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Notation 

The following notation shall be adopted: 

7r 

e 

exp(x) 

ln x 

bii 

A: (p X q) 

a: (p X 1) 

a 

A' 
a' 

aij or [A]ij 
ai or [a]i1 
A-1 

IAI 
tr[A] 
Da 

Dia.g[A] 

dia.g [A] 
vec[A] 

vecs[A] 

0 

0 or OP 

J or Jp 

I or Ip 

Jij 

constant, ii= 3.14159 ... 

Euler's constant, e = 2. 71828 ... 

ex, - X < X < 00 

natural logarithm of the real number x, x ~ 0 

Kronecker's delta (1 if i = j and O if i # j) 

matrix of order p x q 

column vector of order p x 1 

scalar 

transpose of A 

transpose of a ( a row vector) 

the element in the i-th row and j-th column of A 

the i-th element of a 

inverse of A 

[A- 1]ij 

determinant of A 

trace of A 

diagonal matrix with diagonal elements a11 , a22 , • • • 

diagonal matrix formed from the diagonal elements 

of A 

columnvector formed from the diagonal elements of A 

(pq x 1) vector formed from the q columns of the 

p x q matrix A 

(p(p + 1)/2 x 1) vector formed from the nonduplicated 

elements of the (p x p) symmetric matrix A 

null matrix, [O]ij = 0 

(p x 1) null vector, [O]ii = 0 

(p x 1) vector with unit elements, [j]ii = 1 

(p x p) identity matrix 

matrix with all clements equal to zero 

with the exception of the element in the i-th 

row and j-th column which is equal to unity 

V 
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aA 
8x 

aa 
ox 

of(x) 
ax 

a2 J(x) 
8x8x' 

E(y): (p X 1) 

Cov(y, y') : (p x p) 

Cov(Y): (Np x 1Yp) 

column vector with all elements equal to zero 

with the exception of the i-th element which 

is equal to unity 

The right direct product or "Kronecker 

product " of matrices A and B defined by: 

a11B a12B a1qB 

a21B a22B a2qB 

matrix with typical element 0
;;1 

column vector with typical element 8~lil 

column vector with typical element U~t} 

symmetric matrix with typical element 
82 ! x) 

OXi10Xj1 

expected value of the random vector y with 

typical element E(yi) 

covariance matrix of the random vector y 

with typical element E[yi - E(yi)] [y1 - E(yj)] 

covariance matrix of Vec(Y) with Y: (N x p) 

VI 
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CHAPTER 1 

1 Introduction 

Multilevel modelling has a wide application in the social sciences. The term multilevel refers 

to a hierarchical relationship among units in a system. In an education system, for example, 

students are members of classes, and classes are grouped within schools. vVe regard students as 

level 1 units, classes as level 2 units and schools as level 3 units. 

Multilevel analysis _allows characteristics of each group (for example the students of a specific 

class of a specific school) to be incorporated into models of individual behaviour, while also pro­

ducing correct estimates of standard errors so that valid tests and intervals can be constructed. 

In Chapter 2 general multilevel theory is discussed (Du Toit, 1993). The fixed parameter lin­

ear regression model is extended to a random parameter linear regression model. A general 

expression for the two-level model is obtained and extended to the general three-level model. 

Estimation procedures for the unknown parameters are discussed, in particular the method of 

iterative generalized least squares. The multilevel logit model is illustrated with an example. 

In this example use was made of the ML3 package (Prosser, Rashbash and Goldstein, 1989 and 

1990). A description of this package is given in Appendix A2 and the specific program used is 

given in Appendix A3. A SAS program, also implemented in this example, is given in Appendix 

Al. 

Chapter 3 deals with models for analysing data with an ordinal response variable. The logit, 

cumulative logit and ~IcCullagh's proportional odds model are discussed (Du Tait and Lamp­

brecht, 1984; McCullagh, 1980). These models are illustrated with a practical application. 

The theory of Chapter 2 and 3 are combined in Chapter 4. The three models for analysing 

data with an ordinal dependent variable are described in the context of multilevel theory. The 

emphasis is on the iterative procedure used to obtain estimates of the unknown parameters. 

This procedure used in this new modelling approach is illustrated with an example. 

In Chapter 5 conclusions are drawn and suggestions for further research are made. 

The theory discussed in Chapter :3 and 4 has been implemented in SAS computer programs. 

These programs are given in Appendix B and C. 

Throughout the study use was made of a dataset obtained by the Human Sciences Research 

Council. This dataset was obtained through a project with the the title "The prospects for a 

free, democratic election'' (De l\ock, 1993). 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

CHAPTER 2 

2 Multilevel Theory 

2.1 Fixed parameter linear regression models 

Consider a sample of N scholars which were taken from various schools. Suppose the relation­

ship between a scholar's number series ability ( x) and midyear mathematics score (y) is to be 

investigated. This relationship for scholar i is usually described by the model 

i=l,2,··•,N (2.1.1) 

For the total of N scholars (2.1.1) can be written in matrix notation as 

y = X{3 + e 

that is 
YI 1 X1 e1 

Y2 1 X2 
[ ;; ] + 

e2 

YN 1 XN eN 

It is usually assumed that E(e) = 0 and Cov(e,e') = a 2IN. Under this assumption the fixed 

parameters, {30 and ,:31 , are estimated using ordinary least squares ( 0 LS) estimation. The O LS 

estimate /3 of {3 is given by 

with 

2.2 Repeated measurement fixed parameter models 

Suppose that each experimental unit i has n responses. The j-th response for experimental unit 

i can adequately be described by the following linear regression model 

2 

i = 1,2,·· ·, N 

j=l,2,···,n (:2.~.l) 
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An example of the model (2.2.1) is 

x;/3 f3o + f31tj + f32tJ 

Xj (1,tj,tJ)' 

The set of regression equations (2.2.1) for experimental unit i can also be written in matrix 

notation as 

Yi= X/3 + ei , i = 1, 2, · · ·, N (2.2.2) 

The j-th row of then x m design matrix Xis the 1 x m row vector x;. It is further assumed that 

the vectors of error variates ei , i = 1, 2, · · ·, N are identically and independently distributed 

with 

Different assumptions about the structure of :E lead to the use of different estimators of the 

unknown parameters {3. Different estimators are obtained under the following conditions 

The ordinary least squares estimate f3oLs of /3 is 

(2.2.3) 

with 

(ii) :E known 

Under the assumption of multivariate normality the maximum likelihood estimator /3M L of {3 

is obtained, that is 

(2.2.4) 

(iii) :E unknown and no structure imposed on the elements of :E 

In this case :Eis replaced in (2.2A) by its unbiased estimator S, where 
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and the generalized lea.st squares estimator f3cLs of {3 is obtained, that is 

(iv) :E = :E( 1 ), where :E(,) is a structured matrix, for example 

[:E]k,k = a 2 

[:E]k,t = p 

,k = 1,2,·· •,n 

,k :/ f 

(2.2 . .5) 

(2.2.6) 

Now 1 = ( a 2 , p )'. The maximum likelihood estimates of {3 and , are obtained as the solution 

of the likelihood equations 

ofnL 
--=0 

8{3 

8fnL 
--=0' 8, 

,vhere L denotes the appropriate likelihood function of y 1 , y 2 , · · ·, y N · In general, closed form 

solutions to the likelihood equations cannot be obtained. In this case an iterative procedure is 

used. 

2.3 Random parameter repeated measurements models 

Suppose that for model (2.2.2) it is more realistic to assume that the regression coefficients {3 

vary from one experimental unit to another. A way to accommodate for this assumption. is 

to regard the unknown regression parameters as random variables. Thus redefining (2.2.2) the 

model 

(2.3.1) 

is obtained for experimental unit i. Xis (n x m) , E(bi) = {3 and Cov(bi , b~) = 'P. It is usually 

assumed that b1, b2. · · ·, bN arc a random sample from a multivariate normal distribution and 

that e 1,e2 ,···,eN are an indepe11dP11t random sample from a N(0,A) distribution. 

4 
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Under the above assumptions, Y1 ,Y2 , · · · ,YN is a row of independently and identically dis­

tributed N(X/3, X4>X' + A) variables. 

The likelihood function of y 1 ,y2 , • · · ,YN can be written as (Browne, 1991): 

(2.3.2) 

where 

:E=X4>X'+A 

and 

G = (N ~ l)S + (y - XJ3)(y - X/3)'' 

with y = Jv :Eyi and S defined by (2.2.5). 

Suppose that 

and therefore that 

Let 

It was shown (see e.g. Browne and du Toit, 1992) that 

( 2.3.3) 

where P = :E-1(G - :E):E-1 

and R = (y - X/3 )':E- 1 . From expression (2.;t3) maximum likelihood (i\IL) estimators of 

/3, 4> and a 2 can be obtained. 

Let 

and 
W=(N-1)S 

N 
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It then follows that these maximum likelihood estimators are 

j3 (X'X)-1 X'y 

i (X'x)- 1 X'(W - a 2 I)X(X'x)- 1 

a-2 ( n - m )- 1 tr[(I - Q)(W + yy')] 

2.4 Marginal maximum likelihood and the E-M algorithm 

Suppose that the experimental units in (2.3.1) do not have an equal number of responses. That 

is, experimental unit i has ni responses. 

The assumption of an unequal number of measurements for each experimental unit is incorpo­

rated in the random parameter regressions model by allowing for different design matrices for 

different individuals. Let 

where Xi is a ni x m, design matrix and where it is assumed that 

£(bi) 

E(ei) 

Cov(bi, eD 

{3, Cov(bi, bD = 4> 

0, Cov(ei,eD = Ai 

0 

(2.-!.1) 

(2.-!.2) 

(2.-!.3) 

(2.-!.4) 

Denote the ni X ni covariance matrix of Yi by :Ei , then it follows from (2.4.2) to (2.4.4) that 

If E(yi) is denoted by li~ then 

If, as in the previous section, we assume that bi is multivariate normal and that e1 • e2, • • •. eN 

are a row of independently distributed normal random deviates, then 

N 

L(y1,Y2,··· .yx) = l1(:br)-n•l2 l:Ed-½ exp 
i=I 
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From (2.4.5) it further follows (with the constant terms fn21r omitted) that: 

l N l N 
fnL = -- L fnl:Eil - - I::(tr:E;1 Gi), 

2 
i=l 

2 
i=l 

where 

Extending the results of Browne and Du Tait (1992) it follows that 

(2.4.6) 

where 

:E:-l(G· _ :E·):E:-1 
i i i i 

(Yi - ()':E;-1 

and where if. denotes a typical element of the ( k x 1) vector of unknown elements. 

Usually it assumed that there is a parameter vector, say ( r ), common to A 1 , A 2 , · • • , AN. That 

IS 

To obtain ML estimates of /3, ~ and r an iterative procedure is required. A modified version 

of the computer program AUFIT (see Du Tait & Browne, 1982)) was written by du Tait (1991) 

to obtain these estimates. This estimation procedure involves the inversion of ni X ni matrices. 

For large values of ni, the iterative procedure may become very time consuming. An alternative 

method for obtaining ).IL estimates was suggested by Bock ( 1990). This method is called the 

marginal maximum likelihood (Ml\lL) method. This method is briefly as follows 

Denote the conditional density of bi given Yi by p(hlYi) The following expressions are obtajned 

(2.-L7) 

and 

(2.-L8) 

It is assumed that Ai= a 2Inj• Expressions for the MML estimations a.re obtained as 

~ l N 

{3 = N ~ E(blyi). 
i=l 

( :2.-1.9) 

7 
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N 

4> = ~ ~ {Cov (blyi) + (Eh!Yi - ,B)(EhlYi - ,8)'} 
1', i=l 

(2.4.10) 

and 

N -l N 

(~ n;) ~ [(y; - X;Ebly;)'(y; - X;Ebly;) 

+trX~Xi Cov (blyi)] (2.4.11) 

All these expressions depend on E(blyi) and Cov(hlYi) By initially setting, for example, a 2 = 
1,,B = 0 and q, = 0~ initial estimates of E(blyi) and Cov(hlYi) may be obtained from (2.4.7) 

and (2.4.8). These estimates may then be used in (2.4.9), (2.4.10) and (2.4.11) to solve for ,L3 , 

41> and fr 2 respectively. These new values are then substituted into (2.4.7) and (2.4.8) and the 

procedure repeated until convergence is attained. This optimization algorithm is called expected 

maximization (EM-algorithm). Close approximations to the marginal maximum likelihood es­

timates of the parameters are obtained. 

2.5 Two-level Models 

Suppose that from JY schools each data have been collected.That is, from each school ni ( i = 
1, 2, • • •, N) scholars were included in the sample. The relationship between a scholar's number 

series ability (x) and midyear mathematics score (y) is to be investigated. For school i, a linear 

relationship between these variables can be written as follows 

Yij = boi + b1iXij + eij i = 1, · · ·, N j = 1, · · · , ni. (2.5.1) 

In (2.5.1) Yij and ;i,·ij are the midyear mathematics and number series ability scores, respectiwly, 

for student j in school i. The intercept (boi) and the gradient (b1i) varies between schools. 

Scholars are regarded as level 1 units, and schools as level 2 units. 

Goldstein and McDonald ( 1988), boi and b1i can be expressed as 

boi = f3o + uoi 

bii = /31 + U1i 

Using the notation of 

( 2.5.2) 

and are therefore random variables at level 2 ( school level). In matrix notation (2.5.1) for school 

i becomes 

8 
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that is 
Yil 1 Xil EiI 

Yi2 1 Xi2 
[ bo; ] + Ei2 

b1i 

Yinj 1 Xini Eini 

The following assumptions are made: 

( a) X; and /3 = [ !: ] are non-random 

(b) ei has expected value O and covariance matrix o-2Inj 

( c) Ui = [ Uoi ] has expected value O and covariance matrix <P 
U1i 

( d) Cov ( ei, uD = 0 

Multivariate normality is usually assumed for ei and Ui. 

To include certain characteristics of the schools, (2.5.2) can be extended. Suppose Zi is the 

percentage of scholars in school i whose parents are classified as having a high socio-economic 

status according to some definition. Now 

and in matrix notation 

boi = /3o + ,01 Zi + uoi 

bi = (3 + '"fZi + Ui with , = [ ' 01 
] 

,11 

In general if measurements were made on ( m - 1) explanatory variables x 1 ~ • · ·, Xm-l (number 

series ability, pattern completion ability etc.) and on q level 2 related variables ZiI, • • •, Ziq 

where 

(3 is an (m x 1) vector 

r is an (m x q) matrix of fixed unknown coefiicicllts 

Zi is a ( q x 1) vector of level 2 variahlt>s 

Ui is an ( 1n x 1) random vector with llH',UI O and covariance matrix <P 

( 2.5.4) 
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If (2.5.3) and (2.5.4) are combined then 

All the unknown fixed parameters of (2.5.5) can be combined into a single vector 

Now (2.5.5) can be written as 

,01 

,02 

10q 

f3m-1 
im-1,1 

im-1,2 

im-1,q 

(2.5.5) 

where Zi is an m x ( m + mq) between-unit design matrix. The above model can again be 

rewritten as 

(2.5.6) 

,vhere X( 2) denotes the matrix of explanatory variables whose coefficients are random at level 

2, X(l) denotes the matrix of explanatory variables whose coefficients are random at level 1 and 

Wi = XiZi. Expression (2.5.6) is a general expression for the two-level model which allows for 

a complex level 1 covariance structure. Under the general assumptions given it follows that 

where 

IO 
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2.6 Maximum likelihood estimation 

The general two-level model is given as 

Denote the expected value and covariance matrix of Yi by ei and ::Ei, respectively. The log­

likelihood function of y 1 , y 2 , · · ·, YN may then be expressed as 

Maximum normal likelihood estimates of the unknown parameters are obtained by minimizing 

-2fnL with the constant term omitted yielding the discrepancy function 

N 

F( 1 ) = L { fnl:Eil + tr:E; 1Gy;}, 
i=I 

where 

Its minimum 8
~~,) = 0 yields the normal maximum likelihood estimator i' of the unknown 

vector of parameters , . 

If the model does not yield maximum likelihood estimates in closed form, it will be necessary 

to make use of an iterative procedure to minimize the discrepancy function. An optimization 

method based on the so-called Fischer scoring algorithm was developed by Browne and du Toit 

(1992). Fisher scoring algorithms require the gradient vector of the discrepancy function and use 

of the information matrix as an approximation to the Hessian matrix. Elements of the gradient 

vector, g(,), and approximate Hessian matrix H(,) of ½F(,) are given by 

where 

Let 

thr-11 

11 
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Suppose that ik is the k-th approximation to the i' which minimizes F(,). Let 

The next approximation is obtained from 

where 

and Ok is a step size parameter chosen initially as 1 and then successively halved until Fk+ 1 ~ Fk, 

It was pointed out by Agresti (1990) that the Fisher scoring method resembles the Newton­

Raphson method, the distinction being that Fisher scoring uses the expected value of the second 

derivative matrix. 

2. 7 Iterative generalized least squares 

For convenience the general two-level model is written as 

(2.i'.l) 

where f3 is a vector of fixed coefficients and e-; is a vector of variables random at level one or 

two of the hierarchy. The matrices Xi and Zi are the design matrices for the fixed and random 

variables in the model respectively. 

Model (2. 7.1) can be written in the form of model (2.5.6) if wi = Xi;,* = {3; [X(2)i x{l)d = zi 

alld ( 
lli ) = ef. 
ei 

It is assumed that u1 , · · · UJV are a random sample of a N( 0, 4>(2)) random variable. and 

e1 , · · ·, eN are an independent random sample of a N(O, 4>{1)) random variable. Under these 

assumptions the distribution of Yi is described, that is 

and 

12 
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If Vi is assumed to be known, the generalized least squares (GLS) estimate {3 of {3 is obtained 

as the minimum of the quadratic function 

N 

L(Yi - Xi/3)'v;1(yi - Xi/3) 
i=l 

and at the minimum 

(2.7.2) 

The unknown parameters in Vi is the non-duplicated elements of the symmetric matrices 4)(I) 

and 4)(2). These elements are combined in the vector r that is 

It is thus necessary to find the G LS estimator f of r . 

Now let 

V = Diag[V1, V2, · · ·, V N], 

X: (f n; X m) 
i=l 

and 

Y: (f n; X 1) 
i=l 

YI 

Y2 

YN 

(2. ,.3) 

(2.i.4) 

(2.7 .. 5) 

Under the assumption that the y/s arc independently multivariate normal, it follows that 

y "V N(X/3, V) 

Suppose further that /3 is known and let 

13 
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Y* = (y - X/3)(y - X/3)', (2.7.6) 

then 

EY*=V 

Note that X/3 and V are respectively the mean vector and covariance matrix of y if the general 

model (2.7.1) is true. Denote the true mean vector and covariance matrix of y by { and E 

respectively. An estimate of E(Y*) is the maximum likelihood estimator t of E and hence 

W = Cov(:E) is obtained from 

where 
N ( _1 8E _1 {)E ) 

[H]ij,rs = -tr E -
0 

.. E -
0 2 CliJ Clrs 

(Brown, 1991) (2.7.7) 

Let y* = vecsY* then an estimate of E(y*) is the ML estimator vecs t of vecs E, where E 

denotes the true population covariance matrix. 

Using (cf Browne, 1991) the results J};, = Jij + (1-bij)Jji and tr[AJijBJrs] = [A]si[B]jr as 

well as (2. 7. 7), it follows that 

[w*-1].. _ (2 - bij )(2 - brs )N ( ir js + is jr) 
iJ rs - a a a a , 

' 4 

where W* denotes the covariance matrix of vecs t. 

Using this result, it can be shown (Du Tait, 1992) that 

W*- 1 = N G'(E-1 ® E-1 )G 
2 

where G is defined by result 2 from Browne (1974). 

The following three results from Browne (1974) are applied: 

l. vecCAC' = C & CvecA 

2. There is a unique matrix G : p2 
X ½P(P + 1) such that 

vccA = G vecsA, 

with A a symmetric p X p matrix. 

(2.7.8) 
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3. There is a non-unique matrix H : ½P(P + 1) x p2 such that 

vecsA = H vecA 

From result ( 1) 

Applying result (3) 

vecsVi 

Applying result (2) to vec4>(2) and vec4>(i) 

If 

then 

Let 

vecsVi H(X(2)i 0 X(2)i)Gmvecs4>(2) 

+ H(X(l)i 0 X(l)i)Grvecs<P(i) 

vecsVi = Xfr 

X*= 

X* 1 

X* 2 

X* N 

The G LS estimator f of T may be obtained as the minimum of the quadratic function 

(y* - X*r)'W*-
1 
(y* - X*r), 

and hence 

In practice :Eis unknown and is replaced in (2.7.8) by V = V(f). 

Note that f can be evaluated from the alternative expression 

15 

(2.7.9) 

(2.'i.10) 
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where 
-1 1 1 1 w~ = -G'(v:- 0 v:- )G 

i 2 i i 

and 

When estimating (3 according to (2.7.2) it is assumed that V is known. When estimating f 

according to (2. 7.10) it is assumed that W* is a consistent estimator of Cov(Y*, Y*
1

) and that 

{3 is known, since {3 is required to evaluate Y* according to (2. 7.6). 

The following iterative procedure is used to obtain values of (3 and f. 

1. Set Vi = I in (2.i.2) 

2. Obtain an estimate (3 of {3 

3. Calculate W* according to (2. 7.8), with :E replaced by V 

4. Estimate fusing (2.7.10) and obtain a revised estimate V = V(f) using (2.7.9) 

5. Repeat steps (2) to (4) until convergence is obtained, for example lfk+1 -fkl < e:; 1(3k+1 -

(3kl < e:, with Ek= 10-6 , where Ek denotes a typical element of e:. 

The algorithm described above (see e.g. Goldstein 1986) is known as iterative generalized least 

squares. 

It can be shown (see e.g. Brown and du Toit, 1992 or Goldstein 1986) that under the assumption 

of multivariate normality, the iterative generalized least squares estimates are equivalent to the 

maximum likelihood estimates of the corresponding unknown parameters (3 and f. 

2.8 Restricted maximum likelihood estimation 

In Section 2.6 and 2., methods were discussed for the estimation of {3 and T in the model 

y = X{3 + e 

where 

e= 

l(j 
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and Cov(e,e') = V(r). 
V, X and y are defined by (2.7.3), (2.7.4) and (2.7..5) respectively, and /3 is a (m x 1) vector. 

/3 can also be written as 

(2.8.1) 

It follows that 

and therefore from conditional multivariate normal results, 

(2.8.2) 

One criticism of the 111 approach to the estimation of r (Harville, 1977) is that the ML estimator 

takes no account of the loss in degrees of freedom that results from estimating {3. In the restricted 

maximum likelihood approach (REML ), inferences for r are based on the likelihood function 

associated with N* - m linearly independent error contrasts rather than on that associated with 

the full ( N* X 1) data vector y, N* = Lf:1 ni. 

It can be shown that the log-likelihood function in this case with constant terms omitted is 

1 1 1 1 A 1 A 

- -CnlVI - -inlX'v- XI - -(y - X{3)'v- (y - X/3) 
2 2 2 

Since ( cf (2.8.2)) 

Goldstein (1989) suggested that an updated estimate of V may be obtained if (y - X{3)(y -

X/3)' + X(X'v- 1x)- 1X' is used, based on the current value of V; the term X(X'v- 1x)- 1X' 

can be regarded as a bias correction term. 

Since maximizing the log likelihood is equivalent to minimizing -2(log likelihood), we use 

Tlw function to be minimized in REML is ( cf Section 2.6) the l\lL function to be minimized 

plus fnlX'v- 1 Xj. 

17 
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Goldstein (1989) showed that REML estimation is equivalent to iterative generalized least 

squares if the term Y* (cf (2.7.6)) is replaced by 

Let S = (y - X(3 )(y - X(3 )' then S* = S + X(X'v- 1 X)- 1 X' and ( cf (2.8.2)) E(S*) = V. 

2.9 Extension to three-level models 

The theory for two-level models can be extended to include a third level. If, for example area 

in which the schools are situated is also recorded, areas are level 3 units. Now (2.5.3) becomes 

for area k, school i 

where 

i = 1,2,··•,N;k = 1,2,···,K;j = 1,2,···,nik 

Yik = 

Yikl 

Yik2 

(2.9.1) 

is an nik X m design matrix for the ( ik )-th unit. The coefficients of the m x 1 vector bik 

are considered to be random varying accross the level 2 and level 3 units. Again (2.9.1) can 

be written in an alternative form after expressing bik in terms of fixed parameters as well as 

coefficients that are random, varying across the level 3 units. 

2.10 Hypothesis testing 

A complex hypothesis about several elements of,* in (2.5.6) can be formulated. l\fake use of 

a p X f contrast matrix C with p the number of contrasts and f. = m + mq. The hypothesis is 

written in the form 

C,* = k 

where k is a p X I vector (usually k = 0). Now 

w lwrc 

Yi xizi,* + x(2)illi + Xp)iei 

Wn* + Riri 
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Using column stacking the models for N level 2 units (schools) can be combined. 

y=W,*+Rr 

where 
YI W1 R1 

Y2 W2 R2 
y= ,W= ,R= and r = 

YN, WN, RN 

Suppose i'* is the estimator of,* and V the estimator of V. It can be shown that 

Cov(i'*,i'*
1

) = (W'V- 1W)- 1 

where 

and 

For large samples C-y""" will have an approximate normal distribution with 

E( Ci'*) = C,* 

and 

If the hypothesis C,""" = k is true 

has an approximate \ 2-distribution with p degrees of freedom. A set of 100( 1-a )% simultaneous 

confidence intervals for the p elements of C,* is given by the p intervals 

where p ~ f and Ci denotes the i-th row of C, and Xi,a is the critical value of the x2 distribution 

with f degrees of freedom. 

2 .11 Multilevel lo git models 

Sl'rious inferential errors are oftl'n made if sample aspects such as clustering and stratification 

arc ignored and data treated as if obtained from a simple random sampling scheme. Multi!Pvel 

modelling can b<:' used to take account of these sampling aspl•rts if they are present. 

19 
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Suppose that in cluster i ( i = 1, 2, · · ·, N) there are ni individuals ( e.g. children in a school). 

Each of these individuals belong to a certain category j (j = l, · · ·, C) ( e.g. children in a certain 

class). Let nii be the number of individuals in cluster i, category j ( e.g. the number of children 

in school i, class j). Clusters are level 2 units and categories are level 1 units. 

The proportions ~ can be modelled to study variation across the clusters. A different variable 

is modelled instead. Let Pii be the proportion of individuals in cluster i, category j which 

answers "a" to a certain "a/b" (dichotomous) question. Let 

Note that the C proportions, Pi I, Pi2, · · · , Pie need not sum to 1 and that cluster i need not 

contain all C categories. 

The following are goals in the analysis: 

( a) Estimate the overall proportions of" a-answers" in each category. 

(b) Estimate the variation in the 'lrij 's across clusters. If this variation is large determine 

whether it could be accounted for by using cluster level covariates. 

The distribution of raw proportions can be problematic, particularly when the extremes of 0 

and 1 occur. The proportions are therefore transformed by using the logit (log( odds)): 

Yii log i __EiL_ } }-plJ 

l mj, } 
og njJ-mij 

i=l,··•,N j=l,···,C 

where 7nij = number of ·~a-answers" in cluster i, category j. 

To ensure the correct application of the logit let 

1nij = 0, 25 if 1nij = 0 

and 

11lij = Uij - 0, 25 if 1nij = 1lij 

The simplest model to fit is the variance components model. For cluster i: 

YiI = bio+ ,1 
Yi2 = bio 

Yic = bio 

In matrix notation 

20 
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where 
1 1'1 eil 

1 1'2 €i2 
j:Cxl= ,= ei = 

1 IC eic 

1 0 0 7ri7i' 
0 1 0 

Xi= le Di: C X C = foi'i (2.11.2) 

0 1 
,;n;;. 

It is assumed that bio = Uio 

where E(uio) = u 0 and Var(Uio) = a;. It is also assumed that e1, · · · ,eN is a random sample 

of e, which has mean zero and covariance matrix D (72. It follows that 
J 

Goal (b) is achieved by estimating the level 2 variance a;. This estimate, a;, gives an indication 

of the degree to which the population category proportions vary across clusters. Goal (a) is 

achieved by estimating the overall proportions of" a-answers" in each category. These estimates 

are ii, i2, ···,'Ye· In the case of a large value for a;, a more complex model can be fitted. If 

socio-economic status is to be incorporated in the model, this is done by extending (2.11.2) to 

where Zi is an indicator variable for socio-economic status (high,low etc.). Expression (2.11.1) 

can be written in the form of (2.5.6) with 

Example 

Between March and May 1993 a country,vide survey was conducted by the HSRC among 8 

366 adult black South Africans, including those in Venda and Ciskei. The title of this project 

was "The prospects for a free, democratic election" (De Kock, 199:3). The specific categorical 

response used for a practical application is: 

Are you going to take part in the forthcoming election for an i11tcrim government Ill South 

Africa? 

ThP question (VOTE) has two possible outcomes 11amely, 
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1. yes, or 

2. no 

This is a typical situation where the multilevel analysis approach can be applied to fit a logit 

model. Persons are clustered according to the cross-classification of language group, gender and 

education level. There are four language groups (LANG) namely, 

1. Xhosa 

2. N .Sotho + Swazi 

3. S.Sotho, N debele, Tsonga and others 

4. Zulu 

There are two gender groups (GENDER) namely, 

1. Male 

2. Female 

There are four education level groups (EDUC) namely, 

1. No education 

2. Gr. 1-Gr. 7 

3. Std. 6-Std. 9 

4. Std. 10 + 

All together a maximum of 4 x 2 x 4 = 32 clusters ( CL US) could be formed. Only 28 clusters 

are formed due to the fact that certain cross-classifications do not exist in this sample. 

Within each cluster, five categories (CAT) are formed. These five categories are the five possible 

outcomes to the question (DAYS): 

·would you prefer the coming electiou to take place on a single day or over two or more days? 

The five possibles ou tcomcs are: 

1. One day 

2. Two to three days 
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3. Four to five days 

4. Six to seven days 

5. More than seven days 

The two goals in the analysis are: 

( a) Estimate the overall proportions of "yes-answers" in each category. 

(b) Estimate the variation across clusters. 

The analysis was done according to the following steps: 

Step 1 

A dataset was created ,vith the necessary variables in SAS. This program ,vith a description is 

found in Appendix A 1. 

Step 2 

The ML3 package was used for the analysis. A description of this package is found in Appendix 

A2. The specific ML3 program used for this example is found in Appendix A3. 

The following output is obtained from the ML3 program 

rand 

PARAMETER 

PARAMETER 

CONS /CONS 

PARAMETER 

RP1 /RP1 

RP2 

RP3 

RP4 

RPS 

fixe 

/RP2 

/RP3 

/RP4 

/RPS 

PARAMETER 

LEVEL 3 

ESTIMATE S. ERROR 

LEVEL 2 

ESTIMATE 

0.3969 

S. ERROR 

0 .1166 

LEVEL 1 

ESTIMATE s. ERROR 

5 .163 1.587 

4.59 1.718 

7.011 2.215 

16.75 4.805 

7.462 2.813 

ESTIMATE S. ERROR 

PREV. ESTIMATE 

PREV. ESTIMATE 

0.3972 

PREV. ESTIMATE 

5.163 

4.574 

6.981 

16.8 

7.494 

PREV. ESTIMATE 

NCONV 

NCONV 

2 

NCONV 

3 

1 

1 

3 

1 
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FP1 
FP2 
FP3 
FP4 
FP5 

0.7003 

1.21 

1.676 

1.854 

1.696 

0.1468 

0.1337 

0.1434 

0.1705 

0.1343 

0.7004 

1.21 

1.676 

1.854 

1.696 

Goal (b) is achieved. From the output obtained after specifying the RAND command the 

estimate of the level 2 variance, a;, is a; = 0.3969. The estimated standard error is 0.1166. 

Convergence was achieved at the second iteration (NCONV = 2). The 9.5% confidence interval 

for this estimate is 

(0.1637 ; 0.6301) 

There is significant variation in category proportions of "yes-answers" (voters) among clusters. 

A more complex model may be fitted to the data to account for this variation. 

The level 1 estimates are not interpreted. 

Goal ( a) is achieved. The estimates of the overall logarithms of the odds of voting in each 

category of DAYS are obtained from the output after specification of the FIXE command. 

Recall that in section 1. 10 the odds are defined as 

where mij = number of'' a-answers" (voters) in cluster i, category j and nij = total number of 

people in cluster i, category j. 

The estimates and their respective confidence intervals are 

Estimate 

1'1 = 0.7003 

1'2 = 1.21 

1'3 = 1.676 

1'4 = 1.854 

i's = 1.696 

95% confidence interval 

(0.4067 ; 0.9939) 

(0.9426 ; 1.4774) 

(1.3892 ; 1.9628) 

(1.513 ; 2.195) 

( 1.427 4 ; 1.9646) 

These estimates are all significant. For interpretation purposes the antilog of these estimates 

are calculated. That is, the odds of answering "yes" (to votP) if in category (1) (one day) of 

DAYS is 

ci-1 = 2.014:36 

ThP odds for all categories of DAYS are given below. 
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DAYS category Odds 

(1) One day 2.0144 

(2) two-three days 3.353.5 

(3) four-five days 5.3441 

(4) six-seven days 6.3853 

(5) more than seven days 5.4521 

The odds of voting increases with the number of days wanted for election. 

A specific odds ratio can now be calculated, for instance the odds ratio of DAYS category ( 4) 

to DAYS category (1). That is 

Odds ratio = 6
·
3853 = 3.1699 

2.01436 

The odds of voting if in DAYS category ( 4) ( election must take place over six to seven days) is 

thrice the odds of voting if in DAYS category ( 1) ( election must take place in one day). Other 

relevant odds ratios can also be obtained. 

As an example of hypothesis testing consider the following: 

The FTES command is used to test the hypothesis 

1'1 - 1'4 = 0 

The ML3 statements and output are as follows: 

retr voting.ws 

inpu c30 

1 0 0 -1 0 0 

ftes c30 

CONTRASTS 

FP1 

FP2 

FP3 

FP4 

FPS 

result 

chi square ( 1 df) 

+/-951/. c.i.(sep.) 

+/-951/. c.i.(sim.) 

1.00 

0.00 

0.00 

-1. 00 

0.00 

-1.15 

62.00 

0.29 

0.49 
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chi sq for simultaneous contrasts(5 df) 62.00 

stop 

The above output is used to obtain a 95% simultaneous confidence interval for this contrast 

which is 

(-1.15 - 0.49 ,; -1.15 + 0.49) 

(-1.64; -0.66) 

The value -1. 15 is obtained as f 1 - f 4 • Since the above interval does not contain zero, the null 

hypothesis is rejected. Since the above interval does not contain zero, The overall proportion of 

voters in category 1 ( one day election) is significantly lower than the overall proportion of voters 

in category 4 ( six to seven days for the election). 

2.12 Summary 

This chapter deals with the theoretical aspects of multilevel models. The main concept is the 

extention of the familiar fixed parameter linear regression model to the random parameter linear 

regression model. Various approaches for the estimation of unknown parameters are discussed. 

The important estimation method is that of iterative generalized least squares. This method 

will be applied in modelling discussed further on. It is evident from this chapter that multilevel 

modelling is a powerful modelling approach. For further reading and examples see Bock (1989), 

Goldstein (1987 and 1991) and Wiggens (1990). 
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CHAPTER 3 

3 Models for analysing data with an ordinal dependent vari­

able 

3.1 The sampling distribution 

An entire set of explanatory variables can be cross-classified to form a set of r subpopulations. 

Similarly the cross-classification of a set of c response variables gives a set of c response levels. 

Thus, regardless of the number of underlying variables, the multidimensional contingency table 

can be represented as a two-dimensional array representing the cross-classification of the response 

levels with the subpopulations. Table 3.1 illustrates the allocation of a sample of size n to the 

re cells. 

Table 3.1 

Response level 

1 2 C 

1 nu n12 n1c n1. 

2 n21 n22 n2c n2. 

Subpopulation 

r nr1 nr2 nrc nr. 

There are c response levels and r subpopulations. The cell frequency is denoted by niJ for 

subpopulation i, and response level j( i = 1, · · ·, r ; j = 1, · · · , c ). The row totals ni. represent the 

sample sizes for the r subpopulations with Li=l ni. = n. The underlying sampling distribution 

is assumed to be product multinomial. For each of the r subpopulations the sampling process 

is multinomial and the r samples are assumed to be mutually independent. The theoretical cell 

probabilities are denoted by 7rij and satisfy the condition 

C 

L'lrij=l i= l,···,r;j= 1,··•,c 
j=l 

These densities are given in Table 3.2. 
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Table 3.2 

Response level 

1 2 C 

1 7r11 7r12 

2 7r21 7r22 

Subpopulation 

r 7r r1 7r r2 

The ( re x 1) vector of cell densities is denoted by 

7r = 

7r11 

7r12 

7rJc 

7r rl 

The sample proportions ~ = Pij provide estimators of the parameters 7rij • Under the product 
multinomial assumption 

E [ ~] = 7rij i = 1, · · ·, r ; j = 1, · · ·, c 

l" a r [ ~] = 1r ij ( 1 - 7r ij) / ni. i = 1, · · · . ,. ; j = 1, · · · , c 

Gov [§ !!:ik.] = -1ri1-1ri1,;/ni. i = 1, · · ·.,. ·, 1· = 1., · · ·, c n._ ' ni, 

Gov[§ '!!:lk.] = 0 i ...J. f z = 1,··•.r ,· 1· = 1,··•,c ni.' nt. r 

The ( re x 1) vector of estimators is denoted by 
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!!.ll. 
Pll n1. 

!U2. P12 n1. 

!!.k Plc n1. 

!!ll P21 n2 . 

.!!.2..2. 
P22 n2. 

p= 
~ 

P2c n2. 

!!.z:..l. 
Pr1 nr. 

!!.r..2. Pr2 nr. 

!!.D:. Pre nr. 

3.2 Ordinal response variables 

Ordinal variables are often treated as qualitative, being analysed using methods for nominal 

variables. But in many respects, ordinal variables more closely resemble interval variables than 

nominal variables. They possess important quantitative features: 

Each level has a greater or smaller magnitude of the characteristic than another level and, though 

often not possible to measure, there is usually an underlying continuous variable present. 

Often numerical scores are assigned to ordinal categories (Stoker, 1982). The purpose of the 

scoring process might be to approximate relative distances for an underlying continuous scale. 

This requires good judgement and guidance from researchers who use the scale. In this section 

various models are discussed which eliminates the need for assigning scores ( Du Toit and Lam­

precht, 1984). These models are discussed in the context of a specific example. Consider the 

following example with an ordinal response variable and two explanatory variables: 
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Variable Type Description Categories 

MENT Response Mental impairment 1. Well 

2. Mild 

3. Moderate 

4. Impaired 

EVENT Explanatory One important life event 1. Yes 

such as child birth, new 2. No 

job, divorce, death in 

in family that occured to the 

subject within the past 

three years 

SES Explanatory Socio-economic status 1. High 

2. Low 

MENT is the ordinal response variable and EVENT and SES are the two explanatory variables 

which are cross-classified to form four subpopulations. Table 3.3 analogous to Table 3.1 is 

constructed. 

Table 3.3 

Ordered response categories of MENT 

Well Mild Moderate Impaired 

Yes, High n11 n12 n13 n14 n1. 

Subpopulation Yes, Low n21 n22 n23 n2-1 n2. 

No, High n31 n32 n33 n34 n3_ 

No, Low n41 n42 n43 n44 1l 4_ 

Three models are discussed to analyse Table 3.3. Using the notation of Section 3.1 the probabil­

ity, 7r ij, of the j-th response for subpopulation i, is estimated by Pij = ~ (i = l, · · ·, -1 : j = 
1, · · ·, 4). Some function is constructed defined on the response probabilities, by using these 

estimates. The function of the true probabilities is assumed to follow a linear model in terms of 

the design structure of the subpopulations. 

3.3 The logit model 

Table 3.4 is constructed by applying the logit transformation to the estimated probabilities. The 

last category within each subpopulation is used as baseline-category. 
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Table 3.4 

Yes, High 

Subpopulation Yes, Low 

No, High 

No,Low 

Define the (4 X 3) matrix Fas F = (F1,F2,F3) 

Let 

F1 
fnP..ll 

P14 

fn'E.ll 
P24 

fn'l!.l-1 
p34 

fn'Eil 
TIA A 

F2 F3 
fnEll f n l!.ll.. 

Pl4 p14 

fn'l!11. 
P24 

fn'E:ll 
P24 

fn&l. fnl!.ll 
p34 P34 

fn'Eil fnEH.. 
'DAA 'DAA 

1'1m = E(F1m) = 01 + DU M MYl * _xfVENT + DU M MY2 * _xfES 

1'2m = E(F2m) = 02 + DU M MYl * -XfVENT + DU M MY2 * -XIES 

1'3m = E(F3m) = 03 + DU M MYl * _xfVENT + DU M MY2 * _xfES 

1'im ( i = 1, · · · , 3 ; m = 1, • · • 4) is a linear model in the unknown parameters to be estimated. 

Now let 

E(F) = Z/3 

where Z is a (4 x 3) design matrix 

1 1 1 

Z= 
1 1 -1 

1 -1 1 

1 -1 -1 

and f3 is the (3 x 3) matrix of unknown parameters 

If Fis the (12 x 1) vector F = 

it follows that 

fnrl! 
p14 

f r..!1 
np14 

D ~ <.n p14 

D~ 
c.n p24 

D p43 (.n-,-, 
P'. 

E(F) = Xf3r 
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where X is a (12 x 9) design matrix 

that is 

and f3r is the (9 X 1) vector of unknown parameters 

01 

02 

03 
.-\fVENT 

f3r = .-\fVENT 

.-\[VENT 

.-\fES 

.-\fES 

.-\fES 

Consider for example the "Yes, Low" subpopulation. In this subpopulation 

that is 

0 0 1 0 0 -1 

0 _ ~ ~ l {3r 1 0 0 1 0 

0 1 0 0 1 0 0 -1 

,y - 0 +,EVENT_ ,SES 
112 - 1 Al Al 

,y - 0 + ,EVENT ,SES 
122 - 2 A2 - A2 

,y - 0 + ,EVENT ,SES 
132 - 3 A3 - A3 

3.4 The cumulative logit model 

Another way to use ordered response categories is by forming logits, within each subpopulation 

i, of the cumulative probabilities, 

i= 1,··•,4;j= 1,···,4 

where j denotes the j-th response category. 

The cumulative logits are defined as 
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Note that each cumulative logit uses all four response categories. Using these cumulative logits, 

Table 3.5 is constructed. 

Table 3.5 

Yes, High in---'-'....___ 

Subpopulation Yes, Low in-__._,....__ 
1------t.~~;...2...L=----4----L,"2....!....t::..!IL..+---='-----I 

No, High in--=~-
N o, Low in _ __.__,,._,___ 

The same model as in the case of the logit model in Section 3.3 is defined. \Vith the ( 12 x 1) 

vector F formed by now stacking the cumulative logits rowwise. The difference between the 

two models is that in the cumulative logit model cumulative comparisons are made compared 

to the single comparisons in the logit model. The rationale behind the cumulative logits is the 

following: 

If for subpopulation i 

p·1 Pil 
in i > 0 1.e. ------ > 1 

Pi2 + Pi3 + Pi4 Pi2 + Pi3 + Pi4 

a concentration of responses in category 1 is implied. (mental impairment is well for subpopu­

lation i). 

If for subpopulation i 

£,/it + Pi2 > O i.e. Pit + Pi2 > l 
Pi3 + Pi4 Pi3 + Pi4 

a majority of responses in categories 1 and 2 is implied. (mental impairment is well to mild for 

subpopulation i). 

This reasoning is used to describe all the subpopulations. 

3.5 McCullagh 's Proportional odds model 

In McCullagh 's proportional odds model cumulative logits, as described in Section 3.4. are 

modelled as in the cumulative logit model (McCullagh, 1980). The main difference between the 

two models is that 1IcCullagh 's model is given in terms of less unknown parameters than the 

cumulative logi t model. 

Now 
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1lm = E(Fim) = 81 + DU M MYl *A.EVENT+ DU M MY2 * A.SES 

12m = E(F2m) = 82 + DU M MYl *A.EVENT+ DU M MY2 * A.SES 

13m = E(F3m) = 83 + DU M MYl *A.EVENT+ DU M MY2 * A.SES m = 1, 2, 3, 4 

If F is defined as in the case of the cumulative logit model and 

E(F) = X/3r 

The design matrix is no\v defined as 

1 0 0 1 1 

0 1 0 1 1 

0 0 1 1 1 

1 0 0 1 -1 

0 1 0 1 -1 

X= 0 0 1 1 -1 

(12 X 5) 1 0 0 -1 1 

0 1 0 -1 1 

0 0 1 -1 1 

1 0 0 -1 -1 

0 1 0 -1 -1 

0 0 1 -1 -1 

and the (5 x 1) vector of unkown parameters is 

01 

82 

/3r = 83 
A.EVENT 

A.SES 

Consider for example the "Yes, Low" subpopulation. In this subpopulation 

that is 

'}'
12 

9
1 

+A.EVENT_ A.SES 

122 
= 9

2 
+A.EVENT_ A.SES 

,:
32 
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3.6 Estimation of the unknown parameters 

3.6.1 The Delta method 

The delta method (Agresti, 1990) is essentially making use of a first-order Taylor series expansion 

to obtain an approximate expression for the covariance matrix of a vector of stochastic variables, 

whose elements are again functions of stochastic variables. 

Suppose x is a random variable with 

E(x) = µ 

Suppose further a function F of x is differentiable at µ. The first-order Taylor series expansion 

for F, evaluated in the neighbourhood ofµ is 

fJF(x) 
F(x) = F(tt) + (x - µ)a;-lx=µ + error term 

If the error term is sufficiently small, it follows that 

E[F(x)]=F(µ) 

and 

Suppose now F is a ( u x I) vector of functions of the ( r X I) random vector x where 

E(x) = µ 

The first-order Taylor series expansion for F(x) is 

F(x) = F(µ) + A(x - µ )+vector of error terms 

where 

ffi ffi ffi 
8x1 8x2 8i·r 

A _ 8F(x) I _ !1fi !1fi !ill. 
8x1 8x2 OXr 

( lL X r) - i)x' x=µ - (:UU.l) 

oFu 8Fu oFu 
axi- 8x2 8.rr IX=J.l 
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Now, for the elements of the vector of error terms sufficiently small, it follows that 

E[F(x)] = F(µ) 

and 

Cov[F(x), F(x)'] = ACov(x, x')A'. (3.6.1.2) 

3.6.2 Generalized least squares estimation 

Suppose the response variable Y has c categories and there are independent multinomial samples 

of sizes n1., n 2., • • • , nr. at r levels of an explanatory variable, or r levels of several explanatory 

variables. 

Let 
7i" I 7i" il 

7r2 7i" i2 
7i" = where 7i" i = 

7i" r 'ii ic 

denote the cell probabilities. Let p denote the corresponding sample proportions. If Vi denotes 

the covariance matrix of Pi, the sample proportions for subpopulation i, then 

V1 0 

V V2 

( re x re) 
(3.6.2.1) 

0 Yr 

denotes the covariance matric of p. If F( 1r) is a vector of response functions 

the model has the form 

where /3 is a (t X l) vector of parameters, and Xis a (u X t) design matrix. Let F(p) denote the 

sample response functions. It is assumed that F is differentiable at 1r. 

Using the results from Section 3.6. l it follows that 
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where 

VF= Cov[F(p ), F(p )'] = ACov(p, p')A' 
= AVA' 

A _ 8F(p)I 
(uxrc) - 8p' p=7r 

Let VF denote the sample version of VF, in which estimated proportions ( ir) are substituted in 

A and V. During the iteration process, fr is calculated at each iteration. The generalized least 

squares (GLS) estimator of {3 is 

which is obtained by minimizing the quadratic form 

[F(p) - X{3]'Vj;.1 [F(p) - X/3] 

with respect to {3. The GLS estimator has an asymtotic multivariate normal distribution, with 

estimated covariance matrix 

Hypotheses about effects of explanatory variables have the form 

Ho: C/3 = 0 

where C is a knmvn ( c x t) matrix with c :s; t, having rank c. The estimator C/3 of C{3 has 

an asymptotic normal distribution, with mean O under the null hypothesis and with covariance 

matrix estimated by 

C(X'vF1 x)-1 c'. 

Thus, the Wald statistic 

has a.n approxirnatP chi-squared distribution with df = c. 

37 
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3. 7 A practical application 

In the example to follow the logit model, cumulative logit model and McCullagh's proportional 

odds model are fitted. 

The same HSRC dataset as described in the example in Section 2.11 is used. The specific ordinal 

response used in this example is: 

Will there be more or less violence in the run-up to the coming election? 

The question has three possible outcomes, namely, 

1. Less violence 

2. The same level of violence 

3. More violence 

It is clear that this response is ordinal. 

The presence of children and gender are the two explanatory variables used. These two variables 

with their possible outcomes are: 

Do you have Children? and Gender 

1. Yes 1. Male 

2. No 2. Female 

These two variables are cross-classified to form four subpopulations. The following t\vo-way 

table with frequencies is obtained. 
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Table 3.6 

Ordered response categories 

Yes, Male 

Subpopulation Yes, Female 

No, Male 

No, Female 

Less 

1142 

1501 

882 

739 

Same 

610 

962 

447 

368 

More 

329 

493 

280 

264 

When fitting the logit model as described in Section 3.3 the vector of unknown parameters to 

be estimated is 
01 

02 
>i.fHILD 

>i.fHILD 

>i.fENDER 

>i.fENDER 

A SAS program was used to obtain the estimates of the unknown parameters. This program is 

given in Appendix B. The output obtained form this program when fitting the logit model is: 

Iteration 1: 

Iteration 2: 

Iteration 15: 

BHAT 

1. 1332163 

0.527565 

0.046051 

0.1227896 

0.0636332 

0.0085279 

BHAT 

1. 1331235 

0.526377 

0.0461133 

0.1234798 

0.0636577 

0.0085053 

BHAT 

1.1331237 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

SUMSTAT PARAMETER 

1 

2 

3 

4 

5 

6 

DESIGN 

0.5263752 

0. 0461128 

0.1234797 

0.0636574 

0.0084913 

ANALYSIS OF RESULTS 

OF ESTIMATE CHI-SQ 

1 1.1331237 1261. 7998 

1 0.5263752 223.9714 

PROB 

0.0001 

0.0001 

1 0. 0461128 2.0670613 0.1505113 

1 0.1234797 12.21372 0.0004744 

1 0.0636574 4.0879555 0.0431899 

1 0.0084913 0.0608492 0.8051587 

RESPONSE FUNCTION 

ACTUAL PREDICTED RESIDUAL 

1.2444786 1.2428939 0.0015848 

0.6174012 0.6583461 -0.040945 

1.1133777 1.1155791 -0.002201 

0.6685053 0.6413636 0.0271417 

1.1474025 1.1506683 -0.003266 

0.467769 0.4113868 0.0563822 

1.0293488 1.0233536 0.0059953 

0.3321338 0.3944042 -0.06227 

After 15 iterations /3r is obtained as 

/3r = 

1.133 

0.526 

0.046 

0.12:3 

0.064 

0.008 

STD 

0.0318994 

0.0351722 

0.0320734 

0.0353323 

0.0314844 

0.0344227 

For each estimate a \\'ald statistic is calculated (see Section 3.G.2). These rnlues are giYen in 

the column "CHI-SQ ... The probabilities for the test of significancP are gi\'ell in the column 

,.PROB" and thC' standard errors of the estimates in the column ''STD". 
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It follows that the estimated parameters >if HILD and >if ENDER are not significant on the 5% 

level of significance. 

The column named "PREDICTED" gives the values 

111 0i + jfHILD + jfENDER 1.24 

112 02 + J.if HILD+ jfENDER 0.66 

121 
01 + jf HILD_ jfENDER 1.12 

1'22 02 + jf HILD_ jfENDER 0.64 

1'31 01 _ J.if HILD+ J.ifENDER 1.15 

132 02 _ >if HILD+ jfENDER 0.41 

,../41 
A ACHJLD AGENDER 01 - --\ 1 - --\ 1 1.02 

/42 
A ACHILD AGENDER 82 - --\2 - --\2 0.39 

The column named "ACTUAL" gives the actual values analogous to Table 3.4. The column 

named "RESIDUAL" gives the differences between the actual and the predicted values. To 

interpret the results the predicted probabilities are calculated according to the algorithm in the 

SAS program described in Appendix B. These probabilities are 

Table 3.7 

Ordered response categories 

Less Same More 

Yes, Male 0.54 0.30 0.16 

Subpopulation Yes Female 0.51 0.32 0.17 

No, Male 0.56 0.26 0.18 

No, Female 0.53 0.28 0.19 

The same pattern is observed for every subpopulation. The majority of people feel that there 

will be less violence. Less people feel that the violence level will be the same and few people feel 

that the violence will be more. Notice that males feel slightly more positive than females and 

that people without children feel slightly more positive than people with children. 

When fitting the cumulative logit model to the data the output from the program is: 

Iteration 1: BHAT 

0.140655 

1.5686709 

-0. 031167 

0.0742865 

0.0578138 

0.0463137 
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Iteration 2: 

Iteration 15: 

SUMSTAT PARAMETER 

1 

2 

3 

4 

5 

6 

DESIGN 

BHAT 
0.1404128 

1. 5698197 

-0.031064 

0.0738719 

0.0578293 

0.0464383 

BHAT 
0.1404129 

1.5698174 

-0.031065 

0.0738737 

0.0578319 

0.0464209 

ANALYSIS OF RESULTS 

DF ESTIMATE CHI-SQ 

1 0.1404129 36.581257 

1 1. 5698174 2646.2782 

PROB 

0.0001 

0.0001 

1 -0.031065 1.7683288 0 .183589 

1 0.0738737 5.8024429 0.0160039 

1 0.0578319 6.5244464 0.0106402 

1 0.0464209 2.3800386 0.1228945 

RESPONSE FUNCTION 

ACTUAL PREDICTED RESIDUAL 

O .1957209 0.1671803 0.0285406 

1.6724555 1. 690112 -0.017656 

0.0311257 0.0515165 -0.020391 

1.6086262 1.5972701 0.0113561 

0.1932656 0.2293093 -0.036044 

1. 5573925 1.5423646 0.0150278 

0 .1564085 0.1136455 0.0427631 

42 

STD 

0.0232155 

0.0305163 

0.0233605 

0.0306679 

0.022641 

0.03009 
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1.4334598 1.4495228 -0.016063 

After 15 iterations /3r is obtained as 

01 
02 
'j,CHJLD 

1 
'j,CHILD 

2 

'j,GENDER 
1 

'j,GENDER 
2 

0.140 

1.570 

-0.031 

0.074 

0.058 

0.046 

The estimated parameters '5-.f HILD and '5-.<;JENDER are not significant on the 5% level of signifi­

cance. 

The predicted probabilities are given in Table 3.8 

Table 3.8 

Ordered response categories 

Yes, Male 

Subpopulation Yes, Female 

No, Male 

No, Female 

Less 

0.54 

0.51 

0.56 

0.53 

Same 

0.30 

0.32 

0.26 

0.28 

More 

0.16 

0.17 

0.18 

0.19 

Exactly the same pattern is obtained when fitting the cumulative logit model. The estimated 

expected cumulative logits can also be interpreted. Consider, for example, the subpopulation of 

males with children. r sing the first two values from the "PR EDICT ED" column 

e0.1671803 1.18 and el.690112 5.42 

The value of 1.18 indicates that the probability of being in the first category of the response ( less 

violence) is more or less the same as the probability of being in one of the other categories (same 

level of violence or more). The value of 5.42 indicates that the probability of being in one of the 

first two categories of the response is 5.42 times the probability of being in the last category of 

the response. \Vhen applying this reasoning to all the subpopulations the same conclusions are 

made as with the interpretation of the predicted probabiliti0s. 
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When fitting McCullagh 's model to the data the output from the program is: 

Iteration 1: 

Iteration 2: 

Iteration 15: 

SUMSTAT PARAMETER 

1 

2 

3 

4 

DESIGN 

BHAT 
0.1351666 

1.5831722 

-0.005263 

0.0549315 

BHAT 

0.1338374 

1.5920083 

-0.005649 

0.0546225 

BHAT 
0.1338783 

1.5920762 

-0.005786 

0.0546363 

ANALYSIS OF RESULTS 

DF ESTIMATE CHI-SQ 

1 0.1338783 33.48314 

1 1.5920762 2753.7311 

PROB 

0.0001 

0.0001 

1 -0.005786 0.0672258 0.7954196 

1 0.0546363 6.3700896 0.011606 

RESPONSE FUNCTION 

ACTUAL PREDICTED RESIDUAL 

0.1957209 0.1827283 0.0129926 

1.6724555 1.6409262 0.0315293 

0.0311257 0.0734558 -0.04233 

1.6086262 1. 5316537 0.0769725 

0 .1932656 0.1943009 -0.001035 

44 

STD 

0.0231365 

0.0303391 

0.0223168 

0.0216475 
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1.5573925 

0.1564085 

1.4334598 

1.6524988 

0.0850284 

1.5432263 

After 15 iterations {3r is obtained as 

81 
02 
jCHILD 

-0.095106 

0.0713801 

-0.109766 

jGENDER 

0.134 

1.592 

-0.006 

0.055 

The estimated parameter A CHILD is not significant on the 5% level of significance. 

The predicted probabilities are given in Table 3.9 

Table 3.9 

Ordered response categories 

Yes, Male 

Subpopulation Yes, Female 

No, Male 

No, Female 

Less 

0.55 

0.52 

0.55 

0.52 

Same 

0.29 

0.30 

0.29 

0.30 

More 

0.16 

0.18 

0.16 

0.18 

The same pattern is obtained, that is in every subpopulation the majority of people feel that there 

will be less violence. ~!ales feel slightly more positive than females and there is no difference in 

perception between people with and without children. Again the estimated expected cumulative 

logits can also be interpreted which will result in the same conclusions. 

3.8 Summary 

Three models are discussed for analysing data with an ordinal dependent variable. These models, 

the logit, cumulative logit and McCulla.gh 's proportional odds model, eliminates the need for 

assigning scores to ordinal categories. Generalized least squares estimation is applied to obtain 

estimates of the unknown parametNs. Use is made of the delta method to obtain an approximate 

expression for the covariance matrix of a. vector of stochastic variables whose elements a.re again 

functions of stochastic variables. 
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CHAPTER 4 

4 Multilevel models for analysing data with an ordinal depen­

dent variable 

4.1 Theoretical Aspects 

Consider the example with an ordinal response and two explanatory variables discussed in 

Section 3.2. If area of residence is also recorded, areas can be regarded as level 2 units, whereas 

the people in the sample can be regarded as level 1 units. Recall that the two-level model 

discussed in Section 2 .. 5 can be written as model (2.5.3) for area i, that is 

Where bi = {3 + Ui 

If 

then 

In terms of the logit model of Section 3.3, 

Yi is the ( 12 x 1) vector of response functions F 

Xi is the (12 x 9) design matrix X = Z 0 13 

{3 is the (9 x 1) vector of unknown paramaters f3r• 

i = 1,2, ... ,N (4.1.1) 

(4.1.2) 

If expression (2.,.2) is used to obtain estimates of the unknown parameters it follows that 

(-U.3) 

In expression (-1. 1.:3) it is assumed that :Ei is known, which implies that <l> and Vi is known. Vi 

is calculated as the covariance matrix of the vector of response functions as in the logit model 

of Section ;3.:.3. The task of estimating <l> is more cumbersome. 

In the context of Section 2.7, <l> is analogous to <l>(z)· In this cast> it is only necessary to estimate 

vecs<l> (2) or vecs<l>. Let 

The GLS estimator of+ of T may be obtained as the minimum of the quadratic function 

4G 
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( 4.1.4) 

where 

y* vecsY* ( 4.1.5) 

vecs(y - X{3 )(y - X{3 )' (Du Tait, 1993) 

with y the vector of response functions of all N areas, X is the matrix formed by stacking the 

design matrices of each area, and {3 is assumed to be known. 

The matrix X* is formed by stacking X; , that is 

where 

X*= 

X* 1 

X* 2 

X* N 

X"f = H(X 0 X)G 

with Hand Gas defined in Section 2.7. W* is defined by (2.7.8) that is, 

where :E* denotes the true population covariance matrix of y. 

( 4.1.6) 

(4.1.7) 

Let q, = TT' be the Cholesky decomposition of q>, where T 1s a lower triangular matrix. 

Expression ( 4.1.4) can be written as 

Q 

,vith 

(y* - X* vecsTT' )'W*- 1 (y* - X* vecsTT') 

(y* - y*)'w*-1 (y* - y*), 

y* = X*vecsTT'. 

(4.1.8) 

Let W*- 1 = LL' be the Cholesky d0romposition of W*- 1 where L is a lower triangular matrix. 

Now if u = L'y* and t'i = L'y* 
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then 

Q (u - u)'(u - u) 
I 

L( Ui - Ui) 2 

i=l 

(4.1.9) 

i = 1,2,···,/ 

The GLS estimator off of r is obtained by minimizing ( 4.1.9) with respect to T. This is done 

to ensure a positive definite matrix i. 

Let vecsT = 1 . Elements of the gradient vector g(,) are given by 

(4.1.10) 

The first element of g is the derivative of Q with respect to the first element of vecsT, that is, 

~?i etc. Elements of the approximate Hessian matrix H(,) is given by 

(-U.11) 

The element in row r and column s of H is the expected value of Q differentiated with respect 

to the element r and s of vecsT. Suppose that rk is the k-th approximation to the i which 

minimizes Q. Let 

The next approximation is obtained from 

(-1.1.12) 

Where bk = -Hz1
gk and O.k is a step size parameter chosen initially as I. This process of 

approximation is repeated, with the successive halving of O.J.:, until 1Qk+1 - QJ.:I < E. with 

E = 10-6 • The method described above is known as the Gauss-Newton method. l'\ote that ,,·hen 

estimating /3 it is assumed that ~ is known, and \Vhen estimating ~ it is assumed that /3 is 

known. Values of /3 and <I> may he obtai11Pd itera.tivPly as follows: 
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1. To obtain an initial estimate T of T and thus of 4> = TT' , the following steps are carried 

out: Calculate /3 for each level 2 unit and store these {3's as the matrix B, \vhere 

B= 

The sample covariance matrix of /3 is obtained as 

where 

S = - 1 
-B'(I - ··1/N)B JV-1 N JJ 

j : (N X 1) = 

1 

1 

1 

(4.1.13) 

(4.1.14) 

An initial estimate of the matrix T is obtained from the Cholesky decomposition of S, 

that is, 

s = TT' (4.1.15) 

where T is a lower triangular matrix. This matrix S is used as an initial estimate of 4>. 

2. Obtain an estimate of /3 of /3 using (3.1.3) 

3. Obtain an estimate off of T using the expression 

(4.1.16) 

4. Obtain a new matrix T by applying the Gauss-Newton method 

5. Repeat steps(~) to (4) until convergence is obtained, for example lrk+1 - rkl < e; l,B.L:+ 1 -

,81,:I < e, \Vith Ek= 10-6 , whereE1,; denotes a typical element of e. 

An improvement to the above algorithm is to test, after obtaining r, whether <I> is pos1t1ve 

definite. If <I> proves to be positive definite, the Gauss-Newton step will be unnecessary. 

The theory described above can also by applied to the cumulative logit model and 11cCullagh's 

model. 
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4.2 Practical application 

The same example as in the application of Section 3.7 is used. NO\v another variable is included 

namely national developement region. The total area from which a sample ,vas taken can be 

divided into 11 development regions. These regions are level 2 units. In this example the 

cumulative logit model in the case of multilevel data is fitted. The theory used is as described 

in Section 4.1. The vector f3 and the matrix <I> is obtained through SAS programs ,vhich are 

found, with descriptions, in Appendix C. The following output is obtained: 

Iteration 1: 

PHI 

BHAT 
0.2007274 

1.5506069 

0.0834918 

0.0341046 

-0.009121 

0.041709 

0.082222 0.0337931 -0.001946 -0.011262 0.0005781 -0.00937 

0.0337931 0.0604979 -0.002845 0.0017675 0.0062546 0.0091414 

-0.001946 -0.002845 0.0074364 0.0017231 0.00134 -0.000475 

-0.011262 0.0017675 0.0017231 0.0084329 0.0005844 0.0021656 

0.0005781 0.0062546 0.00134 0.0005844 0.0050852 -0.001529 

-0.00937 0.0091414 -0.000475 0.0021656 -0.001529 0.0113368 

Iteration 2: 

PHI 

BHAT 
0.1970199 

1.5860334 

0.0827798 

0.0345069 

-0.008851 

0.0364795 

0.0833146 0.0338964 -0.002251 -0.012224 0.0000506 -0.009871 

0.0338964 0.0610943 -0.002744 0.0032785 0.006791 0.0101682 

-0.002251 -0.002744 0.0082296 0.0011231 0.0012238 -0.000527 

-0.012224 0.0032785 0.0011231 0.0103892 0.0007265 0.0029409 

0.0000506 0.006791 0.0012238 0.0007265 0.0051638 -0.001187 

-0.009871 0.0101682 -0.000527 0.0029409 -0.001187 0.0139781 
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Iteration 6: 

PHI 

BHAT 
0.1967993 

1.5861606 

0.0820845 

0.0344568 

-0.009838 

0.0353515 

0.0832951 0.033919 -0.00226 -0.012202 0.0000193 -0.00986 

0.033919 0.0609965 -0.002708 0.0031627 0.0068264 0.0101615 

-0.00226 -0.002708 0.0082266 0.001119 0.0012209 -0.000526 

-0.012202 0.0031627 0.001119 0.010252 0.0007278 0.0028545 

0.0000193 0.0068264 0.0012209 0.0007278 0.0051706 -0.001172 

-0.00986 0.0101615 -0.000526 0.0028545 -0.001172 0.0139672 

ANALYSIS OF RESULTS 

SUMSTAT PARAMETER OF ESTIMATE CHI-SQ PROB 

1 1 0.1967993 4.6125685 0.0317385 

2 1 1.5861606 364.85659 0.0001 

3 1 0.0820845 4.743367 0.0294115 

4 1 0.0344568 0.5787942 0.4467853 

5 1 -0.009838 0.0862266 0.7690302 

6 1 0.0353515 0.5195253 0.4710443 

After 6 iterations /3 is obtained as 

81 0.196 

{Ji 1.586 
~CHILD 0.082 

/3 = / 1 

'jCHILD 0.03-t 2 
jGENDEH 

1 -0.010 
jGENDEH 

2 0.035 

STD 

0.0916331 

0.0830398 

0.0376893 

0.0452911 

0.0335046 

0.0490461 

The estimated parameters 01 and 02 and jf HILD are significant on the ,5% level of significance. 

Inspection of 4, shows that the l('n'l 2 variances and covariances are quite small which suggests 

low variation across the level 2 units (areas). 

Th(' pr<'dicted probabilities, analo~ous to the probabilities Ill th(' example of Section 3. ,. are 
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given in Table 4.1 

Table 4.1 

Ordered response categories 

Yes, Male 

Subpopulation Yes, Female 

No, Male 

No, Female 

Less 

0.57 

0.57 

0.53 

0.53 

Same 

0.27 

0.26 

0.30 

0.29 

More 

0.16 

0.17 

0.17 

0.18 

Again, the majority of people within each subpopulation feel that there will be less violence. 

Now though, people with children feel more positive than people without children. Males and 

females within each of the two groups, people with children and people without children, feel 

exactly the same. Notice that when fitting the cumulative logit model with a "correction" for 

area in which the people stay produces different results than fitting the cumulative logit model 

( cf. Section 3. 7) without "correcting" for area. 

4.3 Summary 

The logit model, discussed in Section 3.3, is written as a two-level model. Iterative generalized 

least squares estimation is used as a method for obtaining estimates of the unknown parameters. 

These estimates are /3 and ~- Cholesky decomposition is applied in the Gauss-Newton approx­

imation step to ensure a positive definite matrix, ~- The theory of this chapter can also be 

applied to the previously discussed cumulative logit model and McCul1agh 's proportional odds 

model. 
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CHAPTER 5 

5 Conclusions and suggestions for further research 

Multilevel theory is an extremely powerful approach in various fields of statistical application. 

In this report general multilevel theory is given where the emphasis is in the field of categorical 

data analysis. Analysing data with an ordinal dependent variable in the context of multilevel 

theory is only one example of application. The analysis of multilevel models is a relatively new 

field and various other models, other than the three models discussed, need to be incorporated 

in the multilevel context. 

Multilevel modelling was dicussed in the context of social sciences. More examples can be found 

in economics, in political science, repeated measures data analysis, in the estimation of variance 

components in complex sampling and multilevel non-linear modelling. 

At the moment limited computer software is available for the analysis of multilevel models. The 

program given in this report is also limited in the sense that no provision is made for the analysis 

of three-level models. The runtime of this program can also be minimized, for example: 

Recall that the covariance matrix of the vector of response functions for level i can be written 

as expression ( 4.1.2) that is, 

where 

Yi is the ( ni x m) vector of response functions 

Xi is the ( ni x m) design matrix 

<I> is the ( rn X m) coYariance matrix of Ui. 

It is assumed that Vi. the covariance matrix of ei, is of the form 

The following result from Browne ( 1991) is applied: 

Let A: p x p and C: ,n x m be nonsingular and let B be an m x m matrix. Then 

if 
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Thus :E;1 can be written as 

:E:-1 v:-1 _ v:-ix·(ti>-1 + x~v:-1x-)-1x~v:-1 
l l l l l l l l l 

a-21 - a-2xi( i_p-1 + X~a-2Xi)-1X~a-2 

In the existing computer program, :E; 1
, the inverse of a ni X ni matrix, is calculated. If :E; 1 is 

obtained as in the above expression, the inverse of an m x m matrix will be calculated. With 

m < n this will imply less computer runtime. 
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Multilevel models for the analysis of ordinal data 

by 

Helena N yikos 

Supervisor: Professor S.H.C. Du Toit 

Statistics Department 

Submitted in part fulfilment of the requirements for the degree of Master of 

Science in the subject Mathematical Statistics 

6 Summary 

The scope for application of multilevel models is very wide. The term multilevel refers to a 

hierarchical relationship among units in a system. In an education system, for example, multi­

level data is obtained from samples of randomly drawn students (level 1) from randomly drawn 

classes (level 2) from randomly drawn schools (level 3). Multilevel analysis allows characteristics 

of each group (for example the students of a specific class of a specific school) to be incorporated 

into models of individual behaviour. 

General multilevel theory is discussed. The fixed parameter linear regression model is extended 

to a random parameter linear regression model. Marginal maximum likelihood and the E-M 

algorithm are given combined as a means for estimating the unknown model parameters. A 

general expression for the two-level model is obtained. Maximum likelihood estimation and 

iterative generalized least squares are discussed as estimation procedures. The multilevel logit 

model is emphasized as a form of the general two-level model, and illustrated with an example. 

The two-level model is then extended to the general three-level model. 

Ordinal variables are often treated as qualitative, being analysed using methods for nominal 

variables. But, in many aspects ordinal variables more closely resemble interval variables. Often 

in analysis numerical scores are assigned to ordinal categories. This approach though is sub­

jective. In a new approach, three models are described. These models are the logit model, the 

cumulative logit model and McCullagh 's proportional odds model. To estimate the unknown 

model parameters, generalized least squares estimation is applied. 

The three models used for analysing data with an ordinal dependent variable is described in 

the context of multilevel theory. Iterative generalized least squares is discussed in this new 

framework. In particular Cholesky decomposition is used to obtain a positive definite matrix 

estimate of the covariance matrix of the explanatory variables whose coefficients are random at 

level 2. Examples of the logit, cumtdative logit aud McCullagh 's proportional odds models are 

used to illustrate the effect of the multilevel approach. 
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Meerpeilmodelle vir die analise van ordinale data 

deur 

Helena N yikos 

Studieleier: Professor S.H.C. Du Toit 

Departement Statistiek 

Voorgele ter vervulling van 'n deel van die vereistes vir die graad Magister in 

Wiskundige Statistiek. 

7 Samevatting 

Daar bestaan baie toepassings vir meerpeilmodelle. Die term hierargies verwys na 'n ver­

wantskap tussen eenhede in 'n sisteem. In 'n onderwyssisteem, byvoorbeeld, word meerpeil 

data verkry vanuit steekproewe van ewekansig gekose leerlinge (peil 1) uit ewekansig gekose 

klasse (peil 2) uit ewekansig gekose skole (peil 3). Meerpeilanalise neem eienskappe van elke 

groep (byvoorbeeld leerlinge in 'n spesifieke klas in 'n spesifieke skoal) in ag in die modellering . 

Algemene meerpeilteorie word bespreek. Die vaste parameter lineere regressie model word na die 

stogastiese parameter lineere regressie model uitgebrei. Die metode van marginale maksimum 

aanneemlikheid en die E-11 algoritme word as beramingsmetodes bespreek om die onbekende 

parameters te beraam. 'n Algemene uitdrukking vir die twee-peil model word verkry. Maksi­

mum aanneemlikheid en iteratiewe veralgemeende kleinste kwadrate word as beramingsmetodes 

bespreek. Die meerpeil logit model word as 'n tipe twee-peil model beklemtoon en met 'n 

voorbeeld gei1lustreer. Die twee-peil model word na die drie-peil model uitgebrei. 

Ordinale veranclerlikes word dikwels as kwalitatief beskou en geanaliseer volgens metodes vir 

nominale veranderlikes. Hierdie benadering is egter subjektief. In 'n nuwe benadering word drie 

modelle bespreek. Hierdie modelle is die logit model, die kumulatiewe logit model en 1IcCul­

lagh se model. Veralgemeende kleinste kwadrate word as beramingsmetode vir die onbekende 

parameters gebruik. 

Die drie modelle vir die analise van data met 'n ordinale veranderlike word in die konteks 

van meerpeilteorie bespreek. ltcratie,ve veralgemeende kleinste kwa<lrate word oak bespreek 

in hierdie konteks. Cholesky dekomposisie word gebruik om 'n matriks te verkry wat positief­

definiet is vir die beraming van die kovariansie rnatriks van die onaflianklike veranderlikes met 

stogastiese koeffisiente op peil twee. Die effek van die meerpeil benadering word gei'llustreer met 

voorbeclde van die logit, kumulati('we logit en McCullagh se modPI. 
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9 Appendix Al 

9.1 The SAS Program 

A dataset with the necessary variables is created using SAS. Each observation (record) must 

have a code for cluster and category, and must also have the frequency of "yes-answers" (m) 

and total frequency of people (n) in that specific cluster and category combination. There will 

be a maximum of 28 x 5 observations. These observations are the level 1 units. To create such 

a dataset the following SAS program can be used ( the initial data step is omitted). 

DATA D1;SET MASTER.TOTAL; 

•DEFINE THE CATEGORIES; 

CAT=DAYS; 

•FORM THE 32 CLUSTERS; 

IF LANG=1 AND EDUC=1 AND GENDER=1 THEN GROUP=1; 
IF LANG=1 AND EDUC=1 AND GENDER=2 THEN GROUP=2; 

IF LANG=1 AND EDUC=2 AND GENDER=1 THEN GROUP=3; 
IF LANG=1 AND EDUC=2 AND GENDER=2 THEN GROUP=4; 

IF LAND=1 AND EDUC=3 AND GENDER=1 THEN GROUP=5; 
IF LANG=1 AND EDUC=3 AND GENDER=2 THEN GROUP=6; 
IF LANG=1 AND EDUC=4 AND GENDER=1 THEN GROUP=7; 
IF LANG=1 AND EDUC=4 AND GENDER=2 THEN GROUP=8; 

IF LANG=2 AND EDUC=1 AND GENDER=1 THEN GROUP=9; 

IF LANG=2 AND EDUC=1 AND GENDER=2 THEN GROUP=1O; 
IF LANG=2 AND EDUC=2 AND GENDER=1 THEN GROUP=11; 

IF LANG=2 AND EDUC=2 AND GENDER=2 THEN GROUP=12; 
IF LAND=2 AND EDUC=3 AND GENDER=1 THEN GROUP=13; 

IF LANG=2 AND EDUC=3 AND GENDER=2 THEN GROUP=14; 

IF LANG=2 AND EDUC=4 AND GENDER=1 THEN GROUP=15; 

IF LANG=2 AND EDUC=4 AND GENDER=2 THEN GROUP=16; 

IF LANG=3 AND EDUC=1 AND GENDER=1 THEN GROUP=17; 

IF LANG=3 AND EDUC=1 AND GENDER=2 THEN GROUP=18; 
IF LANG=3 AND EDUC=2 AND GENDER=1 THEN GROUP=19; 

IF LANG=3 AND EDUC=2 AND GENDER=2 THEN GROUP=2O; 

IF LAND=3 AND EDUC=3 AND GENDER=1 THEN GROUP=21; 
IF LANG=3 AND EDUC=3 AND GENDER=2 THEN GROUP=22; 

IF LANG=3 AND EDUC=4 AND GENDER=1 THEN GROUP=23; 
IF LANG=3 AND EDUC=4 AND GENDER=2 THEN GROUP=24; 

IF LANG=4 AND EDUC=! AND GENDER=! THEN GROUP=25; 

IF LANG=4 AND EDUC=! AND GENDER=2 THEN GROUP=26; 
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IF LANG=4 AND EDUC=2 AND GENDER=! THEN GROUP=27; 
IF LANG=4 AND EDUC=2 AND GENDER=2 THEN GROUP=28; 
IF LAND=4 AND EDUC=3 AND GENDER=! THEN GROUP=29; 
IF LANG=4 AND EDUC=3 AND GENDER=2 THEN GROUP=3O; 
IF LANG=4 AND EDUC=4 AND GENDER=! THEN GROUP=31; 
IF LANG=4 AND EDUC=4 AND GENDER=2 THEN GROUP=32; 

DATA D2;SET D1 (KEEP= GROUP CAT VOTE); 
PROC SORT; 

BY GROUP; •CLUSTER; 

PROC FREQ 
TABLES VOTE•CAT/OUT=A NOPRINT; 

BY GROUP; 

DATA E;SET A 
IF CAT-=.; 

IF VOTE=2; 
VAR1=COUNT; 

PROC SORT; 
BY GROUP CAT; 

DATA F;SET A 

IF CAT-=.; 

IF VOTE=1; 
VAR2=COUNT; 

PROC SORT; 
BY GROUP CAT; 

DATA G;MERGE E F; 
BY GROUP CAT; 

TOTAL=SUM(VAR1,VAR2); 
IF TOTAL=VAR2 THEN VAR2=TOTAL-O.25; 

IF VAR2=. THEN VAR2=O.25; 

PITT (GROUP CAT) (3.) VAR2 7.2 TOTAL 6.; 

•CATEGORY; 
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10 Appendix A2 

10.1 The ML3 Package 

ML3 (Prosser, Rasbash and Goldstein, 1989 and 1990) is the updated version of ML2. This 

package is easily installed on a personal computer. Data are stored by the program in a memory 

segment called a worksheet. This worksheet can be thought of as a matrix. A row is assigned to 

each level 1 unit and a column contains values for a given variable. The columns are numbered 

from 1 to 100 and are referred to as Cl, C2, · · ·, ClO0. ML3 is invoked by typing ML3 at the 

DOS prompt. The command STOP is used to end a worksession. 

Every ML3 instruction must begin with a keyword. At least the first four characters of the 

keyword must be specified. Typing 

HELP 

lists all the available keywords, and typing 

HELP keyword 

gives the syntax for the specific keyword. 

Typing LOGO turns recording of your worksession on ( and off). When the command is used 

first, ML3 requests the name of a log file in which screen output is to be stored. In order to 

create more than one log file during a worksession the commmand LOGO 1 closes a current log 

file and turns logging off. Typing LOGO turns logging on again and you will be prompted for 

a new log filename. In this way, different parts of screen output can be stored in separate files. 

The command 

DIREctory 

shows a listing of files in a partirnlar DOS diretory, without having to end the worksession. To 

see the contents of a file use the command 

VIEW 

The command 

SAVE 
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records the data and settings of the current worksheet during a worksession. ML3 prompts for 

the name of a worksheet storage file. The command 

records only the data in the worksheet. 

The command 

SAVE 1 

RETRieve 

can be used to restore data and settings of a previously saved worksheet. The command 

RETR 1 

is used to retrieve only the data of a previously saved worksheet. 

To remove all data from the worksheet use the command 

WIPE 

The command 

ERASE c_ ... c_ 

clears the specified columns. 

Some commands in a certain sequence might be used in many analyses. It is possible to store 

these commands in a file that is to be called up during a worksession. Use the command 

OBEY 

to call up a file containing certain commands. You will be prompted to specify a filename. 

Conducting an analysis can roughly be divided into five stages: 

1. Input 

2. Data manipulation 

3. ~fodel specification 
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4. Run 

5. Output 

These five stage are discussed separately. 

1. Input 

The data which is to be used in the analysis can either be read from an ASCII-format file or 

entered during the worksession. All variables must be numerical. 

1.1 Input from an existing file 

To input free format data use the command 

DINPut C_·••C_ 

where C _ · · · C _ refers to the columns into which the data is to be read. If the dataset to be 

inputted contains five variables, for example, the command is 

DINP Cl - C5 

note: any range of columns can be specified as long as five columns are specified. The following 

input commands are also correct: 

DINP C2 - C6 

or DINP C2 C4 C5 C3 Cl 

To input data ,vhich is to be formatted use the command 

FDINput C_• · ·C_ 

"'fou will be prompted for the format statement. The format statement must be typed on a 

single line and begins with a "(" and ends with a ")". Skipping characters is indicated by -N 

where N is the number of characters to be skipped. If observations have more than one line of 

data (more than one card) indicate the beginning of a new lirw by a "/". It is not possible to 

indicate the locations of decimal points. Decimal points can either be put in the original data 

or the variables can be multiplied/divided by appropriate powers of 10 after inputting. 

Example 

Suppose part of the information is a.rra.ngcd as follows: 
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line 1 

a level 1 ID code in columns 1-3 

a number series ability score in columns 5-8 

line 2 

a level 2 ID code in columns 1-3 

a mathematics score in columns 4-6 

Assuming that there will be only two lines per observation the required format is 

(3, -1,4/3,3) 

1.2 Input data during worksession 

This command, usually used to input vectors and small matrices, has the syntax 

INPUt c_ ... c_ 

and is followed by one or more rows of numbers. The total number of numbers must be a 

multiple of the number of columns specified. To input the matrix 

1 2 3 

456 

into columns Cl-C3Jhree of the possible ways are; 

INPU Cl-C3 INPU Cl-C3 INPU Cl-C3 

123 123 12 

456 45 34 

6 5 

6 

1.3 Na ming columns 

It is possible to give names to one or more columns with the command 

NAME C_ 'namel' C_ 'name2' · · · 

Example 

If mathematics score is contained Ill column 1 and number SPries ability Ill column 3, name 

columns with the command 
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NAME Cl 'MATH' C3 'ABILITY' 

The first eight characters of a name are used. 

1.4 Identifiers 

Each case should be labelled with a case identifier (level 1 units), group identifier (level 2 units) 

and a third level identifier in the case of three-level modelling. If, for example, the level 1 

identifier is in a column with the name 'ID 1' and the level 2 identifier is in a column with the 

name 'ID2' specify these identifiers with the commands 

1.5 Checking entered data 

The command 

IDEN 1 '1D1' 

and IDEN 2 '1D2' 

NAMEs 

displays column identifiers, each column's length, number of missing values and the maximum 

and minimum value ,vithin a column. 

The command 

\VRITe C_· · · C_ 

shows the contents of each specified column. 

The command 

SUMMary 

displays each group identification code (level 2 and level 3 groups), its number and percentage 

of level 1 units, and the total number of units at each level. Use this command after specifying 

level identification codes with the IDEN command. 

Suppose an error is detected in column 3 case 17. A value of 32 was inputted whereas the value 

should have been 4-l. The command 

EDIT 17 C:J 44 

(j,5 
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will overwrite the value of 32 in row 17 with the value of 44. 

2. Data manipulation 

ML3 has commands for almost any kind of data manipulation. Only a few basic commands are 

discussed here. Data manipulations for the practical application in chapter 5 were mainly done 

using SAS. 

2.1 Transformations 

Five basic one-operand transformations are 

LOGT c_ c_ (log to the base 10) 

LOGE c_ c_ (log to the base e) 

LOGI c_ c_ (ln(p/(l - p)) for O < p < l) 

EXPO c_ c_ ( exponential) 

SQRT c_ c_ ( square root) 

For example 

LOGT Cl C3 

will write the logarithms of values in Cl in C3. 

Specifying 

LOGT Cl Cl 

will overwrite the values in Cl with their respective logarithms. 

Arithmic functions and/or one-operand transformations can be combined into one single oper­

ation with the command 

C..\LCulate C_ = expression invGlving columns/numbers 

For example to transform the values of x in C9 with the transformation 

(x-v'2)(~+1) 

and to write the transformed values into ClO, type the command 

CALC ClO = (C9 - SQRT(2))*(SQHT(.r)+l) 

(iG 
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2.2 Coding 

The CODEs command has several uses in multilevel modelling. The syntax is 

COD Es from one to Min blocks of N, P times to be put in C _ 

Suppose a datafile containes 100 cases. To create a column C3 which contains 1 's type 

CODE 1 1 100 C3 

This command can be used to create an intercept column. Suppose the 100 cases must be 

numbered from 1 to 100 and these numbers must be written to C2. Type 

CODE 100 1 1 C2 

Values in C2 can be used as level 1 identifiers. 

2.3 Dummy variables 

Suppose that each case in an analysis belongs to one of three categories of the variable AGEG. 

Dummy variables, two in this example, can be formed with the DUMMies command. If the 

three categories are 1, 2 and 3 

DUMM 'AGEG' CS C9 

writes dummy vectors into C8 and C9. Cases with AGEG equal to 1 are in the base category, 

and coefficients for the dummy variables represent differences of categories 2 and 3 from category 

1. The general form is 

DF1niies using categorical variable C_ to be written in C_·••C_ 

and the number of destination columns must be one less than the number of categories of the 

categorical variable. 
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3. Model specification 

This stage involves a set of commands which specifies the roles of the variables and the pa­

rameters to be estimated. As mentioned in section 4.1.4, identifiers for the various levels are 

necessary. These identifiers are specified with the IDEN command. 

The RESP command declares one variable to be the response variable. The syntax is 

RES Ponse variable is in C _ 

To change the response variable, simply specify the command again with the new variable. 

The EXPL command gives one or more variables the role of being explanatory variables. The 

syntax is 

EXPLanatory variable candidates in C _ · · · C _ 

This is a toggle command. To undeclare some variable, retype the EXPL command specifying 

the variable concerned. By default all variables specified with EXPL are in the fixed part of the 

model. 

Using the command 

FPAR explanatory variables in C _ · • • C_ 

will remove the specified variables from the fixed part of the model. These variables are now in 

the random part of the model. 

The command 

SETVariance-covariance matrix at level N 

requests estimation of all variances and covariances of the coefficients of all explanatory variables 

in the random part of the model. Specifying 

SETV NC_·· -C_ 

restricts the request to all coefficient variances related to the variables named in the command. 

l!se 

CLRV N 
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to undo the request given with SETV, and 

CLRV NC_• ··C_ 

to request that certain variances and/or covariances not be estimated. 

To request the estimation of parameters one at a time, use 

SETElement at level N C _ · · · C _ 

To undo this command type 

CLRE N c_ ... c_ 

Example 

In section 1.12 one of the goals is to estimate the level 2 variance. It is assumed that 

If "CONS" is the explanatory variable associated with the intercept bio, request estimation of 

a; with the command 

Use the command 

SETE 2 "CONS" "CONS" 

or SETV 2 "CONS" "CONS" 

SETT 

to see the current model specifications. 

4. Run 

A number of features in the estimation process can be controlled. 

The command 

MAXIterations N 

changes the default number of iterations of five to N. A test for convergence is made at the end of 

ea.ch iteration. Com·ergence is reached if a certain estimated value is smaller than the tolerance. 

The tolerance is a number of the form 10-N where N is an itcger in the range 1, 2. • • •, 9. The 

default tolerance is three. To change the tolerance to 10-N use the command 

(jg 
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TOLErance N 

The default estimation procedure used is iterative generalized least squares (IG LS). The com­

mand 

METHod of estimation is XXXX 

with XXXX either equal to IGLS or RIG LS (restrictive iterative generalized least squares) is 

used to control the estimation procedure. 

The command 

BATChmode 

turns inter-iteration on/off. Default operation is interrupted mode. The estimation process is 

started with the command 

STARt 

When the program pauses at the end of an iteration ( this will happen if inter-iteration is off), 

the command 

NEXT 

will start the next iteration. 

5. Output 

The estimates of the fixed parameters and their standard errors are shown if the command 

FIXEd 

is specified. The command 

RANDom 

displays estimates of the random para.meters and their standard errors. 

Fixed para.meter contrasts can be examined with the command 

FTESt using information in C _ 
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Consider the contrast CA,- = k 

that is 

The vector to be specified in the FTES command is 

cu 

C1q 

k1 

f= 

Cpl 

Cpq 

kq 

The INPU command can be used to enter this vector. 

Example 

If the vector of fixed parameters is/ = [ ~: ] and the following 

hypotheses are to be tested 

,1 t3 = 0 

,2 = 0 

vector f must first be created. Read f into a column, say C20. The following can be used: 

INPU C20 

1 0 -1 0 

0 1 0 0 

To examine the contrasts specify the command 

FTES C20 

The outputs from this command are as follows: 
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* the value of each contrast; 

* a x2 value for a simultaneous test of the hypotheses; 

* a x2 value for a test of each hypothesis individually; and 

* individual and simultaneous 95% confidence intervals. 
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11 Appendix A3 

11.1 The ML3 Program 

The datafile VOTING.DAT as created in Appendix A2 is an ASCII-format file with the four 

variables per observation (record) in free format. Apply ML3 to analyse the data in order to 

achieve goals ( a) and (b ). The ML3 commands used is shown below. Two previously created 

files MDL.COM and MUL5.COM are invoked with the OBEY command. These files contain 

certain commands, which could also be typed in. These files have the following commands: 

1. MUL.COM: 

name c1 'id2' c2 'id1' c3 'category' c4 'm' c5 'n' 

iden 1 'id1' 

iden 2 'id2' 

calc c6=loge('m'/('n'-'m')) 

resp c6 

2. HULS.COM 

name c8 'cons' 

dumm c3 c10-c13 

calc c9='cons'-(c10+c11+c12+c13) 

name c9 'fp1' c10 'fp2' c11 'fp3' c12 'fp4' c13 'fp5' 

calc c7=1/sqrt('n') 

mult c7 c9 c17 

mult c7 c10 c18 

mult c7 c11 c19 

mult c7 c12 c20 

mult c7 c13 c21 

name c17 'rp1' c18 'rp2' c19 'rp3' c20 'rp4' c21 'rp5' 

expl 'cons' c9-c13 c17-c21 

fpar c17-c21 'cons' 

setv 2 'cons' 

sete 1 'rp1' 'rp1' 

sete 1 'rp2' 'rp2' 

sete 1 'rp3' 'rp3' 

sete 1 'rp4' 'rp4' 

sete 1 'rp5' 'rp5' 

bate 

sett 

The 11 L3 statements are as follows: 

dinp cl c3-c5 

80000 spaces left on ~orksheet 
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Type file name 

-> 
voting.dat 

1 1 0.75 1 

1 2 6.00 9 

1 3 6.00 7 

1 4 6.75 7 

1 5 46.00 52 

2 1 4.00 6 

2 2 16.00 19 

2 3 8.00 13 

2 4 13.00 14 

2 5 28.00 32 

3 1 28.00 34 

3 2 49.00 58 

3 3 46.00 51 

3 4 42.00 50 

3 5 105.00 114 

4 1 24.00 31 

4 2 40.00 51 

4 3 51.00 55 

4 4 71.00 82 

4 5 118 .00 130 

6 1 11.00 20 

6 2 72.00 82 

6 3 74.00 82 

6 4 67.00 73 

6 5 143.00 157 

7 1 5.00 6 

7 2 13.00 14 

7 3 11. 75 12 

7 4 23.75 24 

7 5 38.00 43 

8 1 3.00 4 

8 2 8.00 11 

8 3 14.00 15 

8 4 17.00 21 

8 5 35.00 39 

9 1 6.00 10 

9 2 16.00 20 

9 3 13.00 15 

9 4 18.00 19 

9 5 23.00 28 

10 1 12.00 20 

10 2 26.00 32 

10 3 24.00 31 

10 4 27.00 35 

10 5 40.00 55 
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11 1 16.00 21 

11 2 37.00 43 

11 3 27.00 33 

11 4 34.00 37 

11 5 73.00 82 

12 1 23.00 34 

12 2 57.00 70 

12 3 44.00 49 

12 4 61.00 67 

12 5 96.00 109 

14 1 36.00 44 

14 2 69.00 91 

14 3 57.00 70 

14 4 54.00 62 

14 5 90.00 111 

15 1 13.00 16 

15 2 26.00 29 

15 3 24.00 28 

15 4 16.75 17 

15 5 50.00 54 

16 1 10.00 11 

16 2 31.00 37 

16 3 24.00 26 

16 4 22.00 28 

16 5 53.00 57 

17 1 4.00 11 

17 2 17.00 20 

17 3 11.00 14 

17 4 11.00 15 

17 5 19.00 24 

18 1 13.00 24 

18 2 23.00 35 

18 3 26.00 43 

18 4 25.00 34 

18 5 42.00 65 

19 1 20.00 29 

19 2 40.00 49 

19 3 44.00 48 

19 4 33.00 35 

19 5 67.00 78 

20 1 22.00 34 

20 2 74.00 95 

20 3 50.00 61 

20 4 62.00 71 

20 5 73.00 100 

22 1 34.00 50 

22 2 80.00 103 

22 3 48.00 66 

22 4 67.00 83 
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22 5 102.00 124 

23 1 8.00 12 

23 2 30.00 33 

23 3 34.00 36 

23 4 27.00 32 

23 5 65.00 67 

24 1 8.00 10 

24 2 24.00 33 

24 3 27.00 32 

24 4 32.00 40 

24 5 49.00 58 

25 1 7.00 18 

25 2 19.00 31 

25 3 11.00 24 

25 4 15.00 17 

25 5 32.00 54 

26 1 8.00 41 

26 2 17 .00 40 

26 3 9.00 16 

26 4 15.00 20 

26 5 28.00 52 

27 1 28.00 58 

27 2 53.00 83 

27 3 70.00 92 

27 4 53.00 69 

27 5 81.00 98 

28 1 40.00 91 

28 2 70.00 129 

28 3 61.00 92 

28 4 35.00 57 

28 5 67.00 100 

30 1 44.00 80 

30 2 75.00 123 

30 3 83.00 106 

30 4 69.00 87 

30 5 74.00 95 

31 1 20.00 26 

31 2 27.00 37 

31 3 30.00 32 

31 4 37.00 40 

31 5 48.00 54 

32 1 14.00 23 

32 2 22.00 40 

32 3 28.00 33 

32 4 19.00 20 

32 5 25.00 36 

code 140 1 1 c2 

obey mul.com 

name cl 'id2' c2 'idl' c3 'category' c4 'm' c5 'n' 
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iden 1 'id1' 

iden 2 'id2' 

calc c6=loge('m'/('n'-'m')) 

resp c6 

code 1 1 140 c8 

obey mul5.com 

name c8 'cons' 

dumm c3 c10-c13 

calc c9='cons'-(c10+c11+c12+c13) 

name c9 'fp1' c10 'fp2' c11 'fp3' 

calc c7=1/sqrt ( 'n') 

mult c7 c9 c17 

mult c7 c10 c18 

mult c7 c11 c19 

mult c7 c12 c20 

mult c7 c13 c21 

c12 'fp4' c13 'fp5' 

name c17 'rp1' c18 'rp2' c19 'rp3' c20 'rp4' c21 'rp5' 

expl 'cons' c9-c13 c17-c21 

fpar c17-c21 'cons' 

setv 2 'cons' 

sete 1 'rp1' 'rp1' 

sete 1 'rp2' 'rp2' 

sete 1 'rp3' 'rp3' 

sete 1 'rp4' 'rp4' 

sete 1 'rp5' 'rp5' 

bate 

BATCh mode is ON 

sett 

EXPLanatory variables in CONS FP1 FP2 

FPARameters FP1 FP2 

FMEAns 

RMEAns 

RESPonse variable in C6 

IDENtifying codes for level 1: ID1 level 2: ID2 

RESEtting covariances level 1: ON level 2: ON 

MAXIterations 5 TOLErance 2 METHod is IGLS 

LEVEL 3 RANDOM PARAMETER MATRIX unspecified 

LEVEL 2 RANDOM PARAMETER MATRIX 

CONS 

CONS 1 

LEVEL 1 RANDOM PARAMETER MATRIX 

RP1 RP2 RP3 RP4 RPS 

RP1 1 

RP2 0 1 

RP3 0 0 1 

RP4 0 0 0 1 
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FP3 FP4 

level 3: 

level 3: ON 

BATCh is ON 
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RPS 

star 

0 

Iteration number 

Iteration number 

Iteration number 

Iteration number 

Iteration number 

Iteration number 

Iteration number 

Iteration number 

1 

1 

2 

2 

3 

3 

4 

4 

Iteration number 5 

Iteration number 5 

0 0 

in progress 

in completed 

in progress 

in completed 

in progress 

in completed 

in progress 

in completed 

in progress 

in completed 

Convergence not achieved 

next 

Iteration number 6 in progress 

Iteration number 6 in completed 

Convergence achieved 

rand 

0 

LEVEL 3 

PARAMETER 

PARAMETER 

CONS /CONS 

PARAMETER 

RP1 /RP1 

RP2 /RP2 

RP3 

RP4 

RPS 

fixe 

/RP3 

/RP4 

/RPS 

PARAMETER 

FP1 

ESTIMATE S. ERROR 

LEVEL 2 

ESTIMATE S. ERROR 

0.3969 0 .1166 

LEVEL 1 

ESTIMATE 

5.163 

4.59 

7.011 

16.75 

7.462 

ESTIMATE 

0.7003 

s. ERROR 

1.587 

1.718 

2.215 

4.805 

2.813 

S. ERROR 

0 .1468 

1 

PREV. ESTIMATE 

PREV. ESTIMATE 

0.3972 

PREV. ESTIMATE 
5.163 

4.574 

6.981 

16.8 

7.494 

PREV. ESTIMATE 

0.7004 
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2 
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3 

1 

1 

3 
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• 

FP2 
FP3 
FP4 
FPS 
save voting.vs 

1. 21 

1.676 

1.854 

1.696 

77433 spaces left on worksheet 

stop 

0.1337 

0.1434 

0.1705 

0.1343 

1.21 

1.676 

1.854 

1.696 

By default there are five iteration steps. Convergence is not achieved after these five iterations. 

Iteration six is done after specifying the NEXT command. From the output given after specifyng 

the RAND and the FIXE commands respectively it is clear that convergence is achieved.The 

variable NCO NV gives the number of steps at which the specific estimate has achieved conver­

gence. 
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12 Appendix B 

12.1 SAS Program with Description 

The following SAS program is used to fit the models described is Sections 3.3, 3.4 and 3.5 

PR0C IML; 

number=" "; 

msg=" "; 

window lookup color='gray' cmndline=cmnd msgline=msg group=grp 

#2 "type the number of the model wanted:" 

#3 "1=logit" 

#4 "2=cumulative logit" 

#5 "3=McCullagh's model" 

#6 "number:" number 

#8 "enter exit on the command line to exit"; 

create lookup var{number}; 

display lookup.grp; 

if cmnd="exit" then append; 

window close=lookup; 

•DATA; 

G={1142 610 329, 

1501 962 493, 

882 447 280, 

739 368 264}; 

R=NRO"W(G); 

C=NC0L(G); 

if number='1' then do; 

Z={1 1 1, 

1 1 -1, 

1 -1 1, 

1 -1 -1}; 

X=Z©I(C-1); 

A=I(C); 

K={1 0 -1,0 1 -1}; 

end; 

if number='2' then do; 

2={1 1 1, 

1 1 -1, 

1 -1 1, 

1 -1 -1}; 

X=Z©I(C-1); 

A={ 1 0 0,0 1 1,1 1 0,0 

K={1 -1 0 0,0 0 1 -1}; 

0 1}; 

80 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

end; 

if number='3' then do; 

Z={1 0 0 11,010 11,001 1 1, 

1 0 0 1 -1,0 1 0 1 -1,0 0 1 1 -1, 

1 0 0 -1 1,0 1 0 -1 1,001 -1 1, 

1 0 0 -1 -1,0 1 0 -1 -1,0 0 1 -1 -1}; 

X=Z; 
A={ 1 0 0,0 1 1,110,001}; 

K={1 -1 0 0,0 0 1 -1}; 

end; 

QS=(C-1)•R; 

SINV=J(QS,QS,0); 

HS=J(C,C-1,0); 

F=J(QS,1,0); 

FF=J(QS,1,0); 

•VECTOR OF PROBABILITIES; 

P1=G [ ,+]; 

P2=G/(P1•REPEAT(1,1,C)); 

P=SHAPE(P2,C•R,1); 

•VECTOR OF RESPONSE FUNCTIONS; 

DO SS=1 TOR; 

LL=( (SS-1)•C)+1; 

UL=SS•C; 
ML=((SS-1)•(C-1))+1; 

KL=SS•(C-1); 

PS=P[LL:UL, ] ; 

FS=K•LOG(A•PS); 

FF[ML:KL, ] =FS; 

END; 

DO ITER=1 TO 15; 

•COVARIANCE MATRIX OF VECTOR OF PROBABILITIES; 

S1=J(C,C,1); 

S2=INV(DIAG(P1)); 

V=(DIAG(P)-P•P')#(S2©S1); 

•COVARIANCE MATRIX OF VECTOR RESPONSE FUNCTIONS; 

DO SS=1 TOR; 

LL=((SS-1)•C)+1; 

UL=SS•C; 

ML=((SS-1)•(C-1))+1; 

KL=SS•(C-1); 

PS=P [LL :UL, ] ; 

VS=V[LL:UL,LL:UL]; 

FS=FF[ML:KL, ]; 

EPS=.1E-6; 
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DO L=1 TO C; 
PS[L, ]=PS[L, ]+EPS; 
FDS=K•LOG(A*PS); 
HS[L, ]=(FDS-FS)'/EPS; 
PS[L, ]=PS[L, ]-EPS; 

END; 
SINV[ML:KL,ML:KL]=INV(HS'•VS•HS); 

END; 

•ESTIMATING BETA; 
COV=INV(X'•SINV•X); 
BHAT=COV•X'•SINV•FF; PRINT BHAT; 

•OBTAIN A NE'W P; 
IF NUMBER='1' THEN DO; 

VECT=EXP(X•BHAT); 
PI=J(R,C,O); 
DO J=1 TOR; 

ML=((J-1)•(C-1))+1; 
KL=J•(C-1); 
VT=VECT[ML:KL,]; 
TOTL=VT[+, ] ; 
PII=1/(TOTL+1); 
DO I=1 TO (C-1); 

PI[J,I]=PII•VT[I, ]; 
END; 

PI[J ,C]=PII; 
END; 

END; 
IF (NUMBER='2'1 NUMBER='3') THEN DO; 

VECT=EXP(X•BHAT); 
PI=J(R,C,O); 
DO J=1 TOR; 

ML=((J-1)•(C-1))+1; 
KL=J•(C-1); 
VT=VECT[ML:KL,]; 
DO I=1 TO (C-1); 

PROP=VT[I, ]; 
PII=PROP/(PROP+1)-PI[J,+]; 
PI [J, I] =PII; 

END; 
PI[J,C]=1-PI[J,+]; 
END; 

END; 
P=SHAPE(PI,C•R,1); 

END; 

•OTHER OUTPUT; 
VECCOV=VECDIAG(COV); 
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SE=SQRT(VECCOV); 
FEST=X•BHAT; 
RESID=FF-FEST; 
NPAR=NCOL(X); 

DF=J(NPAR,1,1); 
SSLB=J(NPAR,1,O); 
PAR=J(NPAR,1,O); 
\lH=J(NPAR,1,O); 

DO NP=1 TO NPAR; 
PAR[NP, ]=NP; 

L=J(1,NPAR,O); 
L[ ,NP]=1; 

LB=L•BHAT; 
SSLB[NP, ]=LB'•INV(L•COV•L')•LB; 

\lH[NP, ]=1.O-PROBCHI(SSLB[NP, ],1); 

IF \lH[NP, ]<= .1E-3 THEN \lH[NP, ]=.1E-3; 

L[ ,NP]=O; 

END; 

•PRINT RESULTS; 
COLN4={"PARAMETER" "DF" "ESTIMATE" "CHI-SQ" "PROB" "STD"}; 

COLN5={"ACTUAL" "PREDICTED" "RESIDUAL"}; 

SUMSTAT=PARI IDFI IBHATI ISSLBI IWHI ISE; 

PRINT,'ANALYSIS OF RESULTS'; 

PRINT SUMSTAT [COLNAME=COLN4]; 

DESIGN=FFI IFESTI IRESID; 

PRINT,'RESPONSE FUNCTION'; 
PRINT DESIGN [COLNAME=COLN5]; 

run; 

Description 

Step 1 

The user is prompted with a window from which the model to be fitted is chosen. 

Step 2 

The data is entered in the form of a matrix called G. According to the model chosen to be fitted 

a design matrix X is calculated. These design matrices are as described in Sections 3.3, 3.4~ and 

3.5 respectively. Two matrices A and K are also entered according to the model chosen to be 

fitted. These two matrices will be used to calculate the specific vector of response functions. 

Step 3 

The vector of probabilities is calculated analogous to the vector pin Section 3.1. 

Step 4 
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The vector of response functions is calculated. For each value of S S the vector of response 

functions of subpopulation SS is calculated. All these vectors are then combined to form the 

vector with all the response functions, which is called FF in the program. 

Within a IT ER-loop steps 5 to 8 are repeated to obtain /3r iteratively: 

Step 5 

The covariance matrix V of the vector of probabilities is calculated 

Step 6 

The covariance matrix of the vector of response functions is calculated according to the theory 

described in Section 3.6.1. For each value of S S, the covariance matrix for the vector ofresponse 

functions for subpopulation S Sis calculated. For subpopulation S S, the matrix 6 is calculated 

as HS', the derivatives being obtained numerically. VS is the specific covariance matrix for the 

probabilities of subpopulation SS. The matrix SINV contains the inverse covariance matrices 

of the vectors of response functions for all the subpopulations. 

Step 7 

The estimate of the vector of unknown parameters is calculated as BHAT 

Step 8 

In this step, a new vector of probabilities is obtained. Again this is done according to the model 

chosen to be fitted. If it is the logit model (number = '1' ) the algorithm is: 

For each value of J , the three probabilities (c = 3) of subpopulation J is obtained. 

TOTL = P11 + P12 = 1 - P13 

so that 

Then 

for I = l, P11 is obtained as Pt3 * lli 
Pl3 

and for 

I = 2, P12 is obtained as p13 * fil 
Pl3 

PI3 PI3 Pl3 

PII = Pl3 

The matrix PI contains the probabilities of all the subpopulations 

If the cumulative logit model or ~lcCulla.gh's model was fitted (number=' 2' or number=' ~J') 

the algorithm is: 
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For each value of J, the probabilities of subpopulation J is calculated. For example, if each 

subpopulation has three probabilities (C = 3) then for subpopulation 1: 

For I= l , 

PROP 

PII 

For I= 2, 

PROP 

PII 

After the /-loop, 

P11 

P12 + P13 

( 
PI 1 P12 + P13 ) O 

P12 + P13 * P11 + P12 + P13 -

P11 

P11 + P12 

P12 

(
P11 + P12 P13 ) ---- * ------ - P11 

P13 P11 + P12 + p13 

P12 

PI3 = l - (Pu + P12) 

The matrix PI contains the probabilities of all the subpopulations. 

After obtaining PI the vector P of new probabilities is obtained by shaping the matrix PI. This 

is also the encl of the steps within the ITER-Ioop. This new vector of probabilities is now used 

to calculate a new BHAT . This process is repeated until convergence for BHAT is achieved 

(it is assumed that convergence will be achieved after 15 iterations in this case). 

Step 9 

Estimated response functions a.re obtained, and residuals are calculated. To test the significance 

of each estimated parameter the \Vaid statistic with a p-value is obtained within the N P-Ioop. 

Step 10 

Th~ results are printed. 
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13 Appendix C 

13.1 SAS Programs with Description 

The following SAS program is used to obtain an initial value for T. 

•OBTAIN STARTING VALUES FORT WHERE PHI=T•T'; 

PRDC IML; 

•DATA; 

DAT={67 26 19, 

90 46 29, 

50 36 13, 

43 10 9, 

20 8 5, 

26 28 11, 

8 9 5, 

14 6 4, 

129 38 29, 

155 93 44, 

100 57 24, 

70 48 18, 

71 30 15, 

107 44 37, 

48 25 14, 

67 27 16, 

245 275 116, 

245 297 136, 

146 138 70, 

93 100 76, 

104 40 34, 

120 103 41, 

91 34 22, 

61 27 31, 

65 31 22, 

180 88 55, 

145 39 46, 

183 63 51, 

309 115 51, 

370 163 57, 

158 56 38, 

101 38 20, 

45 25 5, 

61 45 20, 

30 23 10, 

22 8 8, 

8G 
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38 9 10, 
71 25 29, 

58 14 14, 
47 22 16, 

49 13 24, 

76 30 34, 

48 16 25, 

38 19 15}; 
SUB=4; 

R=NROW(DAT); 
C=NCOL(DAT); 
LEVEL2_N=R/SUB; 

*DESIGN; 
Z={1 1 1, 

1 -1 1, 

1 1 -1, 

1 -1 -1}; 

X=Z<H(C-1); 
RX=NROW(X); 
CX=NCOL(X); 

*TRANSFORMATION; 
A={ 1 0 0, 

0 1 1, 

1 1 0, 

0 0 1}; 
K={1 -1 0 0, 

0 0 1 -1}; 

QS=(C-1)*SUB; 
SINV=J(QS,QS,O); 
HS=J(C,C-1,0); 
F=J(QS,1,0); 
FF=J(QS*LEVEL2_N,1,0); 

*VECTOR OF PROBABILITIES; 
P1=DAT[ ,+]; 

P2=DAT/(P1*REPEAT(1,1,C)); 
P=SHAPE(P2,C*R,1); 

*COVARIANCE MATRIX OF VECTOR OF PROBABILITIES; 
START COVAR; 

S1=J(C,C,1); 
S2=INV(DIAG(P1)); 
V=(DIAG(P)-P*P')#(S2©S1); 

FINISH; 
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START LIM1; 
LL=((SS-1)•C)+1; 
UL=SS•C; 
ML=((SS-1)•(C-1))+1; 
KL=SS•(C-1); 
PS=PP[LL:UL, ]; 
VS=ES[LL:UL,LL:UL]; 
FS=K*LOG(A•PS); 

FINISH; 

START LIM2; 
DD=(I-1)•(C-1)•SUB+1; 
EE=(C-1)•SUB•I; 
OO=((I-1)•(C•SUB))+1; 
BB=I•C•SUB; 
PP=P[OO:BB,]; 
ES=V[OO:BB,OO:BB]; 

FINISH; 

•COVARIANCE MATRIX OF VECTOR OF RESPONSE FUNCTIONS; 
START RESP; 

DO SS=1 TO SUB; 
RUN LIM1; 
EPS=.1E-6; 
DO L=1 TO C; 

PS[L, ]=PS[L, ]+EPS; 
FDS=K•LOG(A•PS); 
HS[L, ]=(FDS-FS)'/EPS; 
PS[L, ]=PS[L, ]-EPS; 

END; 
SINV[ML:KL,ML:KL]=INV(HS'•VS•HS); 

END; 
FINISH; 

•FIXED F WITHIN EACH LEVEL; 
RUN COVAR; 
DO I=1 TO LEVEL2_N; 

RUN LIM2; 
DO SS=1 TO SUB; 

RUN LIM1; 
F[ML:KL, ]=FS; 

END; 
FF[DD:EE]=F; 

END; 

•BHAT; 
BETA=J(LEVEL2_N,CX,O); 
DO I=1 TO LEVEL2_N; 

RUN LIM2; 
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RUN RESP; 
FFF=FF(]DD:EE]); 

BHAT=INV(X'•SINV•X)•X'•SINV•FFF; 

BETA[!, ]=BHAT'; 

END; 
JJ=J(LEVEL2_N,1,1); 

S=((BETA'•(I(LEVEL2_N)-(JJ•JJ')/LEVEL2_N)•BETA)/(LEVEL2_N-1)); 

U=ROOT(S); 

T=U'; 

LRINT T; 

Description 

Step 1 

The data is entered in the form of a matrix called DAT. The expression SCB=4 denotes the 

number of subpopulations, in this case 4. The number of level 2 units is calculated as LEVEL2-

N. The design matrix Xis calculated in the case of the cumulative logit model, and two matrices 

A and K are entered which will be used to calculate the vector of response functions. 

Step 2 

The vector of probabilities for matrix DAT is calculated as the vector P. 

Step 3 

The vector of response functions is calculated. For each value of J the vector of response 

functions of all the subpopulations within the /-th level 2 unit is obtained. The vector with all 

the response functions is called FF. 

Step 4 

For each level 2 unit, /3 is obtained as BHAT. For each value of I the inverse covariance matrix 

of the vector of response functions for the /-th level 2 unit is calculated as the matrix SINV 

( see the description of the program in Appendix B ). At the end of the /-loop. the matrix BETA 

contains rowwise all the BHAT vectors which were obtained for each level 2 unit. 

Step 5 

The matrix S 1s obtained according to ( 4.1.14). From S the lower triangular matrix T 1s 

obtained. 

The following SAS program is used to fit the multilevel model described in Section .. 1. 1. 

PROC IML; 

•DATA; 
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DAT={ 67 26 19, 

90 46 29, 

50 36 13, 

43 10 9, 

20 8 5, 

26 28 11, 

8 9 5, 

14 6 4, 

129 38 29, 

155 93 44, 

100 57 24, 

70 48 18, 

71 30 15, 

107 44 37, 

48 25 14, 

67 27 16, 

245 275 116, 

245 297 136, 

146 138 70, 

93 100 76, 

104 40 34, 

120 103 41, 

91 34 22, 

61 27 31, 

65 31 22, 

180 88 55, 

145 39 46, 

183 63 51, 

309 115 51, 

370 163 57, 

158 56 38, 

101 38 20, 

45 25 5, 

61 45 20, 

30 23 10, 

22 8 8, 

38 9 10, 

71 25 29, 

58 14 14, 

47 22 16, 

49 13 24, 

76 30 34, 

48 16 25, 

38 19 15}; 

R=NRDW(DAT); 

C=NCDL(DAT); 

SUB=4; 

LEVEL2_N=R/SUB; 
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•DESIGN; 
Z={1 1 1, 

1 -1 1, 

1 1 -1, 
1 -1 -1}; 

X=Z©I(C-1); 

RX=NROW(X); 

CX=NCOL(X); 

•TRANSFORMATION; 

A={ 1 O 0, 

0 1 1, 

1 1 0, 

0 0 1}; 

K={1 -1 0 0, 

0 0 1 -1}; 

QS=(C-1)•SUB; 

QSS=(C-1)•SUB•LEVEL2_N; 

VI=J(QS,QS,O); 

COVFF=J(QSS,QSS,O); 

HS=J(C,C-1,0); 

F=J(QS,1,0); 

FF=J(QS•LEVEL2_N,1,0); 

T={0.2894001 0 

0.1146744 0.2264962 

0 

0 

0 

0 

-0.006596 -0.009131 0.0985589 0 

-0.034332 0.0528294 0.0323078 0.1233098 

0 

0 

0 

0 

0, 

0, 

0, 

0, 

-0.000395 0.0211859 0.0159665 -0.000749 0.0645968 0, 

-0.051754 0.0658845 0.0102423 0.0342904 -0.028799 0.1036737}; 

CXX=0.5•CX•(CX+1); 

RXX=0.5•RX•(RX+1); 

SVECYY=J(RXX,LEVEL2_N,O); 

G=J(CXX,1,0); 

H=J(CXX,CXX,0); 

STOOR=J(CXX,CXX,O); 

•VECTOR OF PROBABILITIES; 

P1=DAT[ ,+]; 

P2=DAT/(P1•REPEAT(1,1,C)); 

P=SHAPE(P2,C•R,1); 

•COVARIANCE MATRIX OF VECTOR OF PROBABILITIES; 

START COVAR; 

S1=J(C,C,1); 

S2=INV(DIAG(P1)); 

V=(DIAG(P)-P•P')#(S2©S1); 

FINISH; 
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START LIM1; 
LL=((SS-1)•C)+1; 
UL=SS•C; 
ML=((SS-1)•(C-1))+1; 
KL=SS•(C-1); 
PS=PP[LL:UL, ]; 
VS=ES[LL:UL,LL:UL]; 
FS=K•LOG(A•PS); 

FINISH; 

START LIM2; 
DD=(I-1)•(C-1)•SUB+1; 
EE=(C-1)•SUB•I; 
OO=((I-1)•(C•SUB))+1; 
BB=I•C•SUB; 
PP=P[OO:BB,]; 
ES=V[OO:BB,OO:BB]; 

FINISH; 

•COVARIANCE MATRIX OF VECTOR OF RESPONSE F1JNCTIONS; 
START RESP; 

DO SS=1 TO SUB; 
RUN LIM1; 
EPS=.1E-6; 
DO L=1 TO C; 

PS[L, ]=PS[L, ]+EPS; 
FDS=K•LOG(A•PS); 
HS[L, ]=(FDS-FS)'/EPS; 
PS[L, ]=PS[L, ]-EPS; 

END; 
VI[ML:KL,ML:KL]=HS'•VS•HS; 

END; 
FINISH; 

•FIXED F WITHIN EACH LEVEL; 
RUN COVAR; 
DO I=1 TO LEVEL2_N; 

RUN LIM2; 
DO SS=1 TO SUB; 

RUN LIM1; 
F [ML: KL, ]=FS; 

END; 
FF[DD:EE]=F; 

END; 

•XISTER; 
XISTER=J(0.5•RX•(RX+1),O.5•CX•(CX+1),O); 
IJ=O; 
DO IL=1 TO RX; 
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DO JL=1 TO IL; 
IJ=IJ+1; 
KL=O; 
DO KK=1 TO CX; 

DO LL=1 TO KK; 
KL=KL+1; 
IF KK=1 THEN XISTER[IJ,KL]=X[IL,KK]*X[JL,KK]; 

ELSE DO; 
IF LL=KK THEN XISTER[IJ,KL]=X[IL,KK]*X[JL,LL]; 

ELSE XISTER[IJ,KL]=X[IL,KK]*X[JL,LL]+X[IL,LL]*X[JL,KK]; 

END; 

END; 
END; 

END; 
END; 

*'W-INVERSE; 
START 'WINVE; 

RXI=RX*(RX+1)/2; 

WINV=J(RXI,RXI,0); 

IJ=O; 
DO ILOOP=1 TO RX; 

DO JLOOP=1 TO !LOOP; 

IJ=IJ+1; 
CDIJ=1.0; 
IF ILOOP=JLOOP THEN CDIJ=0.5; 

KL=O; 

DO KLOOP=1 TO RX; 

VIK=COVF[ILOOP,KLOOP]; 

VJK=COVF[JLOOP,KLOOP]; 

DO LLOOP=1 TO KLOOP; 
KL=KL+1; 

CDKL=2.0; 

IF KLOOP=LLDOP THEN CDKL=1.0; 

WINV[IJ,KL]=CDIJ*CDKL*(VIK*CDVF[JLOOP,LLOOP] 
+COVF[ILOOP,LLOOP]*VJK); 

WINV[KL,IJ]='WINV[IJ,KL]; 

END; 

EHD; 
END; 

END; 
FINISH; 

DO ITER=1 TO 6; 

*BHAT; 
XVX=J(CX,CX,O); 

XVF=J(CX,1,0); 

RUN COVAR; 
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PHI=T*T'; 
DO I=l TO LEVEL2_N; 

RUN LIM2; 
RUN RESP; 
COVF=INV(VI+X*PHI*X'); 
COVFF[DD:EE,DD:EE]=COVF; 
XVX=XVX+X'*COVF*X; 
FFF=FF[DD:EE]; 
XVF=XVF+X'*COVF*FFF; 

END; 
BHAT=INV(XVX)*XVF; PRINT BHAT; 

*PHI; 
RXI=RX*(RX+l)/2; 
WINVV=J(RXI*LEVEL2_N,RXI*LEVEL2_N,O); 
STQ=O; 
PHI=T*T'; 
SVECP=SYMSQR(PHI); 
YHATST=XISTER*SVECP; 
DO I=l TO LEVEL2_N; 

DD=(I-1)*(C-1)*SUB+1; 
EE=(C-l)*SUB*I; 
COVF=COVFF[DD:EE,DD:EE]; 
FFF=FF[DD:EE]; 
FSTAR=(FFF-X*BHAT)*(FFF-X*BHAT)'; 
SVECY=SYMSQR(FSTAR); 
SVECYY[ ,I]=SVECY; 
RUN WINVE; 
STQ=STQ+(SVECY-YHATST)'*WINV*(SVECY-YHATST); 

END; 
Q=STQ; 
NEWQ=O; 
Jl=J(CX,CX,O); 
J2=J(CX,CX,O); 
DO ITE=l TO 15 WHILE(ABS(Q-NEWQ)>EPS); 

IJJ=O; 
PHI=T*T'; 
SVECP=SYMSQR(PHI); 
YHATST=XISTER*SVECP; 
*CALCULATE G; 
DO K1=1 TO CX; 

DO 11=1 TO Kl; 
ST1=O; 
IJJ=IJJ+1; 
J 1[K 1 , L1] = 1 ; 

J2 [11 , K 1] = 1 ; 
DIFF=SYMSQR(J1*T'+T*J2); 
DO !=1 TO I.EVEL2_N; 

DDD=(I-1)*RXI+1; 
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EEE=RXI*I; 
RUN LIM2; 
RUN RESP; 
COVF=INV(VI+X*PHI*X'); 

COVFF[DD:EE,DD:EE]=COVF; 
SVECY=SVECYY[ ,I]; 
RUN \HNVE; 

WINVV[DDD:EEE,DDD:EEE]=WINV; 

ST1=ST1+(SVECY-YHATST)'*WINV*XISTER*DIFF; 

END; 
G[IJJ, ]=-2*ST1; 
J1 [Kl ,11]=0; 
J2[L1,K1]=0; 

STOOR[ ,IJJ]=DIFF; 

END; 
END; 

*CALCULATE H; 
DO K2=1 TO CXX; 

DO 12=1 TO CXX; 

J3=STOOR[ ,K2]; 

J4=STOOR [ , 12] ; 

ST2=0; 
DO 1=1 TO LEVEL2_N; 

DDD=(I-1)*RXI+1; 

EEE=RXI*Ii 

WINV=WINVV[DDD:EEE,DDD:EEE]; 

ST2=ST2+(XISTER*J3)'*WINV*(XISTER*J4); 

END; 
H[K2,L2]=2*ST2; 

END; 
END; 

*OBTAIN Q; 

STQ=O; 
DO I=1 TO LEVEL2_N; 

DDD=(I-1)*RXI+1; 

EEE=RXhI; 

WINV=WINVV[DDD:EEE,DDD:EEE]; 

SVECY=SVECYY[ ,I]; 

STQ=STQ+(SVECY-YHATST)'*WINV*(SVECY-YHATST); 

END; 

Q=STQ; 

DELTA=-INV(H)*G; 
NEWDEL=J(CX,CX,O); 

B=1; 

DO II=1 TO CX; 

DO JJ=1 TO II; 

NEWDEL[II,JJ]=DELTA[B,1]; 
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B=B+l; 
END; 

END; 
NEW'T=T+NE'WDEL; 

•OBTAIN NEW' Q; 
STNQ=O; 
PHI=NEW'T•NEW'T' ; 

SVECP=SYMSQR(PHI); 

YHATST=XISTER•SVECP; 

DO I=l TO LEVEL2_N; 

RUN LIM2; 

RUN RESP; 

COVF=INV(VI+X•PHI•X'); 

SVECY=SVECYY[ ,I]; 

RUN W'INVE; 

STNQ=STNQ+(SVECY-YHATST)'•W'INV•(SVECY-YHATST); 

END; 
NEW'Q=STNQ; 

T=NEW'T; 
GGG=ABS(Q-NEW'Q); 

END; PRINT PHI; 

•P FROM BHAT; 

VECT=EXP(X•BHAT); 

PI=J(SUB,C,O); 

DO J=1 TO SUB; 
ML=((J-l)•(C-1))+1; 

KL=J•(C-1); 

VT=VECT[ML:KL,]; 

DO II=1 TO (C-1); 

PROP=VT[II, ]; 

PII=PROP/(PROP+l)-PI[J,+]; 

PI [J, II] =PII; 

END; 
PI[J,C]=1-PI[J,+]; 

END; 

P=SHAPE(PI,C•R,1); 

END; 

Description 

Step 1 to Step 3 are as described previously with the entering of the matrix T as obtained ill 

the previous program. 

Step 4 

The matrix X* ( c.f. (4.1.6)) is obtained as the matrix XISTER. The algorithm used minimizes 
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computer runtime. This method eliminates the need for calculating the matrices H and G. 

Within an IT ER-loop steps 5 to 7 are repeated (/3 and <I, is obtained iteratively): 

Step 5 

/3 is obtained as the matrix BHAT according to expression ( 4.1.3). The design matrix Xi in 

the expression is the matrix X in the program, and :E;- 1 is COVF in the program. 

Step 6 

The matrix 4> or PHI in the program is obtained iteratively. The value of Q ( cf.( 4.1.8)) is ob­

tained, where y* is SVECY, y* is YHATST and W*- 1 is WINY in the program respectively. 

Within an IT E-loop the following is repeated: 

The vector G as described by expression ( 4. 1.10) is obtained. The matrix H is obtained as 

described by expression (4.1.11). A new value of Tis obtained by applying expression (4.1.12). 

This value is called NEWT. A new value of Q is obtained by substituting NEWT in expression 

( 4.1.8). The new value of Q is called NEWQ. These steps are repeated while the absolute 

difference between Q and NEWQ exceeds EPS which is equal to 10-6 • At the end of the loop 

PHI is obtained. 

Step 7 

The vector of ne\v probabilities P is obtained as described in step 8 of the SAS program in 

Appendix B. This new P is used to obtain a new BHAT etc. 

In this case j3 and ~ are obtained after 6 iterations ( convergence is obtained after 6 iterations). 

The number of iterations necessary for convergence will be different for each problem. 
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