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Notation 

The following notation shall be adopted: 

e 

exp(x) 

lnx 

A:(pxq) 

a:(pxl) 

a 

A' 

a' 

aiJ or [A]iJ 

a; or [a];1 

A-1 

IAI 
tr A 

vecs[A] 

vec[A] 

0 

constant, 1r=3.14159 

Euler's constant, e = 2. 71828 

eX, -oo <x < oo 

natural logarithm of the real number x, x > 0 

Kronecker's delta ( = 1 if i=j and =0 if i ¢j) 

matrix of order p x q 

column vector of order p x 1 

scalar 

transpose of A 

transpose of a ( a row vector) 

the element in the i-th row and j-th column of A 

the i-th element of a 

the inverse of A 

determinant of A 

trace of A 

diagonal matrix with diagonal elements a11 , a22 , ••• 

[ p(p
2
+ l) x 1] vector formed from the non-duplicate elements 

of the (p Xp) symmetric matrix A 

(pq x 1) vector formed from the q columns of the p x q matrix 

A 

null matrix 

matrix with all elements equal to zero with the exception of the 

element in the i-th row and j-th column which is equal to unity 
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I n,r 

A®B 

oA 
ax 

aa 
ax 

E(y):pxl 

Cov(y,y' ):(pxp) 

column vector with all elements equal to zero with the 

exception of the j-th element which is equal to unity 

n x n identity matrix 

n x r matrix with columns equal to the first r columns of / 0 

The right direct product or "Kronecker product" of matrices A 

and B defined by 

[a1'.B 
a12B . 

A®B = 

aP1B aPJJ . 

aa .. 
matrix with typical element ___!!_ ax 

aail 
column vector with typical element ax 

expected value of the random vector y 

. 
· a B] lq 

aP~ 

covariance matrix of the random vector y with typical element 

F{(Y;-E(y)}(y1-E(y))] 
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TITLE: 

SUMMARY 

THE ANALYSIS OF REPEATED MEASUREMENT 

MODELS UNDER NON-STANDARD DISTRIBUTIONAL 

ASSUMPTIONS 

CANDIDATE: HERMf BORAINE 

PROMOTER: PROFESSOR SHC DU TOIT 

DEPARTMENT: STATISTICS 

DEGREE: PHD (MATHEMATICAL STATISTICS) 

In many experimental studies, repeated observations are made on each of a number of 

experimental units with the objective to fit a response curve to the data. Longitudinal 

data consist of repeated observations on many experimental units. It is reasonable to 

assume that although the response patterns of the different experimental units may 

differ, they can all be described by the same functional form. Differences in the 

response patterns between experimental units are modelled by allowing the parameters 

of the model to be stochastic. Linear as well as non-linear response functions are 

considered and it is assumed that the residuals of the models are generated by stationary 

autoregressive moving average (ARMA) processes. 

The exact likelihood function of the observations of a random coefficient ARMA 

process is given as well as an approximation thereof based on numerical integration. It 

is shown that a Kalman recursive algorithm can be used in situations where the data is 

incomplete. The concept of marginal maximum likelihood estimation is discussed 

together with the use of the EM-algorithm to obtain maximum likelihood estimates. 

Bayes estimators of the coefficients of an ARMA process are given. It is shown how 

the Gibbs sampler can be used to calculate Bayes estimates. 

Various models used to describe repeated measurement data are considered. It is 
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assumed that the error terms of these models are generated by an ARMA process with 

fixed or random coefficients. In repeated measurement experiments more than one 

related characteristic is often measured at each time point. Vector ARMA models can 

be used to analyze the change in the response vector over time. It is shown that results 

applying to the scalar case can be generalized to deal with vectors of measurements. 

Two distributions in the elliptical class are considered as alternatives to the normal 

distribution as probability models for the white noise of an ARMA process. The results 

of two simulation studies are given. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

ONDERWERP: 

OPSOMMING 

DIE ONTLEDING VAN HERHAALDE 

METINGSMODELLE ONDERHEWIG AAN NIE­

STANDAARD VERDELINGSAANNAMES 

KANDIDAAT: HERMf BORAINE 

PROMOTOR: PROFESSOR SHC DU TOIT 

DEPARTEMENT: STATISTIEK 

GRAAD: PHD (WISKUNDIGE STATISTIEK) 

Herhaalde metings word dikwels in eksperimente op elk van 'n aantal eksperimentele 

eenhede gemaak met die doel om 'n responsfunksie by die data te pas. Longitudinale 

data bestaan uit herhaalde metings wat van 'n aantal eksperimentele eenhede verkry is. 

Die aanname word gemaak dat, hoewel die responspatrone van individue mag verskil, 

almal van dieselfde funksionele vorm is. Verskille in die responspatrone tussen 

eksperimentele eenhede word voor voorsiening gemaak deurdat die parameters van die 

modelle stogasties kan wees. Lineere sowel as nie-lineere responsfunksies word beskou 

en die aanname word gemaak dat die residue van die modelle gegenereer word deur 

stasionere outoregressiewe bewegende gemiddelde (ARMA) prosesse. 

Die beraming van die parameters van 'n stogastiese koeffisient ARMA model word 

beskou. Die aanneemlikheidsfunksie, tesame met 'n benadering daarvan, gebaseer op 

numeriese integrasie, word gegee. Daar word aangetoon dat 'n Kalman rekursiewe 

algoritme gebruik kan word om die aanneemlikheidsfunksie te bereken wanneer die data 

onvolledig is. Marginale maksimum aanneemlikheidsberaming word bespreek tesame 

met die gebruik van die EM-algoritme vir die berekening van maksimum 

aanneemlikheidsberamings. Bayes beremers word gegee vir die koeffisiente van 'n 

ARMA proses. Daar word getoon hoe die Gibbs steekproefgenereerder gebruik kan 
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word om Bayes beramings te verkry. 

Verskeie modelle wat gebruik kan word om herhaalde meting data te beskryf word 

beskou. Daar word aangeneem dat die foutterme van die modelle deur ARMA prosesse 

met vaste of stogastiese koeffisiente gegenereer word. In herhaalde meting eksperimente 

bestaan die waamemings dikwels uit meer as een eienskap wat gemeet word. Daar word 

aangetoon dat resultate van toepassing op die skalaargeval uitgebrei kan word om 

voorsiening te maak vir vektor ARMA prosesse. 

Twee verdelings in die elliptiese klas word as altematiewe vir die normaalverdeling 

gebruik om te dien as waarskynlikheidsmodelle vir die witruis van 'n ARMA proses en 

die resultate van twee simulasiestudies word gegee. 
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CHAPTER 1 PROPOSED RESEARCH 

Repeated observations are often made in experimental studies on each of a number of 

experimental units with the objective to fit a response curve to the data. Longitudinal 

data consist of repeated observations on many experimental units. Jones (1991) draws 

a distinction between time series data and longitudinal data. Time series data consist of 

repeated observations on a single experimental unit. Methods for the analysis of time 

series data often require that the number of repeated observations be at least 50. The 

number of experimental units in longitudinal studies is usually far greater than the 

number of time points, and the number of time points is often less than 10 (Reichardt 

(1991)). In this study the focus falls on the analysis of longitudinal data. 

In many practical applications it is reasonable to assume that although the response 

patterns of the different experimental units may differ, they can all be described by the 

same functional form. Differences in the response patterns between experimental units 

are modelled by allowing the coefficients of the model to be stochastic. 

Linear and non-linear response functions are considered and it is assumed that the 

residuals of the models are generated by stationary autoregressive moving average 

(ARMA) processes with either fixed or random coefficients. 

In Chapter 2 results that are used in the estimation of the parameters of repeated 

measurement models are given. Maximum likelihood estimation is discussed and results 

pertaining to the multivariate normal distribution with a structured covariance matrix 

are given. An iterative procedure which can be used to maximize the likelihood function 

that can be used in situations where the maximum likelihood equations can not be 

expressed in closed form is reviewed. The likelihood functions derived in the 

subsequent chapters are often given in terms of a multidimensional integral which can 

not be calculated with standard integration results. It is shown how numerical 

integration can be used to calculate these likelihood functions. Basic results pertaining 

to the elliptical class of distributions are introduced and the generation of samples from 

1-1 
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this class is discussed. 

In Chapter 3 results reported on in literature concerning the estimation of fixed 

coefficient ARMA models are discussed. These results are extended in subsequent 

chapters, to allow for different sets of model assumptions. 

The likelihood function is given for an ARMA model with Gaussian white noise. The 

state-space representation of an ARMA process is also given and it is shown how the 

Kalman recursive algorithm can be employed to estimate the coefficients of the ARMA 

process in the case of a complete, as well as an incomplete data set. 

An expression is derived for the covariance matrix of a stationary ARMA process 

which takes into account the state of the process before any observations were made. 

It is also shown how the likelihood function of the repeated measurements can be 

calculated without direct calculation of the inverse or determinant of the covariance 

matrix. A reparameterization of the ARMA coefficients which is used in subsequent 

chapters is also included. 

In Chapter 4 the estimation of the parameters of a random coefficient ARMA model is 

considered. 

The exact likelihood function of the observations of an ARMA process is given as well 

as an approximation thereof based on numerical integration. It is shown that a Kalman 

recursive algorithm can be used in situations where the data is incomplete. The results 

of a simulation study, which was carried out to examine the properties of the maximum 

likelihood estimates for complete as well as incomplete data sets, are given. 

The concept of marginal maximum likelihood estimation is discussed together with the 

use of the EM-algorithm to obtain maximum likelihood estimates. It is also shown how 

generalized least squares estimates of the parameters, of the random coefficient ARMA 

model, can be obtained by using numerical integration. 

1-2 
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Since the assumptions made in random coefficient models are similar to Bayes 

assumptions, the Bayes estimates of the coefficients of an ARMA process are given. It 

is shown how the Gibbs sampler can be used to calculate Bayes estimates. An example 

of the implementation of the Gibbs sampler based on simulated data is provided. 

In Chapter 5 various models used to describe repeated measurement data are 

considered. It is assumed that the error terms of these models are generated by an 

ARMA process with fixed or random coefficients. The results of previous chapters are 

now incorporated in more general models allowing for linear and non-linear response 

functions over time with fixed or random parameters. The results are applied to a South 

African unit trust data set. 

In Chapter 6 two distributions in the elliptical class are considered as alternatives to the 

normal distribution as probability models for the white noise of an ARMA process. The 

results of two simulation studies are given. These studies were carried out to examine 

the properties of the maximum likelihood estimators in situations where the kurtosis of 

the data differs from that of a normal distribution. The exact likelihood functions based 

on the multivariate !-distribution and the Pearson Type II distribution are given and the 

corresponding maximum likelihood estimation results are reported on in the simulation 

study. 

In repeated measurement experiments more than one related characteristic is often 

measured at each time point. Vector ARMA models can be used to analyze the change 

in the response vector over time. 

It is shown in Chapter 7 that results applying to the scalar case can be generalized to 

deal with vectors of measurements. An expression is derived for the covariance matrix 

of the observation vector, that takes into account information regarding the process 

before any observations were made. The likelihood function of the observations are 

given under the assumption that the white noise terms are independent multivariate 

normal vector variates. 

1-3 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

It is shown that in certain circumstances, the covariance matrix of the observations can 

be decomposed into a Kronecker product of the covariance matrix of the variables and 

the covariance matrix of the observations over time. Conclusions can then be drawn 

regarding the relationships between the variables on the one hand and a possible 

common pattern relating to change over time on the other hand. A practical application 

involving psychometric test results is given. 

Most of the theory discussed in this dissertation has been implemented using 

FORTRAN computer programs. 

1-4 
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CHAPTER 2 GENERAL RESULTS 

2.1 INTRODUCTION 

This chapter introduces results which will be used in subsequent chapters. 

The emphasis of this dissertation is on the estimation of unknown parameters in a 

repeated measurements time series or regression model, under different sets of 

distributional and model assumptions. 

Repeated measurement data sets typically consist of a response measured repeatedly on 

each of a number of experimental units. Changes in the pattern of responses may occur 

over time and it is frequently possible to describe these changes by means of a response 

function which may be linear or non-linear in its parameters. When measurements are 

made over time, the errors are usually correlated, and it will be assumed that the error 

terms are generated by an autoregressive moving average (ARMA) process. The 

assumption is made that the parameters of the response function and ARMA process, 

of the different subjects, are independent realisations of a random vector, 'Y, from a 

common multivariate population. The problem addressed in this dissertation is the 

estimation of the parameters of the multivariate distribution of 'Y. The parameters of the 

response function and ARMA process are therefore not fixed over the experimental 

units but are random variables. 

In Section 2.2 maximum likelihood estimation is discussed. Specific attention is given 

to the estimation of the elements of the mean vector and covariance matrix of the 

multivariate normal distribution. 

As it is often not possible to express the maximum likelihood estimators of the unknown 

parameters of a random coefficient model in closed form, an iterative optimization 

algorithm is required to obtain these estimates. Such an algorithm is discussed in 

Section 2. 3. 

2-1 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

When dealing with random coefficient models, calculation of the value of 

multidimensional integrals is frequently necessary. In many instances, these integrals 

cannot be solved analytically and we have to resort to numerical integration techniques 

which are discussed in Section 2.4. 

Simulation studies are used throughout this dissertation as a practical means to evaluate 

estimation techniques based on the derivation of new theoretical results. Section 2. 5 is 

concerned with multivariate data simulation techniques. The elliptical class of 

distributions is defined and some important results are given. 

2.2 ESTIMATION PROCEDURES 

This section concentrates on the estimation of a model's parameters by using maximum 

likelihood estimation. Ordinary least squares and generalized least squares discrepancy 

functions are given. General results pertaining to maximum likelihood estimation are 

given, after which the special case of the multivariate normal distribution is discussed. 

The likelihood ratio test is discussed as a means of testing the fit of a model under the 

assumption of multivariate normality. 

Suppose y 1, ••• , YN is a set of independent random vectors from a population of which 

the distribution depends on 'Y E O where 'Y is a k-dimensional vector of parameters and 

0 is the parameter space. Our objective is to estimate 'Y · 

Ordinary least squares (OLS), generalized least squares (GLS) and maximum likelihood 

(ML) estimation are well known classical estimation techniques which are commonly 

used. In all three cases a non-negative scalar valued discrepancy function, denoted by 

F( 'Y), can be defined which has to be minimized with respect to 'Y. The point in 0 

where the discrepancy function is a minimum is an estimate of 'Y. 

A standard procedure for the determination of a global maximum or minimum point 

2-2 
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involves finding the first order partial derivatives of F with respect to the components 

of 'Y. The estimator -y is the point in the parameter space where 

(2.2.1) 

It should be kept in mind that the first order partial derivatives are not necessarily 

defined in the neighbourhood of -y. The value of the discrepancy function must also be 

examined in all points where (2.2.1) is not defined and on the boundary of the 

parameter space for possible minima. 

Suppose that the change in the response pattern over time may be represented by the 

following set of regression equations: 

(2.2.2) 

where f(.) is the response function, ()i is the vector of parameters, t represents points 

in time when observations were made and ei is the vector of error terms of subject i, 

i = 1, ... , N. 

The discrepancy functions used in OLS and GLS estimation are given by the following 

expressions respectively: 

N 
FOLS = L fyi-E(y)]'fyi-E()7;)] 

i=l 

and 

(2.2.3) 

2-3 
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N 

FGLS = L [yi-E(y)]'[Cov(y;,Y~)t 1[y;-E(y;)] 
i=l 

(2.2.4) 

where E(yi) is the mean vector and Cov(yi,Y/) the covariance matrix of Yi subject to the 

model (2.2.2). 

Maximum likelihood estimation (see e.g. Bickel and Doksum (1977)) will be discussed 

in more detail as it is the estimation procedure which will be largely used in the 

remaining chapters. 

Maximum likelihood estimation 

The joint density function of Yi, ... , YN, as a function of 'Y, for a given vector of 

outcomes y1, ••• , YN is called the likelihood or likelihood function and is denoted by 

L(y1, · · ·, YN,-y). 

The maximum likelihood estimate (MLE) is the value of 'Y in O where the likelihood 

is a maximum. A MLE does not always exist and is not always unique. It is often more 

convenient to work with lnL, the logarithm of the likelihood function, called the log­

likelihood. The MLE's will minimize the function -lnL(y1, ••• , YN,'Y) and this function 

( or any multiple thereof) can be seen as a discrepancy function. 

Let F be any scalar function of 'Y. The k x 1 vector of first order partial derivatives of 

F with respect to the components of 'Y is known as the gradient of F, 

oF 
g = -· a-y (2.2.5) 

The gradient of the log-likelihood is called the scoring vector (Longford (1993)). If the 

2-4 
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likelihood is a maximum at an interior point y of the parameter space and the scoring 

vector is defined in the neighbourhood of this point, then y is the root of the scoring 

vector. The ML equations can be written as 

aLnL(yl' ... ,y N' -y) 

I " = 0. a,, ,, =-y 
(2.2.6) 

ML estimation consists of finding the roots of the scoring vector and examining the 

boundaries of the parameter space and points in the parameter space where the scoring 

vector is not defined, for possible locations of maxima. The solution to the likelihood 

equations can often not be expressed in closed form. An iterative optimization 

procedure may then be used to maximize the likelihood function. Such an algorithm is 

discussed in the next section. 

MLE's have very desirable properties when certain regularity conditions are satisfied. 

Different sets of regularity conditions are discussed by Wasan (1970) and Bickel and 

Doksum (1977). The most important of the regularity conditions is that 'Y is an interior 

point of the parameter space n and that 'Y is identified (unique in 0) (Browne (1991)). 

If the regularity conditions hold and the sample size N is large, the distribution of y is 

approximately multivariate normal with mean vector 'Y and covariance matrix j-1 (see 

e.g. Bickel and Doksum (1977)) where i is the information matrix defined as 

i = -E[H(-y)] (2.2.7) 

and the k x k matrix of second order derivatives, H(-y), is the Hessian matrix of lnL 

with typical element 

(2.2.8) 

2-5 
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Multivariate normal distribution with structured covariance matrix 

Suppose Yi, ... , YN is a random sample from an n-dimensional N(µ,E('q)) distribution 

whereµ is unknown and E(17) is a structured matrix with unknown parameters 17. The 

vector of parameters, -y, is given by 

-y' = (µ' '11'). (2.2.9) 

The results given in this section were obtained or adapted from those given by Browne 

(1991). Browne extended Bargmann's results (Bargmann (1967)) for parametric 

structures of E to parametric structures of E and µ. 

The likelihood is the joint density of Yi, ... , YN, given by 

N N 
IE 1--r exp[-½ L (y ;-µ)' r,-i (y ;-µ)] 

i=l 

and the log-likelihood is therefore 

lnL(yi, ... ,y N' -y) = -:..N(nln21r+ln IE I +tr[E-iG]) 
2 

where G (n x n) is given by 

(N-1) - -
G = N S +(y-µ)(y-µ) 1

, 

2-6 

(2.2.10) 

(2.2.11) 

(2.2.12) 
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- 1 N 
y = -LY; 

N- 1 l= 

and S is the sample covariance matrix defined by 

(2.2.13) 

(2.2.14) 

It can be shown (see e.g. Browne and Du Toit (1992)) that a typical element of the 

gradient of lnL is given by 

atnL N aE aµ 
-- = -trP- + NtrR-
a~ 2 a~ a~ 

where 

and 

(2.2.15) 

(2.2.16) 

(2.2.17) 

From (2.2.15) to (2.2.17) it follows that the MLE's for µ and 11 can be obtained by 

finding the roots of 

(2.2.18) 

2-7 
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and 

olnL 

ar,i 
= N tr [Pat] 

2 a11i 

respectively. 

(2.2.19) 

The elements of the inverse information matrix can be used to construct confidence 

intervals and tests of hypotheses on the population parameters. For large values of N, 

the inverse of the information matrix is an approximation of the covariance matrix of 

the estimates, 'Y (see e.g. Bickel and Doksum (1977)). A typical element of the 

information matrix is given by 

(2.2.20) 

Test of model fit: multivariate normal distribution 

In the case of the multivariate normal distribution with mean µ and structured 

covariance matrix, E('q), a likelihood ratio test can be used to test the fit of a model. 

The null hypothesis states that the mean vector and covariance matrix have a specified 

structure, 

(2.2.21) 

where i' is identified, against the general alternative 

H1: µ is any n x 1 vector; E is any non-negative n Xn matrix. (2.2.22) 

2-8 
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Suppose the MLE of -y under H0 is denoted by -y so that 

µ = µ(-y) (2.2.23) 

and 

t = E(-y) (2.2.24) 

are the MLE's ofµ and E under H0 • Under H1 the MLE's ofµ and E are (2.2.13) and 

W = N-1 S 
N 

(2.2.25) 

respectively where Sis given by (2.2.14). The likelihood ratio test statistic is defined 

as 

A = L(µ,t) 
L(y, W) 

(2.2.26) 

If H0 is true and if certain regularity conditions are satisfied, the limiting distribution 

of 

-2lnA = N{lnltl -lnl WI +tr[t-1G]-n} (2.2.27) 

where (cf. (2.2.12)) 

{; = G(µ) (2.2.28) 

2-9 
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is the central chi-square distribution with degrees of freedom q, where q is the 

difference between the number of parameters estimated under the alternative and null 

hypotheses. If 'Y is k-dimensional, then q = n + ½n(n + 1) - k. 

2.3 OPTIMIZATION 

In situations where it is not possible to express the ML equations (2.2.6) in closed 

form, an iterative procedure is required to minimize the discrepancy function, F( 'Y). 

In Section 2.3 the optimization method developed by Browne and Du Toit (1992) is 

discussed. The basic ideas behind the algorithm are introduced by explaining Newton's 

method which is conceptually simple and forms the basis of many methods which were 

developed later. 

The optimization method that will be described was developed by Browne and Du Toit 

(1992) and implemented in the computer program AUFIT (Du Toit and Browne 

(1982)). Their algorithm is based on the Fisher scoring algorithm (see e.g. Gill et al 

(1981)). In the case of a structured mean and covariance matrix, the algorithm may be 

regarded as a sequence of Gauss-Newton steps. 

Suppose a discrepancy function F( 'Y) needs to be minimized with respect to 'Y. The 

assumption is made that F is twice differentiable and can be approximated by a 

quadratic function in the neighbourhood of its minimum. The Newton optimization 

method will converge in a finite number of steps when the discrepancy function is 

quadratic. If the discrepancy function is not quadratic, it is adapted to converge 

reliably. A trial solution, 'Yo, is chosen and its function value, F(-y0), first derivatives, 

g, and second derivatives, A, are all calculated in this point. The function F(-y) can be 

approximated by 
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(2.3.1) 

The assumption is made that F( "Y) is reasonably well approximated by a second order 

Taylor series expansion. Let the gradient vector of the approximating function be 

denoted by g(-y). Differentiation of (2.3.1) with respect to "Y gives 

(2.3.2) 

To find the next estimate of-y, g(-y) is set equal to O and the equation is solved for -y. 

From (2.3.2) it follows that 

(2.3.3) 

and hence 

(2.3.4) 

Suppose "Yi-l is the (i-1)-th solution in the Newton algorithm. The gradient vector, Ki-i, 

and the Hessian matrix, Hi-l, are evaluated in "Yi-l, and the next solution is 

(2.3.5) 

According to Beale (1988) there are two basic problems with (2.3.5). The first is that 

there is no guarantee that F(-y) < F(-yi_1). This is due to the fact that the step, (Ai_1y1gi_1, 

is based entirely on the behaviour of F(-y) in the neighbourhood of "Yi-t· The method can 

be modified by incorporating a line search where the next solution is obtained from 

(2.3.6) 
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where ai is a positive scalar (sometimes referred to as a step size parameter) that is 

initially made one and repeatedly reduced until F('Yi) < F('Yi-1). 

The second problem is that Ai-l is not necessarily positive definite. To overcome this 

problem, a constant can be added to the diagonal elements of A to make it positive 

definite. The next solution is 

(2.3.7) 

Newton's method requires the calculation of second order derivatives. The algorithm 

performs well when the initial estimate 'Yo is close to the true minimum of F. The 

disadvantages of using the Hessian are that the expressions for its elements can be 

complicated, and may require a substantial amount of computer time for each iteration. 

It also tends to converge slowly or diverge if the initial approximation is poor (Browne 

(1982)). 

The basic idea of quasi Newton or variable metric methods is to iteratively build up, 

a good approximation to the inverse Hessian matrix H -i (Press et al (1986)). The 

Davidon-Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithms are frequently implen:i.ented as updating schemes of the inverse Hessian 

matrix. The Fisher scoring algorithm uses the information matrix instead of the Hessian 

matrix (Agresti (1990)). For the multivariate normal distribution, the ij-th element of 

the information matrix is given by (2.2.20). At convergence, when N is large, the 

inverse information matrix can be used as an approximation of the covariance matrix 

of the estimators. 

Suppose the parameters of a multivariate normal distribution are estimated and -lnL is 

used as discrepancy function. A typical element of the information matrix, i, is 
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(2.3.8) 

For the N(µ,E) distribution, i is given by (2.2.20) and the gradient can be calculated 

using (2.2.15). 

The optimization algorithm requires a subroutine to calculate the value of F( ''Yk). 

Although code can be supplied for the calculation of exact derivatives, practical 

experience has shown that the algorithm is not sensitive to the use of numerical 

derivatives (Du Toit (1993)). Both (2.2.15) and (2.2.20) require the partial derivative 

of E with respect to 'Yi· The approximation used by AUFIT is 

aE - E(-y+E:1-'11)-E(-y) 

a-y1 - €1 
(2.3.9) 

where ~ 1 is a column vector with the only non-zero element a one in the }-th position 

and 

(2.3.10) 

where € is a small positive scalar (e.g. € = 10-5
). 

The estimation of standard errors may be affected by the choice of€, especially when 

the model is highly nonlinear. 

Iteration of (2.3.6) is continued until some convergence criterion is met. A convergence 

criterion that is not affected by rescaling the data which is based on the residual cosine 

was given by Dennis (1977). The residual cosine of parameter j at the i-th iteration is 

defined as 
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c. = 
J I 

[AJJiF(1))1 
, }= 1, ... ,k. (2.3.11) 

Convergence is attained if all absolute residual cosines fall below a certain tolerance 

limit (e.g. 10-3
) or if the value of the discrepancy function is smaller than a prescribed 

limit (e.g. 10-6) within a number (say three) of consecutive iterations. 

2.4 NUMERICAL INTEGRATION 

The basic principles of numerical integration are discussed for the one-dimensional case 

and then extended for the multidimensional case. Results required in Chapters 4 and 5 

are stated. 

One-dimensional integrals 

Suppose it is not possible to find a closed form solution for an integral of the form 

b 

J W(x)f(x) dx 

a 

(2.4.1) 

where W(x) is a given non-negative weight function on the interval [a;b]. W(x) must be 

positive and continuous on [a;b]. The aim of Gaussian integration rules or quadrature 

formulas is to find a set of n abscissas ( or nodes), x1, ••• , xn and weights w1, ••• , w n 

such that the approximation 

b n 

J W(x)f(x) dx - L wJ(x;) 
a i=l 

(2.4.2) 
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is exact whenf(x) is a polynomial. An introduction to the theory of Gaussian quadrature 

is given by Krylov (1962) and Stroud and Secrest (1966). 

The theory of orthogonal polynomials is used to solve for both the weights and 

abscissas. The scalar product of two functions f and g over a weight function W is 

defined as 

b 

VI g) = J W(x)f(x) g(x) dx. (2.4.3) 

a 

The functions f and g are orthogonal with respect to W if their scalar product is zero. 

A function is said to be normalized if its scalar product with itself is one. 

Let 

(2.4.4) 

be a normalized real polynomial of degree j. 

A set of orthogonal polynomials can be constructed by the Gram-Schmidt 

orthogonalization process. For each weight function these polynomials are unique and 

defined by the following recursions: 

Po(x) = 1 

= [x (xpo IPo)] Po(x) 
(folPo) 
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' i ~ 1. (2.4. 7) 

Stoer and Bulirsch (1980) have proved that the roots of the orthogonal polynomial pn(x) 

are real and lie in the interval ( a, b). These roots are the abscissas x 1, ••• , x 0 
of the n­

point Gaussian quadrature formula (2.4.2). The weights w1, ••• , w0 are the solutions of 

the following non-singular system of equations: 

Po(x1) Po(X2) ··· Po(xn) 

p/x1) Pi(X2) ··· Pi(Xn) 
= 

0 (2.4.8) 

The weights will all be positive and 

b n 

J W(x)p(x) dx = L w;p(x;) 
a i=l 

(2.4.9) 

will be exact for all polynomials of degree 2n - 1 or less. The proof of this result can 

be found in Stoer and Bulirsch (1980). 

A few of the commonly used weight functions listed in Press et al ( 1986) are given in 

Table 2.4.1. 

2-16 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

Table 2.4.1 Quadrature weight functions 

Interval Weight function 

(a,b) W(x) Gauss-

(-1; 1) 1 Legendre 

(-1;1) (1-.x2t½ Chebyshev 

(O; oo) xcexp(-x) Laguerre 

(-oo;oo) exp(-x2
) Hermite 

Tabulations of the abscissas and weights for various weight functions can be found in 

standard references, e.g. Abramowitz and Stegun (1964). 

The accuracy of the Gaussian quadrature formulas depends on how well the function 

f(x) in (2.4.1) is approximated by a polynomial of degree 2n - 1. 

For a normal distribution the Gauss-Hermite quadrature formula is very useful. Unless 

otherwise stated, the weight function exp(-.x2) is used when referring to numerical 

integration or Gaussian quadrature. 

The following example illustrates the numerical integration technique by applying it to 

a simple problem. 

Example 2.4.1 

Suppose the value of the following integral has to be calculated by means of Gaussian 

quadrature: 
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00 

I = f exp[-3(x-¾)2](x 4 -sinx) dx. (2.4.10) 

-00 

The following transformation of x enables us to use the Gauss-Hermite weight function: 

y = /3(x-{) . (2.4.11) 

The integral can be written in terms of the transformed variable as 

I = T exp[ -y2
] [{J3y+¾)'-sin{J3y+¾)] J3 dy. (2.4.12) 

-00 

A three-point quadrature formula will be sufficient to approximate (2.4.10). The 

orthogonal polynomials with respect to the weight function W(y) = exp(-y2) are derived 

from (2.4.5) to (2.4. 7) and PiY) is given by 

PiY) = y(y2-~). 
2 

The abscissas are the roots of p3'y) namely y1 = -{f, y2 = 0 and y3 = {f. 

To find the weights, the system of equations (2.4.8) is solved: 
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1 1 1 Wl r; 
Yi Y2 Y3 w2 = 0 
2 1 2 1 2 1 0 Y1 -- Y2 -- Y3 -- W3 2 2 2 

-1 

Wl 
1 1 1 

-[rl w2 = -ff 0 ff 
W3 1 1 1 

2 

[0.295409 l 
= 1.181636 

0.295409 

The weights are given by w 1 = w 3 = 0.295409 and w 2 = 1.181636. 

(These abscissas and weights correspond with the tabulated values. For known weight 

functions such as the above, it is not necessary to perform the calculations manually.) 

The integral (2.4.10) is approximated by 

t W; • /3 [(/Jy;+¾f-sin(/Jy;+¾)] 
z=l 

= 27.097 

using (2.4.2). 

Multidimensional integrals 

In situations where it is not possible to calculate the value of a multidimensional integral 
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analytically, it is sometimes possible to solve the problem through repeated (nested) 

application of one-dimensional Gaussian quadrature formulas. It can be accomplished 

by writing the multidimensional integral as a product type integral. In the context of the 

multivariate normal distribution, the region of integration is not bounded and the 

problem is simplified. In Section 4.3 the following three-dimensional integral has to be 

solved: 

1 

l(e) = f f f I E(11) 1-1 exp[-{e'E(11t1e] · exp[-{<11-110)''1,-1(11-110)] d11 (2.4.13) 

where the matrix 1;(11) is a function of 11:3 x 1, a set of parameters. The following 

transformation of the vector 11 to the vector u is carried out to simplify the quadratic 

form: 

The integral can be written as 

1 1 

l(e) = J J J exp[ -u' u] I E(u) 1-1 exp[-{e'E(ut1e] I J2 '1r 1 I du 

= J exp( -u;) J exp( -uf) J exp( -u;)f(u) du 

where 

1 1 

f(u) = I E(u) 1-1 I J2 '1r 1 I exp[-{e' E(ut1e]. 

(2.4.14) 

(2.4.15) 

(2.4.16) 

(2.4.17) 

The weight function is Gauss-Hermite and the one-dimensional weights and abscissas 
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can be used to approximate (2.4.12). The approximation is given by 

n n n 
l(e) ;:::; L wiL w1 L wkf(xi'x1 ,xk). 

i=l j=l k=l 
(2.4.18) 

In practice, four quadrature terms per integral yielded a good approximation for the true 

value of the integral. 

In repeated measurement models where the coefficients are regarded as random, 

numerical integration is used to obtain maximum likelihood estimates of the parameters 

(see Section 4.3). The joint distribution of the observations and the random coefficients 

must be integrated to obtain the marginal distribution of the observations. This is 

required to obtain MLE's for the model parameters. 

Gibbs sampling (see Section 4. 7) is an alternative estimation procedure which may be 

used if numerical integration is to be avoided. 

2.5 MULTIVARIATE DATA GENERATION 

Simulation studies are used throughout this dissertation as a practical means to evaluate 

estimation techniques. A sample is generated from a population with known 

characteristics. The performance of different estimation procedures can be assessed by 

a comparison of estimated and theoretical results. In this dissertation the assumption of 

multivariate normality is often made. In Section 3. 2, for instance, the joint distribution 

of the observations from a time series with fixed coefficients is assumed to be 

multivariate normal. When modelling repeated measurement data, where observations 

for a number of experimental units are available, it is reasonable to regard the 

coefficients of the model as random variables. The multivariate normal distribution is 

considered as probability model for the random coefficients in Chapters 4 and 5. 
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The section starts with a brief discussion of three different techniques used for 

multivariate statistical simulation. Methods. for the generation of samples from 

multivariate normal and other members of the elliptical family of distributions are also 

discussed. 

A useful book in this regard is that of Johnson ( 1987). He highlights three general 

methods used for multivariate generation, namely conditional distributions, 

transformation methods and rejection methods. The rejection approach is not widely 

used in multivariate data generation. 

The conditional distribution approach requires knowledge of the conditional 

distributions. Instead of generating a vector with n components from a multivariate 

distribution, the problem is reduced to generating n observations from univariate 

distributions. Suppose an observation fromf(x) is required where x' = (xi, ... , Xn). The 

distribution of x can be factorised as follows 

(2.5.1) 

The first observation, Xi, is generated from the marginal distribution of Xi, the second 

observation from the conditional distribution of x2 I Xi, and so on until the last 

observation is obtained from the conditional distribution of Xn I Xi, ... , xn-i • 

The basic idea behind the transformation approach is to write the variable under 

consideration, as a function of variables with known distributions which are easy to 

generate. 

This approach is usually followed when sampling from the multivariate normal and 

other elliptical distributions. 
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Multivariate normal distribution 

The generation of samples from a multivariate normal distribution is simplified through 

the availability of built-in routines for the generation of standard normal variables in 

computer software. Suppose an observation, x, is required from the n-dimensional 

N(µ,E) distribution. Let the n components of z' = (z1, ••• , Zn) be independent N(O, 1) 

variables so that z is N(O,/). The random vector x can be expressed as a function of 

z using the transformation 

x = Lz+µ (2.5.2) 

where L is the Choleski root of E, i.e. E = LL'. An effective algorithm to calculate 

the Choleski decomposition of a positive definite matrix is given by Martin, Peters and 

Wilkinson (1965). 

Some basic distributional results will be given before discussing the generation of data 

from the elliptical class of distributions. 

Elliptical class of distributions 

The elliptical class of distributions (also referred to as elliptically contoured 

distributions) can be used in robustness studies as an alternative to the multivariate 

normal distribution. The best known member in this class is the multivariate normal 

distribution, but it also includes density functions whose contours of equal density have 

the same elliptical shape as that of the normal distribution, but with a longer or shorter 

tail relative to the normal distribution. 

The properties of the elliptical distributions were obtained and studied by authors like 

Kelker (1970), Chmielewski (1981), Cambanis, Huang and Simons (1981) and 

Muirhead (1982). Gupta and Varga (1993) give results for matrix elliptical distributions. 
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The p x 1 random vector x has an elliptically contoured distribution if the characteristic 

function of x - µ is a function of the quadratic form t' V t where µ is a p x 1 vector in 

RP and Vis a p x p non-negative definite matrix. The characteristic function of x - µ 

lS 

<Px_/t) = exp(it1 µ)y;(t1 Vt) (2.5.3) 

for some function l/;. 

Not all elliptical distributions defined by (2. 5. 3) have density functions. The focus will 

be on the restricted class of elliptical distributions which have density functions and a 

positive definite V. The density function of this restricted class is of the form 

1 

f(x) = cp I Vl- 1 h[(x-µ)1 v-1(x-µ)] (2.5.4) 

for some function h and constant cP. The notation EP(µ, V,h) will be used to denote an 

p-variate elliptical distribution with parameters µ, V and h. 

A spherically symmetric distribution is an elliptical distribution with µ = 0 and V = 

I. An important characteristic of a spherically symmetric variable x is that the 

distribution of x is the same as that of Px for all p x p orthogonal matrices P. 

An Ep(µ, V,h) variable, y, can be obtained from a spherically symmetric variable x by 

means of the following transformation: 

y = Cx+µ (2.5.5) 

where V = CC' and C is a non-singular p x p matrix. 
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The moments of an elliptical distribution are functions of the parameters µ and V, but 

they do not always exist. Suppose x is EP(µ, V,h). Provided they exist, 

E(x) = µ (2.5.6) 

and 

Cov(x ,x ') = a V (2.5.7) 

for some constant a. The value of a is defined as 

et = -21/;1 (0) (2.5.8) 

where the function 1/; is determined by the characteristic function (2. 5. 3). 

The marginal distributions of x are all elliptically symmetric, have the same functional 

form (denoted by h in (2.5.4)) and have the same kurtosis. The kurtosis is 

_ 3[1/;11 (0)-1/;' (0)2] 
'Y 2 - 1/;' (0)2 

(2.5.9) 

The kurtosis, -y2 , of a normal distribution is zero. Curves for which -y2 is zero are called 

mesokurtic, those for which -y2 > 0 are called leptokurtic and those for which -y2 < 0 are 

called platykurtic. Relative to a normal distribution, leptokurtic distributions are sharply 

peaked and platykurtic distributions will be flat-topped (see Kendall and Stuart, Vol.1 

(1958)). In Chapter 5 the Pearson Types VII and II distributions which both belong to 

the elliptical class and are leptokurtic and platykurtic respectively, are considered as 

alternatives to the normal distribution. 

The above results are illustrated in the following example. 
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Example 2.5.1 

Suppose x is p-variate N(µ,E). The characteristic function of x is 

<px_/t) = exp(it' µ)exp(-¾t'Et). (2.5.10) 

From (2.5.3) it follows that the function 1/; is 

(2.5.11) 

so that 

(2.5.12) 

The value of a is 1, using (2.5.8) and (2.5.12). It follows that Vis the covariance 

matrix of x. 

The density function of x is 

_p - 1 

f(x) = (21r) 1 IE I 1 exp[-{<x-µ) 1E-1(x-µ)]. (2.5.13) 

By comparing this result with (2. 5 .4) the function h is identified as 

(2.5.14) 

and the proportionality constant is 
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(2.5.15) 

The kurtosis as defined by (2. 5. 9) is zero for the multivariate normal distribution. 

• 

Another important result that relates to the dependence structure of the components of 

x is now given. 

A basic result in multivariate normal theory is that if xis N(µ,D) where Dis a diagonal 

matrix, the components of x are all independent. Within the class of elliptical 

distributions, the normal distribution is characterized by independence when V is 

diagonal. (Muirhead (1982), Theorem 1.5.3.) The normal distribution is therefore the 

only elliptical distribution with this property. 

The following theorems are useful when observations are generated from distributions 

in the elliptical class. The results are proved in e.g. Muirhead (1982). 

Theorem 2.5.1 (Johnson (1987), p.108) 

If xis Ep(µ, V,h) and Bis a r x p matrix of rank r (r ~ p), then Bx is Er(Bµ,BVB' ,h). 

This result is used, for instance, in the transformation of a spherically symmetric 

distribution to a general elliptical distribution as given by (2. 5. 2). 

The following theorem gives the distribution of the quadratic form (x - µ)'V-1(x - µ). 

2-27 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

Theorem 2.5.2 (Muirhead (1982), Theorem 1.5.5) 

If x is Ep(µ, V,h), the density function of the quadratic form q = (x - µ)' v-1(x - µ) is 

p 

g(q) 
1 p_l 

= _!_c q 1 h(q), 
r(~) p 

q > 0. (2.5.16) 

In the case of the multivariate normal distribution the distribution of q is x2(p), and for 

some other elliptical distributions the density g(q) is a standard form, e.g. the beta or 

Pearson Type VI. 

The following theorem gives the distribution of a normalized (norm of variable is unity) 

spherically symmetric variable. 

Theorem 2.5.3 (Muirhead (1982), Theorem 1.5.6) 

If xis Ep(O,/,h), the density function of t(x) = (x'x(hx is uniform on the boundary of 

the p-dimensional hypersphere and t(x) and II x II = (x'x) 1

/2 are independent. 

Cambanis, Huang and Simons (1981) provided a representation of elliptically contoured 

distributions which is useful when generating observations based on the transformation 

method. 

Theorem 2.5.4 (Johnson (1987), p.110) 

If x is Ep(µ, V,h), it can be generated from 

x = rBu(p) + µ (2.5.17) 
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where r is a positive random variable having the distribution of 

q'h = ((x - µ)'V-1(x - µ))½; 

u<P> is a random vector that is uniformly distributed on the unit hypersphere; 

r and u<P> are independent and 

B is a p x p matrix such that V = BB'. 

Proof 

Suppose the random vector y is Ep(O,I,h). Then y can be written as 

1 1 

y = (yl y) °2(yl y)-1y 

= rt(y) 
(2.5.18) 

where r = y'y and t(y) = (y'yt½y. The distributions of r and t(y) are given by 

Theorems 2.5.2 and 2.5.3 respectively. The spherical variable y can therefore be 

generated as the product of the positive square root of r and a random vector that is 

uniformly distributed on the unit hypersphere. The result (2.5.17) follows if x is set 

equal to By + µ where BB' = V. • 

The representation (2.5.17) is referred to as the Cambanis representation. 

The following transformation of a multivariate normal random vector (Muller (1959)) 

is usually used when generating a uniform variable on the p-dimensional hypersphere: 

(2.5.19) 

where z is N(O,IP). 

The Cambanis method is used to generate variables from the multivariate Pearson Type 
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II and Type VII distributions. For each of these distributions the functional form h is 

known and the distribution of ,2 is a standard form that is easy to generate. 

2.6 SUMMARY 

Results used in the estimation of the parameters of repeated measurement models are 

given. Maximum likelihood estimation is discussed and results pertaining to the 

multivariate normal distribution with a structured covariance matrix are given. An 

iterative procedure which can be used to maximize the likelihood function in situations 

where the maximum likelihood equations can not be expressed in closed form is 

reviewed. The likelihood functions derived in the subsequent chapters are often given 

in terms of a multidimensional integral which can not be calculated with standard 

integration results. It is shown how numerical integration can be used to calculate these 

likelihood functions. Basic results pertaining to the elliptical class of distributions are 

introduced and the generation of samples from this class is discussed. 
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CHAPTER 3 MAXIMUM LIKELIHOOD ESTIMATION OF FIXED 

COEFFICIENT ARMA MODELS 

3.1 INTRODUCTION 

Consider the situation where y 1 = e 1, ••• , y n = en denote observations made over time 

on an experimental unit or let e1, ••• , en denote deviations from a model fitted to 

repeated measurement data. In this chapter it is assumed that the set of observations (e1, 

... , en ) is the outcome of a process generated by a stationary autoregressive moving 

average (ARMA) model of order p,q. 

Results reported in the literature on the estimation of fixed coefficient stationary ARMA 

models are discussed. These results are then extended in subsequent chapters to allow 

for repeated measurements on a number of experimental units ( Chapter 4), random 

ARMA coefficients (Chapter 4), linear and non-linear models with random coefficients 

and time series error terms (Chapter 5), non-standard distributional assumptions on the 

white noise terms (Chapter 6) as well as vector ARMA models (Chapter 7). 

In Section 3.2 the ARMA(p,q) model is defined and an expression for the likelihood 

function is given. A so- called state-space representation of an ARMA process is given 

in Section 3. 3. It is shown in Section 3. 4 how the Kalman filter can be used to calculate 

the likelihood function recursively. Recursive estimation of the ARMA coefficients in 

the case of missing observations is discussed. 

The covariance matrix of ei, ... , en is a structured matrix. A factorization of the 

covariance matrix as proposed by Du Toit (1979, 1990a) and which leads to 

considerable saving of computational effort is given in Section 3.5. 

In Section 3.6 an expression is derived for the observation vector of an ARMA(p,q) 

process in terms of the state vector. 
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To ensure that the estimated ARMA coefficients fall inside the admissible parameter 

space for stationary and invertible models, a reparameterization is performed on the 

coefficients. In Section 3. 7 a possible reparameterization is discussed. 

Detailed results will be given for the ARMA(2, 1) model. This model is frequently 

explored as a special case of the ARMA(p, q) model in this dissertation, as it provides 

an adequate description for a large variety of time series situations encountered in 

practice (Pandit and Wu (1983)). 

3.2 THE LIKELIBOOD FUNCTION OF AN ARMA PROCESS 

Suppose a fixed number of observations, e1, ••• , en, are made over time on an 

experimental unit or subject. The case is considered where ei, ... , en are the outcome 

of a stationary autoregressive moving average (ARMA) model of order p,q with zero 

mean. The ARMA(p,q) model is defined by 

(3.2.1) 

where the u/s are random shock or noise terms, assumed to be mutually independent 

N(O,a2)-variables. The variance of ut is referred to as white noise variance. 

Expression (3. 2 .1) can be written as 

(3.2.2) 

or 

(3.2.3) 

where B is the backshift operator, so that, for instance, 
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(3.2.4) 

The subclass of stationary and invertible models (Box et al (1994), p.50-51) is studied 

throughout this dissertation. For stationarity and invertibility, the roots (which may be 

real or complex) of the characteristic equations 

a(B) = 0 (3.2.5) 

{J(B) = 0 (3.2.6) 

must lie outside the unit circle. 

Newbold (1974) has derived the exact likelihood function of the ARMA process. Box 

et al ( 1994) discuss least squares estimation, Bayesian estimation and maximum 

likelihood estimation of the unknown parameters of an ARMA model. Chib and 

Greenberg (1993) propose Gibbs sampling for Bayes inference in regression models 

with ARMA(p,q) errors. 

The parameters of the model (3.2.1) are the ARMA coefficients a.1, ••• , ap,{31, ••. , {Jq 

and the white noise variance, cl. Let 'Y' = (a.1, ••• , ap,{31, ••• , {Jq,cl). Every 

observation, et, can be expressed as a linear combination of random noise terms, ut, ut-i, 

... (see e.g. Box et al (1994) p.85). From (3.2.3) follows: 

e = {J(B) u 
, a(B) , 

CX) 

= E 1/;iBi u, where 1/;0 = 1 
i=O 

(3.2.7a) 

(3.2.7b) 
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00 

= L V!A-i· 
i=O 

(3.2.7c) 

Under the assumption of Gaussian random noise, the joint distribution of ei, ... , en is 

multivariate normal given by (cf. (2.2.10)) 

n 1 

f(e) = (2·nf1 IE 1-1 exp(-{e1E-1e) 

so that the log-likelihood is 

1 
where A= -E. 

a2 

(3.2.8) 

(3.2.9) 

The covariance matrix of e1, ••• , en in Toeplitz form is (see e.g. Press et al (1986), p. 

47) 

Co Cl ... ... cn-1 

Cl Co Cl ... cn-2 
E = (3.2.10) 

cn-1 cn-2 ... ... Co 

where cb the autocovariance at lag k, is 
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00 

ck = E(etet+k) = a1E Vli'fJ+k · 
j=O 

(3.2.11) 

Assuming that the other components of 'Y are known, then the maximum likelihood 

estimate of a1- can be obtained in closed form and is given by 

~ - 1 'A-1 u- - -e e. 
n 

(3.2.12) 

Let L ' denote the likelihood function concentrated with respect to a1, which is obtained 

by substituting (3.2.12) into (3.2.8). The concentrated log-likelihood is 

lnL 1 = c-2.[nln(e' A-1e) +In I A I] 
2 

(3.2.13) 

where c is a constant. It is possible to express the concentrated log-likelihood in terms 

of the error terms. Let A = LL' be the Choleski decomposition of A where L is a 

lower triangular matrix. If we let u = D 1e, the vector u contains a sequence of 

orthonormal variables, i.e. u1, ••• , un are independent N(O,a2)-variables (see e.g. 

Wecker and Ansley (1983)). The concentrated log-likelihood is 

n 
lnL' = c--ln(u' u) . 

2 
(3.2.14) 

Maximum likelihood estimates of the ARMA coefficients maximize (3.2.14). 

If a2 is not concentrated then the log-likelihood is 

(3.2.15) 
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Unconditional least squares estimates can be obtained by minimizing the discrepancy 

function F = z'z. 

3.3 ST ATE-SPACE REPRESENTATION OF A ST A TI ON ARY ARMA PROCESS 

There are several equivalent state-space representations of ARMA models referred to 

in literature. Akaike's (1973, 1974, 1975) Markovian representation provides a minimal 

state-space representation for recursive calculation of the likelihood function for a 

Gaussian ARMA process for given values of the parameters. Jones (1980) extended the 

procedure for the case of missing observations and provided an efficient procedure to 

compute the initial state covariance matrix. This representation is also found in some 

standard statistical packages, such as SAS/ETS® (1988), and will be given here. Results 

from Jones (1993) Chapters 4 and 6 are adapted and given in this section. 

Gomez and Maravall (1994) summarized the results of Jones (1980) and extended the 

results to include non-stationary series. 

The state-space representation consists of two equations, namely the equation of state 

and the observational equation. In Akaike's Markovian representation, the state of the 

process is defined by the following r x 1 vector where r = Max(p,q+ 1): 

z(t) = 

e(t It) 

e(t+ 1 It) 

e(t+r-1 It) (3.3.1) 

The notation e(t+ j It) denotes the j-step prediction of et+j at time tor E[e(t+ j) I es, s =::; t]. 

The first component, e (t I t), is the value of the process at time t, e (t I t) = et. 
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The state vector z(t) contains the observation at time t and projections of the next r-1 

terms based on the observations up to time t. 

The equation of state is given in matrix notation by 

z(t + 1) = Fz(t) +gu,+ 1 • 
(3.3.2) 

The r x r matrix F, the state transition matrix, is 

0 1 0 ... 0 

0 0 1 ... 0 

F= (3.3.3) 

0 0 ... 0 1 

a, a,-1 ... Ci.2 Ci.1 

and the r x 1 vector g is 

g = 
(3.3.4) 

f,-1 

where the Vii -weights are given by (3.2.7). 

The second equation in the state-space representation is the observational equation 
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y(t) = h' z(t) +v(t) (3.3.5) 

where h is the r x 1 vector 

h' = (1 0 ... 0). (3.3.6) 

Note that the operation h 'z(t) simply results in the first component of z(t) and the 

operation h 'Ah, where A is an r x r matrix, yields the element in the first row and first 

column of A. 

The term v(t) is a Gaussian random variable denoting observational error at time t. The 

observational error terms are uncorrelated at different times and uncorrelated with the 

random noise terms and have zero mean and variance 

R = E[v(t)2]. (3.3.7) 

Jones (1993) remarks that observational error can only be included in models if q < 

p, since this results in an ARMA process of order (p,p). If q ~ p, observational error 

simply changes the values of the moving average coefficients. The consequence is that 

moving average coefficients and observational error variance are confounded and cannot 

be estimated separately. 

Although the general case, where provision is made for observational error, is given 

here, the focus will be on models with no observational error, as given by Gomez and 

Maravall ( 1994). The results can easily be adapted for the special case by just ignoring 

v(t) in the observational equation. 
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3.4 KALMAN RECURSIVE ESTIMATION 

The Kalman filter is a set of equations which are evaluated repeatedly as new 

observations become available. In this way an estimator can be obtained auJ updated 

as more information is gained. The equations can be grouped into two sets, namely the 

prediction and updating equations. The first part of the process consists of forming the 

optimal predictor of the next observation, given all the past observations. This is 

obtained by means of the prediction equations. In the second part of the process the new 

observation is incorporated into the estimator of the state vector by employing the 

updating equations. As each new observation becomes available, a prediction error can 

be calculated by taking the difference between the observation and its prediction. These 

prediction errors can be used in maximum likelihood estimation, just as the likelihood 

function for a set of dependent observations may be decomposed in terms of the 

prediction errors. 

Kalman recursive estimation is a well known method to calculate the exact likelihood 

of an ARMA process. (See e.g. Jones (1980) and Harvey (1981).) 

Under the assumption of normally distributed error terms and for given values of the 

ARMA parameters, the likelihood function can be calculated using Kalman recursive 

estimation. 

Consider the joint distribution of e1, ••• , en as given in (3.2.8). It can be written as 

_n _l [ 1 ] 
f(e) = (21ra2) .,_IA I .,_exp -

2
a2 e' A- 1e (3.4.1) 

where a2A = E. 

Let u = Le where L is the Choleski root of A. Now u1, ... , un are the error terms of 
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the ARMA model (3.2.1) and their joint distribution is 

f(u) = (21nr)-;exp [ - 2~ u' u] . (3.4.2) 

Note that (3.2.8), the likelihood function in terms of e1, ••• , en and (3.4.2) are 

equivalent expressions which can be used to get MLE's of the unknown parameters. 

The error terms are also sometimes called innovation terms or one-step ahead forecast 

errors. The purpose of the Kalman recursions is to calculate the innovation terms and 

their variance. For a stationary ARMA process, the variance of the innovation terms 

is fixed and equal to the white noise variance. 

The initial state vector z(O I 0) is an estimate of the state at time zero before any data are 

collected. For a process with zero mean, this will be a vector of zeros. The covariance 

matrix of this vector, the initial state covariance matrix, is denoted by P(O I 0). The 

generation of this matrix is discussed in the next section. 

The Kalman recursion can be performed in eight steps. The prediction equations for the 

state vector and its covariance matrix are given in the first two steps by (3 .4. 3) and 

(3.4.4) respectively. In steps 3, 4 and 5 the prediction of the next observation, 

prediction error and its variance are calculated. The sixth step consists of updating the 

likelihood function. The Kalman updating equations are given in (3 .4.10) through 

(3 .4.12) and are calculated in steps 7 and 8 of the recursion. These eight steps are as 

follows: 

Step 1: 

Calculate a one step prediction of the state vector, by taking expectations on both sides 

of (3.3.2). Note that E[u(t+ 1)] is zero at time t. 
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z(t+llt) = Fz(tlt) (3.4.3) 

Step 2: 

Calculate the covariance matrix of z(t+ I It), by determining the covariance of both 

sides of equation (3.3.2): 

P(t+ 11 t) = FP(t I t)F' +<rgg' . (3.4.4) 

Step 3: 

Calculate the prediction of the next observation, y(t+ I It), by taking expected values 

on both sides of (3.3.5) and noting that E[v(t+ I)] = 0 at time t. 

y(t+l It) = h'z(t+l It) 

= e(t+l It) 

Step 4: 

(3.4.5) 

Calculate the innovation (the difference between the observation y(t+ 1) and the 

prediction of y(t+ 1) at time t, y(t+ 1 It). 

y(t+ 1) = y(t+ 1)-y(t+ 11 t) (3.4.6) 

The innovation is a central concept in Kalman filter theory. The innovation term 

contains the new information in the current observation, y (t + 1), that was unpredictable 

from the past observations. The innovation is uncorrelated (orthogonal) with the past 

observations. If the random noise terms are Gaussian, this implies that all the 

innovations are independent and Gaussian. The likelihood will consequently be the 

product of the likelihood of the innovations. 

If y(t+ 1) is missing, it is replaced with y(t+ I It). Consequently, the innovation term 

will be zero. 
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Step 5: 

Calculate the variance of the innovation term. 

V(t+ 1) = h' P(t+ 1 I t)h+R (3.4.7) 

R is the observational variance and h 'P(t+ 1 I t)h is the variance of y(t+ 1 It) in (3.4.4), 

calculated in step 3. We also use the fact that the observational error is independent of 

past observations. For a stationary process with no observational error, the variance of 

all innovation terms is a2, the element in row one column one of P(t+ 1 It). 

Step 6: 

Update the likelihood function. As noted in step 4, the innovations are independent 

normal with zero mean and variance defined in step 5. Let the variance of the i-th 

innovation be ~- The likelihood can be written as 

L = ~ (21rV)-~exp [- i ] where ½ = V(i) and Y; = y(i) 
i=l 2V; 

(3.4.8) 

and -2/nL is 

n [ -2] -2lnL = c+r lnY;+~ . 
l=l I 

(3.4.9) 

Step 7: 

Update the estimate of the state vector. 

z(t+l lt+l) = z(t+l lt)+k(t+l)y(t+l) (3.4.10) 
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where 

k(t+l) = P(t+l lt)h~+l (3.4.11) 

is referred to as the Kalman gain. The Kalman gain vector is constructed in such a way 

as to ensure orthogonality of the innovation terms. 

If y(t+ 1) is missing, the innovation term is zero and z(t+ 1 It+ 1) = z(t+ 1 It). 

Step 8: 

Calculate the covariance matrix of the updated state. 

P(t+ 1 It+ 1) = P(t+ 1 I t)-k(t+ l)h' P(t+ 1 It) (3.4.12) 

If stationarity is assumed, the state covariance matrix is constant for all values of t and 

only needs to be calculated once. 

If y(t+ 1) is missing, then z(t+ 11 t+ 1) = z(t+ 11 t) so that P(t+ 11 t+ 1) = P(t+ 11 t). 

Initial state covariance matrix 

For a stationary process the state covariance matrix, P (t I t), is constant for all t. Let P 

= P(tlt). From the state equation (3.3.2) it follows that 

P = FPF' +a2gg1 (3.4.13) 

so that 

vec(P) = vec(FPF1)+vec(a2 · gg') (3.4.14a) 
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= F®Fvec(P) +vec(Q) (3.4.14b) 

and 

(1-F®F) vec(P) = vec(Q) (3 .4.15) 

where Q = crgg '. (Result (3 .4 .14b) can be found in, Magnus and N eudecker (1988), 

p. 30.) From (3.4.15) it follows that 

vec(P) = (J-F®F)-1vec(Q). (3.4.16) 

The dimension of the matrix that must be inverted is r2. It is possible to get an 

alternative expression in terms of vecs(P) (where vecs(P) is the vector formed from the 

non-duplicate elements of the r x r matrix P) instead of vec(P), which will reduce the 

dimension of the matrix to be inverted to ½r(r+ 1). The definition of matrices which 

changes vec(P) into vecs(P) and vice versa is rather tedious and is given in e.g. Browne 

(1974). In the case of the ARMA(2, 1) model the possible saving in computer time does 

not justify the effort of reducing the dimension by one. 

Missing observations 

Assume that observations were made at times t1, t2 , ••• , tm where t1 < t2 < . . . < tm. 

The observational equation (3. 3. 5) can be replaced by 

y(t) = h1 (t)z(t) +a(t) W(t) +v(t) (3.4.17) 

where h'(t) = (1, 0, ... , 0) and a(t) = 0 if et is observed and h'(t) = (0, ... , 0) and 

a(t) = 1 if et is missing. The variable W(t) is standard normal indepegdent of en, ea, 

... , etm· When et is missing, then z(t+ 11 t+ 1) = z(t+ 11 t) and P(t+ 11 t+ 1) = P(t+ 11 t). 
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The innovation term will consequently be zero and have no effect on the discrepancy 

function (3 .4. 9). 

There can be a number of consecutive missing observations. If a large block of data is 

missing, the information about the past observations decreases. The state vector will 

approach the initial state vector which is the null vector in most cases. The covariance 

matrix of the state vector will approach the initial state covariance matrix. 

The results will now be applied to an ARMA(2, 1) process. 

Example 3.4.1 

Suppose the observed series (ei, ... , en) is the outcome of a stationary ARMA(2, 1) 

process 

(3 .4.18) 

where the ut 's are independent N(O,a2) variables. 

The problem is to estimate -y where -y' = (a1,a2 ,{3,a2). It is possible to concentrate a2 

from the likelihood and estimate it separately, using the estimates of the ARMA 

coefficients. The latter have to be estimated with an iterative optimization algorithm 

as discussed in Section 2. 3. The Kalman recursive procedure can be used to calculate 

the discrepancy function for maximum likelihood estimation. The state-space equations 

for the ARMA(2, 1) model and the recursive steps are given in order to calculate the 

discrepancy function. 

The main advantage of the Kalman procedure is that matrices and vectors of order 2, 

instead of order n are manipulated, which would have been the case if the log-likelihood 

as given in (3.2.9) were to be calculated. 
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The observations can be expressed in terms of random noise (cf. (3.2.7a) through to 

(3.2.7c)): 

et = 
1-{3B 

----Ut 
1-a B-a B 2 

1 2 

= (l-{3B)[l +a1B+a2B
2+(a1B+a2B

2)2 + ... ] ut 

= [1 +(a1 -{3)B+(ai-a1{3 +a2)B
2 + ... ] ut 

= [VJo+VJ1B+VJ2B2+ ... ]ut 

The state vector of an ARMA(2,1) model is 

and the state equation is 

Under the assumption of no observational error the observational equation is 

y(t) = [1 o] [e;~~t~t)] 
= e(t It) 
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To start the Kalman recursive procedure, the initial state vector is set to zero. The state 

covariance matrix, P, is constant in the case of a stationary model. From (3 .4.16) it 

follows that 

-1 

1 0 0 -1 1 

0 1 -a2 -al al-{3 
vec(P) = 

(3.4.23) 
0 -a2 1 -al al-{3 

2 2 (al -{3)2 -a2 -a1a2 -a1a2 1-al 

Let the non-duplicate elements of P be denoted by p 11 , p 12 and p22 • Note that if a2 = 1 

and the concentrated log-likelihood (3.2.14) is maximized, then P and P(t+ JI t) in the 

recursion are in fact P*/a2 and P*(t+ JI t)!a2, where p* and P*(t+ JI t) are the state 

covariance matrices for the general case and a2 is not necessarily equal to one. 

The aim of the recursive procedure is to calculate the value of the discrepancy function 

given in (3.4.9). Before the recursion is started, it is necessary to set two summation 

variables equal to zero. After the final recursion, the variable SUMA will be the sum 

~2 

of ln(VJ and the variable SUMB will be the sum of ~, i = l, 2 ... , n. 
½ 

The following steps are repeated for t = 0, 1, ... , n-1: 

Step 1: The one step prediction of the state vector ( from (3 .4. 3)) is 

z(t+ l It) (3.4.24) 

3-17 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

Step 2: The covariance matrix of (3.4.24) (from (3.4.4)) is 

P(t+ 1 It) (3.4.25) 

Step 3: The prediction of the next observation (from (3.4.5)) is the first element of the 

predicted state vector 

y(t+ 1 It) = e(t+ 1 It). (3.4.26) 

Step 4: The innovation term at time t+ 1 (from (3.4.6)) is 

y(t+ 1) = er+i -e(t+ 1 It). (3.4.27) 

Step 5: The variance of the innovation term (from (3.4. 7)) is simply the element in row 

1, column 1 of P(t + I I t). In the case of no observational error, R is set equal to zero. 

V(t+ 1) = 1 +p22 

Step 6: Accumulate the variables SUMA and SUMB. 

SUMB ~ SUMB+y(t+l)
2 

V(t+ 1) 

SUMA~ SUMA+lnV(t+l) 

Step 7: The state vector is updated using (3. 4 .10) and (3. 4. 11). 

(3.4.28) 

(3.4.29a) 

(3.4.29b) 

Stationarity is assumed, so that the state covariance matrix remams constant as 
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calculated in (3. 4. 23). 

After the last recursive step (t = n-1), the value of the discrepancy function (3.4.9) can 

be calculated by 

Q = SUMA +SUMB. (3.4.30) 

3.5 THE COVARIANCE MATRIX OF A STATIONARY ARMA PROCESS 

Let e' = (ei, ... , en) denote n observations of an ARMA(p,q) process with zero mean. 

Du Toit (1979) proposed a decomposition of the covariance matrix of e which leads to 

a considerable saving in computing time and effort. The covariance matrix differs from 

the one given in (3.2.10) in that it takes into account the state of the process before any 

observations were made. The decomposition is given in this section. 

Let r = max(p,q). In accordance with the notation used in the previous section, let 

e(j I 0) denote the prediction of ej at time O, j = 1, ... , r, so that 

(3.5.1) 

r 
= ~ (a.e .. -{3.u . . ) L l J-l l J-l 

i=j 

where (Xp+l = CXp+2 = ... = (Xr = 0 if p < rand f3q+l = f3q+2 = ... = f3r = 0 if q < 

r. 

Note that the }-step prediction at time O only contains terms that were not observed. If 

j > r, the }-step prediction at time O is zero, the mean of the process. The observation 

ej, j = 1, 2, ... , r, is a function of terms that were observed (e1, ••• , ej_1) as well as its 
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}-step prediction at time 0. The first observation, for instance, can be written as 

p q 

e1 = u1 + L exl1-; - L /3;u1-; 
i=l i=l 

= u1 +e(l I 0) . (3.5.2) 

In matrix notation the equations defining e1, ••• , en is 

(3.5.3) 

where Ta and T{j are n x n lower triangular matrices, e and u are n x 1 vectors 

containing the observations and random noise terms respectively, /n.r is an n x r matrix 

with columns the first r columns of the n x n identity matrix and x(0) an r x 1 vector 

containing one-step to r-step predictions at time 0. 

The matrix Ta is defined by 

1 0 
(3.5.4) 

-exl 1 0 

-ex2 -exl 1 

T = a 
-exp -exp-1 -al 1 0 ... 

0 -exp ... 
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and, similarly, the matrix Tf3 is given by 

1 0 

-{31 1 0 

-{32 -{31 1 

Tf3 = 
-{3 -{3 q-1 -{31 q 

0 -{3 
q -{3 q-1 

0 0 

The state vector, x(0), is 

x(0) = 

e(l I 0) 

e(2 I 0) 

e(r I 0) 

0 

1 0 

... -{31 

-{3 
q -{3 q-1 

Equation (3. 5. 3) can be written as 

1 

... 

0 . .. 

-{31 1 

since Ta is non-singular. The covariance matrix of e, denoted by I;, is 
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The vector x(O) can be considered a state vector and its covariance matrix can be 

derived from the state equation using the results of Section 3.4. The derivation of the 

state equation will be given for an ARMA(2, 1) process. The state transition matrix, F, 

anu the vector g of the state equation (3. 3. 2) will be derived. The state equation can be 

written as 

[
e(211)] 
e(3 I l) (3.5.9) 

For an ARMA(2, 1) process the two elements of the state vector x(O) are 

(3.5.10) 

and 

(3.5.11) 

By substitution of (3. 5 .10) and (3. 5 .11), the state equation (3. 5. 9) can be written as 

(3.5.12) 
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It can be readily seen that the state transition matrix is 

(3.5.13) 

and the vector g is 

(3.5.14) 

If stationarity is assumed, the covariance matrix can be obtained from (3.4.16). Let the 

covariance matrix of x(O) be denoted by P. Then 

2 
-1 

(al -{3)2 1-cxl -al -al -1 

-(Xl (X2 1 -cx2 0 cx/cx1 -{3) 
(3.5.15) vec(P) = a2 

-al (X2 -cx2 1 0 cx/cx1 -{3) 

2 0 0 1 
2 

-cx2 CX2 

For an ARMA(p,q) process the transition matrix is 

(Xl 
(3.5.16) 

(X2 I r-1 

F= 

ex, 0 0 0 0 
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and the vector g is 

al-{31 

a2 -{32 (3.5.17) g = 

ar -{3r 

From (3.4.16) P, the covariance matrix of x(O), can be obtained. Equation (3.5.8) can 

be written as 

I; = a2T -lAT -l' 
a a 

= a2A 

where 

and 

P* = _!_p_ 
a2 

(3.5.18) 

(3.5.19) 

(3.5.20) 

For an ARMA(2, 1) process, the matrix A has a tridiagonal structure and can be 

factorized as the product of a lower and an upper triangular matrix, A = LU. The LU 

decomposition (see Press et al (1986), p.31) leads to considerable simplifications in the 

calculation of e 'A-1e, and I A I in the log-likelihood (cf. (3.2. 9)). The quadratic form 

is calculated with forward and reverse substitutions instead of an explicit inversion of 
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A, which can be very time consuming for a long series. Since A can be factorized into 

triangular matrices, its determinant is simply the product of their diagonal elements. 

The factorization of A and the calculation of the quadratic form and determinant are 

now given for an ARMA(2, 1) process. 

For an ARMA(2, 1) process, the matrix A defined by (3.5.19) is 

1 +pl; P2~ -(3 0 ... ... ... 0 

P2~ -(3 1 +(32+P2; -(3 0 0 

A = 0 -(3 1 +(32 -(3 0 0 (3 .5 .21) 

0 0 ... ... -(3 1 +(32 

where P··* = [P*]·· IJ IJ' 

Now A can be written as the product of a lower, L, and an upper, U, triangular matrix 

with 

r1 0 0 ... ... 0 

P2; -(3 r2 0 0 

L = 0 -(3 r3 0 0 
(3.5.22) 

0 0 ... ... -(3 tn 
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P2; -{3 
1 0 0 ... .. . ... 

f1 

0 1 
-{3 

0 0 ... ... 

U= 
f2 

0 0 1 
-{3 

0 0 ... 
r3 

0 0 ... ... ... 1 

and 

f; = 1 + {32 
[ 1 - _l ] , i = 3, ... , n . 

ri-1 

The determinant of A is 

IAI = I Ta-lLUTa-1' I 
= ILi 

n 
= n ri 

i=l 

(3.5.23) 

(3.5.24a) 

(3.5.24b) 

(3.5.24c) 

(3.5.25) 
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since the diagonal elements of Ta-1 and U are all unity. 

For an ARMA(2, 1) process, the quadratic form, e 'A-1 e, can be calculated using the 

technique of forward and reverse substitution. From (3.5.18) it follows the:: 

(3.5.26a) 

(3.5.26b) 

where y = Te 
Ci 

(3.5.26c) 

= v'w where v' = y' u-1 and w = L-1y. (3.5.26d) 

The n x 1 vectors v and w can be obtained by solving the sets of equations 

y = U'v (3.5.27) 

and 

y = Lw. (3.5.28) 

From (3.5.27) it follows that 

(3.5.29) 

and from (3. 5. 28) it follows that 
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, ... , wn = 
(y -l w ) n nn-1 n-1 

Inn 

(3.5.30) 

3.6 REPRESENTATION OF AN ARMA(p,q) OBSERVATION VECTOR IN 

TERMS OF THE ST A TE VECTOR 

In this section it is shown that the vector of observations, e, can be expressed in terms 

of the state vector defined by (3. 3. 2). An expression for e equivalent to (3. 5. 7) is 

derived for complete data and then generalized for the case of missing observations. 

Proposition 3.6.1 

Let e' = (ei, ... , en) represent n observations from a stationary ARMA(p,q) process. 

Define r as max(p,q). Then e can be written as 

(3 .6.1) 

where the n-dimensional vector u contains the random noise terms, F is the state 

transition matrix defined by (3.3.3) and z(O) is the initial state vector (the state vector 

is given in (3.3.1)). Vector his r-dimensional and defined by (3.3.6). The non-singular 

matrix Ta: nr x nr is 

I, 0 ... ... . .. 0 

-F I, 0 

T = 0 -F I, 0 (3.6.2) 
a 

0 0 -FI r 
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and T{j: nr x n is 

(3.6.3) 

where g: r x 1 is defined by (3. 3 .4). The nr x r matrix /nr r consists of the first r 

columns of Jnr. 

Proof 

From the state equation of an ARMA process (see (3.3.2)) the following system of 

equations can be constructed to define the state vector at times 1, 2 ... , n: 

z(l) 

-Fz(l) + z(2) 

Fz(2) + z(3) 

= gu1 + Fz(O) 

= gu2 

= gu3 

- Fz(n-1) + z(n) = gun 

In matrix notation it can be written as 

I, 0 0 z(l) g 0 ... 0 Ul Fz(O) ... ... ... 

-F I, 0 
z(2) 0 g 0 ... U2 0 

= + 
0 -FI r 0 

0 0 ... ... -FI z(n) 0 0 0 r ... g Un 
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or 

(3.6.6) 

The matrix Ta is a lower triangular matrix with all diagonal elements equal to one, and 

is therefore non-singular so that the vector of state vectors is 

The elements of e are z1, Zr+ 1, Z2r+ 1, .•• , Z(n-l)r+ 1 and can be obtained by left 

multiplication of (3.6.7) with the matrix G = In ® h'. • 

Proposition 3.6.2 

Suppose observations were made at times t1, t2 , ••• , tm and let 11 = t2 - t1, 12 = t3 - t2 , 

... , lm-i = tm - tm-i · The vector of observations, e: m x 1 can be written as 

(3.6.8) 

where h and F have the same definition as in Proposition (3.6.1). The non-singular 

matrix Ta: mr x mr is 

Ir 0 0 

_pl, Ir 0 

T = 0 -Fl2 Ir 0 (3.6.9) 
a 

0 ... ... -F[m-1 Ir 
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The vector z: mr x 1 contains, amongst other information, the m observations and is 

given by 

z = (3.6.10) 

Without loss of generality, the time axis may be shifted by subtracting t1 - 1 from each 

time point. We then have t1 = 1, t2 = 1 + 11, t3 = 1 + 11 + 12 , ••• , and tm = 1 + 11 

+12 + ... , + /m-l · Observations start at time 1 to time tm with intervals equal to Li, 12 , 

... , lm-l • The vector z(O) denotes the state of the process before any observations were 

made. (In the complete data case all intervals are one and tm = n.) 

The simplest way to define TfJ is by its rows. The matrix TfJ is grouped by its rows into 

m submatrices each consisting of r rows and tm columns. The total dimension of TfJ is 

rm x tm. The first row submatrix has vector g (defined in (3.3.4)) as its first column and 

zero vectors elsewhere. The }-th row submatrix, j = 2, ... , m, has zero vectors as 

columns except for column tj and the preceding /j - 1 columns. Column tj is g, column 

trl is Fg, column tr2 is F 2g ... , column tr(lrl) is F 1j-lg. In matrix notation TfJ can be 

expressed as 

g 0 ... 0 

0 ... 0 pl,-lg pl,-2g ... Fg g 0 ... 0 
TfJ = 

(3.6.11) 

0 
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The tm x 1 vector of random noise terms, u, is complete. /rm,r is defined as the first r 

columns of /rm· After shifting the time axis, z(t1 - 1) is z(O). 

Proof 

The state equation (3.3.2) is used to find the following expressions for z(t1), z(t2), •.. , 

z(tm). 

(3.6.12) 

z(t1 + 1) = Fz(t1)+gut +1 
(3.6.13) 

I 

Z(t1 +2) = F[Fz(t1) +gut +11 +gut +2 
I I 

Z(tz) = z(tl +/1) 

= F L.z(t1) +F t,-1gut +1 + ... +Fgut +t -1 +gut 
I I I 2 

= z(tm-1 +lm-1) (3.6.14) 

= F lm-tz(tm-1) +F lm_,-lgut +1 + ... +Fgut +[ -1 +gut 
m-1 m-1 m-1 ,n 

Equations (3.6.12) to (3.6.14) can be rearranged as 
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(3.6.15) 

In matrix notation (3. 6 .15) can be expressed as 

(3.6.16) 

Since Ta is non-singular (triangular with all diagonal elements unity), z can be obtained 

by left multiplication of (3.6.16) by Ta-1 so that 

(3.6.17) 

As in Proposition 3.6.1, the observations e
1
,e

1
, ••• e

1 
can be extracted from z by left 

I 2 m 

multiplication of (3. 6 .17) by the matrix G = Im ® h'. • 

The following example illustrates this concept. 

Example 3.6.1 

Suppose observations at times 1, 3 , 6 and 7 of a stationary ARMA(2, 1) process are 

available and are denoted by e' = (e1, e3 , e6 , e7). It will be shown that e can be 

expressed in terms of the state vector of an ARMA process. 

The state vector and state equation of an ARMA(2, 1) process are given in (3 .4.20) and 
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(3.4.21). For this example the intervals are /1 = 2, /2 = 3 and /3 = 1, m = 4, tm = 7 

and the value of r is 2. From (3.6.12) through to (3.6.14) and the state equation (3.3.2) 

we get: 

z(l) = gu1 +Fz(O) 

z(3) = Fz(2)+gu3 

= F[Fz(l) +gu2] +gu3 

= F 2z(l)+Fgu2 +gu3 

z(7) = Fz(6)+gu1 

The system of equations can be written in matrix notation as 

I 0 0 0 z(l) g 0 0 0 0 0 0 

-F2 I 0 0 z(3) 0 Fg g 0 0 0 0 
= 

0 -F3 I 0 z(6) 0 0 0 p2g Fg g 0 

0 0 -FI z(7) 0 0 0 0 0 0 g 

so that 
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(3.6.19) 

(3.6.20) 

(3.6.21) 

Ul Fz(O) 

U2 0 (3.6.22) + 

U7 0 

(3.6.23) 
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Now e can be extracted from z by left multiplication of (3.6.23) by G where 

1 0 0 0 0 0 0 0 (3.6.24) 

0 0 1 0 0 0 0 0 
G = 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 

= 14 ® (1 0) 

so that 

(3.6.25) 

3.7 REPARAMETERIZATION OF ARMA COEFFICIENTS 

The unknown ARMA coefficients are estimated by means of an iterative optimization 

algorithm. In the case of unconstrained optimization, new values of the coefficients may 

fall outside the parameter space of a stationary and invertible model. This problem may 

be solved in a number of ways. 

One approach is to make use of a constrained optimization procedure where constraints 

are imposed on the parameters using Lagrange multipliers (see e.g. Magnus and 

Neudecker (1988), p. 130 and Browne and Du Toit (1992)). 

A second approach is to estimate the roots of the characteristic equations, (3.2.5) and 

(3. 2. 6), instead of the ARMA coefficients. For stationarity and invertibility, the roots 

of the autoregressive and moving average portion must lie outside the unit circle. 

Suppose, for example, that the roots of equation (3.2.5) of an AR(2) model are 'A./ and 
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"A/. Then 

(3.7.1) 

so that 

(3.7.2) 

It follows that the AR coefficients are 

(3.7.3) 

For stationarity, I A; I < 1, i = l, 2. It is therefore possible to put bounds on the values 

of "A1 and "A2 and carry out unconstrained optimization. 

The procedure was implemented successfully in fitting an ARMA(2,1) model. An 

advantage is that it can be easily extended to models of higher order. A possible 

difficulty with this approach is that provision has to be made for complex roots and the 

programming language should therefore support complex algebra. 

A third approach is to reparameterize in terms of the partial autocorrelations (Jones 

( 1980 and 1993)). A necessary and sufficient condition for an AR(p) process to be 

stationary is that all p partial autocorrelations be between -1 and 1 (not inclusive). 

Instead of working with the autoregressive coefficients, the optimization is performed 

with respect to the partial autocorrelations. 

Let a.Pi denote the j-th coefficient of an AR(p) process. The partial autocorrelation at 

lag p is a.PP' the p-th autoregressive coefficient. The relationship between the partial 

autocorrelations and the AR coefficients is given by the Levinson-Durbin recursion (Box 

et al (1994), p.88). For processes of order 2, .. . , p 
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(3. 7.4) 

As an example, expressions for a 1, a2 and a3 , the AR coefficients of an AR(3) 

process, are derived in terms of the partial autocorrelations, a 11, a 22 and a
33

, using 

(3. 7.4): 

(3. 7.5a) 

(3.7.5b) 

(3. 7 .5c) 

By substitution of (3.7.5c) into (3.7.5a) and (3.7.5b) it follows that a 1 and a 2 are 

(3.7.6a) 

(3.7.6b) 

The third AR coefficient is simply the third partial autocorrelation. 

(3.7.6c) 

To reparameterize, equations (3.7.6a) through to (3.7.6c) must be expressed in terms 

of a 1, a 2 and a 3• The same procedure is performed on the moving average coefficients 

to ensure invertibility. 

The MLE's of the coefficients of an ARMA(p,q) process can be obtained from 

expressions similar to (3.7.6a) through to (3.7.6c) and by using the invariance property 

of MLE' s. The reparameterization was applied to the coefficients of an ARMA(2, 1) 
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model. The difficulty with this approach, as with the root transformation, is finding the 

standard errors of the estimators of the ARMA coefficients. The optimization algorithm 

provides the inverse of the information matrix which is an approximation of the 

covariance matrix of the transformed parameters. Approximations of the standard errors 

of the ARMA coefficients can be obtained using a Taylor series expansion. The results 

for an AR(2) model are given as an example. 

For notational simplicity, let the partial autocorrelations, a 11 and a 22 , be denoted by p 1 

and p 2• From (3. 7.4) it follows that 

(3.7.7a) 

and 

(3.7.7b) 

The optimization algorithm yields MLE's of p 1 and p 2, which are denoted by 

j/ = (p
1
,p

2
), as well as an approximate covariance matrix, which will be denoted by 

S. By the invariance property of MLE's, the MLE's of a 1 and a 2 are respectively 

(3.7.8a) 

and 

(3.7.8b) 

Let r0 = E( p) and let f ( p) be a function of p . The second order Taylor series 

approximation of f(p) in the point r0 is 
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(3.7.9) 

where g is the gradient vector and A is the Hessian matrix with respect to f( j,). The 

variance off( j,) can be approximated by the first and second order moments of (3. 7. 9). 

By taking expected values on both sides of (3. 7. 9) we get 

(3.7.10) 

The second moment off( j,) is 

(3.7.11) 

where 

biJ = 
a3/(i,)2 

afJ iafJ1 

= 2[gigJ +J(j, )aiJ] (3.7.12) 

g . = aJ(i,) 
l a" P; 

(3.7.13) 

(3.7.14) 

The covariance matrix of & = (&1'&2)' is required for inference regarding the 

distribution of a = (ai,a2)' and can be calculated from the first and second order 
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moments of the following functions: 

(3.7.15a) 

(3.7.15b) 

(3.7.15c) 

The first and second order moments ((3.7.10) and (3.7.11)) of/1 and/2 are required for 

the variance of <\ and &2 and the first order moment of ;; is required for the 

covariance of &1 and &2 • 

3.8 SUMMARY 

In this chapter results reported on in literature concerning the estimation of fixed 

coefficient ARMA models are discussed. These results are extended in subsequent 

chapters, to allow for different sets of model assumptions. 

The likelihood function is given for an ARMA model with Gaussian white noise. The 

state-space representation of an ARMA process is given and it is shown how the 

Kalman recursive algorithm can be employed to estimate the coefficients of the ARMA 

process in the case of a complete as well as an incomplete data set. 

An expression is derived for the covariance matrix of a stationary ARMA process 

which takes into account the state of the process before any observations were made. 

It is also shown how the likelihood function of the repeated measurements can be 

calculated without direct calculation of the inverse or determinant of the covariance 

matrix. 
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An expression is derived for the observation vector in terms of the state vector of an 

ARMA process for the case of a complete as well as an incomplete data set. 

A reparameterization of the ARMA coefficients which is used in subsequent chapters 

is also included. 
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CHAPTER 4 RANDOM COEFFICIENT ARMA MODELS - NORMAL 

DISTRIBUTION 

4.1 INTRODUCTION 

In many experimental studies, repeated observations are made on each of several 

experimental units with the objective of fitting a response curve to the data. These are 

often called growth curve, repeated measure or longitudinal studies. This chapter 

focuses on responses recorded over time. Serial correlation may therefore exist between 

the measurements of an experimental unit. 

Jones (1993) mentions different approaches to longitudinal data analysis. If the number 

of experimental units is large relative to the number of observations per unit, the 

multivariate analysis methods, which assume a specific covariance structure between 

the observations of an experimental unit, can be used. The idea of stochastic or random 

coefficients was introduced by Rao (1959) and developed by Potthoff and Roy (1964), 

Rao (1965) and Grizzle and Allen ( 1969). 

Another approach is to analyze each subject ( experimental unit) individually and then 

regard the summary measures (e.g. means and variances) as random samples from some 

distribution. The distribution of a summary measure depends on the number of 

observations in the sample. A problem therefore arises when there is an unequal 

number of observations per experimental unit. The distributions of these summary 

measures differ from experimental unit to experimental unit; consequently, these 

measures can not be regarded as a random sample from a common distribution. 

A combination of the first two approaches is proposed. The basic assumption is that 

although the response pattern of the experimental units may differ, they can all be 

described by the same functional form. Differences between experimental units are 

modelled by allowing the coefficients of the model to be stochastic. 
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This chapter focuses on the residuals of some model (linear or non-linear) fitted to a 

data set consisting of repeated measurements taken on a sample of experimental units. 

It will be assumed that the residuals are generated by an autoregressive moving average 

(ARMA) process with random coefficients. Furthermore, a multivariate normal 

distribution is assumed as a probability model for the transformed coefficients. The 

ARMA coefficients will be transformed in order to make the assumption of multivariate 

normality more realistic. 

Nicholls and Quinn (1982) discuss least squares and maximum likelihood estimation of 

random coefficient autoregressive models. Horvath (1991) derives maximum likelihood 

estimators for the parameters in linear discrete time systems, with random coefficients, 

under the assumption that the variances of the coefficients are equal and that the 

coefficients are mutually independent. 

In Section 4.2 the model and assumptions are given. The transformation of the ARMA 

coefficients is also introduced. 

Section 4. 3 deals with the likelihood function and provides a useful approximation 

thereof. The Kalman filter is proposed to calculate the likelihood function when missing 

observations occur. The results of a simulation study, where the performance of the 

estimation procedure for a complete data set as well as a data set with missing 

observations is assessed, are given. 

The purpose of Section 4.4 is to explain marginal maximum likelihood (MML) 

estimation and the use of the expected maximization (EM)-algorithm. 

There is a strong correspondence between the random coefficient models and Bayesian 

models. Similarities and differences between these approaches are discussed in Section 

4.5. In Section 4.6 Bayes estimates are derived for the transformed ARMA coefficients 

and white noise variance. 
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The Gibbs sampler can be used to estimate the posterior distributions of the coefficients. 

Section 4. 7 deals with the Gibbs sampler and explains how it can be used to obtain 

Bayes estimates of the unknown parameters and their posterior distributions. Also, a 

numerical example based on simulated data is provided. 

4.2 MODEL AND ASSUMPTIONS 

Suppose a fixed number of observations, n, are taken over time on each of N 

experimental units. Let the vector ei = (e1, .•• , en)' denote the observations of the i-th 

experimental unit. These observations can, for instance, be residual terms of a model. 

The case is considered where the observations e1, ... , en are generated by a stationary 

ARMA(p,q) process. (See Section 3.2 for the definition and assumptions of an ARMA 

model.) 

In many practical applications, it is reasonable to assume that the responses of the 

different experimental units are generated by ARMA processes, but that the coefficients 

of these processes may vary. The coefficients a.1, ... , a.P,{31, ... {3q are assumed to be 

random variables which may be dependent. 

The problem is to find a suitable distribution to describe the stochastic behaviour of the 

coefficients and simultaneously satisfy the stationarity and invertibility conditions of the 

process. Consider as an example the AR(2) process. For stationarity the coefficients a.1 

and a.2 must lie within the triangular region 

CX.1 + CX.2 < 1 

CX.2 - CX.1 < 1 

-1 < C:Xz < 1. (4.2.1) 

The support set of the joint distribution of a.1 and a.2 must therefore be a subspace of 

(4.2.1). The higher the dimension of the model, the more complicated the stationarity 
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and invertibility regions become and the more difficult it will be to choose a suitable 

distribution for the coefficients. 

Reparameterization of the ARMA coefficients is discussed in Section 3. 7 for fixed 

coefficient models. When p > 1 or q > 1, the autoregressive or moving average 

coefficients are transformed to partial autocorrelations using (3. 7.4). For stationarity 

and invertibility all partial autocorrelations, all, . . . , aPP, {3 ll, . . . , {3 qq, must lie between 

-1 and 1 ( not inclusive). Note that aPP = aP and that {3 qq = {3 q, and consequent! y only 

a 1, ••• , exp-I and {31, ... , {3q-I are transformed. The following transformation can be used 

to transform the partial autocorrelations to variables r,i, ... , 'Ylp+q which all assume 

values over the real line: 

[ 
1 +akk l r,k = ln -- . 
1-a kk 

The inverse transformation is 

a = kk 

1 -exp( -r, k) 

1 +exp( -r,k) 

(4.2.2) 

(4.2.3) 

The vector 11 = (r, 1, .•. , 'Ylp+q)' will be referred to as the vector of transformed ARMA 

coefficients. 

In this chapter the following assumptions are made: 

Al: Then x 1 vector e; = (e1, ••• , en)' represent observations at times 1, ... , n ofa 

stationary ARMA(p,q) process. Let e;, i = 1, ... , N, denote the vector of observations 

for experimental unit i. It is assumed that the vector of coefficients of the ARMA model 

are random and that the observed coefficients of each experimental unit are a random 
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sample from a common multivariate population. 

A2: A transformation of the ARMA coefficients is given in (4.2.2). It is assumed that 

the vector 11 of transformed ARMA coefficients has a N(110 , i') distribution where i' is 

non-singular and 11 = (11 1, ... , 'YJp+q)'. 

A3: The conditional distribution of ei given 11, is N(O,:E) where :E is non-singular, i = 

1, . . . , N. The matrix :E is defined in Section 3. 5 ( cf. (3. 5. 8)). This covariance matrix 

is derived under the assumption of a non-null initial state covariance matrix, in other 

words, information regarding the process prior to the first observation is taken into 

consideration. 

A4: It is assumed that the vectors e1 I 11, e2 I 11, ... , eN I 11 are independent. 

AS: The white noise variance, a2, is fixed and is the same for all experimental units. 

Estimates are required for the components of 11o, vecs(ir), the non-duplicate elements 

of i' and a1, the white noise variance. Let 

(4.2.4) 

denote the k x 1 parameter vector where 

k = p + q + ½(p + q)(p + q + 1) + 1 . 

Let ~
0 

and '1r denote the estimates of 11o and i'. The N( ~0, '1r) distribution may be used 

as an approximation of the distribution of 11. The moments of the ARMA coefficients 
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can be expressed as functions of the components of 1/, and can be estimated by means 

of numerical integration using the approximate distribution of rJ. In the case of an 

ARMA(2,1) process, it follows from (3.7.7a), (3.7.7b) and (4.2.3) that 

E(a1) = E[all(l-a22)] 

and 

= I 2exp( -172)[1 -exp( -17 1)] I 
E [1 +exp( -17 1

)][1 +exp( -172
)] 

= E[g(111 '112)] 

3 I 

::::: f f f g(111, 112). (21r)-1 I ii 1-1exp[-{(11-~0)1ir-1(11-~o)l d11, 

(4.2.5) 

(4.2.6) 

E({3) = E [ 1-exp( -173)] (4.2. 7) 
1 +exp( -173) 

Expressions for higher order moments are derived in the same way. Numerical 

integration can also be used to calculate estimates of the moments of the joint 

distribution of the coefficients. 

In the next section the likelihood function of e1, ••• , eN for the ARMA(p,q) model with 

random coefficients will be derived. 
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4.3 MAXIMUM LIKELIHOOD ESTIMATION 

Likelihood function 

The following proposition gives the likelihood function of e1, . • • , eN for the 

ARMA(p, q) model with random coefficients defined as in the previous section. 

Proposition 4.3.1 

Let ei = ( e 1, • • • , en)', denote n repeated measurements made on the experimental unit 

i, i = 1, . . . , N. Suppose that these measurements are generated by a stationary 

ARMA(p,q) process with random coefficients a 1, • • • , ar, (3 1, • • • , {3q, partial 

autocorrelations a 11 , ... , aPP' {3 11 , ... , f3qq and white noise variance a2. Let T/j, thej-th 

component of the (p+q) x 1 vector 1/, be defined by (4.2.2). If ed 1/ has a N(O,a2A) 

distribution, where A is defined by (3.5.18), and 1/ has a N('Y/o, i') distribution, the 

likelihood of a random sample e1, ••• , eN is given by 

1 1 1 1 

L(-y) = (21r)-1(nN+p+q\a1)-1nN I ,Jr I -1 J ... J I A 1-1:N 

Proof 

exp [--
1-f e'.A-1e ;l · exp[ -¾(1J-1Ji w-1

(1J-1J0)] d'f/ 
2a2 i =1 

The conditional joint density of e1, .•• , eN given 1/ is (cf. (2.2.10)) 
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N 

f(el' •··, e NI 11) = II f(ei I 11) 
i=l 

= (27r<r)-~nNIAl-~Nexp [--1-f e'.A-1e;] 
2a2 i=l 

and the marginal density of 11 is 

The joint density of e 1, • • • , eN and lJ is 

h(e1, •··, e N' 11) = f(e1, •··, e NI 11)g(11) · 

The likelihood function is the marginal density of e1, ... , eN: 

so that (4.3.1) follows by substitution. • 

(4.3.2) 

(4.3.3) 

(4.3.4) 

(4.3.5) 

Since the elements of A are non-linear functions of the components of 11, it is not 

possible to find a closed form solution to the integral (4.3.1). Proposition 4.3.2 

provides a useful approximation of the value of this integral. 
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Proposition 4.3.2 

An approximation of the likelihood function (4.3.1) is 

(4.3.6) 

where w1, ••• , wm and x1, ••• , xm are the weights and abscissas of an m-point Gauss­

Hermite quadrature formula and the scalar function f(x) is 

f(x) (4.3.7) 

Proof 

The likelihood function (4.3.1) can be approximated by numerical integration (see 

Section 2.4). A suitable transformation off/ yields a product type integral with Gauss­

Hermite weight functions. Let the (p + q)- component vector v be defined by (cf. 

(2.4.14)) 

(4.3.8) 

where i' -½ 'i' -•h = '11 -i. 

The corresponding transformation of the integral in terms of v is 
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L('Y) 
- l (nN+p+q) - I nN - IN 

= 1r 
1 (2a2) 1 J ... J exp( -v' v) I A(v) I 1 

· 

exp [--
1 £ e'.A-1(v)e,] dv 

2a2 i=l (4.3.9) 

where A(v) denotes the matrix A in terms of v instead of -q, as in (4.3.1). The integral 

in (4.3.9) can be written as a product type integral, so that 

= 

1 1 
-1(nN+p+q) -1nN J 2 J 2 J 2 

= 1r (2a2) exp( -v1 ) exp( -v2 ) .•• exp( -vp+q)J(v)dv 

(4.3.10) 

where the functionf(.) is defined by (4.3.7). Note that exp(-v?) is the Gauss-Hermite 

weight function (see Table 2.4.1). Numerical integration can therefore be used to 

approximate (4.3.10), so that result (4.3.6) follows. • 

Remarks 

The discrepancy function-2/nL which can be used to find maximum likelihood estimates 

is given by 
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mm m 

-2/nL :::::: (nN +p +q) In 1r +nN ln(2cr)-2ln L L ... L wi Wr. WL f(x;, xi, ... , XL) ( 4. 3 .11) 

i=lj=l l=l 

where f(xi, ... ,x) is given by (4.3. 7). 

It is clear that the derivative of -2/nL with respect to any component of 'Y is rather 

complicated and can only be approximated with numerical techniques. The MLE's can 

be obtained by an iterative optimization algorithm. 

Such an algorithm will require a large number of evaluations of ( 4. 3 .11) during each 

iteration. The number of computations required by (4.3.10) depends on the number of 

repeated measurements (n), the number of experimental units (N), the number of 

parameters (k) and the number of quadrature terms (m). Computation time is to a very 

large extent influenced by k and it is therefore, apart from other reasons, wise to not 

overparameterize. 

Two algorithms were implemented to evaluate -2/nL. In the first, the quadratic form 

e/ A(xf1ei and the determinant I A(x) I are calculated using (3.5.26) and (3.5.25) 

respectively. The second algorithm uses Kalman recursions, a procedure that is easily 

adapted to handle data sets with missing observations. 

The Kalman recursions, as given in Section 3.4, can be used to calculate the likelihood 

function of a single series with fixed coefficients. The functionf(x) in (4.3.7) can be 

written as 

f(x) (4.3.12) 
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or, alternatively, in terms of the innovations as 

f(x) = exp [--
1 f u'.u;] 

2a2 i=l 
(4.3.13) 

where ui = D 1ei and L is the Choleski root of A(x). For every evaluation of the 

likelihood function, the quadratic form, u/ui or e/ A(xY1ej, is calculated Nmp+q times. 

When an iterative optimization procedure is used to maximize the likelihood function 

and both the gradient vector and Hessian matrix are determined numerically, the 

likelihood function value is calculated many times per iteration. It is therefore important 

to use a computationally efficient algorithm to determine the quadratic form. 

Missing observations 

Incomplete data sets or data sets with unequally spaced observations are often 

encountered in practice, and even more so in repeated measurement experiments where 

a number of experimental units participate in the study. 

In Chapter 3, two methods used to calculate the likelihood function of a fixed 

coefficient ARMA process in the case of missing values were discussed. Jones (1980) 

proposed the use of the Kalman recursive procedure to calculate the likelihood function 

of an ARMA model when there are missing observations (see Section 3 .4). An 

alternative is to use (4.3.12) with rows and columns corresponding to the missing 

observations removed from the matrix A. 

Suppose the mi observations for experimental unit i were made at times ti,1' ... ti,m., i = 
I 

1, . . . , N. Let e 1, • • • , eN denote the observation vectors of the N experimental units. 

Note that their dimensions can vary depending on the number of missing observations. 
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Maximum likelihood estimates can be obtained by minimization of (4.3.11). The 

Kalman filter can be used to calculate the innovation terms of a experimental unit 

recursively. When a missing observation occurs, the innovation term is zero and the 

process is adapted accordingly. 

Maximum likelihood estimates can also be obtained by adapting the covariance matrix 

of each experimental unit by removing the rows and columns from the complete data 

covariance matrix that correspond to the missing observations. The function f(x) is 

formulated as (cf. (4.3. 7)) 

where 

1 
= -E{x) 

(T l 

(4.3.14) 

(4.3.15) 

and Elx) is the covariance matrix of the observations of the i-th experimental unit. 

It is important to keep in mind that a basic assumption of the Kalman filter is that the 

innovation terms must be Gaussian. The Kalman filter is therefore not appropriate when 

the distribution of the white noise terms is not normal. This situation is explored in 

Chapter 6. 

Computational considerations 

In this subsection problems that arise during the iterative estimation of the unknown 

parameters (4.2.4) are discussed. 
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The first problem concerns i', the covariance matrix of '1/· The optimization algorithm 

requires that i' be positive definite at every step. This can be accomplished by 

expressing i' in its Gaussian decomposition and reparameterizing its elements (Bock 

( 1990)). The Gaussian decomposition of i' is given by 

'Ir = LDL' (4.3.16) 

where L is a unit lower triangular matrix and Dis a diagonal matrix parameterized as 

D = diag(exp(Ti)) , i = 1, ... , p+q. (4.3.17) 

For i' to be positive definite, all diagonal elements of D must be positive. Note that the 

diagonal elements of D are forced to be positive, regardless of the sign of 

Ti , i = 1, ... , p +q . Minimization of the discrepancy function is carried out with 

respect to Ti , i = 1, ... , p +q and the elements of L, instead of i'. 

If the dimension of i' is 3, it can be written as 

'Ir = 

exp(T1) 

= l21exp(T1) 

0 

0 
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By setting '¥ 11 = exp(71), it follows that 71 = ln'1r 11 . Similarly, expressions can be 

obtained for 72 , 73 , / 21' / 31 and /32 in terms of the elements of '11. 

Another problem that may be encountered when using numerical integration, is that the 

exponential term 

(4.3.20) 

may become zero since it is determined over a wide range of values of x (a vector of 

quadrature abscissas). The problem can be reduced by adding a positive constant in the 

exponent. The last term of the discrepancy function ( 4. 3. 11) 

(4.3.21) 

can be written as 

m m m N _1 
1 

2cN - 2ln ~ ~ ... L w; wr. w1 II I A(x) I 1 exp [-- e~A(xt1e k + c] . 
z=lJ=l l=l k=l 2a2 

(4.3.22) 

The iterative procedure used to find maximum likelihood estimates may not converge 

to the true minimum value of -2lnL if the initial parameter estimates are not close to 

their real minimum values. The success of the estimation procedure therefore depends 

to a large extent on the initial estimates. A method by which to obtain initial estimates 

is discussed in the next paragraph. 
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Initial estimates of parameters 

Box et al ( 1994) give a general method for obtaining initial estimates of the parameters 

of a mixed ARMA process, where the parameters are the ARMA coefficients and the 

white noise variance. Their procedure forms the basis of a procedure that can be used 

where there are more than one experimental unit in a study and where the parameters 

are elements of the mean vector and covariance matrix of the ARMA coefficients. 

For every independent time series, initial estimates of the ARMA coefficients can be 

calculated following the three steps given by Box et al. The N initial estimates of every 

coefficient are examined carefully by means of a histogram in order to identify possible 

outliers or irregularities that may indicate departures from assumptions. The coefficients 

are transformed ( the transformations for an ARMA(p, q) model are given in (3. 7. 4) and 

(4.2.2)) in order to assume values over the real line. An initial estimate of 170, the mean 

of 17, is the mean or median of the sample of transformed coefficients. The elements of 

the covariance matrix of 17, 'Ir, can be estimated initially by the sample covariance 

matrix of the transformed coefficients. 

The three steps to be carried out in order to obtain initial estimates of the coefficients 

of a single series are explained thus by Box et al: 

The first step consists of calculating the initial estimates of the autoregressive 

coefficients by using the following result: 

(4.3.23) 

where 'Yo, ... , 'Yp+q are the autocovariances at lags 0, ... , p +q of the process. Let c0, 

c 1, .•. , cp+q denote the sample autocovariances at lags 0, ... , p+q. From (4.3.24) it 

follows that O\, ... ,& P may be obtained by solving the p linear equations 
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+a C p q-p+l 

C = a C +a C + q+p 1 q+p-1 2 q+p-2 +a C p q 
(4.3.24) 

Using the estimates & 1, ••• , & P obtained in the first step, the second step consists of the 

calculation of the first q + 1 autocovariances of the derived series wt = &(B)er . The 

process { wt, t:::;; n} is treated as a moving average process of order q. Let the 

autocovariances of wt be denoted by c0 ', ••. , cq '. The following relationship with the 

autocovariances of et is useful: 

(4.3.25) 

where a 0 = -1. 

The autocovariances c0 ', . • . , cq' are used in step three in an iterative procedure to 

compute initial estimates of the moving average parameters and a1 (Wilson (1969)). The 

autocovariance of an MA process is 

k-1 ii 
) ~ f3f3 ti Iii :::; q. 

ci = Cov(er,et+i = .'-' 1 J+\il or 
J=O 

(4.3.26) 

Let T' = (70, ... , Tq) where 

<r = Ta2, 

{3j = -T/To,] = 1, ... , q. 
(4.3.27) 
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If successive approximations towards the final solution are denoted by attaching a 

subscript (i), the i + 1-th solution obtained by a N ewton-Raphson algorithm is 

(4.3.28) 

where T, the Jacobian matrix, is defined as 

70 71 ... 7q-l 7q 70 71 72 ... 7q 

71 72 ... 7q 0 0 70 71 ... 7q-l 

T= 72 73 ... 0 0 + 0 0 70 ... 7 q-2 
(4.3.29) 

7 q 0 ... 0 0 0 0 0 . .. 70 

q-J 
and f = (f0, .•• , Jq)' where ~ = [ 7i7i+j - cf . The elements off are minimized when 

i=O 

the covariances of wi, co', . . . , cq', are equal to the covariances obtained when 

calculating ( 4. 3. 26) using the fitted parameter values ~ 1, ... , t q • 

Starting values for the iterative process can be taken as 7 0 = R, 7 1 = . . . , 7 q = 0. 

The iterative process is continued until I.ti I < E, i = 0, ... , q for some prescribed 

value of E. When convergence is attained, the values of the parameters can be obtained 

using (4.3.27). 

In the case of a pure autoregressive process, an estimate of the white noise variance is 
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(4.3.30) 

Simulation study 

A simulation study was carried out to examine the properties of the maximum 

likelihood estimates obtained by minimizing (4.3.11) for both a complete and an 

incomplete data set. 

Estimates were obtained for thirty different data sets. These data sets were generated 

to satisfy assumptions Al to A5 (Section 4.2). Each data set consists of the 50 repeated 

measurements on each of 50 experimental units. The repeated measurements are the 

output of a stationary ARMA(2, 1) process with random coefficients. 

Estimates were obtained for the complete data set as well as for the same data set with 

ten percent of its values missing. The location of the missing values in the data set were 

determined by a random number generator. Numerical integration was performed with 

four quadrature terms (m = 4). 

The mean and standard deviation of the thirty estimates of each parameter are given in 

Table 4.3.1. The values used in generating the data sets are also reported. 
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Table 4.3.1: Simulation study results for a random coefficient ARMA(2, 1) model. 

Parameter Population Complete data Incomplete data 

value 
Mean S.D. Mean S.D. 

E(a1) 0.25 0.2267 0.0894 0.1977 0.0782 

E(a2) 0.5 0.4525 0.0951 0.4985 0.0475 

E({3) 0.6 0.5121 0.1215 0.5129 0.1171 

a2 2.0 2.1765 0.0662 2.3198 0.0782 

V(a1) 0.015 0.0132 0.0262 0.0070 0.0096 

V(a2) 0.03 0.0314 0.0421 0.0174 0.0226 

V({3) 0.04 0.0376 0.0406 0.0702 0.0798 

Cov(a1 ,a2) 0.00 -0.0163 0.0322 -0.0057 0.0063 

Cov(a1 ,{3) 0.00 0.0033 0.0134 0.0001 0.0130 

Cov(a2 ,{3) 0.00 -0.0022 0.0244 0.0033 0.0215 

-2/nL 9210 76.64 8282 77.07 

A number of conclusions can be drawn from these results. In both the complete and 

incomplete cases, the means of the autoregressive coefficients are estimated more 

accurately (judged by their smaller estimated standard errors) than the mean of the 

moving average coefficient. The variances of the ARMA coefficients are estimated 

more accurately for the complete data sets (judged by their difference from the 
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population value). The white noise variance is over-estimated. An approximate 95 % 

confidence interval (mean ± 2 standard deviations) does not include the population 

value of 2.0. The over-estimation of a2 is probably due to increased variability in the 

data as a result of the variability of the ARMA coefficients. An increase in the number 

of quadrature terms may yield an improved estimate of a2. 

4.4 MARGINAL MAXIMUM LIKELIHOOD AND THE EM-ALGORITHM 

In this section marginal maximum likelihood (MML) by applying the expected 

maximization (EM)-algorithm (Dempster, Laird and Rubin ( 1977)) is discussed as an 

alternative method of calculating maximum likelihood estimates. 

Let the vector ei represent n repeated measurements made on experimental unit i and 

assume that ei can be described by a stationary ARMA(p ,q) model with white noise 

variance a2. Let 'Y/k, k = 1, ... , p+q, be transformations of the ARMA coefficients 

defined by (4.2.2). The assumption is made that ed 11 has a N(O,a2A) distribution and 

that 11 has a N(710,-v) distribution. The parameters -y' = (110 ', vecs(-v)', a2) can be 

estimated by means of MML estimation (Bock ( 1990)). 

The likelihood of ei, ... , eN is (cf. (4.3.5)) 

(4.4.1) 

which can be written as 

(4.4.2) 
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where g('q) denotes the marginal density of 17, which is assumed to be N(170 , ~) and 

f(ei I 11) denotes the conditional distribution of ei given 11 which is assumed to be 

N(O,a2A). 

The log-likelihood is consequently given by 

(4.4.3) 

Let()' = (170 ' , vecs(~)'). The marginal density, g(17), is a function of 0, and/(e1, ••• , 

eN l 11) is a function only of a2. The parameter vector, 'Y, can therefore be divided into 

two sets, namely 'Y' = (0', a2). It follows that 

aznL 
a01 

J 
··•Jf(ep···,eNl11)ag(17) d17 

a0
1 

= ----------
/(el, ... ,e N) 

By using the following well known result: 

alng(11) = ag(17) . _1_ 
a0

1 
ao

1 
g(11) 

expression (4.4.4) can be written as 

The function 
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f(e1, ... ,e NI 11)g('q) 

f(el' ... ,e N) 

is the conditional distribution of 17 given ei, i = 1, ... , N, so that 

The corresponding equation for a1- is 

From the assumption that 17 is N(170, i') it follows that 

where tr(A) denotes the trace of the square matrix A. 

Let T/oj denote the }-th element of 170• It follows from (2. 2 .18) that 
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(where Jj1 is a column vector with all elements equal to zero with the exception of the 

}-th element which is equal to unity) and hence 

(4.4.12) 

The MML estimate of 7/o is therefore obtained by solving 

(4.4.13) 

and hence 

(4.4.14) 

It is clear that ~o is the mean of the conditional distribution of 7/ I e 1, ... , eN. 

Let Vlrs denote a typical element of vecs(i'). It follows that (cf. (2.2.19)) 

= ¾tr! ir1
[(11-110)(11-110)' -ir }1r1 

::, I 
= ¾tr{w-i[<11-110(11-11 0)' -w]w-1[J,, +(1-0,,)J,,J} 

(4.4.15) 

where ors is Kronecker's delta, and Jrs is the matrix with all elements equal to zero with 

the exception of the element in the r-th row and s-th column which is equal to unity. 
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The matrix G = (r, - r,0)(r, - r,0)' can be written as 

(4.4.16) 

where the notation r, I e is used to denote r, I e1, ••• , eN. 

The likelihood can be concentrated with respect to r,0 by substituting ~o so that an 

estimate for G is 

(4.4.17) 

The expected value of G with respect to the conditional distribution of r, I e 1, ••• , eN is 

(4.4.18) 

By using (4.4.8) and (4.4.15) it follows that 

(4.4.19) 

The solution of the likelihood equation with respect to 'Ir yields 

aznL = 0 => E I (G-'11) = 0 air 1/ e 

(4.4.20) 
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and hence 

if = E11le(G) 

= Cov111/17 ,1l)+[~o-E11le(11)][~0-E11l/11)J1 (4.4.21) 

Under the assumption that ei I 11 is N(O,a2 A) the conditional log-likelihood of ei given 17 

lS 

and the derivative with respect to a1 is 

atnf(e i I 11) 

aa1 

(4.4.22) 

(4.4.23) 

An MML estimate for a1 is obtained by substituting (4.4.23) in (4.4.9) and solving the 

likelihood equation. The result is 

N 
&2 = _l ~ E 

1 
(e1,.A-1e.) 

nN~ 11e 1 

l=l 
(4.4.24) 

The MML estimates (4.4.14), (4.4.21) and (4.4.24) are all given in terms of the 

conditional distribution of 11 I e 1, .•. , eN defined in ( 4. 4. 7), which is the posterior 

distribution of 11 in Bayes terminology. In this application p(11 I e1, ... , eN) is not a 

standard distribution and numerical integration is used to obtain the required expected 

values. 
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The same procedure can be used to find expressions for the elements of the Hessian 

matrix in terms of conditional expectations. The second derivative of lnL with respect 

to 0i and 0j can be written as 

(4.4.25) 

where, by using (4.4.5) 

(4.4.26) 

and therefore (cf. (4.4.8)) 

a2lnL = E [ alng(q) . alng(q) + a2Lng(q)] . 
ae.ae. 11 lel' ... ,eN ae. ae. ae.ae. 

l J l J l J 

(4.4.27) 

The first order derivatives of ln g('q) are given by (4.4.11) and (4.4.15) and the second 

order derivatives can be derived using standard matrix differentiation results. 

The elements of the Hessian matrix can be evaluated numerically with Gauss quadrature 

and the Gauss-Newton algorithm, which require the Hessian matrix, can be used to 

obtain maximum likelihood estimates. 

The expected maximization (EM)-algorithm (Dempster, Laird and Rubin ( 1977)) can 

also be used as an optimization algorithm. Starting values for the parameters are used 

to calculate p(11 I el' ... ' eN), E11le1,····e}1/)' Cov111el' ... ,e}11,1/
1

) and E11lel' ... ,e}e~A-1e). This step 
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is the expectation step. The values are substituted into (4.4.14), (4.4.21) and (4.4.24) 

to find estimates for '1/o, '1r and a1, (the maximization step). This process is repeated 

until convergence is attained. 

The EM-algorithm is robust to poor initial estimates, but may require many iterations 

to converge relative to algorithms that use first and second order derivative information. 

A good strategy is to switch to such an algorithm after a number (say 100) of EM­

iterations. 

Note that it is possible to obtain estimates for the ARMA coefficients of each 

experimental unit. The estimated distribution of '1/ is N(~0, ii). The mean of the 

conditional distribution of '1/ I ei can be used as an estimate of the transformed 

coefficients for the i-th experimental unit: 

(4.4.28) 

Estimates of the ARMA coefficients for the i-th experimental unit can be obtained in 

a similar way, by first expressing the ARMA coefficients as functions of the elements 

of '1/. This concept was also discussed in Section 4. 2. 

4.5 RANDOM COEFFICIENTS AND BAYESIAN THEORY 

There is a degree of similarity between the estimation approach used in random 

coefficient models and Bayes estimation (see e.g. DeGroot (1970)). The purpose of this 

section is to discuss the similarities in and differences between these two approaches. 

Let y1, ••• , Yn represent a univariate random sample from some population of which 

the probability distribution depends on unknown parameters, denoted by 'Y · 
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A fundamental assumption in Bayes theory is that all parameters are random variables. 

The random coefficient approach allows a mixture of random variables and fixed 

parameters. In this chapter the ARMA coefficients are assumed random while the white 

noise variance is fixed. The basis for the assumption of random coefficients is that in 

repeated measurement models with a number of experimental units, the same order 

model may be adequate to describe all experimental units, but the coefficients are 

allowed to vary across the experimental units. 

Both approaches require specification of the distribution of the parameters. Denote this 

distribution by h('Y,'Yo) where 'Yo denotes the parameters of h. In Bayesian theory the 

function h( 'Y, 'Yo) is termed the prior distribution. The parameters of the prior distribution 

(hyperparameters), 'Yo, must be specified. In the random coefficient approach this 

distribution is seen as the marginal distribution of the coefficients and the aim is to use 

the data to estimate 'Yo· 

Letf(y1, ••. , Yn I 'Y) denote the joint distribution of the sample given fixed values of the 

parameters. Bayesians call this the likelihood of the data given the parameters. In this 

study it is referred to as the conditional distribution of the data given the parameter 

values. 

The product g(y i, . . . , y n, 'Y) = f(y 1, • . • , y n I 'Y) h( 'Y, 'Y 0) is calculated in both 

approaches. Apart from a proportionality constant, g is the posterior distribution of the 

parameters, used in Bayesian inference. The marginal posterior distributions are derived 

and Bayes estimates are calculated for the components of 'Y. 

In the random coefficient approach, the marginal density function of y1, 

determined by integration of g over the values of 'Y: 

L = I ... I g(y l' . . . Y n' 'Y )d'Y . 
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This function is the likelihood of the data with respect to given parameter values. Its 

maximum points with respect to the components of 'YO are maximum likelihood 

estimates. The parameters of the marginal density of 'Y are estimated; such density can 

be used to find expected values of any function of 'Y. In Section 4.2 the moments of 

the ARMA coefficients are derived by writing them as functions of normal variables 

and then estimating the parameters as described above. 

The main points of correspondence between the Bayesian approach and the random 

coefficient approach as applied in this dissertation, are therefore the common 

assumption of random coefficients and the use of conditional probability results. 

4.6 BAYES ESTIMATION 

Bayes estimation of the coefficients of an ARMA process were studied by a number of 

authors, amongst whom Broemeling (1985). Recent articles (Chib (1993) and Chib and 

Greenberg (1993)) deal with Bayes inference in regression models with ARMA(p,q) 

errors. 

Bayes estimation of the parameters of an ARMA model is given in this section in order 

to highlight differences that exist between the Bayes approach and the random 

coefficients approach. 

Let ei denote n repeated measurements made on experimental unit i, i = 1, . . . , N. It 

is assumed that the elements of ei are generated by an ARMA(p,q) process with white 

noise variance a2. The Bayes estimates of the coefficients of the ARMA process 

generating ei and the white noise variance have to be determined. 

Instead of estimating the ARMA coefficients directly, they are transformed as explained 

in Section 4. 2. Let 11 denote the p + q-dimensional vector of transformed coefficients. 
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The prior distributions of 11 and a2 are 

(4.6.1) 

and 

1 f(a2) oc _ , a2 > 0 
a2 

(4.6.2) 

where 11p and i' P are the prior values of 11 and i', which are assumed to be known. It 

is also assumed that 11 and a2 are independent. 

As in Section 4.2, it is assumed that the conditional distribution of ei l 11 is N(O,a2 A). The 

likelihood of e1, ••• , eN is consequently given by (4.3.2). 

The joint posterior distribution of 11 and a2 is 

f(el' ··· ,e NI 11,<l-)p(<r)p(11) 

f(el' ... ,e N) 
(4.6.3) 

where p(<r) and p(11) denote the prior distributions of a2 and 11, f(ei, ... , eN I 11,<r) 

denotes the likelihood and the denominator is a normalizing constant. It follows that 

1 1 1 1 

p(11,a2 I el' ... e N) oc (21r)--,:<nN+p+q\d2)--,:<nN+1> Ii' P 1-1 I A 1--,:N. 

exp [--
1-f e;A-1e;] · exp[ -¾<11-11P)1ir;\11-11P)] 

2a2 i=l 
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where the proportionality constant is 

1 (4.6.5) 

The marginal posterior of 11 is obtained by integrating of ( 4. 6 .4) over a2 and is given 

by 

(4.6.6) 

and hence 

1 [ N l - (nN+2) 1 / 

f (a2) 1 exp --L e iA-1e i d a2 
la2 i=l (4.6.7) 

where the proportionality constant is given by (4.6.5). 

The integral can be solved by using the inverted gamma distribution. The density 

function of an inverted gamma distribution (Kotz et al (1983), vol. 4) with parameters 

A and (3 (denoted by IG(A,(3)) is 

f(y) = -exp -- -"'{j [ A ] [ 1 ] {j+ 

1 

f((3) y y 
'y >0. (4.6.8) 
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The mean and variance of y are 

E(y) = for (3 > 1 

and 

A2 
Var(y) = ---­

((3 - 1 )2 ((3 - 2) 
for (3 >2. 

(4.6.9) 

(4.6.10) 

The integral in (4.6. 7) can be solved by using the inverted gamma distribution so that 

the marginal posterior of 1'/ is 

(4.6.11) 

which is not a standard distributional form. When using the squared error loss function, 

the Bayes estimate of the i-th element of 1'/, 'Y/i, is the mean of 'Y/i with respect to (4.6.11) 

given by 

(4.6.12) 
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The integral can be determined numerically by means of a Gauss-Hermite quadrature 

formula. The covariance matrix of r,, Cov(r,, r,') is an estimate of '11, and can also be 

determined by means of numerical integration. 

The marginal posterior distribution of a2- is 

(4.6.13) 

and from (4.6.4) it follows that 

(4.6.14) 

where the proportionality constant is given by (4.6.5). Since the elements of A are non­

linear functions of r,, it is clear that the integral has to be determined numerically. The 

Bayes estimate of a2- is 

(4.6.15) 

4.7 THE GIBBS SAMPLER 

In Sections 4. 3 and 4 .4 maximum likelihood and marginal maximum likelihood were 

discussed as techniques for estimating the parameters of a random coefficient ARMA 

model. Bayes estimators of the unknown parameters were derived in Section 4. 6. All 
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these methods depend on numerical integration. Gibbs sampling does not require any 

integration and can be used as an alternative to numerical integration. Gibbs sampling 

is a technique for generating random variables from a distribution without having to 

calculate the density (Casella and George (1992)). Suppose certain characteristics of the 

marginal distributions of a collection of random variables, x1 , •.. , xk, have to be 

examined. The Gibbs sampler requires the full conditional distributions of x1 , ..• , xk, 

denoted by f(x 1 lx2 , •.• , x,J, f(x2 lx1 , x3 .•. , x,J ... , f(xklx1 , •.• , xk_1) to obtain 

characteristics of their marginal distributions. Note that it is not always easy or even 

possible to derive the marginal distributions from the full conditionals. 

The straightforward approach to finding a marginal distribution involves integration, 

which in some cases can be difficult. By applying the Gibbs sampler these complex 

calculations are replaced with a sequence of simpler calculations. Gibbs sampling may 

be indispensable in situations where the joint distribution of x 1 , ••• , xk or the marginal 

distributions can not be calculated. 

The most common use of the Gibbs sampler has been in Bayesian models in which 

features of the posterior distribution, such as the marginal posterior distribution of a 

parameter, are difficult to evaluate (MacEachern and Berliner (1994)). 

The theory of Gibbs sampling is based on elementary properties of Markov chains. 

Given an arbitrary set of starting values denoted by x /DJ, ... , xtJ, a random sample can 

be obtained by successive sampling from the following conditional distributions: 

(]) f fl I (0) (0)) x1 rom \x1 x2 , ••• , xk , 

(I) f ! 1 I (I) (I) (])) xk rom \xk x 1 , x2 , • . . , xk-J . 

(4.7.1) 
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This cycle is repeated and after i such iterations the observations (x /J, x/0, .. . , x/J) 

are recorded. The successive observations from each variable, x/°J, x/J, ... , xf>, j = 

1, . . . , k, form a Markov chain which converge to the marginal distribution as i 

increases. Geman and Geman (1984) showed that under mild conditions the joint 

d. "b . f 1 (i) (i) (i)) d h f ( d 1stn ut1on o 1x1 , x2 , . . . , xk ten s to t at o x1 , . . . , xk) an hence the 

distribution of x/'J tends to that of x1, j = l, . . . , k; as i ~ oo . 

Casella and George (1992) state that a sufficient condition for convergence to occur is 

that the marginal density should be proper. The success of Gibbs sampling depends on 

the asymptotic behaviour of the induced Markov chain. For the general applicability of 

the method it is desirable that the Markov chain be ergodic. Chan (1993) obtained mild 

sufficient conditions for the ergodicity of the Gibbs sampler. 

In order to estimate the marginal density or its characteristics a large sample must be 

generated. Several methods of generation have been suggested. The first method is to 

repeat the procedure for one observation a large number of times, say m. In other 

words, m independent Markov chains of length i are generated and the sample consists 

of the i-th observation of each chain. These m observations can be regarded as a 

random sample from the marginal density, on condition that the chains are independent 

with each chain using a different starting value x/DJ, x/DJ, ... , x/0) (Van der Merwe and 

Botha (1993)). 

The second method is to generate one long Gibbs sequence and to include all the 

observations after a certain point, the so called burn-in period (MacEachern and 

Berliner (1994)) or to sample in a systematic way from the sequence. 

Geyer (1992) argues against subsampling the output of a stationary Markov chain, 

preferring instead to use the entire chain, except possibly for a relatively short burn-in 

period. According to MacEachern and Berliner (1994) the variance of the Gibbs 

estimators increase when subsampling from the sequence. 
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However, Smith and Roberts ( 1993) state that it appears to be more efficient to generate 

one long Gibbs sequence and, after an initial transient phase, form a sample by 

collecting equally spaced outcomes. The gaps are chosen to render serial correlation 

negligible. When a new problem is analyzed, they suggest that several chains should 

be generated from a wide range of initial values to monitor the evolutionary behaviour 

of the chain. 

Once the sample is obtained, the marginal density and its characteristics can be 

estimated to any desired degree of accuracy. The mean of xi, j = 1, . . . ,k can be 

estimated as the sample mean 

m 
µ" == 1 ~ x.<1) 

i -Lit 
ml==l 

(4.7.2) 

where x/0 is the /-th observation of xi. For cases where the means of the conditional 

distributions are available, an improved estimate is 

m 
1 ~ E( I (I) (i) (1) (1)) 

µi == - L xi Xu , ... ,Xi-1,l ,Xi+l,l, ... ,xkl · 

m l==l 

(4.7.3) 

Any other moment can be estimated similarly. 

The average of the conditional density of xi given the remaining x's over the 

observations is a good approximation of the marginal density of xi. The estimate is 

f(x) 
m 

1 ~ f I (1) (1) (1) (1)) 
== - L (xi Xu ' ... 'xi-1,l ,Xi+l,l, ... ,Xkl 

m l==l 

(4.7.4) 
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The Gibbs sampler can be used to estimate the parameters of a stationary ARMA(p,q) 

model with random coefficients. 

Bayes estimation of the parameters of an ARMA(p,q) model 

In this subsection assumptions Al to A4 given in Section 4.2 are adhered to. In contrast 

with assumption AS the white noise variance is assumed to be a random variable. The 

Gibbs sampler requires that the prior distribution of each parameter be specified. 

The prior distribution of the transformed coefficients is given in (4.6.1) and the prior 

distribution of a2 is taken proportional to _.!:_ (cf. (4.6.2)). The joint distribution of e1 , 

a2 

. . . , e N, 'Y/ and a2 is 

(4.7.5) 

where p(11) and p(cr) denote the prior densities of 'Y/ and a2 respectively. 

The full conditional distribution of a2 is 

(4.7.6) 

It is clear that (4. 7 .6) is proportional to an inverse gamma density (cf. (4.6.8)) with 
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parameters 

The conditional mean of a2 is (cf. (4.6.9)) 

N 
1 ~ 'A-1 
- LJ ei e; 
2. 1 l= 

1 -nN 
2 

(4.7.7) 

(4.7.8) 

which is equal to the maximum likelihood estimate of a2 for the case where the ARMA 

coefficients are assumed fixed (cf. (6.1.10)). 

Sampling from the /G(A,{3) distribution can be accomplished by first generating an 

observation, z, from a x2(2{3) distribution. Then y = 
2"- is an observation from the 
z 

IG(A,{3) distribution. 

Sampling from the other conditional distributions is not straightforward. The problem 

is that these distributions are not standard forms such as the normal or beta distribution. 

The conditional distribution of the j-th component of r, is 
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(4.7.9) 

where the notation 11-j is used to denote 11 with its }-th component omitted, written as 11-j 

= (17 1, ••• , 17j-i,17j+1' ... , 17p+q)', A1 is A with all the 17's, except 111, fixed and similarly, 

111 is 11 with all the 17's, except 111, fixed. 

The inverted distribution function method (Johnson (1987), p.19) may be used to 

sample from (4.7.9). A random number, u, is generated from the uniform(0;l) 

distribution and the following equation is solved for 11/ 

(4.7.10) 

where F() is the cumulative distribution function (CDF) associated with (4.7.9). A 

closed form expression for the CDF is not available. Equation (4.7.10) is solved by 

evaluating the CDF for different values in the range of 111 and then choosing the value 

of 111 closest to u. The more values of 111 for which the CDF is evaluated, the closer will 

the generated values resemble sample values from the population. Calculating the CDF 

is, however, a time-consuming task and there is a trade-off between computation speed 

and accuracy. 

Computation time drastically increases with every additional parameter. For every 

observation from a non-standard distribution, the CDF must be evaluated a number of 

times (say 100, for accuracy up to the second decimal). Furthermore, the Gibbs sampler 

requires large samples. Unless an efficient algorithm for sampling from non-standard 

distributions is employed, the Gibbs sampler is not efficient for models of a high order 
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under assumptions A 1 to A4. 

The following example shows how the Gibbs sampler is implemented to estimate the 

parameters of an AR( 1) model. 

Example 4.7.1 

The Gibbs sampler is used in this example to calculate Bayes estimates of the 

parameters of an AR(l) model. A data set containing 20 repeated measurements on each 

of 35 experimental units is generated in accordance with assumptions Al to A5 (Section 

4.2). Each time series is generated by an AR(l) process with E(a) = -0.75, 

Var(a) = 0.007 and a2- = 5.0. 

Instead of generating values directly from the distribution of a, values for 'Y/ (cf. 

(4.2.2)) are generated from the N('Y/o, '1') distribution. The expected value of 'Y/, 'Y/o, and 

the variance of 'Y/, '¥, are approximated by means of a second order Taylor series 

expansion (cf. (3. 7. 9)). 

The prior distributions of a and a2- are 

a -- uniform( -1; 1) (4.7.11) 

and 

1 
J(a2-) QC -

a2-
,a2->0. (4.7.12) 

The likelihood function of e 1, • . • , e3s is 
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f(e1, ... , e3s I a,a2) 
(4.7.13) 

From (4.7.11) to (4.7.13) it follows that the joint distribution of e1, ••• , e35 , a and a2 

is 

35 [ 35 l 
f(e1 ' ... 'e35'a,a2) ex (a2-t3s11 A 1-2 exp __ l_L e~A-1ei 

20\=1 (4.7.14) 

The full conditional distribution of a2 is 

(4.7.15) 

which is an inverted gamma distribution (cf. (4.6.8)) with parameters 

35 
\. 1~ IA-1 
I\= -LJei ei 

2. 1 l= 

and {3 = 350. 

The full conditional distribution of a is 

(4.7.16) 
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which is not a standard form since the elements of A are non-linear functions of a. 

It was established empirically that the Markov chains obtained by generating values 

from ( 4. 7. 15) and ( 4. 7 .16) converge quite fast and it was decided to generate chains of 

length i = 20. A sample of m = 100 values was obtained for each of a and a2. 

The autoregressive parameter and white noise variance are estimated as the sample 

means of the generated a's and a2's (cf.(4. 7 .2)) and are given by & = -0. 7601 anda2 

= 5.0396. The sample standard deviations of a and a2 are aa = 0.0273 and &a" 

0.0241. 

The marginal densities of a and a2 are estimated using ( 4. 7. 4) and are presented 

graphically by Figures 4. 7 .1 and 4. 7 .2. 
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Figure 4.7.1 Estimated 
probability density of a 

4-43 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

F' 
7 

6 

5 

3 

2 

\ 

a-.==::::.--~~~-~~~--.......=. 
4 0 4 2 4 4 4. 6 4.8 5 0 5 2 5. 4 5 6 5.86 0 

SIGHASQ 

Figure 4.7.2 Estimated 
probability density of a2 

Note that Figures 4. 7 .1 and 4. 7 .2 represent the density functions up to a scaling factor 

and that the scaling of the vertical axis is therefore not important. 

The problems associated with the use of non-standard distributions in Gibbs sampling 

can be alleviated to some extent by choosing other prior distributions (this implies a 

replacement of assumptions A2 and A3). Chib and Greenberg (1993) developed a 

method for analysing ARMA(p,q) regression error models in a Bayesian framework by 

using Gibbs sampling and the Metropolis-Hastings algorithm. Their results can be 

adapted for the special case of no independent variables. A brief summary of their 

method is given. 

Let a = (a1, •.. , ap)' and (J = ({3 1, ••. , {3q)' denote the autoregressive and moving 

average parameters respectively and let z(O) denote the initial state vector. The state­

space representation of an ARMA process as given by Harvey (1981) is used. The prior 

distributions of a and (j are assumed to be multivariate normal distributions truncated 

to their stationary and invertible regions respectively. An inverted gamma distribution 
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is used as the prior distribution of a2. The components of the initial state vector, z(0), 

are introduced as parameters and their prior distribution is multivariate normal with 

mean zero. It is assumed that the parameters of the prior distributions (hyperparameters) 

are known. 

Two transformations are performed on the data and the components of the initial state 

vector are introduced as additional parameters. The full conditional distributions that 

are used in the Gibbs sampling algorithm are a truncated multivariate normal 

distribution for a, an inverted gamma distribution for a2 and a multivariate normal 

distribution for z(0). Kalman smoothing is used to obtain the parameters of the 

distribution of z(0). 

The full conditional distribution of (3 does not belong to a known family of distributions 

but can be simulated with the Metropolis-Hastings (MH) algorithm (Metropolis et al 

(1953) and Hastings (1970)). The MH algorithm is most effective when it is possible 

to draw from a density that resembles the target density. A truncated multivariate 

normal distribution whose parameters are revised at each iteration is proposed. The 

authors claim that at least 50 % of the draws from this distribution should be accepted 

if the algorithm is implemented properly. 

The method is justified by proving that the kernel density of the induced Markov chain 

converges to the true density. An advantage of the method of Chib et al is that the 

convergence of the Markov chain is improved by sampling blocks of parameters. 

Simulated examples and an application on the U.S. real GNP data are given where 

samples as large as 6000 are taken beyond a burn-in period of 200 observations. 

4.8 SUMMARY 

In this chapter the estimation of the parameters of a random coefficient ARMA model 

is considered. 
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The exact likelihood function of the observations of an ARMA process is given as well 

as an approximation thereof based on numerical integration. It is shown that a Kalman 

recursive algorithm can be used in situations where the data is incomplete. The results 

of a simulation study which was carried out to examine the properties of the maximum 

likelihood estimates for complete as well as incomplete data sets, are given. 

The concept of marginal maximum likelihood estimation is discussed together with the 

use of the EM-algorithm in order to obtain maximum likelihood estimates. 

Since the assumptions made in random coefficient models are similar to Bayes 

assumptions, the Bayes estimates of the coefficients of an ARMA process are given. It 

is shown how the Gibbs sampler can be used to calculate Bayes estimates. An example 

of the implementation of the Gibbs sampler based on simulated data is given. 

The reader should note that the application of Bayes techniques are not limited to 

stochastic parameter models. These techniques are generally applied to fixed as well as 

stochastic parameter models. A complete coverage of Bayes inference in all the models 

studied is, however, beyond the scope of this dissertation. 
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CHAPTER 5 REGRESSION MODELS WITH ARMA(p,q) ERROR TERMS 

5.1 INTRODUCTION 

In many practical applications, a response is measured on several occasions on each of 

a number of experimental units. To study the growth pattern of a specific tree species, 

for instance, the base circumference of a number of these trees can be measured 

periodically over a number of years. It is reasonable to expect that a functional 

relationship will exist between the circumference and the age of the tree. 

In this chapter the assumption is made that the observed responses exhibit a linear or 

non-linear trend over time and additionally that the error terms of the model are 

generated by an ARMA(p, q) process. 

Suppose n repeated measurements, denoted by y1, •. • , Yn, were made on an experimental 

unit. In the previous chapters the situation was considered where y1 = e1, j = 1, ... , n, 

and where e1, •• • , en, were assumed to be generated by an ARMA(p,q) process with 

fixed or stochastic coefficients. 

In this chapter the model is expanded to allow for a functional relationship between the 

dependent variable, y, and the time variable, t, which assumes the values t1, •• • , tn, the 

points in time at which y1, •• • , Yn are observed. If, for instance, there is a linear 

relationship over time, the measurement at time ti can be written as 

Yi = {30 + f3li + ei , i = 1, ... n. (5.1.1) 

The estimation of the parameters of regression models with ARMA(p, q) error terms and 

for which the regression parameters and ARMA coefficients are assumed either fixed 

or stochastic are now discussed. 
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In Section 5. 2 the maximum likelihood estimation of the parameters of a regression 

model with ARMA(p,q) error terms is considered. All parameters in the model are 

assumed fixed but unknown. 

Section 5. 3 deals with the situation where the parameters of the regression model are 

random and the error terms are generated by a fixed coefficient ARMA(p,q) process. 

In Section 5.4, on the other hand, the parameters of the regression model are assumed 

fixed while the coefficients of the ARMA model describing the error terms are assumed 

random. 

Both the regression parameters and the ARMA coefficients are assumed random in 

Section 5. 5. It is shown that the method of marginal maximum likelihood can be used 

to obtain MLE' s for the unknown parameters of such a model. 

Considerable attention has been devoted in the literature to regression models with time 

series errors. Several models for analysing repeated measurement data exist in the 

literature. Harville (1977) and Jennrich and Schluchter (1986) give a review of the 

models and of approaches for estimating parameters. Linear random effects models for 

repeated measurement (longitudinal) data are discussed by, amongst others, Laird and 

Ware (1982), Jennrich and Schluchter (1986) and Lange and Laird (1989). The 

analysis of non-linear models with random coefficients are considered by authors such 

as Palmer et al ( 1991), Hirst et al ( 1991) and Herbst ( 1994). Racine et al ( 1986) 

discuss a Bayesian approach to non-linear random effects models. 

5.2 FIXED PARAMETER REGRESSION MODEL WITH ARMA(p,q) ERRORS 

Chib ( 1993) states that the regression model with autocorrelated errors is one of the 

most heavily analyzed models in econometrics. 

Suppose that n repeated measurements, y = (y1, ••• , Yn)', made on an experimental unit 
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can be adequately described by the following model: 

y =f(O,t)+e (5.2.1) 

where f(O ,t) is an n-dimensional linear or non-linear function in the parameters () and 

t = (t1, ... , tn)' is the vector of time points on which the responses were measured. The 

elements of e are assumed to be generated by a stationary and invertible ARMA(p,q) 

process with white noise variance a2. The vector e is assumed multivariate normal with 

zero mean and structured covariance matrix E = a2 A which is defined by (3. 5. 8). 

Since () is regarded as fixed, it follows from (3.5.7) that y has a multivariate normal 

distribution with mean vector f(O,t) and covariance matrix E. 

If, for example, y has a linear trend over time with intercept 00 and slope 01, the model 

can be written as 

y = (5.2.2) 

Growth can often be described by a non-linear function, such as a simple modified 

exponential, logistic or Gompertz curve. (See Herbst (1994) for a detailed discussion 

on the Richards family of growth curves.) If, for example, y follows a simple modified 

exponential trend over time, the j-th element of y can be written as 

(5.2.3) 
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Suppose n repeated measurements were made on each of a random sample of N 

experimental units. Let the n-dimensional vectors y 1, ••• , YN denote the measurements 

on the different experimental units. The likelihood of y 1, •.. , YN is 

L = (21r) -½nN IE I -½N exp[-½ i [Y ;-fill, t)]'E-1[Y ;-fill, t)]l 
z=l 

= (21ra2)-½nNI A 1-½Nexp [--1 £ [Y;-fill ,t)]' A-1[Y;-fill ,t)]l 
2a2 i=l 

(5.2.4) 

where I; = a2A. Note that (5.2.4) is similar to (6.1.8). The unknown parameters are 

the elements of (), the ARMA coefficients and the white noise variance. The likelihood 

equations associated with all the parameters ( with the exception of a2), obtained by 

setting the partial derivatives of lnL with respect to the parameters equal to zero, are 

not in a closed form and have to be solved iteratively. The maximum likelihood 

estimate for a2 is 

N 
A 1 r A ]/ A - 1f A ] &2 = -L L,Y; -f( 0 , t) A L,Y ;-f( 0 , t) 

nNi=l 
(5.2.5) 

and the corresponding concentrated likelihood is 

(5.2.6) 
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5.3 RANDOM PARAMETER REGRESSION MODELS WITH FIXED 

COEFFICIENT ARMA(p,q) ERRORS 

Suppose a specific response function is suitable to describe repeated measurements on 

a number of experimental units from the same population. In many applications it is 

more realistic to allow the parameters of the response function to vary across 

experimental units. The assumption is made that the parameters of the regression model 

fitted to each experimental unit form a random sample from a specific population. 

Random parameter growth curve models were studied by Du Toit (1979) and Herbst 

(1994). Other references are Beran and Hall (1992), Raj and Ullah (1981), Chow 

(1983) and Nicholls and Pagan (1985). In this section the maximum likelihood 

estimation of the parameters of linear and non-linear regression models with stochastic 

parameters and ARMA(p,q) errors is considered. 

Let Yi be an n-dimensional vector denoting the repeated measurements on experimental 

unit i, i = 1, ... , N. Suppose Yi can be adequately described by the following model: 

(5.3.1) 

wheref(bi,t) is an n-dimensional linear or non-linear function in the parameters, bi. The 

parameter vector bi is assumed to be an observation of an s-dimensional random vector. 

As in the previous section t = (t1, ••• , tn)' is the vector of time points at which the 

responses were measured. The elements of ei are assumed to be generated by a 

stationary and invertible ARMA(p, q) process with white noise variance a2. 

Furthermore, the vectors ei are assumed multivariate normal with zero mean and 

structured covariance matrix ~ = a2 A which is defined by (3. 5. 8). 

It is assumed that bi, ... , bN is a random sample from a multivariate N(0,4?) population 

and that bi is independent of ei. Note, that in many cases, it might be necessary to 
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reparameterize to make the assumption of normality of the regression parameters more 

realistic. 

From the assumptions it follows that the conditional distribution of Yi given b is 

(5.3.2) 

Since the vectors y 1 I b, y2 I b, ... , YN I b are independent, their joint distribution is 

N 
f(y1,···,YNlb) = ITJ(yilb) 

i=l 

= (2·nf~nN 11; 1-~Nexp [-½£ ~d(.b, t))'r.-'~d(b ,t))l 
z=l 

and the marginal distribution of y 1, ••• , YN is 

f(yp···,YN) = I ··•Jf(yl' ... ,yNlb)g(b)db 

(5.3.3) 

_ 
1 

(nN+s) -
1 

N _ 
1 J J [ 1 N l 

= (21r) 1 Ir, I 1 I <I> I 1 ·-- exp --,/{;ld(b ,t))'r.-'~d(b ,t)) 

· exp [-½(b-11)' <1>-1(b-/l)] db. 

(5.3.4) 

The estimation of the parameters of both linear and non-linear regression models will 
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now be considered. 

Linear regression models 

Suppose the responses of the i-th experimental unit can be described by the model 

(5.3.5) 

where X: n x s is a known design matrix and bi is an s-dimensional vector of regression 

coefficients. Since Yi is a linear combination of independent normal variables bi and ei, 

the distribution of Yi is also multivariate normal with mean and covariance matrix given 

by 

E(y) = XO 

and 

The vectors y 1, ••• , YN are independent and their likelihood is 

N 
L = Ilf(y) 

i=l 

The determinant in (5.3.8) can be written as 
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(5.3.9) 

For a proof of this result see Browne (1991). By using (5.3.9) the computational effort 

needed to calculate the determinant is reduced. This is because the order of both <I> and 

X'E-IX is s, which, in practice, is usually considerably smaller than n. An efficient 

procedure to calculate I E I is discussed in Section 3. 5 ( cf. (3. 5. 25)). 

It will now be shown that the quadratic form X'E-IX can be calculated without having 

to invert E. The matrix E can be written as LL' where Lis a lower triangular matrix. 

It follows thatX'E-IX = (DIX)'(DIX). If V = DIX, thenX'E-IX = V'V. The following 

proposition provides a method for calculating V efficiently. 

Proposition 5.3.1 

Suppose X is an n x s matrix and L is a non-singular lower triangular n x n matrix. 

Then DIX can be calculated by backward substitution, thus eliminating the need to 

invert the n x n matrix L. 

Proof 

Let V = DIX. 

Denote the i-th columns of X and V by xi and vi respectively, i 

(5.3.10) can be written as 

so that 

xi= Lvi, i=l, ... ,s 
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which can be written as 

Xli 111 vli 

X2i 121 122 v2i 
= (5.3.13) 

xni [nl ln2 ... [nn v . 
m 

The n equations are solved simultaneously to obtain the elements of vi. It follows that 

Vli = 
Xli 

/11 

v2i = 
X2;- 121 v1; 

122 
(5.3.14) 

n-1 

xni- L lnkvki 

k=l 
vni = 

1nn 

The columns of V are obtained by repeating this process for i = 1, ... , s. • 

The inverse of the covariance matrix of Yi can be written as (see Browne (1991)) 

(5.3.15) 

The quadratic form in (5.3.8) is therefore 
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(5.3.16) 

where 

(5.3.17) 

Note that yt'i;-1x can be written as 

Y t'i;-1 x = (L-iy t )' L-ix 
(5.3.18) 

= w'V 

where I; = LL', with L a 10,ver triangular matrix. The vector w = D 1yt can be 

obtained by applying the procedure described in Proposition 5.3.1 and Vis defined in 

(5.3.10). The quadratic form given in (5.3.16) can therefore be written as 

W 1 W - W 1 V( 4>- l + V' n-1 V' W . (5.3.19) 

Maximum likelihood estimates for O and <I>, the mean and covariance matrix of b, the 

ARMA coefficients and the white noise variance can be obtained by partial 

differentiation of lnL with respect to the unknown parameters. The log-likelihood 

function can be written as (cf. (5.3.8)) 

lnL (5.3.20) 

where 
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0 = X<l>X' +E. 

From Section 2.2 it follows that lnL can be written as (cf. (2.2.11)) 

lnL = -.!.N[nln21r+ln IO I +tr(0-1G)] 
2 

with 

N-1 - - , 
G = -S+(y-XO)(y-XO) 

N 

(5.3.21) 

(5.3.22) 

(5.3.23) 

where y and S are the sample mean vector and sample covariance matrix defined in 

(2.2.13) and (2.2.14). 

Let -y denote the vector of unknown parameters. The partial derivative of lnL with 

respect to the elements of -y is (cf. (2.2.15)) 

(5 .3.24) 

where 

(5.3.25) 

and 

R = (y-X0)10-1 . (5.3.26) 
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It follows from (5.3.24) and (5.3.26) that the MLE of() is 

which is equal to the generalized least squares estimate. 

The partial derivatives of O with respect to a2 and <I> rs are 

ao = ~(X<l>X' +a2A) 
aa2 aa2 

= A 

where A = __!_ E and 
a2 

Substitution of (5.3.28) and (5.3.29) into (5.3.24) yield 

and 

aznL 
a<I> rs 

= ~ tr[ 0-1
( G-O)o-1 X[ J,, +( 1 -o ,,)J,,}X'] 

= ~ (2-0,,)tr[x10-1(G-0)0-1x1,,] 
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and hence 

a!nL 

a<I> rs 
= N(2-o )[x10-1(G-O)o-1x] . 

2 rs sr 
(5.3.32) 

Note that it is not possible to express the MLE' s of a2 and <I> in a closed form by setting 

(5.3.30) and (5.3.31) equal to zero. Furthermore, since the elements of E are non-linear 

functions of the ARMA coefficients, it is also not possible to obtain their MLE's in a 

closed form. All these estimates have to be determined iteratively. See Section 2.3 for 

a description of an optimization procedure to accomplish this. 

Non-linear regression models 

If f(b,t) is a non-linear function of b, the integral in (5.3.4) can not be solved by 

applying analytical methods. Proposition 5. 3. 2 shows how Gauss quadrature can be 

used to obtain an approximation of the joint distribution of y 1, ••• , YN. 

Proposition 5.3.2 

An approximation of the joint probability density function (5. 3 .4) is 

(5.3.33) 

with 
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g(x) = exp [--
1 £ ~d(x ,t))' A-'~d(x ,t))l 

2a2 i=l 
(5.3.34) 

where w1, •.• , wm and x1, ... , x 111 are the weights and abscissas of an m-point Gauss­

Hermite quadrature formula. 

Proof 

The joint density function (5.3.4) can be approximated by means of numerical 

integration (see Section 2.4). The integration variable is transformed in the following 

way: 

(5.3.35) 

where 

(5.3.36) 

so that 

(5.3.37) 

The Jacobian of the transformation is 

(5.3.38) 
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Transformation of the integral yields 

-
1 

(nN+s) - 1 nN - 1 N 

= 1r -z (2a2) -z I A I -z J ... J exp( -v1 v)g(v) dv 

-
1 (nN+s) - 1 nN - 1 N 

= 1r 
1 (2a2) 1 I A I 1 J exp( -v;) J exp( -v{) ... J exp( -v})g(v) dv 

where 

g(v) = exp[--
1 f 1l;-J(v,t))'A-11ld(v,t))]. 

2a1 i=l 

(5.3.39) 

(5.3.40) 

Since exp(-vi 2) is the Gauss-Hermite weight function (see Table 2.4.1), (5. 3. 39) can be 

approximated by nested summations from 1 to m, where m is the number of quadrature 

terms, and exp(-v/) by wi and vi by xi, i = 1, ... , m, where w1, .•• , wm and x1, .. . , xm 

are the weights and abscissas of an m-point Gauss-Hermite quadrature formula. • 

Maximum likelihood estimates for the unknown parameters, are found in the point in 

the parameter space where the discrepancy function 

mm m 

-2lnL :::::: (nN+s)ln1r+nNln2a1+Nln IAI -2lnL L ... L wjwk ... w1g(x) 
j=lk=l l=l 

(5.3.41) 

is a minimum. Minimization of (5.3.41) can be accomplished by means of an iterative 

optimization procedure, such as the one described in Section 2.3. 
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Nate that it is also possible to obtain maximum likelihood estimates using the method 

of marginal maximum likelihood (see Section 4.4). 

5.4 FIXED PARAMETER REGRESSION MODELS WITH RANDOM 

COEFFICIENT ARMA(p,q) ERRORS 

In some applications it may be realistic to assume that the parameters of the linear or 

non-linear regression model are fixed, but the coefficients of the ARMA model 

describing the errors are random variables. Suppose the n repeated responses of 

experimental unit i, i = 1, ... , N, can be described by the following model: 

(5.4.1) 

where the elements of ei are the outcome of a stationary ARMA(p,q) process. The white 

noise terms are assumed independent normal variables with mean zero and variance a2. 

It is assumed that the coefficients of the ARMA process can vary across the different 

experimental units and that the coefficients of the different experimental units are a 

random sample from a common multivariate population. The ARMA coefficients are 

transformed to partial autocorrelations (cf. (3. 7.4)) which are then transformed to 

coefficients which assume values from -oo to oo (cf. (4.2.2)). Let f/ denote the vector 

of transformed coefficients. The following distributional assumptions are made: 

(5.4.2) 

(5.4.3) 

(5.4.4) 
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These assumptions are exactly the same as those made in Section 4. 2. The results of 

Chapter 4 can therefore be used to estimate the unknown parameters by letting 

(5.4.5) 

5.5 RANDOM PARAMETER REGRESSION MODELS WITH RANDOM 

COEFFICIENT ARMA(p,q) ERRORS 

In some situations where repeated measurements are made on a number of experimental 

units it may be reasonable to assume that the responses of the different experimental 

units can be described by the same model but that the parameters of the model may 

vary. In this section the case where both the regression parameters and the ARMA 

coefficients can vary, is considered. 

Let Yi be an n-dimensional vector denoting the repeated measurements on experimental 

unit i, i = 1, ... , N. Suppose Yi can be adequately described by the following model: 

(5.5.1) 

where f(bi,t) is an n-dimensional linear or non-linear function in the parameters, bi. The 

parameter vector bi is assumed to be an observation of an s-dimensional random vector. 

The vector t = (t1, ••• , tn)' represents the time points at which the responses were 

measured. The elements of ei are assumed to be generated by a stationary and invertible 

ARMA(p, q) process with random coefficients and white noise variance a2. 

The following distributional assumptions are made: 

eil11 - N(O, a2A), i=l, ... ,N (5.5.2) 
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Yi I b, 11 - N(f (b , t) , a2-A) , i = 1 , ... , N 

b - N(0,~) 

11 - N(110, 'fr) 

Cov(b, 171
) = 0 . 

From these assumptions it follows that the joint density of Yi, ... , YN is 

f(yl' ... ,y N) = f ··· f f(y1 ' ... ,y N'b '11)dbd17 

= f ... f f(y1, ... ,y NI b,17)g(b)h(17)dbd17 

= f ··· f [i ~/(y; I b,11)] g(b)h(71) dbd11 

= f ... f (21ra2-)-½nN I A 1-½Nexp [--1 £ ~d(b, t))' A-'~d(b, t))l 
2a2- l = 1 

· (2-ir)-½s I <I> 1-½exp [-½(b-8)' <1>-1(b-8)] 

(5.5.3) 

(5.5.4) 

(5.5.5) 

(5.5.6) 

(5.5.7) 

(5.5.8) 

Note that the general case, where f(b,t) is a non-linear function of b and where the 
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elements of A are non-linear functions of the elements of '¥/, is considered. It is 

therefore not possible to solve (5.5.8) by applying analytical methods. The following 

proposition gives an approximation of (5.5.8) in terms of a Gaussian quadrature 

formula. 

Proposition 5.5.1 

An approximation of the joint density (5.5.8) is 

1 1 m m m 
- (nN+s+p+q) -

1
nN 

;:::: 1r 1 (2a2) L L L Ww .. wi(s+p+q)g(xl'x2) (5.5.9) 
ii =li2=1 i(s+p+q)=l 

with 

(5.5.10) 

and 

Xi = (xa ... Xis)' 
(5.5.11) 

X2 = (xi(s+l) .•. xi(s+p+ql 

and where w
1

, ••• , wm and x 1, ... , xm are the weights and abscissas of an m-point Gauss­

Hermite quadrature formula. 
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Proof 

The integral in (5. 5. 8) can be expressed as a product type integral by transforming the 

vectors b and r, as follows: 

Hence (5.5.8) in terms of v and u is given by 

where 

g(v, u) 

- 1 (nN+s+p+q) - 1 nN 
= 1r 

1 (2a2) 1 f ... f exp(-v'v)exp(-u'u)g(v,u)dvdu 

= I A(u) ,-½Nexp [--
1 f i.,d(v ,t))' A(ut'!.,,-J(v ,t))] . 

2a2 i=l 

(5.5.12) 

(5.5.13) 

(5.5.14) 

(5.5.15) 

The p+q+s-dimensional integral in (5.5.14) can be expressed as a product type 

integral, and hence 

1 1 
--z(nN+s+p+q) -1nNI 2 J 2 J 2 

f(yl' ... ,y N) = 1r (2a2) exp(-u1 ) exp(-u2 )... exp(-up+q) 

· J exp(-vf) f ... f exp(-v})g(v, u)dvdu . 
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(5.5.16) 

The function exp(-v?) is the weight function of a Gauss-Hermite quadrature formula. 

(See Section 2.4.) The result follows by using an m-point quadrature formula. • 

The unknown parameters to be estimated are the elements of (), <I>, r,0 , '1', and a2. 

Maximum likelihood estimates can be obtained by minimizing -2lnL which is given by 

m m 
-2lnL = (nN+s+p+q)lmr+nNln(2a2)-2ln L ... L ww·•wi(s+p+q)g(x1 ,x2). (5.5.17) 

il=l i(s+p+q) 

MLE's can also be obtained by using the method of marginal maximum likelihood. (See 

Section 4.4.) 

The log-likelihood of y1, ••• , YN is (cf. (5.5.8)) 

lnL = ln f ... f f(y 1 , ••• ,y NI b,r,)g(b)h(r,)dbdr, (5.5.18) 

where g(b) and h(r,) denote the marginal densities of b and r,. The conditional density 

J(yi, ... , YNlb,r,) is a function of a2, g(b) is a function of 'Y' = (O', vecs(<I>)') and h(r,) 

is a function of T 1 = (r,0 ', vecs(ir)'). 

From (5.5.18) and (4.4.5) it follows that 

(5.5.19) 
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where 

f(y1, ... ,y NI b;q)h(r,)g(b) 

f(yl' ··· ,y N) 
(5.5.20) 

is the conditional joint density of band r,, giveny 1, ••• , YN· The notation Eh. 111/.) is used 

to denote the expected value relative to this conditional distribution. 

It also follows that 

atnL = E [ atnh(r,)] 
a b,111Y a7 . 

Ti I 

and 

atnL 
aa2 

= E [ atnf(y1, ... ,y NI b,r,)] 
b,111Y aa2 

= Eh,11IY [£ _i_lnf(y; I b;ri)] . 
i = 1 aa2 

From (2.2.18) it follows that 

and hence 

(5.5.21) 

(5.5.22) 

(5.5.23) 
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alng(b) = w-I(b-0) . 
ao 

The MLE of O can be obtained by solving (cf. (5.5.19)) 

alnL = E [w-l(b-0)] = 0 ao b,111Y 

so that 

{) = Eb,111/b) 

= Ebl/b) . 

From (2.2.19) and (2.2.16) it follows that 

alng(b) = Itr{<1>-1[(b-O)(b-OY -<1>]<1>- 1[J +(1-o )J ]} . 
a<f, 2 rs rs sr 

rs 

(5.5.24) 

(5.5.25) 

(5.5.26) 

(5.5.27) 

By following steps (4.4.16) to (4.4.21), the MLE of <I> can be derived and is given by 

<J> = Covb,11i/b,b1)+[0-Eb,11l/b)][o-Eb,11l/b)r 

= Covb1/h,b1)+[0-Ebl/b)][o-Ebl/b)r . 

Similarly, it can be shown that 
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(5.5.30) 

and that 

N 

a'- = n~~ E •.• 1,[{Yd(b ,t))' A-'(Yd(b, t))] . 
z=l 

(5.5.31) 

The EM-algorithm (see Section 4.4) can be used as an optimization algorithm. 

Numerical integration is used to calculate the conditional density p( b, 11 I y 1, ••• , YN) and 

the conditional moments Eb,
111
/b), Eh,

111
/11), Eb,

111
Y([y i-f(b,t)]' A -i[y i-f(b,t)]), 

Covh 
1 
(b,b1

) and Covh 
1 

(17,171
). This procedure requires values for the unknown 

,11 Y ,11 Y 

parameters and is called the expectation step. The unknown parameters are estimated 

by substituting the values obtained in the expectation step into (5.5.26), (5.5.28), 

(5.5.29), (5.5.30) and (5.5.31) (maximization step). The process is repeated until 

convergence is attained. 

The special case where the regression model is linear in the parameters is discussed 

next. 

Linear regression model 

Suppose the repeated measurements on the i-th experimental unit can be described by 

the following model: 

(5.5.32) 

where Xis a known design matrix, bi, ... , bN are a random sample from a common 
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population, and ei is generated by an ARMA(p,q) process with random coefficients. 

From (5.5.32) and assumptions (5.5.2) to (5.5.7) it follows that the joint distribution 

of y 1, ..• , YN is 

f(yl' ... ,y N) = f ··· f f(yl' ... ,y NI b;q)g(b)h(11)dbd17 

= J ... J (27ra2)--inNI A 1--iN exp [--1 i (y;-Xb}' A-'(y;-Xb)l 
2a2z=l 

· (2-ir)-j, I 4> 1--iexp [-½(b-lJ)' 4>-1(b-/J)] 
- 1 (p+q) - 1 [ 1 ] 

· (21r) 7 Ii' I 1 exp -
2

(11-11 0)
1"1-1(11-11 0) dbd17 

(5.5.33) 

The conditional distribution of Yi, ... , YN given 11 can be obtained in closed form by 

solving the following integral: 

f(y1 ' ... ,y NI 11) = f ... f f(y1 ' ... ,y NI b,17)g(b)db . (5.5.35) 

Since the conditional distribution of Yi I b, 11 is normal and the distribution of b is normal 

and the relationship between Yi and b is linear, it follows that Yi I 11 is normal with mean 

vector and covariance matrix given by 

(5.5.36) 

and 
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Cov(y i ,y~ I 17) = Xcl>X1 +a1 A 

= 0 
(5.5.37) 

It also follows thaty1 I 11, ... , YN I 11 are independent so that their joint distribution is given 

by 

N 
f(yl' ... ,yNl11) = IIJ(y;l11) 

i=l 

= (2·nf~nNI O ,-~Nexp [-½£ (y;-X0)'0-1(y;-XO)l 
z=l 

Equation (5.5.33) simplifies to 

(5.5.38) 

(5.5.39) 

The integral in (5.5.39) can be calculated by numerical integration. Proposition 4.3.2 

can be used to find an approximation to the likelihood function. The unknown 

parameters may then be estimated by maximization of the likelihood by means of an 

iterative optimization algorithm. 
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5.6 PRACTICAL APPLICATION 

Unit trusts are currently growing in popularity as a medium to long term investment 

instrument. Buying and selling prices of the different unit trusts are published in the 

daily press. The different funds vary in aspects such as portfolio structure (i.e. gold 

funds versus industrial funds versus general equity funds) and the risk involved for the 

investor, but their performance is affected in similar ways by economic factors such as 

a change in interest rates and the inflation rate. It is therefore realistic to assume that 

the growth of the different funds can be described by the same type of model, but that 

the parameters may vary across the different funds. 

Thirteen comparable funds (general equity unit trusts) which have all been in existence 

for at least six years were selected. The month-end closing selling price for each unit 

trust is used for analysis purposes. The data set consists of 79 prices (from September 

1988 to March 1995) for each of the 13 selected funds. Figure 5.6.1 provides a 

graphical representation of the data. The following is a list of the names of the different 

funds together with the alphabetical symbols used to represent them on the graph. 

Symbol Unit trust fund 

A Momentum Unit Trust (renamed to RMB 

Equities in February 1995) 

B Sage Fund 

C Sanlam Index Trust 

D The UAL Unit Trust 

E Sanlam Trust 

F Guardbank Growth Fund 

G Standard Bank Mutual Fund 
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H Syfrets Growth Fund 

I Metboard Mutual Fund (Metfund) 

J NBS Equity Trust 

K Norwich Investors Fund 

L Southern Equities Fund 

M Old Mutual Investors' Fund 

Let Pt represent the unit selling price at time t of a specific fund. Two different models 

were employed to explain the variation in Pt· The first model used to describe the selling 

price at time t is a non-linear model with stochastic parameters and ARMA(l, 1) error 

terms, and can be written as 

(5.6.1) 

where c = (c1,c2)' is a random vector. 

Let p = (p1, ••• , Pn)' be the vector of repeated measurements on an experimental unit 

and e denote the corresponding vector of error terms. The following distributional 

assumptions are made: 

e -N(O,E) 

where Eis an ARMA(l,1) structured matrix, 

pjc-N(f(c,t),E) where f(c,t) is a vector representing the mean of p withj-th 

element c1exp(cl), and 
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Figure 5.6.1 Selling prices of unit trust shares 
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(5.6.2) 

Maximum likelihood estimates for the parameters were obtained by minimizing 

(5.3.41). The estimates together with their standard errors are given in Table 5.6.1. 

Table 5.6.1 Estimation results obtained for the model (5.6.1) 

Parameter ML estimate Standard error 

01 625.541 98.658 

02 0.01424 0.0011967 

<P11 233831.5 724.967 

<P21 -2.2229 0.184002 

<P22 2. 7153*10-5 1.083*10-4 

Ci. 0.86631 0.00451 

{3 0.13618 0.03420 

a2- 13602.4 6.1160 

Approximate 95 % confidence intervals (parameter ± 2 standard errors) indicate that 

</>22 is not significant. The parameter c2 can consequently be regarded as fixed. 

The estimated mean of the selling prices at time t = 0 is 01 = R625. 54 and the 

estimated monthly inflation factor is exp(02) = 1.01434, which is equivalent to an 

annual growth rate of 17 .21 % . 

The following measure of fit can be used to compare the two models: 
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N n 

SSQ = LL fpij-E(p)]2 
i =1}=1 

(5.6.3) 

where Pij is the unit price associated with the i-th fund at time j and E(p.) is the 
J 

expected value of the fitted model at time j. An expression can be obtained for E(p) 

using conditional distribution results. 

E(p) = EJE(p I c)] 

(5.6.4) 

where Ee is used to denote the expected value with respect to the estimated distribution 

of c, which is N(O, cl>) . Results pertaining to the moment generating function of a 

normal distribution can be used to find an exact expression to calculate (5.6.4). The 

moment generating function of the estimated distribution of c is 

(5.6.5) 

The partial derivative of the left hand side of (5.6.5) with respect to t1 is 

(5.6.6) 

which is equal to 

(5.6.7) 
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when setting t1 = 0. The partial derivative of the right hand side of (5 .6.5) with respect 

to t1 is 

(5.6.8) 

which is equal to 

(5.6.9) 

when setting t1 = 0. It follows from (5.6.7) and (5.6.9) that 

(5.6.10) 

Expression (5.6.3) was calculated for model 1 and the result is SSQ = 8.61 *108
• Figure 

5. 6. 2 provides a graphical representation of the expected values of the unit prices 

(cf.(5.6.10)) based on the estimation results given in Table 5.6.1 and the average of the 

13 unit prices at each time point. It can be seen that the expected values of the 

estimated model do not follow the cyclical pattern in the data and the model therefore 

needs to be refined. Furthermore, the difference between the sample mean values 

(indicated by the symbol 'S' on the graph) and the expected values (indicated by the 

symbol 'E' on the graph) are consistently positive. It should, however, be kept in mind 

that the expected values are calculated with respect to the estimated distribution of c, 

whereas the average series is calculated by assigning equal weights to the 13 values at 

each time point. The model was not intended to provide a good fit of the average series. 

Empirical Bayes estimates can be obtained for the parameters of the different funds by 

regarding the estimated distribution of c as the prior distribution of c. Let pj denote the 

unit prices associated with the j-th fund, j = l, ... , 13. Empirical Bayes estimates of 
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the parameters of the }-th fund are the elements of the posterior mean of c: 

= f f cJ(pj I c)g(c)dc 

J J f(pj I c)g(c)dc 
i = 1, 2 (5.6.11) 

Table 5.6.2 give the empirical Bayes estimates of c1 and c2 for the 13 unit trust funds 

considered. 

Table 5.6.2: Empirical Bayes estimates of c1 and c2 • 

Unit Trust Fund Cl c2 

A 715.56 0.01729 

B 410.11 0.01513 

C 642.94 0.01600 

D 519.84 0.01490 

E 710.47 0.01848 

F 365.18 0.01562 

G 74.79 0.02010 

H 55.57 0.01984 

I 297.07 0.01593 

J 106.91 0.02072 

K 55.28 0.01917 

L 714.57 0.02208 

M 130.54 0.01814 
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The second model considered to describe Pt is given by: 

(5.6.12) 

where at is a multiplicative error term which is positive with a mean of one and both 

c1 and c2 are positive. A linear model is obtained by taking the logarithm on both sides 

of (5.6.12): 

(5.6.13) 

ln(aJ. Equation (5.6.13) can be 

written as 

y = Xb + e (5.6.14) 

where y = (yi, ... , y 0)', b = (bi, b2)', e = (ei, ... , e0)' and Xis a design matrix given 

by 

X= (5.6.15) 

It is assumed that the error terms are generated by an ARMA(l, 1) process with 

Gaussian white noise terms and fixed coefficients. The parameter vector b is assumed 

to be a bivariate normal random vector. The assumptions are: 
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e -N(O,E) 

where I; is an ARMA(l, 1) structured matrix, 

y I b - N(Xb,E) and 

b - N(O,~). (5.6.16) 

Maximum likelihood estimates were obtained by minimizing -lnL where lnL is given 

by (5.3.20). The elements of ~, the covariance matrix of the regression parameters 

were reparameterized as described in Section 4. 3 ( cf. ( 4. 3. 16) to ( 4. 3 .19)). The 

transformed parameters are indicated by the notation ¢t1, ¢;1 and ¢ 2*2 • The parameter 

estimates and their standard errors are: 

Table 5.6.3 Estimation results obtained for the parameters of model (5.6.12) 

Parameter ML estimate Standard error 

01 6.15169 0.2547 

02 0.01254 0.0005 

¢1/ -0.0605 0.3818 

<P21* -0.00076 0.00044 

<P22* -23.0424 35.3907 

ex 0.92043 0.0170 

{3 0.06525 0.0326 

a2 0.00199 0.0000 

5-36 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

Estimates for the elements of <I> were obtained by applying the inverse transformation 

discussed in Section 4.3 and are given by 

A [ 0,9008 ] 
<I> = -0. 0065 0. 000005 . 

Approximate 95 % confidence intervals (parameter ± 2 standard errors) reveal that the 

elements of 4> * and the moving average parameter are not significantly different from 

zero. 

Note that the estimated variance of the intercept, () 1, is higher than the estimated 

variance of the slope, 02• This is expected since it can be seen on the graph that there 

is a greater variation in the size of the unit prices of the different funds than in their 

growth rates. 

Since the variation of b1 and b2 are not significant, they are approximately equal to their 

means, and consequently 

c1 
::::: exp((\) = 449.52 and 

It follows that the mean unit price at the beginning of the series (September 1988) was 

R449.52 and the mean of the monthly growth rates is 1.257% (or 15.082% p.a.). 

A measure of fit for model 2 (cf. (5.6.3) can be calculated by noting that 
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E(p) = E6[E(p I b)] 

(5.6.17) 

= E6[exp(Xb)] 

where E6 denote the expected value relative to the estimated distribution of b, which 

is the N(O, ci>) distribution. 

An expression for the expected value of p
1 

can be obtained by using the moment 

generating function of a multivariate normal distribution: 

(5.6.18) 

The value obtained for SSQ (cf. (5.6.3)) for model 2 is SSQ = 9.20*108
, which is 

greater than the corresponding value for model 1. 

5.7 SUMMARY 

In this chapter various models used to analyze repeated measurement data are 

considered. It is assumed that the error terms of these models are generated by an 

ARMA process with fixed or random coefficients. The results of previous chapters are 

incorporated in more general models allowing for linear and non-linear response 

functions over time with fixed or random parameters. The results are applied to a South 

African unit trust data set. 
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CHAPTER 6 FIXED COEFFICIENT ARMA MODELS - NON-NORMAL 

ERRORS 

6.1 INTRODUCTION 

In Chapter 3 the estimation of the parameters of fixed coefficient ARMA models was 

considered. Results were given under the usual assumption of independent Gaussian 

white noise terms. This assumption is also applied throughout Chapter 4 and Chapter 

5, as well as the assumption of random ARMA coefficients. Chapter 6 is concerned 

with white noise terms from the family of elliptical distributions, of which the normal 

distribution is a special case. It will be assumed that the ARMA coefficients are fixed, 

but unknown, and must therefore be estimated. 

Bagchi and Guttman (1988) studied Bayesian regression analysis under non-normal 

errors and used a multivariate !-distribution to model the white noise terms of a first 

order autoregressive process. They state that departures from standard assumptions 

often occur in practice and that it is important to deal with them. Other contributions 

in the field of non-normal error terms were made by authors like Zellner (1976) and 

Broemeling ( 1985). 

According to standard references on autoregressive moving average models (e.g. Box 

et al (1994) and Harvey (1981)) the white noise terms of an ARMA process are 

assumed to be uncorrelated. If the white noise terms are also assumed to be normally 

distributed, it follows immediately that they are also independent. Within the elliptical 

class of distributions the multivariate normal distribution is the only distribution where 

independence between two variables is implied when they are uncorrelated. In this 

chapter the assumption is made that the errors are uncorrelated, but not necessarily 

independent. 

Distributions in the elliptical class are considered as alternatives to the normal 

distribution. These distributions are either leptokurtic or platykurtic depending on 
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whether their kurtosis 1s greater than or smaller than the kurtosis of a normal 

distribution. 

A detailed discussion of the elliptical class of distributions is given in Secti0n 2. 5. The 

characteristic function and density function are given by (2.5.3) and (2.5.4) 

respectively. The mean and covariance matrix are given by (2.5.6) and (2.5.7). All 

marginal distributions are elliptically symmetric and their kurtosis is given by (2. 5. 9). 

Theoretical results required for the generation of observations from distributions in the 

elliptical class are given (see Theorems 2.5.1 to 2.5.4). 

Two specific types of distributions in the elliptical class, namely the Pearson Type VII 

and the Pearson Type II, are considered in Sections 6. 2 and 6. 3 in order to illustrate 

leptokurtic and platykurtic types respectively. Maximum likelihood estimates are 

derived for the coefficients of the ARMA model and the white noise variance. A 

simulation study is used to compare the estimation results obtained from the exact 

distribution and the results obtained when multivariate normality is assumed. A 

conclusion is made regarding the performance of maximum likelihood estimators based 

on the normal distribution when the kurtosis of the data differs from that of a normal 

distribution. 

General results that are used in the following sections are now given. 

Distribution of observations 

Let e = (e1, ••• , en)' denote the outcome of a stationary ARMA(p,q) process. The 

observation at time t can be written as ( cf. (3. 2 .1)) 

(6.1.1) 

where ur, ur_1 , ... denote the white noise terms which are assumed to be uncorrelated 
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with constant variance a2. 

In Section 3. 5 it was shown that the observation vector e 

expressed as (cf. (3. 5. 7)) 

(6.1.2) 

where u = (u1, ... , un)', r = max(p,q) and the components of x(O) are forecasts of e1, 

... , er at t=O (cf. (3.5.6)). Since the elements of x(O) are linear combinations of u0, 

u_1, • • • , the white noise terms prior to the first observation, and u contains white noise 

terms from the first observation onwards, it follows that the vectors u and x(O) are 

uncorrelated. Matrices Ta and Tf3 are defined by (3.5.4) and (3.5.5) respectively and In,r 

is a submatrix of In, formed by its first r columns. 

The covariance matrices of u and x(O) are a2 In and P respectively where P can be 

obtained from (3.4.16), using (3.5.16) and (3.5.17). Both u and x(O) have zero means. 

It will now be shown by making use of Theorem 2.5 .1 that if the joint distribution of 

u and x(O) is elliptical, then the distribution of e is also elliptical and of the same 

functional form as the joint distribution of u and x(O). 

Let the vector y be defined as follows: 

(6.1.3) 

The assumption is made that y has an (n + r)-dimensional elliptical distribution. It 

follows that all marginal distributions are elliptically symmetric and have the same 

functional form and kurtosis (see Johnson (1987), p.109). The mean of y is zero and 

its covariance matrix is 

6-3 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

__ [a201 Po] . Cov(v ,y') 
(6.1.4) 

The observation vector e can be written as a linear combination of the elements of y (cf. 

(6.1.2)): 

(6.1.5) 

The rank of Bn X (n+r) is n. 

It follows from Theorem 2.5.1 that e is elliptically contoured with zero mean and 

covariance matrix 

I; = BCov(v , y1 )B' 

= i:1
[crT13~+ln,r PI~.,]T: 1

' (6.1.6) 

which corresponds to (3.5.8). From Theorem 2.5.1 it also follows that the distributions 

of y and e have the same functional form. The vector e, for example, is distributed 

multivariate t, if y has a multivariate t-distribution. In Section 6.2 and 6.3 the vector 

y and hence the white noise terms u and observation vectors e, are assumed multivariate 

t and Pearson Type II respectively. 

Generation of observations 

The Cambanis approach (Cambanis, Huang and Simons (1981)) can be used to generate 

observations from both multivariate distributions under discussion. According to 

Theorem 2. 5. 4 the vector e with mean zero and covariance matrix I; can be written as 
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e = rBu<n> 

where r is a positive random variable having the distribution of (ae'E- 1erh; 

BB' = a-11;, where a is defined by (2.5.8) and 

(6.1. 7) 

u<n) is uniformly distributed on the unit hypersphere. (See (2.5.19) for a useful result 

on sampling from the unit hypersphere.) 

Observations of r can be obtained for both the Pearson Type VII and Type II 

distributions by a suitable transformation of a beta variable. 

To ensure stationarity and invertibility of the process during the estimation process, the 

parameters are transformed to partial autocorrelations when either the autoregressive 

or moving average order exceeds one (as discussed in Section 3.7). Let -y denote the 

parameter vector. The components of -y are the ARMA coefficients ( or transformations 

where necessary), the white noise variance and other parameters of the white noise 

distribution. 

Simulation study 

Simulation studies are used in Sections 6.2 and 6.3 to compare estimation results based 

on the exact likelihood function and the likelihood function which is used under the 

assumption of independent N(O, a2) white noise terms. Let ei denote an n x 1 vector with 

typical element eij which represents the }-th 1esponse on individual i, i = 1, ... , N, j = 
1, ... , n. 

Under the assumption of independent N(O,a2) white noise terms, the likelihood function 

(6.1.8) 
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where a2A = :E, hence 

-2/nLN 
1 N 

= nNln(21ra2)+NlnlAI +_ L (e~A-1e) 
<ri=l 

N 
ex: N (nlna2+lnlAl)+_!__L e~A-1ei. 

a2i=l 

The MLE of a2 based on (6.1.8) is (cf. (3.2.12)) 

N 
"2 - 1 '""' 'A-1 a - - Lie; ei 

nNi=l 

and the corresponding concentrated likelihood is 

and hence 

-2/nL~ 
N 

= nNtn
21r +nNln( L e~A-1e)+NlnlAI +nN 
nN i=l 

ex: N [nln(t e;A-1e;)+lnlAI] . 
l=l 
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In Sections 6. 2 and 6. 3 log-likelihood functions associated with probability models in 

the elliptical class other than the normal distribution are given. Models are fitted to the 

simulated data from these distributions. When estimating the parameters of the models, 

-2lnL is used as the discrepancy function. The parameters are also estimated under the 

incorrect assumption of Gaussian white noise with (6.1.9) as the discrepancy function. 

The values of the discrepancy functions are compared to determine which model 

provides the best fit to the data. 

The variances of the forecast errors at different lags may also be used to assess the fit 

of different models. In the simulation studies the variance of the forecast errors for 2 

and 3 step ahead forecasts are given. 

Let a( l) = e r+t -e 
1
( l) denote the I-step forecast error at time t with e 

1
( l) the forecast of 

er+t at time t. The variance of the l step ahead forecast error is given by (cf. Box et al 

(1994), Section 4.2) 

(6.1.13) 

where Vlj is the weight of the random noise term ut-j when et is written as a linear 

combination of random noise terms (cf. (3.2.7)). 

6.2 THE ARMA(p,q) MODEL WITH PEARSON TYPE VII WHITE NOISE 

In this section the white noise terms of an ARMA process are assumed to be 

multivariate Pearson Type VII. The observations e will consequently have the same 

distributional form. The general multivariate t-distribution is a particular 

parameterization of the Pearson Type VII distribution. This distribution may be used 
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to model situations where the kurtosis of the observations is greater than the kurtosis 

value for normally distributed observations. Note that the kurtosis of all marginal 

distributions are equal (a property of elliptically contoured distributions). 

The density function, moments and likelihood function of the multivariate t-distribution 

are given. Sampling from this distribution is also discussed. The results of a simulation 

study and a discussion conclude this section. 

Maximum likelihood estimation 

The general n-variate t probability density function with v degrees of freedom is given 

by 

f(y) 

(6.2.1) 

with v>O and -oo <y;< oo, i = 1, ... , n. 

The k-th moment of Y; exists only when v > k. The mean, covariance matrix and kurtosis 

of y are 

E(y) = µ if v > 1 

Cov(y ,y1
) 

and 

= _P_y if P >2 
v-2 

(6.2.2) 

(6.2.3) 
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6 
v-4 

if V >4 

respectively. 

(6.2.4) 

Note that the kurtosis of y is positive for v > 4 and approaches zero (the kurtosis of a 

normal distribution) for large values of v. 

Let ei represent the n repeated measurements on subject i, i = 1, ... , N. If it is assumed 

that ei has an n-variate t(v) distribution with zero mean and covariance matrix E, the 

likelihood function of ei, ... , eN is 

L = 
r[.:(v+n)]N _N N [ 1 ]- 1

(v+n) 
2 I IAI 1" n 1+---e~A-lei "! 

r(¾vf (1r(v-2)a2)1 nN i=l (v-2)a2 

where a2A = E (cf. (6.1.6)) and hence 

-2/nL = N (-2tnr(½(v+n))+2tnr(½v)+nln(1r(v-2)a2}+tn I A I) 
N 

+(v+n)[ln[l+ 
1 e;A-1ei]. 

i=l (v-2)a2 

(6.2.5) 

(6.2.6) 

Th . V . (6 2 1) . V - v-2 ~ - (v-2)a2A Le - ( ~ )' e matnx m . . 1s - -~ - --- . t 'Y - 11 1, ..• , 1Jp+q, u-, v 
V V 

denote the vector of unknown parameters where 11k, k = 1, ... , p+q, are the ARMA 

coefficients or transformations of the ARMA coefficients to partial autocorrelations 

when p > 1 or q > 1. The partial autocorrelations are obtained from the Levinson-
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Durbin recursion given by (3. 7.4). 

The MLE of a2 can be expressed in closed form when N = 1 and is given by 

(6.2.7) 

ainL 
Note that it is possible to obtain an expression for by using the so called 

av-

digamma function which is defined as the ratio 

'Y (x) = r' (x) 
r(x) 

(6.2.8) 

where r (.) and r' (.) denote the gamma function and its derivative respectively. For 

f(u) sufficiently small, an approximation of 'lt(f(u)) is log(f(u)-½) (Kotz et al (1983), 

Vol.2). From (6.2.5) it follows that 

ainL 
av- = N '1t[~(v+n)]-N'1t(~v) nN -.!. f In [ 1 + qi ] 

2 2 2(v-2) 2i=l (v-2)a2 

N q 
+.:(v+n) L i 

2 i=l (v-2)((v-2)a2+qi) 
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It can be readily seen that the MLE of v can not be expressed in a closed form. The 

MLE' s of the transformed ARMA coefficients and a2 are also not in a closed form and 

must be determined numerically. The parameters are estimated by means of an iterative 

optimization algorithm ( described in Section 2. 3) using the discrepancy function ( 6. 2. 6). 

Generation of observations 

A simulation study is performed to examine the properties of the MLE' s and to 

compare estimates under the assumption that the errors are from a multivariate t­

distribution (obtained from (6.2.5) or (6.2.6)) to estimates obtained by assuming 

normality ( obtained from ( 6 .1. 8) or ( 6 .1. 9)) when the actual distribution of the white 

noise is multivariate-t. 

Observations from an n-variate t(v) distribution with zero mean and covariance matrix 

I: are required for the simulation study. The standard approach is to use the 

transformation 

(6.2.10) 

where z is N(O, v-2 E) and independent of s, which is x2(v). 
V 

Theorem 2.5.4 (the Cambanis approach) may also be used to generate observations 

from a multivariate t-distribution. The vector e with zero mean and covariance matrix 

I: can be written as (6.1. 7) where 

BB' v-2 
= --E. (6.2.11) 

V 
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The distribution of r is Pearson Type VI. Sampling from the Pearson Type VI 

distribution can be accomplished by generating an observation, say w, from the 

BETA(½n, ½v) distribution and by applying the following transformation on w: 

,2 = w 

1-w 

The value of r is the positive square root of ,2. 

Simulation Study 

(6.2.12) 

A simulation study was carried out to examine the effect of an increase in the kurtosis 

value of the white noise distribution on maximum likelihood estimates. Estimation 

results based on the exact likelihood function given by (6.2.5) and the likelihood 

function used under the assumption of multivariate normality given by (6.1.8) are 

compared. The estimates of the ARMA coefficients and white noise variance are 

compared to the values used in generating the data, which will be referred to as the 

population values. The value of the discrepancy function -2lnL is a measure of fit. In 

the simulation study the values of (6.2.6) and (6.1.9) are compared. 

An iterative optimization procedure (see Section 2.3) is used to minimize the 

discrepancy functions (6.2.6) and (6.1.9). Starting values for the parameters are 

required by the optimization program and the choice of good starting values is crucial 

for the algorithm to converge to the true minimum point. A procedure to obtain initial 

estimates of the unknown parameters is discussed in Section 4. 3. 

The results of the simulation study are reported in Tables 6.2.1 through to 6.2.12. Each 

table represents a different combination of the number of repeated measurements, n, 

and the autoregressive and moving average orders, p and q. Each data set consists of 
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50 observation vectors, e1, ••• , e50 , where ei is n-dimensional, i = 1, ... , N, and is 

generated from a multivariate t-distribution with zero mean and covariance matrix I; 

given by (6.1.6). Thirty data sets were generated for every combination studied. Both 

models were fitted to each data set. The means and standard deviations of the 30 

estimates of the parameters, the variances of the step 2 and 3 forecast errors and the 

discrepancy function value are given in the tables. A count of the number of simulation 

runs is also given when a particular model's discrepancy function value is smaller than 

that of the other model ( out of a total of 30). The following index can be used as a 

guide to the different cases studied: 

Table ARMA-process 

6.2.1 ARMA(2,1) 

6.2.2 ARMA(2,l) 

6.2.3 ARMA(2,1) 

6.2.4 ARMA(2,l) 

6.2.5 ARMA(2,1) 

6.2.6 ARMA(2,1) 

6.2.7 MA(l) 

6.2.8 MA(l) 

6.2.9 MA(l) 

6.2.10 AR(l) 

6.2.11 AR(l) 

6.2.12 AR(l) 

n 

100 

50 

20 

100 

50 

20 

100 

50 

20 

100 

50 

20 

White noise 

distribution 

Normal 

Normal 

Normal 

t 

t 

t 

t 

t 

t 

t 

t 

t 

The first three tables give estimation results for the case where the white noise is 

normal and the standard assumptions are valid. 
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Simulation study results 

Table 6.2. 1 Simulation study results for an ARMA(2, 1) model with n = 100 and normal white noise. 

Parameter Population Normal likelihood t-likelihood 

value 
Mean S.D. Mean S.D. 

Ol. I 0.25 0.2021 0.0244 0.2020 0.0244 

Ol.2 0.5 0.4795 0.0128 0.4795 0.0128 

{3 0.6 0.5624 0.0242 0.5624 0.0241 

a1 2.0 1.9900 0.0358 1.9902 0.0359 

V[a(2)] 2.2486 0.0433 2.2489 0.0432 

V[a(3)] 2.5784 0.0594 2.5787 0.0594 

-2lnL 17630 89.92 17629 89.96 

I 
-2lnL smaller 

II 
20 

II 
10 

I 
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Table 6.2.2: Simulation study results for an ARMA(2, 1) model with n = 50 and normal white noise. 

Parameter Population Normal likelihood t-likelihood 

value 
Mean S.D. Mean S.D. 

CX.1 0.25 0.1380 0.0378 0.1377 0.0374 

cx.z 0.5 0.4463 0.0186 0.4462 0.0186 

{3 0.6 0.5078 0.0389 0.5076 0.0386 

a2 2.0 1.9717 0.0412 1.9718 0.0412 

V[a(2)] 2.2421 0.0572 2.2425 0.0571 

V[a(3)] 2.5515 0.0780 2.5517 0.0776 

-2/nL 8791 52.09 8791 52.20 

I 
-2lnL smaller 

II 
17 

II 
13 

I 
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Table 6.2.3: Simulation study results for an ARMA(2, 1) model with n = 20 and normal white noise. 

Parameter Population Normal likelihood t-likelihood 

value 
Mean S.D. Mean S.D. 

0!.1 0.25 -0.2703 0.3085 -0.1925 0.3039 

Ot.2 0.5 0.2083 0.1760 0.2397 0.1515 

{3 0.6 0.1676 0.2955 0.2525 0.3193 

a2 2.0 1.8833 0.0669 1.8827 0.0663 

V[a(2)] 2.2601 0.1096 2.2489 0.1265 

V[a(3)] 2.4594 0.1313 2.5787 0.1332 

-2lnL 3470 35.47 3470 35.01 

I 
-2lnL smaller 

II 
15 

II 
15 I 
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Table 6.2.4: Simulation study results for an ARMA(2, 1) model with n = 100 and white noise distribution 

t(v=4.01). 

Parameter Population !-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

<X1 0.25 0.2039 0.0249 0.2076 0.0311 

<X2 0.5 0.4739 0.0141 0.4749 0.0247 

{3 0.6 0.5605 0.0277 0.5652 0.0399 

a2- 2.0 1.8799 0.2767 2.0059 0.4867 

V 4.01 4.5647 0.7598 

V[a(2)] 2.1194 0.3129 2.2631 0.5493 

V[a(3)] 2.4227 0.3615 2.5823 0.6091 

-2lnL 15766 586.7 17535 1136 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Table 6.2.5: Simulation study results for an ARMA(2, 1) model with n = 50 and white noise distribution 

t(v=4.01). 

Parameter Population t -likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

ot.1 0.25 0.1204 0.0432 0.1166 0.0755 

ot.2 0.5 0.4369 0.0257 0.4351 0.0360 

{3 0.6 0.4910 0.0495 0.4818 0.0893 

a2 2.0 1.8343 0.2796 1.9570 0.5521 

V 4.01 4.4615 0.6873 

V[a(2)] 2.0883 0.3270 2.2221 0.6357 

V[a(3)] 2.3724 0.3797 2.5318 0.7646 

-2lnL 7841 338.1 8690 619.1 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Table 6.2.6: Simulation study results for an ARMA(2, 1) model with n = 20 and white noise distribution 

t(u=4.01). 

Parameter Population !-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

Ol.1 0.25 -0.2154 0.1346 -0.1983 0.1960 

Ol.z 0.5 0.2410 0.0769 0.2509 0.1098 

{3 0.6 0.2239 0.1337 0.2233 0.1948 

a2 2.0 1.6739 0.2177 1.6696 0.2113 

u 4.01 4.4478 0.5461 

V[a(2)] 1.9976 0.2578 1.9687 0.2450 

V[a(3)] 2.1877 0.2791 2.1606 0.2741 

-2lnL 3083 118.1 3342 130.5 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Table 6.2.7: Simulation study results for an MA(l) model with n = 100 and white noise distribution 

t(u=4.01). 

Parameter Population !-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

(3 -0.3 -0.2973 0.0181 -0.3060 0.0292 

a2 2.0 1.8718 0.2399 2.1673 1.0555 

V 4.01 4.5086 0.8038 

V[a(2)] 2.0376 0.2595 2.3811 1.2045 

-2lnL 15684 495.3 17706 1654 

I 
-2lnL smaller 

II 
30 

II 
0 

I 

Table 6.2.8: Simulation study results for an MA(l) model with n = 50 and white noise distribution 

t(u=4.01). 

Parameter Population !-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

(3 -0.3 -0.2923 0.0205 -0.3012 0.0386 

a2 2.0 1.7654 0.2038 1.8494 0.4012 

V 4.01 4.3891 0.5609 

V[a(2)] 1.9169 0.2211 2.0202 0.4420 

-2lnL 7749 262.5 8578 507.4 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Table 6.2.9: Simulation study results for an MA(l) model with n = 20 and white noise distribution 

t(u=4.01). 

Parameter Population t-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

{3 -0.3 -0.2526 0.0376 -0.2570 0.0537 

a2 2.0 1.7632 0.2433 1.8159 0.4523 

V 4.01 4.7403 1.0025 

V[a(2)] 1.8785 0.2631 1.9405 0.4812 

-2lnL 3151 116.2 3409 216.5 

I 
-2lnL smaller 

II 
30 

II 
0 

I 

Table 6.2.10: Simulation study results for an AR(l) model with n = 100 and white noise distribution 

t(v=4.01). 

Parameter Population !-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

a 0.65 0.6296 0.0128 0.6346 0.0217 

a2 2.0 1.8929 0.2108 2.0808 0.4417 

V 4.01 4.4001 0.5220 

V[a(l)] 2.6434 0.2962 2.9214 0.6281 

V[a(2)] 2.9414 0.3325 3.2627 0.7113 

-2lnL 15785 485.9 17743 1049 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Table 6.2.11: Simulation study results for an AR(l) model with n = 50 and white noise distribution 

t(v=4.01). 

Parameter Population t-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

a 0.65 0.6137 0.0126 0.6106 0.0216 

a2 2.0 1.8709 0.2303 1.9794 0.4487 

V 4.01 4.4567 0.5697 

V[a(l)] 2.5758 0.3162 2.7138 0.5843 

V[a(2)] 2.8418 0.3501 2.9879 0.6276 

-2lnL 7915 277.9 8746 508.9 

I 
-2lnL smaller 

II 
30 

II 
0 

I 

Table 6.2.12: Simulation study results for an AR(l) model with n = 20 and white noise distribution 

t(v=4.0l). 

Parameter Population t-likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

a 0.65 0.5520 0.0320 0.5490 0.0559 

a2 2.0 1.8125 0.2686 1.8768 0.4780 

V 4.01 4.6070 0.7495 

V[a(l)] 2.3697 0.3788 2.4472 0.6059 

V[a(2)] 2.5433 0.4248 2.6284 0.6612 

-2lnL 3181 125.3 3440 227.1 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Discussion 

It is common practice to assume that the error terms of an ARMA model are 

independent N(O,a2) variables. The normal distribution belongs to a wider class of 

elliptical distributions. All elliptical distributions are symmetric and their kurtosis may 

be either greater or smaller than that of a normal distribution. The effect of an 

increased kurtosis on the error term distribution is examined by assuming that the error 

terms are uncorrelated !-variables. 

A few interesting results emerge from Tables 6.2.4 through to 6.2.12. The white noise 

distribution in all these cases is n-variate t with parameter v = 4.01. As expected, the 

!-likelihood function value is consistently larger (or the discrepancy function value -2/nL 

smaller) than the normal likelihood function value. The estimates are clearly biased but 

improve as n, the number of repeated measurements, increases. This is in line with 

asymptotic results regarding maximum likelihood estimates. The mean values of the 

estimates are not consistently closer to the population values for any of the models, but 

the standard errors of the estimates obtained from the !-likelihood are consistently less 

than the corresponding values obtained from the normal likelihood. The estimated 

variance of the forecast error at 2 and 3 steps is always less for the !-model than the 

normal model. Confidence intervals for the forecast errors at these steps will therefore 

be narrower for the !-distribution than the corresponding intervals based on the normal 

distribution. A further conclusion is that the ARMA(2, 1) model can not be fitted 

successfully to data sets with a small number of repeated measurements. 

The first three tables give estimation results for an ARMA(2, 1) model with the white 

noise distributed normally. Both the normal and the !-likelihood functions are 

maximized, and the estimation results are almost identical. This is not surprising, as the 

!-distribution tends to a normal distribution when v -+ oo . The !-distribution is more 

general than the normal distribution, in the sense that it allows for both positive and 

zero kurtosis. The normal distribution with zero mean can be seen as a special case of 
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the !-distribution. 

In view of the simulation study results, it would seem reasonable to assume a !­

distribution rather than a normal distribution for the white noise of an ARMA model 

when the kurtosis of the white noise is non-negative. 

The next section deals with negative kurtosis of the white noise distribution. 

6.3 THE ARMA(p,q) MODEL WITH PEARSON TYPE II WHITE NOISE 

This section deals with the Pearson Type II distribution as probability model for the 

white noise terms of a stationary ARMA(p,q) process. In contrast with the distribution 

considered in the previous section, the kurtosis of a Pearson Type II distribution is 

always less than that of the normal distribution. 

In this section the density function of a Pearson Type II vector variable is given 

together with expressions for its mean, covariance matrix and kurtosis. The likelihood 

function of the observations ei = (e1, ... , e")', i = 1, ... , N is also given. 

Furthermore, the generation of observations from a Pearson Type II distribution is 

discussed. These observations are used in a simulation study to compare estimation 

results based on the exact likelihood function with those based on the likelihood 

function under the assumption of Gaussian white noise terms. 

Maximum likelihood estimation 

The n-dimensional Pearson Type II distribution is defined by Kotz ( 197 5) as 

f(y) 
r(~n+m+ 1) -1 

= 2 I VI 1( 1-(y-µ)' v-1(y-µ)r 
n 

r(m+ l)'1r1 (6.3.1) 
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with support set (y - µ)' v-1(y - µ) ::;; 1 and shape parameter m > -l. In the one 

dimensional case, f(y) is U-shaped when -1 < m < 0, uniform when m = 0 and 

approaches the shape of the normal distribution for large values of m. Figures 6.3.1 to 

6. 3. 4 are representations of f(y) for different values of m and for a two-dimensional 

vector y. 

The mean vector, covariance matrix and kurtosis of y are 

E(y) = µ, (6.3.2) 

Cov(y ,y') = l V 
2m+n+2 ' 

(6.3.3) 

and 

-6 
'Y 2 = _2_m_+_n_+_4 (6.3.4) 

The kurtosis is negative and depends on the shape parameter, m, and the dimension of 

y. For large values of m and n, the kurtosis approaches zero. 

In the present application, this implies that the larger the number of repeated 

measurements, the closer the multivariate Pearson Type II will resemble a multivariate 

normal distribution. The Pearson Type II distribution is a possible alternative to the 

normal distribution when the kurtosis of the white noise terms is less than that of a 

normal distribution and if the time series is relatively short. 

A typical application of this theory is, for example, the analysis of psychometric test 

results obtained annually from a group of high school pupils. 
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Figure 6.3.1: Pearson Type II 
probability density function 

with m = -0.25 

Figure 6.3.3 Pearson Type II 
probability density function 

with m = 0.5 
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Under the assumption that the white noise terms are uncorrelated Pearson Type II 

variables, it follows that the observation vector e has the same distributional form inn 

dimensions with zero mean and covariance matrix, .E, given by (6.1.6). Let ei represent 

n repeated measurements made on individual i, i = 1, ... , N. The likelihood function 

of ei, ... , eN is given by 

(6.3.5) 

where .E = a1 A. An expression for the MLE of a1 when N = 1 is 

er = 2m+n e' A-le 
n(2m+n+2) (6.3.6) 

As in the case of the shape parameter of a !-distribution, it is possible to obtain an 

expression for iJlnL , using the digamma function. The MLE of m can not, however, 
am 

be expressed in a closed form. The function-2/nL can be used as a discrepancy function 

and minimized with respect to the transformed ARMA coefficients and m. It is given 

by 
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-2lnL = N{-2lnr( fn +m + 1) + 2lnr(m + 1) +nln[ 1ra2(2m +n + 2)] +In I A I} 

N 
-2m L In [1- 1 e~A-1e.] . 

i=l (2m+n+2)a2 
1 

(6.3.7) 

Partial derivatives of -2lnL with respect to the parameters are not expressible in a closed 

form and have to be determined numerically. 

Generation of observations 

The Cambanis approach (see Section 2.5) can be used to generate observations from the 

Pearson Type II distribution. The random variable r in (6.1. 7) is the positive square 

root of r where the distribution of r is BETA(½n,m+l). The matrix Bin (6.1.7) can 

be obtained from 

BB' = (2m+n+2)E. (6.3.8) 

Simulation study 

Suppose that the white noise terms have a Pearson Type II distribution with negative 

kurtosis. In order to examine the properties of the MLE' s of the unknown parameters 

based on the exact likelihood ( 6. 3. 5) and those of MLE' s based on the normal 

distribution given by (6.1.8), use can be made of simulated data. The kurtosis of a 

Pearson Type II distribution ( 6. 3. 4) is a function of its shape parameter and its 

dimension. Positive values of the shape parameter, m, are considered. These values 

correspond to distributions with more mass around their means than around their 

extremes. 

6-28 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

An iterative optimization procedure (see Section 2.3) is used to minimize the 

discrepancy functions ( 6. 3. 7) and ( 6. 1. 9). Starting values for the parameters are 

required by the optimization program and, as has already been noted, the selection of 

good starting values is crucial for the algorithm to converge to the true minimum point. 

A procedure to obtain initial estimates of the unknown parameters is discussed in 

Section 4.3. 

The results of the simulation study are given in Tables 6.3.1 through to 6.3.9. Each 

table represents a different combination of the number of repeated measurements, n, 

and ARMA models. The means and standard deviations given in each table are based 

on 30 independent estimates obtained by minimizing the Pearson Type II discrepancy 

function ( 6. 3. 7) and the normal discrepancy function ( 6 .1. 9) on 30 simulated data sets. 

Each data set consists of a random sample of 50 experimental units. 

The shape parameter, m, is fixed throughout the simulation study at a value of 2.0 and 

is therefore regarded as a known parameter. Estimation of the parameters of a Pearson 

Type II model by means of an iterative optimization procedure is more complex due to 

the fact that the support set of a Pearson Type II density is bounded. For each new set 

of parameter values obtained during the iterative procedure, the constraints 

e/A-1ei < a2(2m+n+2) , i = 1, ... , N 

must be enforced. This problem can be overcome by reparameterization. The term 

N 
- 2m I: In [ 1 -

1 e~ A -1 e;] 
i=l (2m+n+2)a2 (6.3.9) 

in ( 6. 3. 7) can be written as 
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N [T - e~A-
1
e.] 

-2m ~ In 1 

i=l 7 (6.3.10) 

where T = a1(2m + n + 2) is the parameter instead of a1. The lower bound of r is 

Max(e~A- 1e.) , i=l, ... N. 
• l 

l 

The following index can be used as a guide to the different cases studied: 

Table ARMA process n 

6.3.1 ARMA(2,l) 100 

6.3.2 ARMA(2,l) 50 

6.3.3 ARMA(2,l) 20 

6.3.4 MA(l) 100 

6.3.5 MA(l) 50 

6.3.6 MA(l) 20 

6.3.7 AR(l) 100 

6.3.8 AR(l) 50 

6.3.9 AR(l) 20 
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Simulation study results: 

Table 6.3.1: Simulation study results for an ARMA(2, 1) model with n = 100 and Pearson Type II white 

noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

<:X1 0.25 0.2238 0.5362 0.1952 0.0249 

<:X2 0.5 0.3195 0.3870 0.4769 0.0157 

{3 0.6 0.3968 0.4061 0.5542 0.0267 

a2 2.0 3.2527 0.2299 1.9880 0.0100 

V[a(2)] 5.8512 7.7517 2.2444 0.0182 

V[a(3)] 12.140 29.324 2.5739 0.0373 

-2lnL 19444 430.4 17624 25.26 

I 
-2lnL smaller 

II 
0 

II 
30 

I 
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Table 6.3.2: Simulation study results for an ARMA(2, 1) model with n = 50 and Pearson Type II white 

noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

Ct.1 0.25 0.1446 0.0927 0.1303 0.0409 

Ct.2 0.5 0.4387 0.0438 0.4440 0.0215 

{3 0.6 0.5383 0.1299 0.5005 0.0440 

a2 2.0 3.1727 0.3141 1.9694 0.0176 

V[a(2)] 3.7073 0.6007 2.2399 0.0313 

V[a(3)] 4.1872 0.6079 2.5490 0.0502 

-2lnL 9567 232.5 8789 22.38 

I 
-2lnL smaller 

II 
0 

II 
30 

I 
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Table 6.3.3: Simulation study results for an ARMA(2, 1) model with n = 20 and Pearson Type II white 

noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

Ci.1 0.25 -0.2261 0.2569 -0.2201 0.2004 

Ci.2 0.5 0.2286 0.1566 0.2375 0.1028 

(3 0.6 0.2304 0.2081 0.2260 0.1971 

a2 2.0 2.7048 0.3041 1.8657 0.0489 

V[a(2)] 3.2793 0.3853 2.2391 0.0722 

V[a(3)] 3.6069 0.4434 2.4526 0.0893 

-2/nL 3626 85.86 3461 26.32 

I 
-2/nL smaller 

II 
0 

II 
30 

I 

Table 6.3.4: Simulation study results for an MA(l) model with n = 100 and Pearson Type II white 

noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

(3 -0.3 -0.2943 0.0091 -0.2912 0.0096 

d1- 2.0 1.9936 0.0105 1.9791 0.0081 

V[a(2)] 2.1664 0.0173 2.1471 0.0122 

-2/nL 17510 15.03 17603 20.53 

I 
-2/nL smaller 

II 
30 

II 
0 

I 
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Table 6.3.5: Simulation study results for an MA(l) model with n = 50 and Pearson Type II white noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

{3 -0.3 -0.2946 0.0174 -0.2895 0.0181 

a2 2.0 1.9809 0.0206 1.9610 0.0175 

V[a(2)] 2.1535 0.0306 2.1260 0.0281 

-2lnL 8710 18.95 8778 22.32 

I 
-2lnL smaller 

II 
30 

II 
0 

I 

Table 6.3.6: Simulation study results for an MA(l) model with n = 20 and Pearson Type II white noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

{3 -0.3 -0.2675 0.0274 -0.2573 0.0288 

a2 2.0 1.9742 0.0593 1.9132 0.0349 

V[a(2)] 2.1171 0.0729 2.0415 0.0429 

-2lnL 3455 16.94 3487 18.11 

I 
-2lnL smaller 

II 
30 

II 
0 

I 
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Table 6.3.7: Simulation study results for an AR(l) model with n = 100 and Pearson Type II white noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

ex. 0.65 0.6366 0.0085 0.6319 0.0093 

a2 2.0 2.0221 0.0271 1.9931 0.0119 

V[a(2)] 2.8416 0.0450 2.7890 0.0310 

V[a(3)] 3.1741 0.0596 3.1071 0.0488 

-2lnL 17560 40.55 17638 29.79 

I 
-2lnL smaller 

II 
30 

II 
0 

I 

Table 6.3.8: Simulation study results for an AR(l) model with n = 50 and Pearson Type II white noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

ex. 0.65 0.6176 0.0149 0.6128 0.0158 

a2 2.0 2.0581 0.0571 1.9904 0.0196 

V[a(2)] 2.8435 0.0832 2.7383 0.0466 

V[a(3)] 3.1439 0.1033 3.0201 0.0734 

-2lnL 8772 38.71 8815 24.65 

I 
-2lnL smaller 

II 
28 

II 
2 

I 
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Table 6.3.9: Simulation study results for an AR(l) model with n = 20 and Pearson Type II white noise. 

Parameter Population P. T. II likelihood Normal likelihood 

value 
Mean S.D. Mean S.D. 

a 0.65 0.5728 0.0280 0.5558 0.0258 

a2 2.0 2.2022 0.1424 1.9462 0.0535 

V[a(2)] 2.9290 0.2327 2.5495 0.1082 

V[a(3)] 3.1710 0.2804 2.7380 0.1409 

-2lnL 3511 34.91 3503 27.70 

I 
-2lnL smaller 

II 
13 

II 
17 

I 

Conclusions 

The Pearson Type II probability model is considered as an alternative to the normal 

probability model when the white noise of an ARMA process has a less peaked 

distribution than the normal distribution. Johnson (1987) states that the Pearson Types 

II and VII and the multivariate normal distributions include an ample number of 

elliptically contoured distributions for most Monte Carlo studies. Scale contaminated 

multivariate normal distributions are elliptically symmetric and may also be used to 

model situations where the white noise distribution has a negative kurtosis. 

The overall conclusion arising from the simulation study (results summarized in Tables 

6. 3 .4 to 6. 3. 9) is that the selection of the Pearson Type II distribution with shape 

parameter m = 2 is not an improvement to choosing the multivariate normal 

distribution. The standard errors of the estimates are not consistently better for any 

model. The fact that the discrepancy function value is generally lower for the Pearson 

Type II model is to be expected, since the data is simulated from a Pearson Type II 
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distribution. 

A drawback when using the Pearson Type II model (as opposed to the t-distribution) 

is that it is not possible to control the degree of negative kurtosis through a parameter, 

because the kurtosis depends on the dimension of the vector variable. When the number 

of repeated measurements is increased, the kurtosis of the Pearson Type II distribution 

tends to zero. 

6.4 SUMMARY 

In this chapter two distributions in the elliptical class are considered as alternatives to 

the normal distribution as probability models for the white noise of an ARMA process. 

Simulation studies were carried out to examine the properties of the maximum 

likelihood estimators based on the likelihood function used under the assumption of 

normally distributed errors when the kurtosis of the error distribution is not normal. 

The exact likelihood functions based on the multivariate !-distribution and the Pearson 

Type II distribution are given and the corresponding maximum likelihood estimation 

results are reported on in the simulation study. The multivariate t-distribution was found 

to be an adequate model in situations where the kurtosis of the white noise is greater 

than that of a normal distribution. Difficulties were, however, experienced in the 

calculation of maximum likelihood estimates based on the multivariate Pearson Type 

II distribution and in the effective control of the kurtosis in order to cover the situation 

where the kurtosis of the white noise distribution is less than that of a normal 

distribution. 
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CHAPTER 7 VECTOR VARIATE REPEATED MEASUREMENT MODELS 

7.1 INTRODUCTION 

In many practical applications more than one characteristic is measured a number of 

times on each of several experimental units. Consider as an example a psychometric test 

written annually by a number of high school pupils. Such a test often consists of a 

number of subtests which are usually correlated. Instead of analysing the subtest scores 

separately by fitting a repeated measurement model to each subtest, more information 

can be obtained about interactions between the different subtest scores by extending the 

methodology for single responses to the vector case. It may for instance happen that the 

score in one subtest at time t depends to a greater degree on the score in a different 

subtest at time t-1 rather than on its own score at time t-1. 

In this chapter the emphasis will be on the analysis of vector ARMA models. The 

identification, estimation and forecasting procedures for this type of model have been 

studied by e.g. Tunnicliffe-Wilson (1973), Hillmer and Tiao (1979), Tiao and Box 

(1981), Anderson (1978), Ansley and Kohn (1983), Spliid (1983) and Du Toit (1990b). 

It will be shown in Section 7.2 how the ARMA(p,q) model for a single response can 

be extended to include the vector case. An expression for the covariance matrix of the 

observation vector is derived in Section 7. 3. A multi-method multi-trait ARMA model 

is introduced in Section 7.4 and a practical application based on psychometric test 

results is given in Section 7. 5. 

7.2 VECTOR ARMA MODELS 

Suppose that n repeated measurements of r characteristics are made on each of N 

experimental units. Let the vector y * represent the n repeated measurements on an 

experimental unit. Then y*:rn x 1 can be written as 
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y* = (7 .2.1) 

where the subvector yi:r x 1 represents the i-th repeated measurement of the r 

characteristics, i = 1, ... , n. Suppose that the n repeated measurements can be 

adequately described by the following model: 

y* =~*+e* (7.2.2) 

where 

E(y *) = ~ * (7.2.3) 

and 

e* = (7.2.4) 

It is assumed that the error vectors ei, ... , e0 are generated by a vector ARMA(p,q) 

process defined by 

e -t 

p q 
~ A,.er_,· = u - I: B .er . 
'-' t • J -1 

i=l J=l 
, t = ... -1, 0, 1, ... (7.2.5) 
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The diagonal elements of the r x r transition matrices Ai and Bj in (7. 2. 5) are the 

autoregressive and moving average coefficients of the error terms for the different 

characteristics. The interaction structure between the error terms of the different 

characteristics are reflected by the off-diagonal elements. The matrix Ai, i = 1, ... , p, 

can be written as 

A.= 
t 

(Xrl,i (Xr2,i ... (Xrr,i 

(7.2.6) 

and is not necessarily a symmetric matrix. A similar result holds for the matrix Bj in 

(7.2.5). 

It is assumed that the white noise vectors ... , u_1, u0 , Ui, ... are independent N(O,O) 

distributed variables. Let the rn x 1 vector u* be defined as 

Ul 

u* 
Uz 

= (7.2.7) 

Un 

The covariance matrix of u* can be written as 
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Cov(u *, u *') = In®O 

0 0 ... 0 (7.2.8) 
0 0 ... 0 

= 

0 0 ... 0 

where O is an r x r covariance matrix. 

For stationarity and invertibility, the roots of the characteristic equations 

(7.2.9) 

and 

(7.2.10) 

(where B is the backshift operator (cf. (3.2.4))) must fall outside the unit circle. 

Example 7.2.1 

Suppose that r = 2 characteristics measured at time points 1, ... , n on an experimental 

unit can be described by a vector AR(l) process. Let ei, ... , en denote the 2-

dimensional observation vectors. The observation at time t can be written as 

e, = Ae,_1 + u, (7.2.11) 

or 
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[:::] = [::: ::] [::::::] + [:::] 

(7 .2.12) 

From (7.2.12) it can be readily seen that the matrix A is not necessarily symmetric. The 

coefficient a 12 is a measure of the dependence of the first variable on the previous value 

of the second variable, while a 21 is a measure of the dependence of the second variable 

on the previous value of the first variable. 

From (7 .2. 9) it follows that the process is stationary if the roots of 

112 - ABI = 0 

(7.2.13) 

fall outside the unit circle. 

It is assumed that Ui, ... , un are independent N(0,O) vector variables. The unknown 

parameters to be estimated are the elements of A and the non-duplicate elements of 0. 

• 

7-5 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

7.3 THE COVARIANCE MATRIX OF A STATIONARY VECTOR ARMA 

PROCESS 

In this section, expressions are derived for the vector e* defined by (7 .2.4) and its 

covariance matrix. It will be shown that results (3. 5. 7) and (3. 5. 8) can be extended to 

include the case where more than one characteristic is measured. 

Let s = Max(p,q). Expression (7.2.5) can be used to obtain the following set of 

equations: 

+ e(l Io) 

+ e(2 Io) 

+e(s I 0) 

(7.3.1) 

where Ap+l = Ap+i = ... = As = 0 if p < sand Bq+l = Bq+ 2 = ... = Bs = 0 if q < 

s, and the vectors e( 1 I 0), ... , e(s I 0) represent 1, ... , s step ahead forecasts of e 1, ••• , 

es at time 0. The vectors e( 1 I 0), ... , e(s I 0) are functions of the observation and white 

noise vectors of the process which realised before any observations were made and are 

given by 
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p q 
e(l I 0) = '""' A .e1 . - '""' B .u1 . 

£.,; l -/ £.,; 1 -1 

i=l J=l 

p q 
e(2 I 0) = '""' A .e2 . - '""' B .u2 . 

£.,; I -/ £.,; 1 -1 
i=2 }=2 

p q 
e(s I 0) = '""'A.e . - '""'B.u .. 

_t..,; 1 s-1 .£.,; 1 s-1 
l=S j=S 

The vector x(0) given by 

x(0): rsx 1 = 

eO Io) 
e(2 I 0) 

e(s I 0) 

(7.3.2) 

(7.3.3) 

can be considered to be a state vector and its covariance matrix can be derived from the 

state equation using the results of Section 3 .4. 

The set of equations (7. 3 .1) can be written in matrix form as 

(7 .3.4) 

where 
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I r 0 
(7.3.5) 

-A 1 I, 0 

-A 2 -A 1 I, 

TA :nrxnr = 
-A -A -A I, 0 

p p-1 ... 1 ... 

0 -A p 

0 0 ... -A p -A p-1 ... -A 1 I, 

and 

I, 0 
(7.3.6) 

-B 1 I, 0 

-B 2 -B 1 I, 0 

Tn:nrxnr = 
-B -B -B I, 0 q q-1 1 

0 -B -B -B I, 0 q q-1 1 

0 0 -B q -Bq-1 ... -B 1 I, 

Since the matrix TA is non-singular, (7. 3 .4) can be written as 

(7.3.7) 
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It follows that the covariance matrix of e* is given by 

E* = Cov(e* ,e*') 

(7.3.8) 

where Cov(u*,u*') is given by (7.2.8) and 

P = Cov [x(O) ,x(O)'] (7.3.9) 

is defined by (7.3.16). Note that since x(O) can be written in terms of u0 , u_1, ... and 

u* is a function of u1, ••• , un, it follows from the independence of the white noise 

vectors that x(O) and u* are independent. 

The covariance matrix P can be derived from the state vector representation of x(O). 

Let x(t) be defined as (cf. (7.3.3)) 

x(t): rsx 1 = 

e(t+l It) 

e(t+2 It) 

e(t+s It) 

By following the procedure described in Section 3. 5 it can be shown that 

x(t) = Fx(t-1) + Gu
1 

where 
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Al 
(7.3.12) 

A2 /,(s-1) 

F:rsxrs = 

As 0 0 0 0 

and 

G: rsxr = (7.3.13) 

A -B s s 

For a stationary process Cov[x(t),x(t)'] = Cov[x(t-1),x(t-1)'] = P and from (7.3.11) 

it follows that 

P = FPF' + GOG'. (7 .3.14) 

A closed form expression can be derived for vec(P) as follows (cf. (3.4.13) to 

(3.4.16)): 

vec(P) = vec(FPF1
) + vec(GOG') 

= F®Fvec(P) + vec(GOG') 

:. (1-F®F)vec(P) = vec(GOG') 
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and hence 

vec(P) = (l-F®F)- 1vec(GOG1) • (7.3.16) 

Likelihood function 

If it is assumed that both u* and the initial state vector x(O) have normal distributions, 

then e* has a N(O,.I;*) distribution. The observations of the experimental units are 

assumed to be independent vector variables and the likelihood function of e/, ... , eN* 

is consequently given by 

N 
L = ITf(et) 

i=l 

= II (21r) 1 I E * I -z exp - -et E * - i et N - 1 nr - 1 [ 1 , ] 

i=l 2 

and hence 

N 
-2/nL = nrNln(21r) + Nin IE* I + I; et 'r; * -1et. 

i=l 

(7.3.17) 

(7.3.18) 

From (7.2.2) and the distributional assumptions pertaining to e* it follows that y* has 
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a N(( ,E*) distribution and the likelihood function of y1 *, ... , YN * is consequently given 

by 

and hence 

N 
-2/nL = nrNln(21r) + NlnlE* I + I: (yt - ~tfE*-1(yt - ~t) . 

i=l 

(7 .3.19) 

(7.3.20) 

The discrepancy function (7. 3. 18) or (7. 3. 20) can be minimized to find maximum 

likelihood estimates of the unknown parameters. The calculation of initial estimates for 

the unknown parameters of a vector ARMA process may be difficult, depending on the 

complexity of the model. One approach that may be useful in finding initial estimates 

of the autoregressive matrices, is to regress the different variables on their own past 

values as well as on past values of the other variables. The regression coefficients can 

then be used as initial estimates for the elements of the matrices Ai, ... , AP. To find 

initial estimates for the moving average matrices Bi, ... , Bq is, however, more difficult. 

The author suggests starting with diagonal matrices, where the diagonal elements are 

obtained by considering the r variables separately as described in Section 4. 3. 

In applications where there are more variables than repeated measurements (r > n), 

parameter identification may be impossible. In some cases it may not be realistic to 

assume that the correlation structure between the r variables is generated by an ARMA 

process. In the next section it will be shown that the covariance matrix E* may be 

factored into the direct product of the covariance matrix of the time series process and 

the covariance matrix of the r variables. 
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7.4 MULTI-METHOD MULTI-TRAIT ARMA MODEL 

Browne ( 1984) proposed a covariance structure which can be used to analyze the results 

of multi-method multi-trait experiments. The nr x nr matrix of observed scores is 

decomposed as follows 

(7.4.1) 

where ET is an n x n time covariance matrix and EM is an r x r method covariance 

matrix. Interactions between time on the one hand and variables on the other hand are 

then separated into two covariance matrices which may be investigated individually. 

Let the nr x 1 observation vector y * be defined as in (7. 2. 1) and suppose that y * can be 

adequately described by the model (7.2.2). Since the elements of rare unknown fixed 

parameters of the model, the covariance matrix of y* is given by E* defined by 

expression (7. 3. 7). The matrix E* can also be written as 

E* = Cov(y* ,y*') (7.4.2) 

I C 1
) C (y 1

) Cov(yl'y1) ov(yl'y2 ••• ov pYn 

Cov(y2,y~) 
= 

where Cov(yi,Y/) is the covariance matrix of the same set of r variables measured at 

times i and j. If the assumption is made that the covariance structure of the r variables 

stays the same (up to a scaling factor) over time and the scaling factor is determined 

by a time series process, then E* can be written as 
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a11 E, a12E, ... alnE, 

a21E, a22E, ... a2nE, 
E* = 

an1E, an2E, ... annE, 

= E ®E n r 
(7.4.3) 

where Er is the covariance matrix of the r variables and En is the covariance matrix of 

the observations over time. If the assumption is made that the observations are 

generated by a stationary ARMA(p,q) process, an expression for En is given by (3.5.8). 

Maximum likelihood estimates of the unknown parameters can be obtained by 

minimizing -2/nL given by (7.3.18) or (7.3.20) depending on the model, where 

(7.4.4) 

and 

(7.4.5) 

Results (7.4.4) and (7.4.5) are given in Chapter 2 of Magnus and Neudecker (1988). 

These results lead to a considerable saving in computational effort. Instead of having 

to calculate the determinant and inverse of an nr x nr matrix E*, the problem is reduced 

to manipulating n x n and r x r matrices. 

A further advantage of the decomposition of E* is a saving in the number of parameters. 
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The number of parameters in (7. 3. 8) is r(p + q) + f r(r+ 1) which is made up of the rp 

parameters of TA, the rq parameters of TB and the 2-r(r+ 1) non-duplicate elements of 
2 

0, whereas the number of parameters in (7.4.3) is p +q+ 1 + 2-r(r+ 1) which consists of 
2 

p autoregressive coefficients, q moving average coefficients, the white noise variance 

and the 2-r(r+ 1) non-duplicate elements of :Er. 
2 

A practical application of the results obtained in this section follows. 

7.5 PRACTICAL APPLICATION 

As part of a selection process, the Szondi test (Szondi et al (1959)) was completed over 

ten successive weeks by a group of postgraduate psychology students. The respondents 

were shown six slides, each representing eight pathologies. Each respondent had to 

indicate his preference by choosing the two persons they felt most attracted to and least 

attracted to. 

The number of times each pathology was selected by the respondent, was recorded. 

These scores can be analyzed in order to make conclusions regarding aspects such as 

introversion and extroversion, the need to receive and to give love, the tendency 

towards finer and more aggressive emotions and dependence on other people. 

The complete data set consists of n = 10 repeated measurements of r = 16 

characteristics (preference for and aversion to the eight pathologies) on a sample of 111 

respondents. It was decided to fit a linear model with ARMA error terms to the 

preference scores associated with four of the pathologies. 

Let y*: 40 x 1 be given by (7. 2 .1) where the 4 x 1 vectors y i, ... , y 10 represent the 

measurements over the ten weeks for a respondent. The model describing y * is 
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y* = X*O* + e* (7.5.1) 

where 

X* = I/i!JX, (7.5.2) 

X= (7.5.3) 

and 

(7.5.4) 

The parameters ()w and 8;1 denote the intercept and slope of the i-th variable, i = 1, 

... , 4. It is assumed that the covariance matrix of y * can be decomposed into the 

Kronecker product given in (7.4.3) where the covariance matrix of the time points, En, 

is a 10 x 10 ARMA( 1, 1) structured matrix and Er is the covariance matrix of the four 

variables. 

Expression (7.3.20) was minimized, using (7.4.4) and (7.4.5), to obtain maximum 

likelihood estimates of the unknown parameters, namely the elements of () * , the ARMA 

coefficients a and /3, the white noise variance and a reparameterization of the non­

duplicate elements of Er. 

The covariance matrix Er can be factorized as follows: 

7-16 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

E = DPD 
r " " 

(7.5.5) 

where P is the correlation matrix corresponding to Er and D" is a diagonal matrix with 

the standard deviations of the variables as diagonal elements. Instead of optimizing with 

respect to the non-duplicate elements of Er, the optimization was carried out with 

respect to the diagonal elements of D" and the off-diagonal non-duplicate elements of 

P. These parameters can be constrained to ensure a positive definite Er throughout the 

optimization procedure. (An alternative reparameterization, which is also suitable, is 

given in (4.3.16).) 

The following results were obtained from the computer output: 

• The names used for the parameters are: 

• Intercepts and slopes of the four variables: 

A PARl A PAR2 

B PARl B PAR2 

C PARl C PAR2 

D PARl D PAR2 

• Diagonal elements of D 11 : 

DGAMll DGAM22 

• Correlation matrix, P: 

RHOll 

RH021 

RH031 

RH041 

RH022 

RH032 

RH042 

DGAM33 

RH033 

RH043 

DGAM44 

RH044 
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• Note that the diagonal elements are fixed parameters and therefore not estimated. 

• White noise variance: 

WHNOil 

• ARMA(l, 1) coefficients and the initial state variance: 

ARl MAl Pll; 

NUMBER OF OBSERVATIONS 111 

NUMBER OF VARIABLES 40 

NUMBER OF GROUPS 1 

NUMBER OF FREE PARAMETERS 22 

NUMBER OF FIXED PARAMETERS 4 

NUMBER OF EQUALITY CONSTRAINTS 0 

NUMBER OF ACTIVE INEQUALITY CONSTRAINTS 0 

NUMBER OF ACTIVE BOUNDS 0 

CONVERGENCE TOLERANCE FOR RESIDUAL COSINE 0.000100 

• Parameter estimates and corresponding standard errors: 

A PARl A PAR2 B PARl B PAR2 C PARl C PAR2 

ESTIM 1.77456 -0.00443 1. 71467 -0.00015 1.16070 0.02435 

S.E. 0.10579 0.01318 0.09271 0.01155 0.07702 0.00959 

D PARl D PAR2 DGAMll DGAM22 DGAM33 DGAM44 

ESTIM 0.80683 -0.01916 0.89290 0.78244 0.65008 0.56104 

S.E. 0.06647 0.00828 0.02649 0.02312 0.00000 0.01676 

RHOll RHO21 RHO22 RHO31 RHO32 RHO33 

ESTIM 1.00000 -0.20379 1.00000 -0.15073 -0.17507 1.00000 

S.E. 0.00000 0.02877 0.00000 0.02933 0.02910 0.00000 
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ESTIM 

S.E. 

ESTIM 

S.E. 

RHO41 RHO42 RHO43 

-0.11116 -0.09761 -0.10000 

0.02964 0.02973 0.02971 

MAl 

-0.60994 

0.02075 

Pll 

0.65290 

0.09798 

RHO44 

1. 00000 

0.00000 

WHNOil ARl 

1.08239 -0.95295 

0.04671 0.00957 

• The slopes of the first and second variables are not significantly different from zero, 

indicating the absence of a linear relationship over time in the preference for the first 

two pathologies. The slopes of the remaining two variables are small, (0.0245 and -

0.01916), indicating weak linear relationships over time. 

MEASURES OF FIT OF THE MODEL 

-2/nL 
• Discrepancy function : -- where N = 111: 

N 

SAMPLE DISCREPANCY FUNCTION VALUE 

POPULATION DISCREPANCY FUNCTION VALUE, Fo 

BIAS CORRECTED POINT ESTIMATE 

90 PERCENT CONFIDENCE INTERVAL 

FIT INDEX (Modified McDonald: exp(-Fo) 

POINT ESTIMATE 

90 PERCENT CONFIDENCE INTERVAL 

ROOT MEAN SQUARE ERROR OF APPROXIMATION 

Steiger-Lind: RMSEA = SQRT(Fo/DF) 

POINT ESTIMATE 

90 PERCENT CONFIDENCE INTERVAL 
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EXPECTED CROSS-VALIDATION INDEX 

POINT ESTIMATE (MODIFIED AIC) 

90 PERCENT CONFIDENCE INTERVAL 

CVI (MODIFIED AIC) FOR THE SATURATED MODEL 

• Discrepancy function value -2/nL: 

TEST STATISTIC 

EXCEEDENCE PROBABILITIES:­

Ho: PERFECT FIT (RMSEA = 0.0) 

Ho: CLOSE FIT (RMSEA .LE. 0.050) 

MULTIPLIER FOR OBTAINING TEST STATISTIC 

DEGREES OF FREEDOM= 838 

EFFECTIVE NUMBER OF PARAMETERS 22 

• Estimated correlation matrix of the four variables: 

CORRELATIONS (TESTS) 

VAR A 

VAR B 

VAR C 

VAR D 

VAR A 

1.000 

-0.204 

-0.151 

-0.111 

VAR B 

1. 000 

-0.175 

-0.098 

VAR C 

1. 000 

-0.100 

:10.494 

: ( 9.745 ;11.315) 

:15.495 

111.0 

VAR D 

1. 000 

1120.80 

0.000 

0.162 

• The correlation structure shows no strong linear relationships between the four 

variables. The four variables may therefore be analyzed separately without losing any 

information regarding possible interrelationships. 

• Estimated covariance matrix tn: 
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COVARIANCE MATRIX (OCCASIONS) 

TIMl TIM2 TIM3 TIM4 TIMS TIM6 

TIMl 1.735 

TIM2 0.993 1.803 

TIM3 0.947 1.058 1.864 

TIM4 0.902 1. 008 1.116 1. 919 

TIMS 0.860 0.960 1.063 1.169 1. 970 

TIM6 0.819 0.915 1.013 1.114 1.217 2.016 

TIM7 0.781 0. 872 0.966 1.061 1.160 1.261 

TIMS 0.744 0.831 0.920 1. 011 1.105 1.201 

TIM9 0.709 0. 792 0.877 0.964 1.053 1.145 

Til0 0.676 0.755 0.836 0.919 1.004 1.091 

TIM7 TIMS TIM9 Til0 

TIM7 2.057 

TIMS 1.300 2.095 

TIM9 1.239 1.336 2.129 

Til0 1.181 1.273 1.369 2.160 

STANDARD DEVIATIONS (OCCASIONS) 

TIMl TIM2 TIM3 TIM4 TIMS TIM6 

STD.DEV. 1.317 1.343 1.365 1.385 1.403 1.420 

TIM7 TIMS TIM9 Til0 

STD.DEV. 1.434 1.447 1. 459 1.470 

CORRELATIONS (OCCASIONS) 

TIMl TIM2 TIM3 TIM4 TIMS TIM6 

TIMl 1.000 

TIM2 0.562 1.000 

TIM3 0.526 0.577 1.000 

TIM4 0.494 0.542 0.590 1.000 

TIMS 0.465 0.510 0.555 0.601 1.000 

TIM6 0.438 0.480 0.523 0.566 0.611 1.000 
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TIM7 0.413 0.453 0.493 0.534 0.576 0.619 

TIMS 0.390 0.428 0.466 0.504 0.544 0.585 

TIM9 0.369 0.404 0.440 0.477 0.514 0.553 

Til0 0.349 0.382 0.416 0.451 0.486 0.523 

TIM7 TIMS TIM9 Til0 

TIM7 1.000 

TIMS 0.626 1.000 

TIM9 0.592 0.633 1.000 

Til0 0.560 0.599 0.638 1.000 

7.6 SUMMARY 

In repeated measurement experiments, more than one related characteristic is often 

measured at each time point. Vector ARMA models can be used to analyze the change 

in the response vector over time. 

It is shown that results applying to the scalar case can be generalized to deal with 

vectors of measurements. An expression is derived for the covariance matrix of the 

observation vector, that takes into account information regarding the process before any 

observations were made. The likelihood function of the observations are given under 

the assumption that the white noise terms are independent multivariate normal vector 

variates. 

It is shown that there are practical situations where the covariance matrix of the 

observations can be decomposed into a Kronecker product of the covariance matrix of 

the variables and the covariance matrix of the observations over time. Conclusions can 

then be drawn regarding the relationships between the variables on the one hand and 

a possible common pattern relating to change over time on the other hand. A practical 

application involving psychometric test results is given. 
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CHAPTER 8 SUGGESTIONS FOR FURTHER RESEARCH 

Various estimation techniques are considered for the parameters of random parameter 

regression models with error terms which are generated by a t1me series process. A 

detailed comparison of these techniques, using observed data, can be done to establish 

their strengths and weaknesses. 

The multivariate normal distribution was used throughout this dissertation as a 

probability model for the parameters of the regression model, as well as for the 

transformed ARMA coefficients. These results can be extended to other probability 

models, such as other members of the elliptical class. 

The multivariate t-distribution was found to be an adequate probability model when the 

kurtosis of the variables under consideration is greater than that of a normal 

distribution. A suitable distribution has to be obtained to serve as probability model in 

the case of negative kurtosis. 

In many practical applications a series of observations are influenced by other factors, 

such as economic growth, resulting in a change in the ARMA coefficients over time. 

It might therefore be interesting to investigate models where the ARMA coefficients can 

be expressed as linear or non-linear functions over time. 

The implementation of the Gibbs sampler in situations where the full conditional 

distributions are not standard distributions can be investigated further. This will include 

the development of conceptually simple algorithms for sampling from non-standard 

multivariate distributions. 

The vector ARMA process with fixed transition matrices was considered. As in the 

scalar case, it might be reasonable to assume that these transition matrices can vary 

over the experimental units and should therefore be regarded as stochastic. 
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