,j,k))
wb(i,j,k) = vz(i,j,k+l)*f3(i,j,k)

* + vz(i,j,k)*(l-f3(i,j,k))
pib(i,j,k) = pp(i,j,k+l)*f3(i,j,k)

* + pp (i , j , k) * (1 - f 3 (i , j , k))
if(i.eq.inml)goto 30
ffa = (1-fl(i,j,k+1))*((f3(f,j,k)+f3(i+l,j,k))/2)
ffb = fl(i,j,k+l)*((f3(i,j,k)+f3(i+l,j,k))/2)
ffc = fl(i,j,k)*(l-(f3(i,j,k)+f3(i+l,j,k))/2)
ffd = (1-fl(i,j,k))*(l-(f3(i.j,k)+f3(i+l,j,k))/2)
ube(i,j ,k) = ffa*vx(i,j ,k+l) + ffb*vx(i+l,j ,k+l)

* + ffc*vx(i+l,j,k) + ffd*vx(i,j,k)
vbe(i,j,k) = ffa*vy(i,j,k~l) + ffb*vy(i+l,j,k+l)

* + ffc*vy(i+J .j,k) + ffd*vy(i,j,k)
wbe(i,j,k) = ffR*vz(i,j,k+l) + ffb*vz(i+l,j,k+l)

* + ffc*vz(i+l,j,k) + ffd*vz(i,j,k)
30 continue

return
end

Subroutine INTPOLKE

PAGE 00059

-,'r******-lr*,'r*-l'**-l'***-lr-lr,'r**-lrir-lr**"'rir,'r**-lrir*ir*-lr,'r-,'r**-,'r-,'rir-lr-lr1r-,'r'l'r-lr1r,'r***·k,'r-,'r-:'rir*,'dn'r*-:'rir-lr*

*** This subroutine interpolates fork and epsilon

INCLUDE 'COMM'

*** Set the k and epsilon values on boundary edges

do 10 i = 1 , inm 1
eps(i,1,1) = eps(i,2,2)
eps(i,1,kn) = eps(i,2,knml)
eps(i,jn,1) = eps(i,jnml,2)
eps(i,jn,kn) = eps(i,jnml,knml)
tken(i,1,1) = tken(i,2,2)
tken(i,1,kn) = tken(i,2,knml)
tken(i,jn,1) = tken(i,jnml,2)
tken(i,jn,kn) = tken(i,jnml,knml)

10 continue

do 20 j = 1,jnml
eps(l,j,1) = eps(2,j,2)
eps(l,j,kn) = eps(2,j,knml)
eps(in,j,1) = eps(inml,j,2)
eps(in,j,kn) = eps(inml,j,knml)
tken(l,j,1) = tken(2,j,2)
tken(l,j,kn) = tken(2,j,knml)
tken(in,j,1) = tken(inml,j,2)
tken(in,j,kn) = tken(inml,j,knml)

20 continue

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

do 30 k = 1,knml
eps(l,1,k) = eps(2,2,k)
eps(in,l,k) = eps(inml,2,k)
eps(l,jn,k) = eps(2,jnml,k)
eps(in,jn,k) = eps(inml,jnml,k)
tken(l,1,k) = tken(2,2,k)
tken(in,1,k) = tken(inml,2,k)
tken(l,jn,k) = tken(2,jnml,k)
tken(in,jn,k) = tken(inml,jnml,k)

30 continue

*** Interpolate fork and epsilon

do 40 k = 1,knml
do 40 j = 1,jnml

do 40 i = 1,inml
ffa = (1-fl(i,j+l,k))*((f2(i,j,k)+f2(i+l,j,k))/2)
ffb = fl(i,j+l,k)*((f2(i,j,k)+f2(i+l,j,k))/2)
ffc = fl(i,j,k)*(l-(f2(i,j,k)+f2(i+l,j,k))/2)
ffd = (1-fl(i,j,k))*(l-(f2(i,j,k)+f2(i+l,j,k))/2)
tkenne(i,j,k) = ffa*tken(i,j+l,k) + ffb*tken(i+l,j+l,k)

* + ffc*tken(i+l,j,k) + ffd*tken(i,j,k)
epsne(i,j,k) = ffa*eps(i,j+l,k) + ffb*eps(i+l,j+l,k)

* + ffc*eps(i+l,j,k) + ffd*eps(i,j,k)
ffa = (1-f3(i,j+l,k))*((f2(i,j,k)+f2(i,j,k+l))/2)
ffb = f3(i,j+l,k)*((f2(i,j,k)+f2(i,j,k+l))/2)
ffc = f3(i,j,k)*(l-(f2(i,j,k)+f2(i,j,k+l))/2)
ffd = (1-f3(i,j,k))*(l-(f2(i,j,k)+f2(i,j,k+l))/2)
tkennb(i,j,k) = ffa*tken(i,j+l,k) + ffb*tken(i,j+l,k+l)

* + ffc*tken(i,j,k+l) + ffd*tken(i,j,k)
epsnb(i,j,k) = ffa*eps(i,j+l,k) + ffb*eps(i,j+l,k+l)

* + ffc*eps(i,j,k+l) + ffd*eps(i,j,k)
ffa = (1-fl(i,j,k+l))*((f3(i,j,k)+f3(i+l,j,k))/2)
ffb = fl(i,j,k+l)*((f3(i,j,k)+f3(i+l,j,k))/2)
ffc = fl(i,j,k)*(l-(f3(i;j,k)+f3(i+l,j,k))/2)
ffd = (1-fl(i,j,k))*(l-(f3(i,j,k)+f3(i+l,j,k))/2)
tkenbe(i,j,k) = ffa*tken(i,j,k+l) + ffb*tken(i+l,j,k+l)

* + ffc*tken(i+l,j,k) + ffd*tken(i,j,k)
epsbe(i,j,k) = ffa*eps(i,j,k+l) + ffb*eps(i+l,j,k+l)

* + ffc*eps(i+l,j,k) + ffd*eps(i,j,k)
40 continue

return
end

Subroutine EFFVISC

PAGE 00060

,'r*,'r*,'c,'c**-ldricir***"'c*irir*ir*ir,'c*-lr***''r,~,'c*ir,'c*i'c**·kir***ic**''c-i'c***icic,'c**''cicic,'c,'cidcir,'c*ic*,'c*

*** This subroutine calculates the effective viscosity

INCLUDE 'COMM'

difftken = 0.0
diffeps = 0.0

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*** Calculate the effective viscosity and the
*** turbulence convergence parameters

do 10 k = 2,knml
do 10 j = 2,jnml

do 10 i = 2,inml
if(jbound(i,j,k).ne.O)goto 10
vmu = vmulam + vmuturb(i,j,k)
viscp(i,j,k) = viscp(i,j,k) + (vmu-viscp(i,j,k))*0.5
difftken = difftken + tken(i,j,k)
diffeps = diffeps + eps(i,j,k)

10 continue

difftken = dabs(difftken - restken)/restken
diffeps = dabs(diffeps -reseps)/reseps

*** Apply the outflow boundary condition to viscosity

k = kn
.do 20 j = 2,jnml

do 20 i = 2,inml
jb = jbound(i,j,k)
viscp(i,j,k) = be(jb)*viscp(i,j,k-1)

20 continue

*** Interpolate viscosities on Eastern cell walls

do 30 k = 2,knml
do 30 j = 2,jnml

do 30 11 = 1,lobs(j,k)
niel = iiend(ll,j,k) - 1
nie2 = iien<l(ll,j,k) - 2
nib= iibeg(ll,j,k)
nihl = iibeg(ll,j,k) + 1
visce(nib,j,k) = viscp(nibl,j,k)
visce(niel,j,k) = viscp(niel,j,k)
do 30 i = nibl,nie2
visce(i,j,k) = viscp(i+l,j,k)*fl(i,j,k)

* + viscp(i,j,k)*(l-fl(i,j,k))
30 continue

*** Interpolate viscosities on Northern cell walls

do 40 k = 2,knml
do 40 i = 2,inml

do 40 mm= 1,mobs(i,k)
njel = jjend(mm,i,k) - 1
nje2 = jjend(mm,i,k) - 2
njh = jjbeg(mm,i,k)
njbl = jjbeg(mm,i,k) + 1
viscn(i,njb,k) = viscp(i,njbl,k)
viscn(i,njel,k) = viscp(i,njel,k)
do 40 j = njbl,nje2
viscn(i,j,k) = viscp(i,j+l,k)*f2(i,j,k)

PAGE 00061

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

-Ir + viscp(i,j,k)*(l-f2(i,j,k))
40 continue

*

Interpolate viscosities on Backward facing cell walls

do 50 j = 2,jnml
do 50 i = 2,inml

do 50 nn = 1,nobs(i,j)
nkel = kkend(nn,i,j) - 1
nke2 = kkend(nn,i,j) - 2
nkb = kkbeg(nn,i,j)
nkbl = kkbeg(nn,i,j) + 1
viscb(i,j,nkb) = viscp(i,j,nkbl)
viscb(i,j,nkel) = viscp(i,j,nkel)
do 50 k = nkbl,nke2
viscb(i,j,k) = viscp(i,j,k+l)*f3(i,j,k)

+ viscp(i,j,k)*(l-f3(i,j,k))
50 continue

return
end

Subroutine SETBND

PAGE 00062

'>'r,'r***-lr*-,'r***-lr**-lr**'>'r-lr**''r*-l:1r*,'r*-l:-lr****''r-;'r*·k-lrlr-lr">'r-lr-lr">'r-lr-lr,'r·k,'r-lr-,'r-lr*-lr*-lr*-lr">'r*,'r-;'r-lr,'r-lr-lr-lr***

*** This subroutine provides the boundary conditions

INCLUDE 'COMM'

Dimension ibeg(20),iend(20),jbeg(20),jend(20),kbeg(20),kend(20)

***--
*** Part 1 : Read boundary input data
***---·---------------

do 10 k = 1,kn
do 10 j = 1,jn

do 10 i = 1,in
jbound(i,j,k) = 0

10 continue

read(4,'(a)')dummy
read(4, '(a)')dummy
read(4,*)nbnd

*** Define the different boundaries - read input

do 20 1 = 1,nbnd
read(4, '(a)')dummy
read(4, '(a)')dummy
read(4, '(a)')dummy
read(4,*)bu(l),cu(l),bv(l),cv(l),bw(l),cw(l),bp(l),cp(l),

* be(l),ce(l),bk(l),ck(l)
read(4, '(a)')dummy

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

read(4,*)nfunc

do 30 n = 1,nfunc
read(4, '(a)')dummy
read(4,*)ibeg(n),iend(n),jbeg(n),jend(n),kbeg(n),kend(n)
do 40 k = 1, kn

do 40 j = 1, jn
do 40 i = 1, in
if(i.ge.ibeg(n).and.i.le.iend(n).and.

* j.ge.jbeg(n).and.j.le.jend(n).and.
* k.ge.kbeg(n).and.k.le.kend(n))then

jbound(i,j,k) = 1
endif

40 continue
30 continue
20 continue

PAGE 00063

***--
*** Part 2 : Initial velocity and turbulence distribution
***--

*** Inflow profiles

k = 1
do 50 j = 1, jn

READ(4,*)JCH,VZZ,TKENN,EPSS
do 50 i = 1,in

c eps(i,j,k) = ce(l)
c tken(i,j,k) = ck(l)

eps(i,j,k) = epss
tken(i,j,k) = tkenn
if(iturb.eq.l)then
vmuturb(i,j,k) = (cmu*rhop(i,j,k)*tken(i,j,k)**2)/eps(i,j,k)
viscp(i,j,k) = vmulam + vmuturb(i,j,k)

endif
viscb(i,j,k) = viscp(i,j,k)
if(jbound(i,j,k).eq.l)then
jb = jbound(i,j,k)
vx(i,j,k) = cu(jb)
vy(i,j,k) = cv(jb)

c vz(i,j,k) = cw(jb)
vz(i,j,k) = vzz
ub(i,j,k) = vx(i,j,k)
vb(i,j,k) = vy(i,j,k)
wb(i,j,k) = vz(i,j,k)
delzetb(i,j,k) = 0.5

endif
50 continue

*** Specify initial velocity and turbulence distribution

do 60 k = 1,kn
do 60 j = 1, jn

do 60 i = 1, in
c if(jbound(i,j,k).eq.l)goto 60

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

if(k.eq.l)goto 60
c eps(i,j,k) = epsinit
c tken(i,j,k) = tkeninit

eps(i,j,k) = eps(i,j,1)
tken(i,j,k) = tken(i,j,1)
if(jbound(i,j,k).ne.0)goto 60

c vx(i,j,k) = vxinit
c vy(i,j,k) = vyinit
c vz(i,j,k) = vzinit

vx(i,j,k) = vx(i,j,l)
vy(i,j,k) = vy(i,j,1)
vz(i,j,k) = vz(i,j,1)

60 continue

*** OUTFLOW BOUNDARY (2) _

do 70 k = 1, kn
do 70 j = 1, jn

do 70 i = 1,in
if(jbound(i,j,k).eq.2)then
jb = jbound(i,j,k)
vx(i,j,k) = bu(jb)*vx(i,j,k-1)
vy(i,j,k) = bv(jb)*vy(i,j,k-1)
vz(i,j,k) = bw(jb)*vz(i,j,k-1)
ub(i,j,k-1) = vx(i,j,k)
vb(i,j,k-1) = vy(i,j,k)
wb(i,j,k-1) = vz(i,j,k)
delzetb(i,j,k-1) = 0.5

endif
70 continue

*** EASTERN (3) AND WESTERN (4) BOUNDARIES

do 80 k = 1,kn
do 80 j = 1, jn

do 80 i = 1,in
if(jbound(i,j,k).eq.0)goto 80
jb = jbound(i,j,k)
goto(80,80,3,4,80,80),jb

3 vx(i,j,k) = bu(jb)*vx(i-1,j,k) + cu(jb)
vy(i,j,k) = bv(jb)*vy(i-1,j,k) + cv(jb)
vz(i,j,k) = bw(jb)*vz(i-1,j,k) + cw(jb)
ue(i-1,j,k) = vx(i,j,k)
ve(i-1,j,k) = vy(i,j,k)
we(i-1,j,k) = vz(i,j,k)
delexie(i-1,j,k) =·o.5
goto 80

4 vx(i,j,k) = bu(jb)*vx(i+l,j,k) + cu(jb)
vy(i,j,k) = bv(jb)*vy(i+l,j,k) + cv(jb)
vz(i,j,k) = bw(jb)*vz(i+l,j,k) + cw(jb)
ue(i,j,k) = vx(i,j,k)
ve(i,j,k) = vy(i,j,k)
we(i,j,k) = vz(i,j,k)

PAGE 00064

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

delexie(i,j,k) = 0.5

80 continue

*** NORTHERN (5) AND SOUTHERN (6) BOUNDARIES

do 90 k = 1, kn
do 90 j = 1, jn

do 90 i = 1,in
if(jbound(i,j,k).eq.O)goto qo
jb = jbound(i,j,k)
goto (90,90,90,90,5,6),jb

5 vx(i,j ,k) = bn(jb)*vx(i,j-1,k) + cu(jb)
vy(i,j,k) = hv(jb)*vy(i,j-1,k) + cv(jb)
vz(i,j ,k) = bw(jh)*vz(i.Jj-l,k) + cw(jb)
un(i,j-1,k) = vx(i,j,k)
vn(i,j-1,k) = vy(i,j,k)
wn(i,j-1,k) = vz(i,j,k)
deletan(i,j,k) = 0.5
goto 90

6 vx(i,j,k) = bu(jb)*vx(i,j+l,k) + cu(jb)
vy(i,j,k) = bv(jb)*vy(i,j+l,k) + cv(jb)
vz (i, j , k) = bw (j b) trvz (i, j + 1 , k) + cw (j b)
un(i,j,k) = vx(i,j,k)
vn(i,j,k) = vy(i,j,k)
wn(i,j,k) = vz(i,j,k)
deletan(i,j,k) = 0.5

90 continue

*** FIXED WALL BOUNDARIES (7)

do 100 k = l,kn
do 100 j = 1,jn

do 100 i = 1,in
if(jbound(i,j,k).ne.nbnd)goto 100
vx(i,j,k) = 0.0
vy(i,j,k) = 0.0
vz(i,j,k) = 0.0
ue(i,j,k) = 0.0
ve(i,j,k) = 0.0
we(i,j,k) = 0.0
11n (.i , j , k) = O . O
vn(i,j,k) = 0.0
wn(i,j,k) = 0.0
ub(i,j,k) = 0.0
vb(i,j,k) = 0.0
wb(i,j,k) = 0.0
ue(i-1,j,k) = 0.0
ve(i-1,j,k) = 0.0
we(i-1,j,k) = 0.0
nn(i,j-1,k) = 0.0
vn(i,j-1,k) = 0.0

PAGE 00065

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

wn(i,j-1,k) = 0.0
ub(i,j,k-1) = 0.0
vb(i,j,k-1) = 0.0
wb(i,j,k-1) = 0.0
delexie(i,j,k) = 0.5
delexie(i-1,j,k) = 0.5
deletan(i,j,k) = 0.5
deletan(i,j-1,k) = 0.5
delzetb(i,j,k) = 0.5
delzetb(i,j,k-1) = 0.5

100 continue

PAGE 00066

***--
*** Produce an output of the boundary conditions
***--

kx = 1
jx = -1
if(kn.gt.18) kx
if(kn.gt.36) kx
if(kn.gt.54) kx
if(kn.gt.72) kx

write (9, 22)

do 110 i = 1 , in
write (9 , 25) i

=
=
=
=

do 110 kkk = 1,kx
write(9,*)' '
nkend = 18*kkk
nkbeg = nkend-17

2
3
4
5

if(nkend.gt.kn) nkend = kn
write(9,24) (kk,kk = nkbeg,nkend)
write(9,21)

do 190 j = jn,1,jx
write(9,23)j,(jbound(i,j,kk),kk = nkbeg,nkend)

190 continue
110 continue

21 format(6x,73('-'))
22 format(//lx, 'BOUNDARY CONDITIONS (JBOUND)'/)
23 format(lx,I2,' I' ,23(1x,I3))
24 format(lx,' J/K = ',23(I2,2x))
25 format(lx, 'I-SURFACE NO. ',13)

return
end

Subroutine STEP
.,'r-ldc-lr-,'r*-lc*.,'r-lr**-lr-lr***-lr****"''r****-lc*.,'r*-lr*"''r.,'r-lr****-ldr'l'r-lr*-lr**"''r-lr*"''r**"''r-lr***-lr-lr-lr·k**

*** This subroutine adjusts velocities before and behind steps

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00067

INCLUDE 'COMM'

***--
*** Part 1 : Forward facing step
***--

if(kfst.eq.777)goto 35

kfstl = kfst - 1
jstep2 = jstep + 1
kfst2 = kfst + 1
gvoor = 0.0
gna = 0.0

do 10 i = 2,istep
do 10 j = 2,jnml

gvoor = gvoor + vz(i,j,kfstl)*zetz(i,j,kfstl)/tjac(i,j,kfstl)
10 continue

do 11 i = 2,istep
do 11 j = jstep2,jnml

gna = gna + vz(i,j,kfst)*zetz(i,j,kfst)/tjac(i,j,kfst)
11 continue

ffs = gvoor/gna

do 20 i = 2,istep
do 20 j = jstep2,jnml
vz(i,j,kfst) = vz(i,j,kfst)*ffs

20 continue

do 25 k = kfst2,kbst
do 25 i = 2,istep

do 25 j = jstep2,jnml
vz(i,j,k) = vz(i,j,k-1)

25 continue

*** Adjust vy-velocities

k = kfstl
do 30 i = 2,istep

do 30 j = 2,jnml

gout= dabs(zetzb(i,j,k)
* *(vz(i,j,k)+vz(i,j,k+l))/(2*tjacb(i,j,k)))
* + dabs(etayn(i,j,k)
* *vn(i,j,k)/tjacn(i,j,k))

gin= dabs(zetzb(i,j,k-1)
* *wb(i,j,k-1)/tjacb(i,j,k-1))
* + dabs(etayn(i,j-1,k)
* *vn(i,j-1,k)/tjacn(i,j-1,k))

ggain = gin - gout

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

vn(i,j,k) = ggain*tjacn(i,j,k)/etayn(i,j,k)
vy(i,j,k) = (vn(i,j-l,k)+vn(i,j,k))/2

30 continue

PAGE 00068

***--
*** Part 2 : Backward facing step
***--

35 if(kbst.eq.777)goto 65

kbstl = kbst + 1
jstep2 = jstep + 1

*** Adjust vy-velocities

k = kbstl
do 60 i = 2,istep

do 60 j = 2,jnml

gout= dabs(zetz(i,j,k)*wb(i,j,k)/tjac(i,j,k))
* + dabs(etay(i,j,k)*vn(i,j-1,k)/tjac(i,j,k))

gin= dabs(zetz(i,j,k)*(vz(i,j,k-l)+vz(i,j,k))/(2*tjac(i,j,k)))
* + dabs(etay(i,j,k)*vn(i,j,k)/tjac(i,j,k))

ggain = gin - gout
vn(i,j,k) = ggain*tjac(i,j,k)/etay(i,j,k)
vy(i,j,k) = (vn(i,j-l,k)+vn(i,j,k))/2

60 continue

65 return
end

Subroutine BOUND
,'r****"'',.,,.,,,*.,'<i<*·k*-i<*-l:*'l'r,',1'r*-ki:irir-*ir,'r**1r-i:ir,'r****.,':-i:-iri<,':iri:-i:*·k-,':-ir**i<'l':1<:i,-,'dr-*i<iridr-l:-i'r-,',·kir*'l'<

*** This subroutine adjusts velocities at outflow boundary conditions

INCLUDE 'COMM'

***--
*** Part 1 : Main velocities on dependant boundaries
***--

do 10 k = 1,kn
do 10 j = 1, jn

do 10 i = 1,in
jb = jbound(i,j,k)
if(jb.eq.O)goto 10
goto (10,2,3,4,5,6,lO)jb

*** Outflow

2 vx(i,j,k) = bu(jb)*vx(i,j,k-1)
vy(i,j,k) = bv(jb)*vy(i,j,k-1)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: JDFLO FORTRAN Al Universiteit van Pretoria

vz(i,j,k) = bw(jb)*(vz(i,j,k-Z)+vz(i,j,k-1))/2
ub(i,j,k-1) = vx(i,j,k)
vb(i,j,k-1) = vy(i,j,k)
wb(i,j,k-1) = vz(i,j,k)
goto 10

*** East

3 vx(i,j,k) = bu(jb)*vx(i-1,j,k) + cu(jb)
vy(i,j,k) = bv(jb)*vy(i-1,j,k) + cv(jb)
vz(i,j,k) = bw(jb)*vz(i-1,j,k) + cw(jb)
ue(i-1,j,k) = vx(i,j,k)
ve(i-1,j,k) = vy(i,j,k)
we(i-1,j,k) = vz(i,j,k)
goto 10

4 vx(i,j,k) = bu(jb)*vx(i+l,j,k) + cu(jb)
vy(i,j,k) = bv(jb)*vy(i+l,j,k) + cv(jb)
vz(i,j,k) = bw(jb)*vz(i+l,j,k) + cw(jb)
ue(i,j,k) = vx(i,j,k)
ve(i,j,k) = vy(i,j,k)
we(i,j,k) = vz(i,j,k)
goto 10

5 vx(i,j,k) = bu(jb)*vx(i,j-1,k) + cu(jb)
vy(i,j,k) = bv(jb)*vy(i,j-1,k) + cv(jb)
vz(i,j,k) = hw(jb)*vz(i,j-1,k) + cw(jb)
un(i,j-1,k) = vx(i,j,k)
vn(i,j-1,k) = vy(i,j,k)
wn(i,j-1,k) = vz(i,j,k)
goto 10

6 vx(i,j,k) = bu(jb)*vx(i,j+l,k) + cu(jb)
vy(i, j ,k) = bv(jb)*vy(i,j+l,k) + cv(jb)
vz(i,j,k) = bw(jb)*vz(i,j+l,k) + cw(jb)
un(i ,j ,k) = vx(i,j,k)
vn(i,j,k) = vy(i,j,k)
wn(i,j,k) = vz(i,j,k)

10 continue

PAGE 00069

***--
*** Part 2 : Interpolated boundary velocities
***--

do 20 k = 1,kn
do 20 j = 1, jn

do 20 i = 1, in
jb = jbound(i,j,k)
if(jb.eq.O)goto 20
goto (20,12,13,14,15,16,20)jb

12 kk = k-1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

unb(i,j,kk)=(l-f2(i,j,kk))*vx(i,j,k)+f2(i,j,kk)*vx(i,j+l,k)
vnhff,j,kk)=(l-f2(i,j,kk))*vy(i,j,k)+f2(i,j,kk)*vy(i,j+l,k)
wn b (i , j , kk) = (1- f 2 (i, j , kk)) *vz (i, j , k) +f 2 (i, j , kk) *vz (i, j+ 1 , k)
ub~(J,j,kk)=(l-fl(i,j,kk))*vx(i,j,k)+fl(i,j,kk)*vx(i+l,j,k)
vh0(i.j.kk)=(l-fl(i,j,kk))*vy(i,j,k)+fl(i,j,kk)*vy(i+l,j,k)
wlw ' i , J , k k) = (1- fl (i, j , kk)) *vz (i, j , k) +fl (i, j , kk) "'"vz (i+ 1 , j , k)
gr, .. , 2.0

13 ,-c 1-1
· ·: ,. ' ii , j , k) = (1- f 2 (ii , j , k)) *vx (i , j , k) + f 2 (ii , j , k) *vx (i , j + 1 , k)
vu e li i , j , k) = (1- f 2 (ii , j , k)) ,'rvy (i , j , k) + f 2 (ii , j , k) *vy (i , j + 1 , k)
wne(ii,j,k)=(l-f2(ii,j,k))*vz(i,j,k)+f2(ii,j,k)*vz(i,j+l,k)
ube(ii,j,k)=(l-f3(ii,j,k))*vx(i,j,k)+f3(ii,j,k)*vx(i,j,k+l)
v be (ii , j , k) = (1- f3 (ii , j , k)) ,'cvy (i , j , k) + £3 (ii , j , k) *vy (i , j , k+ 1)
wbe(ii,j,k)=(l-f3(ii,j,k))*vz(i,j,k)+f3(ii,j,k)*vz(i,j,k+l)
goto 20

14 ii = i+l
ube(i,j,k)=(l-f3(ii,j,k))*vx(i,j,k)+f3(ii,j,k)*vx(i,j,k+l)
vbe(i,j,k)=(l-f3(ii,j,k))*vy(i,j,k)+f3(ii,j,k)*vy(i,j,k+l)
wbe(i,j,k)=(l-f3(ii,j,k))*vz(i,j,k)+f3(ii,j,k)*vz(i,j,k+l)
une(i,j,k)=(l-f2(ii,j,k))*vx(i,j,k)+f2(ii,j,k)*vx(i,j+l,k)
vne(i,j,k)=(l-f2(ii,j,k))*vy(i,j,k)+f2(ii,j,k)*vy(i,j+l,k)
wne(i,j,k)=(l-f2(ii,j,k))*vz(i,j,k)+f2(ii,j,k)*vz(i,j+l,k)
goto 20

15 jj = j-1
un b (i , j j , k) = (1- f 3 (i , j j , k)) *vx (i , j , k) + f3 (i , j j , k) *vx (i , j , k.+ 1)
vnb(i,jj,k)=(l-f3(i,jj,k))*vy(i,j,k)+f3(i,jj,k)*vy(i,j,k+l)
wnb(i,jj,k)=(l-f3(i,jj,k))*vz(i,j,k)+f3(i,jj,k)*vz(i,j,k+l)
une(i,jj,k)=(l-fl(i,jj,k))*vx(i,j,k)+fl(i,jj,k)*vx(i+l,j,k)
vne(i,jj,k)=(l-fl(i,jj,k))*vy(i,j,k)+fl(i,jj,k)*vy(i+l,j,k)
wne(i,jj,k)=(l-fl(i,jj,k))*vz(i,j,k)+fl(i,jj,k)*vz(i+l,j,k)
goto 20

16 jj = j+l
unb(i,j,k)=(l-f3(i,jj,k))*vx(i,j,k)+f3(i,jj,k)*vx(i,j,k+l)
vnb(i,j,k)=(l-f3(i,jj,k))*vy(i,j,k)+f3(i,jj,k)*vy(i,j,k+l)
wnb(i,j,k)=(l-f3(i,jj,k))*vz(i,j,k)+f3(i,jj,k)*vz(i,j,k+l)
une(i,j ,k)=(l-fl(i,jj ,k))*vx(i,j ,k)+fl(i,jj ,k)*vx(i+l,j ,k)
vne(i,j,k)=(l-fl(i,jj,k))*vy(i,j,k)+fl(i,jj,k)*vy(i+l,j,k)
wne(i,j,k)=(l-fl(i,jj,k))*vz(i,j,k)+fl(i,jj,k)*vz(i+l,j,k)
goto 20

20 continue

PAGE 00070

***--
*** Part 3 : Fixed wall velocities
***--

do 30 k = 1, kn
do 30 j = 1, jn

do 30 i = 1,in
jb = jbound(i,j,k)
if(jb.ne.nbnd)goto 30

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

goto 17

17 une(i,j,k) = 0.0
une(i-1,j,k) = 0.0
une(i,j-1,k) = 0.0
une(i-1,j-1,k) = 0.0
vne(i,j,k) = 0.0
vne(i-1,j,k) = 0.0
vne(i,j-1,k) = 0.0
vne(i-1,j-1,k) = 0.0
wne(i,j,k) = 0.0
wne(i-1,j,k) = 0.0
wne(i,j-1,k) = 0.0
wne(i-1,j-1,k) = 0.0
ube(i,j,k) = 0.0
ube(i-1,j,k) = 0.0
ube(i,j,k-1) = 0.0
ube(i-1,j,k-1) = 0.0
vbe(i,j,k) = 0.0
vbe(i-1,j,k) = 0.0
vbe(i,j,k-1) = 0.0
vbe(i-1,j,k-1) = 0.0
wbe(i,j,k) = 0.0
wbe(i-1,j,k) = 0.0
wbe(i,j,k-1) = 0.0
wbe(i-1,j,k-1) = 0.0
unb(i,j,k) = 0.0
unb(i,j,k-1) = 0.0
un b (i , j - 1 , k) = 0 . 0
unb(i,j-1,k-1) = 0.0
vnb(i,j,k) = 0.0
vnb(i,j,k-1) = 0.0
vnb(i,j-1,k) = 0.0
vnb(i,j-1,k-1) = 0.0
wnb(i,j,k) = 0.0
wnb(i,j,k-1) = 0.0
wnb(i,j-1,k) = 0.0
wnb(i,j-1,k-1) = 0.0

30 continue

*** Calculate the massflow at the outflow boundary

fmout = 0.0

do 40 j = 2,jnml
do 40 i = 2,inml

fmo(i,j) = rhob(i,j ,knml)*(ze.txb(i,j ,knml)',"'ub(i,j ,knml)
* + zetyb(i,j,knml)*vb(i,j,knml)

PAGE 00071

* + zetzb(i,j,knml)*wb(i,j,knml))/tjacb(i,j,knml)
fmout = fmout + fmo(i,j)

40 continue

fcont = fmin/fmout

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

do 50 j = 2,jnml
do 50 i = 2,inml
vz(i,j,kn) = vz(i,j,kn)*fcont
wb(i,j,knml) = vz(i,j,kn)

50 continue

return

PAGE 00072

c--
Entry MASSIN

c--

*** Calculate the massflow at the inflow boudary

£min= 0.0

do 60 j = 2,jnml
do 60 i = 2,inml
if(jbound(i,j,1).ne.l)goto 60
fmi(i,j) = rhob(i,j,l)*(zetxb(i,j,l)*ub(i,j,1)

* + zetyb(i,j,l)*vb(i,j,1)
* + zetzb(i,j,1) 1rwb(i,j,1))/tjacb(i,j,1)

fmin = fmin + fmi(i,j)
60 continue

return
end

Subroutine LOGO
******"'r*,'r,'r1r1r***-lr*1r,'r**,'r-lr**********-lr*,'r***,'dr***,'r***·lr*,'r,'r*-lr***-lr*******,'r-lr*-lr,'r*

*** This subroutine creates the solving logo

write(*,*)
write(*,*)'
write(*,*)'
write(*,*)'
write(* ,-Ir)'
write(*,-lr)'
write(*,*)'
write(*, -Ir)'
write(*,*)'
write(*,*)'
write(*,*)'
write(*,*)'
write(*,*)'
WRITE(*'*) I

write(*,*)'
WRITE(*, ,'r) 1

write (-Ir,*)'
write(*,*)'
write(*,*)
write(*,*)

*
*
*
*
*
*
*
*
*
-Ir

*
*
*
*
*

3333 DODD FFFFF L 000
3 3 D D F L 0 0

33 D D FFF L 0 0
3 3 D D F L 0 0

3333 DDDD F LLLLL 000

THIS PROGRAM SOLVES 3D COMPRESSIBLE
LAMINAR OR TURBULENT FLOWS IN

CURVILINEAR CO-ORDINATES

DEVELOPED BY

HERMANN ROLFES

'7C''

ir'
*'
*'
ir 1

ir:'

ir'
*'
-I:'

*'
*'
ir'
*'
ir'
-Jr'

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO

return
end

FORTRAN Al Universiteit van Pretoria PAGE 00073

Subroutine OUTPUT
*****-lr********"'l'r-lr*·-k*.,'r**.,'r*****-lr*-lr-lr**-lr-lr*,'r*"l'r-lr**.,'r"'l'r**"''r·i'r-lr-lr**,'r*****-lr*-lr***"'r"'l'r·lr-lr**

*** This subroutine generates the velocity and pressure output data

INCLUDE 'COMM'

kx = 1
jx = -1
if(kn.gt. 7) kx = 2
if(kn.gt.14) kx
if(kn.gt.21) kx
if(kn.gt.28) kx
if(kn.gt.35) kx
if(kn.gt.42) kx
if(kn.gt.49) kx
if(kn.gt.56) kx
if(kn.gt.63) kx
if(kn.gt.72) kx

do 100 i = 1,in
write(9,2)i

=
=
=
=
=
=
=
=
=

3
4
5
6
7
8
9
10
11

2 format(//lx, 'SURFACE NO. ',I3,JX,
*' Z - DIRECTION VELOCITY DISTRIBUTION (VZ) '/)

do 100 kkk = 1,kx

write (9 , -Ir) ' '
kend = 7*kkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 3 j = jn,1,jx
write(9,23)j,(vz(i,j,kk),kk = kbeg,kend)

3 continue

100 continue

do 200 i = 1,in
write(9,4)i

4 format(//lx, 'SURFACE NO. ',I3,3X
*, 'y - DIRECTION VELOCITY DISTRIBUTION (VY)'/)

do 200 kkk = 1,kx

write(9,*)' '
kend = 7,'rkkk
kbeg = kend-6

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 5 j = jn,1,jx
write(9,23)j,(vy(i,j,kk),kk = kbeg,kend)

5 continue

200 continue

do 300 i = 1,in
write(9,6)i

6 format(//lx, 'SURFACE NO. ',I4,3X
*, 'X - DIRECTION VELOCITY DISTRIBUTION (VX)'/)

do 300 kkk = 1,kx

write(9,*)' '
kend = 7,'rkkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 7 j = jn,1,jx
write(9,23)j,(vx(i,j,kk),kk = kbeg,kend)

7 continue

300 continue

do 1+00 i = 1,in
write(9,8)i

8 format(//lx, 'SURFACE NO. ',I4,3X
*,'PRESSURE DISTRIBUTION (P) '/)

do 400 kkk = 1,kx

write(9, *)' '
kend = 7*kkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 9 j = jn,1,jx
write(9,23)j,(pp(i,j,kk),kk = kbeg,kend)

9 continue

400 continue

do 500 i = 1,in
write(9,10)i

10 format(//lx, 'SURFACE NO. ',I4,3X
*, 'PRESSURE CORRECTIONS (PCOR)'/)

do 500 kkk = 1,kx

write(9, *)' '

PAGE 00074

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

kend = 7*kkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 11 j = jn,1,jx
write(9,23)j,(pcor(i,j,kk),kk = kbeg,kend)

11 continue

500 continue

do 600 i = 1,in
write(9, 12)i

12 format(//lx, 'SURFACE NO. ',I4,3X
*, 'DISSIPATION RATE - EPSILON'/)

do 600 kkk = 1,kx

write(9,*)' '
kend = 7-1rkkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 13 j = jn,1,jx
write(9,23)j,(eps(i,j,kk),kk = kbeg,kend)

13 continue

600 continue

do 700 i = 1,in
write(9, 14) i

14 format(//lx, 'SURFACE NO. ',I4,3X
*, 'TURBULENT KINETIC ENERGY'/)

do 700 kkk = 1,kx

write(9,*)' '
kend = 7*kkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 15 j = jn,1,jx
write(9,23)j,(tken(i,j,kk),kk = kbeg,kend)

1.5 continue

700 continue

do 800 i = 1,in
wrHe(9,16)i

16 format(//lx, 'SURFACE NO. ',I4,3X
-Ir,

1 EFFECTIVE VISCOCITY 1
/)

do 800 kkk = 1,kx

PAGE 00075

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

write(9,*)' '
kend = 7*kkk
kbeg = kend-6
if(kend.gt.kn) kend = kn
write(9,20) (kk,kk = kbeg,kend)

do 17 j = jn,1,jx
write(9,23)j,(viscp(i,j,kk),kk = kbeg,kend)

17 continue

800 continue

*** Define the format expressions

20 format(lx,' J/K =' ,9(I2,9x))
23 format(lx,I2,9(1x,Fl0.5))

return
end

PAGE 00076

Subroutine PLOTOUT
-,'<*·l<**i<*i<ir·lcir·k****i<·k,'<*·k*i<i<i<**·k*****i<*.,'r*.,'<,'<i<i<*i<,'<i<**.,,<i<i<i<*i<.,'<i<**i<irir*i<i<i<i<.,'<*.,'rir*i<

*** This subroutine generates the velocity and pressure plot data

INCLUDE 'COMM'

write(13,2)inml,jnml,knml,isweep

if(iturb.eq.l)then
do 20 k = 2,knml

do 20 j = 2,jnml
do 20 i = 2,inml
write(13,l)x(i,j,k),y(i,j,k),z(i,j,k),tken(i,j,k),eps(i,j,k)
write(13,l)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k),viscp(i,j,k)

20 continue
en.dif

if(iturb.eq.O)then
do 30 k = 2,knml

do 30 j = 2,jnml
do 30 i = 2,inml
write(13,3)x(i,j,k),y(i,j,k),z(i,j,k)
write(13,4)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k)

30 continue
endif

1 format(lx,5£12.5)
2 format (lx, 4i5)
3 format(lx,3fl2.5)
4 format(lx,4f12.5)

goto 10000

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

9000 write(*,*)'!!! UNABLE TO OPEN PLOT FILE ! ! ! '
stop

10000 return
end

Subroutine LINEPARAM

PAGE 00077

****'''*****irir***ir*ir,'r*********ir**-lr**ir,'r*irir,'r*-lr**,'r*-;'r-;'r,'r,~idr-/r,'r*-lr-lr*-lr*,'r*'l'r-lr,'r,'r,'r-lr***

*** This subroutine writes lineparameters

INCLUDE 'COMM'

write(9,*)' '
write(9,*)'Residuals of u,v,w on k - planes'
do k = l ,kn
write(9,l)k,resuz(k),resvz(k),reswz(k)

enddo

write(9,*)' '
write(9,*)'Residuals of u,v,w on j - planes'
do j = 1, jn
write(9,l)j,resuy(j),resvy(j),reswy(j)

enddo

write(9,-lr)' '
write(9,*)'Residuals of u,v,w on i - planes'
do i = 1,in
write(9,l)i,resux(i),resvx(i),reswx(i)

enddo

1 format(2x,i4,4x,ell.5,4x,ell.5,4x,ell.5)

return
end

Subroutine GEOM
·k-lr**-lr***,'r,'ririr,'r*-lr,'r**,'r***-lr··lr**-lr,'r-lr,'r*-lr**''r-/r-/r*,'r,1r,'rir**,'r**,'r-lr,1r,1r-/r,1r-/r,'r,'r·k-lr,'rir,1:,'rir,'c,'r,'r·k*,'r-/r

*** This subroutine reads the output file from the grid generation
*** package and controls and processes the grid information

INCLUDE 'COMM'

dimension xx(160000),yy(160000),zz(160000)

*** Read input grid data

write(*,*)' *****1'**** READING GRID DATA **-1'**,'r-ln'r**'
read(2,*)ing,jng,kng

do 10 i = 1,ing
do 10 j = 1,jng

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

do 10 k = 1,kng
ng = (i-l)*jng*k.ng + (j-l)*kng + k
read(2,*)nng,xx(ng),yy(ng),zz(ng)

10 continue

ingml = ing - 1
jngml = jng - 1
kngml = kng - 1
in = 2 + ingml/2
jn = 2 + jngml/2
kn = 2 + kngml/2
inml = in - 1
jnml = jn - 1
knml = kn - 1
inm2 = in - 2
jnm2 = jn - 2
k.nm2 = kn - 2

write(*,*)in,jn,kn

do 15 i = 1,in
do 15 j = 1, jn

do 15 k = 1,kn
x(i,j,k) = 777.77777
y(i,j,k) = 777.77777
z(i,j,k) = 777.77777

15 continue

*** Calculate transformation values

do 20 i = 2,ingml,2
do 20 j = 2,jngml,2

do 20 k = 2,kngml,2

ii = i/2 + 1
jj = j/2 + 1
k.k = k/2 + 1
istot = jng.,,,.kng
ng = (i-l)*istot + (j-l)*kng + k

*** Award x,y,z co-ordinates on boundaries

if(i. eq. 2)then
x(ii-1,jj,kk) = xx(ng-(jng*kng))
y(ii-1,jj,kk) = yy(ng-(jng*kng))
z(ii-1,jj,kk) = zz(ng-(jng*kng))

endif
if(i.eq.ingml)then
x(ii+l,jj,kk) = xxlng+(jng*kng))
y(ii+l,jj,kk) = yy(ng+(jng*kng))
z(ii+l,jj,kk) = zz(ng+(jng*kng))

endif
if (j. eq. 2)then
x(ii,jj-1,kk) = xx(ng-kng)
y(ii,jj-1,kk) = yy(ng-kng)

PAGE 00078

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

z(ii,jj-1,kk) = zz(ng-kng)
endif
if(j.eq.jngml)then
x(ii,jj+l,kk) = xx(ng+kng)
y(ii,jj+l,kk) = yy(ng+kng)
z(ii,jj+l,kk) = zz(ng+kng)

endif
if(k.eq.2)then
x(ii,jj,kk-1) = xx(ng-1)
y(ii,jj,kk-1) = yy(ng-1)
z(ii,jj,kk-1) = zz(ng-1)

endif
if(k.eq.kngml)then
x(ii,jj,kk+l) = xx(ng+l)
y(ii,jj,kk+l) = yy(ng+l)
z(ii,jj,kk+l) = zz(ng+l)

endif

*** Set the co-ordinates at each major node

x(ii,jj,kk) = xx(ng)
y(ii,jj,kk) = yy(ng)
z(ii,jj,kk) = zz(ng)

*** The numerical values of the first order derivations of the
*** specific transformation can be calculated from the
*** carthesian co-ordinates of each point; del,de2,de3 = 1

dxdex = xx(ng+istot)-xx(ng-istot)
dydex = yy(ng+istot)-yy(ng-istot)
dzdex = zz(ng+istot)-zz(ng-istot)
dxdet = xx(ng+kng)-xx(ng-kng)
dydet = yy(ng+kng)-yy(ng-kng)
dzdet = zz(ng+kng)-zz(ng-kng)
dxdzt = xx(ng+l)-xx(ng-1)
dydzt = yy(ng+l)-yy(ng-1)
dzdzt = zz(ng+l)-zz(ng-1)

*** Eastern cell walls

dxdete = xx(ng+istot+kng)-xx(ng+istot-kng)
dydete = yy(ng+istot+kng)-yy(ng+istot-kng)
dzdete = zz(ng+istot+kng)-zz(ng+istot-kng)
dxdzte = xx(ng+istot+l)-xx(ng+istot-1)
dydzte = yy(ng+istot+l)-yy(ng+istot-1)
dzdzte = zz(ng+istot+l)-zz(ng+istot-1)
if(ii.eq.inml)then
dxdexe = 2*(xx(ng+istot)-xx(ng))
dydexe = 2*(yy(ng+istot)-yy(ng))
dzdexe = 2*(zz(ng+istot)-zz(ng))

else
dxdexe = xx(ng+2*istot)-xx(ng)
dydexe = yy(ng+2*istot)-yy(ng)
dzdexe = zz(ng+2*istot)-zz(ng)

endif

PAGE 00079

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*** Western cell walls

dxdetw = xx(ng-istot+kng)-xx(ng-istot-kng)
dydetw = yy(ng-istot+kng)-yy(ng-istot-kng)
dzdetw = zz(ng-istot+kng)-zz(ng-istot-kng)
dxdztw = xx(ng-istot+l)-xx(ng-istot-1)
dydztw = yy(ng-istot+l)-yy(ng-istot-1)
dzdztw = zz(ng-istot+l)-zz(ng-istot-1)
if (ii. eq. 2)then
dxdexw = 2*(xx(ng)-xx(ng-istot))
dydexw = 2*(yy(ng)-yy(ng-istot))
dzdexw = 2*(zz(ng)-zz(ng-istot))

else
dxdexw = xx(ng)-xx(ng-2*istot)
dydexw = yy(ng)-yy(ng-2*istot)
dzdexw = zz(ng)-zz(ng-2*istot)

endif

*** Northern cell walls

dxdexn = xx(ng+kng+istot)-xx(ng+kng-istot)
dydexn = yy(ng+kng+istot)-yy(ng+kng-istot)
dzdexn = zz(ng+kng+istot)-zz(ng+kng-istot)
dxdztn = xx(ng+kng+l)-xx(ng+kng-1)
dydztn = yy(ng+kng+l)-yy(ng+kng-1)
dzdztn = zz(ng+kng+l)-zz(ng+kng-1)
if(jj.eq.jnml)then
dxdetn = 2*(xx(ng+kng)-xx(ng))
dydetn = 2*(yy(ng+kng)-yy(ng))
dzdetn = 2*(zz(ng+kng)-zz(ng))

else
dxdetn = xx(ng+2*kng)-xx(ng)
dydetn = yy(ng+2*kng)-yy(ng)
dzdetn = zz(ng+2*kng)-zz(ng)

endif

*** Southern cell walls

dxdexs = xx(ng-kng+istot)-xx(ng-kng-istot)
dydexs = yy(ng-kng+istot)-yy(ng-kng-istot)
dzdexs = zz(ng-kng+istot)-zz(ng-kng-istot)
dxdzts = xx(ng-kng+l)-xx(ng-kng-1)
dydzts = yy(ng-kng+l)-yy(ng-kng-1)
dzdzts = zz(ng-kng+l)-zz(ng-kng-1)
if (j j. eq. 2)then
dxdets = 2*(xx(ng)-xx(ng-kng))
dydets = 2*(yy(ng)-yy(ng-kng))
dzdets = 2*(zz(ng)-zz(ng-kng))

else
dxdets = xx(ng)-xx(ng-2*kng)
dydets = yy(ng)-yy(ng-2*kng)
dzdets = zz(ng)-zz(ng-2*kng)

endif

PAGE 00080

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*** Backward facing cell walls

dxdexb = xx(ng+l+istot)-xx(ng+l-Jstot)
dydexb = yy(ng+l+istot)-yy(ng+l-istot)
dzdexb = zz(ng+l+istot)-zz(ng+l-istot)
dxdetb = xx(ng+l+kng)-xx(ng+l-kng)
dydetb = yy(ng+l+kng)-yy(ng+l-kng)
dzdetb = zz(ng+l+kng)-zz(ng+l-kng)
if(kk.eq.knml)then
dxdztb = 2*(xx(ng+l)-xx(ng))
dydztb = 2*(yy(ng+l)-yy(ng))
dzdztb = 2*(zz(ng+l)-zz(ng))

else
dxdztb = xx(ng+2)-xx(ng)
dydztb = yy(ng+2)-yy(ng)
dzdztb = zz(ng+2)-zz(ng)

endif

*** Forward facing cell walls

dxdexf = xx(ng-l+istot)-xx(ng-1-istot)
dydexf = yy(ng-l+istot)-yy(ng-1-istot)
dzdexf = zz(ng-l+istot)-zz(ng-1-istot)
dxdetf = xx(ng-l+kng)-xx(ng-1-kng)
dydetf = yy(ng-l+kng)-yy(ng-1-kng)
dzdetf = zz(ng-l+kng)-zz(ng-1-kng)
if(kk.eq.2)then
dxdztf = 2*(xx(ng)-xx(ng-1))
dydztf = 2*(yy(ng)-yy(ng-1))
dzdztf = 2*(zz(ng)-zz(ng-1))

else
dxdztf = xx(ng)-xx(ng-2)
dydztf = yy(ng)-yy(ng-2)
dzdztf = zz(ng)-zz(ng-2)

endif

*** Calculate the jacobian of the transformations

tjac(ii,jj,kk) = 1/
* (dxdex*(dydet*dzdzt
')'(-dydzt*dzdet)
ir -dxdet*(dydex*dzdzt
* -dydzt-lrdzdex)
* +dxdzt*(dydex*dzdet
* -dydet*dzdex))

tjace(ii,jj,kk) = 1/
* (dxdexe*(dydete*dzdzte
* -dydzte*dzdete)
* -dxdete*(dydexe*dzdzte
* -dydzte*dzdexe)

* +dxdzte*(dydexe*dzdete
* -dydete*dzdexe))

tw = 1/
* (dxdexw*(dydetw*dzdztw
* -dydztw*dzdetw)

PAGE 00081

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

*

*
*
ir

*
*

*

*
*
*
*
*
,'r

*
*
*
*
*
*

*
*
*
*
*
*

-dxdetw*(dydexw*dzdztw
-dydztw*dzdexw)

+dxdztw*(dydexw*dzdetw
-dydetw*dzdexw))

tjacn(ii,jj,kk) = 1/
(d~· 1" ,: n)'(' (dydetn''("dzdztn

-dydztn*dzdetn)
-dxdetn*(dydexn*dzdztn

-dydztnirdzdexn)
+dxdztn*(dydexn*dzdetn

-dydetn*dzdexn))
ts= 1/
(dxdexs*(dydets*dzdzts

-dydzts"'rdzdets)
-dxdets*(dydexs*dzdzts

-dydzts*dzdexs)
+dxdzts*(dydexs*dzdets

-dydets*dzdexs))
tjacb(ii,jj,kk) = 1/
(dxdexb*(dydetb*dzdztb

-dydztb.,,rdzdetb)
-dxdetb*(dydexb*dzdztb

-dydztb*dzdexb)
+dxdztb* (dydexb;'<"dzdetb

-dydetb*dzdexb))
tf = 1/
(dxdexf*(dydetf*dzdztf

-dydztf*dzdetf)
-dxdetf*(dydexf*dzdztf

-dydztf*dzdexf)
+dxdztf*(dydexf*dzdetf

-dydetf*dzdexf))

*** Generate the transformation expressions

exix(ii,jj,kk) = tjac(ii,jj,kk)*
* (dydet*dzdzt
* - dydzt*dzdet)

exiy(ii,jj,kk) = -tjac(ii,jj,kk)*
* (dxdet*dzdzt
* - dxdzt*dzdet)

exiz(ii,jj,kk) = tjac(ii,jj,kk)*
* (dxdet*dydzt
* - dxdzt*dydet)

etax(ii,jj,kk) = -tjac(ii,jj,kk)*
* (dydex*dzdzt
* - dydzt*dzdex)

etay(ii,jj,kk) = tjac(ii,jj,kk)*
* (dxdex*dzdzt
* - dxdzt*dzdex)

etaz(ii,jj,kk) = -tjac(ii,jj,kk)*
* (dxdex*dydzt
* - dxdzt*dydex)

zetx(ii,jj,kk) = tjac(ii,jj,kk)*
* (dydex*dzdet

PAGE 00082

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00083

* - dydeti'rdzdex)
zety(ii,jj,kk) = -tjac(ii,jj,kk)*

* (dxdex*dzdet
* - dxdeti'rdzdex)

ze tz (ii, j j , kk.) = tjac(ii,jj ,kk)-,'r
* (dxdex.,,rdydet
* - dxdet*dydex)

-,'r** Eastern cell walls

ex ix e (ii , j j , kk) = tjace(ii,jj,kk)*
* (dydete*dzdzte
* - dydztei'c-dzdete)

exiye(ii,jj ,kk) = -tjace(ii,jj,kk)*
7C' (dxdete1rdzdzte
* - dxdzte*dzdete)

exize(ii,jj,kk) = tjace(ii,jj,kk)*
* (dxdeteiC'dydzte
,'r - dxdzte''rdydete)

etaxe(ii,jj,kk) = -tjace(ii,jj,kk)*
* (dydexe*dzdzte
* - dydzte*dzdexe)

etaye(ii,jj,kk) = tjace(ii,jj,kk)*
* (dxdexeirdzdzte
* - dxdzte''rdzdexe)

etaze(ii,jj,kk) = -tjace(ii,jj,kk)*
* (dxdexe*dydzte
-,'r - dxdzte1rdydexe)

z et x e (i i , j j , kk) = tjace(ii,jj,kk)*
* (dydexeirdzdete
* - dydete*dzdexe)

zetye(ii,jj,kk) = -tjace(ii,jj,kk)*
ir (dxdexe*dzdete
* - dxdeteirdzdexe)

zetze(H,jj,kk) = tjace(ii,jj,kk)*
* (dxdexe*dydete
* - dxdete*dydexe)

*** Western cell walls

if(ii.eq.2)then
tjac(ii-1,jj ,kk) = tjac(ii,jj,kk)
tjace(ii-1,jj,kk) = tw
exixe(ii-1,jj,kk) = tw*

* (dydetw*dzdztw
-Ir - dydztw*dzdetw)

exiye(ii-1,jj,kk) = -tw*

* (dxdetw'>'rdzdztw

* - dxdztw*dzdetw)
exize(ii-1,jj,kk) = tw-lr

* (dxdetwi'rdydztw
* - dxdztw,'c-dydetw)

etaxe(ii-1,jj,kk) = -tw.,.('

* (dydexwirdzdz tw
* - dydztw'l'C'dzdexw)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: JDFLO FORTRAN Al Universiteit van Pretoria PAGE 00084

etaye(ii-1,jj,kk) = tw*
* (dxdexw*dzdztw

* - dxdztw*dzdexw)
etaze(ii-1,jj,kk) = -tw.,\-

* (dxdexw*dydztw
·k - dxdztw*dydexw)

zetxe(ii-1,jj,kk) = tw*
* (dydexw.,.rdzdetw
* - dydetw.,.c-dzdexw)

zetye(ii-1,jj,kk) = -tw1c-
* (dxdexw*dzdetw
,\- - dxdetw,'rdzdexw)

z~tze(ii-1,jj,kk) = tw*
* (dxdexw*dydetw
* - dxdetw.,.c-dydexw)

endif

*** Northern cell walls

exixn(ii,jj,kk) = tjacn(ii,jj,kk)*
* (dydetn.,.c-dzdztn
* - dydztn*dzdetn)

exiyn(ii,jj,kk) = -tjacn(ii,jj,kk)*
* (dxdetn*dzdztn
* - dxdztn.,.rdzdetn)

ex izn (ii , j j , kk) = tjacn(ii,jj,kk)*

* (dxdetn*dydztn
* - dxdztn.,.c-dydetn)

etaxn(ii, j j, kk) = -tjacn(ii,jj,kk)*
* (dydexn*dzdztn
* - dydztn*dzdexn)

etayn(ii,jj,kk) = tjacn(ii,jj,kk)*
* (dxdexn.,.c-dzdztn
* - dxdztn*dzdexn)

et azn (ii , j j , kk) = -tjacn(ii,jj,kk)*

* (dxdexn*dydztn
* - dxdztn*dydexn)

zetxn(ii, j j, kk) = tjacn(ii,jj,kk)*
')l' (dydexn*dzdetn
* - dydetn*dzdexn)

zetyn(ii,jj,kk) = -tjacn(ii,jj,kk)*
.,'r (dxdexn*dzdetn
* - dxdetn*dzdexn)

zetzn(ii,jj,kk) = tjacn(ii,jj,kk)*
* (dxdexn"'c-dydetn
* - dxdetn1c-dyde.xn)

-lr*1r Southern cell walls

if(jj .eq.2)then
tjac(ii,jj-1,kk) = tjac(ii,jj,kk)
tjacn(ii,jj-1,kk) = ts
exixn(ii,jj-1,kk) = ts*

* (dydets*dzdzts
* - dydzts*dzdets)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00085

exiyn(ii,jj-1,kk) = -ts*
* (dxdets-lC'dzdzts
* - dxdzts*dzdets)

exizn(ii,jj-1,kk) = ts*
* (dxdets*dydzts
')'C' - dxdzts*dydets)

etaxn(ii,jj-1,kk) = -ts*
* (dydexs*dzdzts
* - dydzts*dzdexs)

etayn(ii,jj-1,kk) = ts*
* (dxdexs-lrdzdzts
* - dxdzts-1,dzdexs)

etazn(ii,jj-1,kk) = -ts*
* (dxdexs*dydzts
* - dxdzts*dydexs)

zetxn(ii,jj-1,kk) = ts*
* (dydexs"'C'dzdets
* - dydets*dzdexs)

zetyn(ii,jj-1,kk) = -ts*
* (dxdexs*dzdets
,'r - dxdetsi'rdzdexs)

zetzn(ii,jj-1,kk) = ts*
* (dxdexs*dydets
* - dxdets"'dydexs)

endif

*** Backward facing cell walls

exixb(ii,jj,kk) = tjacb(ii,jj,kk)*
* (dydetb-l"dzdztb
* - dydztb*dzdetb)

exiyb(ii,jj,kk) = -tjacb(ii,jj,kk)*
* (dxdetb"'"dzdztb
* - dxdztb"'C"dzdetb)

exizb(i.i,jj,kk) = tjacb(ii,jj,kk)*
* (dxdetb*dydztb
* - dxdztb*dydetb)

etaxb(ii,jj,kk) = -tjacb(ii,jj,kk)*
* (dydexb*dzdztb
* - dydzt b"C'dzdexb)

etayb(ii,jj,kk) = tjacb(ii,jj,kk)*
">'r (dxdexb*dzdztb
* - dxdztb"'cdzdexb)

etazb(ii,jj ,kk) = -tjacb(ii,jj,kk)*
* (dxdexb*dydztb
* - dxdztb*dydexb)

zetxb(ii,jj,kk) = tjacb(ii,jj,kk)*
* (dydexb*dzdetb
* - dydetb-1cdzdexb)

zetyb(ii,jj ,kk) = -tjacb(ii,jj,kk)*
* (dxdexb*dzdetb
* - dxdetbirdzdexb)

zetzb(ii,jj,kk) = tjacb(ii,jj,kk)*
* (dxdexb*dydetb
* - dxdetb*dydexb)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

-Ir** Forward facing cell walls

if(kk.eq.2)then
tjac(ii,jj,kk-1) = tjac(ii,jj,kk)
tjacb(ii,jj,kk-1) = tf
exixb(ii,jj,kk-1) = tf*

* (dydetf-lt'dzdztf
"7C' - dydztf1t'dzdetf)

exiyb(ii,jj,kk-1) = -tf*
* (dxdetf-lrdzdztf
* - dxdztf*dzdetf)

exizb(ii,jj,kk-1) = tf*
* (dxdetf*dydztf
* - dxdztf*dydetf)

etaxb(ii,jj,kk-1) = -tf*
* (dydexf*dzdztf
* - dydztf*dzdexf)

etayb(ii,jj,kk-1) = tf*

* (dxdexf'l'C'dzdztf
* - dxdztf*dzdexf)

etazb(ii,jj,kk-1) = -tf*
* (dxdexf,'C'dydzt f
* - dxdztf*dydexf)

zetxb(ii,jj,kk-1) = tf*
* (dydexf*dzdetf
* - dydetf,'c-dzdexf)

zetyb(ii,jj,kk-1) = -tf*
* (dxdexf.,'t'dzdetf
* - dxdet f.,'C'dzdexf)

zetzb(ii,jj,kk-1) = tf*
,'c- (dxdexf*dydetf
* - dxdetf*dydexf)
endif

20 continue

*** Transformation expressions on boundary walls

*** East and West boundaries

do 30 j = 2,jnml
do 30 k = 2,knml

et ax (1 , j , k) = etax(2,j,k)
etay(l,j,k) = etay(2,j,k)
etaz(l,j,k) = etaz(2,j,k)
exix (1, j, k) = exix(2,j,k)
ex i y (1 , j , k) = exiy(2,j,k)
exiz(l,j,k) = exiz(2,j,k)
zetx(l,j ,k) = zetx(2,j,k)
zety(l,j ,k) = zety(2,j,k)
zetz(l,j ,k) = zetz(2,j,k)

etax(in,j,k) = etax(inml,j,k)

PAGE 00086

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

etay(in,j,k) = etay(inml,j,k)
etaz(in,j,k) = etaz(inml,j,k)
exix(in,j,k) = exix(inml,j,k)
exiy(in,j,k) = exiy(inml,j,k)
exiz(in,j,k) = exiz(inml,j,k)
zetx(in,j,k) = zetx(inml,j,k)
zety(in,j,k) = zety(inml,j,k)
z et z (in , j , k) = zetz(inml,j,k)
tjac(in,j,k) = tjac(inml,j,k)

30 continue

*** North and South boundaries

do 40 i = 2,inml
do 40 k = 2,knml

etax(i,1,k) = etax(i,2,k)
etay(i,1,k) = etay(i,2,k)
et az (i , 1 , k) = etaz(i,2,k)
exix(i,1,k) = exix(i,2,k)
exiy(i,1,k) = exiy(i,2,k)
exiz(i,1,k) = exiz(i,2,k)
zetx(i,1,k) = zetx(i,2,k)
zety(i,1,k) = zety(i,2,k)
zetz(i,1,k) = zetz(i,2,k)

et ax (i , j n , k) = et ax (i , j nm 1 , k)
eta.y(i,jn,k) = etay(i,jnml,k)
et az (i, j n, k) = et az (i , j nm 1 , k)
exix(i,jn,k) = exix(i,jnml,k)
exiy(i,jn,k) = exiy(i, jnml, k)
exiz(i,jn,k) = exiz(i,jnml,k)
zetx(i,jn,k) = zetx (i, jnml, k)
zety(i,jn,k) = zety(i,jnml,k)
zetz(i,jn,k) = zetz(i,jnml,k)
tjac(i ,jn,k) = tjac(i,jnml,k)

40 continue

*** Back and Front boundaries

do 50 i = 2,inml
do 50 j = 2,jnml

etax(i,j,1) = et ax (i , j , 2)
etay(i,j,1) = etay(i,j,2)
etaz(i,j,1) = etaz(i,j,2)
ex ix (i , j , 1) = exix(i,j,2)
exiy(i,j,1) = exiy(i,j,2)
exiz(i,j,1) = exiz(i,j,2)
zetx(i,j,1) = zetx(i,j,2)
ze ty (i , j , l) = zety(i,j,2)
zetz(i,j,1) = zetz(i,j ,2)

PAGE 00087

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

50

*
*

*
*

etax(i,j,kn) = etax(i,j,knml)
etay(i,j,kn) = etay(i,j,knml)
etaz(i,j,kn) = etaz(i,j,knml)
exix(i,j,kn) = exix(j_,j ,knml)
exiy(i,j,kn) = exiy (i, j , knm 1)
exiz(i,j,kn) = exiz(i,j,knml)
zetx(i,j,kn) = zetx(i,j ,knml)
zety(i,j,kn) = zety(i,j,knml)
zetz(i,j,kn) = zetz(i,j,knml)
t j ac (i, j , kn) = t j ac (i , j , knm 1)

continue

Calculate the interpolation factors

do 60 i = 2,inm2
do 60 j = 2,jnml

do 60 k = 2,knml
ii = 2*(i-1)
J J = z-1r (j - 1)
kk = 2*(k-1)
is tot = jngiC"kng
ng = (ii-l)*istot + (jj-l)*kng + kk

dlsl = sqrt((xx(ng+istot) - xx (ng))7(*2
+(yy(ng+istot) - yy(ng))*.,'t-2
+(zz(ng+istot) - zz (ng))*,.('2)

d1s2 = sqrt((xx (ng+2.,,r is tot) - xx(ng+istot))**2
+(yy(ng+2*istot) - yy(ng+istot))**2
+(zz(ng+2"'ristot) - zz(ng+istot))**2

fl(i,j ,k) = dlsl/(dlsl+dls2)

60 continue

do 70 i: 2,inml
do 70 j = 2,jnm2

do 70 k = 2,knml
ii = 2*(i-l)
JJ = 2.,,r(j-1)
kk = 2*(k-1)
istot = jng*kng
ng = (ii-l)*istot + (jj-l)*kng + kk

d2s1 = sqrt((xx(ng+kng) .;. xx(ng))**2
* +(yy(ng+kng) - yy(ng))Mr2
,'r +(zz(ng+kng) - zz(ng))**2)

d2s2 = sqrt((xx(ng+2*kng) - xx(ng+kng))*-,'C'2
* + (yy (ng+Zi'C"kng) - yy(ng+kng))*.,,r2
* +(zz (ng+Zi'C'kng) - zz(ng+kng))*.,'C"2

f2(i,j,k) = d2s 1/ (d2s l+d2s2)

70 continue

do 80 i = 2,inml
do 80 j = 2,jnml

)

PAGE 00088

)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

80

do 80 k = 2,knm2
ii= 2*(i-1)
JJ = 2,'r(j-1)
kk = 2*(k-l)
istot = jng*kng
ng = (ii-l)*istot + (jj-l)*kng + kk

d3s1 = sqrt((xx(ng+l) - xx (ng)),'c";C'2
* +(yy(ng+l) - yy (ng))i'<'*2
* +(zz(ng+l) - zz (ng))*.,,('2)

d3s2 = sqrt((xx(ng+2) xx(ng+l))**2
* +(yy(ng+2) - yy(ng+1))**2
* +(zz(ng+2) - zz (ng+ 1))i't-*2

f3(i,j,k) = d3s1/(d3s1+d3s2)

continue

do 90 k = 1, kn
do 90 j = 1, jn

do 90 i = 1,in
delexie(i,j,k)
deletan(i,j,k)
delzetb(i_,j ,k)

= 1.0
= 1.0
= 1.0

)

90 continue

***--
*** Part 3 : Write grid data file for flow simulation
***--

if(isetup.eq.l)then

write(7,*)in,inml
write(7,*)jn,jnml
write(7,*)kn,knml

do 100 k = 1 , kn
do 100 j = 1,jn

do 100 i = 1,i.n

write(7,l)k,j,i,fl(i,j,k),f2(i,j,k),
* f3(i,j,k),x(i,j,k),y(i,j,k),z(i,j,k)

write(7,2)exix(i,j,k),exiy(i,j,k),exiz(i,j,k),
* etax(i,j,k),etay(i,j,k),etaz(i,j,k)

write(7,2)zetx(i,j,k),zety(i,j,k),zetz(i,j,k),
* exixe(i,j,k),exiye(i,j,k),exize(i,j,k)

write(7,2)etaxe(i,j,k),etaye(i,j,k),etaze(i,j,k),
* zetxe(i,j,k),zetye(i,j,k),zetze(i,j,k)

write(7,2)exixn(i,j,k),exiyn(i,j,k),exizn(i,j,k),
* etaxn(i,j,k),etayn(i,j,k),etazn(i,j,k)

write(7,2)zetxn(i,j,k),zetyn(i,j,k),zetzn(i,j,k),
* exixb(i,j,k),exiyb(i,j,k),exizb(i,j,k)

write(7,2)etaxb(i,j,k),etayb(i,j,k),etazb(i,j,k),
* zetxb(i,j,k),zetyb(i,j,k),zetzb(i,j,k)

write(7,3)tjac(i,j,k),tjace(i,j,k),tjacn(i,j,k),tjacb(i,j,k)

PAGE 00089

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria

100 continue

endif

1 format(lx,3i4,2x,3f6.3,2x,3fl0.5)
2 format(lx,6£12.5)
3 format(lx,4£15.7)

return
end

PAGE 00090

	Numerical Solution Turbulent Flow Three-Dimensional Curvilinear Co-Ordinates
	front_2

	Abstract
	front_4

	Uittreksel
	front_6

	Acknowledgements
	Table of Contents
	front_9

	Appendices
	Chapter 1: Introduction
	p002
	p003
	p004
	p005
	p006
	p007
	p008
	p009
	p010
	p011
	p012
	p013
	p014
	p015
	p016
	p017
	p018
	p019
	p020

	Chapter 2: Theoretical Investigation
	p022
	p023
	p024
	p025
	p026
	p027
	p028
	p029
	p030
	p031
	p032

	Chapter 3: Numerical Modelling
	p034
	p035
	p036
	p037
	p038
	p039
	p040
	p041
	p042
	p043
	p044
	p045
	p046
	p047
	p048
	p049
	p050

	Chapter 4: Program Applications
	p052
	p053
	p054
	p055
	p056
	p057
	p058
	p059
	p060
	p061
	p062
	p063
	p064
	p065
	p066
	p067
	p068
	p069
	p070
	p071
	p072
	p073
	p074
	p075
	p076

	Chapter 5: Conclusions
	p078
	p079
	p080
	p081
	p082

	Nomenclature
	p084
	p085

	References
	p087
	p088
	p089
	p090
	p091
	p092
	p093

	Appendices
	a_2
	a_3
	a_4
	a_5
	b_1
	b_2
	b_3
	b_4
	b_5
	b_6
	b_7
	c_1
	c_2
	c_3
	c_4
	c_5
	d_1
	d_2
	d_3
	d_4
	d_5
	d_6
	d_7
	d_8
	e_1
	e_2
	e_3
	f_1
	f_2
	f_3
	g
	g_1
	g_2
	g_3
	g_4
	g_5
	g_6
	g_7
	g_8
	g_9
	g_10
	g_11
	g_12
	g_13
	g_14
	g_15
	g_16
	g_17
	g_18
	g_19
	g_20
	g_21
	g_22
	g_23
	g_24
	g_25
	g_26
	g_27
	g_28
	g_29
	g_30
	g_31
	g_32
	g_33
	g_34
	g_35
	g_36
	g_37
	g_38
	g_39
	g_40
	g_41
	g_42
	g_43
	g_44
	g_45
	g_46
	g_47
	g_48
	g_49
	g_50
	g_51
	g_52
	g_53
	g_54
	g_55
	g_56
	g_57
	g_58
	g_59
	g_60
	g_61
	g_62
	g_63
	g_64
	g_65
	g_66
	g_67
	g_68
	g_69
	g_70
	g_71
	g_72
	g_73
	g_74
	g_75
	g_76
	g_77
	g_78
	g_79
	g_80
	g_81
	g_82
	g_83
	g_84
	g_85
	g_86
	g_87
	g_88
	g_89
	g_90

