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ABSTRACT 

Many fluid flow applications that exist in engineering practice can be 

solved by means of numerical techniques. Most of these problems require 

complete three-dimensional modelling of flow in· complex curvilinear 

geometries. This motivated the development of a numerical model for the 

solution of three-dimensional turbulent flow based on a general curvilinear 

co-ordinate system. 

Three-dimensional turbulent flow is described by six highly non-linear 

partial differential equations. These include the three momentum 

equations, the continuity equation and the two equations of the k - £ 

turbulence model. In order to apply the conservation principles in the 

above equations to general curvilinear co-ordinates, transformat_ion 

relations are used in formulating the equations in terms of general 

curvilinear form. 

A finite volume numerical approach is used to discretize the relevant 

equations into a linear form. The equations are then solved simultaneously 

by an iterative process. A segregated approach based on the SIMPLE 

algorithm is used for this purpose whereby pressures and velocities are 

calculated separately. Due to the application of the segregated approach, 
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decoupling between pressures and velocities occurs. A specific 

interpolation scheme is implemented whereby strong pressur~velocity 

coupling is ensured. Turbulence effects are included by calculating an 

additional turbulent viscosity, which has the effect of increasing the 

effective fluid viscosity. The computer program (3DFLO) is written in 

Fortran 77 and executed on an IBM f550 computer. 

After each stage of the development process, various test cases were solved 

to verify the accuracy of the code. It is shown that the numerical results 

compare favourably to analytical, experimental and previous numerical 

results. The code was then applied to the modelling of thre~imensional 

atmospheric boundary layer flow over and around arbitrary shaped 

buildings. The use of non-orthogonal boundary fitted grids enabled the 

exact conformation of sharp ridge geometry and pitched roof inclines. The 

numerical predictions are in good agreement with full scale measurements 

and prove to be superior to previous numerical predictions. This can be 

mainly attributed to an improved representation of physical flow 

boundaries and to complete three-dimensional modelling. 
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UITTREKSEL 

Vele vloeiprobleme kom in die ingenieurspraktyk voor, wat moeilik sonder 

die hulp van numeriese modelle opgelos kan word. Hierdie probleme gaan 

meestal gepaard met turbulensie en bestaan in die werklikheid gewoonlik in 

komplekse drie--dimensionele geometriee. Dit het aanleiding gegee tot die 

ont wikkeling van 'n numeriese model vir die oplossing van drie­

dimensionele turbulente vloei in nie-uniforme gebiede. 

Drie--dimensionele laminere vloei word beskryf deur vier nie-lineere 

partiele differensiaalvergelykings naamlik die drie momentum vergelykings 

en die kontinuiteitsvergelyking. Wanneer vloei egter turbulent is, word 

verder ook van 'n turbulensie sluitingsmodel gebruik gemaak. In hierdie 

studie word die k-f model gebruik wat uit twee verdere differentiaal­

vergelykings bestaan. Om te verseker dat die behoudsbeginsels waarop die 

bogenoemde vergelykings gebasseer is steeds geld wanneer in nie-uniforme 

gebiede gewerk word, word die vergelykings getransformeer relatief tot 'n 

algemene kromlynige koordinaatstelsel. 

Die numeriese tegniek wat vir die oplossing van die vergelykings gebruik 

word is 'n eindige volume metode. Hiervolgens word elkeen van die 
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vergelykings gediskretiseer waarna <lit op 'n iteratiewe basis opgelos word. 

Die oplosalgoritme, wat op die SIMPLE metode gebaseer is, behels die 

afsonderlike oplossing van snelhede en drukke wat lei tot swak koppeling 

tussen die veranderlikes. Derhalwe word van 'n spesiale interpolasie 

metode gebruik gemaak ten einde voldoende koppeling te bewerkstellig. 

Die effek van turbulensie word in berekening gebring deur 'n addisionele 

turbulente viskositeit te bereken wat gevolglik die effektiewe vloeier 

viskositeit verhoog. Wanneer vloei in komplekse geometriee opgelos word, 

word van grenspassende roosters gebruik gemaak sodat realistiese vloei · 

gebiede akkuraat nageboots kan word. Die rekenaar program (3DFLO) is 

ontwikkel in Fortran 77 en word op 'n IBM f550 rekenaar uitgevoer. 

Gedurende die ontwikkeling van die model, is <lit na elke ontwikkelingsfase 

geverifieer deur standaard toetsgevalle, waarvoor daar korrekte oplossings 

beskikbaar is, op te las. In alle gevalle toon die huidige resultate goeie 

ooreenkoms met analitiese, eksperimentele en aanvaarde numeriese 

resultate. Die model is voorts toegepas op die modellering van 

atmosferiese grenslaag vloei oar en random geboue van arbitrere vorm. 

Volledige drie-dimensionele simulasie tesame met die akkurate modellering 

van dak geometriee het tot gevolg <lat die huidige resultate beter korrelleer 

met volskaal metings as enige van die vorige voorspellings. 
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CHAPTER! INTRODUCTION 

1.1 The problem considered 

Tue rapid development of computer technology during the last decade, have 

resulted in growing emphasis being placed on the use of numerical methods 

for solving complex engineering problems. Such applications present a cost 

effective alternative to experimental testing by evaluating different design 

alternatives during the development stage. The numerical solution of fluid 

flow problems further contribute to improve the understanding of 

complicated flow phenomena. 

In general, practical flows in engineering occur in non-uniformly shaped 

regions. The inability of classical co-ordinate systems to accurately model 

flow in such regions, motivated the search for methods to solve fluid flow by 

using a general curvilinear co-ordinate system. This enables the exact 

conformation of physical flow boundaries and removes inaccuracies due to 

boundary approximating assumptions. 

1 
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INTRODUCTION 

Many applications exist where the ability of a computer code to model fluid 

motion in randomly shaped regions is especially useful. One of these is the 

simulation of wind flow over obscurely shaped buildings. With sufficient 

knowledge of the wind flow patterns in a certain area, such a computer code 

can provide detailed information regarding the velocity field and pressure 

distribution surrounding any proposed building at that location. This 

enables the study of wind loads on building structures and reflects the 

expected wind micro climate associated with those structures. 

Like most practical flow situations, the flow around buildings is turbulent. 

The general fluid flow equations used to calculate laminar flow are therefore 

no longer valid and an additional closure model is required to include the 

effect of turbulence. The aim of the study is thus to develop a numerical 

model which is able to simulate turbulent flow over arbitrary geometries -

more specific, the modelling of wind flow over obscurely shaped buildings. 

2 
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INTRODUCTION 

1.2 Review of related literature 

1.2.1 General overview 

For many centuries, engineers have struggled with the solution of 

fluid flow problems. Until recently most problems were solved using 

either analytical or empirical methods based on experimental 

measurements. The limitations of these methods inspired the search 

for improved solution procedures. In the early 20th century, a few 

pioneers started using numerical methods to solve fluid flow problems 

[l]. In those days calculations had to be done by hand which required 

enormous amounts of time and effort. The advent of the digital 

computer made it possible to obtain numerical solutions with much 

greater ease. It resulted in increased interest in computational 

techniques applicable to fluid dynamic problems. 

According to the literature, the actual beginning of computational 

fluid dynamics can be attributed to Richardson [2) in 1910, who 

presented a point iterative scheme for the solution of the Laplace 

equation. For the first time, problems requiring solution by 

relaxation were distinguished from those which required marching 

schemes. In 1940, Southwell (3) introduced a relaxation scheme which 

made use of point residuals in the calculation of the dependent flow 

variables. The method was applied to solving incompressible, viscous 

flow over a cylinder. During the same time, a great deal of research 

was done on the evaluation of the stability of numerical methods. 

This resulted in the Von Neumann method [4] which is still the most 

3 
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commonly used method for determining the stability of numerical 

solution procedures today [1]. 

In 1972, Patankar [5] developed the so-called SIMPLE algorithm for 

the calculation of pressure and velocity distributions describing an 

entire flow field. A number of similar methods were consequently 

developed and it will be shown later (Section 1.2.5), that this family 

of solution algorithms is still the most popular for solving elliptic fluid 

flow problems today. 

The aspect of fluid flow turbulence also attracted the attention of a 

number of engineers and researchers [6]. In an attempt to describe 

the phenomenon of turbulence in fluid motion, various mathematical 

models have been developed. These closure models are included in a 

numerical model when turbulent flows are calculated. The most 

popular group of turbulence models to date, are the turbulent 

viscosity models which are based on the calculation of an effective 

fluid viscosity to include turbulent effects. A discussion of these and 

other turbulence models will be presented in Section 1.2.3 

With the increasing complexity of modern engineering technology, it 

has become necessary to accurately model fluid flow in randomly 

shaped regions. In an attempt to address this issue, a so-called 

general curvilinear co-ordinate system is used to replace classical 

co-ordinate systems. Current research is aimed at employing general 

curvilinear boundary fitted grids to model almost any 

thr~imensional fluid flow problem. 

4 
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1.2.2 General curvilinear co-ordinates 

The development of new solution methodologies is one of the primary 

pacing items in computational fluid dynamics today. With the 

current rate of progress in this discipline, as well as with grid 

generation techniques and the enhancements in computing ability, it 

is now practical to simulate complicated fluid dynamic phenomena 

associated with realistic geometries [7]. Classical co-ordinate systems 

such as cartesian or cylindrical co-ordinates are limited in the extent 

to which randomly shaped spaces can be modelled. When co-ordinate 

lines do not conform the boundaries of the physical region, difficulties 

occur at these boundaries. It requires the tiresome interpolation of 

the values for the dependent variables at points closest to the 

boundaries. The process is not only time-consuming but decreases 

the accuracy of the solution. 

The restrictions inherent to classical co-ordinate systems motivated 

the search for methods which enable the solution of fluid flow 

problems in realistic geometries. Wenquan et al. [8], developed a 

numerical model for the calculation of flow along arbitrarily twisted 

stream surfaces. The model makes use of a stream function-vorticity 

method in calculating two-dimensional velocity components. It 

includes a general curved surface fitting scheme to represent curved 

surfaces in turbo-machines. Cunsolo et al. [9] also used a stream 

function-vorticity method to model fluid flow in general 

non-orthogonal grid reference systems. The extension of these stream 
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function-vorticity methods to three dimensions are, however, not 

straight forward, which leaves pressure-velocity methods to be 

considered. 

Greyvenstein [10] applied a finite difference pressure-velocity method 

for the solution of elliptic flow by using orthogonal curviline?'r 

co-ordinates. The use of such a system leads to the simplification of 

the equations of motion describing the problem and also avoids 

discretization errors coupled with non-orthogonal methods. 

According to Raithby et al. [11 ], boundary conditions can be applied 

more simply and with greater accuracy when the co-ordinate system 

is orthogonal. On the other hand, non-orthogonal grids can be 

generated with much greater ease, especially when randomly curved 

three-dimensional spaces are modelled. The aim is therefore to make 

use of non-orthogonal co-ordinates and to find ways and means of 

circumventing the above mentioned difficulties. 

Ramachandra and Spalding [12] presented a non-orthogonal 

finite-difference formulation for three-dimensional duct flows with 

arbitrary cross sections. Swanson [13] noted, that while Ramachandra 

et al. (12] transformed cross-stream dimensions from polar 

co-ordinates, cross section planes remained orthogonal in the 

streamwise direction. This limited the model to duct flow 

applications where there is only one direction of main transverse flow. 

Swanson [13] extended the model to solve incompressible flow in 

pump impellers and diffusers and obtained good agreement between 

the elliptic- and an inviscid solution. 

6 
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A number of other workers also identified the need for a numerical 

model that is generally applicable to most practical fluid flow 

problems [7,14,15]. Rhie and Chow [15] presented a finite volume 

numerical method for the solution of two-dimensional incompressible, 

steady Navier Stokes equations, in general curvilinear co-ordinates. 

The method is applied to two-dimensional turbulent flows over 

airfoils, with and without trailing edge separation. Numerical 

methods introduced by Thompson [16] were used in generating 

boundary fitted grids and the results obtained compared favourably 

with available experimental data. Thompson further used differential 

geometry to define the expressions required for transforming the 

partial differential equations into general co-ordinates. 

Based on the same curvilinear principles, Le Grange [17] developed a 

computer code for the simulation of polymer melt flow in a mould 

during the injection moulding process. Although this model was 

extended to three dimensions, it was limited to the simulation of 

laminar flows. The model included the solution of the energy 

equation which presented the ability of predicting viscous heating 

effects. The results obtained were in good agreement with predictions 

by commercial codes and available measurements. According to Le 

Grange [17], the method is applicable to non-orthogonal grid 

reference systems but the accuracy decreases when grids become 

severely non-orthogonal. No quantitative limits for 

non-orthogonality were, however, specified. 

7 
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1.2.3 Fluid flow turbulence 

Very few practical flows can be classified as being laminar. Especially 

in fluids with low viscosities, such as atmospheric air motion over 

building structures, fluid flow turbulence is prevalent. A numerical 

model that is applied to simulate such flow situations should provide 

for the effect of turbulence. This can be done by the inclusion of a 

mathematical turbulence model next to the partial differential 

equations describing laminar fluid flow. 

Turbulence can be defined as a three-dimensional time-dependent 

motion in which vortex stretching causes velocity fluctuations 

between a minimum determined by viscous forces, and a maximum 

determined by the flow boundary conditions [18]. It is the usual state 

of fluid motion except at low Reynolds numbers, and is associated 

with higher values of friction drag and steeper pressure drops than 

laminar flow. The diffusion rate of a scalar quantity is usually greater 

in turbulent flow which gives the impression of an increased fluid 

viscosity [19]. 

Despite this knowledge of turbulence, it has been recognized for more 

than 50 years that the understanding of turbulent flows is actually 

very incomplete. A quotation attributed to Sir Horace Lamb in 1932 

[1] might be appropriate: "I am an old man now, and when I die and 

go to Heaven there are two matters on which I hope for 

enlightenment. One is quantum electrodynamics and the other is the 

8 
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turbulent motion in fluids. And about the former I am rather 

optimistic." Today, 60 years later, many scientists and researchers 

probably still feel the same way. 

It can, however, be said that some progress has been made in trying 

to understand and predict turbulent fluid motion. It has been widely 

proposed that turbulent flow could be regarded as having an enhanced 

viscosity, a turbulent ( or eddy) viscosity which presents similar effects 

as noted previously. Boussinesq [20], suggested that this value be 

constant and that the equations of mean motion become identical to 

those applicable for laminar flow. The value for this turbulent 

viscosity had to be determined from comparisons with experimental 

measurements. This approach did not prove adequate for wall 

bounded flows as the turbulent viscosity must vary with position, 

from a large value in the mainstream to be zero at the walls [19]. 

The simplest turbulence model to account for the variability of the 

turbulent mixing length with the use of only one empirical constant, 

is Prantl's mixing length model [l]. The basic idea in this model is 

that a fluid element, displaced perpendicularly to the main flow 

direction from its original position, would retain its original 

streamwise velocity. The major physical assumption underlying this 

hypothesis is that streamwise pressure forces and viscous stresses are 

unimportant, which may be shown justifiable for three-dimensional 

eddies that are flat in the sense that their streamwise dimensions are 

much greater than their cross-stream dimensions [19]. Prantl' s 

algebraic formula treats the turbulent viscosity as a scalar and gives 

9 
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qualitatively correct trends, particularly near the wall. There is 

increasing experimental evidence, however, that in the outer layer, the 

turbulent viscosity should be treated as a tensor (ie. dependent on the 

direction of strain) in order to provide the best agreement with 

measurements. For flows in corners or in other geometries where a 

single "transverse" direction is not clearly defined, Prantl's formula 

must be further modified [18]. 

A large number of more complicated turbulence models have been 

proposed since Prantl's initial work. In 1972, Launder and Spalding 

[6] introduced the so-called k-t: turbulence model which applies to 

fully turbulent flows. The model entails the solution of two additional 

partial differential equations for the turbulence quantities k and t:, 

which are used to calculate the turbulent viscosity. Several authors 

sought to devise turbulence model equations which are valid 

throughout the laminar, semi-laminar and fully turbulent regions. 

Launder and Spalding [21] recommend a separate pair of equations 

applicable to low Reynolds number flows. The model differs from the 

original method in that viscosity now influences levels of k and f in 

two additional ways. Firstly, laminar diffusive transport becomes of 

increasing importance near the walls and secondly, extra destruction 

terms are included which become significant in transitional areas. For 

a complete discussion of this model, the reader is referred to 

reference [21]. 

Gosman and Ideriah [22], explains the handling of the k-t: model at 

various boundary conditions. In the near vicinity of fixed wall 
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boundaries the use of wall functions to determine the value of t is 

proposed. These values reach a maximum at the walls where the 

turbulence dissipation rate is very large. Concerning the kinetic 

energy near solid walls, the direct application of the effect of the wall 

shear force on the kinetic energy transport equation is suggested. At 

fixed walls, an additional shear force term is added to the streamwise 

momentum equation to represent the effect of flow becoming laminar 

at these locations. Despite the dependence of the method on empirical 

data, many other authors [7,10,14,15,18,23-28] successfully applied 

the techniques described by Launder et al. [21] and Gosman et al. [22] 

and presented results that are in good agreement with experimental 

measurements. 

Many other turbulence models have been proposed such as algebraic 

stress models, Reynolds stress models, large eddy simulations and the 

full Navier Stokes equations [29]. Although the latter completely 

describes turbulent fluid motion, the small scale of turbulence could 

require approximately 10 
5 

grid points. for the simulation of 1 cm 
3 

of 

typical turbulent flow [l]. Of all the above mentioned methods only 

Reynolds stress models possibly offer a better approximation than the 

k-t method. 

Unlike the other methods mentioned, Reynolds stress models are not 

restricted by the Boussinesq approximation relating turbulent stresses 

to rates of mean strain (effective viscosity), but makes use of a great 

number of model partial differential equations to directly determine 

turbulent shear stresses independent of empirical constants. It would 

11 
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seem therefore that these Reynolds stress models ought to have the 

best chance of emerging as "ultimate" turbulence models if success is 

to be achieved at all through time-averaged Navier-Stokes equations. 

Nevertheless, these models must still utilize approximations and 

assumptions in modelling terms which presently cannot be measured. 

These models are perhaps still in their infancy and it may be some 

time yet· before they have been refined and tested to the point that 

they become commonplace in engineering practice [1]. 

1.2.4 Flow over arbitrary shaped buildings 

The satisfactory environmental performance of a building can depend 

critically upon the prediction and control of its wind microclimate. 

The design of an energy efficient building, for instance, requires a 

predictive understanding of its microclimate and particularly of the 

interaction between the wind, the building and its surroundings. 

Equally, comfort conditions in the spaces around and between 

buildings depend upon the wind speeds within them and their 

usefulness is determined in part by the adequate control of wind. In 

both cases there is a need to determine during design, the patterns of 

wind flow which will be generated by the proposed forms and layouts 

of buildings. 

Wind flow around buildings has been investigated with scale models 

and wind tunnels for some time [30]. This process is expensive and 

time-consuming. Many workers have done full scale experimental 

12 
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measurements on existing buildings of various shapes in order to 

predict wind flows over similar buildings under design [31-34]. 

Instruments for such experiments are very sensitive and costly and 

the setup of these devices take many hours. It would be ideal to 

model the wind effects on buildings numerically rather than have to 

contend with the problems associated with most experiments. 

The question naturally arises whether a computer simulation of wind 

flow around a building can accurately reproduce the information 

obtained from wind tunnel and full scale measurements. Acceptable 

agreement between numerical predicted and full scale measurements 

for wind flow over a film clad greenhouse was obtained by Meyer 

et al. [25], who made use of a tw~imensional finite difference 

computer model. Many other authors also presented numerical 

predictions of sufficient accuracy by using two-dimensional computer 

codes [26,35-38]. Crosby [18] applied a cartesian two-dimensional 

numerical model to simulate airflow through and around permeable 

windbreaks. Obstructions in the flow field were treated by 

prescribing very small porosities over the solid region and the 

resulting velocity and pressure distributions around house shaped 

buildings presented good agreement with experiments. These models 

are, however, limited in the extent to which three-dimensional effects 

can be included in the predictions. 

The need to apply three-dimensional modelling to flow over buildings 

was identified by Hanson et al. [39] and by Paterson et al. (40]. 

Subsequently other workers also recognized the advantages of 

13 
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complete three~imensional simulation (27,28,41,42). In all the cases 

acceptable numerical results were presented. The numerical models 

used by these authors were, however, all limited to cartesian 

co-ordinates and square buildings. Similar to Haggkvist et al. (42], 

inclined roofs were represented by stepping the cartesian grid as 

shown below in Figure 1.1. 

Figure 1.1 Stepped representation of an inclined roof 

Inaccuracies occur at these surfaces as a result of the uneven, stepped 

incline. Ironically this is the most sensitive and important part of the 

numerical solution. These difficulties can be removed by using 

boundary conforming grids to represent the exact regions. 

Although acceptable correlation between numerical predictions and 

full scale measurements for single span pitched roof buildings were 

presented by a number of authors (18,42], no evidence could be found 

14 
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of numerical simulations on multi-span buildings. This could mean 

that such a problem requires either three-<limensional modelling or 

better representation of roof inclines, or both. In fact, no evidence 

could be found in the literature of three-<limensional numerical 

modelling, applied to body fitted grids in predicting atmospheric air 

motion over buildings. 

1.2.5 Numerical solution algorithms 

In the quest to solve the highly non-linear partial differential 

equations describing turbulent fluid flow, many solution procedures 

have been developed. Probably the most popular of them all is the 

SIMPLE algorithm (Semi-Implicit Method for Pressure Linked 

Equations) introduced by P atankar [5]. It entails the segregated 

solution of the pressures and velocities in an iterative manner. The 

values are then adjusted by calculating pressure and velocity 

corrections from the continuity equation. In order to improve the 

rate of convergence, the algorithm was modified and lead to the 

SIMPLER (Revised) procedure. 

In 1984 Van Doornmaal and Raithby [43] introduced several 

modifications to the SIMPLE method that both simplified its 

implementation and reduced solution costs. The SIMPLEC algorithm 

removed the need for under-relaxation of the pressure corrections and 

arguably followed a more consistent approach in the manipulation of 

the pressure correction equation. In a comparison between the above 

15 
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mentioned three algorithms for two test cases, it was found that the 

new method reduced the computational effort of the original SIMPLE 

method by up to 50% using the same grid, differencing scheme and 

convergence parameters. 

A new general segregated approach for solving a linear set of 

equations for pressure and velocity, which had better characteristics 

than previous segregated methods, were presented by Van Doornmaal 

et al. (44]. This method permits previous segregated methods to be 

derived from the same general equations and provides a means of 

qualitatively assessing the approximations introduced. The 

SIMPLEX method addressed the issue of degradation of segregated 

methods with grid refinement. It was concluded that the cost of the 

additional computational effort required by the SIMPLEX method, 

may be compensated for by its rate of convergence, that does not 

degrade with grid refinement. 

In 1990, Thiart (45] presented a new difference method which removes 

the need for staggered grids in fluid dynamic computations. The 

method prevents pressure checkerboarding, as described by 

Patankar [5], through a differencing scheme that incorporates the 

influence of pressure on velocity gradients. The most important 

advantages of the SIMPLE based SIMPLEN method (for 

Non-staggered grids) are ease of programming and the relative ease 

with which boundary conditions can be applied. Following this 

development, Thiart published an improved differencing scheme for 

his original algorithm later the same year (46]. The method was 
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extended by also upwinding cross-stream fluxes in addition to the 

upwinding of the source terms, and showed that the method is 

superior in accuracy compared to the previous method. 

Other researchers also joined in the search for algorithms applicable 

to finite volume non-staggered grids. Rhie and Chow [15] presented a 

finite difference formulation, in which spurious pressure modes are 

detected and suppressed by a specific interpolation scheme. The 

scheme ensures strong pressure-velocity coupling by including 

pressure at consecutive points into the interpolation of cell wall 

velocities, which are needed to solve the pressure correction equation. 

Differencing of the local pressure gradient terms at these walls is then 

done over only one space interval instead of two. It was proven for 

some test cases that this procedure showed better convergence 

behaviour than the original SIMPLE method. 

Other solution procedures such as the PISO (Pressure-Implicit 

Split-Operator) algorithm do not yet enjoy the same popularity as 

the SIMPLE family of methods. Benodekar et al. [23] used this 

algorithm in the prediction of turbulent flow over surface mounted 

ribs. The algorithm uses a two-stage predictor-corrector sequence 

which satisfies continuity and linearized momentum equations at each 

cycle more closely than hitherto. It resulted in an improved 

computational efficiency of three to four fold. 
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1.3 The need for this study 

From the literature survey it is evident that computer models are fast 

becoming commonplace in engineering practice. Numerical models are 

becoming particularly popular for the solution of fluid flow problems that 

occur in nature and industry. These methods offer suitable alternatives to 

time-consuming and expensive experimental methods. Many of the flow 

problems encountered in practice, involve complex geometrical configurations 

and most of them require three-dimensional modelling to enable realistic 

simulation. A need is therefore identified to use three-dimensional boundary 

fitted grids and curvilinear co-ordinates when flow in arbitrary shaped 

regions is modelled. 

Although many commercial codes exist that can simulate flow in randomly 

curved regions, they are not only expensive but often limited in applicability. 

Due to the complexity of the equations governing fluid motion, some 

simplifying assumptions are usually made during the development of these 

codes. Whether they be restricted to the solution of laminar flow, steady 

state or incompressible flow, the fact remains that they are seldom applicable 

to most practical engineering fluid flow problems. Without access to the 

source code, it is als~ not possible to modify the code for special applications. 

This provided the need to locally develop a general fluid flow code, that is 

applicable to laminar and turbulent fluid motion in realistic geometries. 

One application for which numerical methods are becoming increasingly 

popular is the study of wind flow around buildings. Many workers used 

two-dimensional approximations, which were not always adequate, while 
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other three-dimensional simulations were hampered by the geometrical 

restrictions inherent to fixed cartesian and orthogonal curvilinear 

c~rdinate systems. A general three-dimensional fluid flow code based on 

curvilinear c~rdinates is therefore required to include complete 

three-dimensional effects in the simulation and to enable exact 

representation of building structures thereby avoiding previous geometrical 

approximations of pitched roof ridges. 

The code is further needed in order to simulate wind flow around multi-span 

pitched roof buildings - something which has evaded researchers in the past. 

This could lead to an interesting and unique contribution to the current 

knowledge of wind loads on and flow around arbitrary shaped buildings. 

1.4 The outline of the study 

The purpose of this study is to develop a three-dimensional computer code 

for the solution of laminar and turbulent flow in realistic geometries. The 

numerical model is based on a general three-dimensional curvilinear 

co-ordinate system and allows the use of non-orthogonal boundary 

conforming grids representing arbitrary curved regions. 

In Chapter 2 a theoretical investigation into the mathematical models 

describing three-dimensional turbulent flow is provided. In Appendix A the 

derivation of a momentum equation from first principles is presented from 

which a General Transport Equation is formulated. The transformation 
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relations utilized in transforming this equation relative to general 

co-ordinates is also discussed in this chapter, followed by an investigation of 

the k-f turbulence model. 

The above mentioned equations can, however, not be solved analytically. 

This presents the need to solve them numerically. The methods used and the 

assumptions made in linearizing these equations for numerical solution are 

discussed in Chapter 3. It also deals with the algorithms utilized in 

obtaining the numerical solution and attends specifically to the application of 

the different boundary conditions. 

In Chapter 4 the results obtained from the computer simulations are 

compared to analytical and experimental data. The model is extensively 

verified for laminar as well as turbulent flows whereafter it is used to 

calculate flow over real buildings. The results obtained are compared with 

published full scale measurements of flow fields around buildings. The 

information is used to calculate dynamic pressure coefficients required to 

determine the effect of wind loads on buildings. 

Chapter 5 concludes the report by presenting a summary of the thesis, a list 

of the main contributions of the study as well as the important conclusions 

drawn from the study. Finally a list is given of some related areas for further 

research which were identified during the course of this study. 

20 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

CHAPTER2 THEORETICAL INVESTIGATION 

2.1 Preamble 

Laminar fluid motion can in general be described by a number of partial 

differential equations. These include a momentum equation for each of the 

velocity components and the continuity equation. By solving these partial 

differential equations, velocities and pressures can be calculated at any point 

within the flow region. For turbulent flow, a closure model is required to 

include the effect of turbulence in the fluid. In this study, a turbulent 

viscosity model is used which entails the solution of two additional partial 

differential equations. 

The above mentioned equations derived for classical co-ordinate systems are, 

however, not applicable to the solution of flow in arbitrary curved regions. 

To solve flow in such curved regions, the governing flow equations should be 

cast into a general curvilinear form. This is done by applying transformation 

relations, developed from the principles of vector and tensor analysis, in the 

transformation from cartesian to general curvilinear co-ordinates. In this 
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chapter, the relevant equations which include the momentum, continuity and 

turbulence equations, as well as the transformation relations used, are 

considered. 

2.2 The Governing Equations 

In an attempt to define fluid flow behaviour, several workers derived 

equations by which exact solutions for specific fluid flow problems could be 

obtained. This eventually lead to the formulation of the well-known 

Navier - Stokes equations describing complete elliptic fluid motion. The 

equations describe the law of conservation of momentum for a finite control 

volume as shown in Figure 2.1. 

(x+~x,y+~y,z+~z) 

y 

z 
(x,y,z) ~x 

'-------~ 
X 

Figure 2.1 A general finite control volume element 
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The complete derivation of one of the momentum equations (for u-velocity) 

relative to cartesian c~rdinates is given in Appendix A. The same 

conservational principles also apply to the other two velocity components. 

These equations can be summarized by formulating the general transport 

equation, given below, which is independent of a co-ordinate system. 

~(p</>) = - V • ( pv</>) - V • ( fV</>) + s4> (2.1) 

The equation is presented in vector form with </> representing any one of the 

thr~imensional velocity components, r the diffusion coefficient and s4> 

the source term which may contain pressure and gravity forces. 

In addition to the momentum equations, fluid flow also obeys the law of 

conservation of mass. This implies that the total mass transferred into a 

control volume as shown in Figure 2.1, should equal the mass flux out of the 

volume plus the mass accumulated therein. Based on this principle, the 

continuity equation is derived. In vector notation the equation can be 

written as: 

~(p) =-V • (pv) (2.2) 

where v represents the complete velocity vector consisting of the three 

velocity components (u,v,w). 

The continuity equation can be combined with the momentum equations to 

present a mathematical model whereby three-dimensional laminar fluid flow 

can be calculated. 
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The equations presented above are general and independent of a co-ordinate 

system. Before the solution of these general equations can be addressed, the 

equations should be completely quantified relative to a reference co-ordinate 

system. For this purpose a general curvilinear co-ordinate system is used. 

In the next section, the process of formulating the equations in terms of 

general curvilinear co-ordinates is described. 

2.3 Transformation to curvilinear co-ordinates 

The choice of a co-ordinate system for the solution of three-dimensional 

fluid flow is very important because it affects the accuracy as well as the 

efficiency of the solution. Classical co-ordinate systems, such as cartesian 

and cylindrical co-ordinates, are limited in the extent to which obscurely 

shaped flow regions can be modelled. To overcome the restrictions inherent 

to such systems, a general curvilinear co-ordinate system is used. 

For the solution of flow in general curvilinear co-ordinates, the governing 

equations are also required in the general form. The equations are 

transformed from classical to curvilinear co-ordinates. This is done using 

certain concepts from differential geometry and tensor analysis (16,48]. An 

arbitrarily shaped region is thereby transformed into a uniform calculation 

domain. (Figure 2.2) 
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Flow region Calculation domain 

Figure 2.2 Effective transformation of the physical region by 

transforming the governing equations 

Thompson [16] states the relationship between a cartesian co-ordinate 

system and a curvilinear co-ordinate system in the form of the relationship 

between their respective base vectors, 

a. =r. (i = 1,2,3) 
1 {I 

(2.3) 

where ~ represents the covariant base vectors relative to a curvilinear 

co-ordinate system while r consists of the cartesian unit vectors. 
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y 

X 

Figure 2.3 Contravariant base vectors relating cartesian to 

curvilinear c~rdinates 

The complete argument of transforming cartesian co-ordinates to curvilinear 

co-ordinates is explained in Appendix B where the covariant base vectors are 

utilized in defining expressions for arc length, surface area and volume 

element. These expressions are used in determining transformation relations 

for the differential operators occurring in the general transport equation. 

Mathematical expressions for gradient (V¢), divergence (V•¢) and for the 

individual partial derivatives of velocity, are derived in Appendix B and 

given below. 
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Gradient: 

Divergence: 

Derivatives: 

In curvilinear co-ordinates, the general transport equation can be written as 

follows: 

(2.7) 

where e, T/ and ( represent the three-dimensional curvilinear space 

co-ordinates while the vectors U,E,F and G contain the convection, diffusion 

and pressure terms as defined in Appendix B. 

2.4 The Turbulence Equations 

Fluid flow turbulence is a phenomenon of great importance in many fields of 

engineering and science. As most flows encountered in nature are turbulent, 

a good understanding of its fundamental mechanisms is a necessity. It does, 

however, present some of the most difficult problems both in the 

fundamental understanding of its physics and in practical applications. 
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Turbulent fluid motion can be described as an irregular condition of flow in 

which the various quantities show a random variation in time and space 

co-ordinates, so that statistically distinct average values can be discerned. 

A better idea of what is meant can be gained from Figure 2.4, where the 

small scale fluctuations around a mean value ( ¢) for any of the dependent 

variables is shown. 

t 

Figure 2.4 Small scale fluctuations in turbulent flow 

By now assuming that each of the dependent variables consist of an average 

value and a fluctuating value, as shown below, the Navier Stokes equations 

previously discussed, can be adapted to represent turbulent fluid motion. 

u=u + u' 

p=p + p' 

V =v + V
1 

p =p + p' 

w=w + w' 
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The complete argument is presented in Appendix C. It is shown that the 

momentum equations, which where derived from Newton's universal 

conservational principles, remain valid for turbulent flows with the mere 

substitution of the laminar viscosity by an effective viscosity. The effective 

viscosity is defined as the sum of the laminar and turbulent viscosities. 

(2.8) 

In this study the k-t: turbulence model is applied in the calculation of the 

turbulent viscosity value (µt). The model entails the solution of two 

additional partial differential equations, one for the turbulence dissipation 

rate ( t:) and the other for the kinetic energy of turbulence (k). The 

turbulence equations which are also independent of a co-ordinate system are 

given below. 

"-v,,-1 '-v--1 
time convection diffusion production dissipation 

- t: (2.10) 

"-v,,-1 '--v-/ 
time convect ion d if f us ion prod u c t ion d is s ipation 

By solving the above partial differential equations for the unknown variables, 

the value of the turbulent viscosity can be calculated by 

(2.11) 
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The constants Cµ, C1, C2, O"f. and O"k occurring in equations (2.9) and (2.10) 

are empirical and do not have fixed values. Their values differ slightly for 

various fluid flow applications and is published widely for these cases. For 

most general fluid flow problems the following numerical values are 

commonly assigned to each of the constants [18,24-28]. 

C µ = 0.09, C1 = 1.44, C2 = 1.92, (j f. = 1.0 and (jk = 1.33 

When atmospheric boundary layer flow is considered, the following set of 

values are proposed [25]. 

The k-f. turbulence model is, however, only valid for fully turbulent flows. 

Close to solid walls, there are inevitably regions where the local Reynolds 

number is so small that viscous effects predominate over turbulent ones [1 O]. 

Special attention is required at these regions. The greatest concern is not for 

the values on the walls but for the values right next to the wall which are in 

the flow field. Many authors successfully applied wall function methods 

developed by Spalding [21] and Gosman [22] by which wall shear stresses are 

calculated. 

These viscous shear stresses are dominant in the sub-layer adjoining the wall 

where the flow is laminar and the local Reynolds number (y +) is low. The 

local Reynolds number is defined by the following equation: 

+ Cl/4 1/2 / y =y p k µ 
p µ (2.12) 
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For a local Reynolds number of lower than 11,6 the shear stress can be 

calculated by 

T =-µ V /y , 
w t p 

(2.13) 

where y represents the distance from the solid wall and v the tangential 
p t 

velocity at this distance from the wall. When the local Reynolds number is 

greater than 11,6 the shear stress is described by 

1/4 1/2 + 
T =(pC k 11,v)/(ln(ty) 

w µ t 
(2.14) 

Near solid walls, the partial differential equation describing k is modified 

somewhat by replacing the dissipation and production terms by the following 

expression, which depends on the wall shear stress. 

(2.15) 

In the above equation, y. represents the direction perpendicular to the wall 
I 

so that y is measured in this direction. The value of t close to the wall can 
p 

also be calculated as a function of the wall shear stress according to the 

equation below, where K represents the Von Karman constant. 

c3/\ 1/2 

i = ___.__µ __ 
KY 

p 

(2.16) 

This outlines the basic mathematics behind the two equation k-t turbulence 
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model. The numerical application as well as the treatment of solid wall and 

other turbulence boundaries will be discussed in Chapter 3. 

The k-f turbulence model does not describe turbulent fluid motion from its 

basic principles since it depends on empirical values. It does, however, 

provide a useful compromise between accuracy and computability and is 

therefore the most widely used mathematical method for describing fluid flow 

turbulence in engineering practice today. 

2.5 Summary 

Turbulent fluid motion are described by six partial differential equations. 

They are the three momentum equations, the continuity equation and the 

two turbulence equations. Each of these equations is based on Newton's 

universal law of conservation for the transport of scalar-variables and can be 

represented by a General Transport Equation. To solve turbulent fluid flow 

in curvilinear co-ordinates and in realistic geometries, transformation 

relations are used to formulate the governing equations in terms of general 

curvilinear co-ordinates. 

Due to the non-linearity of the equations, they cannot be solved analytically 

for complex flow situations without making a large number of simplifying 

assumptions. The equations are, in fact, also interdependent and require 

simultaneous solution. In order to avoid such assumptions, the following 

chapter will deal with the aspects of developing a numerical solution method 

for solving the equations considered in this study. 
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3.1 Preamble 

In the previous chapter, the appropriate differential equations describing 

turbulent fluid flow in three-dimensional curvilinear co-ordinates were 

discussed. The next step is the development of a solution procedure which 

can be applied to obtain a numerical solution to the governing partial 

differential equations. 

Two basic approaches can be followed to solve the partial differential 

equations numerically, namely finite element and finite difference methods. 

Although the ability of finite element ~ethods for irregular grids have been 

recognized for some time, a number of difficulties have hampered progress in 

its application to fluid flow problems [5]. The main difficulty concerns the 

upwind nature of convection which is poorly addressed when straightforward 

finite element methods are used. These methods further often employ the 

direct simultaneous solution of all the equations, which is a expensive 

process. Alternatively, a finite difference method, which offers a better 
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physical interpretation of fluid flow behaviour, can be used. Considerable 

progress has been made in applying finite difference methods to randomly 

shaped regions. By transforming the equations relative to general curvilinear 

co-ordinates (Section 2.3), flow in arbitrary curved regions can be 

adequately modelled. Due to the above considerations, the finite difference 

approach is used in this study to obtain a numerical solution to 

three-dimensional turbulent flow in curvilinear co-ordinates. 

The first step in the development of a computational model, is the 

discretization of the differential equations relative to the problem. The 

process of obtaining linear discretization equations for the dependent 

variables will be discussed in Section 3.2. In Section 3.3 a pressure correction 

equation is derived from the equation of continuity, which is used to enforce 

the law of conservation of mass upon the flow field. As a result of the finite 

volume approach used during discretization and the separate solution of 

pressures and velocities, decoupling between the pressure and velocity fields 

occur. An interpolation scheme to remedy the situation is discussed in 

Section 3.4. 

In order to ensure realistic simulation of any practical flow situation, the 

physical boundary conditions applicable to the problem should be correctly 

implemented in the numerical model. Section 3.5 deals with a number of 

general boundary conditions applicable to most flow situations, including 

flow over real buildings. 

Once the above processes have been considered, a method is required 

whereby the values of the dependent variables can be obtained numerically 
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at discrete points throughout the calculation domain. In Section 3.6, a 

method for separately solving each of the linearized equations is presented. 

Finally the entire solution algorithm for calculating turbulent fluid flow is 

given. 

3.2 Discretization Equations 

In order to calculate numerical values for the variables describing fluid flow, 

the governing equations should be discretized. This entails the use of finite 

differences to replace the partial derivatives in time and space occurring in 

the governing equations. The finite differences are obtained by evaluating 

the variables at discrete points throughout the field. In this way the highly 

non-linear partial differential equations are linearized. 

In the discretization process, the control volume formulation is used. This is 

done to ensure that the conservation principle, which serves as the basis in 

the derivation of the General Transport Equation (2.1),is preserved [17]. A 

two-dimensional representation of the arrangement of these control volumes 

surrounding grid points is shown in Figure 3.1. 

It is shown that the whole domain is covered with non-overlapping control 

volumes so that the boundaries of the region are exactly matched by a 

combination of control volume boundaries. This feature becomes useful when 

obstructions in the flow field have to be delt with, as such obstructions can 

be closely conformed by the cell boundaries. In setting up such an 
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--0 - - e-

l I 

- l--

Figure 3.1 Typical representation of a control volume 

arrangement associated with a finite volume methods 

arrangement, a double refined grid is initially generated by positioning the 

grid points at the intersections of grid lines. Exact transformation values can 

then be calculated at cell wall boundaries instead of being determined by 

interpolation between values of neighbouring majour grid points. This 

improves the accuracy of the transformation values used in the differential 

equations to describe control volume geometries. In Figure 3.1 the control 

volume boundaries are therefore represented by the solid grid lines. 

One such control volume is shown in Figure 3.2 where the position of the grid 

point under consideration is defined relative to its neighbours. It is assumed 

that the value at point P is only influenced by values at the points in its 

immediate surroundings [5]. 
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w -------+---+-> 

s 

eB 

Figure 3.2 A typical finite control volume element 

The General Transport Equation is integrated over the control volume 

above. It is assumed that the density is constant over the whole volume and 

that cell wall velocities govern the mass flow over the whole face. These 

velocities are evaluated by applying linear interpolation between major 

points. A general form of the discretization equation is obtained for the 

calculation of the value at point P. 

The coefficients of the neighbouring points represent convection and diffusion 

flux while the source term b contains information concerning grid 

deformation and pressure effects. The coefficient a; represents the time 

dependence of the specific variable in cases where unsteady flow is modelled. 
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3.3 Pressure correction equation 

A difficulty exists in calculating the velocity field using the expressions 

developed above. This is due to the fact that the pressure field is unknown. 

No explicit equation for obtaining the pressure exists, and therefore a special 

procedure for the calculation of the pressure field should be considered. A 

well documented segregated approach can be followed whereby pressure 

corrections are calculated with the use of the continuity equation [5]. 

If the pressure field is explicitly known, only the velocity field needs to be 

calculated. In the equation below, ¢ represents the values of any of the 

three-dimensional velocity components (u,v,w) to be calculated, and P the 

known correct pressures. The coefficients B<P, c<P and o<P involve density, 

area and metric coefficients and s¢ represents the source terms. 

¢ = b a ¢ + B <Pp + C <Pp + D <Pp + S ¢ 
p nb nb e 'f/ ( 

(3.2) 

Usually the pressure field is not known explicitly, and approxiµiate velocities 

* * ( ¢ ) are calculated by guessing an initial pressure distribution (P ). 

* * /4* /4* /4* /4 ¢ = b a ¢ + B lf'p + C lf'p + D lf'p + S If' 
p nb nb e 'f/ ( 

(3.3) 

However, in general these velocities do not satisfy the continuity equation 

and a net mass source is produced instead. In order to remove this mass 

* source, the velocity values ( ¢ ) can be corrected by a correction ¢". 

(3.4) 
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By replacing velocity values (u,v,w) in the continuity equation by the sum of 

* * * the approximate values and the corrections (u + u",v + v",w + w"), an 

equation is obtained whereby the pressure corrections can be calculated. 

According to Rhie and Chow [15] the cross derivatives of the pressure 

correction can be neglected if the grid is nearly orthogonal. For a detailed 

discussion the reader is referred to Appendix E. 

Application of the discretization principles developed in Section 3.2 leads to 

the final equation for the calculation of the pressure correction at point P as 

a function of its neighbouring point values. 

a P" =b a P" + S 
p p nb nb 

(3.5) 

where S represents the local imbalance of mass and gives an indication of 

how well the principle of conservation of mass is satisfied. 

3.4 Pressure-velocity coupling 

A finite volume approach to finite differences implies the calculation of all 

the dependent variables at the major grid points. This differs from the 

staggered grid approach which was used by Patankar [5] in the derivation of 

the solution algorithms of the next section. The use of the staggered grid 

arrangement involves the calculation of pressures and turbulence values at 

major grid points while velocity components are calculated at corresponding 

control volume surfaces [10,24]. This technique can, however, not be applied 
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when considering the equations in general curvilinear co~rdinates, since the 

three-dimensional velocity components u, v and w are not related to control 

volume surface orientations. 

The straightforward application of the mentioned algorithms to the finite 

volume method results in the occurrence of oscillatory pressure fields. The 

major source of this instability is the second~rder centered difference 

approximation for the pressure gradient at point P. 

(3.6) 

This means that the pressure at point P has no influence on the finite volume 

expression for the pressure derivative during the calculation of the velocity at 

point P. This causes the decoupling between the pressure and velocity fields. 

As an alternative approach, a special method for the treatment of locally 

linearized convection terms at the control volume surfaces, was introduced 

by Rhie et al. [15]. These terms are calculated by linear interpolation 

between adjacent point values. This interpolation causes the decoupling of 

* the pressures and velocities. Consider the equations used in calculating up 

* 
and uE. 

(3. 7a) 

(3. 7b) 
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* By linear interpolation for the value of u , 1~e-pressure variations cannot 
e 

be detected. One may remedy the situation by correcting the pressure 

derivative through a 1~e-difference scheme on the cell boundary to yield 

(3.8) 

where the overbar denotes linearly interpolated values and EE indicates the 

value at the grid point situated east of point E (East). 

By applying this procedure prior to the solution of the pressure correction 

equation strong pressure-velocity coupling is ensured. 

3.5 Boundary Conditions 

Once the mathematical equations describing any fluid flow problem have 

been correctly manipulated to enable numerical solution, only the boundary 

conditions affect the accuracy of the solution. The real effects influencing the 

physical flow situation must be modelled accurately to ensure that the 

numerical solution reflect the practical problem. 

The different boundary conditions that are applicable to this study are 

discussed in two parts. First, the general boundary conditions applicable to 

most fluid flow problems are presented, followed by the boundary conditions 

applicable to flow over buildings. Special attention is given to the turbulence 

and velocity profiles in the atmospheric boundary layer. 
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3.5.1 General boundary conditions 

a) Inflow boundaries 

Values for dependent variables that are specified at inflow boundaries 

are usually determined experimentally by measurement. Fixed values 

include the three velocity components and the two turbulence 

properties. In modelling incompressible flow, pressure boundaries are 

usually not specified and are left to find their own values as 

determined by the flow field. Pressures on inflow boundaries are often 

set equal to or on a constant gradient with the numerically calculated 

pressures immediately downstream. 

b) Solid walls 

Most practical flow situations are bounded at some point by a fixed 

wall. At this wall, velocities tangential and perpendicular to the wall 

are zero. In Figure 3.3 an element next to a fixed wall is shown. The 

velocities at the western cell wall ( w) are made zero when calculating 

the values at point P. 

Since the pressure correction is not a measurable physical entity, the 

values are not known at the walls. When the pressure correction 

coefficient a is set equal to zero, the value on the wall has no 
w 

influence on the pressure corrections in the flow field. Within the flow 

region, the pressure corrections find their own values and eventually 

approach zero when the final solution is obtained. 
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w 

Figure 3.3 Control volume at fixed wall boundary 

Due to the finite volume method used, the pressure on the wall is 

required in solving the velocities at point P. The assumption is made 

that the pressure on the wall equals the pressure at point P, hence a 

zero gradient. 

The turbulence model used in this study, is valid only for fully 

turbulent flows. Close to solid walls, there are inevitably regions 

where the local Reynolds number is so small that viscous effects 

predominate over turbulent ones [21 ]. In these cases, the value of the 

kinetic energy of turbulence (k) on the wall is theoretically zero, as 

the fluid film adjoining the wall is stationary. Due to the extremely 

large gradients that occur in these areas, the use of a zero gradient for 

k gives a better approximation [10,24]: 
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~- = 0 , ( perpendicular to the wall. 
l 

The value of f at the wall is very large, as the dissipation rate of 

turbulent energy on the wall is virtually infinite. The wall function 

method is also used to calculate the value of fp- Where necessary, 

the value on the wall is then set equal to the value of the immediate 

neighbouring point in the flow region. For both turbulence quantities, 

the wall coefficient ( a ) is set equal to zero so that it does not 
w 

adversely affect the flow field. 

c) Symmetriral planes 

It is common practice to model only half of the problem if the flow 

region and the applicable boundary conditions are symmetrical. 

Values on opposite sides of the plane coincide and therefore zero 

gradients are used for all the flow variables . 

.gf _ = 0 , ( perpendicular to the wall 
1 

Where ¢ represents any one of the dependent variables. 

d) Constant velocity boundaries 

These boundaries occur when the fluid is in contact with a moving 

wall, as in the case of the driven cavity (sliding lid) problem, or where 

the flow is bounded by neighbouring freestream velocity. For these 

cases, fixed velocities are specified and zero gradients are used for k, f 

and the pressure corrections. For freest ream boundaries, velocities are 
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specified in such way that mass flow across these boundaries is 

prevented. Its application should be carefully investigated to ensure 

that the boundary condition is representative of the real boundary. In 

the case of modelling flow over buildings, the boundary should be 

placed far enough from the building to ensure that that the flow field 

around the building is not influenced. 

e) Outflow boundaries 

At a first glance one might underestimate the importance of outflow 

boundaries. Although they are usually situated downstream, an 

incorrect implementation could lead to inaccurate upstream numerical 

results and could even prevent convergence. The outflow boundary 

should ensure that global mass conservation is enforced. In most 

cases zero gradients are used for all the flow quantities and the 

velocities are adjusted to obey overall continuity. 

3.5.2 Boundaries applicable to flow over buildings 

Of great importance to the numerical simulation of wind motion over 

buildings is the correct specification of the boundary layer profiles. 

These profiles are usually dependent on the unique terrain associated 

with the problem. Large amounts of empirical data describing the 

nature of velocity and turbulence profiles in the atmospheric boundary 

layer exist. Two widely accepted empirical relations describing 

boundary layer flow are the logarithmic and the power law, the latter 

used during this study. The equation describing the boundary layer 

velocity profiles is: 
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(3.9) 

where V(y) is the mean horizontal wind speed component at a height 

y and V is the mean horizontal wind speed at a reference height 
ref 

h . The exponent a is the mean wind speed exponent which is 
ref 

dependent on the upstream terrain roughness. Values of a are widely 

published in the literature [53]. 

According to Scruton [53], the inflow length scale values for 

atmospheric longitudinal turbulence L are approximated by the 

following empirical relation: 

L(y)=151 (y/10) 0 (3.10) 

where L(y) is the turbulence length scale in the flow direction at 

height y. This upstream length scale is included in the numerical 

model via inflow values for the turbulent dissipation rate t(y). The 

relationship between t(y) and L(y) is defined by [6]: 

3/2 
t(y) = [ CD p k(y) ] I L(y) (3.11) 

where CD is a constant, with value 0,07 for full scale atmospheric 

turbulence [25]. 
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An empirical relation can also be used to approximate the turbulence 

intensity I(y) of natural wind at the inflow boundary. Scruton [53] 

states the relation as: 

1/2 
I(y) = (6,7 k) V /V(y) 

s ref 
(3.12) 

where k is a surface roughness parameter which is a measure of the 
s 

kinetic of the surface friction coefficient of the upstream terrain. The 

values for the kinetic energy of turbulence k(y) at the inflow boundary 

can be obtained from the following relation between k(y) and I(y) 

given by: 

k(y) = 0,5 [I(y) V(y) ] 
2 

(3.13) 

Fixed values for V(y),E(y) and k(y) at the inflow boundary, are 

calculated using the equations presented above. Cross-stream 

velocities are set equal to zero while zero gradients are applied to 

pressures at these boundaries. 

3.6 Solution algorithms 

The general discretization equation derived in the previous section is not 

linked to any particular method of calculation. A suitable method for solving 

the linearized equations, for each of the dependent variables, at every point 

throughout the flow region is now required. 
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The simplest method is to make use of a Gauss-Seidel point-by-point 

iteration scheme. When large three-dimensional grids are used, this method 

becomes very time-consuming and inefficient in the spreading of the 

influence of boundary conditions. A better method is to use the 

TDMA-solver (Tri-Diagonal Matrix Algorithm) [5] whereby variables along 

a grid line are directly calculated. In two or more dimensions, the solver is 

applied in an iterative manner whereby variables are calculated line-by-line 

while sweeping across the calculation domain. The method is not perfectly 

suited for three-dimensional problems, but it can be improved by varying 

the sweeping direction for every solution of the field. This method speeds up 

the introduction of the boundary conditions and are used in this study. 

When unstructured grids are used, the method is not applicable and a direct 

solver becomes essential. 

At this stage it is appropriate to consider the entire solution algorithm 

required to solve the complete set of discretization equations. Usually the 

pressures, velocities and turbulence values are unknown and a special 

procedure is necessary in order to obtain a solution. One such a solution 

procedure is the SIMPLE algorithm which was introduced by Patankar [5]. 

This method forms part of a group of segregated methods whereby the 

pressures and velocities are solved in an uncoupled manner. The process as it 

is applied in the current model is briefly outlined below. 

* 

* 

* 

* 

* Guess initial pressure field p 

* * * Solve momentum equations to obtain u , v and w 

Interpolate velocities for pressure-velocity coupling 

Solve the pressure correction equation for p" 
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* 
Calculate pressure field (p = p + p 11

) 

* 
Correct velocities ( u = u + u 11

) 

Solve turbulence equations (k and t) 

Calculate new viscosity 

* 
Return to the first step using p as p 

For a detailed discussion of the pressure correction equation the reader is 

referred to Appendix E. The complete algorithm is also presented in [5]. 

Many alternative SIMPLE-based methods are also available, such as 

SIMPLER, SIMPLEC, SIMPLEX and SIMPLEN which basically apply the 

same process with minor modifications for specific applications [45]. 

According to Van Doornmaal et al. [44] the SIMPLE method is inconsistent 

in neglecting the underlined term in the equation below, during the 

derivation of the pressure correction equation. 

a u 11 = ~ a u11 + ~p 11 

p p nb nb 

A SIMPLEC method is presented by introducing a consistent approximation 

by subtracting lli u" on both sides of the above equation and neglecting the 
nb e 

term, underlined below, i_nstead. 

(a - b a ) u 11 = b a (u 11 
- u 11

) + ~p" 
p nb e nb nb p 

The method further removes the need for pressure under-relaxation and 

proves to be more efficient than the SIMPLE method. Both of the methods 
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were applied during the study and a comparison revealed an improvement of 

almost 30% in calculation time with the SIMPLEC method. A detailed 

description of this method is presented in (44]. 

3.7 Summary 

In this chapter, the development of the numerical model for the simulation of 

turbulent fluid flow in three-dimensional curvilinear co~rdinates was 

described. Issues of discretization and linearization of the equations to 

enable their numerical solution were also discussed. A model was developed 

for the iterative solution of the governing equations of Chapter 2. A special 

interpolation scheme was included into the model to ensure strong 

pressure-velocity coupling. A segregated solution method based on the 

SIMPLE algorithm was suggested for the solution of the linearized equations 

while a TOMA-solver was proposed for the actual solution for each of the 

dependent variables at various nodes. Finally, the relevant boundary 

conditions and their implementation into the computer code were discussed. 
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4.1 Preamble 

Tue mathematical and numerical procedures developed in the previous 

chapters form the basis of the computer program 3DFLO. The development 

of the code can be divided into the following phases: 

I. The development of a tw~imensional laminar fluid flow code in 

general curvilinear co-ordinates. 

II. The extension of the model to simulate thre~imensional laminar 

fluid flow in curvilinear co-ordinates. 

III. The incorporation of a turbulence model to account for turbulent 

effects in the fluid. 

In order to establish confidence in the accuracy of the code it needs to be 

verified by solving various test cases. In this chapter, the test cases used to 

verify each new development phase, are discussed. Finally the code is 

applied in studying wind flow behaviour around arbitrary shaped buildings. 
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4.2 Two-dimensional laminar flow (Phase I) 

On completion of Phase I, laminar flow between two parallel plates is 

modelled. The problem can be considered two-dimensionally if it is assumed 

that the plates are large compared to the distance between them. Near the 

middle, the flow is effectively two-dimensional as it is largely unaffected by 

the boundary conditions in the third dimension. As a result of viscous 

friction at the solid walls, velocity gradients exist in the boundary layer. 

The two boundary layers increase in height in the downstream direction and 

gradually merge to eventually result in a fully developed velocity profile. 

Figure 4.1 compares the numerically predicted velocity distribution to the 

analytical solution for the same application given by Schlichting [4 7] and to a 

previous numerical result by Le Grange [17]. 

D/Do 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

U/Uo 
-4-- Numerical (3DFL0) ~ Analytical * Previous Numerical 

Figure 4.1 Fully developed velocity profile of laminar channel flow 
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For ease of reference, the results are presented in dimensionless form. U 0 

represents the constant stream-wise inlet velocity and D0 the distance 

between the two plates. The fully developed velocity profile predicted by 

the numerical code compares favourably to the analytical solution and to a 

previous numerical result. This indicates the ability of the code to model 

two-dimensional laminar flow. 

In testing the curvilinear abilities of the code, the problem of 

two-dimensional laminar channel flow, as discussed above, is solved by using 

two different grid reference systems. Figure 4.2 shows a classical cartesian as 

well as a curvilinear grid reference system representing the same flow region. 

111111111111111 I I I I I I I 

' , C I I \ I 

Figure 4.2 Cartesian and Curvilinear grids for the same region 
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In the solution of the curvilinear grid, cross derivative terms are included to 

describe the curvilinear geometrical effects. For classical cartesian 

c~rdinates these terms are all equal to zero and therefore have no 

influence. In both cases the same velocity profile for a fully developed 

laminar channel flow is predicted which confirms the applicability of the code 

to general curvilinear c~rdinates. 

In order to demonstrate the ability of the numerical model to predict 

recirculating laminar flow, the solution of flow in a two-dimensional driven 

cavity is considered. Such a cavity is shown below in Figure 4.3. It is 

indicated that the flow is bounded by three fixed walls and a sliding lid 

which drives recirculation of the fluid. The problem can be assumed to be 

two-dimensional when the depth dimension is sufficiently large compared to 

the other two dimensions of the cavity. 

Height C 
I ◄ ... 1 

Width 

Figure 4.3 Schematic representation of the driven cavity problem 
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For a low Reynolds number (Re = 1) the complete velocity distribution and 

the centreline velocities are given in Figures 4.4a and 4.4b. The results 

compare favourably to data published by Al-Sanea, Pun and Spalding [49]. 

~ ( /~ ., • r • ~, \ ) ' \' ~ { ~ .,, _. -- . . .. ...... " \ 1 1.·' 
' ~ ~· \' J I I , - - - - ' ,-\ ' I ., ' t\~\,' \ ••-,-4·••J ~.,,, .• 
4 

' \ \ \ ' ' ' ~ • • ~ ~ ' I j ll. ~ i • 
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A\\\\,,,~--~/////t f V 
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Figure 4.4a Driven cavity velocity distribution (Re = 1) 

-0.3 
V/Uo 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0 
D/Do 

~ Numerical (3DFL0) ~ Previous numerical 

Figure 4.4b Driven cavity centreline velocity (Re = 1) 
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Good agreement is found by relating the position of the centre of rotation 

and the overall flow pattern. Each of the four different walls of the cavity 

are moved in turn to check the symmetry of the code. The flow fields 

generated in this way turn out to be identical. 

The results are verified quantitatively by comparing the predicted velocity 

profile ( vertical velocities) on the horizontal centreline to an accepted 

numerical solution [49] as shown in Figure 4.4b. 

For an increased Reynolds number (Re = 400) the velocity distribution and 

the vertical velocities on the horizontal centreline are presented in Figures 

4.5a and 4.5b. 

Figure 4.5a Driven cavity velocity distribution (Re = 400) 
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It can be seen that the centre of rotation moves downstream and somewhat 

away from the moving wall. This numerical solution is again found to be in 

good agreement with an accepted numerical solution presented by Al-Sanea, 

Pun and Spalding [49]. The good agreement between the results, suggests 

that the code is accurate in predicting two-dimensional laminar flow. 

V/Uo 
-0.2.-----------------.---------------. 

0.3 ._ _ _._ __ .___ _ ___._ __ ..__ _ __,_ __ ...___ _ __._ __ ....__ _ ___._ _ ___, 

0 
D/Do 

~ Numerical (3DFLO) -+- Previous numerical 

Figure 4.5b Driven cavity centreline velocity (Re = 400) 

4.3 Three-dimensional laminar flow (Phase II) 

As a next step in the development process, the code is the extended to model 

three-dimensional laminar flow. Verification of this phase is done by 

considering the problem of three-dimensional laminar recirculating flow over 

a backward facing step. 
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A schematic representation of the problem is given below in Figure 4.6. 

Flow enters the working section between two horizontal and two vertical 

plates and flows across a vertical step with a height of one third of the total 

distance between the top and bottom plates. The horizontal plates are 

45 mm apart while the working section has a width of 305 mm between the 

vertical plates. At the step, the flow breaks away from the wall and forms a 

zone of recirculating flow behind the step. At some distance downstream of 

the step, the flow re-attaches to the bottom plate and eventually results in a 

fully developed velocity profile. 

Top 

Flow 

c=:) 1 
15mm T 305mm 

step Bottom 

Figure 4.6 Flow across a backward facing step 

The modelled section shown above corresponds to the section which was used 

by Denham and Patrick [50] for experimental measurements. The 

comparison between the predicted and the measured velocities at different 

locations behind the backstep is shown in Figure 4. 7. The numerical as well 

as the experimental results were obtained at a Reynolds number of 229, 

referenced to the height of the step. 
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Figure 4.7 Velocity profiles behind a backward facing step (Re= 229) 

The predicted stream-wise velocity profiles at various distances behind the 

step closely match the measured values. The predicted re-attachment 

length of approximately eight times the step height ( 8h ) does however differ 
0 

from the measured re-attachment length (9h ). This could be attributed to 
0 

the discretization process, where partial derivatives are replaced by finite 

differences. The differencing scheme that is used in this process, affects the 

accuracy of the final solution, particularly in areas where recirculating flow 

occurs. The predicted re-attachment length does, however, compare 

favourably with a previous numerical prediction for this application by 

Visser (24]. 
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Considering the above discrepancy between numerical and experimental 

results, it is interesting to evaluate the effect of various differencing schemes 

on the accuracy of the solution. Five different schemes ( See Appendix D) as 

described by Patankar (5], are compared by evaluating the numerical results 

obtained in each case to analytical or experimental solutions. For 

two-dimensional flow between parallel plates, the resulting velocity profiles 

obtained by implementing each of the differencing techniques in turn, hardly 

varies at all. In the case of modelling two-dimensional laminar recirculating 

flow over a backward facing step, meaningful differences in accuracy is 

observed. This can be seen by comparing the flow re-attachment lengths 

behind the step. 

Differencing 
Upwind Central 

Expo-
Hybrid 

Power Bxperi-
Scheme nential law mental 

Re-attachment 
6,8h

0 
6,Sh

0 length 7ho 8h
0 

8h 0 
9h

0 

Table 4.1 Influence of differencing scheme on re-attachment length 

In Table 4.1 above, the predicted lengths as well as the experimentally 

measured distance at a Reynolds number of 229, are presented. It is shown 

that the Power law and the Hybrid differencing schemes provide superior 

accuracy compared to centered and upwind differencing schemes. This 

coincides with Patankar's theoretical comparison between these methods. 

Throughout the rest of this study, the Power law scheme is therefore 

employed. 
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4.4 Three-dimensional turbulent flow (Phase III) 

Very few fluid flow applications in engineering practice can be adequately 

represented by laminar flow. In order to model turbulent fluid flow, a 

turbulence closure model is required. The k-f turbulence model, as 

discussed in the previous chapters, is used for this purpose. Before applying 

the code to the simulation of full-scale atmospheric turbulence, it is 

necessary to verify the accuracy of the code in the prediction of turbulent 

flows. This is done by validating the numerical predictions against 

experimental results for cases of turbulent flow. The problem considered for 

this purpose, is the solution of turbulent flow over a backward facing step. 

The current flow conditions differ from the laminar problem, addressed in 

Section 4.3, in that the Reynolds number (Re) is increased to 3025. This 

Reynolds number lies, however, close to the transition region from laminar to 

turbulent flow. At this point, the flow becomes extremely sensitive to small 

disturbances resulting from experimental measurements. For this reason 

Denham et al. [51] made use of laser anemometry to measure the velocity 

distribution in turbulent flow over a backstep. 

Measured velocity profiles published by Denham et al. [51] were used to 

prescribe inflow velocities for the numerical simulation. Based upon this 

input, the complete velocity distribution behind the step is calculated. In 

Figure 4.8, the numerical solution is compared to the measured data at 

various distances behind the step. 
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Figure 4.8 Velocity profiles behind a backward facing step (Re = 3025) 

It can be seen that the numerically predicted values compare favourably with 

the measured values at corresponding locations behind the step. The 

predicted reattachment length of 6,4h is also in good agreement with the 
0 

measured length of 7h . Two possible reasons for this difference can be 
0 

noted. The first being the differencing scheme applied during discretization 

which affects the accuracy of the solution in recirculation zones. Secondly, 

the turbulence model may be inadequate for the Reynolds numbers which lie 

so close to the transitional region. The k-t turbulence model applies 

specifically to fully turbulent flows and numerical predictions in the 

transitional region is known to be inaccurate. For engineering application, 

the results do, however, prove to be sufficiently accurate. 
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After this series of verifications, it can now be concluded that the numerical 

model is able to predict fully turbulent recirculating fluid flow with 

acceptable accuracy. The code will now be used to simulate atmospheric air 

motion around arbitrary shaped buildings. 

4.5 Wind flow over buildings 

Complete knowledge of the velocity fields and pressure distribution 

surrounding buildings are of great importance to the engineer and the 

architect. This information can be obtained by simulating the complete 

problem with the use of a computer code. Many workers contributed to 

improving the understanding of wind flow patterns around buildings by 

developing computer simulation codes. These methods were, however, all 

limited in the extent to which arbitrary geometries conformed to the 

orthogonal co-ordinate systems they employed. The exact geometry of an 

inclined house roof and a sharp ridge can only be modelled with the use of a 

non-orthogonal curvilinear grid reference system. In this section 

three-dimensional atmospheric air motion around arbitrary shaped buildings 

are simulated by applying appropriate curvilinear co-ordinates. 

The first building to be considered is an ordinary pitched roof building with a 

roof set at an incline of 26°, as shown in Figure 4.9. The total span width of 

the house is 6,4 m and it has a length of 21,3 m. The ridge of the roof is at a 

height of 3,9 m. It should be noted that due to the symmetrical properties of 

the problem, only half of the entire flow field is modelled . This building is 

selected because full-scale pressure measurements are available in the 
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literature [52], and previous tw~imensional numerical simulations had 

already been carried out [18]. In determining the inflow boundary layer 

profile a mean wind speed exponent of 0,15 is used to correspond with the 

measurements. 

Symmetry plane 

Wind flow direction 

Figure 4.9 Single span pitched roof building 

A two-dimensional cross-section of the three-dimensional grid, used in 

modelling the problem, is shown in Figure 4.10. In order to maintain 

simplicity, the largest part of the flow region is covered with rectangular 

control volumes. Above the roof of the building, the elements are, however, 

non-orthogonal which makes it possible to represent the exact physical 

geometry of the inclined roof. In the close vicinity of the building the 

elements are smaller in order to improve the accuracy with which the 

complicated flow in these areas can be calculated. The elements gradually 

increase in size as the distance from the building increases. Behind the 

building, the diagonal grid lines are extended beyond the leeward wall which 

leads to better simulation of the flow behaviour on the leeward side of the 

ridge. 
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Figure 4.10 Cross-section of 3D grid around a single span building 

-
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Figure 4.11 

------ - ==----------

' 
.... .... .... ... .... .... ---

ZY-plane velocity distribution on symmetry plane 
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The complete velocity distribution on the symmetry plane surrounding the 

building is presented in Figure 4.11. Atmospheric air approaches the 

building according to prescribed boundary layer profiles. As the air hits the 

windward wall of the building a recirculation zone is formed. This forces the 

flow upward onto the roof of the building. Due to the control volume grid 

arrangement above the building, the figure might suggest that the flow goes 

up and then down again as it passes the ridge. A careful study of the 

velocity vectors does, however, show that this is not the case and that only 

an upward deflection is indicated. At the ridge of the roof, the flow breaks 

away from the surface and forms a large zone of primary recirculation behind 

the building. Smaller zones of secondary recirculation are also observed 

behind the ridge and the leeward wall. The effect of this flow pattern on the 

pressures around the building is reflected in the next paragraph. 

1.0 ,---------------------------r-------, 

u O •······· ....................................................................................................................................... .. 

0 

Cp 

-1.0-................................................. . 

front + back 
-2.0.________.______.__...._____,___._______.______._ _ _,__ ___ ...____.____.__...,____.___.L--__.____.____, 

-1.0 0 1.0 
Z/span 

D Full scale meas. ◊ Numerical (Previous) -+- Numerical (3DFL0) 

Figure 4.12 Single span pressure coefficients (Middle) 
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The numerical results obtained from the current model are compared with 

full-scale experimental measurements by Wells and Hoxey [52], and 

presented graphically in Figure 4.12. The figure shows pressure coefficients 

on the middle section (symmetry plane) of the building in Figure 4.9. 

The graph is presented in dimensionless form of pressure coefficient versus 

span-wise position. The pressure coefficient CP is calculated from 

Equation 4.1, where P is the pressure on the surface of the building , Pref is 

the upstream pressure at ridge height and V ref is the upstream velocity also 

at ridge height. 

p -P 
C = _________ re _____ f_ 

p 
p V /2 

ref 

( 4.1) 

In order to present the pressures on the walls of the buildings on the same 

figures, they are included as values less than -1 (windward wall) and values 

greater than 1 (leeward wall) of the dimensionless span-wise position 

Z/Span. Z is the distance measured in either direction from the ridge while 

the Span represents the total distance between the building edge and the 

ridge in the middle of the section. 

It can be seen from the figure above, that the pressure distributions on the 

windward section of the roof were predicted more accurately than those from 

previous work. It is, however, noted that towards the ridge, the current 

predicted values drift slightly away from the full-scale measurements. This 

can be explained by considering the interdependence between pressures and 

velocities in the numerical model. Point velocities are calculated by 
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including the effect of pressure differences between neighbouring points while 

pressure corrections are, in turn, calculated using interpolated velocity values 

on the cell walls. These velocities are interpolated by applying pressure 

differences between consecutive grid points. The low pressure spike, 

occurring behind the ridge, therefore, has a lowering effect on the upstream 

pressures. Theoretically this is not incorrect, and the problem can only be 

overcome by excessive grid refinement. This would limit the effect to the 

close vicinity of the ridge, to correspond with expected practical effects. 

On the leeward side, the previous prediction, the measured values and the 

current prediction of the pressure coefficients differ only slightly. The 

current model indicates the occurrence of a low pressure spike immediately 

behind the ridge of the roof. This is due to the break-away of flow at the 

ridge. The resulting suction leads to flow recirculation, and hence a low 

pressure spike. Visser et al. (38] also indicated the occurrence of such a spike 

while numerical predictions by Crosby [18] did not. In neither of these two 

cases, where cartesian co-ordinates were used, could the exact geometry of 

the roof ridge be modelled as accurately as in the current model and the 

results, therefore, depend largely on the staggering of grid points to 

approximate the ridge geometry. Although a full-scale measurement at this 

point is unfortunately not available, it is the opinion of the author that the 

current numerical result can be accepted with confidence. 

The advantage of three-dimensional modelling is that it enables the study of 

atmospheric air flow behaviour at the building edge where flow is strongly 

influenced by three-dimensional effects. The complete velocity distribution 

on a ZY-plane at the building edge is shown in Figure 4.13. 

68 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

PROGRAM APPLICATIONS 

--

---------------------------
Figure 4.13 ZY-plane velocity distribution at building edge 

The velocity field differs from the field in Figure 4.11 in that a recirculation 

zone behind the building is not present. At this point, the flow is dominated 

by flow break-away and recirculation in the third dimension. 

The numerical results at the building edge can be evaluated quantitatively 

by comparing them with full-scale measurements. The Figure 4.14 shows 

pressure coefficient versus span-wise position (Z/Span) on a ZY-plane at the 

edge of the building. 
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◊ Full scale meas. ~ Numerical (3DFLO) 

Figure 4.14 Single span pressure coefficients (Building edge) 

back 

It can be seen that the current numerical prediction correlates favourably 

with the full-scale measurements in absolute value as well as in trend. The 

slight variation may be ascribed to the insufficient modelling of turbulence at 

the edge where the flow is highly sensitive and unsteady. One limitation 

affecting the three-dimensional modelling, is that due to limited computer 

memory, the grid size cannot be refined indefinitely. This factor may 

contribute to the slight discrepancies observed. On the whole, the results 

still remain acceptable for most engineering applications. 

The second building to be considered, is shown below in Figure 4.15. The 

building has a double span pitched roof with the all inclines set at angles of 

26°. The span width is 12,8 m and the building has a length of 39,6 m. The 

ridge is 7,1 m high, the valley 4,25 m and the eave stands at height of 3,4 m. 
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Wind flow direction 

Figure 4.15 Double span pitched roof building 

A literature survey provided no evidence of previous numerical simulations 

on a building of this shape. This motivated the use of the current code to 

model such a complex building in an attempt to establish the accuracy and 

applicability of the current model to practical engineering fluid flow 

problems. Due to symmetry only half of the problem is modelled, as is 

shown in Figure 4.15 above. A zero gradient symmetry boundary condition, 

as discussed in Chapter 4, is imposed on the symmetry plane. The inflow 

boundary layer profiles where determined, as explained in Section 3.5.2, by 

using a value of 0,21 for the mean wind speed exponent ( a). This 

corresponds to conditions under which Wells et al. [52] did full-scale 

experimental measurements on such a building. 

A cross-section of the three-dimensional grid generated for this problem, is 

shown below in Figure 4.16. Once again the grid is cartesian, except above 
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the building, where boundary fitting non-orthogonal control volume 

elements are used. The finite volume cells are small near the building to 

enable accurate modelling of boundary layer flow on the building walls. 

They increase in size at larger distances from the building where the flow is 

less complex. 

Figure 4.16 Cross-section of 3D grid around double span building 

In Figure 4.17, the preqicted symmetry plane velocity distribution 

surrounding the building is presented. Similar to the flow field around the 

previous single span building, zones of recirculating flow are observed in front 

of and behind the building, with a small zone of secondary recirculation right 

behind the leeward wall. An additional zone of recirculation is identified in 

the valley between the ridges of the roof. This is a result of flow break-away 

at the first ridge. The break-away of flow at the second ridge leads to the 

formation of the large zone of primary recirculation. 
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Figure 4.17 Symmetry plane velocity distribution around double span building 

The numerical prediction is quantitatively verified by comparing the 

pressures around the building to the full-scale experimental measurements of 

Wells and Hoxey [52]. Figure 4.18 presents a graph of pressure coefficient 

(Cp) versus span-wise position (Z/Span). The pressure coefficients are 

calculated by using Equation 4.1 with V ref and Pref obtained at a ridge 

height of 7,1 m. Pressures on windward and leeward walls are included in 

the graph at span-wise values of less that -1 and greater than 1 respectively. 
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Figure 4.18 Double span pressure coefficients (symmetry plane) 

The figure shows that the current numerical predictions are in good 

agreement with available full-scale measurements. Two outstanding aspects 

noted from the figure, are the occurrences of low pressure spikes behind the 

ridges. As explained earlier, this is a result of flow break-away at the ridge, 

which has the effect of suction on the roof. Unfortunately experimental 

measurements at these points are not available. Wells and Hoxey [52] do not 

give a reason for the absence of a measurement, but it is believed that it 

might be a result of highly unsteady experimental readings due to repeated 

flow de-attachment and' re-attachment at these points. As explained 

previously, the low pressure following the first ridge is, once again, 

responsible for the discrepancy between the measured and predicted pressures 

on the windward positive incline towards the ridge. 
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Considering the valley section of the roof (between ridges), it can be seen 

that the pressures remain relatively low and steady due to the existence of a 

recirculation zone. From the low pressure coefficients on the second incline 

towards the second ridge, it is evident that the flow is not allowed to 

re-attach to the roof. Therefore the break-away at the second ridge is not 

so abrupt and clearly defined, and, therefore, the low pressure spike behind 

the second ridge is not as intense as before. On the leeward decline towards 

the end of the building, the numerical prediction in the recirculation zone 

closely corresponds to the full-scale measurements for that section. 

By comparing the absolute values of the pressure coefficients as well as the 

trends, overall good agreement between the numerical prediction and the 

full-scale measurements is obtained. 

4.6 Summary 

Before any computer code can be applied with confidence to practical 

problems, it has to be verified by comparing the predicted results with 

analytical solutions, experimental measurements or accepted numerical 

results. In this chapter, various fluid flow test cases were modelled to test 

the accuracy of the current numeric.al model at different phases throughout 

the development process. The results provided in this chapter presented 

good agreement in all of the case studies considered. 

The model was then applied to the simulation of wind flow over different 

buildings. Complete turbulent atmospheric boundary layer flow was 
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simulated in three dimensions with the use of boundary-fitted grids. It 

included the simulation of complete three-dimensional turbulent 

recirculation, which made it possible to determine the influence of end effects 

on the wind loads. The predictions were compared to full-scale 

measurements and the model was shown to be superior to previous 

two-dimensional cartesian approximations for this purpose. 
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5.1 Synopsis 

The steady increase in computer capabilities, combined with the growing 

need for highly specialized engineering technology, present many 

opportunities for the use of numerical methods today. Particularly in the 

field of Fluid Dynamics, numerical methods are becoming exceedingly 

popular for the solution of practical fluid flow problems. Many researchers 

developed theoretical models describing different aspects of fluid flow 

behaviour. The need was recognized to include these models in the 

development of a computer code that is generally applicable to most fluid 

flow problems in nature and in industry. 

The current model is based on a finite volume numerical method for the 

solution of the partial differential equations describing thr~imensional 

turbulent flow. These equations include the full Navier-Stokes equations, 

the continuity equation and two turbulence equations of the k-t turbulence 

model. In order to enable the solution of flow in regions of arbitrary 
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geometrical shape, the equations are transformed to general curvilinear 

co-ordinates. The equations are discretized and linearized and are solved 

simultaneously by an iterative process. The solution algorithm based on the 

SIMPLE method and employs a specific interpolation scheme to ensure 

strong pressure-velocity coupling. The computer code 3DFLO provides 

complete information on the velocities, pressures and turbulence quantities as 

final results. 

The model has been validated by extensive verification of the predicted 

results against analytical, experimental and numerical data at each stage of 

the development process. The method was then applied to the modelling of 

atmospheric air motion over and around angularly shaped buildings. The 

numerical predictions compared favourably with available full-scale 

measurements of pressure distributions on pitched roof buildings. The main 

conclusions drawn from the study, as well as the main contributions of the 

study, is presented in the following section. 

5.2 Conclusions and Contributions 

This study leads to a number of conclusions regarding the development of the 

numerical model. Each of these will be noted and discussed in this section. 

* A comparison of the numerical results, obtained by applying a 

number of different finite differencing schemes, shows that the Power 

Law scheme as proposed by Patankar [5], provides numerical results 

of superior accuracy. Particularly where recirculating flow is 
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considered, a significant improvement is observed when using this 

scheme. The difference in accuracy is less severe when a simple 

channel flow is considered. This numerical finding agrees with 

Patankar's analytical comparison between the schemes. 

During the development of the model, two similar though different 

solution algorithms were applied for the segregated solution of 

pressures and velocities. The difference between the two methods 

(SIMPLE and SIMPLEC) are discussed in Section 4.5. A comparison 

using identical differencing schemes and convergence parameters, 

indicates an acceleration in convergence using the SIMPLEC 

algorithm. An increase in solution efficiency of around 30% is 

obtained for all fluid flow problems considered. 

The good agreement between the experimental results and the 

numerical prediction for various bench-mark test cases, indicate the 

accuracy of the code 3DFLO in predicting laminar and turbulent fluid 

flow in three dimensions. In all cases considered, the accuracy of the 

numerical results coincides with the accuracies of previous numerical 

models. 

Close correlation of the numerical predictions with full-scale 

measurements of pressure coefficients surrounding different buildings, 

further confirms the ability of the code to model flow in and around 

arbitrary curvilinear geometries. 
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Numerical results of pressure fields surrounding the buildings show 

that complete thr~imensional modelling provide better results 

than previous tw~imensional approximations. This is due to a 

more complete simulation of the real physical problem, including 

thr~imensional effects. 

The application of the computer code 3DFLO to the simulation of wind flow 

around arbitrary shaped buildings leads to a number of contributions which 

are outlined below. 

* 

* 

* 

* 

For the first time, atmospheric boundary layer flow over buildings 

was modelled in three dimensions using curvilinear boundary 

conforming grids. 

The use of boundary fitted grids in precisely represe~ting inclines and 

declines on building roofs leads to a more accurate prediction of 

pressure coefficients and resulting wind loads on pitched roof 

buildings. 

The ability to exactly model the sharp ridge geometry on building 

roofs, leads to an improved understanding of flow phenomena in the 

near vicinity of the ridge. The existence of a low pressure spike 

immediately behind the ridge is confirmed. 

Three-dimensional modelling made it possible to study wind loading 

on pitched roof building edges. For the first time pressure 
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distributions at building edges (in the third dimension) were 

numerically predicted with accepted accuracy. 

The effect of wind flow around multispan pitched roof buildings were 

modelled successfully for the first time. The results indicate that 

three-dimensional effects strongly influence flow patterns in the 

downstream direction behind the first ridge. 

Throughout the course of this study, the wind approach angle was 

constant (right form the front of the building). With the current 

model it is now possible to vary the direction of wind flow across the 

buildings in the computer simulations to correspond with reality. 

5.3 Reoommendations for further research 

During the course of this study several areas justifying further research were 

identified. These are briefly outlined below. 

* 

* 

A great need exists for the combination of a numerical grid generation 

scheme with the current flow model in order to improve the 

userfriendliness of the code and avoid tiresome file transferring. 

An even greater need exists for the development and implementation 

of a more effective numerical solver for three-dimensional purposes to 

replace the current TOMA-solver. This would improve the efficiency 

of the code by decreasing and economizing on computer running time. 
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The energy equation can be incorporated into the current model to 

enable the solution of fully compressible flows. The model would then 

be able to solve supersonic flows that is characteristic of aeronautical 

applications. 

Special attention should be given to the prescription of outflow 

boundary conditions where the outflow surface is not perpendicular to 

one of the cartesian velocity components. A problem arises with the 

enforcement of continuity across angular control volumes at outflow 

boundaries. This prevents complete convergence of the numerical 

solution. 

It will be profitable to extend the model to make use of unstructured 

grids especially where flow around buildings are considered. This 

would enable the grid to be dense in areas around the building but 

course at large distances form the buildings where flow is less 

complex. In such a way the number of grid points can be greatly 

decreased, resulting in more efficient computer modelling. 

The use of adaptive grids should be investigated for extending the 

model to the solution of free surface flows. It would also increase the 

accuracy of the solution in high gradient areas. 

The modelling of flow over arbitrary shaped buildings with variable 

wind approach angle should be investigated. 
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Roman Alphabet 

a. Covariant base vector 
I 

a Discretization equation coefficients 

b Discretization equation source term 

B <l>,c <l>,D <I> Pressure correction coefficients for variable </> 

c1 ,c2,c µ Turbulence constants 

C
0 

Constant for atmospheric boundary layer profile 

E,F,G,U General vectors defined in Appendix B 

I Turbulence intensity 

J Jacobian of the transformation 

k Kinetic energy of turbulence 

k Surface roughness parameter 
s 

r 3D space vector made up by cartesian unit vectors 

P Point pressures 

href Reference height for boundary layer profiles 

L Length scale values for atmospheric turbulence 

u X-direction velocity component 

v Y-direction velocity component 

w Z-direction velocity component 

Vref Reference velocity 

v t Velocity tangential to solid wall 

S <I> Source term in </>--equation 

t Time 

y + Local Reynolds number 
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y P Perpendicular distance from the wall to the node point 

x,y ,z Cartesian three-dimensional space co-ordinates 

Greek Alphabet 

p 

µ 

T 
w 

K, 

V 

r 

Superscripts 

0 

Mean wind speed exponent 

Turbulence dissipation rate 

Density 

Fluid viscosity 

Wall shear stress 

Von Karman constant 

Three-dimensional velocity vector 

Representing any of the dependant scalar variables 

Representing any 3D vector 

Difference between consecutive grid nodes 

Del operator 

Diffusion coefficient 

General curvilinear three-dimensional space co-ordinates 

Turbulence constants 

Partial derivatives to any variable 0 

Equals 1,2 or 3 for each of the general co-ordinate axes 

Indicates fluctuating value due to small scale turbulence 

Indicates average value 

Value at previous time step 
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Subscripts 

e1 
eff 

lam 

t 

P,p 

e,w,n,s,t,b 

Approximate values (guessed) 

Corrections 

Equals 1,2 or 3 for each of the general co-ordinate axes 

Partial derivative to ei 
Indicates effective value 

Indicates laminar flow 

Indicates turbulent flow 

Grid point under consideration 

Indicates cell wall positions 

E, W, N, S, T, B Indicates neighbouring grid points 
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GENERAL TRANSPORT EQUATION 

APPENDIX A 

DERJV ATION OF GENERAL TRANSPORT 
EQUATION 

In this appendix the x-momentum equation is derived from basic principles 

in cartesian c~rdinates. The equation is then written in the general form 

of the transport equation which is valid for the conservation of mass, energy 

as well as momentum. These equations describe the velocity profiles and 

pressure distribution in any laminar flow situation. It will be shown in 

Appendix D that this equation is also applicablein the case of the turbulence 

equations of the k-f turbulence model, used to describe turbulent flows. 

Llz 
z 

X 

(x+Llx,y+Lly ,z+Llz) 

Lil (x,y,z) 

Figure A.I A cartesian finite control volume element 
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GENERAL TRANSPORT EQUATION 

For a volume element ~x~y~z as shown in Figure A.l the momentum 

balance can be written as follows. 

Rate of momentum accumulation - rate of momentum in 

+ rate of momentum out 

+ sum of forces acting on system ( A. l) 

The complete three-dimensional unsteady behaviour of momentum into and 

out of the control volume in Figure A.I will be considered. 

The first mechanism whereby momentum enters or leaves the control volume 

is by means of bulk fluid flow or rather convection. The rate at which the 

x-component of momentum enters the face at x is given by 

pv v I ~y~z , 
XX X 

and the rate at which it leaves the control volume at x+~x is 

pv v I + A ~y ~z . 
XX X uX 

Similar to this, the rate of x-momentum in at y and at z are 

pv v I ~x~z and y X y 

pv v I ~y~x 
Z X Z 
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GENERAL TRANSPORT EQUATION 

respectively, and the rate at which x-momentum leaves at faces y+~y and 

z+~z are given by the following two expressions. 

pv v I + A ~xLlz y X y uy 

pv v I +A ~y~x 
Z X Z uz 

The nett convective x-momentum flow into the control volume element can 

now be determined by subtracting the outflow x-momentum from the total 

inflow x-momentum. The total convective x-momentum contribution to 

the element can be written as follows. 

pv v I + pv v I + A ··l ~y Llz + XXX XXX u.x. 

pv v I + pv v I + A LlxLlz + 
yxy yxyu} 

pv v I + pv v I + A Lly Llx 
Z X Z Z X Z uz (A.2) 

The second mechanism by which x-momentum can enter the control volume 

is by means of diffusion (molecular transport), or better explained as a result 

of shear forces acting on the element. Similar to the convective 

x-momentum inflow, the gain of x-momentum as a result of the shear forces 

can be expressed by 

r I LlyLlz 
XX X 

and the loss of x-momentum through molecular transport can be written as 
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GENERAL TRANSPORT EQUATION 

The total contribution to the x-momentum of the element as a result of 

shear forces, caused by viscous action in the fluid, can now be written as 

follows: 

rxxlx + rxxlx+~xi~y~z + 

Tyxly + Tyxly+~y ~x~z + 

Tzx I z + rzxl z+Liz}LiyLix (A.3) 

Momentum is also transported to the control volume element by the forces 

acting on the element. In most cases the only important forces are those 

arising from the fluid pressure and the effect of gravity. The influence of 

these forces in the x-direction is: 

(A.4) 

Finally, the rate of accumulation of x-momentum in the control· volume 

element can be expressed as 

(A.5) 

By now combining the contribution of each of the four mechanisms of 

momentum transfer, the x-component of the equation of motion in cartesian 

co-ordinates can be obtained. 
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GENERAL TRANSPORT EQUATION 

-[ M rxx] +~[ Tyx] +M Tzx] ]-~+pgx 
(A.6) 

By making use of vector and tensor calculus the equation can be generalized 

to give 

~(pv) = - ( V • pvv ) - Vp - ( V • r ) + pg . (A.7) 

As previously mentioned, similar equations for the y- and z-momentum 

components and also for the continuity equation can be derived by applying 

the law of mass conservation. The same can be done for the energy equation 

but does not form part of this study. The equations can be summarised by a 

General Transport Equation given below, 

~(p</>) = - V • ( pv ¢ ) - Vp - ( rv ¢ ) + S ¢ (A.8) 

where ¢ represents any one of the dependent variables u,v,or w with r the 

diffusion coefficient and s¢ the source term. 
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TRANSFORMATION RELATIONS 

APPENDIX B 

TRANSFORMATION TO CURVILINEAR 
CO-ORDINATES 

In order to solve thr~imensional flow in curvilinear co-ordinates the 

governing equations are transformed into at set of equations that is 

generally applicable to a non-orthogonal control volume element, as shown 

in Figure B.l. In this section the transformation relations from cartesian 

co-ordinates to a general curvilinear co-ordinate system is developed by 

using certain concepts from differential geometry and vector and tensor 

analysis. The equations are transformed in such a way that the cartesian 

velocity components (u,v,w) are maintained as the dependent variables. 

\ /',.. _________ _ 
_ ,,,,/ 

//_,,,,/ 

Figure B.1 General curvilinear finite control volume 
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TRANSFORMATION RELATIONS 

Partial derivatives with respect to cartesian c~rdinates are related to 

partial derivatives with respect to curvilinear c~rdinates by the chain 

rule which can be written as 

(i = 1,2,3) , (B.l) 

where A is a scalar-valued function. In order to relate the two 

co-ordinate systems, the covariant base vectors are evaluated as 

a. = r . ( i = 1, 2 ,3) , 
I el 

(B.2) 

where the curvilinear co-ordinates are represented by ei (i = 1,2,3), and 

the superscript i indicates the base vector corresponding to the ei 

co-ordinate. In partial derivative form, the expression for the base vectors 

can be written as follows. 

(i = 1,2,3; i,j,k cyclic) (B.3) 

The differential increments of arc length, surface and volume, which are 

needed in the formulation of the derivative operators can now be 

developed. An increment of arc length on a co-ordinate line along which 

ei varies, is given by 

(B.4) 
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TRANSFORMATION RELATIONS 

An increment of area on a co-ordinate surface of constant l is given by 

(B.5) 

and a volume increment is given by 

(B.6) 

The Jacobian of the transformation is evaluated as follows: 

(B.7) 

Expressions for the derivative operators, such as gradient, divergence, curl 

and Laplacian are obtained by applying the Divergence Theorem to a 

differential volume increment bounded by co-ordinate surfaces. For any 

tensor A the Theorem gives 

(B.8) 

where n is the outward directed unit normal to the closed surface S 

enclosing the volume V. For a differential surface element lying on a 

co-ordinate surface, equation (B.5) gives 

(B.9) 
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TRANSFORMATION RELATIONS 

with the choice of sign being dependent on the location of the volume 

relative to the surface. Considering a differential element of volume, {N, 

bounded by six faces lying on co-ordinate surfaces, equation (B.6),(B. 7) 

and (B.9) lead to 

where oS l and bS1 indicate the elements on two sides of which ei is 

constant and which are located at larger and smaller values, respectively, 

of ei. 

Proceeding to the limit as the element of volume shrinks to zero, an 

expression is obtained for the divergence in the conservative form, 

3 
V • A = J b [( aJ. x ¾c) • A] ci . 

i=l ~ 
(B.11) 

It is important to note that since the conservative form of the divergence 

and of the gradient and Laplacian to follow, is obtained directly from the 

closed surface integral in the Divergence Theorem, the use of conservative 

difference forms for these derivative operators is equivalent to using 

difference forms for that closed surface integral. Therefore, the finite 

volume difference formulation can be implemented by using these 
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TRANSFORMATION RELATIONS 

conservative forms directly in the differential equations of motion without 

the necessity of returning to the integral form of the equation of 

motion. [10] 

Equation (B.8) is also valid with A replaced by a scalar A and the dot 

product by simple multiplication. The conservative form of the gradient 

follows directly from equation (B.11) as 

3 
VA= J ~ [(aJ. x 3,c)A] ti . 

i=l 1.:, 

(B.12) 

By replacing A by VA in equation (B.12) the expression for the Laplacian 

is as follows: 

(B.13) 

(i,j,k) cyclic & (l,m,n) cyclic 

By making use of these transformation relations, the general transport 

equation derived in appendix A, 

%t-(p</>) = - V•( pv</>) - Vp - V•( rV¢) + s<I> , (B.14) 

can be transformed to curvilinear co-ordinates. Complete transformation 

and expansion lead to the following set of equations that are used to 

describe three-dimensional flow in curvilinear co-ordinates. 
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TRANSFORMATION RELATIONS 

Let ( ei, i = 1,2,3) be substituted by ( e,r,,() and (xi, i = 1,2,3) by (x,y,z). 

M¥] + k[}(exE + eyF + ezo)] 
+ ~[j(qxE + 1/l + 11zG)] 

+ ~dj((XE + (YF + (ZG)] = 0 (B.15) 

where the U ,E,F and G vectors are given by 

[ 
pv l F- puv -r 

- pv 2 + p ~y T 

puw - r YY 
yz 

G - puw - r 

[ 

pw l - xz . puv - r 
pw2 + p rzr 

zz 

The transformation values and the shear stresses are defined as follows: 

ex = J (y T/z ,-y (z 1/) 

Tix= -J(y e,-y (2 e) 

( = J (y cZ -y z c) 
X 1:,1/ T/1:, 

ey = -J(xT/z ,-x,zT/) 

Tly = J(xe(-x(ze) 

( =-J(xcz -x zc) 
y 1:,1/ T/1:, 
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TRANSFORMATION RELATIONS 

Txx = jµ[ 2[exu( + T/XUT/ + (xud - [eyv( + T/yV( + (yvd 

- [ezw( + TJZWT/ + (zwd] 

Tyy = jµ[ 2[eyv( + T/YVT/ + 'ld - [exu( + T/xU( + (xud 

- [ezw( + T/ZWT/ + (zwd] 

Tzz = jµ[ 2[ezw( + T/ZWT/ + (zwd - [exu( + T/xU( + (xud 

- [eyv ( + TJYVT/ + (yv d] 
rxy = µ[ (yu( + T/YUT/ + (yu( + (xv ( + TJxV T/ + (xv d 
Tyz = µ[(zv( + TJZVT/ + (zv( + (yw( + TJYWT/ + (ywd 

Txz = µ[(zu( + T/ZUT/ + (zu( + (xw( + T/XWTJ + (xwd 
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SMALL SCALE FLUCTUATIONS 

APPENDIX C 

SMALL SCALE TURBULENCE FLUCTUATIONS 

A very similar equation as the one obtained in Appendix B also applies to 

turbulent flow. The only difference is the occurrence of small scale 

fluctuations in the flow field. In this section the laminar x-momentum 

equation is modified to provide for these small scale fluctuations due to 

turbulence. 

Let each dependent variable consist of an average value as well as a 

fluctuating term. The variables considered can therefore be written as 

follows: 

u=u + u' 

V =v + V
1 

w=w + w' 

p=p + p' 

p=p + p' 

By replacing the variables in the laminar equation (C.l) with the above 

expressions, 
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SMALL SCALE FLUCTUATIONS 

+ ~ }[ 11xPU2
] + }[ vuv] + }[ 11zPUW] 

+ k }[ Cx11u2
] + }[ (yPuv] + }[ (zpuw] - Su (C.1) 

the following equation for compressible turbulent flows can be derived: 

i-[co + p')(U + u')] 

M[ (/ii+ p')(U + u')(U + u') + (/ii+ p')(U + u')(V + v') 

+ (if1 + p')(U + u')(w + w')] 

M[ 11/ii + p')(U + u')(U + u') + 11/P + p')(ii + u')(V + v') 

+ 11/ii + p')(U + u')(w + w')] 

M[ C/ii + p')(U + u')(U + u') + C/P + p')(U + u')(V + v') 

+ C/P + p')(U + u')(w + w')] = Su , (C.2) 

where Su (the right hand side of the equation) consists of the pressure and 

cross derivative terms. These terms are not influenced by the small scale 

fluctuations since the dependent variables are merely replaced by their time 

averages. Therefore, only the right hand side of the equation will be 

considered in detail. 

By applying the time averages for each variable, the time averaged form of 

the right hand side of the momentum equation is obtained. 

C.2 
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SMALL SCALE FLUCTUATIONS 

RH: idpu + p' u'] + M[ ex(puu + 2p'u 'ii+ Pu 'u') 

+ ~ (pu v + p' u 'v + p 'u v ' + pu ' v ' ) y 

+ ez (puw + p' u I w + p' iiw I + Pu I w I ) ] 

+ Zl)H IJx(puu + 2p' u 'ii+ Pu 'u') 

+ TJ (pu v + p' u 'v + p 'u v ' + pu ' v ' ) y 

+ IJz(puw + p'u 'W + p'iiw' + Pu 'w')] 

a 1[ (- - - ) + a(J ~x puu + 2p' u' u + pu' u' 

+ ( ( pu v + p' u ' v + p 'u v ' + pu ' v ' ) y 

+ (z(puw + p'u'W + p'iiw' + Pu'w')] (C.3) 

By now assuming that p' is equal to zero, the above expression is reduced to 

RH: ~[pu] + M[ ex(puu + Pu I u I) + ey(puv + Pu 'v I) + ez(puw + Pu 'w I)] 

+ ~ [ TJX (puu + pu I u I ) + T/ ( pu V + pu I V I ) + T/z (pu w + pu I w I ) ] 

T/ - y - -

+ k}[ex(puu + iiu'u') + (/puv + Pu'v') + (z(puw + Pu'w')] 

(C.4) 

The underlined terms in equation ( C.4) are the new terms that result from 

the provision for small scale fluctuations and is the only addition to the 

laminar equation that was derived in Appendix B, necessary for solving 

turbulent flow. Each of these terms can, in turn, be represented by a shear 

force ( or diffusion) term by making use of the turbulent viscosity µt. 

(C.5) 
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SMALL SCALE FLUCTUATIONS 

By combining the above with the other diffusion terms, the final equation 

that describes the conservation of x-momentum is 

M¥] + k[j(exE + eyF + eza)] 

+ ¾r;[j(IJXE + l]YF + l]ZG)] 

+-k(j{cxE+ Cl+ (ZG)] =O, (C.6) 

where the U,E,F and G vectors are as in Appendix Band new expressions for 

the shear stresses are defined as follows: 

T xx = jµeff[ 2 [ exu( + IJXUIJ + (xud - [ (yv ( + IJYV ( + (yv d 

- [ezw( + IJZWIJ + (zwd] 

Tyy = jµeff[ 2[eyv( + IJYVIJ + (yvd- [exu( + IJxU( + (xud 

- [ ezw e + 1/ZW 1/ + (zw d] 
Tzz = jµeff[ 2 [ (zw ( + 11zw 1/ + (zw (] - [ (xu( + IJxU( + (xud 

- [eyv ( + 1/YVIJ + (yv d] 

Txy = µeff ( u( + IJYUIJ +(Yu(+ (xv ( + IJXVIJ + (xv d 

r yz = µeff ~ z v ~ + 1/ z v 1/ + ( z v ( + ~y w ~ + 1/y w 1/ + (y w (l 
T xz = µ eff ~ z U ( + 1/Z UT/ + (z U ( + ~X W ( + 'TJX W 'T/ + (X W ( 
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SMALL SCALE FLUCTUATIONS 

The effective viscosity in the above expressions is now defined as the sum of 

the laminar and the turbulent viscosities: 

(C.7) 

The same procedure can be followed for they- and z-momentum equations 

which finally result in the replacement of the laminar viscosity µ by the the 

effective viscosity µeff• 
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DIFFERENCING AND DISCRETIZATION 

APPENDIX D 

DIFFERENCING AND DISCRETIZATION 

In order to solve the partial differential equations that describe 

three-dimensional flow in curvilinear c~rdinates numerically, the 

equations have to be discretized. In this section a finite volume approach is 

used to obtain the linear finite difference expressions. This method entails 

the integration of the partial differential equations over a finite control 

volume. The general x-momentum equation describing turbulent flow, with 

respect to curvilinear co-ordinates, is discretized and the y- and 

z-momentum equations are treated similarly. The principles described in 

this section apply to the discretization of the General Transport Equation 

which includes the k and i equations describing turbulence properties as well 

as the continuity equation. 

From Appendix A the complete x-momentum .equation relative to a 

curvilinear co-ordinate system can be written as 

of[~] + of [ ½[ ex[pu2+p-r xx] + ey [puv-rxy] + ez [puw-rxz]]] 

+~rt[ qx[pu2+p-rxx] + qy[puv-rxy] + qz[puw-rxz] J l 
+~rt[ (x[pu2+p-rxx] + (y[puv-Txy] + (z[puw-Txz]] l = 0 (D.1) 
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DIFFERENCING AND DISCRETIZATION 

with the shear forces being 

Txx = iµeff [ 2 [ (xu( + 7/XUI/ + (xud - [ (yv ( + 7/YV ( + (l d 

- [ (ZII ( + 7/Zl/7/ + (z\]] 
rxy = µeff[(yu(+'f/YU'//+(yu(+(xv(+'f/XV'f/+(xv(] 

T xz = µeff [ ezu( + 'TJZU'TJ + (zu( + (xw e + 'f/XW'TJ + (xw d 

and the transformation values e , e , e etc. evaluated as described in 
X y Z 

Appendix B. By substituting the expressions as above, and by ordering the 

convection, diffusion, pressure and cross derivative terms, the left hand side 

of the equation becomes 

LH: J[~] + ~[ ½[ (xpu
2 

+ (Ypuv + (zpuw - µ[ ie! + e: + (i ]~]] 

+ ~[ }[ '1xPU
2 

+ 7/yPUV + '1zPU11 - µ[ jl/! + 7/: + 7/i ]; ] ] 

+ ~[ J[ (xpu2 
+ (yPuv + (zpuw - µ[ j(! + (: + (i ]~]] , (D.2) 

while the rest of the equation goes into the source term on the right hand 

side: 

RH: 

D.2 
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DIFFERENCING AND DISCRETIZATION 

+ BB5~ + BB6~ + BB7~ + BBS~ ] l 
a[!!:.[ au au av av -orj J BB9~ + BB10a( + BB11~ + BB12orj 

+ BB13~ + BBl~ + BB15~ + BB16~]] 

a[!!:.[ au au av av - ~ J BB17orj + BB18a( + BB19~ + BB20orj 

+ BB21~ + BB22~ + BB23~ + BB24t] l (D.3) 

The BB-values are evaluated as follows: 

aa2 = - !e , -e , -e , 
vXX yy ZZ 

- 4 BB 11 - - .,., e -, e -, e 
vXX yy ZZ 

- 2 BB19 - .,., e -, e 
v X y y X 

- 1 BB21 - - .,-( ( 
v X y 

- 2 BB23 - .,-( 1J -( 1J 
v X Z Z X 

D.3 

- 2 BB4 - .,.e 11 -e 11 v X y y X 

- 1 BB6 - - .,-( e 
v X Z 

- 2 BBS - .,-( ( -e ( 
v X Z Z X 

4 
aB1s = - .,.17 e -11 e -11 e 

vXX yy ZZ 

2 BB20 = .,-( 1J -( 1J 
v X y y X 

2 aa22 = .,., e -, e 
v X Z Z X 

- 1 B824 - - .,-( ( 
v X Z 
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DIFFERENCING AND DISCRETIZATION 

Referring to Eq. (D.2) the following concepts can now be defined: 

Convection flux: F c = ( pu + ( pv + ( pw 
~ X y Z 

F = 7J pu + 7J pv + 7J pw 
7J X y Z 

FI' = ( pu + ( pv + ( pw 
1:, X y Z 

Diffusion flux: De= µeff je~ + e~ + e~ I b.( 

D 1/ = µeff jTJ~ + 1/~ + 1/~ I fiTJ 

D ( = µ eff j(~ + (~ + (~ / b. ( 

Peel et Number: 

The Peclet Number is the ratio of the strength of convection to the strength 

of diffusion. The magnitude of the Peclet Number influences the 

differencing. 

Differencing scheme 

Central Difference 

Upwind Difference 

Hybrid Difference 

Power law Difference 

Exponential Difference 

D.4 

Formula for A( IP I ) 
1 - o.5 IP I 
1 

« o, 1 - o.5 IP I » 
« o, ( 1 - 0.1 IP I )5 

I P I / [ exp( I P I ) - 1] 
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DIFFERENCING AND DISCRETIZATION 

Following Patankar [15], the use of this number is implemented by 

calculating the function value A as indicated in the table above. 

The operator « x, y » means "select the greater of x and y". Programming 

the differencing schemes in such a way, enables the comparison and the 

optimal use of the various differencing schemes. It should be noted that this 

type of differencing is applied only to the main convection and diffusion parts 

of the equation, and the pressure and cross derivative terms are subsequently 

discussed. Patankar [5] recommends the power law scheme as a good 

compromise bet ween accuracy and economy of calculation. 

By making use of the expressions developed so far, the discretized equation 

for a general curvilinear control volume can be written as follows: 

where 

ae = D eA( IP e I) + «-F e,o» 

aw= DwA( IP w I)+« F w,o» 

an= DnA( Ip n I) +·«-F n,0» 

as = D sA( IP s I) + « F s,o» 

ab= DbA( I Pb I) + «-F b,o» 

af = D f A ( I Pf I ) + « Ff' o» 

a~ = p
0 

/ D..t , and 
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DIFFERENCING AND DISCRETIZATION 

Using the expressions for convection and diffusion flux developed earlier, the 

values at the control volume walls are determined in the following way: 

since~~, ~T/ and ~( are equal to unity. 

The equations, relevant to this study, contain several first derivatives, for 

example, the unsteady term in the x-momentum equation. At grid point P, 

this term can be discretized as: 

where ~t represents the time interval in the solution of unsteady flow 

problems, and J is the Jacobian of the transformation, as calculated in 

Appendix B. Another first order derivative is the pressure term that form 

part of the source term in Eq. (D.3) The three pressure terms are treated by 

applying the central difference scheme between opposite cell walls. 

Therefore, the pressures used, are linearly interpolated at the control volume 

walls. 

The terms 

D.6 
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DIFFERENCING AND DISCRETIZATION 

are discretized as 

[j ~x p w -j ~x p e] + [½ TJX p s -j TJX p n] + [½ (X p f -j (X p b] ' 
w w e e s s n n ff b b 

~e ~TJ ~, 

but with the dimensions in the calculation domain,~~, ~TJ and ~(, taking 

the value of unity due the method of transformation used, it can be further 

reduced to 

[ e P - e P ] + [ TJ P - TJ P ] + [ , Pf - , Ph ] xw w x e e x8 s xn n xf xb 

Referring to Equation (D.3), the cross derivative terms are all treated 

similarly and therefore only one of the discretizations will be provided. 

Consider the diffusion term of coefficient BBl: 

The expression BBl is evaluated at opposing cell walls as follows: 

- 4 BB 1 - - -e TJ - e TJ - e TJ 
e 3 xe xe Ye Ye ze ze 

BB 1 = -1e TJ - e TJ - e TJ 
W 3x X y y Z Z w w w w w w 

Discretizing the first derivative leads to 

D.7 
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DIFFERENCING AND DISCRETIZATION 

and discretization of the second derivative, completely expanded, provides 

the final difference expression as given below: 

The velocity values at the control volume corners u etc. are determined by ne 

linear interpolation between the eight surrounding grid points. Each of the 

terms in the difference equation has now been evaluated, and the 

discretization equations can, therefore, be solved to determine the point 

values of the dependent variables. 

D.8 
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TURBULENCE SOURCE LINEARIZATION 

APPENDIX E 

DISCRETIZATION OF TURBULENCE EQUATIONS 

The partial differential equations included in the k-t turbulence model are 

given below. The equations are presented in the generalized vector form 

independent of a c~rdinate system. They describe the turbulent kinetic 

energy (k) and the turbulence dissipation rate ( t) from which an additional 

turbulent viscosity can be calculated. 

(E.1) 

(E.2) 

The above equations, which are also based on the general conservation 

principle, are discretized using the same procedures as described in Appendix 

D for the discretization of the General Transport Equation. This applies for 

the unsteady-, the convection- and the diffusion terms ( the first three 

terms) in the above equation. Further attention is given to the discretization 

of the source term which is made up by the production- and the dissipation 

terms (last two terms) in each of the two equations. 

Spalding [2] and Gosman [4] describe a specific linearization process of the 

source terms which provides stability to the solution and also yields accurate 

approximations. This process is briefly considered for each of the turbulence 

quantities. 

E.1 
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TURBULENCE SOURCE LINEARIZATION 

For the k~quation the source term is: 

(E.3) 

The linearization is as follows: 

(E.4) 

where 

c~ = [ C2pt + ½µl ] , and (E.5) 

kp 

(E.6) 

For the t~quation the source term 

(E.7) 

is linearized as follows: 

' S =-C t+B 
€ p (E.8) 

where 

(E.9) 

E.2 
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TURBULENCE SOURCE LINEARIZATION 

(E.10) 

This leads to the final discretization equation 

(E.11) 

(E.12) 

On fixed wall boundaries the source term in the k~quation is replaced by 

the term below (as discussed in Section 2.3), in order to obtain a better 

description of the effect of wall shear stresses. 

(E.13) 

where v t is the velocity tangential to the wall and the partial derivative with 

respect to 8s represents the distance and direction perpendicular to the wall. 

The same form of linearization of the source term is applied to the relation 

above, which yields 

I 

CP = Cµvtp2kwbs (E.14) 

Jr 
w 

(E.15) 

where & represents the distance, perpendicular from the point of the 

adjoining control volume to the wall. 

E.3 
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PRESSURE CORRECTION EQUATION 

APPENDIX F 

THE PRESSURE CORRECTION EQUATION 

Following Patankar's SIMPLE method, the continuity equation is used to 

derive a pressure correction equation. The pressure corrections are used to 

adjust the pressure field and to calculate velocity corrections. Its main 

function is, therefore, to enforce the law of conservation of mass by adjusting 

the velocity distribution to comply with the existing pressure field. 

In curvilinear co-ordinates the continuity equation is: 

(F.l) 

and can be discretized using the same principles as for the General Transport 

Equation in Appendix D. Applying the finite volume approach in 

discretizing each of the terms as indicated below 

e Pu 
Xe e e exp u w w w 

J J 
e w 

and by let ting 

F.l 
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PRESSURE CORRECTION EQUATION 

and 
~ p Bu - Xw w 

w--Y-' 
w 

the continuity equation can be written in the following differenced form: 

1 [P - po] 
J 2St 

(F.2) 

The reader is referred to Appendix D for expressions for the cell wall 

velocities ( eg. u ). Expanding the pressure terms included in those 
p 

expressions leads to 

apup = 1: anbunb + [ {x p w - {x p e] 
w e 

+ [ 11x p s - 7/x p n ] 
s n 

+ [ (xtf- (x/b] + Su · (F.3) 

A similar expression is also valid for the newly calculated velocity values 

* ( u ) that are obtained after the solution of the momentum equations 
p 

F.2 

(F.4) 
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PRESSURE CORRECTION EQUATION 

These velocities are, however, not the correct velocities that satisfy the law 

of conservation of mass, and can ultimately be corrected by assuming that 

the correct velocities consist of a calculated value plus a correction ( u'), 

* 
u = u + u' . (F.5) 

Substituting equations (F.3) and (F.4) into (F.5), an expression for the value 

of the velocity correction at point p is obtained as a function of the pressure 

correction derivatives (P'): 

-(F.6) 

Similar expressions can be obtained for each of the cell wall velocities in 

equation (F.2). Substitution and differencing of the pressure correction 

derivatives at neighbouring grid points yield a discretization equation from 

which the pressure corrections throughout the flow field can be calculated: 

a p, = ~ a p, + a op, o + SP . 
p p nb nb p p 

(F. 7) 

The source term SP gives a indication of the extent to which continuity is 

satisfied, as it presents the local mass inbalance due to the newly calculated 

velocity field, and is commonly used in evaluating convergence parameters. 

Its theoretical value is zero when complete convergence is achieved. 

F.3 
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APPENDIX G 

THECOMPUTERPROGRAM3DFLO 

*-lrlrlr**AAhhhAk*****'irlr-lrldrlr-lrlrlr***-frlr-lrlrlrlrk*irlr-lrlf**** 

* * 
* 3333 DODD FFFFF L 000 * 
* 3 3 D D F L 0 0 * 
* 33 D D FFF L 0 0 * 
* 3 3 D D F L 0 0 * 
* 3333 DODD F LLLLL 000 * 
* * 
* THIS PROGRAM SOLVES 3D COMPRESSIBLE * 
* LAMINAR OR TURBULENT FLOWS IN * 
* CURVILINEAR CO-ORDINATES * 
* * 
* DEVELOPED BY * 
* * 
* HERMANN ROLFES * 
* * 
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Program MAIN 
*******·k-lc-!c,'cic*,'ric*ic*******-lc-lc*-lc*****-lc·lc*-lc*ic-lc*******.,''**ic**ic*********.,'r,'c*ic-lc*** 

INCLUDE 'COMM' 

*===================================== 
CHAPTER 1 INPUT AND INITIALIZATION ***'''*******ir·lrir* 

~•,.~-~=================================== 

*** Input of fluid and geometrical data 

Call INPUT 
Call GEOM 
Call PROP 
Call OBSTR 

*** Choose restart option 

if(irstart.eq.l)Call RESTART 
write(*,*)'Read complete!' 

*** Award initial boundary conditions 

Call SETBND 
RESTKEN = 0.1 
RESEPS = 0.1 
if(iturb.eq.l)Call EFFVISC 

c if(irstart.eq.l)Call PROP 

*** Interpolate the velocities for the first iteration 

Call INTPOL 
Cal.L STEP 
Call BOUND 
Call INTPOL 

*** Calculate mass flow rate at the inflow boundary 

Call MASSIN 
write(* ,4)Re 

4 FORMAT(/,lX, 'REYNOLDS NUMBER (RE)=' ,F9.1) 
if(iglobal.eq.l)write(*,2)fmin 

2 FORMAT(lX, 'INLET MASSFLOW = ',E12.4,' (KG/S)') 
if(isetup.eq.l)then 
Call OUTPUT 
Call PLOTOUT 
write(*,*)'********** Check initial setup **********' 
stop 
endH 

******i'****-lc* 
"l'r===================================== 

CHAPTER 2 SOLUTION OF THE FLOW FIELD ****1b'r*****.,'ddr* 
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*** A new time step starts here 

ntime = 0.0 
1000 ntime = ntime + 1 

time= time+ delt 

do 20 i = 1,in 
do 20 j = 1, jn 

do 20 k = 1,kn 
vxold(i,j,k) = vx(i,j,k) 
vyold(i,j,k) = vy(i,j,k) 
vzold(i,j,k) = vz(i,j~k) 
ppold(i,j,k) = pp(i,j,k) 
epsold(i,j,k) = eps(i,j,k) 
tkenold(i,j,k) = tken(i,j,k) 

20 continue 

*** A new iteration of the total flow field starts here 

if(irstart.ne.l)then 
l.sweep = 0. 0 
iwrite = 0.0 

endif 
write(*,l)isweep,imax,ccheck 

1 format(/,lx, 'ISWEEP = ',I4,2X, 'IMAX = ',I4,2X, 
* 'CCHECK = ',El0.4,/) 

200 isweep = isweep + 1 
iwrite = iwrite + 1 

*** Update current corrected velocity values to star values 
*** before solving for new star values 

do 40 i = 1,in 
do 40 j = 1,jn 

do 40 k = 1, kn 
vxstar(i,j,k) = vx(i,j,k) 
vystar(i,j,k) = vy(i,j,k) 
vzstar(i,j,k) = vz(i,j,k) 

40 continue 

PAGE 00002 

*-----------------------------------------------------------------------
*** STEP 1 : Solve the momentum equation for star w-velocities 
*-----------------------------------------------------------------------

Call WCOEFF 

*** Sweeping in I - direction 

if(kisweep.eq.O) goto 55 
do 50 k = 2,knml 

do 50 i = 2,inml 
do 50 mm= 1,mobs(i,k) 
njend = jjend(mm,i,k) 
njbeg = jjbeg(mm,i,k) 
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Call WPREPI (i,k,njend,njbeg) 
Call TDtfAI (i,k,vzstar,njend,njbeg) 

50 continue 

*** Sweeping in J - direction 

55 if(kjsweep.eq.O) goto 65 
do 60 k = 2,knml 

do 60 j = 2,jnml 
do 60 11 = 1,lobs(j,k) 
niend = iiend(ll,j,k) 
nibeg = iibeg(ll,j,k) 
Call WPREPJ (j,k,niend,nibeg) 
Call TDMAJ (j,k,vzstar,niend,nibeg) 

60 continue 

PAGE 00003 

*-----------------------------------------------------------------------
*** STEP 2 : Solve the momentum equation for star v-velocities 

*--· ----------------------------·---------------------------------------

65 Call VCOEFF 

*** Sweeping in I - direction 

if(kisweep.eq.O) goto 75 
do 70 k = 2,knml 

do 70 i = 2,inml 
do 70 mm= 1,mobs(i,k) 

njend = jjend(mm,i,k) 
njbeg = jjbeg(mm,i,k) 
Call VPREPI (i,k,njend,njbeg) 
Call TDMAI (i,k,vystar,njend,njbeg) 

70 continue 

** Sweeping in J -direction 

75 if(kjsweep.eq.O) goto 85 
do 80 k = 2,knml 

do 80 j = 2,jnml 
do 80 11 = 1,lobs(j,k) 
niend = iiend(ll,j,k) 
nibeg = iibeg(ll,j,k) 
Call VPREPJ (j,k,niend,nibeg) 
Call TDMAJ (j,k,vystar,niend,nibeg) 

80 continue 

*-----------------------------------------------------------------------
fr** STEP 3 : Solve the momentum equation for star u-velocities 

*-----------------------------------------------------------------------
85 Call UCOEFF 

*** Sweeping in I - direction 

if(kisweep.eq.O) goto 95 
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do 90 k = 2,knml 
do 90 i = 2,inml 

do 90 mm= 1,mobs(i,k) 
njend = jjend(mm,i,k) 
njbeg = jjbeg(mm,i,k) 
Call UPREPI (i,k,njend,njbeg) 
Call TDMAI (i,k,vxstar,njend,njheg) 

90 continue 

** Sweeping in J -direction 

95 if(kjsweep.eq.O) goto 105 
do 100 k = 2,knml 

do 100 j = 2,jnml 
do 100 11 = 1,lobs(j,k) 
niend = iiend(ll,J,k) 
nibeg = iibeg(ll,j.k) 
Call UPREPJ (j, k. n i ~nd, n-f hpg) 
Call TDMAJ (j,k,vxst-:Rr,n·i0n(l,nibeg) 

100 continue 

PAGE 00004 

*-----------------------------------------------------------------------
*** STEP 4 : Interpolate the velocities at the cell walls with 
*** strong pressure - velocity coupling 
*-----------------------------------------------------------------------

105 Call INTPOLV 

*-----------------------------------------------------------------------
*** STEP 5 : Solve the pressure correction equation 
*-----------------------------------------------------------------------

Call PCOEFF 

do 106 ip = 1,npress 

*** Sweeping in I - direction 

do 120 k = 2,knml 
do 120 i = 2,inml 

do 120 mm =1,mobs(i,k) 
njend = jjend(mm,i,k) 
njbeg = jjbeg(mm,i,k) 
Call PPREPI (i,k,njend,njbeg) 
Call TDMAI (i,k,pcor,njend,njbeg) 

120 continue 

*** Sweeping in J - direction 

do 130 k = 2,knml 
do 130 j = 2,jnml 

do 130 11 = l,lobs(j,k) 
niend = iiend(ll,j,k) 
nibeg = iibeg(ll,j,k) 
Call PPREPJ (j,k,niend,nibeg) 
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Call TDMAJ (j,k,pcor,niend,nibeg) 
130 continue 

*** Apply zero gradient boundaries for pressure corrections 
*** ~lso at boundaries than are not implicitly solved 

131 do 110 k = 1,kn 
do 110 j = 1,jn 

do 110 i = 1,in 

*** Back and front ends 

pcor(i,j,1) = pcor(i,j,2) 
pcor(i,j,kn) = pcor(i,j,knml) 
if(jbound(i,j,k).eq.O.and.jbound(i,j,k-1).eq.nbnd) 

* pcor(i,j,k-1) = pcor(i,j,k) 
if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nhnd) 

* pcor(i,j,k+l) = pcor(i,j,k) 

110 continue 

106 continue 

PAGE 00005 

*-----------------------------------------------------------------------
*** STEP 6 : Correct the pressures and velocities 
*-----------------------------------------------------------------------

Call ADJUST 

*-----------------------------------------------------------------------
*** STEP 7 : Adjust velocities on outflow boundaries 
*-----------------------------------------------------------------------

Call BOUND 

*-----------------------------------------------------------------------
*** STEP 8 : Interpolate pressures and velocities 
*-----------------------------------------------------------------------

Call INTPOL 
if(iturb.eq.O)goto 190 

*-----------------------------------------------------------------------
*** STEP 9 : Solve the kinetic energy turbulence equation - k 

*-----------------------------------------------------------------------
Call GAMM 

do 135 it= 1,nturb 

Call KCOEFF 

*** Sweeping in I - direction 

do 140 k = 2,knml 
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do 140 i = 2,inml 
do 140 mm =1,mobs(i,k) 
njend = jjend(mm,i,k) 
njbeg = jjbeg(mm,i,k) 
Call KPREPI (i,k,njend,njbeg) 
Call TDMAI (i,k,tken,njend,njhP,g) 

140 continue 

*** Sweeping in J - direction 

do 150 k = 2,knml 
do 150 j = 2,jnml 

do 150 11 = 1,lobs(j.k) 
niend = iiend(ll,j,k) 
nibeg = iibeg(ll,j,k) 
Call KPREPJ (j,k,niend,nibeg) 
Call TDMAJ (j,k,tkPn,ni.end,nih0g) 

150 continue 

PAGE 00006 

*-----------------------------------------------------------------------
*** STEP 10 : Solve the d.is~iption t-11rb11lence equation - epsilon 

*-----------------------------------------------------------------------
Call ECOEFF 

*** Sweeping in I - direction 

do 160 k = 2,knml 
do 160 i = 2,inml 

do 160 mm =1,mobs(i,k) 
njend = jjend(mm,i,k) 
njbeg = jjbeg(mm,i,k) 
Call EPREPI (i,k,njend,njbeg) 
Call TDMAI (i,k,eps,njend,njbeg) 

160 continue 

*** Sweeping in J - direction 

do 170 k = 2,knml 
do 170 j = 2,jnml 

do 170 11 = 1,lohs(j,k) 
niend = iiend(ll,j,k) 
nibeg = iibeg(ll,j,k) 
Call EPREPJ (j,k,niend,nibeg) 
Call TDMAJ (j,k,eps,niend,nibeg) 

170 continue 

*** Apply turbulence back and front zero gradients 

do 180 k = 1, kn 
do 180 j = l,jn 

do 180 i = 1,in 

eps(i,j,kn) = eps(i,j,knml) 
if(jbound(i,j,k).eq.0.and.jbound(i,j,k-1).eq.nbnd) 
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* eps(i,j,k-1) = eps(i,j,k) 
if(jbound(i,j,k).eq.0.and.jbound(i,j,k+l).eq.nbnd) 

* eps(i,j,k+l) = eps(i,j,k) 
tken(i,j,kn) = tken(i,j,knml) 
if(jbound(i,j,k).eq.O.and.jbound(i,j,k-1).eq.nbnd) 

* tken(i,j,k-1) = tken(i,j,k) 
if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nbnd) 

* tken(i,j,k+l) = tken(i,j,k) 
if(jbound(i,j,k).ne.O)goto 180 
vmuturb(i,j,k) = (cmu*rhop(i,j,k)*tken(i,j,k)**2)/eps(i,j,k) 

180 continue 

PAGE 00007 

*-----------------------------------------------------------------------
*** STEP 12 : Interpolate fork and epsilon 
*-----------------------------------------------------------------------

if(igrid.eq.O)Call INTPOLKE 

135 continue 

*-----------------------------------------------------------------------
*** STEP 11 : Determine the new effective viscosity 
*-----------------------------------------------------------------------

Call EFFVISC 

*-----------------------------------------------------------------------
*** STEP 12 : Test for convergence 
*-----------------------------------------------------------------------

if(iwrite.eq.nwrite)then 
!WRITE= 0.0 

190 WRITE(*,3)ISWEEP,DIFFX,DIFFY,DIFFZ,DIFFP,DIFFTKEN,DIFFEPS 
WRITE(9,3)ISWEEP,DIFFX,DIFFY,DIFFZ,DIFFP,DIFFTKEN,DIFFEPS 

3 FORMAT ( lX, I 5 , lX, ' X=' , E 9 . 3 , lX, 'Y=' , E 9 . 3 , lX, -
* 'Z=' ,E9.3,1X, 'P=' ,E9.3,1X, 'K=' ,E9.3,1X, 'E=' ,E9.3) 

ENDIF 

rmax = dmaxl(diffx,diffy,diffz,diffp) 
if(isweep.lt.imax.and.rmax.gt.ccheck)goto 200 
if(rmax.gt.ccheck)then 
wrHe(*,*)' ! ! ! ! ! ! ! NO CONVERGENCE ! ! ! ! ! ! ! ' 
else 
write(*,*)'!!!!!!! CONVERGENCE ACHIEVED !! ! ! !!! ' 
endif 

*** Output required data 

Call OUTPUT 
Call PLOTOUT 

goto 10000 
9000 write(*,*)'!!! CANNOT OPEN OUTPUT FILE IN MAIN!!!' 

stop 
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10000 Close(9) 
Close(19) 
Close(8) 

stop 
end 

FORTRAN Al Universiteit van Pretoria PAGE 00008 

Subroutine INPUT 
*****i'*****i'************icic-lc**ir-k,'r*i'r,'r'1'r,'rir,'r****-lr*ic*"l'r"l'rir,'r****"''rir***"kic**ic**"''cic,'c* 

*** In this subroutine reads the input data 

INCUIDE I COMM I 

read(4,'(a)')dummy 
read(4, '(a)')dummy 
read(4,*)in,inml,jn,jnml,kn,knml 
inm2 = in-2 
jnm2 = jn-2 
knm2 = kn-2 

read(4, '(a)')dummy 
read(4,*)kapecl,iglobal,isetup,irstart,iturb,igrid 

read(4, '(a)' )dummy 
read(4,*)cl,c2,sigmk,sigme,cmu,cappa,epsinit,tkeninit 

read(4, '(a)')dummy 
read(4,*)kisweep,kjsweep,nwrite,relax,relaxt,ccheck,imax 

_read(4, '(a)')dummy 
read(4,*)delt,npress,nturb,kfst,kbst,istep,jstep 

read(4, '(a)')dummy 
read(4,*)rho,vmulam 

read(4, '(a)')dummy 
read(4,*)velmean,chardim 

read(4, '(a)')dummy 
read(4,*)vxinit,vyinit,vzinit 

Re= rho*velmean*chardim/vmulam 
great= 1.0d40 
tiny = 1. Od-30 

goto 10000 
9000 write(ic, *)' ! ! ! CANNOT OPEN INPUT DATA FILE IN INPUT ! ! ! ' 

stop 

10000 return 
end 
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**************i'r-lr-lr*****,'r*-lr-lr·k-lr******i'r,'r*ir***,'r**i'r**i'r-lr**,'r-lr-lr*-lrir,'rir***,'r***-,'r**-lr* 
Subroutine RESTART 

*"'r**"'r-lr*i't:,'~-lt:-l<"*****"''r**i'r-i'c*·k,'r*-i'c*****-lc-lc***-lr-lr,'r-lr,'r-i'r*****-;'r-lri'r-lr**-lr-lr**i'r,'r********-i'r*** 

*** In this subroutine reads the restart input data 

INCLUDE 'COMM' 

write(*,*)'********** READING RESTART DATA 

read(13,*)ninml,njnml,nknml,isweep 
if (ninml. ne. inml. or. njnml. ne. jnml. or. nknml. ne. knml) then 
write(*,*)'!!! We have a major f -up in RESTART !!! ' 
stop 

endif 

if(iturb.eq.l)then 
do 20 k = 2,knml 

do 20 j = 2,jnml 
do 20 i = 2,inml 
read(13,*)x(i,j,k),y(i,j,k),z(i,j,k),tken(i,j,k),eps(i,j,k) 
read(13,*)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k),viscp(i,j,k) 

20 continue 
endif 

if(iturb.eq.O)then 
do 30 k = 2,knml 

do 30 j = 2,jnml 
do 30 i = 2,inml 
read(13,*)x(i,j,k),y(i,j,k),z(i,j,k) 
read(13,*)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k) 

30 continue 
endif 

goto 10000 
9000 wrHe(1r, *)' ! ! ! UNABLE TO OPEN RESTART FILE ! ! ! ' 

stop 

10000 return 
end 

Subroutine PROP 
,'r******-lr**-lt:***·k,'r-lr**-lr-lr,'r*-lr**·k*-lr**********''r*,'r*****-;'r,'r,'r**-lr-lr-lr-;'t:*-lr-lr-lr·k*-lr*-lr-lc,'r,'r**"'' 

*** This subroutine awards fluid properties 

INCLUDE 'COMM' 

do 10 k = 1,kn 
do 10 j = 1, jn 

do 10 i = 1,in 

viscp(i,j,k) = vmulam 
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•visce(i,j ,k) = vmulam 
viscn(i,j,k) = vmulam 
viscb(i,j ,k) = vmulam 

rhop(i,j,k) = rho 
rhoo(i,j,k) = rho 
rhoe(i,j,k) = rho 
rhon(i,j,k) = rho 
rhob(i,j,k) = rho 

10 continue 

*** Effective viscosity on inflow boundary 

return 
end 
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Subroutine OBSTR 
-lr**********-lr********''r*-lr-lr*******-lr-lr****-lr-lr-;'r-i'r*'>'r******"'r-lr,'r,'r-lr*,'r*-;'r'>'r-lr*-lr'>'r,'r-lr*'>'r-lr-lr*-lr 

INCLUDE 'COMM' 

*** This subroutine controls solving around obstructions 

Dimension istart(20),istop(20),jstart(20),jstop(20), 
* kstart(20),kstop(20) 

***--------------------------------------------------------------------
*** Part 1 identifies internal and wall obstructions 
***--------------------------------------------------------------------

*** Read obstruction input data 

read(4,'(a)')dummy 
read(4,*)nmatls,nomts,nrfunk 

do 10 k = 1,kn 
do 10 j = 1, jn 

do 10 i = 1, in 
np(i,j,k) = 1 

10 continue 

do 20 nr = 1,nrfunk 
read(4, '(a)')dummy 
read(4,*)istart(nr),istop(nr),jstart(nr),jstop(nr), 

* kstart(nr),kstop(nr) 
20 continue 

*** Find the nodes that fall within this physical obstruction 

do 30 k = 1,kn 
do 30 j = 1, jn 

do 30 i = 1, in 
do 30 nr = 1,nrfunk 
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if(i.ge.istart(nr).and.i.le.istop(nr).and. 
* j.ge.jstart(nr).and.j.le.jstop(nr).and. 
* k.ge.kstart(nr).and.k.le.kstop(nr))then 

np(i,j,k) = nmatls 
endif 

30 continue 
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***--------------------------------------------------------------------*** Part 2 determines TDMA limits 
***--------------------------------------------------------------------
*** FOR SWEEPING IN I - DIRECTION 

do 60 k = 2,knml 
do 60 i = 2,inml 

m = 0.0 
itel = 0.0 
do 70 j = 1, jn 

*** In case of inflow and outflow boundaries 

*** 

lf(j.eq.1.and.np(i,j,k).le.nomts)then 
itel = itel + 1 
1 = 1 + 1 
jjbeg(m,i,k) = j 

endif 

if(j.eq.jn.and.np(i,j,k).le.nomts)then 
itel = 0.0 
jjend(m,i,k) = j 

endif 

if(np(i,j,k).le.nomts)goto 70 

if(np(i,j,k).gt.nomts.and.np(i,j+l,k).le.nomts. 
* and.itel.eq.O)then 

* 

itel = itel + 1 
m = m + 1 
jjbeg(m,i,k) = j 
goto 70 

endif 

if(np(i,j,k).gt.nomts.and.np(i,j-1,k).le.nomts. 
and.itel.eq.l)then 

itel = 0.0 
jjend(m,i,k) = j 

endif 

70 continue 
mobs(i,k) = m 

60 continue 

*** FOR SWEEPING IN J - DIRECTION 

do 80 k = 2,knml 
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do 80 j = 2,jnml 
1 = 0.0 
itel = 0.0 
do 90 i = 1,in 

*** In case of and outflow boundaries 

*** 

90 

80 

*** 

if(i.eq.1.and.np(i,j,k).le.nomts)then 
itel = itel + 1 
I = I + 1 
iibeg(l,j ,k) = i 

endif 

if(i.eq.in.and.np(i.j,k). lP.nomts)then 
itel = 0.0 
iiend(l,j ,k) = i 

endif 

if(np(i,j,k).le.nomts)gnt0 90 

if(np(i,j,k).gt.nomts.and.np(i+l,j,k).le.nomts. 
* and.itel.eq.0)then 

itel = itel + 1 
I = 1 + 1 
iibeg(l,j ,k) = i 
goto 90 

endif 

if(np(i,j,k).gt.nomts.and.np(i-1,j,k).le.nomts. 
* and.itel.eq.l)then 

itel = 0.0 
iiend(l,j ,k) = i 

endif 

continue 
lobs(j,k) = I 

continue 

FOR SWEEPING INK 

do 100 j = 2,jnml 
do 100 i = 2,inml 

n = 0.0 
itel = 0.0 
do 110 k = 1,kn 

- DIRECTION 

*** In case of and outflow boundaries 

if(k.eq.1.and.np(i,j,k).le.nomts)then 
itel = itel + 1 
n = n + 1 
kkbeg(n,i,j) = k 

endif 

if(k.eq.kn.and.np(i,j,k).le.nomts)then 
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itel = 0.0 
kkend(n,i,j) = k 

endif 

if(np(i,j,k).le.nomts)goto 110 

if(np(i,j,k).gt.nomts.and.np(i,j,k+l).le.nomts. 
and.itel.eq.O)then 

itel = itel + 1 
n = n + 1 
kkbeg(n,i,j) = k 
goto 110 

endif 

if(np(i,j,k).gt.nomts.and.np(i,j,k-1).le.nomts. 
* and.itel.eq.l)then 

itel = 0.0 
kkend(n,i,j) = k 

endif 

110 continue 
nobs(i,j) = n 

100 continue 
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***--------------------------------------------------------------------*** Part 3 produces an output of the obstruction data 
***--------------------------------------------------------------------

kx = 1 
jx = -1 
if(kn.gt.18) kx 
if(kn.gt.36) kx 
if(kn.gt.54) kx 
if (kn. gt. 72) kx 

write(9,22) 

do 120 i = 1,in 
write(9,25)i 

= 
= 
= 
= 

do 120 kkk = 1,kx 
write(9,,'r)' ' 
kend = 18*kkk 
kbeg = kend-17 

2 
3 
4 
5 

if(kend.gt.kn) kend = kn 
write(9,24) (kk,kk = kbeg,kend) 
write(9,21) 
do 130 j = jn,1,jx 
write(9,23)j,(np(i,j,kk),kk = kbeg,kend) 

130 continue 
120 continue 

21 format(6x,74('-')) 
22 format(//lx, 'FLOW FIELD (NM)'/) 
23 format(lx,I2,' I' ,23(1x,I3)) 
24 format(lx,' J/K = ',23(I2,2x)) 
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25 format(/,lx, 'I-SURFACE NO. ',I3) 

return 
end 

Subroutine UCOEFF 
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-/c-:'c-,•,-.,~-•--,•~.,•~~•,.~•,..,•r*-lr*-,'r*-lr-i'r*****-lr-i'c-ldri'r*-lr*-lr***-i'r**-lr-lr,'r-,'r***-lr-lr*-lr**"'r-lr-i'r-{c-,'c**''r*,'r*-,'r,'r*-lr*-lr-lr-lr-,'r* 

*** n,is subroutine calculates the coefficients to solve the 
**''" ,,-velocity components 

TNCLUDE 'COMM' 

*** Set all the constants equal to zero 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
an(i,j,k) = 0.0 
as(i,j,k) = 0.0 
ae(i,j,k) = 0.0 
aw(i,j,k) = 0.0 
ab(i,j,k) = 0.0 
af(i,j,k) = 0.0 
apu(i,j,k) = 0.0 
apo(i,j,k) = 0.0 
source(i,j,k) = 0.0 
resux(i) = 0.0 
resuy(j) = 0.0 
resuz(k) = 0.0 

10 continue 

*** Calculate the coefficients 

* 
* 

* 
* 

* 
* 

diffx = 0.0 
do 20 k = 2,knml 

do 20 j = 2,jnml 
do 20 i = 2,inml 

if(jbound(i,j,k).gt.O)goto 20 
ii= i-1 
jj = 
kk = 

conve 

convw 

convn 

convs 

j-1 
k-1 

= 
+ 
+ 
= 
+ 
+ 
= 
+ 
+ 
= 

rhoe(i,j,k)*(exixe(i,j,k)*ue(i,j,k) 
exiye(i,j,k)*ve(i,j,k) 
exize(i,j,k)*we(i,j,k))/tjace(i,j,k) 

rhoe(ii,j,k)*(exixe(ii,j,k)*ue(ii,j,k) 
exiye(ii,j,k)*ve(ii,j,k) 
exize(ii,j,k)*we(ii,j,k))/tjace(ii,j,k) 

rhon(i,j,k)*(etaxn(i,j,k)*un(i,j,k) 
etayn(i,j,k)*vn(i,j,k) 
etazn(i,j,k)*wn(i,j,k))/tjacn(i,j,k) 

rhon(i,jj,k)*(etaxn(i,jj,k)*un(i,jj,k) 
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**''r 

-Ir 

* 

* 
* 

* 
* 

+ 
+ 

convb = 
+ 
+ 

convf = 
+ 
+ 

etayn(i,jj,k)*vn(i,jj,k) 
etazn(i,jj,k)*wn(i,jj,k))/tjacn(i,jj,k) 

rhob(i,j,k)*(zetxb(i,j,k)*ub(i,j,k) 
zetyb(i,j,k)*vb(i,j,k) 
zetzb(i,j,k)*wb(i,j,k))/tjacb(i,j,k) 

rhob(i,j,kk)*(zetxb(i,j,kk)*ub(i,j,kk) 
zetyb(i,j,kk)*vb(i,j,kk) 
zetzb(i,j,kk)*wb(i,j,kk))/tjacb(i,j,kk) 

cliffe = visce(i,j,k)*(exiye(i,j,k)**2 + exize(i,j,k)**2 
* + 4*(exixe(i,j,k)**2)/3)/(tjace(i,j,k)*delexie(i,j,k)) 

diffw = visce(ii,j,k)*(exiye(ii,j,k)**2 + exize(ii,j,k)**2 
* + 4*(exixe(ii,j,k)**2)/3)/(tjace(ii,j,k)*clelexie(ii,j,k)) 

cliffn = viscn(i,j,k)*(etayn(i,j,k)**2 + etazn(i,j,k)**2 
* + 4*(etaxn(i,j,k)**2)/3)/(tjacn(i,j,k)*cleletan(i,j,k)) 

cliffs= viscn(i,jj,k)*(etayn(i,jj,k)**2 + etazn(i,jj,k)**2 
* + 4*(etaxn(i,jj,k)**2)/3)/(tjacn(i,jj,k)*cleletan(i,jj,k)) 

cliffb = viscb(i,j,k)*(zetyb(i,j,k)**2 + zetzb(i,j,k)**2 
* + 4*(zetxb(i,j,k)**2)/3)/(tjacb(i,j,k)*clelzetb(i,j,k)) 

cliff£= viscb(i,j,kk)*(zetyb(i,j,kk)**2 + zetzb(i,j,kk)**2 
* + 4*(zetxb(i,j,kk)**2)/3)/(tjacb(i,j,kk)*delzetb(i,j,kk)) 

pecle = dabs(conve/diffe) 
peclw -· clabs(convw/cliffw) 
pecln = dabs(convn/cliffn) 
peels = dabs(convs/diffs) 
peclb = clabs(convb/cliffb) 
peclf = dabs(convf/clifff) 

Determine the f.inte difference coefficients 

ae(i,j,k) = cliffe*apecl(pecle) + clmaxl(-conve,zero) 
aw(i,j,k) = d.i.ffw":-apecl(peclw) + clmaxl( convw,zero) 
an(i,j,k) = cliffn*apecl(pecln) + dmaxl(-convn,zero) 
as(i,j,k) = cliffs*apecl(pecls) + clmaxl( convs,zero) 
ab(i,j,k) = diffb*apecl(peclb) + clmaxl(-convb,zero) 
af(i,j,k) = difff*apecl(peclf) + dmaxl( convf,zero) 
apo(i,j,k) = rhoo(i,j,k)/(clelt*tjac(i,j,k)) 
apu(i,j,k) = ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k) 

* + ab(i,j,k) + af(i,j,k) + apo(i,j,k) 

*** Calculate the source term coefficients 

bble=visce(i,j,k)*(4*exixe(i,j,k)*etaxe(i,j,k)/3 
* + exiye(i,j,k)*etaye(i,j,k) 
* + exize(i,j,k)*etaze(i,j,k))/tjace(i,j,k) 
bblw=visce(ii,j,k)*(4*exixe(ii,j,k)*etaxe(ii,j,k)/3 

* + exiye(ii,j,k)*etaye(ii,j,k) 
* + exize(ii,j,k)*etaze(ii,j,k))/tjace(ii,j,k) 
bb2e=visce(i,j,k)*(4*exixe(i,j,k)*zetxe(i,j,k)/3 

* + exiye(i,j,k)*zetye(i,j,k) 
* + exize(i,j,k)*zetze(i,j,k))/tjace(i,j,k) 
bb2w=visce(ii,j,k)*(4*exixe(ii,j,k)*zetxe(ii,j,k)/3 

* + exiye(ii,j,k)*zetye(ii,j,k) 
* + exize(ii,j,k)*zetze(ii,j,k))/tjace(ii,j,k) 
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bb3e=visce(i,j,k)*exiye(i,j,k)*exixe(i,j,k)/(3*tjace(i,j,k)) 
bb3w=visce(ii,j,k)*exiye(ii,j,k)*exixe(ii,j,k)/(3*tjace(ii,j,k)) 
bb4e=visce(i,j,k)*(exiye(i,j,k)*etaxe(i,j,k) 

* 2*exixe(i,j,k)*etaye(i,j,k)/3)/tjace(i,j,k) 
hb4w=visce(ii,j,k)*(exiye(ii,j,k)*etaxe(ii,j,k) 

2*exixe(ii,j,k)*etaye(ii,j,k)/3)/tjace(ii,j,k) 
hh5e=visce(i,j,k)*(exiye(i,j,k)*zetxe(i,j,k) 

2*exixe(i,j,k)*zetye(i,j,k)/3)/tjace(i,j,k) 
hh5w=visce(ii,j,k)*(exiye(ii,j,k)*zetxe(ii,j,k) 

2*exixe(ii,j,k)*zetye(ii,j,k)/3)/tjace(ii,j,k) 
hb6e=visce(i,j,k)*exize(i,j,k)*exixe(i,j,k)/(3*tjace(i,j,k)) 
bb6w=visce(ii,j,k)*exize(ii,j,k)*exixe(ii,j,k)/(3*tjace(ii,j,k)) 
bb7e=visce(i,j,k)*(exize(i,j,k)*etaxe(i,j,k) 

2*exixe(i,j,k)*etaze(i,j,k)/3)/tjace(i,j,k) 
bb7w=visce(ii,j,k)*(exize(ii,j,k)*etaxe(ii,j,k) 

2*exixe(ii,j,k)*etaze(ii,j,k)/3)/tjace(ii,j,k) 
bb8e=visce(i,j,k)*(exize(i,j,k)*zetxe(i,j,k) 

* 2*exixe(i,j,k)*zetze(i,j,k)/3)/tjace(i,j,k) 
bb8w=visce(ii,j,k)*(exize(ii,j,k)*zetxe(ii,j,k) 

* 2*exixe(ii,j,k)*zetze(ii,j,k)/3)/tjace(ii,j,k) 

bb9n=viscn ( i, j, k)''t-( 4*etaxn ( i, j ,k)*exixn( i, j, k) / 3 
* + etayn(i,j,k)*exiyn(i,j,k) 
* + etazn(i,j,k)*exizn(i,j,k))/tjacn(i,j,k) 
bb9s=viscn(i,jj,k)*(4*etaxn(i,jj,k)*exixn(i,jj,k)/3 

* + etayn(i,jj,k)*exiyn(i,jj,k) 
* + etazn(i,jj,k)*exizn(i,jj,k))/tjacn(i,jj,k) 
bbl0n=viscn(i,j,k)*(4*etaxn(i,j,k)*zetxn(i,j,k)/3 

* + etayn(i,j,k)*zetyn(i,j,k) 
* + etazn(i,j,k)*zetzn(i,j,k))/tjacn(i,j,k) 

b b 10 s =vis en ( i , j j , k) * ( 4 ""'et axn ( i , j j , k) * z et xn ( i , j j , k) / 3 
* + etayn(i,jj,k)*zetyn(i,jj,k) 
* + etazn(i,jj,k)*zetzn(i,jj,k))/tjacn(i,jj,k) 
bblln=viscn(i,j,k)*(etayn(i,j,k)*exixn(i,j,k) 

* 2*etaxn(i,j,k)*exiyn(i,j,k)/3)/tjacn(i,j,k) 
bblls=viscn(i,jj,k)*(etayn(i,jj,k)*exixn(i,jj,k) 

* 2*etaxn(i,jj ,k)*exiyn(i,jj ,k)/3)/tjacn(i,jj ,k) 
bbl2n=viscn(i,j ,k)*etayn(i,j ,k)*etaxn(i,j ,k)/(3'1'rtjacn(i,j ,k)) 
b b 12 s =vis en ( i , j j , k) *et a yn ( i , j j , k) .,,re t axn ( i , j j , k) / ( 3* t j acn ( i , j j , k) ) 
bh13n=viscn(i,j,k)*(etayn(i,j,k)*zetxn(i,j,k) 

* 2*etaxn(i,j,k)*zetyn(i,j,k)/3)/tjacn(i,j,k) 
bbl3s=viscn(i,jj,k)*(etayn(i,jj,k)*zetxn(i,jj,k) 

* 2*etaxn(i,jj,k)*zetyn(i,jj,k)/3)/tjacn(i,jj,k) 
bb14n=viscn(i,j,k)*(etazn(i,j,k)*exixn(i,j,k) 

* 2*etaxn(i,j,k)*exizn(i,j,k)/3)/tjacn(i,j,k) 
bb14s=viscn(i,jj,k)*(etazn(i,jj,k)*exixn(i,jj,k) 

* 2*etaxn(i,jj,k)*exizn(i,jj,k)/3)/tjacn(i,jj,k) 
bbl5n=viscn(i,j,k)*etazn(i,j,k)*etaxn(i,j,k)/(3*tjacn(i,j,k)) 
bblSs=viscn(i,jj,k)*etazn(i,jj,k)*etaxn(i,jj,k)/(3*tjacn(i,jj,k)) 
bbl6n=viscn(i,j,k)*(etazn(i,j,k)*zetxn(i,j,k) 

* 2*etaxn(i,j,k)*zetzn(i,j,k)/3)/tjacn(i,j,k) 
bh16s=viscn(i,jj,k)*(etazn(i,jj,k)*zetxn(i,jj,k) 

* 2*etaxn(i,jj,k)*zetzn(i,jj,k)/3)/tjacn(i,jj,k) 

hb17b=viscb(i,j ,k).,,r(4*zetxb(i,j ,k).,,rexixb(i,j ,k)/3 
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* + zetyb(i,j,k)*exiyb(i,j,k) 
* + zetzb(i,j,k)*exizb(i,j,k))/tjacb(i,j,k) 
bb17f=viscb(i,j,kk)*(4*zetxb(i,j,kk)*exixb(i,j,kk)/3 

* + zetyb(i,j,kk)*exiyb(i,j,kk) 
* + zetzb(i,j,kk)*exizb(i,j,kk))/tjacb(i,j,kk) 

bb18b=viscb ( i, j, k)* ( 4*zetxb ( i, j, k)i'retaxb (i, j, k) / 3 
* + zetyb(i,j,k)*etayb(i,j,k) 
* + zetzb(i,j,k)*etazb(i,j,k))/tjacb(i,j,k) 
bb18f=viscb(i,j,kk)*(4*zetxb(i,j,kk)*etaxb(i,j,kk)/3 

* + zetyb(i,j,kk)*etayb(i,j,kk) 
* + zetzb(i,j,kk)*etazb(i,j,kk))/tjacb(i,j,kk) 
bbl9b=viscb(i,j,k)*(zetyb(i,j,k)*exixb(i,j,k) 

* 2*zetxb(i,j,k)*exiyb(i,j,k)/3)/tjacb(i,j,k) 
bb19f=viscb(i,j ,kk)*(zetyb(i,j ,kk)''c-exixb(i,j ,kk) 

* 2*zetxb(i,j,kk)*exiyb(i,j,kk)/3)/tjacb(i,j,kk) 
bb20b=viscb(i;j,k)*(zetyb(i,j,k)*etaxb(i,j,k) 

* 2*zetxb(i,j,k)*etayb(i,j,k)/3)/tjacb(i,j,k) 
hb20f=viscb(i,j ,kk)*(zetyb(i,j ,kk),'.-etaxb(i,j ,kk) 

* 2*zetxb(i,j,kk)*etayb(i,j,kk)/3)/tjacb(i,j,kk) 
bb2lb=viscb(i,j,k)*zetyb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k)) 
bb21f=viscb(i,j,kk)*zetyb(i,j,kk)*zetxb(i,j,kk)/(3*tjacb(i,j,kk)) 
bh22b=viscb(i,j,k)*(zetzb(i,j,k)*exixb(i,j,k) 

* 2*zetxb(i,j,k)*exizb(i,j,k)/3)/tjacb(i,j,k) 
bb22f=viscb(i,j,kk)*(zetzb(i,j,kk)*exixb(i,j,kk) 

* 2*zetxb(i,j,kk)*exizb(i,j,kk)/3)/tjacb(i,j,kk) 
bb23b=viscb(i,j,k)*(zetzb(i,j,k)*etaxb(i,j,k) 

* 2*zetxb(i,j,k)*etazb(i,j,k)/3)/tjacb(i,j,k) 
bb23f=viscb ( i, j, kk)* (zetzb (i, j, kk)'""etaxb ( i, j, kk) 

* 2*zetxb(i,j,kk)*etazb(i,j,kk)/3)/tjacb(i,j,kk) 

* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

bb24b==viscb(i,j,k)*zetzb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k)) 
bb24f=viscb(i,j,kk)*zetzb(i,j,kk)*zetxb(i,j,kk)/(3*tjach(i,j,kk)) 

ssl 

ss2 

= exixe(ii,j,k)*pie(ii,j,k)/tjace(ii,j,k) 
- exixe(i,j,k)*pie(i,j,k)/tjace(i,j,k) 
+ etaxn(i,jj,k)*pin(i,jj,k)/tjacn(i,jj,k) 
- etaxn(i,j,k)*pin(i,j,k)/tjacn(i,j,k) 
+ zetxb(i,j,kk)*pib(i,j,kk)/tjacb(i,j,kk) 
- zetxb(i,j,k)*pib(i,j,k)/tjacb(i,j,k) 
= bble*(une(i,j,k) - une(i,jj,k)) 
- bblw*(une(ii,j,k) - une(ii,jj,k)) 
+ bb2e*(ube(i,j,k) - ube(i,j,kk)) 
- bb2w*(ube(ii,j,k) - ube(ii,j,kk)) 
+ bb3e*(vy(i+l,j,k) - vy(i,j,k))/delexie(i,j,k) 
- bh3w*(vy(i,j,k) - vy(ii,j,k))/delexie(ii,j,k) 
+ bb4e*(vne(i,j,k) - vne(i,jj,k)) 
- bb4w*(vne(ii,j,k) - vne(ii,jj,k)) 
+ bb5e*(vbe(i,j,k) - vbe(i,j,kk)) 
- bb5w*(vbe(ii,j,k) - vbe(ii,j,kk)) 
+ bb6e*(vz(i+l,j,k) - vz(i,j,k))/delexie(i,j,k) 
- bb6w*(vz(i,j,k) - vz(ii,j,k))/delexie(ii,j,k) 
+ hb7e*(wne(i,j,k) - wne(i,jj,k)) 
- bb7w*(wne(ii,j,k) - wne(ii,jj,k)) 
+ bb8e*(wbe(i,j,k) - wbe(i,j,kk)) 
- bb8w*(wbe(ii,j,k) - wbe(ii,j,kk)) 
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ss3 = bb9n*(une(i,j,k) - une(ii,j,k)) 
* - hh9~,'f(une(i, jj ,k) - une(ii,jj,k)) 
* + 1-.l,; ''.;1~'-(unb(i,j ,k) - unb(i,j,kk)) 
-/e h h 10 s * ( un b ( i , j j , k) - unb(i,jj,kk)) 

~ bblln*(vne(i,j,k) vne(ii,j,k)) 
·i"i - bblls*(vne(i,jj,k) vn e ( ii , j j , k) ) 
* + bb12n*(vy(i,j+l,k) - vy(i,j,k))/deletan(i,j,k) 

* - bb12s*(vy(i,j,k) - vy(i,jj,k))/deletan(i,jj,k) 
* + bbl3n*(vnb(i,j,k) - vnb(i,j,kk)) 
* - bbl3s*(vnb(i,jj,k) - vnb (i, j j, kk)) 
* + bb14n*(wne(i,j,k) - wne(ii,j,k.)) 
* - bb14s*(wne(i,jj,k) - wn e ( ii , j j , k) ) 
* + bb15n*(vz(i,j+l,k) - vz(i,j,k))/deletan(i,j,k) 
* - bbl5s*(vz(i,j,k) - vz(i,jj,k))/deletan(i,jj,k) 

* + bb16n*(wnb(i,j,k) - wnb(i,j,kk)) 
* - bb16s*(wnb(i,jj,k) - wnb ( i, j j , kk)) 

ss4 = bb17b*(ube(i,j,k) - ube(ii,j,k)) 
* - bbl7f*(ube(i,j,kk) - ube(ii,j,kk)) 
* + bbl8b*(unb(i,j,k) - unb(i,jj,k)) 
* - bb18f*(unb(i,j,kk) - unb (i, j j , kk)) 
'ir + bbl9b*(vbe(i,j,k) - vbe(ii,j,k)) 
* - bb19f*(vbe(i,j,kk) - vbe(ii,j,kk)) 

* + bb20b*(vnb(i,j,k) - vnb(i,jj,k)) 
* - bb20f*(vnb(i,j,kk) - vnb (j_ , j j , kk) ) 
-Ir + bb2lb*(vy(i,j,k+l) - vy(i,j,k))/delzetb(i,j,k.) 

* - bb21f*(vy(i,j,k) - vy(i,j,kk))/delzetb(i,j,kk) 
* + bb22b*(wbe(i,j,k) - wbe (ii, j, k)) 
* - bb22f*(wbe(i,j,kk) - wbe(H,j,kk)) 
* + bb23b*(wnb(i,j,k) - wnb(i_,jj,k)) 
* - bb23f*(wnb(i,j,kk) - wnb(i,jj,kk)) 
* + bb24b*(vz(i,j,k+l) - vz(i,j,k))/delzetb(i,j,k) 
* - bb24f*(vz(i,j,k.) - vz(i,j,kk))/delzetb(i,j,kk) 

source(i,j,k) = ssl + ss2 + ss3 + ss4 

res= apu(i,j,k)*vx(i,j,k) - apo(i,j,k)*vx(i,j,k) 
* - ae(i,j,k)*vx(i+l,j,k) - aw(i,j,k)*vx(ii,j,k) 
* - an(i,j,k)*vx(i,j+l,k) - as(i,j,k)*vx(i,jj,k) 
* - ab(i,j,k)*vx(i,j,k+l) - af(i,j,k)*vx(i,j,kk) 
* - source(i,j,k) 
diffx = diffx + dabs(res) 
resux(i) = resux(i) + dabs(res) 
resuy(j) = resuy(j) + dabs(res) 
resuz(k) = resuz(k) + dabs(res) 

20 continue 

return 

PAGE 00018 

c----------------------------------------------------------------------
Entry UPREPI (iii,kkk,jne,jnb) 

c----------------------------------------------------------------------

*** This section prepares the TDMA coefficients 
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sweeping in I - direction 

jnbl = jnb + 1 
jnel = jne - 1 

jb = jbound(iii,jnb,kkk) 
aaj(jnb) = 1.0 
bbj(jnb) = bu(jb) 
ccj(jnb) = 0.0 
ddj(jnb) = cu(jb) 

do 30 j = jnbl,jnel 
aaj(j) = apu(iii,j,kkk)/relax 
bbj(j) = an(iii,j,kkk) 
ccj(j) = as(iii,j,kkk) 
ddj(j) = ae(iii,j,kkk)*vxstar(iii+l,j,kkk) 

* + aw(iii,j,kkk)*vxstar(iii-1,j,kkk) 
* + ab(iii,j,kkk)*vxstar(iii,j,kkk+l) 
* + af(iii,j,kkk)*vxstar(iii,j,kkk-1) 
* + apo(iii,j,kkk)*vxold(iii,j,kkk) + source(iii,j,kkk) 
* + apu(ii1,j,kkk)*vxstar(iii,j,kkk)*(l-relax)/relax 

30 continue 

jb = jbound(iii,jne,kkk) 
aaj (jne) = 1. 0 
bbj(jne) = 0.0 
ccj(jne) = bu(jb) 
ddj(jne) = cu(jb) 

return 

PAGE 00019 

c----------------------------------------------------------------------
Entry UPREPJ (jjj,kkk,ine,inb) 

c----------------------------------------------------------------------
*** This section prepares the TDMA coefficients 
*** sweeping in J - direction 

inbl = inb + 1 
inel = ine - 1 

jb = jbound(inb,jjj,kkk) 
aai(inb) = 1. 0 
bbi(inb) = bu(jb) 
ccj_(inb) = 0.0 
ddi(inb) = cu(jb) 

do 40 i = inbl,inel 
aai(i) = apu(i,jjj,kkk)/relax 
bbi(i) = ae(i,jjj,kkk) 
cci(i) = aw(i,jjj,kkk) 
ddi(i) = an(i,jjj,kkk)*vxstar(i,jjj+l,kkk) 

* + as(i,jjj,kkk)*vxstar(i,jjj-1,kkk) 
* + ab(i,jjj,kkk)*vxstar(i,jjj,kkk+l) 
* + af(i,jjj,kkk)*vxstar(i,jjj,kkk-1) 
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40 continue 

FORTRAN Al Universiteit van Pretoria 

+ apo(i,jjj,kkk)*vxold(i,jjj,kkk) + source(i,jjj,kkk) 
+ apu(i, jjj, kkk)*vxstar (i, j jj, kkk)* (1-relax) /relax 

jb = jbound(ine,jjj,kkk) 
aai(ine) = 1.0 
bbi(ine) = 0.0 
cci(ine) = bu(jb) 
ddi(ine) = cu(jb) 

return 
end 

PAGE 00020 

Subroutine VCOEFF 
*ic*icicirir****ir*-lc***"'r**ic*****-lc******-lc*·ld'cic,'r,'c*,'c*-ic,'r*ic-!c*.,'r.,•c-1c*****"'c.,'c-!c,'c*.,'r*-lr*,'r·lridr* 

*** This subroutine calculates the coefficients to solve the 
*** v-velocity components 

INCLUDE 'COMM' 

*** Set all the constants equal to zero 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
an(i,j,k) = 0.0 
as(i,j,k) = 0.0 
ae(i,j,k) = 0.0 
aw(i,j,k) = 0.0 
ab(i,j,k) = 0.0 
af(i,j,k) = 0.0 
apv(i,j,k) = 0.0 
apo(i,j,k) = 0.0 
source(i,j,k) =0.0 
resvx(i) = 0. 0 
resvy(j) = 0.0 
resvz(k) = 0.0 

10 continue 

*** Calculate the coefficients 

diffy = 0.0 
do 20 k = 2,knml 

do 20 j = 2,jnml 
do 20 i = 2,inml 

if(jbound(i,j,k).gt.O)goto 20 
ii = i-1 
jj = j-1 
kk = k-1 

conve = rhoe(i,j,k)*(exixe(i,j,k)*ue(i,j,k) 
* + exiye(i,j,k)*ve(i,j,k) 
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*** 

* + exize(i,j,k)*we(i,j,k))/tjace(i,j,k) 
convw = rhoe(ii,j,k)*(exixe(ii,j,k)*ue(ii,j,k) 

* + exiye(ii,j,k)*ve(ii,j,k) 
* + exize(ii,j,k)*we(ii,j,k))/tjace(ii,j,k) 

convn = rhon(i,j,k)*(etaxn(i,j,k)*un(i,j,k) 
* + etayn(i,j,k)*vn(i,j,k) 
* + etazn(i,j,k)*wn(i,j,k))/tjacn(i,j,k) 

convs = rhon(i,jj,k)*(etaxn(i,jj,k)*un(i,jj,k) 
* + etayn(i,jj,k)*vn(i,jj,k) 
* + etazn(i,jj,k)*wn(i,jj,k))/tjacn(i,jj,k) 

convb = rhob(i,j,k)*(zetxb(i,j,k)*ub(i,j,k) 
* + zetyb(i,j,k)*vb(i,j,k) 
* + zetzb(i,j,k)*wb(i,j,k))/tjacb(i,j,k) 

convf = rhob(i,j,kk)*(zetxb(i,j,kk)*ub(i,j,kk) 
* + zetyb(i,j,kk)*vb(i,j,kk) 
* + zetzb(i,j,kk)*wb(i,j,kk))/tjacb(i,j,kk) 

diffe = visce(i,j,k)*(exixe(i,j,k)**2 + exize(i,j,k)**2 
* + 4*(exiye(i,j,k)**2)/3)/(tjace(i,j,k)*delexie(i,j,k)) 

diffw = visce(ii,j,k)*(exixe(Ji,j,k)**2 + exize(ii,j,k)**2 
* + 4*(exiye(ii,j,k)**2)/3)/(tjace(ii,j,k)*delexie(ii,j,k)) 

diffn = viscn(i,j,k)*(etaxn(i,j,k)**2 + etazn(i,j,k)**2 
* + 4*(etayn(i,j,k)**2)/3)/(tjacn(i,j,k)*deletan(i,j,k)) 

cliffs= viscn(i,jj,k)*(etaxn(i,jj,k)**2 + etazn(i,jj,k)**2 
* + 4*(etayn(i,jj,k)**2)/3)/(tjacn(i,jj,k)*deletan(i,jj,k)) 

diffb = viscb(i,j,k)*(zetxb(i,j,k)**2 + zetzb(i,j,k)**2 
* + 4*(zetyb(i,j,k)**2)/3)/(tjacb(i,j,k)*delzetb(i,j,k)) 

difff = viscb(i,j,kk)*(zetxb(i,j,kk)**2 + zetzb(i,j,kk)**2 
* + 4*(zetyb(i,j,kk)**2)/3)/(tjacb(i,j,kk)*delzetb(i,j,kk)) 

pecle = dabs(conve/diffe) 
peclw = dabs(convw/diffw) 
pecln = dahs(convn/diffn) 
peels = dabs(convs/diffs) 
peclb = dabs(convb/diffb) 
peel£ = dabs(convf/difff) 

Determine the finte difference coefficients 

ae(i,j,k) = diffe*apecl(pecle) + dmaxl(-conve,zero) 
aw(i,j,k) = diffw*apecl(peclw) + dmaxl( convw,zero) 
an(i,j,k) = diffn*apecl(pecln) + dmaxl(-convn,zero) 
as(i,j,k) = diffs*~pecl(pecls) + dmaxl( convs,zero) 
ab(i,j,k) = diffb*apecl(peclb) + dmaxl(-convb,zero) 
af(i,j,k) = difff*apecl(peclf) + dmaxl( convf,zero) 
apo(i,j,k) = rhoo(i,j,k)/(delt*tjac(i,j,k)) 
apv(i,j,k) = ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k) 

* + ab(i,j,k) + af(i,j,k) + apo(i,j,k) 

*** Calculate the source term coefficients 

bble=visce(i,j,k)*(4*exiye(i,j,k)*etaye(i,j,k)/3 
* + exixe(i,j,k)*etaxe(i,j,k) 
* + exize(i,j,k)*etaze(i,j,k))/tjace(i,j,k) 
bblw=visce(ii,j,k)*(4*exiye(ii.,j,k)*etaye(ii,j,k)/3 

PAGE 00021 
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* + exixe(ii,j,k)*etaxe(ii,j,k) 

* + exize(ii,j,k)*etaze(ii,j,k))/tjace(ii,j,k) 
bb2e=visce(i,j,k)*(4*exiye(i,j,k)*zetye(i,j,k)/3 

* + exixe(i,j,k)*zetxe(i,j,k) 
* + exize(i,j,k)*zetze(i,j,k))/tjace(i,j,k) 
bb2w=visce(ii,j,k)*(4*exiye(ii,j,k)*zetye(ii,j,k)/3 

* + exixe(ii,j,k)*zetxe(ii,j,k) 
* + exize(ii,j,k)*zetze(ii,j,k))/tjace(ii,j,k) 
bb3e=visce(i,j,k)*exiye(i,j,k)*~xixe(i,j,k)/(3*tjace(i,j,k)) 
bb3w=visce(ii,j,k)*exiye(ii,j,k)*~xixe(ii,j,k)/(3*tjace(ii,j,k)) 
bb4e=visce(i,j,k)*(exixe(i,j,k)*~taye(i,j,k) 

* 2*exiye(i,j,k)*Ptaxe(i,j,k)/3)/tjace(i,j,k) 
bb4w=visce (ii, j, k)* ( ex:i.xe (ii,_;. k ) 1'retaye (ii, j, k) 

* 2*exiye(ii,j,k)*etaxe(ii,j,k)/3)/tjace(ii,j,k) 
bb5e=visce ( i, j, k)* ( exixe ( i , j, k )·'0 7,~tye (i, j, k) 

2*exiyP(i,j,k)~~0txe(i,j,k)/3)/tjace(i,j,k) 
bb5w=visce(ii,j ,k) 1'r(exixe(ii,j .J.. ))''"zetye(ii,j ,k) 

* 2*exiye(ii.j,k)*zetxe(ii,j,k)/3)/tjace(ii,j,k) 
bb6e=visce(i,j,k)*exfz0(i,j,~)~oxiye(i,j,k)/(3*tjace(i,j,k)) 
bb6w=visce(ii,j,k)*exize(ii,j,k)*exiye(ii,j,k)/(3*tjace(ii,j,k)) 
bb7e=visce(i,j,k)*(exize(i,j,k)*etaye(i,j,k) 

* 2*exiye(i,j,k)*etaze(i,j,k)/3)/tjace(i,j,k) 
bb7w=visce(ii,j,k)*(exize(ii,j,k)*etaye(ii,j,k) 

* 2*exiye(ii,j,k)*etaze(ii,j,k)/3)/tjace(ii,j,k) 
bb8e=visce (j_, j, k).,,r ( exize (i, j, k)*zetye ( i, j, k) 

* 2*exiye(i,j,k)*zetze(i,j,k)/3)/tjace(i,j,k) 
bb8w=visce(ii,j,k)*(exize(ii,j,k)*zetye(ii,j,k) 

* 2*exiye(ii,j,k)*zetze(ii,j,k)/3)/tjace(ii,j,k) 

bb9n=viscn(i,j,k)*(4*etayn(i,j,k)*exiyn(i,j,k)/3 
* + etaxn(i,j,k)*exixn(i,j,k) 
* + etazn(i,j,k)*exizn(i,j,k))/tjacn(i,j,k) 
bb9s=viscn(i,jj,k)*(4*etayn(i,jj,k)*exiyn(i,jj,k)/3 

* + etaxn(i,jj,k)*exixn(i,jj,k) 
* + etazn(i,jj,k)*exizn(i,jj,k))/tjacn(i,jj,k) 
bbl0n=viscn(i,j,k)*(4*etayn(i,j,k)*zetyn(i,j,k)/3 

* + etaxn(i,j,k)*zetxn(i,j,k) 
* + etazn(i,j,k)*zetzn(i,j,k))/tjacn(i,j,k) 
bbl0s=viscn(i,jj,k)*(4*etayn(i,jj,k)*zetyn(i,jj,k)/3 

* + etaxn(i,jj,k)*zetxn(i,jj,k) 
* + etazn(i,jj,k)*zetzn(i,jj,k))/tjacn(i,jj,k) 
bblln=viscn(i,j,k)*(etaxn(i,j,k)*exiyn(i,j,k) 

* 2*etayn(i,j,k)*exixn(i,j,k)/3)/tjacn(i,j,k) 
bblls=viscn(i,jj,k)*(etaxn(i,jj,k)*exiyn(i,jj,k) 

* 2*etayn(i,jj ,k)*exi.xn(i,jj ,k)/3)/tjacn(i,jj ,k) 
bb12n=viscn(i,j,k)*etayn(i,j,k)*etaxn(i,j,k)/(3*tjacn(i,j,k)) 
bb 12s=viscn ( i, j j, k)*etayn (i, j j, k)-,'retaxn (i, j j, k) / (3*tj acn ( i, j j, k)) 
bbl3n=viscn(i,j,k)*(etaxn(i,j,k)*zetyn(i,j,k) 

* 2*etayn(i,j,k)*zetxn(i,j,k)/3)/tjacn(i,j,k) 
b b 13 s =vis en ( i , j j , k) * (et axn ( i , j j , k) * z et yn (i , j j , k) 

* 2*etayn(i,jj,k)*zetxn(i,jj,k)/3)/tjacn(i,jj,k) 
bbl4n=viscn(i,j,k)*(etazn(i,j,k)*exiyn(i,j,k) 

* 2*etayn(i,j,k)*exizn(i,j,k)/3)/tjacn(i,j,k) 
bbl4s=viscn(i,jj,k)*(etazn(i,jj,k)*exiyn(i,jj,k) 

* 2*etayn(i,jj,k)*exizn(i,jj,k)/3)/tjacn(i,jj,k) 
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bb15n=viscn(i,j,k)*etazn(i,j,k)*etayn(i,j,k)/(3*tjacn(i,j,k)) 
bbl5s=viscn(i,jj,k)*etazn(i,jj;k)*etayn(i,jj,k)/(3*tjacn(i,jj,k)) 
hbl6n=viscn(i,j,k)*(etazn(i,j,k)*zetyn(i,j,k) 

* 2*etayn(i,j,k)*zetzn(i,j,k)/3)/tjacn(i,j,k) 
bb16s=viscn(i,jj,k)*(etazn(i,jj,k)*zetyn(i,jj,k) 

1, 2*etayn(:f ,jj ,k) 1rzetzn(i,jj ,k)/3)/tjacn(i,jj ,k) 

bbl 7b=viscb ( i, j, k) ,,, ( 41<zet:yr( i • j, k)-,\-exiyb (i, j, k) /3 
* + ~etxb(f .j,k)*exixb(i,j,k) 
* + zetzb(i.J,k)*exizb(i,j,k))/tjacb(i,j,k) 
bbl7f=viscb(i,j ,kkt'r( 41rzetyH i. ,j ,kk)*exiyb(i,j ,kk)/3 

* + zetxh(i,j,kk)*exixb(i,j,kk) 
* + zptzb(i,j,kk)*exizb(i,j,kk))/tjacb(i,j,kk) 
bb18b=viscb(i,j,k)*(4*zetyb(i,j,k)*etayb(i,j,k)/3 

* + zetxb( i ,j,k)*etaxb(i,j,k) 
* + zetzb(i,j,k)*etazb(i,j,k))/tjach(i,j,k) 
bb18f=viscb(i,j,kk)*(4*zetyb(i,j,kk)*etayb(i,j,kk)/3 

* + zetxb(i,j,kk)*etaxb(i,j,kk) 
* + z0!.zh(i,j,kk)*etazb(i,j,kk))/tjacb(i,j,kk) 
bbl9b=viscb(i,j ,k)"''"(zetxh(_ i ,j ,k)*exiyb(i,j ,k) 

* 2*zetyb(i,j,k)*exixb(i,j,k)/3)/tjacb(i,j,k) 
bb19f=viscb(i,j,kk)*(zetxb(i,j,kk)*exiyb(i,j,kk) 

* 2*zetyb(i,j,kk)*exixb(i,j,kk)/3)/tjacb(i,j,kk) 
bb20b=viscb(i,j,k)*(zetxb(i,j,k)*etayb(i,j,k) 

* 2*zetyb(i,j,k)*etaxb(i,j,k)/3)/tjacb(i,j,k) 
bb20f=viscb(i,j ,kk) 1'r(zetxb(i,j ,kk)*etayb(i,j ,kk) 

* 2*zetyb(i,j,kk)*etaxb(i,j,kk)/3)/tjacb(i,j,kk) 
bb21b=viscb(i,j,k)*zetyb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k)) 
bb2lf=viscb(i,j,kk)*zetyb(i,j,kk)*zetxb(i,j,kk)/(3*tjacb(i,j,kk)) 
bb22b=viscb(i,j,k)*(zetzb(i,j,k)*exiyb(i,j,k) 

* 2*zetyb(i,j,k)*exizb(i,j,k)/3)/tjacb(i,j,k) 
bb22f=viscb(i,j,kk)*(zetzb(i,j,kk)*exiyb(i,j,kk) 

* 2*zetyb(i,j,kk)*exizb(i,j,kk)/3)/tjacb(i,j,kk) 
bb23b=viscb(i,j,k)*(zetzb(i,j,k)*etayb(i,j,k) 

* 2*zetyb(i,j,k)*etazb(i,j,k)/3)/tjacb(i,j,k) 
bh23f=viscb(i,j,kk)*(zetzb(i.,j,kk)*etayb(i,j,kk) 

* 2*zetyb(i,j,kk)*etazb(i,j,kk)/3)/tjacb(i,j,kk) 

* 
* 
* 

* 
* 

* 
* 
* 

* 
* 
* 
* 
* 

bb24b=viscb(i,j,k)*zetzb(i,j,k)*zetyb(i,j,k)/(3*tjacb(i,j,k)) 
bb24f=visch(i,j,kk)*zetzb(i,j,kk)*zetyb(i,j,kk)/(3*tjacb(i,j,kk)) 

ssl 

ss2 

= exiye(ii,j,k)*pie(ii,j,k)/tjace(ii,j,k) 
- exiye(i,j,k)*pie(i,j,k)/tjace(i,j,k) 
+ etayn(i,jj,k)*pin(i,jj,k)/tjacn(i,jj,k) 
- etayn(i,j,k)*pin(i,j,k)/tjacn(i,j,k) 
+ zetyb(i,j,kk)*pib(i,j,kk)/tjacb(i,j,kk) 
- zetyb(i,j,k)*pib(i,j,k)/tjacb(i,j,k) 
= bble*(vne(i,j,k) - vne(i,jj,k)) 
- bblw*(vne(ii,j,k) - vne(ii,jj,k)) 
+ bb2e*(vbe(i,j,k) - vhe(i,j,kk)) 
- bb2w*(vbe(ii,j,k) - vbe(ii,j,kk)) 
+ bb3e*(vx(i+l,j,k) - vx(i,j,k))/delexie(i,j,k) 
- bb3w*(vx(i,j,k) - vx(ii,j,k))/delexie(ii,j,k) 
+ bb4e*(une(i,j,k) - une(i,jj,k)) 
- bb4w*(une(ii,j,k) - une(ii,jj,k)) 
+ bb5e*(ube(i,j,k) - ube(i,j,kk)) 
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* 
* 
* 
* 
* 
'>'r 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
.,•,: 

* 
.,•r 

* 
* 
* 

ss3 

- bb5w*(ube(ii,j,k) 
+ bb6e*(vz(i+l,j,k) 
- bb6w*(vz(i,j,k) 
+ bb7e*(wne(i,j,k) 
- bb7w*(wne(ii,j,k) 
+ bb8e*(wbe(i,j,k) 
- bb8w*(wbe(ii,j,k) 

= bb9n*(vne(i,j,k) 
- bb9s*(vne(i,jj,k) 
+ bblOn*(vnb(i,j,k) 
- bblOs*(vnb(i,jj,k) 
+ bblln*(une(i,j,k) 
- bblls*(une(i,jj,k) 
+ bb12n*(vx(i,j+l,k) 
- bb12s*(vx(i,j,k) 
+ bb13n*(unb(i,j,k) 
- bb13s*(unb(i,jj,k) 
+ bb14n*(wne(i,j,k) 
- bbl4s*(wne(i,jj,k) 
+ bb15n*(vz(i,j+l,k) 
- bb15s*(vz(i,j,k) 
+ bb16n*(wnb(i,j,k) 
- bb16s*(wnb(i,jj,k) 

ss4 = bbl7b*(vbe(i,j,k) 
- bb17f*(vbe(i,j,kk) 
+ bbl8b*(vnb(i,j,k) 
- bb18f*(vnb(i,j,kk) 
+ bbl9b*(ube(i,j,k) 
- bbl9f*(ube(i,j,kk) 
+ bb20b*(unb(i,j,k) 
- bb20f*(unb(i,j,kk) 
+ bb2lb*(vx(i,j,k+l) 
- bb21f*(vx(i,j,k) 
+ bb22b*(wbe(i,j,k) 
- bb22f*(wbe(i,j,kk) 
+ bb23b*(wnb(i,j,k) 
- bb23f*(wnb(i,j,kk) 
+ bb24b*(vz(i,j,k+l) 
- bb24f*(vz(i,j,k) 

- ube(ii,j,kk)) 
- vz(i,j,k))/delexie(i,j,k) 
- vz(ii,j,k))/delexie(ii,j,k) 
- wne (i, j j, k)) 
- wne (ii, j j, k)) 
- wbe (i, j, kk)) 
- wbe(ii,j,kk)) 

- vne ( ii , j , k) ) 
- vne (ii, j j, k)) 
- vnb (i , j , kk) ) 
- vnb(i,jj,kk)) 
- un e ( ii , j , k) ) 
- une(ii,jj,k)) 
- vx(i,j,k))/deletan(i,j,k) 
- vx(i,jj,k))/deletan(i,jj,k) 
- unb(i,j,kk)) 
- unb(i,jj,kk)) 
- wne(ii,j,k)) 
- wne(ii,jj,k)) 
- vz(i,j,k))/deletan(i,j,k) 
- vz(i,jj,k))/deletan(i,jj,k) 
- wnb (i , j , kk) ) 
- wnb ( i, j j , kk) ) 

- vbe (ii, j, k)) 
- vbe(ii,j,kk)) 
- vnb(i,jj,k)) 
- vnb(i,jj,kk)) 
- ube (ii, j , k) ) 
- ube(ii,j,kk)) 
- unb ( i, j j , k)) · 
- unb(i,jj,kk)) 
- vx(i,j,k))/delzetb(i,j,k) 
- vx(i,j,kk))/delzetb(i,j,kk) 
- wbe(ii,j,k)) 
- wbe(ii,j,kk)) 
- wnb(i,jj,k)) 
- wn b ( i , j j , kk) ) 
- vz(i,j,k))/delzetb(i,j,k) 
- vz(i,j,kk))/delzetb(i,j,kk) 

source(i,j,k) = ssl + ss2 + ss3 + ss4 

res= apv(i,j,k)*vy(i,j,k) - apo(i,j,k)*vy(i,j,k) 
* - ae(i,j,k)*vy(i+l,j,k)_- aw(i,j,k)*vy(ii,j,k) 
* - an(i,j,k)*vy(i,j+l,k) - as(i,j,k)*vy(i,jj,k) 
* - ab(i,j,k)*vy(i,j,k+l) - af(i,j,k)*vy(i,j,kk) 
* - source(i,j,k) 
diffy = diffy + dabs(res) 
resvx(i) = resvx(i) + dabs(res) 
resvy(j) = resvy(j) + dabs(res) 
resvz(k) = resvz(k) + dabs(res) 

20 continue 
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return 

c----------------------------------------------------------------------
Entry VPREPI (iii,kkk,jne,jnb) 

c----------------------------------------------------------------------

*** This ~ection pi-0pares the TDMA coefficients 
*** sweeping in J - direction 

jnbl = jnb + 1 
jnel = jne - l 

jb = jbonnd(i ii, jnb, kkk) 
aaj(jnb) = 1. 0 
bbj(jnb) = bv(jb) 
ccj(jnb) = 0.0 
ddj(jnb) = cv(jb) 

do 30 j = jnbl,jnel 
aaj(j) = apv(iii,j,kkk)/relax 
bbj(j) = an(iii,j,kkk) 
ccj(j) = as(iii,j,kkk) 
ddj(j) = ae(iii,j,kkk)*vystar(iii+l,j,kkk) 

,~ + aw(iii,j ,kkk)*vystar(iii-1,j ,kkk) 
* + ab(iii,j,kkk)*vystar(iii,j,kkk+l) 
* + af(iii,j,kkk)*vystar(iii,j,kkk-1) 
* + apo(iii,j,kkk)*vyold(iii,j,kkk) + source(iii,j,kkk) 
* + apv(iii,j,kkk)*vystar(iii,j,kkk)*(l-relax)/relax 

30 continue 

jb = jbound(iii,jne,kkk) 
aaj(jne) = 1. 0 
bbj (jne) = 0. 0 
ccj(jne) = bv(jb) 
ddj(jne) = cv(jb) 

return 

c----------------------------------------------------------------------
Entry VPREPJ (jjj,kkk,ine,inb) 

c----------------------------------------------------------------------
*** This section prepares the TDMA coefficients 
*** sweeping in J - direction 

inbl = inb + 1 
inel = ine - l 

jb = jbound(inb,jjj,kkk) 
aai(inb) = 1. 0 
bbi(inb) = bv(jb) 
cci(inb) = 0.0 
ddi(inb) = cv(jb) 
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* 
* 
* 
* 
* 

do 40 i = inbl,inel 
aai(i) = apv(i,jjj,kkk)/relax 
bbi(i) = ae(i,jjj,kkk) 
cci(i) = aw(i,jjj,kkk) 
ddi(i) = an(i,jjj,kkk)*vystar(i,jjj+l,kkk) 

+ as(i,jjj,kkk)*vystar(i,jjj-1,kkk) 
+ ab(i,jjj,kkk)*vystar(i,jjj,kkk+l) 
+ af(i,jjj,kkk)*vystar(i,jjj,kkk-1) 
+ apo(i,jjj,kkk)*vyold(i,jjj,kkk) + source(i,jjj,kkk) 
+ apv(i,jjj,kkk)*vystar(i,jjj,kkk)*(l-relax)/relax 

40 continue 

jb = jbound(ine,jjj,kkk) 
aai(ine) = 1.0 
bbi(ine) = 0.0 
cci(ine) = bv(jb) 
ddi(ine) = cv(jb) 

return 
end 

PAGE 00026 

Subroutine WCOEFF 
*-l'*"''*·i'<·k-lr-lr~'r-lr-lr***,'r**·k,'r*****-lrlc*-lr**"''-lr**'''***,'''''-Jr****-lr-ldr,'r,'r-lr-lr-Jr-,'c-lrir*ir'i'r-lr·k*·lr-lc**,'r*,'r,'r 

*** This subroutine calculates the coefficients to solve the 
*** w-velocity components 

INCLUDE 'COMM' 

*** Set all the constants equal to zero 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
an(i,j,k) = 0.0 
as(i,j,k) = 0.0 
ae(i,j,k) = 0.0 
aw(i,j,k) = 0.0 
ab(i,j,k) = 0.0 
af(i,j,k) = 0.0 
a pw (i , j , k) = 0 . 0 
apo(i,j,k) = 0.0 
source(i,j,k) =0.0 
reswx(i) = 0.0 
reswy(j) = 0.0 
reswz(k) = 0.0 

10 continue 

*** Calculate the coefficients 

diffz = 0. 0 
do 20 k = 2,knml 

do 20 j = 2,jnml 
do 20 i = 2,inml 
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*** 

-;( 

* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

if(jbound(i,j,k).gt.O)goto 20 
ii = i-1 
jj = j-1 
kk = k-1 

cnnve = rhoe(i,j,k)*(exixe(i,j,k)*ue(i,j,k) 
+ exiye(i,j,k)*ve(i,j,k) 
+ exize(i,j,k)*we(i,j,k))/tjace(i,j,k) 

convw = rhoe(ii,j,k)*(exixe(ii,j,k)*ue(ii,j,k) 
+ exiye(ii,j,k)*ve(ii,j,k) 
+ exize(ii,j,k)*we(ii,j,k))/tjace(ii,j,k) 

convn = rhon(i,j,k)*(etaxn(i,j,k)*un(i,j,k) 
+ etayn(i,j,k)*vn(i,j,k) 
+ etazn ( i, j, k)*wn ( i, j, k)) / tj a.en ( i, j, k) 

convs = rhon(i,jj,k)*(etaxn(i,jj,k)*un(i,jj,k) 
+ etayn(i,jj,k)*vn(i,jj,k) 
+ etazn(i,jj,k)*wn(i,jj,k))/tjacn(i,jj,k) 

convb = rhob(i,j,k)*(zetxb(i,j,k)*ub(i,j,k) 
+ zetyb(i,j,k)*vb(i,j,k) 
+ zetzb(i,j,k)*wb(i,j,k))/tjacb(i,j,k) 

convf = rhob(i,j,kk)*(zetxb(i,j,kk)*ub(i,j,kk) 
+ zetyb(i,j,kk)*vb(i,j,kk) 
+ zetzb(i,j,kk)*wb(i,j,kk))/tjacb(i,j,kk) 

diffe = visce(i,j,k)*(exixe(i,j,k)**2 + exiye(i,j,k)**2 
* + 4*(exize(i,j,k)**2)/3)/(tjace(i,j,k)*delexie(i,j,k)) 

diffw = visce(ii,j,k)*(exixe(ii,j,k)**2 + exiye(ii,j,k)**2 
* + 4*(exize(ii,j,k)**2)/3)/(tjace(ii,j,k)*delexie(ii,j,k)) 

diffn = viscn(i,j,k)*(etaxn(i,j,k)**2 + etayn(i,j,k)**2 
* + 4*(etazn(i,j,k)**2)/3)/(tjacn(i,j,k)*deletan(i,j,k)) 

diffs = viscn(i,jj,k)*(etaxn(i,jj,k)**2 + etayn(i,jj,k)**2 
* + 4*(etazn(i,jj,k)**2)/3)/(tjacn(i,jj,k)*deletan(i,jj,k)) 

diffb = viscb(i,j,k)*(zetxb(i,j,k)**2 + zetyb(i,j,k)**2 
* + 4*(zetzb(i,j,k)**2)/3)/(tjacb(i,j,k)*delzetb(i,j,k)) 

difff = viscb(i,j,kk)*(zetxb(i,j,kk)**2 + zetyb(i,j,kk)**2 
* + 4*(zetzb(i,j,kk)**2)/3)/(tjacb(i,j,kk)*delzetb(i,j,kk)) 

pecle = dabs(conve/diffe) 
peclw = dabs(convw/diffw) 
pecln = dabs(convn/diffn) 
peels = dabs(convs/diffs) 
peclb = dabs(convb/diffb) 
peclf = dabs(convf/difff) 

Determine the finte difference coefficients 

ae(i,j,k) = diffe*apecl(pecle) + dmaxl(-conve,zero) 
aw(i,j,k) = diffw*apecl(peclw) + dmaxl( convw,zero) 
an(i,j,k) = diffn*apecl(pecln) + dmaxl(-convn,zero) 
as(i,j,k) = diffs*apecl(pecls) + dmaxl( convs,zero) 
ab(i,j,k) = diffb*apecl(peclb) + dmaxl(-convb,zero) 
af(i,j,k) = dHff*apecl(peclf) + dmaxl( convf,zero) 
apo(i,j,k) = rhoo(i,j,k)/(delt*tjac(i,j,k)) 

PAGE 00027 
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*** Adjust main flow direction for turbulent flows near the wall 
*** by making use of a additional shear force term 

apx = 0.0 
if(iturb.ne.l) goto 15 
if(vz(i,j,k).lt.O.OOOl)goto 15 

if(jbound(i,j,k).eq.O.and.jbound(i+l,j,k).eq.nbnd)then 
exiss = (exix(f,j,k)+exly(i,j,k)+exiz(i,j,k))/tjac(i,j,k) 
apx = dabs(tm,w(i,j .k1 1'rpxfss/vz(i,j ,k)) 

endif 
if (jbound(i, _j, k). eq. 0 . .nn<i. jbound(i-1, j ,k). eq. nbnd)then 
exiss = ( ex ix (i, j, k) 1-0xiy (i, j, k)+exiz ( i, j, k)) /tj ac ( i, j, k) 
apx = dabs ( t rmw(i, j, k ).,,rP.xiss/vz (i, j, k)) 

endif 
if(jbound(i,j,k).eq.0.And.jbound(i,j+l,k).eq.nbnd)then 
etass = (etRx(i,j,k)~nt~y(i,j,k)+etaz(i,j,k))/tjac(i,j,k) 
apx = dabs(t;:111w(i,j.k)''~etass/vz(i,j,k)) 

endif 
if(jbound(i,j,k).eq.0.nnd.jbound(i,j-1,k).eq.nbnd)then 
etass = (etRx(i,j,k)+etay(i,j,k)+etaz(i,j,k))/tjac(i,j,k) 
apx = dabs(tauw(i,j,k)*etass/vz(i,j,k)) 

endif 

15 apw(i,j,k) = ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k) 
* + ab(i,j,k) + af(i,j,k) + apo(i,j,k) + apx 

*** Calculate the source term coefficients 

bble=visce ( i, j, k)* ( 4"rexize ( i, j, k)*etaze ( i, j, k) / J 
* + exixe(i,j,k)*etaxe(i,j,k) 
* + exiye(i,j,k)*etaye(i,j,k))/tjace(i,j,k) 

bblw=visce (ii., j, k)"r( 4*exize (ii, j, k)*etaze (ii, j, k) /3 
* + exixe(ii,j,k)*etaxe(ii,j,k) 

PAGE 00028 

* + exiye(ii,j,k)*etaye(ii,j,k))/tjace(ii,j,k) 
bb2e=visce(i,j,k)*(4*exize(i,j,k)*zetze(i,j,k)/3 

* + exixe(i,j,k)*zetxe(i,j,k) 
* + exiye(i,j,k)*zetye(i,j,k))/tjace(i,j,k) 
bb2w=visce(ii,j,k)*(4*exize(ii,j,k)*zetze(ii,j,k)/3 

* + exixe(ii,j,k)*zetxe(ii,j,k) 
* + exiye(ii,j,k)*zetye(ii,j,k))/tjace(ii,j,k) 
bb3e=visce(i,j,k)*exize(i,j,k)*exixe(i,j,k)/(3*tjace(i,j,k)) 
bb3w=visce(ii,j,k)*exize(ii,j,k)*exixe(ii,j,k)/(3*tjace(ii,j,k)) 
bb4e=visce(i,j,k)*(exixe(i,j,k)*etaze(i,j,k) 

* 2*exize(i,j,k)*etaxe(i,j,k)/3)/tjace(i,j,k) 
bb4w=visce(ii,j,k)*(exixe(ii,j,k)*etaze(ii,j,k) 

* 2*exize(ii,j,k)*etaxe(ii,j,k)/3)/tjace(ii,j,k) 
bb5e=visce(i,j,k)*(exixe(i,j,k)*zetze(i,j,k) 

* 2*exize(i,j,k)*zetxe(i,j,k)/3)/tjace(i,j,k) 
bb5w=visce(ii,j,k)*(exixe(ii,j,k)*zetze(ii,j,k) 

* 2*exize(ii,j,k)*zetxe(ii,j,k)/3)/tjace(ii,j,k) 
bb6e=visce(i,j,k)*exize(i,j,k)*exiye(i,j,k)/(3*tjace(i,j,k)) 
bb6w=visce(ii,j,k)*exize(ii,j,k)*exiye(ii,j,k)/(3*tjace(ii,j,k)) 
bh7e=visce(i,j,k)*(exiye(i,j,k)*etaze(i,j,k) 

* 2*exize(i,j,k)*etaye(i,j,k)/3)/tjace(i,j,k) 
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bb7w=visce(ii,j,k)*(exiye(ii,j,k)*etaze(ii,j,k) 
* 2*exize(ii,j,k)*etaye(ii,j,k)/3)/tjace(ii,j,k) 
bb8e=visce(i,j,k)*(exiye(i,j,k)*zetze(i,j,k) 

* 2*exize(i,j,k)*zetye(i,j,k)/3)/tjace(i,j,k) 
bb8w=visce(ii,j,k)*(exiye(ii,j,k)*zetze(ii,j,k) 

* 2*exize(ii,j,k)*zetye(ii,j,k)/3)/tjace(ii,j,k) 

bb9n=viscn(i,j,k)*(4*etazn(i,j,k)*exizn(i,j,k)/3 
* + etaxn(i,j,k)*exixn(i,j,k) 
* + etayn(i,j,k)*exiyn(i,j,k))/tjacn(i,j,k) 
bb9s=viscn(i,jj ,k)*(4''retA7.n(i,jj, k.)*exizn(i,jj ,k)/3 

* + etaxn(i,jj,k)*exixn(i,jj,k) 
* + etayn(i,jj,k)*~xiyn(i,jj,k))/tjacn(i,jj,k) 
bbl0n=viscn(i,j,k)*(4*etazn(i,j,k)*zetzn(i,j,k)/3 

* + etaxn(i,j,k)*zetxn(i,j,k) 
* + etayn(i,j,k)*zetyn(i,j,k))/tjacn(i,j,k) 
bblO~=viscn(i,jj,k)*(4*etazn(i,jj,k)*zetzn(i,jj,k)/3 

* + etaxn(i,jj,k)*zetxn(i,jj,k) 
* + etayn(i,jj,k)*zetyn(i,jj,k))/tjacn(i,jj,k) 
bblln=viscn(i,j ,k)*(etaxn(i,j ,k),'rexizn(i,j ,k) 

* 2*etazn(i,j,k)*exixn(i,j,k)/3)/tjacn(i,j,k) 
bblls=viscn(i,jj,k)*(etaxn(i,jj,k)*exizn(i,jj,k) 

* 2*etazn(i,jj,k)*exixn(i,jj,k)/3)/tjacn(i,jj,k) 
bbl2n=viscn(i,j,k)*etazn(i,j,k)*etaxn(i,j,k)/(3*tjacn(i,j,k)) 
bb12s=viscn(i,jj,k)*etazn(i,jj,k)*etaxn(i,jj,k)/(3*tjacn(i,jj,k)) 
bbl3n=viscn(i,j,k)*(etaxn(i,j,k)*zetzn(i,j,k) 

* 2*etazn(i,j,k)*zetxn(i,j,k)/3)/tjacn(i,j,k) 
bbl3s=viscn(i,jj,k)*(etaxn(i,jj,k)*zetzn(i,jj,k) 

* 2*etazn(i,jj,k)*zetxn(i,jj,k)/3)/tjacn(i,jj,k) 
bb14n=viscn(i,j,k)*(etayn(i,j,k)*exizn(i,j,k) 

* 2*etazn(i,j,k)*exiyn(i,j,k)/3)/tjacn(i,j,k) 
bbl4s=viscn(i,jj,k)*(etayn(i,jj,k)*exizn(i,jj,k) 

* 2*etazn(i,jj,k)*exiyn(i,jj,k)/3)/tjacn(i,jj,k) 
bblSn=viscn(i,j ,k)*etazn(i,j ,k)*etayn(i,j ,k)/(3'>'rtjacn(i,j ,k)) 
bb15s=viscn(i,jj ,k)*etazn(i,jj ;k)','retayn(i,jj ,k)/(3*tjacn(i,jj ,k)) 
bbl6n=viscn(i,j,k)*(etayn(i,j,k)*zetzn(i,j,k) 

* 2*etazn(i,j,k)*zetyn(i,j,k)/3)/tjacn(i,j,k) 
bbl6s=viscn(i,jj,k)*(etayn(i,jj,k)*zetzn(i,jj,k) 

* 2*etazn(i,jj,k)*zetyn(i,jj,k)/3)/tjacn(i,jj,k) 

bbl7b=viscb(i,j,k)*(4*zetzb(i,j,k)*exizb(i,j,k)/3 
* + zetxb(i,j,k)*exixb(i,j,k) 
* + zetyb(i,j,k)*exiyb(i,j,k))/tjacb(i,j,k) 
bb17f=viscb(i,j,kk)*(4*zetzb(i,j,kk)*exizb(i,j,kk)/3 

* + zetxb(i,j,kk)*exixb(i,j,kk) 
* + zetyb(i,j,kk)*exiyb(i,j,kk))/tjacb(i,j,kk) 
bbl8b=viscb(i,j,k)*(4*zetzb(i,j,k)*etazb(i,j,k)/3 

* + zetxb(i,j,k)*etaxb(i,j,k) 
* + zetyb(i,j,k)*etayb(i,j,k))/tjacb(i,j,k) 
bb18f=viscb(i,j,kk)*(4*zetzb(i,j,kk)*etazb(i,j,kk)/3 

* + zetxb(i,j,kk)*etaxb(i,j,kk) 
* + zetyb(i,j,kk)*etayb(i,j,kk))/tjacb(i,j,kk) 
bbl9b=viscb(i,j,k)*(zetxb(i,j,k)*exizb(i,j,k) 

* 2*zetzb(i,j,k)*exixb(i,j,k)/3)/tjacb(i,j,k) 
bbl9f=viscb(i,j,kk)*(zetxb(i,j,kk)*exizb(i,j,kk) 
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* 2*zetzb(i,j,kk)*exixb(i,j,kk)/3)/tjacb(i,j,kk) 
bb20b=viscb(i,j,k)*(zetxb(i,j,k)*etazb(i,j,k) 

* 2*zetzb(i,j,k)*etaxb(i,j,k)/3)/tjacb(i,j,k) 
bb20f=viscb(i,j,kk)*(zetxb(i,j,kk)*etazb(i,j,kk) 

* 2*zetzb(i,j,kk)*etaxb(i,j,kk)/3)/tjacb(i,j,kk) 
bb21b=viscb(i,j,k)*zetzb(i,j,k)*zetxb(i,j,k)/(3*tjacb(i,j,k)) 
bb2lf=viscb(i,j,kk)*zetzb(i,j,kk)*zetxh(i,j,kk)/(3*tjacb(i,j,kk)) 
bb22b=viscb(i,j,k)*(zetyh(i,j,k)*exizb(i,j,k) 

* 2*zetzh(i,j,k)*exiyb(i,j,k)/3)/tjacb(i,j,k) 
bb22f=viscb(i,j,kk)*(zetyb(i,j,kk)*exizb(i,j,kk) 

* 2*zetzb(i,j,kk)*exiyb(i,j,kk)/3)/tjacb(i,j,kk) 
bb23b=viscb(i,j,k)*(zetyb(i,j,k)*etazb(i,j,k) 

* 2*zetzb(i,j,k)*etayb(i,j,k)/3)/tjacb(i,j,k) 
bb23f=viscb(i,j,kk)*(zetyb(i,j,kk)*etazb(i,j,kk) 

* 2*zRtzb(i,j,kk)*etayb(i,j,kk)/3)/tjacb(i,j,kk) 
b b 2 4 b=v is c b ( i , j , k) * z e t ;,; h( :i , j , k ) .,,r 7. et y b ( i , j , k) / ( 3 ir t j a c b ( i , j , k) ) 
bb24f=viscb ( i, j, kk)*ze t· zh (i., j, kv. p'rzetyb (i, j, kk) / (3*tj acb ( i, j, kk)) 

ssl = exize(ii,j,k)*pfP(ii.j,k)/tjace(ii,j,k) 
* - exize(i,j,k)*pie(i,j,k)/tjace(i,j,k) 
* + etazn(i,jj,k)*pin(i,jj,k)/tjacn(i,jj,k) 
* - etazn(i,j,k)*pin(i,j,k)/tjacn(i,j,k) 
* + zetzb(i,j,kk)*pib(i,j,kk)/tjacb(i,j,kk) 
* - zetzb(i,j,k)*pib(i,j,k)/tjacb(i,j,k) 

ss2 = bble*(wne(i,j,k) - wne(i,jj,k)) 
* - bblw''"(wne(ii,j,k) - wne(ii,jj,k)) 
* + bb2e*(wbe(i,j,k) - wbe(i,j,kk)) 
* - bb2w*(wbe(ii,j,k) - wbe(ii,j,kk)) 
* + bb3e*(vx(i+l,j,k) - vx(i,j,k))/delexie(i,j,k) 
* - bb3w*(vx(i,j,k) - vx(ii,j,k))/delexie(ii,j,k) 
* + bb4e*(une(i,j,k) - une(i,jj,k)) 
* - bb4w*(une(ii,j,k) - une(ii,jj,k)) 
* + bb5e*(ube(i,j,k) - ube(i,j,kk)) 
* - bb5w*(ube(ii,j,k) - ube(ii,j,kk)) 
* + bb6e*(vy(i+l,j,k) - vy(i,j,k))/delexie(i,j,k) 
* - bb6w*(vy(i,j,k) - vy(ii,j,k))/delexie(ii,j,k) 
* + bb7e*(vne(i,j,k) - vne(i,jj,k)) 
* - bb7w*(vne(ii,j,k) - vne(ii,jj,k)) 
* + bb8e*(vbe(i,j,k) - vbe(i,j,kk)) 
* - bb8w*(vbe(ii,j,k) - vbe(ii,j,kk)) 

ss3 = bb9n*(wne(i,j,k) - wne (ii, j, k)) 
* - bb9s*(wne(i,jj,k) - wn e ( ii , j j , k) ) 
ir + bbl0n*(wnb(i,j,k) - wnb(i,j,kk)) 
* - bbl0s*(wnb(i,jj,k) - wnb (i , j j , kk) ) 
* + bblln*(une(i,j,k) - une(ii,j,k)) 
* - bblls*(une(i,jj,k) - un e ( ii , j j , k) ) 
* + bbl2n*(vx(i,j+l,k) - vx(i,j,k))/deletan(i,j,k) 
* - bbl2s*(vx(i,j,k) - vx(i,jj,k))/deletan(i,jj,k) 
* + bb13n*(unb(i,j,k) - unb ( i, j, kk)) 
* - bb13s*(unb(i,jj,k) - unb(i,jj,kk)) 
* + bb14n*(vne(i,j,k) - vn e ( ii , j , k) ) 
* - bb14s*(vne(i,jj,k) - vn e ( ii , j j , k) ) 
* + bblSn*(vy(i,j+l,k) - vy(i,j,k))/deletan(i,j,k) 
* - bb15s*(vy(i,j,k) - vy(i,jj,k))/deletan(i,jj,k) 
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1r + bb16n*(vnb(i,j,k) - vnb(i,j,kk)) 
* - bb16s*(vnb(i,jj,k) - vnb(i,jj,kk)) 

ss4 = bb17b*(wbe(i,j,k) - wbe(ii,j,k)) 
* - bb17f*(wbe(i,j,kk) - wbe (ii, j , kk)) 
* + bb18b*(wnb(i,j,k) - wnb (i, j j, k)) 
* - bb18f*(wnb(i,j,kk) - wnb (i , j j , kk) ) 
* + bb19b*(ube(i,j,k) - ube(ji ,j,k)) 
* - bb19f*(ube(i,j,kk) - ube ( i i , J , kk) ) 
* + bb20b*(unb(i,j,k) - unh(i.jj,k)) 
* - bb20f*(unb(i,j,kk) - unh(i ,Jj,kk)) 
* + bb21b*(vx(i,j,k~l) - vx(i,j,k))/delzetb(i,j,k) 
* - bb21f*(vx(i,j,k) - vx(J,j,kk))/delzetb(i,j,kk) 

* + bb22b*(vbe(i,j,k) - vhd ii, j, k)) 
* - bb22f*(vbe(i,j,kk) - vbP. ( i i , j , kk) ) 
* + bb23b*(vnb(i,j,k) vnh ( i , .i j , k) ) 
* - bb23f*(vnb(i,j,kk1 - vn h r 1 . jj , kk) ) 
* + bb24b*(vy(i,j,k+l) - vy(i,j,k))/delzetb(i,j,k) 
* - bb24f*(vy(i,j,k) - vy(i,j,kk))/delzetb(i,j,kk) 

source(i,j,k) = ssl + ss2 + ss3 + ss4 

res = apw(i,j ,k)*vz(i,j ,k) - apo(i,j ,k)''rvz(i,j ,k) 
* - ae(i,j,k)*vz(i+l,j,k) - aw(i,j,k)*vz(ii,j,k) 
* - an(i,j,k)*vz(i,j+l,k) - as(i,j,k)*vz(i,jj,k) 
* - ab(i,j,k)*vz(i,j,k+l) - af(i,j,k)*vz(i,j,kk) 
* - source(i,j,k) 
diffz = diffz + dabs(res) 
reswx(i) = reswx(i) + dabs(res) 
reswy(j) = reswy(j) + dabs(res) 
reswz(k) = reswz(k) + dabs(res) 

20 continue 

return 

PAGE 00031 

c----------------------------------------------------------------------
Entry WPREPI (iiiskkk,jne,jnb) 

c----------------------------------------------------------------------

*'Ye* This section prepares the TDMA coefficients 
*** sweeping in I - direction 

jnbl = jnb + 1 
jnel = jne - 1 

jb = jbound(iii,jnb,kkk) 
aaj(jnb) = 1. 0 
bbj(jnb) = bw(jb) 
ccj(jnb) = 0.0 
ddj(jnb) = cw(jb) 

do 30 j = jnbl,jnel 
aaj(J) = apw(iii,j,kkk)/relax 
bhj(j) = an(iii,j,kkk) 
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30 

-Jr 

* 
* 
* 
* 

ccj(j) 
ddj (j) 

continue 

= as(iii,j,kkk) 
= ae(iii,j,kkk)*vzstar(iii+l,j,kkk) 
+ aw(iii,j,kkk)*vzstar(iii-1,j,kkk) 
+ ab(iii,j,kkk)*vzstar(iii,j,kkk+l) 
+ af(iii,j,kkk)*vzstar(iii,j,kkk-1) 
+ apo(iii,j,kkk)*vzold(iii,j,kkk) + source(iii,j,kkk) 
+ apw(iii,j,kkk)*vzstar(iii,j,kkk)*(l-relax)/relax 

jh = jbound(iii,jne,kkk) 
aaj(jne) = 1. 0 
bbj(jne) = 0.0 
ccj(jne) = bw(jb) 
ddj(jne) = cw(jh) 

return 
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c----------------------------------------------------------------------
Entry WPREPJ (ijj,kkk,ine,inb) 

c----------------------------------------------------------------------

*** This section prepares the TDMA coefficients 
*** sweeping in J - direction 

inbl = inb + 1 
inel = ine - 1 

jb = jbound(inb,jjj,kkk) 
aai(inb) = 1.0 
bbi(inb) = bw(jb) 
cci(inb) = 0.0 
ddi(inb) = cw(jb) 

do 40 i = inbl,inel 
aai(i) = apw(i,jjj,kkk)/relax 
bbi(i) = ae(i,jjj,kkk) 
cci(i) = aw(i,jjj,kkk) 
ddi(i) = an(i,jjj,kkk)*vzstar(i,jjj+l,kkk) 

* + as(i,jjj,kkk)*vzstar(i,jjj-1,kkk) 
* + ab(i,jjj,kkk)*vzstar(i,jjj,kkk+l) 
* + af(i,jjj,kkk)*vzstar(i,jjj,kkk-1) 
* + apo(i,jjj,kkk)*vzold(i,jjj,kkk) + source(i,jjj,kkk) 
* + apw(i,jjj,kkk)*vzstar(i,jjj,kkk)*(l-relax)/relax 

40 continue 

jb = jbound(ine,jjj,kkk) 
aai(ine) = 1.0 
bbi(ine) = 0.0 
cci(ine) = bw(jb) 
ddi(ine) = cw(jh) 

return 
end 
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Subroutine PCOEFF 
**ir*,'r***ir**ir,'r***i'r***-lr,'r**ir-lr**ir*,''**"'rir*ir,'r*ir****ir**,'rir**ir,'rir,'r,'r,'r*ir***ir,'r***irir** 

*** This subroutine calculates the coefficients to solve the pressure 
*** correction equation 

INCLUDE 'COMM' 

*** At each new time step the pressure corrections are zero 
*** bacause the correct pressure field is known 

do 10 k = 1,kn 
do 10 j = 1, jn 

do 10 i = 1,in 
pcor(i,j,k) = 0.0 

10 continue 

*** Set all the constant~ P.q1rnl to zero 

diffp = 0.0 
do 20 k = 2,knml 

do 20 j = 2,jnml 
do 20 i = 2,inml 
ae(i,j,k) = 0.0 
aw(i,j,k) = 0.0 
an ( j_ , j , k ) = 0 . 0 
as(i,j,k) = 0.0 
ab(i,j,k) = 0.0 
af(i,j,k) = 0.0 
app(i,j,k) = 0.0 
bb(i,j,k) = 0.0 

20 continue 

*** Calculate the finite difference coefficients 

*** 

* 
* 

do 30 k = 2,knml 
resp(k) = 0.0 
do 30 j = 2,jnml 

do 40 i = 2,inml 
if(jbound(i,j,k).gt.O)goto 40 
ii = i-1 
jj = j-1 
kk = k-1 

if(jbound(i,j,k).eq.0.and.jbound(i+l,j,k).ne.O)then 
aae = 0.0 
ae (i, j , k) = 0. 0 

else 
apue 
apve 
apwe 
aae = 

= 
= 
= 

(apu(i,j,k)+apu(i+l,j,k))/2 
(apv(i,j,k)+apv(i+l,j,k))/2 
(apw(i,j,k)+apw(i+l,j,k.))/2 

rhoe(i,j,k)*(exixe(i,j,k)*exix(i,j,k)/apue 
+exiye(i,j,k)*exiy(i,j,k)/apve 
+exize(i,j,k)*exiz(i,j,k)/apwe) 
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*** 

*** 

* /(tjace(i,j,k)*tjac(i,j,k)) 
ae(i,j,k)=rhoe(i,j,k)*(exixe(i,j,k)*exix(i+l,j,k)/apue 

* +exiye(i,j,k)*exiy(i+l,j,k)/apve 
* +eY.ize(i,j ,k)*exiz(i+l,j ,k)/apwe) 
* /(tjace(i,j,k)*tjac(i+l,j,k)) 

endif 

if(jbo1md( i .j ,k) .eq.O.and.jbound(i-1,j ,k) .ne.O)then 
a.aw = r· n 
f-lW ( : . '. , ~- ) = 0 . 0 

else 
apuw = (apu(i,j,k)+apu(ii,j,k))/2 
apvw = (apv(i,j,k)+apv(ii,j,k))/2 
apww = (apw(i,j,k)+apw(ii,j,k))/2 
aaw = rhoe(ii,j ,k)''"(exixe(ii,j ,k) 7"exix(i,j ,k)/apuw 

* +exiye(ii,j,k)*exiy(i,j,k)/apvw 
* +exize(ii,j,k)*exiz(i,j,k)/apww) 
* /(tjace(ii,j,k)*tjac(i,j,k)) 

aw(i,j,k)=rhoe(ii,j,k)*(exixe(ii,j,k)*exix(ii,j,k)/apuw 
* +exiye(ii,j,k)*exiy(ii,j,k)/apvw 
* +exize(ii,j ,k).,,"exiz(ii,j ,k)/apww) 
* /(tjace(ii,j,k)*tjac(ii,j,k)) 

endif 

if(jbound(i,j,k).eq.0.and.jbound(i,j+l,k).ne.O)then 
aan = 0.0 
an(i,j,k) = 0.0 

else 
apun = (apu(i,j,k)+apu(i,j+l,k))/2 
apvn = (apv(i,j,k)+apv(i,j+l,k))/2 
apwn = (apw(i,j,k)+apw(i,j+l,k))/2 
aan = rhon(i,j,k)*(etaxn(i,j,k)*etax(i,j,k)/apun 

* +etayn(i,j,k)*etay(i,j,k)/apvn 
* +etazn(i,j,k)*etaz(i,j,k)/apwn) 
* /(tjacn(i,j,k)*tjac(i,j,k)) 

an(i,j,k)=rhon(i,j,k)*(etaxn(i,j,k)*etax(i,j+l,k)/apun 
* +etayn(i,j,k)*etay(i,j+l,k)/apvn 
* +etazn(i,j,k)*etaz(i,j+l,k)/apwn) 
* /(tjacn(i,j,k)*tjac(i,j+l,k)) 

endif 

if(jbound(i,j,k).eq.O.and.jbound(i,j-1,k).ne.O)then 
aas = 0.0 
as(i,j,k) = 0.0 

else 
apus .= (apu(i,j,k)+apu(i,jj,k))/2 
apvs = (apv(i,j,k)+apv(i,jj,k))/2 
apws = (apw(i,j,k)+apw(i,jj,k))/2 
aas = rhon(i,jj,k)*(etaxn(i,jj,k)*etax(i,j,k)/apus 

* +etayn(i,jj,k)*etay(i,j,k)/apvs 
* +etazn(i,jj,k)*etaz(i,j,k)/apws) 
* /(tjacn(i,jj,k)*tjac(i,j,k)) 

as(i,j,k)=rhon(i,jj,k)*(etaxn(i,jj,k)*etax(i,jj,k)/apus 
* +etayn(i,jj,k)*etay(i,jj,k)/apvs 
* +etazn(i,jj,k)*etaz(i,jj,k)/apws) 
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*** 

*** 

* /(tjacn(i,jj,k)*tjac(i,jj,k)) 
endif 

if(jbound(i,j ,k) .eq.0.and.jbound(i,j ,k+l) .ne.0)then 
aab = 0.0 
ab(i,j,k) = 0.0 

else 
apub = (apu(i,j,k)+apu(i,j.k+l))/2 
apvb = (apv(i,j,k)+apv(i,j.k~l))/2 
apw b = ( a pw ( i , j, k ) + a pw ( i , j . k+ 1 ) ) / 2 
aab = rhob(i,j,k)*(zetxb(i,_j,k)*zetx(i,j,k)/apub 

* +zetyb(i ,j,k)*zety(i,j,k)/apvb 
* +zetzb(l,j,k)*zetz(i,j,k)/apwb) 
* /(tjacb(i,j,k)*tjac(i,j,k)) 

ab(i,j,k)=rhob(i,j,k)*(zetxh(L,j,k)*zetx(i,j,k+l)/apub 
* +zetyh(i,j,k)*zety(i,j,k+l)/apvb 
i( +zet7,h( i. ,j ,k)*zetz(i,j ,k+l)/apwb) 
* / ( t j Ac h ( i_ , j , k) i(t j ac ( i, j , k+ 1) ) 

endif 

if (jbound(i, j, k). NJ. 0. a.nrt. _ihound(i, j ,k-1). ne. 0)then 
aaf = 0.0 
af(i,j,k) = 0.0 

else 
apuf = (apu(i,j ,lr1-l-:1p11(-i ,j ,kk))/2 
apvf = (apv(i,j,k)+apv(i,j,kk))/2 
apwf = (apw(i,j,k)+apw(i,j,kk))/2 
aaf = rhob(i,j,kk)*(zetxb(i,j,kk)*zetx(i,j,k)/apuf 

* +zetyb(i,j,kk)*zety(i,j,k)/apvf 
* +zetzb(i,j ,kk)*zetz(i,j ,k)/apwf) 
* /(tjacb(i,j,kk)*tjac(i,j,k)) 

af(i,j,k)=rhob(i,j,kk)*(zetxb(i,j,kk)*zetx(i,j,kk)/apuf 
* +zetyb(i,j,kk)*zety(i,j,kk)/apvf 
* +zetzb(i,j,kk)*zetz(i,j,kk)/apwf) 
* /(tjacb(i,j,kk)*tjac(i,j,kk)) 

* 
* 

* 

* 
* 
* 

* 
* 
* 

* 
* 

endif 

app(i,j,k) = aae + aaw + aan + aas + aab + aaf 

dens= (rhoo(i,j,k)-rhop(i,j,k))/(delt*tjac(i,j,k)) 
beast= 

bwest = 

- (exixe(i,j,k)*ue(i,j,k) 
+exiye(i,j,k)*ve(i,j,k) 
+exize(i,j,k)*we(i,j,k))*rhoe(i,j,k)/tjace(i,j,k) 

+ (exixe(ii,j,k)*ue(ii,j,k) 
+exiye(ii,j,k)*ve(ii,j,k) 
+exize(ii,j,k)*we(ii,j,k))*rhoe(ii,j,k)/tjace(ii,j,k) 

bnorth = 
- (etaxn(i,j,k)*un(i,j,k) 

+etayn(i,j,k)*vn(i,j,k) 
+etazn(i,j,k)*wn(i,j,k))*rhon(i,j,k)/tjacn(i,j,k) 

bsouth = 
+ (etaxn(i,jj,k)*un(i,jj,k) 

+etayn(i,jj,k)*vn(i,jj,k) 
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* +etazn(i,jj,k)*wn(i,jj,k))*rhon(i,jj,k)/tjacn(i,jj,k) 

jr 

-Ir 

* 

* 
* 
* 

bback 

bfront 

= 

= 

- (zetxb(i,j,k)*ub(i,j,k) 
+zetyb(i,j,k)*vb(i,j,k) 
+zetzb(i,j,k)*wb(i,j,k))*rhob(i,j,k)/tjacb(i,j,k) 

+ (zetxb(i,j,kk)*ub(i,j.kk) 
+zetyb(i,j,kk)*vb(J.j,kk) 
+zetzb(i.j,kk)*wl,(i,j,kk))*rhob(i,j,kk)/tjacb(i,j,kk) 

bb(i,j,k) = beast~hwest+hnorth+bsouth+bback+bfront+dens 

resp(k) = resp(k) + dAhs(bh(i ~J,k)) 
diffp = diffp + dabs(bb(i,j.kl) 

40 continue 
30 continue 

diffp = diffp/fmin 

return 

c----------------------------------------------------------------------
Entry PPREPI (iii,kkk,jne,jnb) 

c----------------------------------------------------------------------

*** This section prepares the TOMA coefficients 
*** sweeping in I - direction 

jnbl = jnb + 1 
jnel = jne - 1 

jb = jbound(iii,jnb,kkk) 
aaj(jnb) = 1.0 
bhj(jnb) = bp(jb) 
ccj(jnb) = 0.0 
ddj(jnb) = cp(jb) 

do 60 j = jnbl,jnel. 
aaj(j) = app(iii,j,kkk) 
bbj(j) = an(iii,j,kkk) 
ccj(j) = as(iii,j,kkk) 
ddj(j) = ae(iii,j,kkk)*pcor(iii+l,j,kkk) 

* + aw(iii,j,kkk)*pcor(iii-1,j,kkk) 
* + ab(iii,j,kkk)*pcor(iii,j,kkk+l) 
* + af(iii,j,kkk)*pcor(iii,j,kkk-l)+bb(iii,j,kkk) 

60 continue 

jb = jbound(iii,jne,kkk) 
aaj (jne) = 1. 0 
bbj(jne) = 0.0 
ccj(jne) = bp(jb) 
ddj(jne) = cp(jb) 

return 
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c----------------------------------------------------------------------
Entry PPREPJ (jjj,kkk,ine,inb) 

c----------------------------------------------------------------------

*** This section prepares the TDMA coefficients 
*** sweeping in J - direction 

inbl = inb +- 1 
inel = ine - 1 

jb = jbound(inb,jjj,kkk) 
aai(inb) = 1.0 
bbi(inb) = bp(jb) 
cci(inb) = 0.0 
ddi(inb) = cp(jb) 

do 70 i = inbl,inel 
aai(i) = app(i,jjj,kkk) 
bbi(i) = ae(i,jjj,kkk) 
cci(i) = aw(i,jjj,kkk) 
ddi(i) = an(i,jjj,kkk)*pcor(i,jjj+l,kkk) 

* + as(i,jjj,kkk)*pcor(i,jjj-1,kkk) 
* + ab(iii,j,kkk)*pcor(i,jjj,kkk+l) 
* + af(iii,j,kkk)*pcor(i,jjj,kkk-l)+bb(i,jjj,kkk) 

70 continue 

jb = jbound(ine,jjj,kkk) 
aai ( ine) = 1. 0 
bbi(ine) = 0.0 
cci(ine) = bp(jb) 
ddi(ine) = cp(jb) 

return 
end 

Subroutine GAMH 
***-in':**1':ir*ir-ir**i'r·k-ir-.'r,'r**i':1:**1r***.,'(irir*1r**ir·lr*,'r,'r**.,'(.,'(*1r·kirir1rir,'r"l'dr**''r-,'rir1r,'(-,'(,'r·lr*1r1r,'r1(.,'( 

INCLUDE 'COMM' 

restken = 0.0 
reseps = 0.0 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
if(jbound(i,j,k).ne.O)goto 10 

ii = i-1 
jj = j-1 
kk = k-1 

dudx = tjac(i,j,k)*(exixe(i,j,k)*ue(i,j,k)/tjace(i,j,k) 
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* - exixe(ii,j,k)*ue(ii,j,k)/tjace(ii,j,k) 
* + etaxn(i,j,k)*un(i,j,k)/tjacn(i,j,k) 
* - etaxn(i,jj,k)*un(i,jj,k)/tjacn(i,jj,k) 
* + zetxb(i,j,k)*ub(i,j,k)/tjacb(i,j,k) 
* - zetxb(i,j,kk)*ub(i,j,kk)/tjacb(i,j,kk)) 

dudy = tjac(i,j,k)*(exiye(i,j,k)*ue(i,j,k)/tjace(i,j,k) 
* - exiye(ii,j,k)*ue(ii,j,k)/tjace(ii,j,k) 
* + etayn(i,j ,k)'"'un(i,j ,k)/tjacn(i,j ,k) 
* - etayn(i,jj,k)*un(i,jj,k)/tjacn(i,jj,k) 
* + zetyh(i,j ,k)-''"nh(i,j ,k)/tjacb(i,j ,k) 
* - zetyh(i,j,kk)*ub(i,j,kk)/tjacb(i,j,kk)) 

dudz = tj ac ( i, j, k)''t ( ex iv .. ( i., j, k )"'c-11e (i, j, k) /tj ace ( i, j, k) 
* - exizc(ii,j,k)*ue(ii,j,k)/tjace(ii,j,k) 
* + etazn(i.j,k)*un(i,j,k)/tjacn(i,j,k) 
* - etazn(Cj_j,k)"l''"un(j ,jj,k)/tjacn(i,jj,k) 
* + zetzb(i,j,k)*ub(i,j,k)/tjacb(i,j,k) 
* - zetzb(i. j ,kk),'c-11h(i,j ,kk)/tjacb(i,j ,kk)) 

dvdx = tjac(i,j,k)*(exixe(i, Lk)"''"v'-'(; ,j,k)/tjace(i,j,k) 
* - exixe(ii,j,k)*ve(ii,j,k)/tjace(ii,j,k) 
* + etaxn(i,j,k)*vn(i,j,k)/tjacn(i,j,k) 
* - etaxn(i,jj,k)*vn(i,jj,k)/tjacn(i,jj,k) 
* + zetxb(i,j,k)*vb(i,j,k)/tjacb(i,j,k) 
* - zetxb(i,j,kk)*vb(i,j,kk)/tjacb(i,j,kk)) 

dvdy = tjac(i,j,k)*(exiye(i,j,k)*ve(i,j,k)/tjace(i,j,k) 
* - exiye(ii,j,k)*ve(ii,j,k)/tjace(ii,j,k) 
* + etayn(i,j,k)*vn(i,j,k)/tjacn(i,j,k) 
* - etayn(i,jj,k)*vn(i,jj,k)/tjacn(i,jj,k) 
* + zetyb(i,j,k)*vb(i,j,k)/tjacb(i,j,k) 
* - zetyb(i,j,kk)*vb(i,j,kk)/tjacb(i,j,kk)) 

dvdz = tjac(i,j,k)*(exize(i,j,k)*ve(i,j,k)/tjace(i,j,k) 
* - exize(ii,j,k)*ve(ii,j,k)/tjace(ii,j,k) 
* + etazn(i,j,k)*vn(i,j,k)/tjacn(i,j,k) 
* - etazn(i,jj,k)*vn(i,jj,k)/tjacn(i,jj,k) 
* + zetzb(i,j,k)*vb(i,j,k)/tjacb(i,j,k) 
* - zetzb(i,j,kk)*vb(i,j,kk)/tjacb(i,j,kk)) 

dwdx = tjac(i,j,k)*(exixe(i,j,k)*we(i,j,k)/tjace(i,j,k) 
* - exixe(ii,j,k)*we(ii,j,k)/tjace(ii,j,k) 
* + etaxn(i,j,k)*wn(i,j,k)/tjacn(i,j,k) 
* - etaxn(i,jj,k)*wn(i,jj,k)/tjacn(i,jj,k) 
* + zetxb(i,j,k)*wb(i,j,k)/tjacb(i,j,k) 
* - zetxb(i,j,kk)*wb(i,j,kk)/tjacb(i,j,kk)) 

dwdy = tjac(i,j,k)*(exiye(i,j,k)*we(i,j,k)/tjace(i,j,k) 
* - exiye(ii,j,k)*we(ii,j,k)/tjace(ii,j,k) 

* 
-,'c 

* 
* 

dwdz = 
* 
* 

* 
,'c 

* 

+ etayn(i,j,k)*wn(i,j,k)/tjacn(i,j,k) 
- etayn(i,jj,k)*wn(i,jj,k)/tjacn(i,jj,k) 
+ zetyb(i,j,k)*wb(i,j,k)/tjacb(i,j,k) 
- zetyb(i,j,kk)*wb(i,j,kk)/tjacb(i,j,kk)) 

tjac(i,j,k)*(exize(i,j,k)*we(i,j,k)/tjace(i,j,k) 
- exize(ii,j,k)*we(ii,j,k)/tjace(ii,j,k) 
+ etazn(i,j ,k),1;-wn(i,j ,k)/tjacn(i,j ,k) 
- etazn(i,jj,k)*wn(i,jj,k)/tjacn(i,jj,k) 
+ zetzb(i,j,k)*wb(i,j,k)/tjacb(i,j,k) 
- zetzb(i,j,kk)*wb(i,j,kk)/tjacb(i,j,kk)) 

PAGE 00038 

Gamma(i,j,k) = 2*(dudx**2) + 2*(dvdy**2) + 2*(dwdz**2) + dudy**2 
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* + dudz**2 + dvdx**2 + dvdz**2 + dwdx**2 + dwdy**2 
* + 2*dudy.,'rdvdx + 2*dvdz1'rdwdy + 2*dwdx-;'rdudz 

restken = restken + tken(i,j,k) 
reseps = reseps + eps(i,j,k) 

10 continue 

return 
end 

PAGE 00039 

Subroutine KCOEFF 
*-lr***-lr*****-lr*-lr*******-lr***-lr***-ldr****-lr-lr***-,'r****-,'r*-,'r*·ldr-,'r-,'r*-,'r-,'r-lr*-,'r*****-,'r*-lr*-lr** 

*** This subroutine calculates the coefficients to solve the 
*** kinetic energy turbulence equation 

INCLUDE 'COMM' 

*** Set all the constants equal to zero 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
an ( .i , j , k) = 0 . 0 
as(i,j,k) = 0.0 
a.e ( i , j , k) = 0 . 0 
aw(i,j,k) = 0.0 
ab(i,j,k) = 0.0 
af(i,j,k) = 0.0 
apk(i,j,k) = 0.0 
apo(i,j,k) = 0.0 
source(i,j,k) = 0.0 

10 continue 

*** Calculate the coefficients 

* 
* 

* 
* 

* 

do 20 k = 2,knml 
do 20 i = 2,inml 

do 20 j = 2,jnml 

if(jbound(i,j,k).gt.O)goto 20 
ii = i-1 
jj = j-1 
kk = k-1 

conve = (exixe(i,j,k)*ue(i,j,k) 
+ exiye(i,j,k)*ve(i,j,k) 
+ exize(i,j,k)*we(i,j,k))*rhoe(i,j,k)/tjace(i,j,k) 

convw = (exixe(ii,j,k)*ue(ii,j,k) 
+ exiye(ii,j,k)*ve(ii,j,k) 
+ exize(ii,j,k)*we(ii,j,k))*rhoe(ii,j,k)/tjace(ii,j,k) 

convn = (etaxn(i,j,k)*un(i,j,k) 
+ etayn(i,j,k)*vn(i,j,k) 
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* 

* 
* 

* 
* 

* 
* 

convs 

convb 

convf 

+ etazn(i,j ,k)*wn(i,j ,k)).,'rrhon(i,j ,k)/tjacn(i,j ,k) 
= (etaxn(i,jj,k)*un(i,jj,k) 
+ etayn(i,jj,k)*vn(i,jj,k) 
+ etazn(i,jj,k)*wn(i,jj,k))*rhon(i,jj,k)/tjacn(i,jj,k) 
= (zetxb(i,j,k)*ub(i,j,k) 
+ zetyb(i,j,k)*vb(i,j,k) 
+ zetzb(i,j,k)*wb(i,j,k))*rhob(i,j,k)/tjacb(i,j,k) 
= (zetxb(i,j,kk)*ub(i,j,kk) 
+ zetyb(i,j,kk)*vb(i,j,kk) 
+ zetzb(i,j,kk)*wb(i,j,kk))*rhob(i,j,kk)/tjacb(i,j,kk) 

diffe = (exixe(i,j,k)**2+exiye(i,j,k)**2+exize(i,j,k)**2) 
* *vmuturb(i,j,k)/(tjace(i,j,k)*delexie(i,j,k)*sigmk) 

diffw = (exixe(ii,j,k)**2+exiye(ii,j,k)**2+exize(ii,j,k)**2) 
* *vmuturb(i,j,k)/(tjace(ii,j,k)*delexie(ii,j,k)*sigmk) 

diffn = ( etaxn (i, j, k)**2+etayn ( i, j, k)-lr*2+etazn ( i, j, k)Mrz) 
* *vmuturb(i,j ,k)/(tjacn(i,j ,k) 1rdeletan(i,j ,k)*sigmk) 

cliffs= (etaxn(i,jj,k)**2+etayn(i,jj,k)**2+etazn(i,jj,k)**2) 
* *vmuturb(i,j,k)/(tjacn(i,jj,k)*deletan(i,jj,k)*sigmk) 

diffb = (zetxb(i,j,k)**2+zetyb(i,j,k)**2+zetzb(i,j,k)**2) 
* *vmuturb(i,j,k)/(tjacb(i,j,k)*delzetb(i,j,k)*sigmk) 

difff = (zetxb(i,j,kk)**2+zetyb(i,j,kk)**2+zetzb(i,j,kk)**2) 
* *vmuturb(i,j,k)/(tjacb(i,j,kk)*delzetb(i,j,kk)*sigmk) 

*** First calculate the source term coefficients 

* 
* 
* 

* 
* 
* 

* 
* 
* 

* 
* 
'l'r 

* 
* 
* 

* 
* 

ssl = 0.0 
ss2 = 0.0 
ss3 = 0.0 
if(igrid.eq.l)goto 15 

bble 

bblw 

bb2e 

bb2w 

bb3n 

bb3s 

= (exixe(i,j,k)*etaxe(i,j,k) 
+ exiye(i,j,k)*etaye(i,j,k) 
+ exize(i,j,k)*etaze(i,j,k)) 

* vmuturb (i,j,k)/(tjace(i,j,k)*sigmk) 
= (exixe(ii,j ,k).,'retaxe(ii,j ,k) 
+ exiye(ii,j,k)*etaye(ii,j,k) 
+ exize(ii,j,k)*etaze(ii,j,k)) 

* vmuturb (i,j,k)/(tjace(ii,j,k)*sigmk) 
= (exixe(i,j,k)*zetxe(i,j,k) 
+ exiye(i,j,k)*zetye(i,j,k) 
+ exize(i,j,k)*zetze(i,j,k)) 

* vmuturb (i,j,k)/(tjace(i,j,k)*sigmk) 
= (exixe(ii,j,k)*zetxe(ii,j,k) 
+ exiye(ii,j,k)*zetye(ii,j,k) 
+ exize(ii,j,k)*zetze(ii,j,k)) 

* vmuturb (i,j,k)/(tjace(ii,j,k)*sigmk) 

= (etaxn(i,j,k)*exixn(i,j,k) 
+ etayn(i,j,k)*exiyn(i,j,k) 
+ etazn(i,j,k)*exizn(i,j,k)) 

* vmuturb (i,j,k)/(tjacn(i,j,k)*sigmk) 
= (etaxn(i,jj,k)*exixn(i,jj,k) 
+ etayn(i,jj,k)*exiyn(i,jj,k) 
+ etazn(i,jj,k)*exizn(i,jj,k)) 

PAGE 00040 
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-Ir 

bb4n 
* 
* 
-i'r 

hh4s 
Jr 

-Ir 

* 

bb5b 
-rr 

* 
-Ir 

bb5£ 
-i'r 

* 
-Ir 

bb6b 
* 
* 
* 

bb6f 
* 
* 
* 

ssl 
,'r 

* 
* 

ss2 
* 
* 
* 

ss3 
* 
-Ir 

* 

* vmuturb (i,j,k)/(tjacn(i,jj,k)*sigmk) 
= (etaxn(i,j,k)*zetxn(i,j,k) 
+ etayn(i,j,k)*zetyn(i,j,k) 
+ etazn(i,j,k)*zetzn(i,j,k)) 

* vmuturb (i,j,k)/(tjacn(f ,j,k)*sigmk) 
= (etaxn(i,jj,k)*zetxn(i,jj.k) 
+ etayn(i,jj,k)*zetyn(i,jj.k) 
+ etazn(i,jj,k)*zetzn(i,j),k)) 

* vmuturb (i,j ,k)/(tjacn( i ._jj ,k)*sigmk) 

= (zetxb(i,j,k)*exixb(i,j,k) 
+ zetyb(i,j ,k).,,'"e.xiyh(i ,_j ,k) 
+ zetzb(i,j,k)*exizh(i,).k)) 

* vmuturb (i ,j,k)/( 1 _i,1•·h(i,j,k)')'rsigmk) 
= ( z et x b ( f • j ~ k k ) * P Y i .'-: i"' ( j_ , j , k k) 
+ zetyb(i,j,kk)*exiyb(i,j,kk) 
+ zetzb(i,j,kk)*exizb(i,j,kk)) 
* vmuturb (i,j,k)/(tjacb(i,j,kk)*sigmk) 

= (zetxb(i,j,k)*etaxb(i,j,k) 
+ zetyb(i,j,k)*etayb(i,j,k) 
+ zetzb(i,j,k)*etazb(i,j,k)) 
* vmuturb (i,j ,k)/(tjacb(i,j ,k)*sigmk) 

= (zetxb(i,j,kk)*etaxb(i,j,kk) 
+ zetyb(i,j,kk)*etayb(i,j,kk) 
+ zetzb(i,j,kk)*etazb(i,j,kk)) 

* vmuturb (i,j,k)/(tjacb(i,j,kk)*sigmk) 

= bble*(tkenne(i,j,k) - tkenne(i,jj,k)) 
- bblw*(tkenne(ii,j,k) - tkenne(ii,jj ,k)) 
+ bb2e*(tkenbe(i,j,k) - tkenbe(i,j,kk)) 

bb2w*(tkenbe(ii,j,k) tkenbe(ii,j ,kk)) 

= bb3n*(tkenne(i,j,k) - tkenne(ii,j,k)) 
- bb3s*(tkenne(i,jj,k) - tkenne(ii,jj ,k)) 
+ bb4n*(tkennb(i,j,k) - tkennb(i,j,kk)) 
- bb4s*(tkennb(i,jj,k) - tkennb(i,jj,kk)) 

= bb5b*(tkenbe(i,j,k) - tkenbe(ii,j,k)) 
- bb5f*(tkenbe(i,j,kk) - tkenbe(ii,j,kk)) 
+ bb6b*(tkennb(i,j,k) - tkennb(i,jj,k)) 
- bb6f*(tkennb(i,j,kk) - tkennb(i,jj,kk)) 

PAGE 00041 

15 ccp = (c2*eps(i,j,k)*rhop(i,j,k) 
* + O.S*Gamma(i,j,k)*vmuturb(i,j,k))/(tken(i,j,k)*tjac(i,j,k)) 

bbb = 1.S*Gamma(i,j,k)*vmuturb(i,j,k)/tjac(i,j,k) 
* + (c2-l)*rhop(i,j,k)*eps(i,j,k)/tjac(i,j,k) 

*** Determine the main finite difference coefficients 

*** Eastern boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i+l,j,k).eq.nbnd)then 
ae(i,j,k) = 0.0 
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5 
dwall = dabs(etay(1,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
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exiss = (exix(i,j,k)+exiy(i,j,k)+exiz(i,j,k))/tjac(i,j,k) 
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5) 

* *dwall/vmulam 
if(Reloc.gt.11.6)then 
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam 

* /(dwall*dlog(eps(i,j,k)*Reloc))) 
else 
tauw(i,j ,k) = dabs(-vmulam-,'<'tvel/dwall) 

endif 
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*exiss 

* /(tauw(i,j,k)*tjac(i,j,k)) 
bbb = tauw(i,j,k)*tvel*exiss/tjac(i,j,k) 

else 
AE(I,J,K) = DIFFE + DMAXl(-CONVE,ZERO) 

endif 

*** Western boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i-1,j,k).eq.nbnd)then 
aw (i , j , k) = 0 . 0 
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5 
dwall = dabs(etay(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
exiss = (exix(i,j,k)+exiy(i,j,k)+exiz(i,j,k))/tjac(i,j,k) 
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5) 

* *dwall/vmulam 
if(Reloc.gt.11.6)then 
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam 

* /(dwall*dlog(eps(i,j ,k) 1'<'Reloc))) 
else 
tauw(i,j,k) = dabs(-vmulam*tvel/dwall) 

endif 
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*exiss 

* /(tauw(i,j,k)*tjac(i,j,k)) 
bbb = tauw(i,j,k)*tvel*exiss/tjac(i,j,k) 

else 
AW(I,J,K) = DIFFW + DMAXl( CONVW,ZERO) 

endif 

*** Northern boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i,j+l,k).eq.nbnd)then 
an(i,j,k) = 0.0 
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5 
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
etass = (etax(i,j,k)+etay(i,j,k)+etaz(i,j,k))/tjac(i,j,k) 
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5) 

* *dwall/vmulam 
if(Reloc.gt.11.6)then 
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam 

* /(dwall*dlog(eps(i,j,k)*Reloc))) 
else 
tauw(i,j,k) = dabs(-vmulam*tvel/dwall) 

endif 
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*etass 

* /(tauw(i,j,k)*tjac(i,j,k)+tiny) 

PAGE 00042 
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bbh = tauw(i,j,k)*tvel*etass/tjac(i,j,k) 
else 
AN(I,J,K) = DIFFN + DMAXl(-CONVN,ZERO) 

endif 

*** Southern boundaries 

if (jbound ( i, j, k). eq. 0. and. j bound ( i, j -1, k). eq. nbnd) then 
as(i,j,k) = 0.0 
tvel = (vx(i,j,k)**2+vy(i,j,k)**2+vz(i,j,k)**2)**0.5 
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
etass = (etax(i,j,k)+etay(i,j,k)+etaz(i,j,k))/tjac(i,j,k) 
Reloc = (cmu**0.25)*rhop(i,_j.k)*(dabs(tken(i,j,k))**0.5) 

* *dwall/vmulam 
if(Reloc.gt.11.6)then 

tauw ( i, j, k) = dah" ( -caprAfrt.vP.1 *Re loc.,."vmulam 
* / (dwall.,,,.rl hg(eps ( i, .i, k)'l'rReloc))) 

else 
tauw(i,j ,k) ~ dabsf-vmuJ.a.m,'rtvel/dwall) 

en.di£ 
ccp = cmu*tvP. I 1'<rhop ( i, j, k)il"l'r2*tken ( i, j, k)iretass 

* / (tauw(J, _i, k)*tjac(i, j, k)+tiny) 
bbb = tauw(i,j,k)*tvel*etass/tjac(i,j,k) 

else 
AS(I,J,K) = DIFFS + DMAXl( CONVS,ZERO) 

endif 

*** Back boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nbnd)then 
ab(i,j,k) = 0.0 
tvel = (vx(i,j,k)**2+vy(i,j,k)**2)**0.5 
dwall = da.bs(exix(i,j ,k)*etay(i,j ,k)/(2i'rtjac(i,j ,k))) 
zetss = (zetx(i,j,k)+zety(i,j,k)+zetz(i,j,k))/tjac(i,j,k) 
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5) 

* *dwal 1/vmula.m 
if(Reloc.gt.ll.6)then 
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam 

* /(dwall*dlog(eps(i,j,k)*Reloc))) 
else 
tauw(i,j ,k) = dabs(-vmulam-lrtvel/dwall) 

endif 
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*zetss 

* /(tauw(i,j,k)*tjac(i,j,k)) 
bbb = tauw(i,j,k)*tvel*zetss/tjac(i,j,k) 

else 
AB(I,J,K) = DIFFB + DMAXl(-CONVB,ZERO) 

endif 

*** Front boundaries 

if(jbound(i,j,k).eq.0.and.jbound(i,j,k-1).eq.nbnd)then 
af(i,j,k) = 0.0 
tvel = (vx(i,j,k)**2+vy(i,j,k)**2)**0.5 
dwall = dabs(exix(i,j,k)*etay(i,j,k)/(2*tjac(i,j,k))) 
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*** 

zetss = (zetx(i,j,k)+zety(i,j,k)+zetz(i,j,k))/tjac(i,j,k) 
Reloc = (cmu**0.25)*rhop(i,j,k)*(dabs(tken(i,j,k))**0.5) 

* *dwall/vmulam 
if(Reloc.gt.11.6)then 
tauw(i,j,k) = dabs(-cappa*tvel*Reloc*vmulam 

* /(dwall*dlog(eps(i,j,k)*Reloc))) 
else 
tauw(i,j,k) = dabs(-vmulam*tvel/dwall) 

endif 
ccp = cmu*tvel*rhop(i,j,k)**2*tken(i,j,k)*zetss 

* /(tauw(i,j,k)*tjac(i,j,k)+tiny) 

* 

bbb = tauw(i,j,k)*tvel*zetss/tjac(i,j,k) 
else 
AF(I,J,K) = DIFFF + DMAXl( CONVF,ZERO) 

endif 

apo(i,j,k) 
apk(i,j ,k) 

= rhoo(i,j,k)/(delt*tjac(i,j,k)) 
= ae(i,j,k) + aw(i,j,k) + an(i,j,k) + as(i,j,k) 
+ ab(i,j,k) + af(i,j,k) + apo(i,j,k) + ccp 

source(i,j,k) = ssl + ss2 + ss3 + bbb 

20 continue 

return 
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c----------------------------------------------------------------------
Entry KPREPI (iii,kkk,jne,jnb) 

c----------------------------------------------------------------------
-Ir** This section prepares the TOMA coefficients 
*** sweeping in I - direction 

jnbl = jnb + 1 
jnel = jne - 1 

jb = jbound(iii,jnb,kkk) 
aaj(jnb) = 1. 0 
bbj(jnb) = bk(jb) 
ccj(jnb) = 0.0 
ddj(jnb) = ck(jb) 

do 30 j = jnbl,jnel 
aaj(j) = apk(iii,j,kkk)/relaxt 
bbj(j) = an(iii,j,kkk) 
ccj(j) = as(iii,j,kkk) 
ddj(j) = ae(iii,j,kkk)*tken(iii+l,j,kkk) 

* + aw(iii,j ,kkk)*tken(iii-1,j ,kkk) 
* + ab(iii,j,kkk)*tken(iii,j,kkk+l) 
* + af(iii,j,kkk)*tken(iii,j,kkk-1) 
* + apo(iii,j,kkk)*tkenold(iii,j,kkk) + source(iii,j,kkk) 
* + apk(iii,j,kkk)*tken(iii,j,kkk)*(l-relaxt)/relaxt 

30 continue 
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jb = jbound(iii,jne,kkk) 
aaj(jne) = 1. 0 
bbj(jne) = 0.0 
ccj(jne) = bk(jb) 
ddj(jne) = ck(jb) 

return 
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c----------------------------------------------------------------------
Entry KPREPJ (jjj,kkk,ine,inb) 

c----------------------------------------------------------------------

*** This section prepares the TDMA coefficients 
*** sweeping in J - direction 

inbl = inb + 1 
inel = ine - 1 

jb = jbound(inb,jjj,kkk) 
aai(inb) = 1. 0 
bbi(inb) = bk(jb) 
cci(inb) = 0.0 
ddi(inb) = ck(jb) 

do 40 i = inbl,inel 
aai(i) = apk(i,jjj,kkk)/relaxt 
bbi(i) = ae(i,jjj,kkk) 
cci(i) = aw(i,jjj,kkk) 
ddi(i) = an(i,jjj,kkk)*tken(i,jjj+l,kkk) 

* + as(i,jjj,kkk)*tken(i,jjj-1,kkk) 
* + ab(i,jjj,kkk)*tken(i,jjj,kkk+l) 
* + af(i,jjj,kkk)*tken(i,jjj,kkk-1) 
* + apo(i,jjj,k.kk')*tkenold(i,jjj,kkk) + source(i,jjj,kkk) 
* + apk(i,jjj,kkk)*tken(i,jjj,kkk)*(l-relaxt)/relaxt 

40 continue 

jb = jbound(ine,jjj,kkk) 
aai(ine) = 1.0 
bbi(ine) = 0.0 
cci(ine) = bk(jb) 
ddi(ine) = ck(jb) 

return 
end 

Subroutine ECOEFF 
************ir********''r-,'r**ir**''r*-;'r•lr-;b'rici:i:ir-;'r-;'cir*,'r*ic*ir,'r*-,'c-,':icir**''dc-;'r*-;':-i'dc**''c,'r,'dc*ir* 

*** This subroutine calculates the coefficients to solve the 
*** epsilon turbulence equation 

INCLUDE 'COMM' 
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*** Set all the constants equal to zero 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
an(i,j,k) = 0.0 
as(i,j,k) = 0.0 
ae(i,j,k) = 0.0 
aw(i,j,k) = 0.0 
ah(i,j,k) = 0.0 
a f ( i ·, j , k) = 0 . 0 
ape(i,j,k) = 0.0 
apo(i,j,k) = 0.0 
source(i,j,k) = 0.0 

10 continue 

*** Calculate the coefficients 

do 20 k = 2,knml 
do 20 i = 2,inml 

do 20 j = 2,jnml 

if(jbound(i,j,k).gt.O)goto 20 
ii = i-1 
jj = j-1 
kk = k-1 

conve = (exixe(i,j,k)*ue(i,j,k) 
* + exiye(i,j,k)*ve(i,j,k) 
* + exize(i,j ,k.)*we(i,j ,k))''rrhoe(i,j ,k)/tjace(i,j ,k) 

convw = (exixe(ii,j,k)*ue(ii,j,k) 
* + exiye(ii,j,k)*ve(ii,j,k) 
* + exize(ii,j ,k)*we(ii,j ,k) )*rhoe(ii,j ,k)/tjace(ii,j ,k) 

convn = (etaxn(i,j,k)*un(i,j,k) 
* + etayn(i,j,k)*vn(i,j,k) 
* + etazn(i,j,k)*wn(i,j,k))*rhon(i,j,k)/tjacn(i,j,k) 

convs 
* 
* 

convb 
* 
* 

convf 
* 
* 

diffe 
* 

diffw 
* 

diffn 
* 

cliffs 
* 

diffb 

= (etaxn(i,jj,k)*un(i,jj,k) 
+ etayn(i,jj,k)*vn(i,jj,k) 
+ etazn(i,jj,k)*wn(i,jj,k))*rhon(i,jj,k)/tjacn(i,jj,k) 
= (zetxb(i,j,k)*ub(i,j,k) 
+ zetyb(i,j,k)*vb(i,j,k) 
+ zetzb(i,j,k)*wb(i,j,k))*rhob(i,j,k)/tjacb(i,j,k) 
= (zetxb(i,j,kk)*ub(i,j,kk) 
+ zetyb(i,j,kk)*vb(i,j,kk) 
+ zetzb(i,j,kk)*wb(i,j,kk))*rhob(i,j,kk)/tjacb(i,j,kk) 

= (exixe(i,j,k)**2+exiye(i,j,k)**2+exize(i,j,k)**2) 
*vmuturb ( i, j, k) / ( tj ace ( i, j, k),'rdelexie ( i, j, k) 1"s igme) 

= (exixe(ii,j,k)**2+exiye(ii,j,k)**2+exize(ii,j,k)**2) 
*vmuturb(i,j,k)/(tjace(ii,j,k)*delexie(ii,j,k)*sigme) 

= ( etaxn ( i, j, k)**2+e tayn ( i, j, k)**2+etazn ( i, j, k)-ldC'2) 
*vmuturb(i,j,k)/(tjacn(i,j,k)*deletan(i,j,k)*sigme) 

= (etaxn(i,jj,k)**2+etayn(i,jj,k)**2+etazn(i,jj,k)**2) 
*vmuturb(i,j,k)/(tjacn(i,jj,k)*deletan(i,jj,k)*sigme) 

= (zetxb(i,j,k)**2+zetyb(i,j,k)**2+zetzb(i,j,k)**2) 
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* *vmuturb(i,j,k)/(tjacb(i,j,k)*delzetb(i,j,k)*sigme) 
difff = (zetxb(i,j,kk)**2+zetyb(i,j,kk)**2+zetzb(i,j,kk)**2) 

* 1<'vmuturb(i,j ,k)/(tjacb(i,j ,kk)*delzetb(i,j ,kk)*sigme) 

*** First calculate the source term coefficients 

* 
* 
·i'C' 

* 
* 
* 

* 

* 
* 

* 
"l'r 

* 

* 
* 
* 

* 
* 
* 

* 

* 
* 

* 
* 
* 

* 
* 
* 

* 
* 
* 

"l'r 

ssl = 0.0 
ss2 = 0.0 
ss3 = 0.0 
if(igrid.eq.l)goto 15 

bble 

bblw 

bb2e 

bb2w 

bb3n 

bb3s 

bb4n 

bb4s 

bb5b 

bb5f 

bb6b 

= (exixe(i,j,k)*etaxe(i,j,k) 
+ exiye(i,j,k)*etaye(i,j,k) 
+ exize(i,j,k)*etaze(i,j,k)) 

* vmuturb(i,j,k)/(tjace(i,j,k)*sigme) 
= (exixe(ii,j,k)*etaxe(ii,j,k) 
+ exiye(ii,j,k)*etaye(ii,j,k) 
+ exize(ii,j,k)*etaze(ii,j,k)) 

* vmuturb ( i, j, k) / (tj ace (ii, j, k)'>'<'s igme) 
= (exixe(i,j,k)*zetxe(i,j,k) 
+ exiye(i,j,k)*zetye(i,j,k) 
+ exize(i,j,k)*zetze(i,j,k)) 

* vmuturb(i,j,k)/(tjace(i,j,k)*sigme) 
= (exixe(ii,j,k)*zetxe(ii,j,k) 
+ exiye(ii,j,k)*zetye(ii,j,k) 
+ exize(ii,j,k)*zetze(ii,j,k)) 

* vmuturb(i,j,k)/(tjace(ii,j,k)*sigme) 

= (etax.n(i,j ,k)*exixn(i,j ,k) 
+ etayn(i,j,k)*exiyn(i,j,k) 
+ etazn(i,j,k)*exizn(i,j,k)) 

* vmuturb(i,j,k)/(tjacn(i,j,k)*sigme) 
= (etaxn(i,jj,k)*exixn(i,jj,k) 
+ etayn(i,jj,k)*exiyn(i,jj,k) 
+ etazn(i,jj,k)*exizn(i,jj,k)) 

* vmuturb(i,j,k)/(tjacn(i,jj,k)*sigme) 
= (etaxn(i,j,k)*zetxn(i,j,k) 
+ etayn(i,j,k)*zetyn(i,j,k) 
+ etazn(i,j,k)*zetzn(i,j,k)) 

* vmuturb(i,j,k)/(tjacn(i,j,k)*sigme) 
= (etaxn(i,jj,k)*zetxn(i,jj,k) 
+ etayn(i,jj,k)*zetyn(i,jj,k) 
+ etazn(i,jj,k)*zetzn(i,jj,k)) 

* vmuturb(i,j,k)/(tjacn(i,jj,k)*sigme) 

= (zetxb(i,j,k)*exixb(i,j,k) 
+ zetyb(i,j,k)*exiyb(i,j,k) 
+ zetzb(i,j,k)*exizb(i,j,k)) 

* vmuturb(i,j ,k)/(tja.cb(i,j ,k)i<'sigme) 
= (zetxb(i,j,kk)*exixb(i,j,kk) 
+ zetyb(i,j,kk)*exiyb(i,j,kk) 
+ zetzb(i,j,kk)*exizb(i,j,kk)) 

* vmuturb(i,j,k)/(tjacb(i,j,kk)*sigme) 
= (zetxb(i,j,k)*etaxb(i,j,k) 
+ zetyb(i,j,k)*etayb(i,j,k) 
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* + zetzb(i,j,k)*etazb(i,j,k)) 
* * vmuturb(i,j,k)/(tjacb(i,j,k)*sigme) 

bb6f = (zetxb(i,j,kk)*etaxb(i,j,kk) 
* + zetyb(i,j,kk)*etayb(i,j,kk) 
* + zP-tzb(i,j,kk)*etazb(i,j,kk)) 
* ~,,. i ·•rnturb(i,j ,k)/(tjacb(i,j ,kk)*sigme) 

::;~ 1 - :,!., le''.-(epsne(i,j ,k) epsne(i,jj,k)) 
bblw*(epsne(ii,j,k) epsne(ii,jj,k)) 

"';': + bb2e*(epsbe(i,j,k) epsbe(i,j,kk)) 

* - bb2w*(epsbe(ii,j,k) - epsbe(ii,j,kk)) 

ss2 = bb3n*(epsne(i,j,k) epsne(ii,j,k)) 
* - bb3s*(epsne(i,jj,k) - epsne (ii, j j, k)) 
* + bb4n*(epsnb(i,j,k) - epsnb(i,j,kk)) 
-ir - bb4s*(epsnb(i,jj,k) - epsnb(i,jj,kk)) 

ss3 = bb5b*(epsbe(i,j,k) - epsbe(ii,j,k)) 
* - bb5f*(epsbe(i,j,kk) - epsbe(ii,j,kk)) 
* + bb6b*(epsnb(i,j,k) - epsnb(i,jj,k)) 
* - bb6f*(epsnb(i~j,kk) - epsnb(i,jj,kk)) 

15 ccp = (2*c2-l)*eps(i,j,k)*rhop(i,j,k)/(tken(i,j,k)*tjac(i,j,k)) 
bbb = (cl*Gamma(i,j,k)*vmuturb(i,j,k) 

* + (c2-l)*rhop(i,j,k)*eps(i,j,k))*eps(i,j,k) 
* /(tken(i,j,k)*tjac(i,j,k)) 

*** Determine the main finite difference coefficients 

*** Eastern boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i+l,j,k).eq.nbnd)then 
ae(i,j,k) = 0.0 
dwall = dabs(etay(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall) 
ccp = great 
bbb = great*epsmu 

else 
AE(I,J,K) = DIFFE + DMAXl(-CONVE,ZERO) 

endif 

*** Western boundaries 

if(jbound(i,j,k).eq.0.and.jbound(i-1,j,k).eq.nbnd)then 
aw(i,j,k) = 0.0 
dwall = dabs(etay(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
epsmu = ( cmu**O. 75 )1r (dabs (tken(i, j, k) )**1. 5) / (cappa'""dwall) 
ccp = grea.t 
bbb = great*epsmu 

else 
AW(I,J,K) = DIFFW + DMAXl( CONVW,ZERO) 

endif 

·k** Northern boundaries 
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if(jbound(i,j,k).eq.O.and.jbound(i,j+l,k).eq.nbnd)then 
an(i,j,k) = 0.0 
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall) 
ccp = great 
bbb = great*epsmu 

else 
AN(I,J,K) = DIFFN + DMAXl(-CONVN,ZERO) 

endif 

*** Southern boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i,j-1,k).eq.nbnd)then 
as(i,j,k) = 0.0 
dwall = dabs(exix(i,j,k)*zetz(i,j,k)/(2*tjac(i,j,k))) 
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall) 
ccp = great 
bbb = great*epsmu 

else 
AS(I,J,K) = DIFFS + DMAXl( CONVS,ZERO) 

endif 

*** Back boundaries 

if(jbound(i,j,k).eq.O.and.jbound(i,j,k+l).eq.nbnd)then 
ab(i,j,k) = 0.0 
dwall = dabs(exix(i,j,k)*etay(i,j,k)/(2*tjac(i,j,k))) 
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall) 
ccp = great 
bbb = great*epsmu 

else 
AB(I,J,K) = DIFFB + DMAXl(-CONVB,ZERO) 

endif 

*** Front boundaries 

* 

if(jbound(i,j,k).eq.0.and.jbound(i,j,k-1).eq.nbnd)then 
af(i,j,k) = 0.0 
dwall = dabs(exix(i,j,k)*etay(i,j,k)/(2*tjac(i,j,k))) 
epsmu = (cmu**0.75)*(dabs(tken(i,j,k))**l.5)/(cappa*dwall) 
ccp = great 
bbb = great*epsmu 

else 
AF(I,J,K) = DIFFF + DMAXl( CONVF,ZERO) 

endif 

apo(i,j,k) 
ape(i,j,k) 

= rhoo(i,j,k)/(delt*tjac(i,j,k)) 
= a.e(i,j,k) + aw(.i,j,k) + an(i,j,k) + as(i,j,k) 
+ ab(i,j,k) + af(i,j,k) + apo(i,j,k) + ccp 

source(i,j,k) = ssl + ss2 + ss3 + bbb 

20 continue 

return 
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c----------------------------------------------------------------------
Entry EPREPI (iii,kkk,jne,jnb) 

c----------------------------------------------------------------------

*** 
*** 

This section prepares the TDMA coefficients 
sweeping in I - direction 

jnbl = jnb + 1 
jnel = jne - 1 

jb = jbound(iii,jnb,kkk) 
aaj (jnb) = 1. 0 
bbj(jnb) = be(jb) 
ccj(jnb) = 0.0 
ddj(jnb) = ce(jb) 

do 30 j = jnhl,jnel 
aaj(j) = ape(iii,j,kkk)/relaxt 
bbj(j) = an(iii,j,kkk) 
ccj(j) = as(iii,j,kkk) 
ddj(j) = ae(iii,j,kkk)*eps(iii+l,j,kkk) 

* + aw(iii,j,kkk)*eps(iii-1,j,kkk) 
* + ab(iii,j,kkk)*eps(iii,j,kkk+l) 
* + af(iii,j,kkk)*eps(iii,j,kkk-1) 
* + apo(iii,j,kkk)*epsold(iii,j,kkk) + source(iii,j,kkk) 
* + ape(iii,j,kkk)*eps(iii,j,kkk)*(l-relaxt)/relaxt 

30 continue 

jb = jbound(iii,jne,kkk) 
aaj (jne) = 1. 0 
bbj(jne) = 0.0 
ccj(jne) = be(jb) 
ddj(jne) = ce(jb) 

return 

c----------------------------------------------------------------------
Entry EPREPJ (jjj,kkk,ine,inb) 

c-----------------------~----------------------------------------------
*** This section prepares the TDMA coefficients 
*** sweeping in J - direction 

inbl = inb + 1 
inel = ine - 1 

jb = jbound(inb,jjj,kkk) 
aai(inb) = 1. 0 
bbi(inb) = be(jb) 
cci(inb) = 0.0 
ddi(inb) = ce(jb) 

do 40 i = inbl,inel 
aai(i) = ape(i,jjj,kkk)/relaxt 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria 

40 

bbi(i) 
cci(i) 
ddi(i) 

* 
* 
* 
* 
* 

continue 

= ae(i,jjj,kkk) 
= aw(i,jjj,kkk) 
= an(i,jjj,kkk)*eps(i,jjj+l,kkk) 
+ as(i,jjj,kkk)*eps(i,jjj-1,kkk) 
+ ab(i,jjj,kkk)*eps(i,jjj,kkk+l) 
+ af(i,jjj,kkk)*eps(i,jjj,kkk-1) 
+ apo(i,jjj,kkk)*epsold(i,jjj,kkk) + source(i,jjj,kkk) 
+ ape(i,jjj,kkk)*eps(i,jjj,kkk)*(l-relaxt)/relaxt 

jb = jbound(ine,jjj,kkk) 
aai(ine) = 1.0 
bbi(ine) = 0.0 
cci(ine) = be(jb) 
ddi(ine) = ce(jb) 

return 
end 

Subroutine SOLVE 

PAGE 00051 

*-lr·k•k*-,'r-lr-lr***-lr**-lr*-lr****-lr*-,'r-lr-lr*-,'r*-lr**-lr***-lr-lr-i'r-,'r-,'r*-lr**"''r*-i'r~'r**-lr**-i'r,'r-lr,'r-lr-lr-,'r-lr-lr**-lr-,'r-,'r-,'r·k* 

*** This subroutine solves the flow with TDMA 

INCLUDE 'COMM' 

c----------------------------------------------------------------------
Entry TDMAI (ii,kk,fi,nje,njb) 

c----------------------------------------------------------------------

*** TDMA along a North-South strip 

njbl = njb + 1 
njel = nje - 1 

ppj(njb) = bbj(njb)/aaj(njb) 
qqj(njb) = ddj(njb)/aaj(njb) 

do 10 j = njbl,nje 
denom = aaj(j) - ccj(j)*ppj(j-1) 
ppj(j) = bbj(j)/denom 
qqj(j) = (ddj(j) + ccj(j)*qqj(j-1))/denom 

10 continue 

fi(ii,nje,kk) = qqj(nje) 
do 20 j = njel,njb,-1 
fi(ii,j,kk) = ppj(j)*fi(ii,j+l,kk) + qqj(j) 

20 continue 

return 

c----------------------------------------------------------------------
Entry TDMAJ (jj,kk,fi,nie,nib) 

c----------------------------------------------------------------------
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*** TDMA along a East-West strip 

nibl =nib+ 1 
niel = nie - 1 

ppi(nib) = bbi(nib)/aai(nib) 
qqi(nib) = ddi(nib)/aai(nib) 

do 30 i = nibl,nie 
denom = aai(i) - cci(i)*ppi(i-1) 
ppi(i) = bbi(i)/denom 
qqi(i) = (ddi(i) + cci(i)*qqi(i-1))/denom 

30 continue 

fi(nie,jj,kk) = qqi(nie) 
do 40 i = niel,nib,-1 
fi(i,jj,kk) = ppi(i)*fi(i+l,jj,kk) + qqi(i) 

40 continue 

return 
end 

Subroutine ADJUST 
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-lc**-lci'r*•k-;'r,'c,'c-,'r-lr·k*****''cic**-lrir-,'r,'r,'rir*-ldr,'r-,'c**-ldr*ir,'r*"l'rir*-lrir*ir**-ld:,'ridr,'r**-lri:*-lr-;'c***''rir*-,'r* 

*** This subroutine corrects the pressures and the velocities 
*** for cellwise continuity 

INCLUDE 'COMM' 

do 10 k _= 2,knml 
do 10 i = 2,inml 

do 20 j = 2,jnml 
if(jbound(i,j,k).gt.O)goto 20. 

*** Correct the pressures 

pp(i,j,k) = pp(i,j,k) + pcor(i,j,k) 

*** Correct the velocities 

vxcor = (exix(i-1,j,k)*pcor(i-1,j,k)/tjac(i-1,j,k) 
* - exix(i+l,j,k)*pcor(i+l,j,k)/tjac(i+l,j,k) 
* + etax(i,j-1,k)*pcor(i,j-1,k)/tjac(i,j-l,k) 
* - etax(i,j+l,k)*pcor(i,j+l,k)/tjac(i,j+l,k) 
* + zetx(i,j,k-l)*pcor(i,j,k-1)/tjac(i,j,k-1) 
* - zetx(i,j,k+l)*pcor(i,j,k+l)/tjac(i,j,k+l))/(2*apu(i,j,k) 
* *(1/relax - 1)) 

vxstar(i,j,k) = vxstar(i,j,k) + vxcor 

vycor = (exiy(i-1,j,k)*pcor(i-1,j,k)/tjac(i-1,j,k) 
* - exiy(i+l,j,k)*pcor(i+l,j,k)/tjac(i+l,j,k) 
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* + etay(i,j-1,k)*pcor(i,j-1,k)/tjac(i,j-1,k) 
· * - etay(i,j+l,k)*pcor(i,j+l,k)/tjac(i,j+l,k) 

* + zety(i,j,k-l)*pcor(i,j,k-1)/tjac(i,j,k-1) 
* - zety(i,j,k+l)*pcor(i,j,k+l)/tjac(i,j,k+l))/(2*apv(i,j,k) 
* *(1/relax - 1)) 

vystar(i,j,k) = vystar(i,j,k) + vycor 

vzcor = (exiz(i-1,j,k)*pcor(i-1,j,k)/tjac(i-1,j,k) 
* - exiz(i+l,j,k)*pcor(i+l,j,k)/tjac(i+l,j,k) 
* + etaz(i,j-1,k)*pcor(i,j-1,k)/tjac(i,j-1,k) 
* - etaz(i,j+l,k)*pcor(i,j+l,k)/tjac(i,j+l,k) 
* + zetz(i,j,k-l)*pcor(i,j,k-1)/tjac(i,j,k-1) 
* - zetz(i,j,k+l)*pcor(i,j,k+l)/tjac(i,j,k+l))/(2*apw(i,j,k) 
* *(1/relax - 1)) 

vzstar(i,j,k) = vzstar(i,j,k) + vzcor 

20 continue 
10 continue 

do 40 k = 2,knml 
do 40 j = 2,jnml 

do 40 i = 2,inml 
if(jbound(i,j,k).gt.O)goto 40 
vx(i,j,k) = vxstar(i,j,k) 
vy(i,j,k) = vystar(i,j,k) 
vz(i,j,k) = vzstar(i,j,k) 

40 continue 

return 
end 
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*-lr-lr*********************·lr*******-lr*,'r**-lr**-lr****-lr**-lr****-lr*-lr*·i'r*******-lr,'r**** 
Function APECL (peclet) 

-lr**-lr*****-ldr*-,'r*-,'r***i'r***-lr-;'r-lr**''r*,'r***-lr*,'r***"'r***i'r-lr***-lr-lr*-lr*****i'r-lr*,'r******·lr,'r·k* 

*** This function selects the type of differencing 

INCLUDE 'COMM' 

*** Central difference 
if(kapecl.eq.1) apecl = 1.0-0.S*peclet 

*** Upwind difference 
if(kapecl.eq.2) apecl = 1.0 

*** Hybrid difference 
if(kapecl.eq.3) apecl = dmaxl(zero,l.0-0.5*peclet) 

*** Power law difference 
if(kapecl.eq.4) apecl = dmaxl(zero,(1.0-0.l*peclet)**S) 

*** Exponential difference 
if(kapecl.eq.S)then 
if(peclet.eq.zero)peclet = 0.00000001 
apecl = peclet/(exp(peclet)-1.0) 
endif 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria PAGE 00054 

end 

Subroutine INTPOLV 
*****-lr*****-lr**************-lr******-lr**-lr**-lr****-lr**"Tr-lr-lr-lr**-lr*****-lr*-;~-lr***-lr**** 

*** This subroutine interpolates th~ velocities at the cell walls 

INCLUDE 'COMM' 

*** (u,v,w) - Velocities represe11ts interpolated velocities between 
*** major grid points and (vx,vy,vz) - velocities are the 
*** calculated velocities 

*** Interpolate velocities on EA8tern ~~11 walls 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 11 = 1,lobs(j,k) 
nie2 = iiend(ll,j,k) - 2 
nibl = iibeg(ll,j,k) + 1 
do 10 i = nibl,nie2 
ue(i,j,k) = vxstar(i+l,j,k)*fl(i,j,k) 

* + vxstar(i,j,k)*(l-fl(i,j,k)) 
ve(i,j,k) = vystar(i+l,j,k)*fl(i,j,k) 

* + vystar(i,j,k)*(l-fl(i,j,k)) 
we(i,j,k) = vzstar(i+l,j,k)*fl(i,j,k) 

* + vzstar(i,j,k)*(l-fl(i,j,k)) 
10 continue 

*** Interpolate velocities on Northern cell walls 

do 20 k = 2,knml 
do 20 i = 2,inml 

do 20 mm= 1,mobs(i,k) 
nje2 = jjend(mm,i,k) - 2 
njbl = jjbeg(mm,i,k) + 1 
do 20 j = njbl,nje2 
un(i,j,k) = vxstar(i,j+l,k)*f2(i,j,k) 

* + vxstar(i,j,k)*(l-f2(i,j,k)) 
vn(i,j,k) = vystar(i,j+l,k)*f2(i,j,k) 

* + vystar(i,j,k)*(l-f2(i,j,k)) 
wn(i,j,k) = vzstar(i,j+l,k)*f2(i,j,k) 

* + vzstar(i,j,k)*(l-f2(i,j,k)) 
20 continue 

*** Interpolate velocities on Backward facing cell walls 

do 30 j = 2,jnml 
do 30 i = 2,inml 

do 30 nn = 1,nobs(i,j) 
nke2 = kkend(nn,i,j) - 2 
nkbl = kkbeg(nn,i,j) + 1 
do 30 k = nkbl,nke2 
ub(i,j,k) = vxstar(i,j,k+l)*f3(i,j,k) 
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* + vxstar(i,j,k)*(l-f3(i,j,k)) 
vb(i,j,k) = vystar(i,j,k+l)*f3(i,j,k) 

* + vystar(i,j,k)*(l-f3(i,j,k)) 
wb(i,j,k) = vzstar(i,j,k+l)*f3(i,j,k) 

* + vzstar(i,j,k)*(l-f3(i,j,k)) 
30 continue 

*** Interpolation at Eastern cell walls for strong 
*** pressure-velocity coupling 

do 40 k = 2,knml 
do 40 j = 2,jnml 

do SO 11 = 1,lobs(j,k) 
nie2 = iiend(ll,j,k) 2 
nie3 = iiend(ll,j,k) 3 
nibl = iibeg(ll,j,k) + 1 
nib2 = iibeg(ll,j,k) + 2 
if(nie3.lt.nib2)goto 40 
do 60 i = nib2,nie3 
I= i-1 
ue(i,j,k) = ue(i,j,k) 

* - (exixe(l,j,k)*pie(l,j,k)/tjace(l,j,k) 
* - exixe(i,j,k)*pie(i,j,k)/tjace(i,j,k))/(2*apu(i,j,k)) 
* - (exixe(i,j,k)*pie(i,j,k)/tjace(i,j,k) 
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* - exixe(i+l,j,k)*pie(i+l,j,k)/tjace(i+l,j,k))/(2*apu(i+l,j,k)) 
* + (exix(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - exix(i+l,j,k)*pp(i+l,j,k)/tjac(i+l,j,k)) 
* /((apu(i,j,k)+apu(i+l,j,k))/2) 

ve(i,j,k) = ve(i,j,k) 
* - (exiye(l,j,k)*pie(l,j,k)/tjace(l,j,k) 
* - exiye(i,j,k)*pie(i,j,k)/tjace(i,j,k))/(2*apv(i,j,k)) 
* - (exiye(i,j,k)*pie(i,j,k)/tjace(i,j,k) 
* - exiye(i+l,j,k)*pie(i+l,j,k)/tjace(i+l,j,k))/(2*apv(i+l,j,k)) 
* + (exiy(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - exiy(i+l,j,k)*pp(i+l,j,k)/tjac(i+l,j,k)) 
* /((apv(i,j,k)+apv(i+l,j,k))/2) 

we(i,j,k) = we(i,j,k) 
* - (exize(l,j,k)*pie(l,j,k)/tjace(l,j,k) 
* - exize(i,j,k)*pie(i,j,k)/tjace(i,j,k))/(2*apw(i,j,k)) 
* - (exize(i,j,k)*pie(i,j,k)/tjace(i,j,k) 
* - exize(i+l,j,k)*pie(i+l,j,k)/tjace(i+l,j,k))/(2*apw(i+l,j,k)) 
* + (exiz(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - exiz(i+l,j,k)*pp(i+l,j,k)/tjac(i+l,j,k)) 
* /((apw(i,j,k)+apw(i+l,j,k))/2) 

60 continue 
SO continue 
40 continue 

*** Interpolation at Northern cell walls for strong 
*** pressure-velocity coupling 

do 70 k = 2,knml 
do 70 i = 2,inml 

do 80 mm= 1,mobs(i,k) 
nje2 = jjend(mm,i,k) - 2 
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nje3 = jjend(mm,i,k) - 3 
njbl = jjbeg(mm,i,k) + 1 
njb2 = jjbeg(mm,i,k) + 2 
if(nje3.lt.njb2)goto 70 
do 90 j = njb2,nje3 

m = j-1 
un(i,j,k) = un(i,j,k) 
(etaxn(i,m,k)*pin(i,m,k)/tjacn(i,m,k) 
etaxn(i,j,k)*pin(i,j,k)/tjacn(i,j,k))/(2*apu(i,j,k)) 

* - (etaxn(i,j,k)*pin(i,j,k)/tjacn(i,j,k) 

PAGE 00056 

* - etaxn(i,j+l,k)*pin(i,j+l,k)/tjacn(i,j+l,k))/(2*apu(i,j+l,k)) 
* + (etax(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - etax(i,j+l,k)*pp(i,j+l,k)/tjac(i,j+l,k)) 
* /((apu(i,j+l,k)+apu(i,j,k))/2) 

vn(i,j,k) = vn(i,j,k) 
* - (etayn(i,m,k)*pin(i,m,k)/tjacn(i,m,k) 
* - etayn(i,j,k)*pin(i,j,k)/tjacn(i,j,k))/(2*apv(i,j,k)) 
* - (etayn(i,j,k)*pin(i,j,k)/tjacn(i,j,k) 
* - etayn(i,j+l,k)*pin(i,j+l,k)/tjacn(i,j+l,k))/(2*apv(i,j+l,k)) 
* + (etay(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - etay(i,j+l,k)*pp(i,j+l,k)/tjac(i,j+l,k)) 
* /((apv(i,j+l,k)+apv(i,j,k))/2) 

wn(i,j,k) = wn(i,j,k) 
* - (etazn(i,m,k)*pin(i,m,k)/tjacn(i,m,k) 
* - etazn(i,j ,k)-,"t-pin(i,j ,k)/tjacn(i,j ,k))/(2*apw(i,j ,k)) 
* - (etazn(i,j,k)*pin(i,j,k)/tjacn(i,j,k) 
* - etazn(i,j+l,k)*pin(i,j+l,k)/tjacn(i,j+l,k))/(2*apw(i,j+l,k)) 
* + (etaz(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - etaz(i,j+l,k)*pp(i,j+l,k)/tjac(i,j+l,k)) 
* /((apw(i,j+l,k)+apw(i,j,k))/2) 

90 continue 
80 continue 
70 continue 

*** Interpolation at Backward facing cell walls for strong 
*** pressure-velocity coupling 

do 100 j = 2,jnml 
do 100 i = 2,inml 

do 110 nn = 1,nobs(i,j) 
nke2 = kkend(nn,i,j) - 2 
nke3 = kkend(nn,i,j) - 3 
nkbl = kkbeg(nn,i,j) + 1 
nkb2 = kkbeg(nn,i,j) + 2 
if(nke3.lt.nkb2)goto 100 
do 120 k = nkb2,nke3 

n = k-1 
ub(i,j,k) = ub(i,j,k) 

* - (zetxb(i,j,n)*pib(i,j,n)/tjacb(i,j,n) 
* - zetxb(i,j,k)*pib(i,j,k)/tjacb(i,j,k))/(2*apu(i,j,k)) 
* - (zetxb(i,j,k)*pib(i,j,k)/tjacb(i,j,k) 
* - zetxb(i,j,k+l)*pib(i,j,k+l)/tjacb(i,j,k+l))/(2*apu(i,j,k+l)) 
* + (zetx(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
* - zetx(i,j,k+l)*pp(i,j,k+l)/tjac(i,j,k+l)) 
* /((apu(i,j,k+l)+apu(i,j,k))/2) 
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vb(i,j,k) = vb(i,j,k) 
* -
* -
* -
* -
* + 
* -
* 

(zetyb(i,j,n)*pib(i,j,n)/tjacb(i,j,n) 
zetyb(i,j,k)*pib(i,j,k)/tjacb(i,j,k))/(2*apv(i,j,k)) 

(zetyb(i,j,k)*pib(i,j,k)/tjacb(i,j,k) 
zetyb(i,j,k+l)*pib(i,j,k+l)/tjacb(i,j,k+l))/(2*apv(i,j,k+l)) 

(zety(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
zety(i,j,k+l)*pp(i,j,k+l)/tjac(i,j,k+l)) 
/((apv(i,j,k+l)+apv(i,j,k))/2) 

* -
* -
* -
* -
* + 
* -
* 

wb(i,j,k) = wb(i,j,k) 
(zetzb(i,j,n)*pib(i,j,n)/tjacb(i,j,n) 
zetzb(i,j,k)*pib(i,j,k)/tjacb(i,j,k))/(2*apw(i,j,k)) 

(zetzb(i,j,k)*pib(i,j,k)/tjacb(i,j,k) 
zetzb(i,j,k+l)*pib(i,j,k+l)/tjacb(i,j,k+l))/(2*apw(i,j,k+l)) 

(zetz(i,j,k)*pp(i,j,k)/tjac(i,j,k) 
zetz(i,j,k+l)*pp(i,j,k+l)/tjac(i,j,k+l)) 
/((apw(i,j,k+l)+apw(i,j,k))/2) 

120 continue 
110 continue 
100 continue 

130 return 
end 

Subroutine INTPOL 
****,'r*****irir******,'r***,'r***ir****,''******·lrir*,'r,'r****,'rir*i'r-;'r,'dr·k*,'r*irir*****irir·k,'ri:* 

*** This subroutine interpolates the pressures and the velocities 

INCLUDE 'COMM' 

*** Interpolate velocities and pressure on Eastern cell walls 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 11 = 1,lobs(j,k) 
niel = iiend(ll,j,k) - 1 
nie2 = iiend(ll,j,k) - 2 
nib= iibeg(ll,j,k) 
nibl = iibeg(ll,j,k) + 1 
pie(nib,j,k) = pp(nibl,j,k) 
pie(niel,j,k) = pp(niel,j,k) 
do 10 i = nibl,nie2 
ue(i,j,k) = vx(i+l,j,k)*fl(i,j,k) 

* + vx(i,j,k)*(l-fl(i,j,k)) 
ve(i,j,k) = vy(i+l,j,k)*fl(i,j,k) 

* + vy(i,j,k)*(l-fl(i,j,k)) 
we(i,j,k) = vz(i+l,j,k)*fl(i,j,k) 

* + vz(i,j,k)*(l-fl(i,j,k)) 
pie(i,j,k) = pp(i+l,j,k)*fl(i,j,k) 

* + pp(i,j,k)*(l-fl(i,j,k)) 
if(j.eq.jnml)goto 10 
ffa = (1-fl(i,j+l,k))*((f2(i,j,k)+f2(i+l,j,k))/2) 
ffb = fl(i,j+l,k)*((f2(i,j,k)+f2(i+l,j,k))/2) 
ffc = fl(i,j,k)*(l-(f2(i,j,k)+f2(i+l,j,k))/2) 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria 

ffd = (1-fl(i,j,k))*(l-(f2(i,j,k)+f2(i+l,j,k))/2) 
une(i,j,k) = ffa*vx(i,j+l,k) + ffb*vx(i+l,j+l,k) 

+ ffc*vx(i+l,j,k) + ffd*vx(i,j,k) 
vne(i,j,k) = ffa*vy(i,j+l,k) + ffb*vy(i+l,j+l,k) 

+ ffc*vy(i+l,j,k) + ffd*vy(i,j,k) 
wne(i,j,k) = ffa*vz(i,j+l,k) + ffb*vz(i+l,j+l,k) 

+ ffc*vz(i+l,j,k) + ffd*vz(i,j,k) 
i() continue 

* 

* 

* 

* 

* 

* 

* 

Interpolate velocities and pressure on Northern cell walls 

do 20 k = 2,knml 
do 20 i = 2,inml 

do 20 mm= 1,mobs(i,k) 
njel = jjend(mm,i,k) - 1 
nje2 = jjend(mm,i,k) - 2 
njb = jjbeg(mm,i,k) 
njbl = jjbeg(mm,i,k) + 1 
pin(i,njb,k) = pp(i,njbl,k) 
pin(i,njel,k) = pp(i,njel,k) 
do 20 j = njbl,nje2 
un(i,j,k) = vx(i,j+l,k)*f2(i,j,k) 

+ vx(i,j,k)*(l-f2(i,j,k)) 
vn(i,j,k) = vy(i,j+l,k)*f2(i,j,k) 

+ vy(i,j,k)*(l-f2(i,j,k)) 
wn(i,j,k) = vz(i,j+l,k)*f2(i,j,k) 

+ vz(i,j,k)*(l-f2(i,j,k)) 
pin(i,j,k) = pp(i,j+l,k)*f2(i,j,k) 

+ pp(i,j,k)*(l-f2(i,j,k)) 
if(k.eq.knml)goto 20 
ffa = (1-f3(i,j+l,k))*((f2(i,j,k)+f2(i,j,k+l))/2) 
ffb = f3(i,j+l,k)*((f2(i,j,k)+f2(i,j,k+l))/2) 
ffc = f3(i,j,k)*(l-(f2(i,j,k)+f2(i,j,k+l))/2) 
ffd = (1-f3(i,j,k))*(l-(f2(i,j,k)+f2(i,j,k+l))/2) 
unb(i,j ,k) = ffa*vx(i,j+l,k) + ffb*vx(i,j+l,k+l) 

+ ffc*vx(i,j,k+l) + ffd*vx(i,j,k) 
vnb(i,j,k) = ffa*vy(i,j+l,k) + ffb*vy(i,j+l,k+l) 

+ ffc*vy(i,j,k+l) + ffd*vy(i,j,k) 
wnb(i,j,k) = ffa*vz(i,j+l,k) + ffb*vz(i,j+l,k+l) 

+ ffc*vz(i,j,k+l) + ffd*vz(i,j,k) 
20 continue 
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*** Interpolate velocities and pressure on Backward facing cell walls 

do 30 j = 2,jnml 
do 30 i = 2,inml 

do 30 nn = 1,nobs(i,j) 
nkel = kkend(nn,i,j) - 1 
nke2 = kkend(nn,i,j) - 2 
nkb = kkbeg(nn,i,j) 
nkbl = kkbeg(nn,i,j) + 1 
pib(i,j,nkb) = pp(i,j,nkbl) 
pih(i,j,nkel) = pp(i,j,nkel) 
do 30 k = nkbl,nke2 
ub(i,j,k) = vx(i,j,k+l)*f3(i,j,k) 
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* + vx(i,j,k)*(l-f3(i,j,k)) 
vb(i,j,k) = vy(i,j,k+l)*f3(i,j,k) 

* + vy(i,j,k)*(l-f3(i,j,k)) 
wb(i,j,k) = vz(i,j,k+l)*f3(i,j,k) 

* + vz(i,j,k)*(l-f3(i,j,k)) 
pib(i,j,k) = pp(i,j,k+l)*f3(i,j,k) 

* + pp (i , j , k) * ( 1 - f 3 ( i , j , k) ) 
if(i.eq.inml)goto 30 
ffa = (1-fl(i,j,k+1))*((f3(f,j,k)+f3(i+l,j,k))/2) 
ffb = fl(i,j,k+l)*((f3(i,j,k)+f3(i+l,j,k))/2) 
ffc = fl(i,j,k)*(l-(f3(i,j,k)+f3(i+l,j,k))/2) 
ffd = (1-fl(i,j,k))*(l-(f3(i.j,k)+f3(i+l,j,k))/2) 
ube(i,j ,k) = ffa*vx(i,j ,k+l) + ffb*vx(i+l,j ,k+l) 

* + ffc*vx(i+l,j,k) + ffd*vx(i,j,k) 
vbe(i,j,k) = ffa*vy(i,j,k~l) + ffb*vy(i+l,j,k+l) 

* + ffc*vy(i+J .j,k) + ffd*vy(i,j,k) 
wbe(i,j,k) = ffR*vz(i,j,k+l) + ffb*vz(i+l,j,k+l) 

* + ffc*vz(i+l,j,k) + ffd*vz(i,j,k) 
30 continue 

return 
end 

Subroutine INTPOLKE 
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-,'r******-lr*,'r*-l'**-l'***-lr-lr,'r**-lrir-lr**"'rir,'r**-lrir*ir*-lr,'r-,'r**-,'r-,'rir-lr-lr1r-,'r'l'r-lr1r,'r***·k,'r-,'r-:'rir*,'dn'r*-:'rir-lr* 

*** This subroutine interpolates fork and epsilon 

INCLUDE 'COMM' 

*** Set the k and epsilon values on boundary edges 

do 10 i = 1 , inm 1 
eps(i,1,1) = eps(i,2,2) 
eps(i,1,kn) = eps(i,2,knml) 
eps(i,jn,1) = eps(i,jnml,2) 
eps(i,jn,kn) = eps(i,jnml,knml) 
tken(i,1,1) = tken(i,2,2) 
tken(i,1,kn) = tken(i,2,knml) 
tken(i,jn,1) = tken(i,jnml,2) 
tken(i,jn,kn) = tken(i,jnml,knml) 

10 continue 

do 20 j = 1,jnml 
eps(l,j,1) = eps(2,j,2) 
eps(l,j,kn) = eps(2,j,knml) 
eps(in,j,1) = eps(inml,j,2) 
eps(in,j,kn) = eps(inml,j,knml) 
tken(l,j,1) = tken(2,j,2) 
tken(l,j,kn) = tken(2,j,knml) 
tken(in,j,1) = tken(inml,j,2) 
tken(in,j,kn) = tken(inml,j,knml) 

20 continue 
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do 30 k = 1,knml 
eps(l,1,k) = eps(2,2,k) 
eps(in,l,k) = eps(inml,2,k) 
eps(l,jn,k) = eps(2,jnml,k) 
eps(in,jn,k) = eps(inml,jnml,k) 
tken(l,1,k) = tken(2,2,k) 
tken(in,1,k) = tken(inml,2,k) 
tken(l,jn,k) = tken(2,jnml,k) 
tken(in,jn,k) = tken(inml,jnml,k) 

30 continue 

*** Interpolate fork and epsilon 

do 40 k = 1,knml 
do 40 j = 1,jnml 

do 40 i = 1,inml 
ffa = (1-fl(i,j+l,k))*((f2(i,j,k)+f2(i+l,j,k))/2) 
ffb = fl(i,j+l,k)*((f2(i,j,k)+f2(i+l,j,k))/2) 
ffc = fl(i,j,k)*(l-(f2(i,j,k)+f2(i+l,j,k))/2) 
ffd = (1-fl(i,j,k))*(l-(f2(i,j,k)+f2(i+l,j,k))/2) 
tkenne(i,j,k) = ffa*tken(i,j+l,k) + ffb*tken(i+l,j+l,k) 

* + ffc*tken(i+l,j,k) + ffd*tken(i,j,k) 
epsne(i,j,k) = ffa*eps(i,j+l,k) + ffb*eps(i+l,j+l,k) 

* + ffc*eps(i+l,j,k) + ffd*eps(i,j,k) 
ffa = (1-f3(i,j+l,k))*((f2(i,j,k)+f2(i,j,k+l))/2) 
ffb = f3(i,j+l,k)*((f2(i,j,k)+f2(i,j,k+l))/2) 
ffc = f3(i,j,k)*(l-(f2(i,j,k)+f2(i,j,k+l))/2) 
ffd = (1-f3(i,j,k))*(l-(f2(i,j,k)+f2(i,j,k+l))/2) 
tkennb(i,j,k) = ffa*tken(i,j+l,k) + ffb*tken(i,j+l,k+l) 

* + ffc*tken(i,j,k+l) + ffd*tken(i,j,k) 
epsnb(i,j,k) = ffa*eps(i,j+l,k) + ffb*eps(i,j+l,k+l) 

* + ffc*eps(i,j,k+l) + ffd*eps(i,j,k) 
ffa = (1-fl(i,j,k+l))*((f3(i,j,k)+f3(i+l,j,k))/2) 
ffb = fl(i,j,k+l)*((f3(i,j,k)+f3(i+l,j,k))/2) 
ffc = fl(i,j,k)*(l-(f3(i;j,k)+f3(i+l,j,k))/2) 
ffd = (1-fl(i,j,k))*(l-(f3(i,j,k)+f3(i+l,j,k))/2) 
tkenbe(i,j,k) = ffa*tken(i,j,k+l) + ffb*tken(i+l,j,k+l) 

* + ffc*tken(i+l,j,k) + ffd*tken(i,j,k) 
epsbe(i,j,k) = ffa*eps(i,j,k+l) + ffb*eps(i+l,j,k+l) 

* + ffc*eps(i+l,j,k) + ffd*eps(i,j,k) 
40 continue 

return 
end 

Subroutine EFFVISC 

PAGE 00060 

,'r*,'r*,'c,'c**-ldricir***"'c*irir*ir*ir,'c*-lr***''r,~,'c*ir,'c*i'c**·kir***ic**''c-i'c***icic,'c**''cicic,'c,'cidcir,'c*ic*,'c* 

*** This subroutine calculates the effective viscosity 

INCLUDE 'COMM' 

difftken = 0.0 
diffeps = 0.0 
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*** Calculate the effective viscosity and the 
*** turbulence convergence parameters 

do 10 k = 2,knml 
do 10 j = 2,jnml 

do 10 i = 2,inml 
if(jbound(i,j,k).ne.O)goto 10 
vmu = vmulam + vmuturb(i,j,k) 
viscp(i,j,k) = viscp(i,j,k) + (vmu-viscp(i,j,k))*0.5 
difftken = difftken + tken(i,j,k) 
diffeps = diffeps + eps(i,j,k) 

10 continue 

difftken = dabs(difftken - restken)/restken 
diffeps = dabs(diffeps -reseps)/reseps 

*** Apply the outflow boundary condition to viscosity 

k = kn 
.do 20 j = 2,jnml 

do 20 i = 2,inml 
jb = jbound(i,j,k) 
viscp(i,j,k) = be(jb)*viscp(i,j,k-1) 

20 continue 

*** Interpolate viscosities on Eastern cell walls 

do 30 k = 2,knml 
do 30 j = 2,jnml 

do 30 11 = 1,lobs(j,k) 
niel = iiend(ll,j,k) - 1 
nie2 = iien<l(ll,j,k) - 2 
nib= iibeg(ll,j,k) 
nihl = iibeg(ll,j,k) + 1 
visce(nib,j,k) = viscp(nibl,j,k) 
visce(niel,j,k) = viscp(niel,j,k) 
do 30 i = nibl,nie2 
visce(i,j,k) = viscp(i+l,j,k)*fl(i,j,k) 

* + viscp(i,j,k)*(l-fl(i,j,k)) 
30 continue 

*** Interpolate viscosities on Northern cell walls 

do 40 k = 2,knml 
do 40 i = 2,inml 

do 40 mm= 1,mobs(i,k) 
njel = jjend(mm,i,k) - 1 
nje2 = jjend(mm,i,k) - 2 
njh = jjbeg(mm,i,k) 
njbl = jjbeg(mm,i,k) + 1 
viscn(i,njb,k) = viscp(i,njbl,k) 
viscn(i,njel,k) = viscp(i,njel,k) 
do 40 j = njbl,nje2 
viscn(i,j,k) = viscp(i,j+l,k)*f2(i,j,k) 
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*** 

-Ir + viscp(i,j,k)*(l-f2(i,j,k)) 
40 continue 

* 

Interpolate viscosities on Backward facing cell walls 

do 50 j = 2,jnml 
do 50 i = 2,inml 

do 50 nn = 1,nobs(i,j) 
nkel = kkend(nn,i,j) - 1 
nke2 = kkend(nn,i,j) - 2 
nkb = kkbeg(nn,i,j) 
nkbl = kkbeg(nn,i,j) + 1 
viscb(i,j,nkb) = viscp(i,j,nkbl) 
viscb(i,j,nkel) = viscp(i,j,nkel) 
do 50 k = nkbl,nke2 
viscb(i,j,k) = viscp(i,j,k+l)*f3(i,j,k) 

+ viscp(i,j,k)*(l-f3(i,j,k)) 
50 continue 

return 
end 

Subroutine SETBND 
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*** This subroutine provides the boundary conditions 

INCLUDE 'COMM' 

Dimension ibeg(20),iend(20),jbeg(20),jend(20),kbeg(20),kend(20) 

***--------------------------------------------------------------------
*** Part 1 : Read boundary input data 
***-----------------------------------------------------·---------------

do 10 k = 1,kn 
do 10 j = 1,jn 

do 10 i = 1,in 
jbound(i,j,k) = 0 

10 continue 

read(4,'(a)')dummy 
read(4, '(a)')dummy 
read(4,*)nbnd 

*** Define the different boundaries - read input 

do 20 1 = 1,nbnd 
read(4, '(a)')dummy 
read(4, '(a)')dummy 
read(4, '(a)')dummy 
read(4,*)bu(l),cu(l),bv(l),cv(l),bw(l),cw(l),bp(l),cp(l), 

* be(l),ce(l),bk(l),ck(l) 
read(4, '(a)')dummy 
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read(4,*)nfunc 

do 30 n = 1,nfunc 
read(4, '(a)')dummy 
read(4,*)ibeg(n),iend(n),jbeg(n),jend(n),kbeg(n),kend(n) 
do 40 k = 1, kn 

do 40 j = 1, jn 
do 40 i = 1, in 
if(i.ge.ibeg(n).and.i.le.iend(n).and. 

* j.ge.jbeg(n).and.j.le.jend(n).and. 
* k.ge.kbeg(n).and.k.le.kend(n))then 

jbound(i,j,k) = 1 
endif 

40 continue 
30 continue 
20 continue 
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***--------------------------------------------------------------------
*** Part 2 : Initial velocity and turbulence distribution 
***--------------------------------------------------------------------

*** Inflow profiles 

k = 1 
do 50 j = 1, jn 

READ(4,*)JCH,VZZ,TKENN,EPSS 
do 50 i = 1,in 

c eps(i,j,k) = ce(l) 
c tken(i,j,k) = ck(l) 

eps(i,j,k) = epss 
tken(i,j,k) = tkenn 
if(iturb.eq.l)then 
vmuturb(i,j,k) = (cmu*rhop(i,j,k)*tken(i,j,k)**2)/eps(i,j,k) 
viscp(i,j,k) = vmulam + vmuturb(i,j,k) 

endif 
viscb(i,j,k) = viscp(i,j,k) 
if(jbound(i,j,k).eq.l)then 
jb = jbound(i,j,k) 
vx(i,j,k) = cu(jb) 
vy(i,j,k) = cv(jb) 

c vz(i,j,k) = cw(jb) 
vz(i,j,k) = vzz 
ub(i,j,k) = vx(i,j,k) 
vb(i,j,k) = vy(i,j,k) 
wb(i,j,k) = vz(i,j,k) 
delzetb(i,j,k) = 0.5 

endif 
50 continue 

*** Specify initial velocity and turbulence distribution 

do 60 k = 1,kn 
do 60 j = 1, jn 

do 60 i = 1, in 
c if(jbound(i,j,k).eq.l)goto 60 
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if(k.eq.l)goto 60 
c eps(i,j,k) = epsinit 
c tken(i,j,k) = tkeninit 

eps(i,j,k) = eps(i,j,1) 
tken(i,j,k) = tken(i,j,1) 
if(jbound(i,j,k).ne.0)goto 60 

c vx(i,j,k) = vxinit 
c vy(i,j,k) = vyinit 
c vz(i,j,k) = vzinit 

vx(i,j,k) = vx(i,j,l) 
vy(i,j,k) = vy(i,j,1) 
vz(i,j,k) = vz(i,j,1) 

60 continue 

*** OUTFLOW BOUNDARY (2) _ 

do 70 k = 1, kn 
do 70 j = 1, jn 

do 70 i = 1,in 
if(jbound(i,j,k).eq.2)then 
jb = jbound(i,j,k) 
vx(i,j,k) = bu(jb)*vx(i,j,k-1) 
vy(i,j,k) = bv(jb)*vy(i,j,k-1) 
vz(i,j,k) = bw(jb)*vz(i,j,k-1) 
ub(i,j,k-1) = vx(i,j,k) 
vb(i,j,k-1) = vy(i,j,k) 
wb(i,j,k-1) = vz(i,j,k) 
delzetb(i,j,k-1) = 0.5 

endif 
70 continue 

*** EASTERN (3) AND WESTERN (4) BOUNDARIES 

do 80 k = 1,kn 
do 80 j = 1, jn 

do 80 i = 1,in 
if(jbound(i,j,k).eq.0)goto 80 
jb = jbound(i,j,k) 
goto(80,80,3,4,80,80),jb 

3 vx(i,j,k) = bu(jb)*vx(i-1,j,k) + cu(jb) 
vy(i,j,k) = bv(jb)*vy(i-1,j,k) + cv(jb) 
vz(i,j,k) = bw(jb)*vz(i-1,j,k) + cw(jb) 
ue(i-1,j,k) = vx(i,j,k) 
ve(i-1,j,k) = vy(i,j,k) 
we(i-1,j,k) = vz(i,j,k) 
delexie(i-1,j,k) =·o.5 
goto 80 

4 vx(i,j,k) = bu(jb)*vx(i+l,j,k) + cu(jb) 
vy(i,j,k) = bv(jb)*vy(i+l,j,k) + cv(jb) 
vz(i,j,k) = bw(jb)*vz(i+l,j,k) + cw(jb) 
ue(i,j,k) = vx(i,j,k) 
ve(i,j,k) = vy(i,j,k) 
we(i,j,k) = vz(i,j,k) 
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delexie(i,j,k) = 0.5 

80 continue 

*** NORTHERN (5) AND SOUTHERN (6) BOUNDARIES 

do 90 k = 1, kn 
do 90 j = 1, jn 

do 90 i = 1,in 
if(jbound(i,j,k).eq.O)goto qo 
jb = jbound(i,j,k) 
goto (90,90,90,90,5,6),jb 

5 vx(i,j ,k) = bn(jb)*vx(i,j-1,k) + cu(jb) 
vy(i,j,k) = hv(jb)*vy(i,j-1,k) + cv(jb) 
vz(i,j ,k) = bw(jh)*vz(i.Jj-l,k) + cw(jb) 
un(i,j-1,k) = vx(i,j,k) 
vn(i,j-1,k) = vy(i,j,k) 
wn(i,j-1,k) = vz(i,j,k) 
deletan(i,j,k) = 0.5 
goto 90 

6 vx(i,j,k) = bu(jb)*vx(i,j+l,k) + cu(jb) 
vy(i,j,k) = bv(jb)*vy(i,j+l,k) + cv(jb) 
vz ( i, j , k) = bw (j b) trvz ( i, j + 1 , k) + cw (j b) 
un(i,j,k) = vx(i,j,k) 
vn(i,j,k) = vy(i,j,k) 
wn(i,j,k) = vz(i,j,k) 
deletan(i,j,k) = 0.5 

90 continue 

*** FIXED WALL BOUNDARIES (7) 

do 100 k = l,kn 
do 100 j = 1,jn 

do 100 i = 1,in 
if(jbound(i,j,k).ne.nbnd)goto 100 
vx(i,j,k) = 0.0 
vy(i,j,k) = 0.0 
vz(i,j,k) = 0.0 
ue(i,j,k) = 0.0 
ve(i,j,k) = 0.0 
we(i,j,k) = 0.0 
11n ( .i , j , k) = O . O 
vn(i,j,k) = 0.0 
wn(i,j,k) = 0.0 
ub(i,j,k) = 0.0 
vb(i,j,k) = 0.0 
wb(i,j,k) = 0.0 
ue(i-1,j,k) = 0.0 
ve(i-1,j,k) = 0.0 
we(i-1,j,k) = 0.0 
nn(i,j-1,k) = 0.0 
vn(i,j-1,k) = 0.0 
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wn(i,j-1,k) = 0.0 
ub(i,j,k-1) = 0.0 
vb(i,j,k-1) = 0.0 
wb(i,j,k-1) = 0.0 
delexie(i,j,k) = 0.5 
delexie(i-1,j,k) = 0.5 
deletan(i,j,k) = 0.5 
deletan(i,j-1,k) = 0.5 
delzetb(i,j,k) = 0.5 
delzetb(i,j,k-1) = 0.5 

100 continue 
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***--------------------------------------------------------------------
*** Produce an output of the boundary conditions 
***--------------------------------------------------------------------

kx = 1 
jx = -1 
if(kn.gt.18) kx 
if(kn.gt.36) kx 
if(kn.gt.54) kx 
if(kn.gt.72) kx 

write (9, 22) 

do 110 i = 1 , in 
write ( 9 , 25) i 

= 
= 
= 
= 

do 110 kkk = 1,kx 
write(9,*)' ' 
nkend = 18*kkk 
nkbeg = nkend-17 

2 
3 
4 
5 

if(nkend.gt.kn) nkend = kn 
write(9,24) (kk,kk = nkbeg,nkend) 
write(9,21) 

do 190 j = jn,1,jx 
write(9,23)j,(jbound(i,j,kk),kk = nkbeg,nkend) 

190 continue 
110 continue 

21 format(6x,73('-')) 
22 format(//lx, 'BOUNDARY CONDITIONS (JBOUND)'/) 
23 format(lx,I2,' I' ,23(1x,I3)) 
24 format(lx,' J/K = ',23(I2,2x)) 
25 format(lx, 'I-SURFACE NO. ',13) 

return 
end 

Subroutine STEP 
***.,'r-ldc-lr-,'r*-lc****.,'r-lr**-lr-lr***-lr****"''r****-lc*.,'r*-lr*"''r.,'r-lr****-ldr'l'r-lr*-lr**"''r-lr*"''r**"''r-lr***-lr-lr-lr·k** 

*** This subroutine adjusts velocities before and behind steps 
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INCLUDE 'COMM' 

***--------------------------------------------------------------------
*** Part 1 : Forward facing step 
***--------------------------------------------------------------------

if(kfst.eq.777)goto 35 

kfstl = kfst - 1 
jstep2 = jstep + 1 
kfst2 = kfst + 1 
gvoor = 0.0 
gna = 0.0 

do 10 i = 2,istep 
do 10 j = 2,jnml 

gvoor = gvoor + vz(i,j,kfstl)*zetz(i,j,kfstl)/tjac(i,j,kfstl) 
10 continue 

do 11 i = 2,istep 
do 11 j = jstep2,jnml 

gna = gna + vz(i,j,kfst)*zetz(i,j,kfst)/tjac(i,j,kfst) 
11 continue 

ffs = gvoor/gna 

do 20 i = 2,istep 
do 20 j = jstep2,jnml 
vz(i,j,kfst) = vz(i,j,kfst)*ffs 

20 continue 

do 25 k = kfst2,kbst 
do 25 i = 2,istep 

do 25 j = jstep2,jnml 
vz(i,j,k) = vz(i,j,k-1) 

25 continue 

*** Adjust vy-velocities 

k = kfstl 
do 30 i = 2,istep 

do 30 j = 2,jnml 

gout= dabs(zetzb(i,j,k) 
* *(vz(i,j,k)+vz(i,j,k+l))/(2*tjacb(i,j,k))) 
* + dabs(etayn(i,j,k) 
* *vn(i,j,k)/tjacn(i,j,k)) 

gin= dabs(zetzb(i,j,k-1) 
* *wb(i,j,k-1)/tjacb(i,j,k-1)) 
* + dabs(etayn(i,j-1,k) 
* *vn(i,j-1,k)/tjacn(i,j-1,k)) 

ggain = gin - gout 
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vn(i,j,k) = ggain*tjacn(i,j,k)/etayn(i,j,k) 
vy(i,j,k) = (vn(i,j-l,k)+vn(i,j,k))/2 

30 continue 
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***--------------------------------------------------------------------
*** Part 2 : Backward facing step 
***--------------------------------------------------------------------

35 if(kbst.eq.777)goto 65 

kbstl = kbst + 1 
jstep2 = jstep + 1 

*** Adjust vy-velocities 

k = kbstl 
do 60 i = 2,istep 

do 60 j = 2,jnml 

gout= dabs(zetz(i,j,k)*wb(i,j,k)/tjac(i,j,k)) 
* + dabs(etay(i,j,k)*vn(i,j-1,k)/tjac(i,j,k)) 

gin= dabs(zetz(i,j,k)*(vz(i,j,k-l)+vz(i,j,k))/(2*tjac(i,j,k))) 
* + dabs(etay(i,j,k)*vn(i,j,k)/tjac(i,j,k)) 

ggain = gin - gout 
vn(i,j,k) = ggain*tjac(i,j,k)/etay(i,j,k) 
vy(i,j,k) = (vn(i,j-l,k)+vn(i,j,k))/2 

60 continue 

65 return 
end 

Subroutine BOUND 
,'r****"'',.,,.,,,*.,'<i<*·k*-i<*-l:*'l'r,',1'r*-ki:irir-*ir,'r**1r-i:ir,'r****.,':-i:-iri<,':iri:-i:*·k-,':-ir**i<'l':1<:i,-,'dr-*i<iridr-l:-i'r-,',·kir*'l'< 

*** This subroutine adjusts velocities at outflow boundary conditions 

INCLUDE 'COMM' 

***--------------------------------------------------------------------
*** Part 1 : Main velocities on dependant boundaries 
***--------------------------------------------------------------------

do 10 k = 1,kn 
do 10 j = 1, jn 

do 10 i = 1,in 
jb = jbound(i,j,k) 
if(jb.eq.O)goto 10 
goto (10,2,3,4,5,6,lO)jb 

*** Outflow 

2 vx(i,j,k) = bu(jb)*vx(i,j,k-1) 
vy(i,j,k) = bv(jb)*vy(i,j,k-1) 
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vz(i,j,k) = bw(jb)*(vz(i,j,k-Z)+vz(i,j,k-1))/2 
ub(i,j,k-1) = vx(i,j,k) 
vb(i,j,k-1) = vy(i,j,k) 
wb(i,j,k-1) = vz(i,j,k) 
goto 10 

*** East 

3 vx(i,j,k) = bu(jb)*vx(i-1,j,k) + cu(jb) 
vy(i,j,k) = bv(jb)*vy(i-1,j,k) + cv(jb) 
vz(i,j,k) = bw(jb)*vz(i-1,j,k) + cw(jb) 
ue(i-1,j,k) = vx(i,j,k) 
ve(i-1,j,k) = vy(i,j,k) 
we(i-1,j,k) = vz(i,j,k) 
goto 10 

4 vx(i,j,k) = bu(jb)*vx(i+l,j,k) + cu(jb) 
vy(i,j,k) = bv(jb)*vy(i+l,j,k) + cv(jb) 
vz(i,j,k) = bw(jb)*vz(i+l,j,k) + cw(jb) 
ue(i,j,k) = vx(i,j,k) 
ve(i,j,k) = vy(i,j,k) 
we(i,j,k) = vz(i,j,k) 
goto 10 

5 vx(i,j,k) = bu(jb)*vx(i,j-1,k) + cu(jb) 
vy(i,j,k) = bv(jb)*vy(i,j-1,k) + cv(jb) 
vz(i,j,k) = hw(jb)*vz(i,j-1,k) + cw(jb) 
un(i,j-1,k) = vx(i,j,k) 
vn(i,j-1,k) = vy(i,j,k) 
wn(i,j-1,k) = vz(i,j,k) 
goto 10 

6 vx(i,j,k) = bu(jb)*vx(i,j+l,k) + cu(jb) 
vy(i, j ,k) = bv(jb)*vy(i,j+l,k) + cv(jb) 
vz(i,j,k) = bw(jb)*vz(i,j+l,k) + cw(jb) 
un(i ,j ,k) = vx(i,j,k) 
vn(i,j,k) = vy(i,j,k) 
wn(i,j,k) = vz(i,j,k) 

10 continue 
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***--------------------------------------------------------------------
*** Part 2 : Interpolated boundary velocities 
***--------------------------------------------------------------------

do 20 k = 1,kn 
do 20 j = 1, jn 

do 20 i = 1, in 
jb = jbound(i,j,k) 
if(jb.eq.O)goto 20 
goto (20,12,13,14,15,16,20)jb 

12 kk = k-1 
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unb(i,j,kk)=(l-f2(i,j,kk))*vx(i,j,k)+f2(i,j,kk)*vx(i,j+l,k) 
vnhff,j,kk)=(l-f2(i,j,kk))*vy(i,j,k)+f2(i,j,kk)*vy(i,j+l,k) 
wn b (i , j , kk) = (1- f 2 ( i, j , kk) ) *vz ( i, j , k) +f 2 ( i, j , kk) *vz ( i, j+ 1 , k) 
ub~(J,j,kk)=(l-fl(i,j,kk))*vx(i,j,k)+fl(i,j,kk)*vx(i+l,j,k) 
vh0(i.j.kk)=(l-fl(i,j,kk))*vy(i,j,k)+fl(i,j,kk)*vy(i+l,j,k) 
wlw ' i , J , k k) = (1- fl ( i, j , kk) ) *vz ( i, j , k) +fl ( i, j , kk) "'"vz ( i+ 1 , j , k) 
gr, .. , 2.0 

13 ,-c 1-1 
· ·: ,. ' ii , j , k) = (1- f 2 ( ii , j , k) ) *vx ( i , j , k) + f 2 ( ii , j , k) *vx (i , j + 1 , k) 
vu e li i , j , k) = (1- f 2 ( ii , j , k) ) ,'rvy ( i , j , k) + f 2 ( ii , j , k) *vy ( i , j + 1 , k) 
wne(ii,j,k)=(l-f2(ii,j,k))*vz(i,j,k)+f2(ii,j,k)*vz(i,j+l,k) 
ube(ii,j,k)=(l-f3(ii,j,k))*vx(i,j,k)+f3(ii,j,k)*vx(i,j,k+l) 
v be ( ii , j , k) = (1- f3 ( ii , j , k) ) ,'cvy ( i , j , k) + £3 ( ii , j , k) *vy ( i , j , k+ 1) 
wbe(ii,j,k)=(l-f3(ii,j,k))*vz(i,j,k)+f3(ii,j,k)*vz(i,j,k+l) 
goto 20 

14 ii = i+l 
ube(i,j,k)=(l-f3(ii,j,k))*vx(i,j,k)+f3(ii,j,k)*vx(i,j,k+l) 
vbe(i,j,k)=(l-f3(ii,j,k))*vy(i,j,k)+f3(ii,j,k)*vy(i,j,k+l) 
wbe(i,j,k)=(l-f3(ii,j,k))*vz(i,j,k)+f3(ii,j,k)*vz(i,j,k+l) 
une(i,j,k)=(l-f2(ii,j,k))*vx(i,j,k)+f2(ii,j,k)*vx(i,j+l,k) 
vne(i,j,k)=(l-f2(ii,j,k))*vy(i,j,k)+f2(ii,j,k)*vy(i,j+l,k) 
wne(i,j,k)=(l-f2(ii,j,k))*vz(i,j,k)+f2(ii,j,k)*vz(i,j+l,k) 
goto 20 

15 jj = j-1 
un b ( i , j j , k) = (1- f 3 (i , j j , k) ) *vx ( i , j , k) + f3 ( i , j j , k) *vx ( i , j , k.+ 1 ) 
vnb(i,jj,k)=(l-f3(i,jj,k))*vy(i,j,k)+f3(i,jj,k)*vy(i,j,k+l) 
wnb(i,jj,k)=(l-f3(i,jj,k))*vz(i,j,k)+f3(i,jj,k)*vz(i,j,k+l) 
une(i,jj,k)=(l-fl(i,jj,k))*vx(i,j,k)+fl(i,jj,k)*vx(i+l,j,k) 
vne(i,jj,k)=(l-fl(i,jj,k))*vy(i,j,k)+fl(i,jj,k)*vy(i+l,j,k) 
wne(i,jj,k)=(l-fl(i,jj,k))*vz(i,j,k)+fl(i,jj,k)*vz(i+l,j,k) 
goto 20 

16 jj = j+l 
unb(i,j,k)=(l-f3(i,jj,k))*vx(i,j,k)+f3(i,jj,k)*vx(i,j,k+l) 
vnb(i,j,k)=(l-f3(i,jj,k))*vy(i,j,k)+f3(i,jj,k)*vy(i,j,k+l) 
wnb(i,j,k)=(l-f3(i,jj,k))*vz(i,j,k)+f3(i,jj,k)*vz(i,j,k+l) 
une(i,j ,k)=(l-fl(i,jj ,k))*vx(i,j ,k)+fl(i,jj ,k)*vx(i+l,j ,k) 
vne(i,j,k)=(l-fl(i,jj,k))*vy(i,j,k)+fl(i,jj,k)*vy(i+l,j,k) 
wne(i,j,k)=(l-fl(i,jj,k))*vz(i,j,k)+fl(i,jj,k)*vz(i+l,j,k) 
goto 20 

20 continue 
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***--------------------------------------------------------------------
*** Part 3 : Fixed wall velocities 
***--------------------------------------------------------------------

do 30 k = 1, kn 
do 30 j = 1, jn 

do 30 i = 1,in 
jb = jbound(i,j,k) 
if(jb.ne.nbnd)goto 30 
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goto 17 

17 une(i,j,k) = 0.0 
une(i-1,j,k) = 0.0 
une(i,j-1,k) = 0.0 
une(i-1,j-1,k) = 0.0 
vne(i,j,k) = 0.0 
vne(i-1,j,k) = 0.0 
vne(i,j-1,k) = 0.0 
vne(i-1,j-1,k) = 0.0 
wne(i,j,k) = 0.0 
wne(i-1,j,k) = 0.0 
wne(i,j-1,k) = 0.0 
wne(i-1,j-1,k) = 0.0 
ube(i,j,k) = 0.0 
ube(i-1,j,k) = 0.0 
ube(i,j,k-1) = 0.0 
ube(i-1,j,k-1) = 0.0 
vbe(i,j,k) = 0.0 
vbe(i-1,j,k) = 0.0 
vbe(i,j,k-1) = 0.0 
vbe(i-1,j,k-1) = 0.0 
wbe(i,j,k) = 0.0 
wbe(i-1,j,k) = 0.0 
wbe(i,j,k-1) = 0.0 
wbe(i-1,j,k-1) = 0.0 
unb(i,j,k) = 0.0 
unb(i,j,k-1) = 0.0 
un b (i , j - 1 , k) = 0 . 0 
unb(i,j-1,k-1) = 0.0 
vnb(i,j,k) = 0.0 
vnb(i,j,k-1) = 0.0 
vnb(i,j-1,k) = 0.0 
vnb(i,j-1,k-1) = 0.0 
wnb(i,j,k) = 0.0 
wnb(i,j,k-1) = 0.0 
wnb(i,j-1,k) = 0.0 
wnb(i,j-1,k-1) = 0.0 

30 continue 

*** Calculate the massflow at the outflow boundary 

fmout = 0.0 

do 40 j = 2,jnml 
do 40 i = 2,inml 

fmo(i,j) = rhob(i,j ,knml)*(ze.txb(i,j ,knml)',"'ub(i,j ,knml) 
* + zetyb(i,j,knml)*vb(i,j,knml) 
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* + zetzb(i,j,knml)*wb(i,j,knml))/tjacb(i,j,knml) 
fmout = fmout + fmo(i,j) 

40 continue 

fcont = fmin/fmout 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria 

do 50 j = 2,jnml 
do 50 i = 2,inml 
vz(i,j,kn) = vz(i,j,kn)*fcont 
wb(i,j,knml) = vz(i,j,kn) 

50 continue 

return 
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c----------------------------------------------------------------------
Entry MASSIN 

c----------------------------------------------------------------------

*** Calculate the massflow at the inflow boudary 

£min= 0.0 

do 60 j = 2,jnml 
do 60 i = 2,inml 
if(jbound(i,j,1).ne.l)goto 60 
fmi(i,j) = rhob(i,j,l)*(zetxb(i,j,l)*ub(i,j,1) 

* + zetyb(i,j,l)*vb(i,j,1) 
* + zetzb(i,j,1) 1rwb(i,j,1))/tjacb(i,j,1) 

fmin = fmin + fmi(i,j) 
60 continue 

return 
end 

Subroutine LOGO 
******"'r*,'r,'r1r1r***-lr*1r,'r**,'r-lr**********-lr*,'r***,'dr***,'r***·lr*,'r,'r*-lr***-lr*******,'r-lr*-lr,'r* 

*** This subroutine creates the solving logo 

write(*,*) 
write(*,*)' 
write(*,*)' 
write(*,*)' 
write(* ,-Ir)' 
write(*,-lr)' 
write(*,*)' 
write(*, -Ir)' 
write(*,*)' 
write(*,*)' 
write(*,*)' 
write(*,*)' 
write(*,*)' 
WRITE(*'*) I 

write(*,*)' 
WRITE(*, ,'r) 1 

write (-Ir,*)' 
write(*,*)' 
write(*,*) 
write(*,*) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
-Ir 

* 
* 
* 
* 
* 

3333 DODD FFFFF L 000 
3 3 D D F L 0 0 

33 D D FFF L 0 0 
3 3 D D F L 0 0 

3333 DDDD F LLLLL 000 

THIS PROGRAM SOLVES 3D COMPRESSIBLE 
LAMINAR OR TURBULENT FLOWS IN 

CURVILINEAR CO-ORDINATES 

DEVELOPED BY 

HERMANN ROLFES 

'7C'' 

ir' 
*' 
*' 
ir 1 

ir:' 

ir' 
*' 
-I:' 

*' 
*' 
ir' 
*' 
ir' 
-Jr' 
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return 
end 

FORTRAN Al Universiteit van Pretoria PAGE 00073 

Subroutine OUTPUT 
*****-lr********"'l'r-lr*·-k*.,'r**.,'r*****-lr*-lr-lr**-lr-lr*,'r*"l'r-lr**.,'r"'l'r**"''r·i'r-lr-lr**,'r*****-lr*-lr***"'r"'l'r·lr-lr** 

*** This subroutine generates the velocity and pressure output data 

INCLUDE 'COMM' 

kx = 1 
jx = -1 
if(kn.gt. 7) kx = 2 
if(kn.gt.14) kx 
if(kn.gt.21) kx 
if(kn.gt.28) kx 
if(kn.gt.35) kx 
if(kn.gt.42) kx 
if(kn.gt.49) kx 
if(kn.gt.56) kx 
if(kn.gt.63) kx 
if(kn.gt.72) kx 

do 100 i = 1,in 
write(9,2)i 

= 
= 
= 
= 
= 
= 
= 
= 
= 

3 
4 
5 
6 
7 
8 
9 
10 
11 

2 format(//lx, 'SURFACE NO. ',I3,JX, 
*' Z - DIRECTION VELOCITY DISTRIBUTION (VZ) '/) 

do 100 kkk = 1,kx 

write ( 9 , -Ir) ' ' 
kend = 7*kkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 3 j = jn,1,jx 
write(9,23)j,(vz(i,j,kk),kk = kbeg,kend) 

3 continue 

100 continue 

do 200 i = 1,in 
write(9,4)i 

4 format(//lx, 'SURFACE NO. ',I3,3X 
*, 'y - DIRECTION VELOCITY DISTRIBUTION (VY)'/) 

do 200 kkk = 1,kx 

write(9,*)' ' 
kend = 7,'rkkk 
kbeg = kend-6 
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if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 5 j = jn,1,jx 
write(9,23)j,(vy(i,j,kk),kk = kbeg,kend) 

5 continue 

200 continue 

do 300 i = 1,in 
write(9,6)i 

6 format(//lx, 'SURFACE NO. ',I4,3X 
*, 'X - DIRECTION VELOCITY DISTRIBUTION (VX)'/) 

do 300 kkk = 1,kx 

write(9,*)' ' 
kend = 7,'rkkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 7 j = jn,1,jx 
write(9,23)j,(vx(i,j,kk),kk = kbeg,kend) 

7 continue 

300 continue 

do 1+00 i = 1,in 
write(9,8)i 

8 format(//lx, 'SURFACE NO. ',I4,3X 
*,'PRESSURE DISTRIBUTION (P) '/) 

do 400 kkk = 1,kx 

write(9, *)' ' 
kend = 7*kkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 9 j = jn,1,jx 
write(9,23)j,(pp(i,j,kk),kk = kbeg,kend) 

9 continue 

400 continue 

do 500 i = 1,in 
write(9,10)i 

10 format(//lx, 'SURFACE NO. ',I4,3X 
*, 'PRESSURE CORRECTIONS (PCOR)'/) 

do 500 kkk = 1,kx 

write(9, *)' ' 
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kend = 7*kkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 11 j = jn,1,jx 
write(9,23)j,(pcor(i,j,kk),kk = kbeg,kend) 

11 continue 

500 continue 

do 600 i = 1,in 
write(9, 12)i 

12 format(//lx, 'SURFACE NO. ',I4,3X 
*, 'DISSIPATION RATE - EPSILON'/) 

do 600 kkk = 1,kx 

write(9,*)' ' 
kend = 7-1rkkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 13 j = jn,1,jx 
write(9,23)j,(eps(i,j,kk),kk = kbeg,kend) 

13 continue 

600 continue 

do 700 i = 1,in 
write(9, 14) i 

14 format(//lx, 'SURFACE NO. ',I4,3X 
*, 'TURBULENT KINETIC ENERGY'/) 

do 700 kkk = 1,kx 

write(9,*)' ' 
kend = 7*kkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 15 j = jn,1,jx 
write(9,23)j,(tken(i,j,kk),kk = kbeg,kend) 

1.5 continue 

700 continue 

do 800 i = 1,in 
wrHe(9,16)i 

16 format(//lx, 'SURFACE NO. ',I4,3X 
-Ir, 

1 EFFECTIVE VISCOCITY 1 
/) 

do 800 kkk = 1,kx 
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write(9,*)' ' 
kend = 7*kkk 
kbeg = kend-6 
if(kend.gt.kn) kend = kn 
write(9,20) (kk,kk = kbeg,kend) 

do 17 j = jn,1,jx 
write(9,23)j,(viscp(i,j,kk),kk = kbeg,kend) 

17 continue 

800 continue 

*** Define the format expressions 

20 format(lx,' J/K =' ,9(I2,9x)) 
23 format(lx,I2,9(1x,Fl0.5)) 

return 
end 
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Subroutine PLOTOUT 
-,'<*·l<**i<*i<ir·lcir·k****i<·k,'<*·k*i<i<i<**·k*****i<*.,'r*.,'<,'<i<i<*i<,'<i<**.,,<i<i<i<*i<.,'<i<**i<irir*i<i<i<i<.,'<*.,'rir*i< 

*** This subroutine generates the velocity and pressure plot data 

INCLUDE 'COMM' 

write(13,2)inml,jnml,knml,isweep 

if(iturb.eq.l)then 
do 20 k = 2,knml 

do 20 j = 2,jnml 
do 20 i = 2,inml 
write(13,l)x(i,j,k),y(i,j,k),z(i,j,k),tken(i,j,k),eps(i,j,k) 
write(13,l)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k),viscp(i,j,k) 

20 continue 
en.dif 

if(iturb.eq.O)then 
do 30 k = 2,knml 

do 30 j = 2,jnml 
do 30 i = 2,inml 
write(13,3)x(i,j,k),y(i,j,k),z(i,j,k) 
write(13,4)vx(i,j,k),vy(i,j,k),vz(i,j,k),pp(i,j,k) 

30 continue 
endif 

1 format(lx,5£12.5) 
2 format (lx, 4i5) 
3 format(lx,3fl2.5) 
4 format(lx,4f12.5) 

goto 10000 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

FILE: 3DFLO FORTRAN Al Universiteit van Pretoria 

9000 write(*,*)'!!! UNABLE TO OPEN PLOT FILE ! ! ! ' 
stop 

10000 return 
end 

Subroutine LINEPARAM 

PAGE 00077 

****'''*****irir***ir*ir,'r*********ir**-lr**ir,'r*irir,'r*-lr**,'r*-;'r-;'r,'r,~idr-/r,'r*-lr-lr*-lr*,'r*'l'r-lr,'r,'r,'r-lr*** 

*** This subroutine writes lineparameters 

INCLUDE 'COMM' 

write(9,*)' ' 
write(9,*)'Residuals of u,v,w on k - planes' 
do k = l ,kn 
write(9,l)k,resuz(k),resvz(k),reswz(k) 

enddo 

write(9,*)' ' 
write(9,*)'Residuals of u,v,w on j - planes' 
do j = 1, jn 
write(9,l)j,resuy(j),resvy(j),reswy(j) 

enddo 

write(9,-lr)' ' 
write(9,*)'Residuals of u,v,w on i - planes' 
do i = 1,in 
write(9,l)i,resux(i),resvx(i),reswx(i) 

enddo 

1 format(2x,i4,4x,ell.5,4x,ell.5,4x,ell.5) 

return 
end 

Subroutine GEOM 
·k-lr**-lr***,'r,'ririr,'r*-lr,'r**,'r***-lr··lr**-lr,'r-lr,'r*-lr**''r-/r-/r*,'r,1r,'rir**,'r**,'r-lr,1r,1r-/r,1r-/r,'r,'r·k-lr,'rir,1:,'rir,'c,'r,'r·k*,'r-/r 

*** This subroutine reads the output file from the grid generation 
*** package and controls and processes the grid information 

INCLUDE 'COMM' 

dimension xx(160000),yy(160000),zz(160000) 

*** Read input grid data 

write(*,*)' *****1'**** READING GRID DATA **-1'**,'r-ln'r**' 
read(2,*)ing,jng,kng 

do 10 i = 1,ing 
do 10 j = 1,jng 
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do 10 k = 1,kng 
ng = (i-l)*jng*k.ng + (j-l)*kng + k 
read(2,*)nng,xx(ng),yy(ng),zz(ng) 

10 continue 

ingml = ing - 1 
jngml = jng - 1 
kngml = kng - 1 
in = 2 + ingml/2 
jn = 2 + jngml/2 
kn = 2 + kngml/2 
inml = in - 1 
jnml = jn - 1 
knml = kn - 1 
inm2 = in - 2 
jnm2 = jn - 2 
k.nm2 = kn - 2 

write(*,*)in,jn,kn 

do 15 i = 1,in 
do 15 j = 1, jn 

do 15 k = 1,kn 
x(i,j,k) = 777.77777 
y(i,j,k) = 777.77777 
z(i,j,k) = 777.77777 

15 continue 

*** Calculate transformation values 

do 20 i = 2,ingml,2 
do 20 j = 2,jngml,2 

do 20 k = 2,kngml,2 

ii = i/2 + 1 
jj = j/2 + 1 
k.k = k/2 + 1 
istot = jng.,,,.kng 
ng = (i-l)*istot + (j-l)*kng + k 

*** Award x,y,z co-ordinates on boundaries 

if(i. eq. 2)then 
x(ii-1,jj,kk) = xx(ng-(jng*kng)) 
y(ii-1,jj,kk) = yy(ng-(jng*kng)) 
z(ii-1,jj,kk) = zz(ng-(jng*kng)) 

endif 
if(i.eq.ingml)then 
x(ii+l,jj,kk) = xxlng+(jng*kng)) 
y(ii+l,jj,kk) = yy(ng+(jng*kng)) 
z(ii+l,jj,kk) = zz(ng+(jng*kng)) 

endif 
if (j. eq. 2)then 
x(ii,jj-1,kk) = xx(ng-kng) 
y(ii,jj-1,kk) = yy(ng-kng) 
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z(ii,jj-1,kk) = zz(ng-kng) 
endif 
if(j.eq.jngml)then 
x(ii,jj+l,kk) = xx(ng+kng) 
y(ii,jj+l,kk) = yy(ng+kng) 
z(ii,jj+l,kk) = zz(ng+kng) 

endif 
if(k.eq.2)then 
x(ii,jj,kk-1) = xx(ng-1) 
y(ii,jj,kk-1) = yy(ng-1) 
z(ii,jj,kk-1) = zz(ng-1) 

endif 
if(k.eq.kngml)then 
x(ii,jj,kk+l) = xx(ng+l) 
y(ii,jj,kk+l) = yy(ng+l) 
z(ii,jj,kk+l) = zz(ng+l) 

endif 

*** Set the co-ordinates at each major node 

x(ii,jj,kk) = xx(ng) 
y(ii,jj,kk) = yy(ng) 
z(ii,jj,kk) = zz(ng) 

*** The numerical values of the first order derivations of the 
*** specific transformation can be calculated from the 
*** carthesian co-ordinates of each point; del,de2,de3 = 1 

dxdex = xx(ng+istot)-xx(ng-istot) 
dydex = yy(ng+istot)-yy(ng-istot) 
dzdex = zz(ng+istot)-zz(ng-istot) 
dxdet = xx(ng+kng)-xx(ng-kng) 
dydet = yy(ng+kng)-yy(ng-kng) 
dzdet = zz(ng+kng)-zz(ng-kng) 
dxdzt = xx(ng+l)-xx(ng-1) 
dydzt = yy(ng+l)-yy(ng-1) 
dzdzt = zz(ng+l)-zz(ng-1) 

*** Eastern cell walls 

dxdete = xx(ng+istot+kng)-xx(ng+istot-kng) 
dydete = yy(ng+istot+kng)-yy(ng+istot-kng) 
dzdete = zz(ng+istot+kng)-zz(ng+istot-kng) 
dxdzte = xx(ng+istot+l)-xx(ng+istot-1) 
dydzte = yy(ng+istot+l)-yy(ng+istot-1) 
dzdzte = zz(ng+istot+l)-zz(ng+istot-1) 
if(ii.eq.inml)then 
dxdexe = 2*(xx(ng+istot)-xx(ng)) 
dydexe = 2*(yy(ng+istot)-yy(ng)) 
dzdexe = 2*(zz(ng+istot)-zz(ng)) 

else 
dxdexe = xx(ng+2*istot)-xx(ng) 
dydexe = yy(ng+2*istot)-yy(ng) 
dzdexe = zz(ng+2*istot)-zz(ng) 

endif 
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*** Western cell walls 

dxdetw = xx(ng-istot+kng)-xx(ng-istot-kng) 
dydetw = yy(ng-istot+kng)-yy(ng-istot-kng) 
dzdetw = zz(ng-istot+kng)-zz(ng-istot-kng) 
dxdztw = xx(ng-istot+l)-xx(ng-istot-1) 
dydztw = yy(ng-istot+l)-yy(ng-istot-1) 
dzdztw = zz(ng-istot+l)-zz(ng-istot-1) 
if (ii. eq. 2)then 
dxdexw = 2*(xx(ng)-xx(ng-istot)) 
dydexw = 2*(yy(ng)-yy(ng-istot)) 
dzdexw = 2*(zz(ng)-zz(ng-istot)) 

else 
dxdexw = xx(ng)-xx(ng-2*istot) 
dydexw = yy(ng)-yy(ng-2*istot) 
dzdexw = zz(ng)-zz(ng-2*istot) 

endif 

*** Northern cell walls 

dxdexn = xx(ng+kng+istot)-xx(ng+kng-istot) 
dydexn = yy(ng+kng+istot)-yy(ng+kng-istot) 
dzdexn = zz(ng+kng+istot)-zz(ng+kng-istot) 
dxdztn = xx(ng+kng+l)-xx(ng+kng-1) 
dydztn = yy(ng+kng+l)-yy(ng+kng-1) 
dzdztn = zz(ng+kng+l)-zz(ng+kng-1) 
if(jj.eq.jnml)then 
dxdetn = 2*(xx(ng+kng)-xx(ng)) 
dydetn = 2*(yy(ng+kng)-yy(ng)) 
dzdetn = 2*(zz(ng+kng)-zz(ng)) 

else 
dxdetn = xx(ng+2*kng)-xx(ng) 
dydetn = yy(ng+2*kng)-yy(ng) 
dzdetn = zz(ng+2*kng)-zz(ng) 

endif 

*** Southern cell walls 

dxdexs = xx(ng-kng+istot)-xx(ng-kng-istot) 
dydexs = yy(ng-kng+istot)-yy(ng-kng-istot) 
dzdexs = zz(ng-kng+istot)-zz(ng-kng-istot) 
dxdzts = xx(ng-kng+l)-xx(ng-kng-1) 
dydzts = yy(ng-kng+l)-yy(ng-kng-1) 
dzdzts = zz(ng-kng+l)-zz(ng-kng-1) 
if (j j. eq. 2)then 
dxdets = 2*(xx(ng)-xx(ng-kng)) 
dydets = 2*(yy(ng)-yy(ng-kng)) 
dzdets = 2*(zz(ng)-zz(ng-kng)) 

else 
dxdets = xx(ng)-xx(ng-2*kng) 
dydets = yy(ng)-yy(ng-2*kng) 
dzdets = zz(ng)-zz(ng-2*kng) 

endif 
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*** Backward facing cell walls 

dxdexb = xx(ng+l+istot)-xx(ng+l-Jstot) 
dydexb = yy(ng+l+istot)-yy(ng+l-istot) 
dzdexb = zz(ng+l+istot)-zz(ng+l-istot) 
dxdetb = xx(ng+l+kng)-xx(ng+l-kng) 
dydetb = yy(ng+l+kng)-yy(ng+l-kng) 
dzdetb = zz(ng+l+kng)-zz(ng+l-kng) 
if(kk.eq.knml)then 
dxdztb = 2*(xx(ng+l)-xx(ng)) 
dydztb = 2*(yy(ng+l)-yy(ng)) 
dzdztb = 2*(zz(ng+l)-zz(ng)) 

else 
dxdztb = xx(ng+2)-xx(ng) 
dydztb = yy(ng+2)-yy(ng) 
dzdztb = zz(ng+2)-zz(ng) 

endif 

*** Forward facing cell walls 

dxdexf = xx(ng-l+istot)-xx(ng-1-istot) 
dydexf = yy(ng-l+istot)-yy(ng-1-istot) 
dzdexf = zz(ng-l+istot)-zz(ng-1-istot) 
dxdetf = xx(ng-l+kng)-xx(ng-1-kng) 
dydetf = yy(ng-l+kng)-yy(ng-1-kng) 
dzdetf = zz(ng-l+kng)-zz(ng-1-kng) 
if(kk.eq.2)then 
dxdztf = 2*(xx(ng)-xx(ng-1)) 
dydztf = 2*(yy(ng)-yy(ng-1)) 
dzdztf = 2*(zz(ng)-zz(ng-1)) 

else 
dxdztf = xx(ng)-xx(ng-2) 
dydztf = yy(ng)-yy(ng-2) 
dzdztf = zz(ng)-zz(ng-2) 

endif 

*** Calculate the jacobian of the transformations 

tjac(ii,jj,kk) = 1/ 
* ( dxdex*( dydet*dzdzt 
')'( -dydzt*dzdet ) 
ir -dxdet*( dydex*dzdzt 
* -dydzt-lrdzdex ) 
* +dxdzt*( dydex*dzdet 
* -dydet*dzdex ) ) 

tjace(ii,jj,kk) = 1/ 
* ( dxdexe*( dydete*dzdzte 
* -dydzte*dzdete ) 
* -dxdete*( dydexe*dzdzte 
* -dydzte*dzdexe ) 

* +dxdzte*( dydexe*dzdete 
* -dydete*dzdexe ) ) 

tw = 1/ 
* ( dxdexw*( dydetw*dzdztw 
* -dydztw*dzdetw ) 
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* 

* 
* 
ir 

* 
* 

* 

* 
* 
* 
* 
* 
,'r 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

-dxdetw*( dydexw*dzdztw 
-dydztw*dzdexw) 

+dxdztw*( dydexw*dzdetw 
-dydetw*dzdexw) ) 

tjacn(ii,jj,kk) = 1/ 
( d~· 1" ,: n)'(' ( dydetn''("dzdztn 

-dydztn*dzdetn) 
-dxdetn*( dydexn*dzdztn 

-dydztnirdzdexn ) 
+dxdztn*( dydexn*dzdetn 

-dydetn*dzdexn) ) 
ts= 1/ 
( dxdexs*( dydets*dzdzts 

-dydzts"'rdzdets ) 
-dxdets*( dydexs*dzdzts 

-dydzts*dzdexs) 
+dxdzts*( dydexs*dzdets 

-dydets*dzdexs) ) 
tjacb(ii,jj,kk) = 1/ 
( dxdexb*( dydetb*dzdztb 

-dydztb.,,rdzdetb ) 
-dxdetb*( dydexb*dzdztb 

-dydztb*dzdexb) 
+dxdztb* ( dydexb;'<"dzdetb 

-dydetb*dzdexb) ) 
tf = 1/ 
( dxdexf*( dydetf*dzdztf 

-dydztf*dzdetf) 
-dxdetf*( dydexf*dzdztf 

-dydztf*dzdexf) 
+dxdztf*( dydexf*dzdetf 

-dydetf*dzdexf) ) 

*** Generate the transformation expressions 

exix(ii,jj,kk) = tjac(ii,jj,kk)* 
* ( dydet*dzdzt 
* - dydzt*dzdet) 

exiy(ii,jj,kk) = -tjac(ii,jj,kk)* 
* ( dxdet*dzdzt 
* - dxdzt*dzdet) 

exiz(ii,jj,kk) = tjac(ii,jj,kk)* 
* ( dxdet*dydzt 
* - dxdzt*dydet) 

etax(ii,jj,kk) = -tjac(ii,jj,kk)* 
* ( dydex*dzdzt 
* - dydzt*dzdex) 

etay(ii,jj,kk) = tjac(ii,jj,kk)* 
* ( dxdex*dzdzt 
* - dxdzt*dzdex) 

etaz(ii,jj,kk) = -tjac(ii,jj,kk)* 
* ( dxdex*dydzt 
* - dxdzt*dydex) 

zetx(ii,jj,kk) = tjac(ii,jj,kk)* 
* ( dydex*dzdet 
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* - dydeti'rdzdex ) 
zety(ii,jj,kk) = -tjac(ii,jj,kk)* 

* ( dxdex*dzdet 
* - dxdeti'rdzdex ) 

ze tz (ii, j j , kk.) = tjac(ii,jj ,kk)-,'r 
* ( dxdex.,,rdydet 
* - dxdet*dydex ) 

-,'r** Eastern cell walls 

ex ix e ( ii , j j , kk) = tjace(ii,jj,kk)* 
* ( dydete*dzdzte 
* - dydztei'c-dzdete ) 

exiye(ii,jj ,kk) = -tjace(ii,jj,kk)* 
7C' ( dxdete1rdzdzte 
* - dxdzte*dzdete ) 

exize(ii,jj,kk) = tjace(ii,jj,kk)* 
* ( dxdeteiC'dydzte 
,'r - dxdzte''rdydete ) 

etaxe(ii,jj,kk) = -tjace(ii,jj,kk)* 
* ( dydexe*dzdzte 
* - dydzte*dzdexe ) 

etaye(ii,jj,kk) = tjace(ii,jj,kk)* 
* ( dxdexeirdzdzte 
* - dxdzte''rdzdexe ) 

etaze(ii,jj,kk) = -tjace(ii,jj,kk)* 
* ( dxdexe*dydzte 
-,'r - dxdzte1rdydexe ) 

z et x e (i i , j j , kk) = tjace(ii,jj,kk)* 
* ( dydexeirdzdete 
* - dydete*dzdexe ) 

zetye(ii,jj,kk) = -tjace(ii,jj,kk)* 
ir ( dxdexe*dzdete 
* - dxdeteirdzdexe ) 

zetze(H,jj,kk) = tjace(ii,jj,kk)* 
* ( dxdexe*dydete 
* - dxdete*dydexe ) 

*** Western cell walls 

if(ii.eq.2)then 
tjac(ii-1,jj ,kk) = tjac(ii,jj,kk) 
tjace(ii-1,jj,kk) = tw 
exixe(ii-1,jj,kk) = tw* 

* ( dydetw*dzdztw 
-Ir - dydztw*dzdetw ) 

exiye(ii-1,jj,kk) = -tw* 

* ( dxdetw'>'rdzdztw 

* - dxdztw*dzdetw ) 
exize(ii-1,jj,kk) = tw-lr 

* ( dxdetwi'rdydztw 
* - dxdztw,'c-dydetw ) 

etaxe(ii-1,jj,kk) = -tw.,.(' 

* ( dydexwirdzdz tw 
* - dydztw'l'C'dzdexw ) 
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etaye(ii-1,jj,kk) = tw* 
* ( dxdexw*dzdztw 

* - dxdztw*dzdexw ) 
etaze(ii-1,jj,kk) = -tw.,\-

* ( dxdexw*dydztw 
·k - dxdztw*dydexw ) 

zetxe(ii-1,jj,kk) = tw* 
* ( dydexw.,.rdzdetw 
* - dydetw.,.c-dzdexw ) 

zetye(ii-1,jj,kk) = -tw1c-
* ( dxdexw*dzdetw 
,\- - dxdetw,'rdzdexw ) 

z~tze(ii-1,jj,kk) = tw* 
* ( dxdexw*dydetw 
* - dxdetw.,.c-dydexw ) 

endif 

*** Northern cell walls 

exixn(ii,jj,kk) = tjacn(ii,jj,kk)* 
* ( dydetn.,.c-dzdztn 
* - dydztn*dzdetn ) 

exiyn(ii,jj,kk) = -tjacn(ii,jj,kk)* 
* ( dxdetn*dzdztn 
* - dxdztn.,.rdzdetn ) 

ex izn ( ii , j j , kk) = tjacn(ii,jj,kk)* 

* ( dxdetn*dydztn 
* - dxdztn.,.c-dydetn ) 

etaxn( ii, j j, kk) = -tjacn(ii,jj,kk)* 
* ( dydexn*dzdztn 
* - dydztn*dzdexn ) 

etayn(ii,jj,kk) = tjacn(ii,jj,kk)* 
* ( dxdexn.,.c-dzdztn 
* - dxdztn*dzdexn ) 

et azn ( ii , j j , kk) = -tjacn(ii,jj,kk)* 

* ( dxdexn*dydztn 
* - dxdztn*dydexn ) 

zetxn(ii, j j, kk) = tjacn(ii,jj,kk)* 
')l' ( dydexn*dzdetn 
* - dydetn*dzdexn ) 

zetyn(ii,jj,kk) = -tjacn(ii,jj,kk)* 
.,'r ( dxdexn*dzdetn 
* - dxdetn*dzdexn ) 

zetzn(ii,jj,kk) = tjacn(ii,jj,kk)* 
* ( dxdexn"'c-dydetn 
* - dxdetn1c-dyde.xn ) 

-lr*1r Southern cell walls 

if(jj .eq.2)then 
tjac(ii,jj-1,kk) = tjac(ii,jj,kk) 
tjacn(ii,jj-1,kk) = ts 
exixn(ii,jj-1,kk) = ts* 

* ( dydets*dzdzts 
* - dydzts*dzdets ) 
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exiyn(ii,jj-1,kk) = -ts* 
* ( dxdets-lC'dzdzts 
* - dxdzts*dzdets ) 

exizn(ii,jj-1,kk) = ts* 
* ( dxdets*dydzts 
')'C' - dxdzts*dydets ) 

etaxn(ii,jj-1,kk) = -ts* 
* ( dydexs*dzdzts 
* - dydzts*dzdexs ) 

etayn(ii,jj-1,kk) = ts* 
* ( dxdexs-lrdzdzts 
* - dxdzts-1,dzdexs ) 

etazn(ii,jj-1,kk) = -ts* 
* ( dxdexs*dydzts 
* - dxdzts*dydexs ) 

zetxn(ii,jj-1,kk) = ts* 
* ( dydexs"'C'dzdets 
* - dydets*dzdexs ) 

zetyn(ii,jj-1,kk) = -ts* 
* ( dxdexs*dzdets 
,'r - dxdetsi'rdzdexs ) 

zetzn(ii,jj-1,kk) = ts* 
* ( dxdexs*dydets 
* - dxdets"'dydexs ) 

endif 

*** Backward facing cell walls 

exixb(ii,jj,kk) = tjacb(ii,jj,kk)* 
* ( dydetb-l"dzdztb 
* - dydztb*dzdetb ) 

exiyb(ii,jj,kk) = -tjacb(ii,jj,kk)* 
* ( dxdetb"'"dzdztb 
* - dxdztb"'C"dzdetb ) 

exizb(i.i,jj,kk) = tjacb(ii,jj,kk)* 
* ( dxdetb*dydztb 
* - dxdztb*dydetb ) 

etaxb(ii,jj,kk) = -tjacb(ii,jj,kk)* 
* ( dydexb*dzdztb 
* - dydzt b"C'dzdexb ) 

etayb(ii,jj,kk) = tjacb(ii,jj,kk)* 
">'r ( dxdexb*dzdztb 
* - dxdztb"'cdzdexb ) 

etazb(ii,jj ,kk) = -tjacb(ii,jj,kk)* 
* ( dxdexb*dydztb 
* - dxdztb*dydexb ) 

zetxb(ii,jj,kk) = tjacb(ii,jj,kk)* 
* ( dydexb*dzdetb 
* - dydetb-1cdzdexb ) 

zetyb(ii,jj ,kk) = -tjacb(ii,jj,kk)* 
* ( dxdexb*dzdetb 
* - dxdetbirdzdexb ) 

zetzb(ii,jj,kk) = tjacb(ii,jj,kk)* 
* ( dxdexb*dydetb 
* - dxdetb*dydexb ) 
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-Ir** Forward facing cell walls 

if(kk.eq.2)then 
tjac(ii,jj,kk-1) = tjac(ii,jj,kk) 
tjacb(ii,jj,kk-1) = tf 
exixb(ii,jj,kk-1) = tf* 

* ( dydetf-lt'dzdztf 
"7C' - dydztf1t'dzdetf ) 

exiyb(ii,jj,kk-1) = -tf* 
* ( dxdetf-lrdzdztf 
* - dxdztf*dzdetf ) 

exizb(ii,jj,kk-1) = tf* 
* ( dxdetf*dydztf 
* - dxdztf*dydetf ) 

etaxb(ii,jj,kk-1) = -tf* 
* ( dydexf*dzdztf 
* - dydztf*dzdexf ) 

etayb(ii,jj,kk-1) = tf* 

* ( dxdexf'l'C'dzdztf 
* - dxdztf*dzdexf ) 

etazb(ii,jj,kk-1) = -tf* 
* ( dxdexf,'C'dydzt f 
* - dxdztf*dydexf ) 

zetxb(ii,jj,kk-1) = tf* 
* ( dydexf*dzdetf 
* - dydetf,'c-dzdexf ) 

zetyb(ii,jj,kk-1) = -tf* 
* ( dxdexf.,'t'dzdetf 
* - dxdet f.,'C'dzdexf ) 

zetzb(ii,jj,kk-1) = tf* 
,'c- ( dxdexf*dydetf 
* - dxdetf*dydexf ) 
endif 

20 continue 

*** Transformation expressions on boundary walls 

*** East and West boundaries 

do 30 j = 2,jnml 
do 30 k = 2,knml 

et ax (1 , j , k) = etax(2,j,k) 
etay(l,j,k) = etay(2,j,k) 
etaz(l,j,k) = etaz(2,j,k) 
exix (1, j, k) = exix(2,j,k) 
ex i y (1 , j , k) = exiy(2,j,k) 
exiz(l,j,k) = exiz(2,j,k) 
zetx(l,j ,k) = zetx(2,j,k) 
zety(l,j ,k) = zety(2,j,k) 
zetz(l,j ,k) = zetz(2,j,k) 

etax(in,j,k) = etax(inml,j,k) 
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etay(in,j,k) = etay(inml,j,k) 
etaz(in,j,k) = etaz(inml,j,k) 
exix(in,j,k) = exix(inml,j,k) 
exiy(in,j,k) = exiy(inml,j,k) 
exiz(in,j,k) = exiz(inml,j,k) 
zetx(in,j,k) = zetx(inml,j,k) 
zety(in,j,k) = zety(inml,j,k) 
z et z (in , j , k) = zetz(inml,j,k) 
tjac(in,j,k) = tjac(inml,j,k) 

30 continue 

*** North and South boundaries 

do 40 i = 2,inml 
do 40 k = 2,knml 

etax(i,1,k) = etax(i,2,k) 
etay(i,1,k) = etay(i,2,k) 
et az (i , 1 , k) = etaz(i,2,k) 
exix(i,1,k) = exix(i,2,k) 
exiy(i,1,k) = exiy(i,2,k) 
exiz(i,1,k) = exiz(i,2,k) 
zetx(i,1,k) = zetx(i,2,k) 
zety(i,1,k) = zety(i,2,k) 
zetz(i,1,k) = zetz(i,2,k) 

et ax ( i , j n , k) = et ax ( i , j nm 1 , k) 
eta.y(i,jn,k) = etay(i,jnml,k) 
et az ( i, j n, k) = et az ( i , j nm 1 , k) 
exix(i,jn,k) = exix(i,jnml,k) 
exiy(i,jn,k) = exiy( i, jnml, k) 
exiz(i,jn,k) = exiz(i,jnml,k) 
zetx(i,jn,k) = zetx ( i, jnml, k) 
zety(i,jn,k) = zety(i,jnml,k) 
zetz(i,jn,k) = zetz(i,jnml,k) 
tjac(i ,jn,k) = tjac(i,jnml,k) 

40 continue 

*** Back and Front boundaries 

do 50 i = 2,inml 
do 50 j = 2,jnml 

etax(i,j,1) = et ax (i , j , 2) 
etay(i,j,1) = etay(i,j,2) 
etaz(i,j,1) = etaz(i,j,2) 
ex ix ( i , j , 1 ) = exix(i,j,2) 
exiy(i,j,1) = exiy(i,j,2) 
exiz(i,j,1) = exiz(i,j,2) 
zetx(i,j,1) = zetx(i,j,2) 
ze ty (i , j , l) = zety(i,j,2) 
zetz(i,j,1) = zetz(i,j ,2) 
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50 

*** 

* 
* 

* 
* 

etax(i,j,kn) = etax(i,j,knml) 
etay(i,j,kn) = etay(i,j,knml) 
etaz(i,j,kn) = etaz(i,j,knml) 
exix(i,j,kn) = exix(j_,j ,knml) 
exiy(i,j,kn) = exiy ( i, j , knm 1) 
exiz(i,j,kn) = exiz(i,j,knml) 
zetx(i,j,kn) = zetx(i,j ,knml) 
zety(i,j,kn) = zety(i,j,knml) 
zetz(i,j,kn) = zetz(i,j,knml) 
t j ac ( i, j , kn) = t j ac ( i , j , knm 1) 

continue 

Calculate the interpolation factors 

do 60 i = 2,inm2 
do 60 j = 2,jnml 

do 60 k = 2,knml 
ii = 2*(i-1) 
J J = z-1r (j - 1 ) 
kk = 2*(k-1) 
is tot = jngiC"kng 
ng = (ii-l)*istot + (jj-l)*kng + kk 

dlsl = sqrt( (xx(ng+istot) - xx (ng) )7(*2 
+(yy(ng+istot) - yy(ng) )*.,'t-2 
+(zz(ng+istot) - zz (ng) )*,.('2 ) 

d1s2 = sqrt( ( xx (ng+2.,,r is tot) - xx(ng+istot))**2 
+(yy(ng+2*istot) - yy(ng+istot))**2 
+(zz(ng+2"'ristot) - zz(ng+istot))**2 

fl(i,j ,k) = dlsl/(dlsl+dls2) 

60 continue 

do 70 i: 2,inml 
do 70 j = 2,jnm2 

do 70 k = 2,knml 
ii = 2*(i-l) 
JJ = 2.,,r(j-1) 
kk = 2*(k-1) 
istot = jng*kng 
ng = (ii-l)*istot + (jj-l)*kng + kk 

d2s1 = sqrt( (xx(ng+kng) .;. xx(ng))**2 
* +(yy(ng+kng) - yy(ng) )Mr2 
,'r +(zz(ng+kng) - zz(ng))**2 ) 

d2s2 = sqrt( (xx(ng+2*kng) - xx(ng+kng) )*-,'C'2 
* + (yy (ng+Zi'C"kng) - yy(ng+kng) )*.,,r2 
* +(zz (ng+Zi'C'kng) - zz(ng+kng) )*.,'C"2 

f2(i,j,k) = d2s 1/ (d2s l+d2s2) 

70 continue 

do 80 i = 2,inml 
do 80 j = 2,jnml 

) 
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80 

do 80 k = 2,knm2 
ii= 2*(i-1) 
JJ = 2,'r(j-1) 
kk = 2*(k-l) 
istot = jng*kng 
ng = (ii-l)*istot + (jj-l)*kng + kk 

d3s1 = sqrt( (xx(ng+l) - xx (ng) ),'c";C'2 
* +(yy(ng+l) - yy (ng) )i'<'*2 
* +(zz(ng+l) - zz (ng) )*.,,('2 ) 

d3s2 = sqrt( (xx(ng+2) xx(ng+l))**2 
* +(yy(ng+2) - yy(ng+1))**2 
* +(zz(ng+2) - zz (ng+ 1) )i't-*2 

f3(i,j,k) = d3s1/(d3s1+d3s2) 

continue 

do 90 k = 1, kn 
do 90 j = 1, jn 

do 90 i = 1,in 
delexie(i,j,k) 
deletan(i,j,k) 
delzetb(i_,j ,k) 

= 1.0 
= 1.0 
= 1.0 

) 

90 continue 

***------------------------------------------------------------------
*** Part 3 : Write grid data file for flow simulation 
***------------------------------------------------------------------

if(isetup.eq.l)then 

write(7,*)in,inml 
write(7,*)jn,jnml 
write(7,*)kn,knml 

do 100 k = 1 , kn 
do 100 j = 1,jn 

do 100 i = 1,i.n 

write(7,l)k,j,i,fl(i,j,k),f2(i,j,k), 
* f3(i,j,k),x(i,j,k),y(i,j,k),z(i,j,k) 

write(7,2)exix(i,j,k),exiy(i,j,k),exiz(i,j,k), 
* etax(i,j,k),etay(i,j,k),etaz(i,j,k) 

write(7,2)zetx(i,j,k),zety(i,j,k),zetz(i,j,k), 
* exixe(i,j,k),exiye(i,j,k),exize(i,j,k) 

write(7,2)etaxe(i,j,k),etaye(i,j,k),etaze(i,j,k), 
* zetxe(i,j,k),zetye(i,j,k),zetze(i,j,k) 

write(7,2)exixn(i,j,k),exiyn(i,j,k),exizn(i,j,k), 
* etaxn(i,j,k),etayn(i,j,k),etazn(i,j,k) 

write(7,2)zetxn(i,j,k),zetyn(i,j,k),zetzn(i,j,k), 
* exixb(i,j,k),exiyb(i,j,k),exizb(i,j,k) 

write(7,2)etaxb(i,j,k),etayb(i,j,k),etazb(i,j,k), 
* zetxb(i,j,k),zetyb(i,j,k),zetzb(i,j,k) 

write(7,3)tjac(i,j,k),tjace(i,j,k),tjacn(i,j,k),tjacb(i,j,k) 
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100 continue 

endif 

1 format(lx,3i4,2x,3f6.3,2x,3fl0.5) 
2 format(lx,6£12.5) 
3 format(lx,4£15.7) 

return 
end 
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