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SUMMARY 

The aim of this study is to conduct a numerical investigation into 

mathematical models representing two physiological processes, both 

being examples of reaction-diffusion processes. The first of these 

processes comes from the field of population genetics when two types 

of individuals are allowed to mate at random. The governing equa­

tion of the relevant model is Fisher's equation [ 1] 

~ = a2u + f(u) . 
at ax2 

The second process comes from the field of neurobiology and concerns 

the conduction of an impulse in the nervous system, the principal 

model being the Hodgkin-Huxley system of differential equations [45] 

with simplifications due to FitzHugh [28] and Nagumo, Arimoto and 

Yoshizawa [641. 

Chapter 1 is an introductory chapter, introducing the reader to reaction­

diffusion equations, mathematical modelling in general and giving an ex­

position as to the purpose of the present study. 

In Chapter 2 the relevant two physiological processes are discussed and a 

description is given of the construction of the mathematical models which 

represent these processes respectively. Assumptions are motivated and 

refinements to the original models are discussed. 

In Chapter 3 a general system of reaction-diffusion equations is given, 

of which the governing equations of the various models are particular 

examples. A literature survey is then presented which covers both the 

pure analytical results and numerical results available on the various 

models. 
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In Chapter 4 a numerical study is conducted on Fisher's equation, 

using the Finite Element method. The numerical results are assessed 

with reference to the available analytical results quoted in the pre­

ceding chapter. The study concentrates on three aspects, namely the 

stability ofsolutions,the asymptotic speed of propagation and the 

convergence to wave. fronts. 

In Chapter 5 a numerical study is conducted on the Hodgkin-Huxley 

model and it's simplifications, namely Nagumo's model, the Fitz-
\ 

Hugh-Nagumo model and the BVP model. The initiation of travelling 

wave solutions and the effect of initial and boundary data is investi-

gated. Speed diagrams are constructed for both Nagumo's model and 

the Hodgkin-Huxley model. Aspects such as the relationship between 

stimulus strength and pulse speed and the one-to-one correspondence 

between stimuli and impulses initiated are investigated. 

We conclude the study in Chapter 6 with an overview of the present 

investigation. 

1 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

( i V) 

OPSOMMING 

Die doel van hierdie studie is om 'n numeriese ondersoek te doen na 

wiskundige modelle wat twee fisiologiese prosesse verteenwoordig, albei 

voorbeelde van reaksie-diffusie!prosesse. · Die eerste proses kom uit die 

gebied van bevolkingsgenetika wanneer twee tipes individue gelaat word 

om lukraak te paar: Die beheervergelyking van die betrokke model is 

Fisher se vergelyking [1] 

Die tweede proses kom uit die gebied van neurobiologie en het betrekking 

op die geleiding van 'n impuls in die senuweestelsel. Hier is die be­

langrikste model die Hodgkin-Huxley-stelsel van differensiaalvergelykings 

[45], met vereenvoudigings deur FitzHugh (28] en Nagumo, Arimoto en 

Yoshizawa [ 64] . 

Hoofstuk 1 is 'n inleidende hoofstuk en stel die leser bekend aan reaksie­

diffusievergelykings en wiskundige modellering in die algemeen en gee 'n 

uiteensetting van die doel van hierdie studie. 

In Hoofstuk 2 word die betrokke twee fisiologiese prosesse bespreek en 'n 

beskrywing word gegee van die konstruksie van die wiskundige modelle wat 

die twee prosesse verteenwoordig. Aannames word gemotiveer en verfynings 

van die oorspronklike modelle word bespreek. 

In Hoofstuk 3 word 'n algemene stelsel van reaksie-diffusie·vergelykings 
I 

beskou, waarvan die beheervergelykings van die verskillende modelle spesi-

fieke voorbeelde is. 'n Literatuuroorsig word dan aangebied wat beide die 

beskikbare suiwer analitiese sowel as numeriese resultate dek. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

(v) 

In Hoofstuk 4 word 'n numeriese studie op Fisher se vergelyking gedoen 

deur die Eindigelementmetode te gebruik. Die numeriese oplossings word 

benader met verwysing na die beskikbare analitiese resultate wat aange­

haal is in die voorafgaande ~oofstuk. Die studie 1~ klem op veral drie 

aspekte, naamlik die stabiliteit van oplossings, die asimptotiese 

voortplantingsspoed en die konvergensie na golffronte. 

In Hoofstuk 5 word 'n numeriese studie gedoen op die Hodgkin-Huxley-

model en sy vereenvoudigings, naamlik Nagumo se ~odel, die FitzHugh-

Nagumo-model en die BVP-model. Die inisiering van bewegende golfoplossings 

en die effek van begin- en randgegewens hierop word ondersoek. Spoed­

diagramme word opgestel vir beide Nagumo se model en die Hodgkin-Huxley­

model. Aspekte soos die verband tussen stimulussterkte en pulsspoed en die 

een-een-duidige verband tussen stimuli en impulse wat geinisieer word, word 

ondersoek. 

Die werk word afgesluit in Hoofstuk 6 met 'n oorsig van hierdie studie. 
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CHAPTER 1 

INTRODUCTION 

1.1. Reaction-Diffusion problems in physiology 

In fields such as physiology, biology or chemistry the con­

cepts of interaction (reaction) between species and diffusion 

in a process are common phenomena. 

The term species describes in general the individuals active 

during the process - genotypes in models from population ge­

netics, chemical substances in reaction kinetics or taxonomic 

species in ecological problems. Diffusion is the term descri­

bing the movement of particles - random flow of genes in 

population genetics or active migration of individuals or flow 

of charge in nerve conduction models. Reaction in the medium 

refers to processes such as chemical reactions, reproduction 

processes or deaths in biological population or ion transfer 

across the membrane of the nerve. 

Reaction and diffusion in a process lead, in many cases, to a 

mathematical description by a system of non-linear second order 

partial differential equations of the form 

where ~(~ 1 t) is a vector which defines the state of the system 

at a given point~ and time t. The non-linear function F de­

scribes the reaction of the system while the diffusion enters 

via the term D V2 u where D is a matrix with non-negative entries 

and V2 the Laplacian. 

An indication of the importance of equations of this type is the 
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wide range of excitable media which can be modelled by a sys­

tem of reaction-diffusion equations. A few examples are; models 

for the cardiac muscle, spread of epidemics, travelling bands of 
' 

bacteria, concentration fronts in chemical reactor theory and 

quench front problems in water-cooled reactors [ 14, 32, 34, 62, 

63, 87]. 

The first of two examples of reaction-diffusion processes which 

will be investigated in the present study comes from the field of 

population genetics when two types of individuals are allowed to 

mate at random [ 1, 26, 27]. The other example comes from the 

field of neurobiology and concerns the process of conduction of 

a nerve impulse along a nerve fibre [44, 45]. 

1.2. Progress in mathematical modelling 

The concept of a mathematical model for a physical process is a 

very old one, mathematicians have been busy constructing mathe­

matical models for various processes for the past few centuries. 

A mathematical model in physiology is a translation of classical 

physiological concepts in a more definite and logical language 

than one composed of words alone (29]. In doing so one hopes 

that the mathematical formulation will give a clearer indication 

of the degree of dependence of the process on the various para­

meters included in the model. The basic dynamic relationships 

between the variables of state, exhibited by the model, should 

explain the working of the process as clearly as possible. Re­

sults obtained from a model should quantitatively, as well as 

qualitatively, agree with experimental evidence. In this way, 

conclusions of greater generality may be made with greater con­

fidence. 
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Some authors have indicated [ 41] that mathematical models of 

physiological processes are not usually received with enthusi­

asm by ~he general physiologists. This attitude on the part 

of the physiologists can be explained by the fact that con­

struction of an adequate model for an intricate physiological 

process is never easy and difficulties such as incomplete 

biological theory and lack of sufficient experimental data from 

which to determine all of the parameters in the model may lead 

to an inaccurate mathematical formulation. The aim of the 

scientist constructing the model is to do so in the simplest 

possible way while still retaining the most important features 

of the process. Once this aim has been reached, refinements 

may follow. 

A particular model in physiology which has a long and interes­

ting history and which is partly the subject of this study is 

that of the conduction of an impulse along the nervous system. 

Attempts to construct models of nerve cells date back more than 

150 years (44] but it is only since 1930 that serious attempts 

have been made to develop models of the mechanism which enables 

nerve fibres to carry messages about the bodies of men and 

animals. 

Two important facts had firmly been established by the end of 

the eighteenth century, namely, that nerves or muscles could 

be stimulated by electrical shocks and that some animals produce 

electricity. Hodgkin [44] in a book on impulse conduction men­

tions these and other interesting facts known for many centuries 

before our time. For example a fifth-dynasty Egiptian mural 

in a tomb at Sakkara (2600 B.C.) contains a clear representation 
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of Malapterurus, the electrical catfish. An amusing anecdote 

is that Scribonius, a Roman physician in the first century A.O., 

should have recommended the discharge of the Torpedo as a cure 

for gout, headaches and epilepsy. 

The study of electric fish showed that animals produce electrici­

ty, but the discovery of action currents of nerve and muscle had 

to wait for the development of suitable recording instruments. 

These experiments got underway during the 1930 s and reached a 

climax with the work of Hodgkin and Huxley [45) in 1952. 

In 1952 A.L. Hodgkin and A.F. Huxley concluded a series of papers 

concerning the flow of electrical current through the surface of 

the giant axon of the squid Loligo. They constructed the first 

relatively complete model of impulse transmission along the nerve 

membrane. 

Hodgkin and Huxley were awarded the Nobel Prize in 1963 for this 

remarkable achievement. Their work was highly acclaimed the 

world over as the brilliant combination of difficult experimen­

tal work and mathematical ingenuity. The construction of Hodg­

kin and Huxley's model was the climax of a long and interesting 

accumulation of knowledge of the nervous system throughout _his­

tory. 

Simplifications of the Hodgkin-Huxley model followed subsequently. 

The first of these appeared in 1961, called the BVP model and was 

due to R. FitzHugh [28]. Although this model does not match the 

voltage changes in the nerve quantitatively, as does the Hodgkin­

Huxley model, it does give a qualitative description. 

Two further simplifications followed, namely the FitzHugh-
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Nagumo model and the Nagumo model [64]. Although simpler in 

form, these models have no other advantage over the original 

model a·nd certainly cannot be seen as a substitute for the ori­

ginal model. 

The history surrounding the construction of the other example 

of a physiological model which will be studied here, comes from 

the field of population genetics and does not date back as far 

as that of the study of the nervous system. We pick up the 

history in 1937 when R.A. Fisher [271 published a paper concer­

ned with the construction of a model of the genetics of a popu­

lation consisting of two types of individuals, allowed to mate 

at random. Under assumptions on fertilities and mortalities a 

partial differential equation is constructed to describe tempo­

ral and spatial changes of the gene frequencies. 

The model describes the form of a steadily progressing wave of 

gene increase due to the local establishment of a favourable 

mutation. The resulting equation formulated in this historical 

paper is known today as Fisher's equation. It has been sugges-

1 

ted by Cohen in [l]that Fisher's equation is a model for a nerve 
I 

axon which has been treated with certain toxins, so that there 

may indeed be a connection between the two different models, 

although as considered here they originate from completely dif­

ferent fields. Subsequent refinements and extensions to the 

Fisher model are due to Aronson and Weinberger [ 1). Their work 

is not experimental but mathematical and more specifically con­

cerned with an assessment of the assumptions contained in the 

model, followed by results on existence and stability of solu­

tions to the model. 
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1.3. Purpose of the present study 

The purpose of the present study is to conduct a numerical in­

vestigation into the governing equations of the models of the 

two physiological processes introduced in the previous para­

graph. 

Although these models have been the subject of various papers 

up to the present moment, they have not yet been fully investi­

gated. In particular, very little work seems to have been done 

in applying numerical techniques to the analysis of these models. 

In this study the intention is to bring together, in one work, 

the rationale underlying ~he construction of the models them­

selves, a review of the most significant analytical and numeri­

cal results available in the literature to date, and to combine 

this with a systematic numerical study of features of the models 

which, as yet, have not been carried out. In doing the latter, 

extensive use of the Finite Element method is made. 

The task of a numerical study, such as presented here, is com­

plementary to that of the pure analyst. Where analytical solutions 

to the models do exist, it is both interesting and useful to 

verify these numerically and where analytical results do not 

exist, solutions should be determined numerically and the quali­

tative behaviour of these solutions should be investigated which, 

in turn then, can be verified analytically. Furthermore, a com­

parison between different numerical methods should be useful. 

To carry out the above in a meaningful manner it is therefore 

necessary to include in this study a description of the models, 

as well as a review of the most important available analytical 

and numerical results. 
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We start our study in Chapter 2 with a description of the two 

processes which are represented by the two models respectively. 

We discuss certain features of the processes; in the case of 

the model of population genetics the reader is introduced to 

the genetical background and in the case of the model of the 

nervous system the nature of the nerve along which conduction 

takes place and the changes in permeability of the nerve mem­

brane during an action potential are described. For both models 

the construction is discussed explicitly, pointing to assump­

tions made, the role of experimental data and the principles 

which lead to the governing partial differential equations. 

In Chapter 3 a general classification of the governing equa­

tions of the models is presented followed by a literature sur­

vey. This survey can be divided into two sections - firstly 

concerning pure analytical results such as existence, unique­

ness and stability of certain types of solutions and secondly 

concerning numerical results obtained from digital computer 

solutions. Deficiencies in our existing knowledge of the ana­

lysis of these models will be pointed out. 

In Chapter 4 a Finite Element scheme is constructed to solve 

Fisher's equation. Fisher's equation is studied numerically 

with the purpose of verifying and clarifying existing analyti­

cal results and possibly obtaining new information. Certain 

features of the model will be explained numerically to give 

more insight into the process. 

In Chapter 5 the Hodgkin-Huxley system is studied numerically. 

A Finite Element scheme is constructed for each of the simpli­

fied models and also for the full Hodgkin-H~xley system. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

8. 

Numerical solutions obtained for the models are then compared 

to existing results. Special attention is given to the boun­

dary and initial conditions required to initiate non-zero 

solutions. 

In Chapter 6 conclusions will be drawn from an overview of the 

present study. 
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CHAPTER 2 

MATHEMATICAL MODELS OF REACTION-DIFFUSION 

2.1. Introduction 

This chapter consists of a description of two physiological 

processes, each followed by an explanation of tne construction 

of the models which represent these processes respectively. 

The first of these concerns itself with population genetics 

ana the second with impulse transmission in the nervous system. 

2.2. Fisher's model 

2.2. 11. Introduction 

In this section we study the construction of Fisher's model of 

population genetics. A brief outline of the most important 

features of Fisher's classical paper of 1937 [27] is presented 

in § 2.2.2. The genetical background is given, the assumptions 

for the model are motivated and the construction of the model 

is explained. We then discuss a refinement of the model due 

to Aronson and Weinberger [l] and conclude the paragraph with 

a physical interpretation of certain features of the model. 

2.2.2. The original model 

Consider a population of allelomorphs distributed in a linear 

habitat such as a shoreline which it occupies with uniform den­

sity. If at any point of the habitat a mutation occurs and the 

circumstances are favourable we may expect the mutant gene to 

increase at the expense of the allelomorphs previously occupy­

ing the same position and there will be, advancing from the 

origin, a wave of increase in the intensity of the mutant gene. 
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The mathematical model is then constructed as follows: 

lJ Let x be the co-ordinate measuring position in the linear 

habitat and let t stand for time, measured in generations. 

2. If p(x,t) is the relative density of the mutant gene and 

q(x,t) the relative density of it's parent allelomorph, it 

follows that 

p(x,t) + q(x,t) = 1 

3. Suppose that the rate of increase of the density of the 

mutant gene is the sum of a source term and a diffusion term, 

the former due to the birth of mutant gene and the latter due 

to diffusion of population density. 

4. Restricting the argument, first of all, to the increase due 

to diffusion we consider an element, ox, of the shoreline 

and determine thP net influx into the element per unit time. 

► ox 

We assume the magnitude of the flux (mutants/time unit) 

across the boundary at any point x to be proportional to 

the concentration gradient. The exact relationship being 

¢ (x) = - k le I 
dX X 

where k is the so-called diffusion coefficient and is assumed 

to be constant for the particular species. Considering the 

flux at x and x + ox gives the net rate of increase in the 

·element due to diffusion as 
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a at {pox) = - k ~EI - {-k ~ I ) 
ax X . d.X X + ox 

=-kl.el +k~I +k~~jox +O(ox 2
) ax X ax X dX 2 X 

Therefore in the limit as ox ➔ 0 we have 

le (due to diffusion) 
I at {D) 

5. Suppose now that the source term is a quantity proportional 

to the densities p and q. This term is then given by the 

product rpq where r is the intensity of selection in favour 

of the mutant gene, supposed independent of p, i.e. 

~ {due to source)= rpq = rp(l-p) at {S) 

6. The sum of the diffusion term {D) and the source term {S) 

yields the governing equation of the system 

a2 n = k _::_c:_ + rp(l-p) 
ax 2 

(2.1 

7. Possible compli~ations such as unequal increase in population 

in opposite directions, position dependence of the diffusion­

coefficient k, variations in the density of the population and 

changes in the ability of the mutant gene to survive at a 

given place were ignored in the construction of equation (2.1) 

which therefore represents one of the simplest possible models 

8. As an example of how to treat such complications, consider un­

equal increase in population in opposite directions. Suppose 

that for a population disiributed along the shoreline at time 

t, in addition to the normal changes due to the diffusion and 

reaction, the distribution is moving to the right with con­

stant velocity m due to some external force. 
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The implication is that for an x-co-ordinate moving to the right 

with velocity m the changes in the distribution would occur as 

without the drift to the right. 

Let X = X - mt 

T = t 

then lE ~ ax + ~ aT = . 
at 

. 
at at ax aT 

= - m lE + ~ 
ax aT 

and ~ = a2p 
ax 2 ax 2 

Therefore 
ap a 2P ap -- = 

ax 2 - m - + p(l-p) aT ax 

The unequal drift therefore involves a first space derivative, 

which we call the drift term. 

2.2.3. Refinements to the model 

A more recent discussion of the same problem and a classifica­

tion of the various forms in which Fisher's equation may occur 

are given by Aronson and Weinberger [l]. They reformulat~ 

Fisher's problem as follows: Consider a population of deploid 

(two kinds of) individuals. Suppose that the gene at a specific 

locus in a particular chromosome pair occurs in two forms, cal­

led alleles, which we denote by a and A. The population is 

then divided into three classes or genotypes. Two of these 

consist of individuals called homozygotes which carry only one 

kind of allele.' The members of these classes are denoted by 

aa or AA, depending on the alleles they carry. The third class 

consists of individuals, called heterozygotes, which carry only 

one of each allele. These individuals are denoted by aA. 
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The following assumptions are made: 

1. Let the population be distributed in a one-dimensional habi­

tat. (For a treatment of the population genetics in a multi­

dimensional environment the reader is referred to [2]) .· 

The linear densities of the genotypes aa, aA and AA at 

the point x of the habitat at time t are denoted ~y 

p
2

(x,t) and p
3 
(x,t), respectively. Let 

p (x,t) = p
1 

(x,t) + p
2 

(x,t) + p
3 
(x,t). 

The situation is presented schematically as follows: 

Population 

I 
3 classes 

_____- I -----_ 
Homozygotes 

aa, 
density p (x,t) 

1 

Heterozygotes 
aA, 

density p (x, t) 
2 

Homo zygotes 
AA, 

density p (x,t) 
3 

~I~ 
Total density 

p (x It) 

X 

2. Assume now that the population mates at random, thereby 

producing offspring with an overall birth-rate (births per 

unit density per unit time) denoted by r, and that the 

population diffuses through the habitat with diffusion con­

stant 1. 

3. A further assumption is that the death-rates depend only on 

the genotype with respect to the alleles a and A. Denote 
I 

the death-rates of genotypes aa, aA and AA by t 
1 ' 

t and 
2 

"[ (deaths per unit density per unit time) , respectively. 
3 
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In general, these death-rates differ slightly, so that 

some genotypes are more viable than others. Reproduction by 

eel~ division can be incorporated into this model by adding 

negative quantities to the death-rates. Therefore no as-

sumption about the sign of T, is made. 
1 

4. At a given point x and time t: 

Rate of increase of p. = entry rate+ birth-rate - death-rate 
1 

(duet! diffusion) 
a2p. 

Entry rate of pi: ax; (as before in (D) of §2.2.2; here k = 1). 

Death rate of p.: T• p .. 
1 1 1 

Total rate of births: 

rp = 

= 

r [ p 2] -p 

r 
[ p 1 - + p 

rate of 

aa births 

p2 
2 + 

p2 
+ ] 2 

2 p 
3 

rate of aA birt~s rate of 

AA births 

(See Appendix A for an explanation of the genetics 

involved). 

Under the assumptions stated above the population densities 

satisfy the system of partial differential equations: 

ap 32p 
2r 

~p2)(p3+ 
1 2 2 

(pl + ) (2.2) at = --- T 
2P2 

+ - 2 p2 
3x 2 p ..... 

apg a2p 
r 1 3 

(p3 p 2) 2 at = ~ - T 3 p 3 + - + 2 p 
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Aronson and Weinberger [l] c9nsider the case where the deriva­

tives of the initial data are small, r very large and the 

quantity 

They show that under these conditions and for times which are 

small relative to £- 1 equations (2.2) may be approximated by 

the single equation 

dU a2 u 
at = ax2 + f (u) ( 2. 3) 

with 

f(u) = u(l - u) { (-r 1 - -r 2 ) (1- u) - (-r
3 

- -r
2
)u} 

' 
(2.4) 

and where u is the so-called relative density defined by 

u(x,t) = ( 2. 5) 

Equation (2.3) is generally referred to as Fisher's equation. 

It is clear .that the genetic composition of an isolated popula­

tion will not change with time if the population consists en­

tirely of individuals of either genotype -AA or genotype aa: 

The first case implies that p
1 

= p
2 

= 0 which in turn implies 

that u _ 1. It follows that f(u) = 0. In the second case 

p
2 

= P, - 0 which implies that u - 0. It follows again that 

f(u) = 0. In both cases a2u = 0 au and therefore at= 0 from 

which it follows that the composition does not change. 

Regardless of the values of -r. the function f(u) has the proper-
1 

ties: 

f(0) = f(l) = 0. 

Without loss of generality we can assume that -r 1 > -r
3 

since we 
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can always inte~change the labels a and A and hence the 

There are then three cases: 

This is called the heterozygote intermediate case. The rele-
. 

vant properties of the function fin (2.3) are 

f'(0) > 0, f(u) > 0 in (0,1) 

[See figure 2.l(i)] 

(2.6) 

This is the case which had been considered by Fisher [27] and 

Kolmogoroff et al [50]. 

Case 2 (T < T ~ T). 
2 3 1 

This is called the heterozygote superior case. 

properties of the function f in (2.3) are 

f ' ( 0) > 0, f ' ( 1) > 0, f ( u) > 0 in ( 0, a) , 

f(u) < 0 in (a,l) for some a e: (0,1) 

[See figure 2.l(ii)]. 

The relevant 

( 2. 7) 

This is called the heterozygote inferior case. The relevant 

properties of the function f in (2.3) are 

f ' ( 0) < 0, f ' (1) < 0, f ( u) < 0 in ( 0, a) , 

f ( u) > 0 in (a, 1) for some a £ ( 0, 1) 

1 
and J f(u)du > 0. 

0 

[ See figure 2 .1 (iii)]. 

(2.8) 
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Typical example functions to_ represent cases 1,2 and 3 are 

shown in Figure 2.1 below. 

(i) 

f (u) = u(l-u) 

T + T 
(T = 1 3) 

2 2 

f(u) (ii l 

u 

f(u) = u(l-u) (a-u) ,aE (0,1) 

I 

Figure 2.1 

f(u) (iii) 

1 f(u) =u(l-u) (u-a),.aE (0,2) 

l+T +-r
3 

(T = 1 ) 
2 2 

Questions immediately arising are: How does a given initial 

distribution of the allele AA evolve in time? Is the allele 

AA ultimately wiped out or does it persist and if so do both 

alleles coexist in an equilibrium distribution? 

In mathematical terms the problem is to determine the nature of 

the stability of the equilibrium states U:: 0, u :::1 and any 

others which may occur. This will be discussed in Chapter 3. 

2.'3.4. Interpretation of features of the model. 

In this paragraph we give a brief explanation of some of the 

features of the model and try to give preliminary answers to 

some of the questions in the preceding paragraph. 

The relative density was defined by Aronson and Weinberger [l] 

in equation (2.5): 

u(x,t) = 
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where p
1 
(x,t), p

2 
(x,t) and p

3 
(x,t) are the linear densities 

of the genotypes aa, aA and AA, respectively. From 

equation (2.4) and the facts that 

P
1 

(x,t) + p
2 

(x,t) + p
3 

(x,t) = p (x,t), 

p 
1 

( x , t ) > 0 , p 
2 

( x , t ) > 0 and p 
3 

( x ,· t ) > 0 we observe that 

u(x,t) = 0 ~ p :::z p 
2 3 

u(x,t) = 1 ~ p = p 
1 2 

= 0 

= 0 

and so the population consists only 

of the first genotype (aa). 

and so the population consists only 

of the third genotype (AA). 

u(x,t) 1 = 2 ~ The density of the second genotype (aA) attains a 

Graphically we represent this as follows: 

p 
--------1--------

1 
I 
I 
I 
I 
I 
I 
I 

Figure 2.2. 

Graphical representation 

of the relation between 

the densities p 
1 

, p 
2 

and p 3 • 

0 u 

The maximum height of p
2 

can vary between O and p. 

We next -look at the function f defined in (2.4) as 

where 

f ( U) = U ( 1 - U) { ( T 
1 

- T
2 

) ( 1 - U) - ( t 3 - T 2 ) U} 

and~ represent the death-rates of 
3 

AA respectively. 

aa, aA and 

For the particular examples of f pictured in Figure 2.1: 
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(i} f(u} = u(l-u}: 

It follows that T
1 

= T 2 + 1 

T = tr 1 
3 2 

(ii} f (u} = u ( 1-u} (a-u} : 

It follows that T
2 

= T
3 1 + a 

Tl = T 
3 

+ 2a - 1 

This satisfies 1;
2 

< T ~ T 
3 1 

1 only if a~ 2 

which implies f 1 f(u}du > 0. 
0 

(iii} f (u} = u ( 1-u} (u-a}: 

It follows that T
3 

= ~1 + 2a - 1 

This satisfies 

which implies J 1 f(u}du >o. 
0 

only if 

T3 

1 
a~2 

1 1 

1-a 2a-1 

1-2a a 

The death-rates denote deaths/ (unit density * unit time} and 

therefore vary between -1 and 1. The following can then be 

noted: 

Case 1. In this case T ~ T ~ T ~ 1. The situation 
3 2 1 

T
3 

= T
2 

- 1 and T
1 

= T-
2 

+ 1 has only one possible interpre-

tation, namely that 

't = 0, 
2 

which implies that the death-rate T is actually a 100% birth-
3 

rate, whereas T
1 

represents a 100% death-rate. This would mean 

that any initial non-zero distribution of population, no matter 

how small, will grow to u = 1. This implies that the whole of 

the population will eventually consist of AA individuals. 
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Case 3. First of all we note the dependence of the death~rates 

on the paramete~ a. A small value of a will mean that the 

death-rate T3 is significantly smaller than the death-rates T
1 

and T
2

, causing the rate at which the homozygotes AA increases 

to be high. This will probably imply thai the speed at which 

the increase is propagated will be higher when a is small. The 

death-rates are •dependent on a so that the speed at which the 

increase is propagated is actually dependent on a. 

Consider an initial distribution of a population: 

ul 0 

I£ 
>x 

If£ and o are both small and T ~ T < :r 
3 1 2 

this may be inter­

preted as: 

A small number of AA are present but few of them die per unit 

time whereas a larger number of aa are present although more 

die per unit time. This causes a situation in which the out-

come cannot easily be predicted. If£ and o are both small 

enough the homozygotes aa would probably take over and the 

AA would be wiped out. Larger values of£ and o can be inter­

preted as follows: A larger number of AA are present and the 

death-rate is low, whereas few aa are present and their 

death-rate is high_. It stands to reason that the AA wil in­

crease at the expense of the aa. 

An interesting case arises when This implies that 

l 1 = T 3 • The death-rates are equal, so that neither the aa 

nor the AA has any advantage concerning rate of increase. 

Furthermore J 1 f(u)du = 0 so that the source term provides no 
0 

scope either for increase or decrease. The initial distribution 

is expected to remain stationary. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

21. 

Case 2. The death-rate of. aA is lower than that of AA or 

aa. The death-rate of the aa is the highest and that of AA 

is in between. As soon as the aa decreases because of the 

high death-rate it is compensated by the low death-rate of aA 

and subsequent increases of aa, aA and AA. It follows that 

neither the aa, nor AA will be wiped out for any non-zero 
I 

initial distribution. It is likely that an equilibrium state 

will be reached eventually, with the value of u depending on 

a. 

2.3. The Hodgkin-Huxley model 

2.3.1. Introduction 

When constructing a mathematical model of a physiological pro­

cess such as impulse transmission in the nervous system the 

physiological nature of the nerve axon, as well as the physical 

aspects (such as electrical changes), are of prime importance. 

Both these aspects are discussed in the next paragraph. We 

then explain the construction of the Hodgkin-Huxley model, 

pointing to the required assumptions. 

2.3.2. The nerve axon 

2.3.2.1. Physical nature of the nerve axon ([ 44, 45, 85]) 

All nervous messages have certain features in common and re­

sults obtained from animals can be applied· in a fairly general 

manner because of the universality of the physical nature of 

the nervous system. 

A nerve fibre (axon) (See Figures 2.3a, 2.3b) is regarded as a long 

cylinder with a conducting core and a surface membrane of re­

latively high resistance. The core consists of semifluid 

(lbE703 
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Figure 2.3a: Representation of a nerve in the human being. 

conducting axoplasm and the nerve axon is surrounded by salt 

solution. The diameter of an axon is usually between 0,1 µ 

and 20 µ (one fiftieth of a millimeter), the length varies 

between a fraction of a millimeter to several meters in 1a 

large mammal. At the surface of the axon the membrane acts 

as a barrier and prevents ions in the external solution from 

mixing rapidly with the internal solution. 

/////J/L/~ ////! 
t 

Potential difference V{x) 

---------Internal solution 
;:::;:=::;:=:;::::::==:=::::::=:::::=:::::::::::::=:==::::======-------membrane 
/ / // / /77 //7////-#-7.-- salt solution 

Figure 2.3b: Representation of a nerve axon. 

In the resting state potassium ions are more concentrated in­

side the membrane and sodium ions are more concentrated outside 

the membrane. The membrane is assumed to be more permeable to 

potassium than to sodium in the resting state so that a poten-
1 

tial difference is set up with the inside of the membrane nega-

tive and the outside positive. The constant potential differenre, 

maintained in the absence of stimulation, is called the resting 
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potential. 

2 . 3. 2 ., 2 . Impulse propagation ([ 44, 85 l) 

When the membrane of an axon in the resting state is stimula­

ted electrically, chemically, thermically or mechanically the 

sodium permeability increases and subsequent changes in the 

membrane potential are brought about. Sodium ions flow to the 

inside of the membrane and the potential difference is changed 

to being positive inside and negative outside. These changes 

are called depolarization. 

The rise in sodium permeability is short-lived, however, and 

the potassium permeability soon increases. Potassium ions flow 

to the outside of the membrane and the original potential dif­

ference across the membrane is restored. This process is cal­

led repolarization. The process of depolarization and the 

subsequent repolarization are together referred to as an action 

potential. 

By a "membrane" action potential is meant one in which the 

membrane potential is uniform, at each one instant, over the 

whole length of the fibre. This is also referred to as the 

space-clamped case. 

When a stimulus is given at a certain point on the membrane, 

an action potential can originate at the point of stimulation. 

This local action potential activates adjacent parts of the 

membrane, so that the depolarization (and subsequent repolari­

zation) spreads along the whole of the fibre. This is called 

the conduction of an impulse (or a propagated action potential) 
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and can be explained as follows: 

-----+++++---­
+++++-----+++++ 

Figure 2.4: Propagation of an impulse (Redrawn after (44)) 

Suppose point A is "active" and point Bis "resting". At A 

the membrane is depolarized. The change in potential diffe­

rence acts as stimulus for the adjacent part and the sodium 

permeability increases just ahead of the active region. In 

this way a wave of internal positivity and of increased sodium 

permeability spreads along the nerve. Electrical current flovJS 

in a local circuit between the resting region and the active 

region of the nerve. 

One notices that after an action potential the sodium concen­

tration inside the membrane is higher than before and the 

potassium concentration is higher outside than before. In the 

minutes or hours following the action potential the sodium and 

potassium interchange slowly to restore the original potential 

difference. A large number of impulses conducted in a short 

period of time would bring about fatigue. 

2.3.3. Experimental evidence ([ 29, 44, 45, 85)) 

Some of the experimental facts concerning the transmission of 

impulses along the nerve axon is now described: 

The experimental work of A.L. Hodgkin and A.F. Huxley is de-
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scribed by Hodgkin [44]. The experiments were conducted on a 

nerve fibre using the microelectrode 

that the electrical potential across 

technique which means 

the surface of the fibre 

is measured directly by means of an internal electrode. The 

internal electrode is pushed into one end of the fibre for a 

distance of 10 - 30 mm. (The presence of an internal electrode 

does not have any obvious effect on the activity of the nerve). 

These experiments were conducted on an isolated axon in which 

the action potential differs slightly from that in the intact 

animal, the essential features of the conduction mechanism 

are, however, the same in both cases. 

If the stimulus is applied in the form of a brief current pulse 

at the one end of the axon through a stimulating electrode 

touching the membrane, the potential changes according to the 

amplitude of the stimulus. 

A weak and short stimulus will cause a slight deviation in the 

axon potential which will die away in time and distance. 

If the stimulus is increased in both strength and duration a 

critical level called the threshold is reached eventually. 

Such a threshold~causes the potential to increase abruptly 

in amplitude to reach a maximum after which it decreases slowly 

to a minimum and increases even slower again to the resting 

state (See figure 2.5). 

An inpulseisformed which is propagated at a constant velocity 

and amplitude along the axon. The potential can be recorded 

at any point along the fibre as the irrpulse passes but there is 

no way to deduce from the recording alone where it originated 

or what the strength of the stimulus was that produced it. 
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· Fi·gure· 2·. 5: Form of an action potential at a s·timulated point x 

: (Reprinted from [44]) 

The characteristics of an impulse can therefore not be altered 

by changing the strength or quality of the stimulus (provided 

it is above threshold). A second stimulus can be applied at the 

same end after the first one with the hope that a second impulse 

will appear,_ giving rise to a train of impulses if the process is 

repeated continuously. It has been determined experimentally 

that this will only happen provided that a certain time-interval, 

called the absolute· refractory· period has elapsed after the ap-

plication of the first stimulus. If a second stimulus, no 

matter how strong, is applied during this interval no second 

impulse will be produced. This initial period is followed by a 

period called the· relative· refractory period during which a 

second impulse can be produced requiring, however, a much higher 

threshold than the first impulse. This new threshold decreases 

gradually with time until it reaches it's original value. 
I 

The application of a very long stiwulus may produce more than 

one impulse, therefore giving rise to a train of impulses. 
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The threshold to stimulation observed in experiments is em­

bodied in the so-called all-or-none-law of physiology [85] 

which states that an impulse occurs either full size or not 

at all with no intermediate response possible. 

If a nerve has not been excited by a comparitively long ap­

plication of a constant current a yet longer application will 

not produce an impulse. This implies that a minimum current 

strength is nee'ded to f.ire an impulse. T.he so-called rheobase 

is a value such that a current of which the strength exceeds 

it, will fire an impulse. F\rrthernore, a current exceeding the 

rheobase need only be applied for a finite duration of time 

to fire an impulse. This phenomenon gives rise to the so-called 

threshold strength and duration relation. 

Although nerves normally conduct impulses in one direction, 

all nerves can conduct impulses in both directions and the 

velocity at which the impulse propagates is independent of the 

direction in which it is travelling. 

2.3.4. The Mathematical Model 

A. L. Hodgkin and A. F. Huxley [45] attempted to simulate the 

physical behaviour of the giant axon of a squid (Loligo) by 

means of an appropriate mathematical model. Their first at­

tempt was to consider only the space-clamped axon for which 

the potential difference is constant all along it's length. 

In the construction of the model the following assumptions, 

partly based on their own experimental results,were made: 

1. The electrical behaviour of the nerve axon may be represen­

ted by the network in Figure 2.6. 
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V 

+ 
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Figure 2.6: Electrical circuit representing the membrane 

showing the three ionic pathways for sodium, 

potassium and leakage ions. After Hodgkin 

and Huxley [45] . 

2. Current can be carried through the membrane either by 

charging the membrane capacitor or by movement of ions 

through the resistances in parallel with the capacitor. 

3. The total membrane current is divided into the capacity 

current and an ionic current. Thus the simplest equation 

which can be used is 

where 

I is the total membrane current density; 

Ii is the ionic current density; 

(2.9} 

V is the displacement of the membrane potential from it's 

resting value; 

C is the membrane capacity per unit area (assumed constant 
m 

tis time. 
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4. The ionic current Ii in "(2.9} is divided into three indepen­

dent components carried by sodium and potassium ions (INa 

and IK} and a small "leakage" current It made up by chlo­

ride and other ions. 

Each component of the ionic current is determined by a 

driving force which may be measured as the product of a 

permeability coefficient (which has the dimensions of a 

conductance} and an electrical potential difference: 

INa = gNa (E - ENa} 

IK = gK (E - EK} 

It = gt (E - Et} 

(2.10} 

where ENa and EK are the equilibrium potentials for the 

sodium and potassilh"tl ions and Et is the potential at which 

the "leakage current" due to chloride and other ions is 

zero. (Equilibrium potential can be defined as the mem­

brane potential at which there will be no netto flow of the 

involved ions across the membrane}. Eis the true potential 

difference. 

For practical purposes it is convenient to write these 

equations in the form: 

INa = gNa (V - VNa} 

IK = gK (V - VK} ..... 

It = gt (V - Vt} 

where 

(2.11) 
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V = E - Er 

VNa = ENa - E 
r 

VK = EK - E 
r 

vi = Et - E r 

and E is the absolute value of the resting potential. r 

V, VNa' VK and Vi can then be measured directly as displace-

ments from the resting potential. 

5. An important assumption based on experimental observation 

is that the changes in permeability depend on membrane 

potential rather than on membrane current. One of the most 

striking properties of the membrane is the extreme steepness 

of the relation between ionic conductances and membrane 

potential. 

Hodgkin and Huxley [45] pursued two main lines of thought on 

the changes of sodium and potassium permeability of the 

membrane. The hypothesis they finally decided upon was 

acceptable both from the point of the simplicity of applica­

tion as well as experimental justification. This hypothesis 

is based on the assumption that sodium movement depends on 

the distribution of charged particles which do not act as 

carriers but which allow sodium to pass through the membrane 

when they occupy particular sites in the membrane. The rate 

of movement of the activating particles therefore determines 

the rate at which the sodium conductance approaches it's 

maximum but has little effect on the magnitude of the con­

ductance. The decline of sodium conductance is attributed 

to the relatively slow movement of another kind of particle 
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(inactivating) which blocks the flow of sodium ions when 

it reaches a certain position in the membrane. An alter­

native here is to assume that the decline in sodium con­

ductance is due to a change in the same particles which 

cause the rise in sodium conductance. The choice here is 

actually between two variables each of which satisfies a 

first order•differential equation or one variable satisfying 

a second-order differential equation. The former was de­

cided upon. 

To model the changes in potassium permeability the assump­

tion is that a completely separate system determines the 

potassium permeability and it differs from the sodium system 

in the following aspects: The activating molecules have an 

affinity for potassium but not for sodium, they move slower 

and they are not blocked or inactivated. 

6. (i) In the case of potassium conductance the simplified as-

sumption that gK is proportional to the fourth power of a 

variable which obeys a certain prescribed first-order equa­

tion is justifiable both from the point of accuracy and of 

calculation ease. The potassium conductance is then de­

scribed by 

gK = gK n4 (2.12) 

with n(V,t) satisfying 

dn 
an (1-n) Bn n dt = - (2.13) 

where 

gK is a constant, an and Bn are rate constants varying 

with voltage but not with time and have dimensions of 

-1 
[time] , n is a dimensionless variable which may vary 
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between zero and one. 

The physical interpretation of (2.12) and (2.13) would be 

to assume that potassium can only cross the membrane when 

four similar particles occupy a certain region of the 

membrane. The proportion of the particles in a certain 

position (for example inside the membrane) is represented 

by n. The proportion that are somewhere else are represen-

ted by 1 - n. a determines the rate of transfer from out­n 

side to inside, while Sn determines the rate of transfer in op­

fX)Si te direction. If the particle has a negative charge, a should . n 

increase and S should decrease when the membrane is de­n 

polarized. 

The continuous curves a and S which fit experimental data n n 

best are given in Appendix B. 

(ii) In the case of the sodium conductance the assumption is 

that gNa is determined by two variables. The two variables 

m and h are referred to as sodium activation and sodium 

inactivation respectively. 

The equations are 

gNa = m3 h g 
Na (2.14) 

dm am ( 1-m) Smm dt = - (2.15) 

dh 
ah(l-h) Shh dt = - (2.16) 

where gNa is a constant and am, Sm, ah and Sh are functions 

of V but not oft, variables m, n and hare functions of 

both V and t. 

These equations are given physical interpretation if sodium 
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conductance is assumed to be proportional to the number 

of sites on the inside of the membrane which are occupied 

simultaneously by three activating molecules but are not 

blocked by an inactivating molecule. m then represents the 

proportion of activating molecules on the inside and 1 - m 

the proportion on the outside of the membrane; similarly 

h represents the proportion of inactivating molecules on 

the outside and 1 - h the proportion on the inside of the 

membrane. am and Sh, Sm and ah represent the transfer 

rate functions in two directions, respectively. 

The expressions for the rate functions obtained from experi­

mental data are given in Appendix B. 

(iii) In the case of leakage conductance the change of gt 
-

is negligible small so that gt is assumed to be constant. 

Substituting equations (2.12) and (2.14) in (2.11) and using 

the latter in (2.10) yields the total ionic current. It 

follows from (2.9) and (2.10) that the total current I is 

given by 

I C dV + g n 4 (V - V ) + g m 3h (V - VN ) + g n (V - V O ) 
m dt K K Na a N N 

Equation (2.17) is known as the 'space-clamped' Hodgkin­

Huxley equation. 

(2.17) 

The respective constants are given in Appendix B, n,m and h 

satisfying the differential equations (2.13, 2.15, 2.16). 

7. If in the space-clamped case the stimulus is a short shock 
I 

at t = O, the form of the action potential should be obtained 

from solving ( 2. 1 7) with I == 0 and the initial conditions 

V =V
O 

=I= VR and m, n and h taken at their resting state values 
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when t = 0. 

In the case of the propagated action potential the situation 

is far more complicated: 

Consider a cylindrical element of the axon of radius a and 

length ox as shown in Figure 2 .'7 .·· 

/ 
Im 

I 

I 

I. I 
I 1..Il out 

ox 
X X + OX 

Figure 2.7. 

We require that the net inflow of charge/sec be equal to the 

net outflow, i.e. 

I x membrane surface area+ I. x cross-sectional area of 
m in 

axon= I x cross-sectional area of axon 
out 

where I is the membrane current 
m 

~ I 2 na.rx 1 av (x + cSx) 2 1 av (x) na 2 
m O R ax na - R ax 

1 av 1 a 2v < = {- - + --·ox+ O(ox 2 )}na 2 -Rl av x) na 2 
Rax R ax2 ax 

Thus in the limit as ox ➔ 0 we have 

I 
m 

(2.18) 

where R is the internal resistance per unit length (the 

external resistance being negligible when the axon is sur- 1 

rounded by a large volume of conducting fluid). 

Inserting equation (2.18) into (2.17) we have 
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(2.19) 

In the case of a propagated action potential the variables V, 

m, n and h are functions of time as well as of distance x along 

the axon (and of the potential V in the case of m, n and h). 

8. Temperature: All constants are independent of temperature. 

The only effect of temperature is to change the rates of m, h 

and n. This has the effect that the right-hand sides of 

equations (2.13, 2.15, 2.16) are multiplied by the factor 

¢ = 3(T- 6-3)/lO which is strictly positive for any temperature 

other than T = 6 , 3 ° C, 

9. Sign convention: 

Hodgkin and Huxley measured depolarization of the membrane 

from the resting value as negative. Recent physiological 

practice is to change the sign of V and I by taking a depolari­

zation of the membrane to be positive. In this new convention 

a cathodal current stimulating pulse I is positive and an 

anodal one negative. We follow the original formulation but 

will depict the potential difference on a -V-axis. 

10. We mention a few of the subsequent developments concerning 

the Hodgkin-Huxley model. Refinements to the original model 

have been investigated in [48,46], and extensions of the nerve 

membrane modelling, such as for coupled nerve fibres is 

treated in [15]. A comparison of Hodgkin and Huxley's model 

to other models of the electrical behaviour of the nerve mem-

brane is presented in [7, 12]. Applications of the Hodgkin-

Huxley equations to excitable tissues including the cardiac 

muscle is presented in [66]. The reader is referred to these 

very interesting papers. 
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2.3.5. The BVP simplification 

The BVP model was constructed in 1961 by R. FitzHugh [28] as 

an over-simplification of the Hodgkin-Huxley model of an exci­

table membrane. 

The motivation behind this model lies in the fact that it could 

be useful to have a model which is mathematically simpler to 

handle than the Hodgkin-Huxley model (from the theoretical point 

of view) while still retaining the more important and characte­

ristic features of the electrical behaviour of the membrane. 

FitzHugh considers such a "pilot model" as being useful in ex­

plaining general properties and for preliminary analysis. 

We now present the arguments carried through in the construction 

of FitzHugh's model: 

In 1926 B van der Pol [86] proposed a differential equation to 

describe non-linear "relaxation oscillators". He made use of 

the linear differential equation describing an oscillating 

quantity with damping constant k: 

X + kx +x=O, 
d = dt (2.20) 

The construction of equation (2.20) is illustrated by the fol­

lowing example: 

Consider a steel spring attached to a support and hanging down­

ward with a mass, m, suspended from it as seen in Figure 2.8. 

By x we denote the displacement of the mass from it's equilibrium 

position. 
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----, 
X 

m ---' 

· FIGURE 2. 8: Mass m suspended downward. 

According to Newton's law 

m x = F (2.21) 

where F is the sum of the forces acting on the mass. 

Now let 

where 

I 

F = F + F + F 
l 2 3 

F
1 

= restoring force of the spring which by Hooke's 

law is assumed to be directly proportional to 

the magnitude of the displacement x but in the 

opposite direction, i.e. , F = -ex l , (c > 0} ; 

F
2 

= damping force, assumed to be directly propor­

tional to the magnitude of the velocity x but 
~ 

in the opposite direction, i.e., F
2 

= -kx, 

(k > 0} ; 

F 3 = external forces, assumed to be zero during free 

oscillations. 

If we choose m = 1 and c = 1 equation ( 2. 21} reduces to 

or 

x = - x - kx 
x+x+kx=O (2.22} 

For the actual case of a spring-mass system moving through a 

fluid, ithe damping constant k is, of course, positive :and the • 
I 

mass will oscillate with decreasing amplitude. If, however, we 

allow for a damping constant k which is negative, the amplitude 

of the oscillations will increase to infinity which implies 
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that for actual physical systems for which a negative k is pos­

sible, the linear differential equation (2.22) will only be 

valid for values of x within a certain finite range. To express 

the limitation of the amplitude we must assume that the damping 

coefficient is a function of the amplitude itself, becoming 

positive at higher values. 

Van der Pol [86] replaced the damping constant k by a damping 

coefficient which depend quadratically on x, i.e., 

k = k(x 2
) = c(x 2 -l), c > 0 constant. (2.23) 

This varying damping coefficient provides for negative damping 

(increasing amplitude) for small oscillations and positive 

damping (decreasing amplitude) for larger ones. The amplitude 

of the oscillations therefore tends towards a fixed intermediate 

value. Substituting (2.23) into equation (2.22) yields the so­

called relaxation oscillator model: 

x + c (x 2 
- 1) x + x = 0 (2.24) 

Although the solutions of the simple equation (2.24) do not 

accurately correspond to the actual behaviour of physical os­

cillators, they nevertheless successfully model the qualitative 

properties of a wide class of such oscillators. 

One particular example of a relaxation oscillator model of a 

physiological process is that of the heartbeat [87]. This 

particular model may have sparked off the idea of using relaxa­

tion oscillators as models of similar physiological processes. 

On a suggestion of Dr. K.S. Cole, FitzHugh [28) tried to gene­

ralize equation (2.24) with the purpose of constructing a model 

which could serve as a simple representative of a class of 
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excitable-oscillatory systems including the Hodgkin-Huxley 

model of the excitable membrane of the squid giant axon. This 

is a ~easonable conjecture, since a train of pulses is basical­

ly an oscillation relative to the constant amplitude of the 

potential difference across the membrane. 

Integrating equation (2.24) with respect to time and intro­

ducing a new variable y yields two equations 

x3 
x + c(3 - x) - y = 0 

and y = -x 

. 
c(y 

x3 
x) (2.25) or X = - 3 + ..... 

. X (2.26) y = •\• ... 
C 

To complete the construction of his model FitzHugh adds various 

new terms to equations (2.25) and (2.26) on which subsequent 

restrictions are placed to obtain: 

c(y + 
x3 

+ z) (2.27) X = X - 3 ..... 
. 

-(x by)/c (2.28) y = - a + ..... 

where 1 - ~b <a< 1, 0 < b < 1, b < c 2
• The physical role 

of parameter z will be discussed later. 

The reason for the addition of these terms and the restrictions 

on the constants can only be motivated satisfactorily from a 

detailed phase plane analysis. It is a lengthy study and the 

interested reader is referred to the original text [28]. Sum­

marizing one can say that the addition of the new terms pro­

duce a pair of non-linear differential equations with either 

a stable singular point or a limit cycle. 

The model of FitzHugh is named the BVP model due to the facts 
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that van der Pol's equatio~ was primarily used in it's con­

struction and that the phase plane analysis show a qualita­

tive resemblance to a theoretical iron wire (non-mathematical) 

model of the nerve which had previously been constructed by 

Bonhoef fer [ 3] . 

By renaming the variables in equations (2.27) and (2.28) the 

BVP model becomes 

J 1 du (u 
u3 

= - w - - -) 
C dt 3 (2.29) 

C 
dw 

+ bw dt = a - u (2.30) 

where 1 - 2b < a < 1, 0 <b < 1, b < c 2 

3 

In the phase plane analysis of FitzHugh the plane is divided 

into regions corresponding to the physiological states of the 

nerve fibre to form a "physiological state diagram" with the 

help of which many physiological phenomena concerning the nerve 

can be explained, such as the threshold phenomenon, stimula­

tion by a constant current to produce a single pulse or infinite 

train of pulses, stimulation by rectangular positive current 

pulses of different durations and a number of other properties. 

Without elaborating further on the phase plane analysis of 

FitzHugh we now point out the similarities between the BVP 

model and the original Hodgkin-Huxley model: 

1. Equations (2.29) and (2.30) which describe the BVP model 

correspond to the space-clamped Hodgkin-Huxley model. 

2. The variable Jin equation (2.29) represents the stimulus 

intensity corresponding to the membrane current I in the 
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Hodgkin-Huxley model. J is specified as an arbitrary func­

tion oft. 

3. The variable u in the BVP model corresponds to the pair 

of variables (V,m) in the Hodgkin-Huxley model. It repre­

sents excitability and is a rapidly changing function. 

4. The variable· w in the BVP model corresponds to the pair 

of variables (h,n) in the Hodgkin-Huxley model. It repre­

sents refractoriness and is a relatively slow-changing 

function. 

5. The fact that the BVP model has only two variables of state 

(u,w) instead of the four of the Hodgkin-Huxley model (V, m, 

n, h) simplifies the analysis considerably. 

FitzHugh did not generalize his model to cover the case of 

a propagated action potential. This was done later by 

Nagumo et al [64] whose work is discussed in the following 

paragraph. 

2.3.6. The FitzHugh-Nagumo model 

In 1962 J. Nagumo, S. Arimoto and S. Yoshizawa [64] constructed 

an active transmission line using tunnel diodes to electronically 

simulate the electrical behaviour of an animal nerve axon. The 

model they tried to simulate was that of FitzHugh, namely the 

BVP model. The transmission line is diagrammatically represented 

in Figure 2.9. 
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TD 
f(e) 

C 
V 

Figure 2.9: An electrical simulator of the BVP model as 

constructed by Nagumo et al (Redrawn after [64]) 

f (e) 

e 

Figure 2.10: The voltage-current characteristic of the tunnel 

diode (Redrawn after [ 64 ] ) 

The circuit equations are 

J. = c av - i - f(e) aT 

L +di+ Ri = 
dT 

where f(e) is given by 

f{e) = i - .!. { (e - e ) 
0 p 0 

as shown in Figure 2.10. 

By introducing the variables 

t = T 

/Le 
u = 

V + {e -E ) 
0 0 

K 

{2.31) 

(2.32) 

(p > 0, K > 0, f (e ) = i ) 
0 0 

w = £ 
K 

(i + i) 
0 
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Ri + (e - E ) 
0 0 0 

K 
R 

b = p 

(2.33, 

the system (2.31, 2.32) reduces to the BVP system (2.29, 2.30). 

An examination of the restrictions on the constants in the BVP 

model leads to the following conclusions! 

The 

or 

condition 0 <b < 1 in the BVP model is equivalent 

c 2 >b is equivalent L to - > PC and R 

1 - Ib <a < 1 is equivalent to 3 

Ri + e - K<E <R (i + 3K) + e - K 2p 0 0 

r-----
. + 2K 
1 -

0 3p 

0 0 0 

as shown in Figure 2.11. 

cot0=R 

to p > R, 

Figure 2.lr: When the bias voltage is set between e
1 

and e 2 the 

, circuit in Figure 2. 9 is monostable. If E
0 

=ell the 

circuit oscillates spontaneously. (Redrawn after 

[ 64] ) 

Nagumo et al state that the restriction on E is too severe and 
0 

can be weakened to e
2 

< E
0 

< e
1

• This would still ensure that 

the circuit in Figure 2.9 is monostable. Therefore 

1 - ~ b <a< 2 instead of 

1-~b<a<l. 
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To obtain the equations which describe the propagation of 

excitation along the nerve axon Nagumo et al [64] consider 

the circuit shown in Figure 2.12 which is constructed by cas­

cading the many two-terminal circuits in Figure 2.9 through 

interstage coupling resistance. 

C 
L 

R 

Figure 2.12: Electrical model to simulate propagation along 

the nerve axon (Redrawn after Nagumo et al [64]} 

Regarding the circuit above as a distributed line it follows 

that 

j = ..... (2.34} 

where s is distance along the line. This corresponds to 

(2.18} in the Hodgkin-Huxley model, provided the interstage 

coupling resistance per unit length of the line is r. By using 

the transformations of (2.33} equation (2.34} reduces to 

..... (2.35} 

The BVP model of a propagated action potential then becomes 

h a2 u 1 au (u 
u3 

.E. (2.36} = - at - w - - -} h = ..... 
as2 C 3 , 

r 

aw + bw 1 - 2b < a < 2, 0 <b < 1, b <c 2 (2.37} C at = a - u, 3 .. 

The system (2.36, 2.37} can be written as a single equation 
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(2.38) 

Nagumo et al simplify equation ( 2. 3.8) even further by setting 

R = 0 (b = 0) and state that even in this oversimplified form 
. 

the equation may still be considered as a model of the nerve 

axon in the sense that it contains certain characteristics 

thereof. 

In this case (2.38) reduces to 

where c > 0, 2 >a> 1, h > 0 (2.39) 

By setting s 2a (a - u) X = -- I z = 
/ch a 2 -l 

c(a 2 -l), a 2 
- 1 

11 = £ = 
4a 2 

equation (2.39) is transformed to 

(2.40) 

where 11 > 0, 

Nagumo et al [64] state that the partial differential equation 

(2.40) probably represents the simplest realistic mathematical 

model of the nerve axon. 
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2.3.7. Further simplification of the BVP and FitzHugh-Nagumo 

models. 

One disadvantage of the BVP model, as represented by equations 

(2.31, 2.32) or (2.36, 2.37) and the simplification of Nagumo 

(2.40) is the large number of constants present, many of which 

could have been eliminated through appropriate transformations. 

Furthermore, the rest states of the variables u and w in 

these models are not uniformly zero which might prove to be 

another disadvantage. Reformulated versions may be obtained 

by changing both the dependent and independent variables as is 

described in Appendix C to obtain the FitzHugh-Nagumo system: 

dU 
at = 

dW 
at = 

a 2 u + u(l - u) (u - a) - w ax 2 

b (u - dw) , b>o,d>o 

aE (0,1) 

When d=0 the system (2.41, 2.42) is simply referred to as 

Nagumo's equation. 

(2.41) 

(2.42) 

Sleeman [79] notes that the transformations to obtain (2.41, 

2. 4 2) breaks down when d = 0 so that one should rather consider 

d > 0 and not d ~ 0. When d = 0 the model is simply referred 

to as Nagumo's model which can be obtained from (2.40) through 

appropriate transformations. Nagumo's model is given by: 

dU 
at= 

a 2 u 
ax 2 

dW at= bu 

+ u(l - u) (u - a) - w 

b > 0, a E (0,1) 

(2.43) 

(2.44) 

Returning to the BVP model, as represented by equations (2.36, 

2.37) we apply the transformations 

s 
X = 

v'h 
t = ct, 
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rename the constants and let· u = - u to obtain 

au 
at 

aw 
at 

= 

= 

a 2 u 1 3 +u--
3

u -w 
ax 2 

¢ (u + a - bw) 

1 - 2b < a < 2 , 0 < b < 1 , b < 1 
3 ¢2 

(2.45) 

(2.46) 

Popular values for ¢, a and bare 0,08, 0,7 and 0,8 respec­

tively. 
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CHAPTER 3 

ANALYSIS OF GOVERNING EQUATIONS A SURVEY OF EXISTING LITERATURE 

3.1. Introduction 

In this chapter a general mathematical classification of the 

various models introduced and discussed in the previous chapter 

is presented by considering the relationship of the governing 

equations to a general system of reaction-diffusion equations. 

Theoretical as well as computational results existing in the lite­

rature on the various governing equations are then discussej. 

3.2. General classification of governing equations 

3.2.1. Reaction-Diffusion systems [56, 59] 

m ~ 1 be a bounded or unbounded domain. If n 

is bounded we suppose it has a smooth boundary. 

For (~,t) En x [t ~ O] consider the system of reaction-diffusion 

equations 

au 
= at 

ID dU 
D V2 u + k M. (x,u) -~- + f {~) 

j=l J - - oXj 
( 3. 1) 

where T 
U = (u 1 , ••• , U ) , 
- n 

m ~ 1, D.is a "diffusion matrix" 

with non-negative constant entries and is usually diagonal. The 

coefficients M. (j=l, ... , m) are continuous matrix-valued func­
J 

tions. The terms on the right-hand side of (3.1) describe dif-

fusion, convection and non-linear reaction respectively. 

Along with (3.1) we have the initial condition 

.•.•• (3.2) 

and for initial boundary value problems we have in addition to 

(3.2) the boundary condition 
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au 
p an + Q ~ = a, ( ~, t') E an x [ t ~ o l ( 3. 3) 

where P, Q are matrix - valued functions of x and t, a depends 

on x and t and aan denotes the normal derivative. We mainly 

consider the case m = 1, so that n is one-dimensional. 

3.2.2. Fisher's equation 

Fisher's equation as given by (2.3): 

au= a2
u + f(u) 

at ax2 

represents the simplest case of ( 3. 1) , namely that with n = m = 1. 

The diffusion matrix D becomes a diffusion constant of unity and 

the convection coefficient M. is identically zero. In the case 
J 

of a drift term added to ( 2. 3) ( see § 2. 2. 2) , the convection 

coefficient is non-zero. The associated initial and boundary 

conditions will be discussed in § 3.3.2. 

3.2.3. Nerve axon equations 

3.2.3.1. The general class of models 

The general class of models for impulse propagation in the nerve 

_axon, based on an equivalent circuit consisting of a capacitor 

in parallel with a conductor (as discussed in § 2. 3. 4) can be 

described by the system: 

a2 u au + I(u,w) -- = at ax 2 

aw - = P(u)w + q(u) a-E 

where u(x,t) is the electrical potential across the membrane 

as a function of time t and distance x along the axon. The 

( 3. 4) 

(3.5) 
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current density I is a function of the potential u and one or 

more state variables 

Equations (3.4, 3.5) correspond to the general equations (3.1) 

by setting m = 1, n ~ 2 and splitting the vector T 
U = (u

1
, ••• , U ) 

- n 

into a single function u and a vector w = (w 1 , ••• , wn-
1

) T. The 

diffusion matrix D has only one non-zero entry, namely the 

fi~st, which is one. In the space-clamped case the matrix D 

is identically zero. The convection coefficients are set to 

zero once again. The functions I (u,~), P (u) w and g (u) are all 

incorporated by the term f(u) in (3.1). 

3.2.3.2. 1 The Hodgkin-Huxley model 

In the case of the Hodgkin-Huxley system as given in Appendix 

B, ~ (x, t) is a three-dimensional vector function, P is a 3 x 3 

matrix function and q is a vector function, both depending non­

linearly on u. The function I(u,w) is linear in u but non­

linear in w. Assuming the axon to be of infinite length we 

study the system on the quarter plane x ~ 0, t ~ 0 with ap­

propriate initial and boundary conditions. 

3.2.3.3. Simplifications of the Hodgkin-Huxley model 

The BVP model as given by (2.45, 2.46) and the FitzHugh-Nagumo 

model as given by (2.41, 2.42) are two-variable simplifications 

of the Hodgkin-Huxley system. Both these models are examples 

of the general model (3.4, 3.5) where the functions I, P and q 

are different for the two models but similar in form; both 

u(x,t) and w(x,t) are one-dimensional vectors. 

Here the function I(u,w) is non-linear in u but linear in w. 

This is in contrast to the Hodgkin-Huxley system. Pis a con-
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stant scalar and the function q(u) is linear in u. The 

severe non-linearities in the Hodgkin-Huxley system have been 

r~duced to a,single non-linear term in these two models. 

Nagumo's equation (2.43, 2.44) is the simplified version of the 

FitzHugh-Nagumo model where the constant Pis zero. 

3.3. Theoretical treatment 

3.3.1. Introduction 

We consider the system of reaction-diffusion equations (3.1). 

One of the basic problems associated with systems of the form 

(3.1, 3.2, 3.3) is that of establishing existence and unique­

ness of solutions. A comprehensive survey of known results 

concerning these matters are contained in the work of Rauch and 

Smeller [ 69 ] and Schonbek [ 77, 78). 

Another important question, both from the mathematical point 

of view and that of biology is how the solutions of (3.1,: 3.2, 

3.3) evolve in time and space and in particular how they are 

affected by initial and boundary data. These problems have been 

studied in the literature although results are far from complete. 

However, it is known that a large class of systems of the form 

(3".l, 3.2, 3.3) exhibit "travelling wave" type of solutions. 

These are defined as follows ([18)): 

- Travelling waves: These are solutions u(x,t} of the form 

':1 (x, t) = U (x - ct) for some velocity vector c. 

Two special types of travelling waves are: 

- Wave fronts: These are travelling wave solutions U which 

satisfy the conditions: U(- 00 ), 0( 00 ) exist but are unequal. 
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- Pulses: These are travelling wave solutions U which satisfy 

the conditions: U(- 00 ), U( 00 ) exist and are equal but U is not 

constant. 

We will also need the following definitions: 

A steady state (or equilibrium state) is a solution to (3.1) 
au 

which is time-.independent, i.e. for which at = 0. 

- When referring to a stable state, c 0 -stability is implied. 

This is defined as follows: A steady state solution w(x) of 

(3.1) is c0 -stable if, given any£> 0, there is a o > 0 

such that every solution u(x,t) of (3.1) defined for x EJR, 

t ~ 0, satisfying lu(•,0) -wl 
0 

sup lu(x,0) - w(x)
1I< o 

X E]R 

also satisfies lu(· ,t) - lJJI < £_ for all t > 0. 
0 

In practice this would mean that a stable steady state is one 

for which a slight disturbance from this state will cause a 

return to the state as time progresses, whereas an unstable 

state is one for which a slight disturbance will cause the 

solution to develop into another, stable, equilibrium state as 

time progresses. 

3.3.2. Fisher's equation 

3.3.2.1. Analysis of Fisher's equation 

In this section we review the known results concerning the pure 

initial value problem and the initial boundary value problem for 

various forms of Fisher's equation (2.3). 

The pure initial value problem is represented by 
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au a 2 u + f(u) (-oo<x< t > 0) at = 00' ax 2 

..... ( 3. 6) 

u(x,o) = ¢(x) (-oo<x<oo) 

and the initial boundary value problem by 

au d 2 u + f (u) (0 ~x< 00' t > 0) at = --
ax 2 

u(x,o) = 0 
' X >o 

..... (3.7) 
u(o,t) = lJ}(t) 

' 
t ~ 0 

To begin with it is a standard result [24] to prove that if 

f E C1
, f(o) = f(l) = 0 and lJJ is piece-wise continuous with 

0 ~ ¢(x) ~ 1 then there exists one and only one bounded 

solution u(x,t) of the problems (3.6, 3.7). Furthermore, it 

can be shown that O ~ u(x,t) ~ 1. 

Before proceeding with results on stability we state again the 

three types of conditions which may apply to the function f(u) 

associated with Fisher's equation {2.3). Henceforth they will 

be referred to as Case 1, 2 or 3, respectively, of Fisher's 

equation ( § 2 • 2 • 3) • 

Case 1 (The heterozygote intermediate case) 

f '(u) > o, f(u) > 0 in ( 0, 1) 

Case 2 (The heterozygote superior case) 

f'(O) > O, f'(l) > 0, f(u) > 0 in (0,cd, 

f(u)< 0 in (a,l) for some a E (0,1) 

Case 3 (The heterozygote inferior case) 

f ' ( 0) < 0, f ' (l) < 0, f ( u) < 0 in ( 0, a) , 

f (u) > 0 in (a,l) for some a E (0,1) 

and J 1 f(u)du > 0. 
0 

e.g. ~ o,' \ 1 

e.g. /:\ /1 
o/ a'-7 
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The following theorems provide important information regarding 

the stability of solutions to Fisher's equation (2.3). These 

theorems have been proved by Aronson and Weinberger [l] using 

a comparison type of argument. 

We first consider results on the pure initial value problem 

(3.6): 

Theorem 3.1 

Let u(x,t) E [0,1] be a solution of (3.6). 

1. If f(u) satisfies the conditions of case 1 

then either u(x,t) = 0 or lim u(x,t) = 1. 
t-+oo 

2. If f(u) satisfies the conditions of case 2 

then either u(x,t) = 0 or lim u(x,t) = a. 
t-+oo 

In other words u = 1 is the only stable equilibrium state in 

case 1, whereas u = a is the only stable equilibri urn state in 

case 2. 

In case 3 the situation is not as simple as in the previous 

two cases. Aronson and Weinberger prove the instability of the 

state u = a and the conditional stability of the states u = 0 

and u = 1. More explicitly, this means that a disturbance of 

, bounded support of the state u = 0 which is sufficiently large 

on a sufficiently large interval grows to one while a distur­

bance which is not sufficiently large on a sufficiently large 

interval dies away (to reach the steady state u = O eventually). 

A threshold phenomenon is exhibited, therefore. The analytical 

theorems concerning this matter are rather complicated and 

lengthy to state here, we refer the reader to the original 

text [ 1] . 
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Let us now consider a few asymptotic results particularly 

relevant to the initial-boundary value problem (3.7). 

Here Aronson and Weinberger [l] prove for case 1: 

Theorem 3.2 

Let u(x,t) E [0,1] be the solution of (3.7) 

where f(u) satisfies the conditions of case 1. 

If u(x,t) * 0 then 

lim inf u(x,t) ~ T(x) 
t-+oo 

where T(x} is the unique positive solution of the 

problem 

where 

q" + f (q} = 0 

q(O) = f3 

in O < X < oo 

f3 = lim inf 'IJ(t) 
t+oo 

In particular lim lim inf u(x,t) = 1 
-x+oo t-+oo 

Thus if '1J ( t) * 0, u(x,t) approaches values near one far from 

the boundary regardless of the behaviour of 'IJ(t}. 

In the same way it can be proved that if f(u} satisfies the 

conditions of case 2 then 

lim lim inf u(x,t) = lim lim sup u (x,t) = a. 
x-+oo t-+oo x+oo t-+oo 

unless '1J ( t) - 0. 

Finally, in case 3 the threshold property is exhibited again. 

In general 
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lim lim sup(x,t) =·o if sup ~(t) is suitably 
x+oo t+oo 

bounded, while 

lim lim inf u(x,t) = 1 if ~(t) is large enough 
x+oo t+oo 

on a suitably large time interval. 

We quote the following result from Aronson and Weinberger [ l] 

on this matter 

Theorem 3.3. 

Let u(x,t) E [O,l] be the solution of (3.7) 

and let f(u) satisfy the conditions of case 3. 

Let KE [a,l) be defined as the unique number 

for which JKf(u)du = 0 
0 

For any SE (K,l) there is a positive time TS 

with the property that the condition 

for some non-neqative t, implies ., 0 

lim lim inf u(x,t) = 1 
x+oo t+oo 

With this we conclude the results on stability and investigate 

the existence of travelling wave solutions in the next para­

graph. 

3.3.2.2. Travelling wave solutions 

We introduce the travelling wave coordinate ~ = x - ct, c > 0. 

A travelling wave solution to Fisher's equation is a function 

U(~) satisfying the ordinary differential equation 
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u" +cu' + f(U) = 0 where (3.8) 

Here c. denotes the speed of the front and it can be shown in 

some cases to be unique while in others wave fronts are known 

to exist for a half line of speeds .c greater than some minimal 

critical speed c* [l]. 

The existence of travelling wave solutions is established in 

the following theorem due to Aronson and Weinberger [l]. 

THEOREM 3. 4 

If f{u) satisfy the conditions of either cases 

1, 2 or 3 there exists a travelling wave solu­

tion 

U = q* (x - c*t) 

of Fisher's equation. Moreover q* '{~) < 0 

lim q*{~) = 0 and 
~ ➔oo 

lim q* (O = 
~➔-oo 

{ 1 in cases 1 and 3 
a. in case 2. 

Theorem 3.4 establishes the existence of a particular type of 

travelling wave solution, namely a wave front type of solution. 

Throughout our discussion of solutions to Fisher's equation we 
J 

define such fronts as solutions of the form u (x, t) = U (x - ct) 

where U ( - 00 ) = 1 , U {00 ) = 0. For the conditions U (- 00 ) = 0, 

U ( 00 ) = 1 these solutions need to be replaced by U (-x + ct) = U (- ~). 

We now give two results concerning the asymptotic speed of 

propagation, due to Rothe [75]: 
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THEOREM 3.5 

For Fisher's equation satisfying the 

conditions of case ·1 there exists a 

positive minimal speed ·c*{f). For 

every velocity c ~ c*{f) there exists 

a travelling wave solution (satisfying 

lim U(s) = 1 
S -+-oo , 

and lim U{s) = 0) 
s-+oo 

whereas there are no travelling wave 

solutions for velocities less than c*{f). 

Aronson and Weinberger [l] gives the value 

·-...; 4f '(0) as a lower bound for the minimal 

speed c*(f) 

THEOREM 3. 6 

For Fisher's equation satisfying the con­

ditions of case 3 and for a particular functionf 

there exists exactly one velocity c* admitting 

wave front solutions. 

3.3.2.3. Convergence to wave fronts 

We now investigate the convergence of solutions of the various 

forms of Fisher's equation to wave fronts, for various types 

of initial or boundary data. 

Suppose, as in Case 1, that f(u) > 0 1 for u E (O~l), f'(O) > 0 

d . dd. . f' ( ) < 0 f ' ( ·u) ~ f ' ( 0) th K 1 an in a 1t1on 1 . , ~ en o mogorov, 
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Petrovskii and Piskounov [50] have shown that if the initial 

function ¢ (x) is chosen so that ¢ (x) = 0 for x < 0 and ¢ (x) = 1 

for x > 0, then in a certain sense there exists a travelling 

front U (x - ct) and a function VJ (t) such that as t ➔ 00 

lu(x,t) - U(x-ct-VJ(t))I ➔ 0 

uniformly in x .and VJ' (t) ➔ 0. [ simplified proof in [ 54]] . 

More recently Stokes [82] has improved on the result of [ 50] 

in that if ¢ is taken to be a step function or a sufficiently 

steep monotone function and c 2 > 4f '(0) then VJ is constant. 

Further improvements and extensions of these results are due 

to Rothe [75]. He investigates the asymptotic behaviour for a 

large class of monotone initial data and proves that all solu­

tions with initial data in this class evolve to wave-type 

solutions. These results are too complicated to state in full 

and we refer the reader to the original text [75]. 

The interesting case is, as before, Case 3 where a threshold 

property exists. The convergence to a wave front type of 

solution from arbitrary initial or boundary data has been in­

vestigated in various papers [ 19, 20, 21, 25, 35, 36, 75] 

but perhaps the most complete results to date are due to Fife 

and McLeod [23, 24]. These results are of such generality and 

importance as to be worth stating in full. 

Theorem 3.7 establishes the convergence to a travelling wave 

front from montonone initial data whereas Theorem 3.8 is a re­

sult concerning the threshold property and the convergence to 

two wave fronts travelling in opposite directions. 
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THEOREM 3.7 

Let f E C 1 [0,l] satisfy, for some a E (0,1), 

f(0) = f(l) = 0, f(u) ~ 0 for u E (0,a), 

f(u) > 0 for u E (a,l), J 1 f(u)du > 0. 
0 

Then there exists a travelling front U (x - ct), 

unique modulo translation and necessarily mono­

tonic, and if <P E C 1 
(- 00 , 00 ) with <P (- 00 ) = o, 

¢( 00 ) = 1, ¢'(x) > 0 for all x, then there 

exists a function y E C1 (0, 00 ) with y'(t) ➔ 0 

as t ➔ 00 such that uniformly in x 

lu(x,t) - U(x - ct- ;y(t)) I = o(l) 

where u is the solution to the initial value 

problem (3.6) with u(x,0) = ¢(x). 

THEOREM 3.8 

Let f satisfy the hypotheses of Theorem 3. 7. 

Let <P satisfy 0 ~ <P ~ l and 

lim sup <P (x) < a o' lxl+oo 
<P (x) > a + n for lxl < L 

l 

where n and L are positive numbers and 

0 < a
0 
~ a ~ a

1 
< 1, a as in Theorem 3. 7. 

Then if Lis sufficiently large (depending 

on n and f) we have for some constants x
0

, 

Xl, Kand w (K, w > 0) 

I 

lu(x,t) - U (x - ct - x ) I ~ Ke-wt, X < 0 
0 

lu(x,t) 
-wt 

- U ( - x - ct - x 
1 

) I ~ Ke , X > 0 
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Theorem 3.8 establishes the convergence of initial data to 

two "wave fronts", propagated in opposite directions. 

No reiults on convergence to wave fronts exist for 

Case 2. 

3.3.2.4. Exact solutions and stationary patterns 

So far we have been concerned with the existence of solutions 

to Fisher's equation (2.3) with the function f(u) satisfying 

one of three general types of conditions. We now look at 

the existence of solutions to (2.3) in closed form for parti­

cular example functions f(u). 

For the example function f (u) = u ( 1 - u) (u - a) in Case 3 

(see Figure 2.1), an exact solution to the travelling wave 

equation (3.8) is available, called the Huxley solution 

[ 5 3] : 

( 3. 9) 

where the speed c (called the Huxley speed) is given by 

0 < a 
1 

~ -2 -s 
= 1 / (1 + exp ( /2 )) 

Here U (- 00 ) = O, U ( 00 ) = 1. s 
Figure 3 .1. 

For the example function f (u) = u ( 1 - u) in Case 1 and 

f (u) = u ( 1 - u) (a - u) in Case 2 (see Figure 2 .1) no travel­

ling wave solutions corresponding to the Huxley solution 

(3.9) have been obtained as yet. 

Recently Cochran [6] has found an exact formula for the 

speed in terms of 0, corresponding to the caricature of 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

62. 

f(u) pictured in Figure 3.2. This 

caricature is a generalization of 

the cases for which McKean [53] 

solved Fisher's equation, namely 

when 7T e = 4 or 

f 

0 

Figure 3.2. 

The solutions mentioned above and considered in the preceding 

paragraphs are all of the travelling wave type. An obvious 

question arising is: Are there any other types of solutions 

to equation (2.3)? Results quoted so far (§ 3.3.2.2. and 

3.3.2.3.) ha~e mainly been concerning solutions starting from 

various types of initial data and then converging to a wave 
I 

u 

front solution travelling with asymptotic speed. We reformulate 

the question stated above to: Do solutions exist which do not 

converge to a travelling wave, nor decay to the zero steady 

state in time? Solutions such as these can be referred to as 

zero-speed travelling waves or stationary patterns. 

We employ a method of Fife [ 18] to establish the qualitative 

existence of such solutions. Fife defines stationary patterns 

' as stable, stationary,non-constant,bounded solutions which are 

not caused by boundary conditions and are defined on the whole 

of the x-axis. 

So any pattern must be the solution of the steady equation 

- (X) <x <oo (3.10) 

du Multiplying (3.10) by dx and integrating leads to 

where V(u) 

1 du 2 : -(-) + V(u) = E 
2 dx 

= Ju f(s)ds and E.is constant. Fife states that if 
0 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

63. 

one draws the graph of the potential V(u) then there is a 

one-to-one correspondence between the non-constant. solutions 

of (3.iO) and horizontal line segments in the (u,V) plane 

whose finite endpqints lie on the given curve. 

The projection of such a segment onto the u~axis is the range 

of the corresponding solution and the ordinate of the segment 

is the constant E. 

(i) We apply this to our example function of Case 3, 

f(u) 

V(u) 

1 = u ( 1 - u) (u - a) , 0 < a < 2 . 

= -
2
1 u 2 (a - lo+ a)u + !u2 > 

3 I , 2 

V(u) 

rt· follows that 

1 2( 2( 1 2 Figure 3 . 3. : V ( u) = - 2 u a - 3 1 + a) u + 2 u J , 

Following Fife [18] we observe the following: 

o<a<~ 

1. a
1 

(u = 0), a
2 

(u = a) and a 
3 

(u = 1) depict constant solutions. 

As stated before a
1 

and a 3 are stable while a
2 

is unstable 

(§ 3.3.2.1.) 

2. b depicts a periodic solution, ultimately varing between 0 

and K (JKf(u)du = 0). 
0 
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3. c depicts a solution which has it's supremum at a finite 

x-value and which goes to zero as x ➔ ± oo. 

4. f
1

, f
2 

and f
3 

are solutions unbounded from below but boun-

ded from above, f bounded from below but unbounded from above. 
4 

Fife proves that every bounded non-constant solution of (3.10) 

which attains a maximum or minimum at a finite value of xis c 0
-

unstable. Therefore solutions b, c, f
1 

, f
2

, f 
3 

and f 
4 

are all c 0
-

unstable. In practice this would mean that any of these solu­

tions taken as initial data for the pure initial value problem 

would evolve in time to one of the stable equilibrium states 0 

or 1. 

McKean [53] has established the following zero-speed travelling 

wave solutions to Fisher's equation (in Case 3), corresponding 

to the stationary patterns described as 2.and 3.respectively. 

(i) u (O 1 -1 1 
= 3 [ ✓ ( 2-a) ( ~-a) co sh ✓a~ + --] , c = 0 , 0 < a ~ -

2 1+.!. 
a 

(3.11) 

1 ((3.11) approximates to (3.9) as at 2 when properly translated) 

(ii) U(~) =½+k sn (~ y~-k 2
, 

12 

(3.12) 

This forms a one-parameter family of periodic solutions in terms 

of Jacobi Elliptic functions. McKean also derives similar so-

l lutions when c = 0, a < 2 . 

Returning to [18], Fife states that besides the unstable solu­

tions the only nonconstant bounded solutions of (3.10) are the 

monotone ones, which depend on the existence of two local 

adjacent maxima having the same height. This special property 
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of the curve V will, of cour~e, depend on the function f. A 

slight change in such a function will destroy the property so 

that monotone solutions such as these are said to be structu­

rally unstable. 

For this particular example function we are able to obtain two 

1 local adjacent maxima when a= 2 

V(u) 

l 2 ( 2( l 2 Figure 3. 4 : V ( u) = - 2 u a - 3 l + a). u + 2 u ) , l a=-- 2 

The dashed line d represents a monotonic increasing (decreasing) 

solution which takes the value zero (one) at x = - 00 and one (zero) 

at x = 00 • This corresponds to the Huxley solution ( 3. 9) when 

In practice this solution can be used as initial 

data and the expected behaviour of not changing shape or position 

in a time-progressing calculation can be verified numerically 

(see § 4.4.1.J .. 

An interesting observation is that Aronson and Weinberger state 
\ , 

f;f(u)du > 0 as c~ndition in Case 3 which implies that a<½ 

which eliminates the zero-speed solution as a stable rest state. 

We briefly look at the other two cases: 
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Case 1 Taking f(u) = u(l-u) -as example function leads to 

V(u) = u 2
(~ - ju). 

f' 
1 

V (u) 

-,------------

1 u 

Figure 3.5: 

V(u) = u 2 (.!. - .!.u) 
2 3 

No two adjacent local maxima exist, so that no stable non­

constant solution is possible. The constant solutions are 

u = 0 (unstable) and u = 1 (stable). The remaining c 0 -unstable 

solutions are periodic solutions (b), unbounded solutions 
I 

(f1 and f
2
), and solutions attaining a minimum at a finite 

value of x and approaching it's supremum at x ➔ ± 00 ( c). 

Case 2 Taking f{u) = u(l-u) (a-u) as example function leads to 

1 2( 2( 1 2 V(u) = 2 u a- 3 l+a)u+ 2 u ). 

V (u) 

Figure 3.4: 
u 

V(u) = .!.u 2 (a -l(l+a)u+!u2
) 

2 3 2 

The constant solutions are u = 0, u = 1 (both unstable) and u = a 

(stable). The non-constant solutions are the periodic ones 

(b
1

, b
2

, b
3

) and two solutions with a supremum at a finite 

x~value and which tends to a constant value at x ➔ ± 00 ,(c1 a nd c2), 

0 C -unstable. No two local adjacent maxima exist. 

Apart from t-independent solutions to Fisher's equation, results 

are known to exist for x-independent solutions [ 10). These 
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satisfy the "kinetic equation" 

f (u) • 

This will not be discussed as one of the two main components 

of a reaction-diffusion equation is no longer present. 

3.3.3. Simplifications of the Hodgkin-Huxley system 

3.3.3.1. Analysis of Nagumo's equation 

We now investigate the existence of solutions to the models of 

the electrical behaviour of the nerve axon, starting with the 

simplest one, namely that of Nagumo (2.43, 2.44). 

This system can be written as a single equation 

au 
at = 

a2 u 
+ u(l-u) (u-a) - bfudt ax 2 

where O < a < 1 and O < b < < 1. 

(3.13) 

Being mainly concerned with travelling wave solutions we intro­

duce the co-ordinate 

~ = X - ct, C > 0 

so that equation (3.13) takes the form 

um+ cu" + f u' ~bu= 0, 
U C 

( ., d ) 
= d~ (3.14) 

To begin with we will consider results on the existence of 

solutions to (3.14). Secondly we will consider results con­

cerning the stability of such solutions. 

Rewriting (3.14) as a system of three first order differential 

equations, Hastings [43] first established the existence of a 

solution satisfying 
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lim u (s) = 0 (3.15) 
,~,➔oo 

This result follows from a discussion of the three-dimensional 

phase space analysis of this system. 

It can be proved [ 39] that such a solution (a travelling pulse 

solution) cannot exist unless With this restric-

tion the existence of such solutions have been proved subse-

quently in [ 42] . See also [ 4, 9, 77] . (McKean [53] interprets 

a as representing the amount of riovocaine in the nervous sys-

t d - 1 · d t fl h f h em an a~ 2 is suppose ore ect t e act tat if too much 

novocaine is injected into the system the nerves goes "dead". 

Therefore a plays the role of a doping parameter. This is a 

physical interpretation of the result mentioned above). 

Experimental evidence [45] suggests that there is only one 

value of c for which a solution to (3.14) satisfying (3.15) 

exists. It can be proved [41], however, that there are at 

least two such values of~, say 6* and 6*, such that 

0 < g* < c*. Sleeman [79] has shown that the slower pulse 

with speed c* is unstable. The faster one with speed c* is 

is the stable one which is observed experimentally [41]. The 

stability of the faster pulse is, however, still unproved. 

In another study of Sleeman ([80] ), it is shown that for the 

wave speed c sufficiently small, the travelling wave solutions 

are unstable. 

Further qualitative results concerning the relative magnitudes 

of the constants a, band care given in [33] and [79]. These 

will be discussed in the following paragraph where the full 

FitzHugh-Nagurno system is discussed and Nagumo's equation as 
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a special case thereof. 

Except for travelling pulse solutions, the existence of a 

second kind of solutions, periodic solutions, have been es­

tablished and proved in [9, 40, 42]. 

It has been proved that the speed c of a periodic solution 

lies in the int·erval O < c < /2 <½- a) [ 40] . Maginu [ 55] shows 

that the period L(c) is a smooth function of c with one local 

minimum, and the periodic solutions are unstable for L'(c) < 0. 

McKean [53] proposed that the cubic polynomial fin (3.13) be 

replaced by a piecewise linear function, in such a way that 

one could find exact solutions to the resulting system. One 

particular caricature which has received the most attention is 

= { -u, 
a-u, 

1 
0 <a~ -

U > a I 2 

fl 

0 

Figure 3.6. 

This model has been studied extensively by Rinzel and Keller 

u 

[ 74] and Rinzel [70, 72, 73]. Apart from their numerical work 

which will be discussed in a later paragraph, they also es­

tablished theoretical results on stability. They show that 

for 'certain parameter values two pulse solutions exist with 

different speeds of propagation. They are able to show that 

the slower one is unstable and the fast one stable through a 

linear stability analysis. 

They also establish the existence of two periodic waves, re­

presenting trains of propagated impulses, for each period 

greater than some minimum period which depends on the para­

meters. The slower train is again unstable. 
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Returning to the original equation (3.14) we mention a con­

jecture of Hastings [41] on the threshold property. He states 

that f~r the boundary condition u(o,t) = U
0

(t) the size of 

JT U (t)dt is crucial. If U0 (t) has sufficiently small com-a o 

pact support and JT U (t)dt is small then the solution will 
• O 0 

decay to zero. No proof is given. We will discuss the Fitz-

Hugh-Nagumo system in the next paragraph for which results on 

the threshold properly have been proved. 

3.3.3.2. Analysis of the FitzHugh-Nagumo system 

We now consider the full FitzHugh-Nagumo system as given by 

(2.41, 2.42); 

au = at 
a 2 u + u(l-u) (u-a) - w 
ax 2 

aw = at b (u - dw) , d ~ 0, b > 0, 0 < a < 1 

In the case where d = 0 we have, of course, the simpler Nagumo 

model for which the existence of travelling wave solutions was 

established by Hastings. By following Hastings' arguments 

Sleeman (79] establishes the existence of travelling wave solu­

tions for the FitzHugh-Nagumo system. 

By setting ~ = X - Ct , u ( X , t ) = cp ( X - Ct) , w ( X , t ) = lJJ ( X - Ct ) 
I 

we obtain the set of ordinary differential equations: 

where 

and f (cf>) = cp (1 - cf>) ( cp-a) 

(3.16) 

(3.17) 

Sleeman [79] considers a travelling wave solution to the Fitz­

Hugh-Nagumo system (2.41, 2.42) as a solution of (3.16, 3.17) 
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71. 

lim ¢ '(~) = 
lsl ➔00 

lim 'lJJ ( s) = 0, (3.18) 
lsl ➔00 

i.e. a pulse solution. The conditions in (3.18) are moti-

vated from the biological background. It represents a nerve 

in a resting state at the two end points. 

Green and Sleeman [33] established some results (later improved 

by Sleeman [79]) concerning the relative magnitudes of the para-

meters. The first of these concerns the existence of travel-

ling wave solutions: If .!. ~ a < 1 b > 0 , d ~ 0 then the 2 I 

FitzHugh-Nagumo system (2.41, 2.42) has no bounded non-constant 

travelling wave solutions, therefore O <a<½ is a necessary 

condition for the existence of travelling wave solutions. ·we 

state two more of these results as theorems. 

THEOREM 3. 9 

If c 2 ~ (l-a) 2 for O <a< 1, d ~ 0 and b > 0 

then every bounded travelling wave solution of 

(3.16, 3.17, 3.18) is identically zero. 

A necessary condition for the existence of a travelling wave 

solution is therefore 

c 2 < (l-a) 2 for O <a< 1 

THEOREM 3.10 

For any travelling wave solution of the Fitz­

Hugh-Nagumo system 

4b c2 > ----
2 

(1-a) 
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We thus have an upper as well as a lower bound on the speed 

of a travelling wave. 

From Theorem 3.10 we can derive an upper bound for b, 

namely 

b < ( 1-a) 4 

4 for O < a < 1 

These results are applicable to the simpler Nagumo model 

( 2. 41, 2. 4 2) where d = 0 7Wi thout any alteration. 

Similarly the results remain unaltered if we consider periodic 

solutions of the FitzHugh-Nagumo system instead of pulse 

solutions. 

By far the most comprehensive results on the existence and 

uniqueness of solutions to the FitzHugh-Nagumo system !are that 
l 

of Schonbek [77, 78] and Rauch and Smaller [69]. These results 

are complicated, we refer the reader to the original text. One 

particular result which deserves attention is one of Schonbek 

[77] on the threshold property. Schonbek proves that if the 

ooundary data u(o,t) has finite sup norm and vanishes outside of 

some interval [0,T] then the solution is bounded for all t ~ 0, 

by a constant times the total stimulus JTju(o,t) jdt. Furthermore, 
0 

if the total stimulus is sufficiently small, the solution has 

,exponential decay. 

To conclude this paragraph we mention two survey articles on 

the FitzHugh-Nagumo system, namely that of Hadeler [35] and 

Hastings [41]. 
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3.3.3.3. Analysis of the BVP model (eqs. 2.45, 2.46) 

An analysis of the BVP model as such has been performed by 

FitzHugh [28,29] who also constructed the model. This phase 

plane analysis, which we referred to in§ 2.3.5 when discussing 

the construction of the model explains the physiological pheno­

mena concerning impulse transmission and illustrates the exis­

tence of single pulses or infinite trains of pulses. 

The two variables of the BVP model, namely u and w, represent 

excitability and refractoriness respectively. If the recovery 

variable w is kept at a constant value, excitation is followed 

by a plateau action potential of infinite duration. In this 

case the equation for the uniformly propagated action potential 

can be solved explicitly. The method is due to A.F. Huxley 

and the solution is 

V -V 
2 R 

2 

where VR =-1. '1994 

V = 1.9857 (3.19) 
2 

A = 0.3931 

In this case where recovery is omitted the BVP model reduces 

to a single equation containing only one variable. It is in­

teresting to note the resemblance between this case and the 

heterozygote inferior case of Fisher's equation, Case 3 (2.8) , 

where the Huxley solution can also be interpreted as "excitation 

followed by a plateau of infinite duration". In both cases the 

reaction term is a cubic polynomial in u. 

The existence and stability of periodic solutions to the BVP 

model is studied in [83]. For the stimulus added as an extra, 
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constant, term to the principal equation (2.45), the stability 

of the periodic solutions is dependent on the value of I. 

No o·ther analytical results exist in the literature except for the 

phase plane analysis of FitzHugh and the results on the simpli­

fied FitzHugh-Nagumo system which have been discussed in the 

previous paragraph. 

3.3.4. The Hodgkin-Huxley system (Appendix B) 

The Hodgkin-Huxley system has been obtained empirically and 

because of it's complexity very few analytical results have been 

obtained so far, except for the existence of certain types of 

solutions, namely pulse and periodic travelling wave solutions. 

A study to be mentioned at the outset is that of Casten, Cohen 

and Lagerstrom [5]. Another useful survey, covering subsequent 

development and extensions of the theory behind the Hodgkin­

Huxley equations is that of Evans [ 16]. 

As in the case of the BVP model, FitzHugh [29] also studies 

a modified version of the Hodgkin-Huxley model, which he calls 

the "Vm-reduced" system. The four variables V, m, hand n of 

the Hodgkin-Huxley system can be grouped into two classes: The 

fast variables V and m and the slow variables hand n. If h 

and n are kept at constant values (say at their resting state 

values), instead of being allowed to change slowly according 

to their differential equations, no recovery follows the ex­

citation of the nerve. The pulse solution to the system is 

replaced by a wave front solution, which means that the poten­

tial remains at a constant value for an infinite period after 

excitation, instead of returning to the rest potential. 
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FitzHugh [29] draws these conclusions from a phase plane ana­

lysis. The full Hodgkin-Huxley system would require a phase 

space analysis which is far more complicated to study. 

R.E. Plant [68] studies the space-clamped Hodgkin-Huxley model 

with the aid of yet another approximation. The approximation 

to the four-dimensional system is obtained by assuming that the 

fast variables V and mare described by algebraic rather than 

differential equations. Using this approach, known properties 

of the solution of the Hodgkin-Huxley equations, such as the 

threshold property, and repeated oscillation under constant current 

stimulus are successfully modelled. 

The most comprehensive results concerning this system are 

those of G.A. Carpenter [4] who studies the existence of pulse 

and periodic solutions using a phase space analysis. The set 

of reaction-diffusion equations is arranged as consisting of 

a principal differential equation coupled with 1 "slow" and 

m "fast" equations. In the Hodgkin-Huxley system 1 = 2 and 

m= 1. The principal, slow and fast equations are studied sepa­

rately and then pieced together to form true solutions of the 

system. General conditions are given for the existence of pulse 

solutions, finite wave trains and periodic solutions. The 

results are too complicated and general to state here and the 

reader is referred to the original paper. Further results on 

the existence of periodic solutions is given in [84]. 

We conclude this paragraph by mentioning two more studies - that 

of Hassard [ 38] in which the existence of unstable periodic 

solutions is shown for small current stimuli and that of Sabah 

and Sprangler [76] in which the complex frequency-current-
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voltage relation for the membrane is studied by linearizing 

the Hodgkin-Huxley equations. The interested reader is re­

ferred 'to these papers. 

3.4. Numerical treatment 

3.4.1. Introduction 

In this discussion on computational results for the reaction­

diffusion models of impulse propagation in the nerve, an out­

line is given of various numerical studies available in the 

literature. These studies are discussed briefly, with em­

phasis on the purpose and methods behind the studies, pointing 
I 

to aspects which require investigation in the present numerical 

study. 

3.4.2. Fisher's equation (2.3) 

Althoug~ various theoretical results on the behaviour of solu­

tions to Fisher's equation exist in rhe literature (§3.3.2), nu­

merical results are, by comparison, rather scarce. 

Following the construction of the model in 1937, Fisher [27] 

carried out a few computations to illustrate that the model was 

plausible. The computations were carried out by transforming 

the partial differential equation (2.3) to an ordinary differen­

tial equation, making use of the fact that ~i = - v ¾i when 

looking for a solution representing "a wave of stationary form 

advancing with velocity v". The equation was then integrated 

numerically for certain parameter values of p by means of ex­

pansions in terms of p. Fisher tabulated the form of the wave, 

so as to show, for different values of the density of the mutant 
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gene, the value of the gradient of gene ratio and the 

position at which this value occurs relative to the "centre" 

of the ·wave (the point in advance of which there are as many 

mutant genes as there are parent genes behind it) . 

A significant observation of Fisher, which has been proved 

subsequently (Theorem.3.5) is: "It appears that the actual 

velocity of advance must be the minimum compatible with the 

differential equation". 

It is clear that very little computational work on this very 

interesting model exists. One of the purposes of the present 

study is therefore to carry out computations on Fisher's 

equation and to compare the computed results with the beha­

viour predicted by existing theorems and thus possibly obtain­

ing a better understanding of the behaviour of the model. 

3.4.3. Nagumo's equation and the FitzHugh-Nagumo system 

(equations (2.43, 2.44) and (2.41, 2.42), respectively). 

The most comprehensive results on Nagumo's equation, theoreti­

cally as well as numerically are due to Rinzel and Keller [74]. 

Following McKean [53] the authors studied a slightly modified 

version of the original equation, namely where the non-linear 

reaction ·function f(u) = u(l-u) (u-a) in (2.43) is replaced by 

the Heaviside step-function 

(See Fig. 3. 6) 

{ -u , 

a-u, u > a, 
1 0 <a~ 2 (3.20) 

For this simplified Nagumo model they determined all periodic 
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and pulse travelling wave solutions. For certain parameter 

values there are two different pulse-shaped waves with dif­

ferent.propagation speeds. These speeds are plotted as a 

function of the parameter a for various positive values of b 

(where a and b are the parameters. in equations ( 3. 2 0} and 

(2.44}, respectively}. Similarly curves are obtained for the 

pulse height and pulse width as a function of a for various 

values of b. 

In the case of wave trains Rinzel and Keller give numerically 

determined curves for the propagation speed as a function of 

it's period and for the maximum amplitude as a function of 

the period. 

The travelling wave solutions to Rinzel and Keller's version 

of Nagumo's equation is obtained by introducing the travel­

ling wave co-ordinate z = x + ct and then reducing the system 

to a single equation 

V"' - cv'' 
C C 

v' 
C 

0 , b>O,c>O 

with appropriate initial and boundary conditions. The resul­

ting initial boundary value problem is solved numerically by 

making use of a transcendental equation relating a, band c 

and which had previously been obtained by McKean [53]. 

For the FitzHugh~Nagumo system (2.41, 2.42} Rinzel [71] obtained 

numerical results concerning periodic solutions by introducing 

the co-ordinate z = AX - wt and transforming the partial dif­

ferential equations to ordinary differential equations (A is 

the wavelength, w w the impulse frequency and c = I the speed 

of propagation}. When the speed c is not known in advance, as 
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is the case here, a shooting technique is usually used. Rinzel 

replaces this technique with an alternative, described in [71), 

and determines a dispersion relation (w against A) for the 

family of periodic solutions. 

Rinzel also solves the set of partial differential equations 

(2.41, 2.42) using an impli9it Crank-Nicolson scheme and de­

scribes the stimulus-response properties of a uniform nerve 

model with a steadily maintained stimulus at a fixed location. 

For an appropriate range of stimuli repetitive firing occurs. 

The intension of the present investigation is to study Nagumo's 

equation and the FitzHugh-Nagumo system using a Finite Element 

scheme. No modifications will be made to the original partial 

differential equations and the study will be extended to in­

clude an investigation of the influence of initial and boundary 

conditions on the initiation of pulse and periodic solutions. 

3.4.4. The BVP model (equations 2.45, 2.46) 

Very few studies on the numerical solution of the BVP equations 

have appeared in the literature. Two computer studies were carried 

out by FitzHugh, who also constructed the model [29, 30). In 

the first of these he gives a motion picture description of 

impulse propagation using computer animation. The purpose was 

to help one visualize the changing state of an excitable mem­

brane. The method is described as "an elementary finite step 

numerical approximation method". In the second of these studies 

a numerical method to solve the BVP equations is described in 
I 

which the partial differential equations are transformed to 

ordinary differential equations, representing travelling wave 

equations. The system has solutions for two velocities -
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presumably representing the·stable and unstable travelling 

wave solutions. 

Both these studies are unsatisfactory from the computational 

point of view. The first provide neither method nor numerical 

results and in the second case an iteration on the speed is 

needed because i± is not known in advance. A direct solution 

of the partial differential equations would provide the speed 

as a result of the computations. 

A particular study of importance is that of R.M. Muira [61] 

which is by far the most significant as far as numerical work 

on this model is concerned. In this paper only the stable 

solitary wave solution to the BVP equations is computed with 

the aim of finding an accurate method for computing the speed. 

Three methods are used. In two of these the travelling wave 

co-ordinate~= x-ct is used to transform the partial dif­

ferential equations (2.45, 2.46) into a system of ordinary 

differential equations. The third method consists of solving 

the original partial differential equations directly by means 

of Lees' [52] modified Crank-Nicolson finite Difference scheme 

in which the non-linear terms are evaluated using extrapolated 

values of the solution. This semi-implicit scheme is condi­

tionally stable. The solitary wave emerges as long-time 

solution for sufficiently large stimulus. The speed of the 

wave is obtained from the calculated results. 

A particular feature of Muira's calculations on the BVP model 

is that the stimulus is not modelled as a boundary condition 

but added to the right-hand side of the principal equation 
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(2.45) as an extra term. 

Anothe_r feature of this paper is the "wave integrals" which 

are derived to determine the closeness of the computed 

solution to the exact solution. Although the BVP model does 

not have conserved integrals of motions as do some non-linear 

evolution equations such as the Korteweg-de Vries equation, 

integral expressions can be defined which must take on pre­

scribed values when the solution is a solitary travelling 

wave. [For a single pulse integration is carried out over 

the whole of the ~-axis, for periodic solutions only over one 

period]. 

We intend to construct a Finite Element scheme for solving 

the BVP model and to compare our results on the asymptotic 

speed of propagation to that of Muira. 

One final study which should be mentioned is that of Copeland 

[13] which is a guide to the programs used by Muira [61]. 

The study concerns itself with programming aspects and efficien­

cy of implimentation. 

3.4.5. The Hodgkin-Huxley system (Appendix B) 

The first computations on the Hodgkin-Huxley system were carried 

out using a desk calculator and are described in the original 

paper by Hodgkin and Huxley [45]. They solved the system in 

both the space-clamped case (in which the action potential is 

the same at every point of the axon) as well as in the case of 

a propagated action potential. 

In the first case a numerical solution to a set of four or-
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dinary differential equations is required. The principal 

equation is given by (2.17) and the three subsidary equations 

by (2:13, 2.15, 2.16). Hodgkin and Huxley solved this set of 

first-order ordinary differential equations using Hartree's 

[37] iterative integ~ation method.· 

In the second case the principal equation is a partial dif­

ferential equation ((1) of Appendix B). Hodgkin and Huxley 

avoided solving the partial differential equation directly by 

making use of ;the assumption that during steady propagation 

the curve of the potential V against time at any one position 

is similar in shape to that of V against distance at any 
I 

particular instant. 

It follows that a 
2

v = 1 
'3x 2 e 2 

auction. 

a2 v 
where 0 is the velocity of con-at 

Hence the principal equation ((1) of Appendix B) reduces to 

a 

2R0 2 

(3.21) 

with the subsidary equations remaining unchanged. The fact 

that 0 is not known in advance requires the implimentation of 

a shooting method which is described in [45]. 

Good qualitative as well as quantitive agreement was found 

with experiment for both the space-clamped case and the pro­

pagated action potential at temperatures 6, 3°C and 18,. 5° C. 

Other aspects in which they found good agreement with experi­

mental evidence were the velocity of conduction (18,8 m/sec 
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calculated, 21,2 m/sec experimentally at temperature 18,5°C), 

the time course of impedance changes, net fluxes of potassium 

and sodium per impulse, absolute refractory period and re­

covery of excitability during the relative refractory period. 

The value of threshold to short current pulses, subthreshold 

responses and subthreshold oscillations during a long rectangu­

lar pulse are other aspects also studied. 

Computations with a desk calculator are not only tedious but 

also time-consuming. The obvious answer to this is the 

digital computer and the first paper to be published on digi­

tal computer solutions of the Hodgkin-Huxley system was that 
I 

of Cole, Antosiewicz and Rabinowitz [8] which appeared in 

1955. Only the space-clamped action potential is studied with 

the principal equation (2.17) modified to allow for a total · 

current varying with time: 

The subsidary equations (2.13, 2.15, 2.161 rema,i_n uncha_nged. 

The initial values of m, n and h are obtained by substituting 

V=O into the subsidary equations and setting dm dn dh 0. dt = dt - dt -

These conditions imply that the axon is in a resting state be­

fore excitation. 

Cole et al carried out integrations with the following three 

types of functions I(t): 

(i) I (t) = I
0

, t > 0 , 

(ii) I (t) = 

(iii) I(t) = 

I , 
0 

It 
T' 

0 < t ~ T 

0 < t < T, 

0 , t > T. 

I constant 
0 

I constant 
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The set of ordinary differ~ntial equations is soived using 

a fourlh--0rder Runge-Kutta method. The threshold strength 

and duration curve was established. Repetitive firing was 

obtained for condition (i) above and furthermore the beha­

viour of the theoretical axon near. threshold as well as the 

response to steadily rising currents were investigated. 

The above calculations were only for the space-clamped case. 

We intend to investigate the effect of similar types of 

boundary conditions for the original Hodgkin-Huxley system. 

In 1959 R. FitzHugh and H.A. Antosiewicz [31] extended the 

work of Cole et al [8] to account for a propagated action 

potential, in which all variables of state are functions of 

the space-variable x as well as the time-variable t. Again 

the relation 

a 2 v 1 a 2 v = ax 2 92 at 2 

is used to obtain an ordinary differential equation as princi-

pal equation: 

v" 

'Where 

K = 
2R0 2 C 

m 
a 

K is not known in advance because of it's dependence on 0 as 
\ 

in the Hodgkin-Huxley case and must therefore be calculated 

by using a shooting method. The wave form desired is one in 

which V approaches zero as t ➔ ± 00 • If an incorrect value of 

K is used in the calculation, V eventually becomes very 

large and di verge to ± 00 • A single value of K is obtained 

for every temperature value. These calculations render single 
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pulses but fail to produce ·two or more successive propagated 

action potentials. 

In all the numerical studies up to 1959 the Hodgkin-Huxley 

system was simplified to a system of ordinary differential 

equations and solved as such. 

In 1966 Cooley and Dodge [ 11] were the first to endeavour sol­

ving the non-linear partial differential equation with the 

associated subsidary equations of Appendix B directly. They 

integrated the partial differential equation by using a Finite 

Difference scheme. 

Their choice of initial conditions correspond to an axon in 

the steady state at the resting potential. The axon is then 

stimulated by a constant current stimulus of infinite duration 

at one end of the axon. This stimulus is added as an extra 

term to tQe right~hand side of the principal equation. 

Cooley and Dodge carried out computations to determine the 

threshold strength and duration curve. They obtained repeti­

tive firing in response to a maintained stimulus and compared 

their results with previous solutions to the space-clamped 

axon. The effect of temperature on the threshold intensity 

of a short stimulus and on the rheobase was also determined 

for a series of temperature values. 

· With the Finite Element scheme which is to be constructed in 

this study for solving the Hodgkin-Huxley system, one will 

be able to solve the system directly, as in the case of 

Cooley and Dodge [ 11]. This will enable us to compare the 

Finite Element scheme and Finite Difference schemes as applied 
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to this system. 

In addition we intend to investigate the initiation of pulses 

for various types of boundary conditions. 

A particular boundary condition, simulating a constant current 

of infinite duration, has been investigated by Stein [81] who 

constructed a f'requency-current curve for a temperature of 

6.3°C which shows that the frequency of pulses in a train is 

dependent on the strength of the current. Stein concentrated 

on the effect of alterations to the Hodgkin-Huxley system 

such as steadying potassium or leakage current densities. He 

also touches upon the matter of applying two stimuli sequen-1 

tially with the hope of triggering two pulses and conjectures 

that this is dependent on the absolute refractory period. We 

feel that these two aspects have not been investigated to 

full extent, especially' the question of repetitive stimuli 

giving rise to repetitive firing. The matter of a one-to-one 

correspondence between stimuli and firing will be investigated 

in Chapter 5 and a minimum time-lapse between stimuli will be 

established to ensure one-to-one correspondence. The method 

used by Stein is an implicit Finite Difference scheme; similar 

to one which had previously been used in [67] where the 

initiation of action potentials was investigated. 

A recent study of Miller and Rinzel [57] deals with the 

phenomenon that not all pulses in a train seem to be travel­

ling at the same speed. In general, pulse speeds and inter­

spike intervals will not remain constant during propagation. 

This is a very interesting matter and a very recent branch of 

investigation which will thus also enjoy our attention in the 

present study. 
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CHAPTER 4 

A FINITE ELEMENT STUDY OF FISHER'S EQUATION 

4.1. Introduction 

In this chapter we concern ourselves with the numerical solution 

of Fisher's equation (2.3}. Fisher's equation is solved for par­

ticular functions f(u} using the Crank-Nicolson-Galerkin method. 

The qualitative behaviour of the numerical solutions are then 

compared with the theoretical results quoted in the preceding 

chapter, concentrating on three aspects namely the asymptotic 

speed of propagation of a travelling wave, results on stability 

and convergence to wave fronts. 

Cases 1 and 3 of Fisher's equation will be discussed in greater 

detail than Case 2 because of the similarity in behaviour of 

solutions of Case 2 to that of Case 1. 

4.2. The rinite Element method for Fisher's equation 

We need the following definitions: 

Let n be a bounded domain in mm, m ~ 1, 

The Sobolev space H1 is defined by 

H1 (n} = {wlw E L 2 (n}, ;;_ E L 2 (n}, i=l, ... ,mf 
1 

n 
and llwll 8 1W} = [ llwll \ + L 

L (n} i=l 

where L2 (n} is the space of square integrable functions on n, 

that is, the space of functions which are measurable and such 
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that 

= [ J. w 2 dx]~ n < oo. 

It is well-known that L2 (n) is a Hilbert space with respect to 

the inner product 

( f, g) = f n f ( X) g ( X) dx . 

Also of interest is the space H1 (n), the subspace of H1 (n) con­
e 

sisting of those functions which vanish on an, the boundary of 

n. 

The solution of Fisher's equation (2.3): 

au = at 

is based on the continuous time Galerkin method ([ 17]) where 

the weak solution u E H1 ·(m = 1) satisfies 

. a 2 u 
(ax 2 , V) + (f,v) V VE H 1 

. 

with( , ) denoting the L
2 

inner product. 

If we approximate u by U E KN, where KN= span {¢ 1 , ••• ,¢N}, 

a finite dimensional subspace of H1 
,· and 

N 

U(x,t) = L 
i=l 

U.(t)¢.(x), 
1 1 . 

then (4.1) becomes, after integration by parts, 

j=l, 2, ..• , N 

( 4. 1) 

where a dash denotes differentiation with respect to / x, and 
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au [ ax ¢j1an is a boundary term which is necessarily zero as con-

sequence of our choice of basis functions unless possibly when 

j = 1, N. For homogeneous Dirichlet boundary conditions 

equation ( 4. 2) applies only for j = 2, 3, ... , N-1 and for homo­

geneous Neumann conditions, the boundary terms vanish for j=l,N. 

For boundary conditions other than the two types mentioned above, 

au · 
the terms [ ax ¢ j] , j = 1, N are not zero and is represented by b 

1 

and bN respectively, bi= 0, 2 < i < N- 1. 

Evaluation of (4.2) leads to the system of ordinary differential 

equations 

M a + S a = F(a) +b ( 4. 3) - -

T b = (b ,0,0, ... ,0,bN) and a dot denotes differentiation with 
- 1 

respect to time. 

The matrices Mand Sare known as the mass and stiffness matrices 

respectively. Equation (4.3) represents the semi-discrete Galer­

kin method, and to obtain approximate solutions to this set of 

ordinary differential equations the time variable t is discri­

tised. If k is an interval in time and m a positive integer, 

we put 

t = mk 

. 1 ( m+ 1 m m= 0, 1, 2 , • . a = - a ~ ) ' k -

1( m+l m m = 0, 1, 2, a = - a + ~ ) , .. - 2 -

(4.4) 

in ( 4. 3) where m is approximation to a (mk) • a an 

This leads to the Crank-Nicolson-Galerkin (C.N.G.) method which 

is second order correct in time. It requires the solution of a 
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system of non-linear algebraic equations at each time step: 

N 
'L 
i=l 

m+l m m+l m 
a. -a. a. +a. 

[ ( ]. 1 ) ( q> • I q> • ) + ( l. 2 ]. ) ( q> ', ; q> t • y ] 
k i J i J 

N 

- (f ( L 
i=l 

m m+l a. + a. 
l. l. 

2 
,f. • ) , ,f. .) - b . = 0 
't' l. 't' J. J 

d = 1, ... , N 

m = 0,1,2, 

This is solved by Newton's iteration method ((49) ): 

If the system to be solved is 

one iteration consists of solving 

J (Xv) (Xv - xv+l) = f (Xv) 

for (Xv - xv+l) where J(X) is the 

aJ <~> 
· ax · Jacobian matrix 

The iteration terminates when If (Xv) - f (Xv+l) I < e: where 

( 4. 5) 

In the examples considered in this study, three iterations per 

time step are required for convergence. 

As basis function {¢.}._ 1 we choose piece-wise linears 
l. i- , ••• ,N 

(hat functions) depicted in Figure 4.1. 

The resulting linear tridiagonal system is solved using 
I 

Gaussian elimination (49). (See Appendix D). 
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Figure 4 .1: Graph of" <P 1 (x). ,<Pn (x}, 2 < ¢i (x) ~· n - 1. 

4.3. Solution to Fisher's equation for f(u) = u(l - u) 

4.3.1. Wave front solutions 

We ~ecall from equation (3.8) that 

u" + cu'+·f{U) = o, C > 0 

{~=x-ct) 

is the relevant equation to solve when looking for travelling 

wave solutions to Fisher's equation, travelling to the right. 

For a wave travelling to the left the corresponding equation is 

u" - cu'+ f(U) = o C > 0 ..... (4.6) 

( ~ = X + ct) 

If f (U) = U { 1 - U) (the example function for case 1 of Fisher's 

equation), a solution in closed form is not available to (3.8) 

or (4.6) {§ 3.3.2.4) so that we resort to numerical techniques. 

Equation (4.6) is solved numerically using a "search technique". 

We rewrite (4.6) as a first order system 

u' - w 

w' - cu'+ u2 
- u' 

The initial conditions are 

U = 0,99 

W = 0,01 at ( = X 

( 4. 7) 

( 4. 8) 
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where X is an arbitrary point somewhere to the right of the 

origin of the s-axis. We note that 

U=l 

w = o} 
( 4. 9) 

is a solution to (4.7) which signifies biologically that all 

of the population consists of one type of individuals. In (4.8) 

we consider a slight disturbance from this condition with the 

hope of obtaining a solution different from (4.9). 

The numerical procedure used is Hamming's Predictor-corrector 

method ([51]) with Runge-Kutta fourth order method ([51]) to 

provide the required additional starting values ,[For details of 

these methods see Appendix D]. It is clear from these methods 

that using ( 4. 9) as initial conditions at s = x, no other so­

lution than that given by (4.9) will be generated. 

A calculation is carried out starting at s = x and proceeding 

to the left on a grid with spacing h = 0,1. 

The initial values are then changed to 

u = o(q99 

W = 0,001 

and another calculation is carried out. The initial point is 

moved to the right until the two calculations "coincide" as 

s ➔ - CX) This process is repeated once more. 

The results of the calculations are as follows: 
I 

In agreement with a result of Rothe (75] which has been given 

in Theorem 3.5 (§ 3.3.2.2) solutions are found for values of c 

greater than some minimal value c*. In our case c* = 2. 
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Figure 4.3: Solution of Fisher's equation, f(u} = u(l-u), 

with u(x,O} obtained from solving Eq. (4.6) 

for · c = 4. 
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For values less than c* = 2. oscillations occur in the solution. 

The solutions obtained for c = 2 and c = 4 are shown in the graphs 

for t=·0 in Figures 4.2 and 4.3 respectively. These are wave 

front solutions which satisfy U (- 00 ) = 0, 0( 00 ) = 1. 

The value of c* = 2 corresponds to v 4 f' CO) which Aronson and 

Weinberger [ l] give as a lower bound for the speed of any pos­

sible travelling wave solution. 

The discussion on stationary patterns (§ 3.3.2.4) showed that 

no non-constant zero-speed travelling wave solutions exist for 

Fisher's equation with f(u) = u(l-u). This again, correlates 

with the fact that equation (4.6) has no solutions for c < c*. 

4.3.2. Time-progressing solutions 

Fisher's equation ( 2. 3) with f (u) = u ( 1 - u) is solved using the 

Crank-Nicolson-Galerkin method as described in§ 4.2. The mesh 

size h = 0, 5 and time-step k = 0, 5. 

4.3.2.1. The asymptotic speed of propagation 

(1) The initial data £(0) for the first time-progressing cal­

culation is the solution obtained numerically from solving 

the sys tern ( 4. 7) for c = 2. The boundary conditions are 

u(0,t) = 0 and u(l00,t) = 1. 

In this case the initial data is transmitted with the 

asymptotic speed approximating 2 moving to the left and 

remaining unaltered in shape (see Figure 4.2). 

(2) The initial data a{0) for the second time-progressing cal­

culation is the solution obtained numerically from solving 

the sys tern ( 4. 7) for c = 4. The boundary conditions are 
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the same as in (1). 

In this case the profile changes rapidly to assume the 

shape of the initial data for the case c = 2. The speed 

initially 4 converges to the asymptotic speed c* = 2 (ob­

tained from fol lowing u = 0, 5 in' time) . ( See Figure 4. 3) . 

We can conclude, therefore, that although the ordinary 

differential equation (4.6) has solutions for values 

c ~ c* = 2 representing wave fronts, the only wave front 

solution obtainable from a time-progressing solution of 

Fisher's equation, as in this study, is the front travel­

ling with asymptotic speed c*. To cover both the cases of 

waves travelling to the left and to the right one could 

say that travelling wave solutions exist only if lei~ c~ 

where the speed c is positive if the wave is travelling in 

one direction, negative in the other. 

4.3.2.2. Results on stability 

We refer back to Theorems 3.1 ( 1) and 3. 2 in which it is stated 

that the only stable equilibrium state for both the pure initial 

value problem and the initial-boundary value problem in Case 1 is 

u = 1. 

We use various examples of initial and boundary data to verify 

this for the example function f (u) = u ( 1 - u). Results are as 

follows: Any non-zero rectangular pulse (or stimulus) taken as 

initial data, however small the dimensions, evolves in time to 

converge to the stable equilibrium state u = 1. This can also 

be verified by starting with initial data u = 1 everywhere, ex­

cept for a finite x-interval where ut 1. The disturbance is 

eliminated rapidly and the solution converges to u = 1 as time 
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progresses. 

Similar'results hold for the initial-boundary value problem. 

A rectangular p~lse, applied for however small a duration of 

time, grows to unity and is propagated away from the boundary 

verifying the fact that u = 1 is the only stable equilibrium 

state. (See Figures 4.4. - 4.7) 

4.3.2.3. Convergence to wave fronts 

(1) Consider the results depicted in Figures 4.4 - 4.7. -

If any rectangular stimulus is taken as initial data the 

J height grows to one and the data evolves into two wave 

fronts travelling in opposite directions, one with speed 

rapidly converging to 2 and the other to -2. The shape of 

the two wave fronts propagating away from each other con­

v~rges rapidly to the shape of the solution U{~) to the .­

travelling wave equation for c = 2 and to U (-~) respectively. 

(2) In the case of a rectangular stimulus as boundary data such 

as 

u(o,t) = { f3 for t ~ T 
0 fort> T , 0 < f3 ~ 1, T > 0 

we obtain the following boundary layer pattern fort>> T: 

0 
CJ 

0 
0 

I 

I 

' 

t=20. 

~--f---1------y----~---, 

9)_ 00 25.00 
----+i t<­
Boimdary layer 

50.00 

0 
CJ 

...-1 , , 
I 

=> ' I I 

• I 
I 

g, I 

9)_ 00 
~ ~ 

25.00 

Boundary layer 

50.00 
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The boundary condition fort> T seems to be inappropriate 

because the solution obtained is inconsistent from the 

physical point of view. The population densities are kept 

at a fixed value on the left-hand boundary which can be 

interpreted as an external for?e keeping the population den­

sities fixed. More appropriate would probably be ~~(O,t) =O 

fort> Tin which case the value of u(O,t) is expected to 

grow to one and remain at one fort> T. (See§ 5.2.1 or 

5.5.2.2). 

For the boundary condition u(O,t) = 1, t ~ 0 a wave front 

starts propagating away from the boundary with asymptotic 

speed c*. The speed converging from below had a value qf 

2,082 at t = 28. 

(3) An interesting case is obtained if we exceed the restriction 

0 ~ u(x,t) ~ 1 and take a rectangular stimulus with height 

2.as initial data. The height'is rapidly reduced to I.and 

the wave fronts are propagated to the left and the right 

with shape and speed according to the travelling wave solu-

tion for the asymptotic speed c * = 2. (See Figure 4.9). 

4.4. Solutions to Fisher's equation for f(u) = u(l-u)(u-a) 

The relevant equation to solve when looking for travelling wave 

solutions is, in this case, given by 

u" +cu'+ U(l-U)(U-a) = o C > 0 (4.10) 

where~= x - ct, the wave travelling to the right. We recall 

from § 3.3.2.4 that an exact solution to (4.10) exists, namely 

the Huxley solution, given by equation (3.9): 
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U ( 0 = 1/ ( 1 + exp (-Ej /2)) 

C = /2 (½-a), 1 0 <a~ -
2 

We also recall the result of Rothe, given as Theorem 3.6 

(4.11) 

(4.12) 

(§ 3.3.2.2), which states that for a particular function f 

only one velocity c* exists~ 
I 

admitting wave front solutions, 

which is verified in this study. 

We solve Fisher's equation as a partial differential equation 

using the Crank-Nicolson-Galerkin method for various initial 

and boundary conditions. 

I 

4.4.1. The asymptotic speed of propagation 

(1) We first take the Huxley solution, given in (4.11), as 

initial data for a=¼- The wave front is propagated to 

the left, the shape of the front remaining unchanged and 

the speed c being approximately the Huxley speed. For 

1 a= 4 and h = k = 0,5. the computed speed was found to be 

0,3544. The exact speed is 0,3535. 

The interesting case is of course when a= ; which had been 

mentioned in connection with stationary patterns (§ 3.3.2,4) 

and which represents a zero-speed travelling wave. 

In this'case our calculations show that the wave front 

remains absolutely fixed and the speed is therefore zero. 

Even more interesting is the fact that a step function as 

initial data, e.g. u(x,0) = 0 if x < 0, u(x,0) = 1 if 
I 

x ~ 0 changes shape as time develops until it assumes the 

values of the exact solution with the point u = 0,5 remain­

ing stationary. (Note that when a = ½ 1 - u is a solution 
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of Fisher's equation if u is a solution, which implies that 

a vertical line through u = 0,5 divides the solutions into 

symmetrical parts). 

4.4.2. Results on stability 

We recall the discussions on the threshold property exhibited 

in this case ( following Theorems 3. 1 and 3. 2 of § 3. 3. 2. 2) . 

These imply that any initial or boundary data either dies away 

rapidly or grows to unity, with no intermediate possibilities. 

This conclusion is verified for initial data by the results 

depicted in Figures 4.10 and 4.11. 

We first take a rectangular pulse as initial data and determine 

the dimensions of such a pulse which would be sufficient to· 

trigger a travelling wave (or travellings waves as is the case). 

This gives rise to a threshold curve which we establish for 

1 
a = 4· (See Figure 4.12). Any rectangular distribution of 

which the dimensions fall within the shaded region will evolve 

into a travelling wave. 

Note that according to Theorem 3.8 (§ 3.3.2.3) the height of 

the initial distribution should exceed the value of a. In this 

1 case where a= 4 it corresponds to our findings. 

Similarly we take a rectangular distribution as boundary data 

at x= 0 with zero initial data, u(x,0) = o., x > 0, and solve 

the problem in the quarter plane x ~ 0, t ~ 0. The solution, 

again, either dies away or grows to unity as t increases. (See 

Figure 4.13 and 4.14). A threshold curve for this is given in 

Figure 4.15. A stimulus of which the dimensions fall within the 

shaded area will produce a wave whereas one outside would not. 
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Figure 4. 11: Solution of Fisher's equation with f (u) = u(l-u) (u-a) 

using super-threshold initial data. 
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Figure 4.12: Threshold strength curve for the pure initial 

value problem associated with Fisher's equation 

with f {u) = u { 1-u) {u-a) , a= L 
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associated with Fisher's equation, 

f(u) = u(l-u) (u-a), a. = \. 
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Note that the height of a rectangular stimulus on the boundary, 

according to Theorem 3.3 should exceed K where K is such 

that JK f(u)du = 0. 
0 

For a 1 = 4 and f(u) = u (1-u) (u-a) and a=!, 

K = 0,3923 

which is shown in Figure 4.15 as a lower bound for the height 

of the rectangular boundary distribution. This corresponds to 

our findings. 

4.4.3. Convergence to wave fronts 

We recall Theorems 3.7 and 3.8 (§ 3.3.2.3) concerning the con­

vergence to a travelling wave front from monotone initial data 

and concerning the convergence to two wave fronts travelling in 

opposite directions from initial data obeying the threshold 

conditions. 

Our experiments indicate the following: 

(1) A rectangular initial distribution with dimensions within 

the shaded region of Figure 4.11 grows to one and is then 

propagated to the left and the right. The shapes of the 

wave fronts are those of the Huxley solution U(~) and u(-~) 

with speeds c
1 

= 12<½- a) and c 2 = - c 1 respectively. 

(2) For boundary data u(0,t) = a , 
0 

situations occur for large t: 

either of the following 
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In both cases boundary layers form on the left-hand 

boundary. If a
0 

= 1 a front obeying the shape and speed 

of the Huxley solution propagates away from the boundary. 

(3) If we exceed the condition 0 ~ u(x,t) ~ 1 as in the previous 

case and use a rectangular initial distribution with height 

2, the height is rapidly reduced to 1 and propagated to the 

left and right according to the Huxley formula. 

(4) If we insert Dirichlet boundary conditions on both the left­

and right-hand boundaries, 

with u(x,0) = 0 0 < X < L, 

values of u(0,t) and u(L,t) exceeding the 

threshold value a,lead to two wave fronts being generated 

at the respective boundaries, one travelling to the right, 

the other to the left with shape and speed obeying the 

Huxley formula. On collision the two fronts do not elimi­

nate each other. In the region of the collision the value 

of the solution u increases from zero to one until the 
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stable equilibrium state of ·unity is reached eventually through­

out the interval on the X-axis, except close to the boundary 

where a boundary layer could form due to the Dirichlet boundary 

conditions. 

The outcome of various possible boundary conditions are indi­

cated in Figure 4.17. 

t = 110 

I 
0 a 
D □· 

~ ...--i r 
::J ::J 

a a 
D X D 

X 
20.00 40. 9)_ 00 20.00 40. 9)_ 00 20.00 4 

Figure 4.17. 

Thus if the value of either u(O,t) or u(L,t) exceeds the 

value of a then u(x,t) would attain the value 1 throughout 

the interval except close to the boundaries. 

4.5. Solution of Fisher's equation for f{u) = u{l-u)(a-u) 

We will discuss this particular case of Fisher's equation 

briefly. The behaviour of solutions in this case is essential­

ly the same as in the case of a quadratic f, case 1. 

The ordinary differential equation ( 3. 8) with f (U) = U ( 1-U) (a-U), 

which is the equation which need be solved when looking for 

travelling wave solutions, 
1 

has no exact solutions existing in 

literature. 
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We solve, numerically, the partial differential equation 

au a2 u 
~t = -- + u(l-u) (a-u) 
0 ax2 (4.13) 

to verify the theoretical results on stability, the asymptotic 

speed of propagation and the existence of wave fronts as dis­

cussed in Chapter 3. 

We refer back to Theorems 3.1(2), 3.4 and the remark following 

Theorem 3.2. Summarizing these results: The only stable 

equilibrium state in this case is u = a and furthermore there 

exists a travelling wave front solution U = q* (x-c*t) of ( 3. 8) 

such that 

lim q*(O = a 
~-+-oo 

where c* is the asymptotic speed of propagation. 

The Crank-Nicolson-Galerkin method was used to solve (4.13) in 

order to verify the theoretical results mentioned above. 

(1) Various rectangular initial distributions were used to veri­

fy the results on stability. The results to this were 

similar to that of Case 1. Any non-zero disturbance in­

creases or decreases to the value of a and is then propa­

gated in two opposite directions. In the case of boundary 

data a boundary layer forms if the height of the boundary 

data differs from the value of a. Close to the boundary a 

travelling front with height equal to a starts propagating 
..... 

away from the boundary. The situation is depicted in 

Figure 4.18. 

(2) Another point of interest is the asymptotic speed of propa-
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gation. For a= 0, 75 the speed was calculated from the 

numerical solutions as 1,748 and for a= 0, 25 it was 0, 96 76. 

These correspond well to the values of 2 ✓ f '(0) = 1,732 for 

a= 0,25 and 2v'f'(0) = 1,000 respectively. This, again, cor­

relates to the behaviour of solutions in Case 1 where the 

asymptotic speed c * = v' 4 f ' ( 0) . [ 1] 

(3) According to Aronson and Weinberger [!]travelling wave 

solutions exist for all c ~ c* if f'{0) > 0 (as is the 

case). Of these, however, only the solution for c = c* 

would be obtained in a time-progressing calculation as had 

been verified for Case 1 (§ 4.3.2.1). 

(4) A final point to be made is that the behaviour described 

0 
0 

...-1 

Lf) 

r---

0 

0 
LO 

in (1) and (2) was obtained for various sample values of a 

between 0 and 1. Even values of a less than½ gave the 

same results. Apparently no restriction on a is necessary 

as in case 3 (see§ 2.3.4 of Chapter 2 on this matter). 

Figure 4.18: Solution of Fisher's equation, f {u) = u (1-u) {u-a) at t = 50: 

no 1 : a = ·o, 15, u (0, t) = 0,75 

no 2: a= 0,5 u (0, t) = 1,0 

no 3: a = 0,5 u (0, t) = 0,5 

no 4: a = 0,5 u (0, t) = 0,1 
nol no 5: a = 0,25, u (0, t) = 0,25 

=>~1=-=--7-----------

Lf) 

ru 

0 

0 
0 

0.01 

,n nn un nn An nn .1 nn nn 
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4.6. A drift term added to Fisher's equation 

When discussing the construction of Fisher's model of popula­

tion genetics (§ 2.2.2 of Chapter 2) it was pointed out that 

complicating factors such as unequal increase in population in 

opposite directions were ignored for the sake of simplicity. 

In this paragraph we will touch upon this matter in order to 

illustrate how such a complicating factor affects the numerical 

method to be used. The example we look at is the one discus­

sed in § 2.2.2 where a term involving a first space derivative 

(called the drift term) is added to Fisher's equation. 

The relevant equation is 

m au+ u(l-u) (u-a) 
ax 

1 where the constant m > 0 and O <a< 2 . 

(4.14) 

If, once again, we look for travelling waves moving to the left 

-and follow the derivation of equation (3.8) we get 

u"+(c-m)U'+U(l-U)(U-a) = 0, ' .:... d 
- d~ 

Equation (4.15) has the Huxley solution (see~ 3.3,2.41 

U ( ~ ) = [ 1 + exp ( - l) ] - 1 

12 

provided that c - m = 12 <½- a) 

(4.15) 

(4.16} 

and so the velocity of the wave front travelling to the left 

is 

c = 12 ( ~ - a) + m where m > 0, 1 0 <a< 2 ... (4.17} 

and the velocity of the front travelling to the right is 
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C = (4.18) 

Starting with a rectangular initial distribution, sufficiently 

large to produce a travelling wave, the solution is propagated 

to the left and right with speeds approximately as given by 

(4.17) and (4.18). This implies that the population increases 

at different rates in opposite directions as had been conjec­

tured in § 2. 2. 2. 

The main problem, however, in h_~ndl.t_ng th~ d;r~~tt te;r:-m ~;r;:.i.ses 

in the numerical solution of the part±~l differenti~l equation 

(4.14) for arbitrary initial and boundary conditions. Experience 
I 

gained in solving (4.14) without the reaction term has shown 

that both Finite Difference and Finite Element methods give 

rise to large oscillations in the numerical solution if m has 

a significantly large modulus value. The interested reader is 

referred to [47] for methods (including "upwinding") of treating 

this malaise. To illustrate the point we show in Figure 4.19 a 

C.N.G. solution of (4 .14) with increasing time for m = 20, 

a= 0, 25, u (0, t) = 1, u ( 100, t) = 0, grid spacing h = 0, 5, time­

step k = 0, 1. In Figure 4. 20 we show a C.N .G. solution of 

(4.14) for m=50, u(x,0) = 1, 160 ~ x ~ 220, k=0,l. 

The offending oscillations are clearly visible. 

4.7. Discussion of the numerical solutions 

In all the calculations of which the results have been described 

in paragraphs 4.3.2, 4.4, 4.5 and 4.6 Fisher's equation was 

solved using the Crank-Nicolson-Galerkin method with h = k = 0, 5 

and a=¼ unless otherwise stated. The test and trial functions 

used were piece-wise linears. 
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Figure 4.19: Solution of at= ax 2 - max+ u(l-u) (u-a), M=20, 
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a= 0,25, k = 0,1, u(O,t) = 1, u(100,t) = 0 depicted 

at various stages up to where a fixed pattern has 

formed. 
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Figure 4. 20: Solution of ~~ = :~~ - m ~~ + u (1-u) (u-a), 

ID = 5 0 , a = 0 , 2 5 and k = 0 , 1 • 
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The question arises: What criterion may be used to obtain a 

meaningful comparison between the results of one numerical 

method·and that of another? Probably the best answer to this 

would be to compare the computed propagation speeds yielded by 

the different methods. A conjectur€ which had to be rejected 

was that the numerical method would affect the accuracy with 

which the equilibrium state u = 1, 00 would be attained. Experi­

ments showed, however, that the value of 1,0000 is reached 

exactly with no approximation error whatsoever. 

The rather coarse mesh and the linear basis functions rendered 

good results contrary to expectations. For k = h = 0, 5 in case 

1 3 where f (u) = u ( 1-u) (u-a), a= 4 we obtained the value 

c = 0, 3 5 4 3 7 9 5, when the actual speed should be 12 <½- a) = 0, 3535533 ... 

Decreasing the time step to k = 0, 1 changed the speed very little 

Another change which gave no improvement was to substitute 

equation (4.4): 

= 1 ( m+l m 
Cl 2~ +~), m= 0,1,2, ... 

of the C.N.G. method with 

where different values of s were tried, 0 < s < 1 . 

For s = 0,6 the speed is c = 0,3554 and for 

s = 0,75 the speed is c = 0,3571, 

than for s = 0,5. 

both worse 

For s = 0,45 the speed improves to c = 0,3538 but slight 

oscillations in the solution make their appearance.- The 
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maximum height of the wave front which had stayed fixed at 

-2 l,00000~ suddenly had oscillations to the order of 10 . 

When employing the Crank-Nicolson-Galerkin method we used 

piece-wise linear basis functions. One would expect to obtain 

better results (for speed for example) when using quadratic 

basis functions. This is impractical, however, because the 

non-linear reaction term makes employing rather tedious. 

For f ( u) = u ( 1-u) the term ( u 2 
, ¢ i) produces more than three 

times the number of terms to be calculated when ¢i is a quadra­

tic basis function than when¢. is linear. 
1. 

For a term such as (u 3 , ¢.) which is obtained when f (u) = u(l-u) (u-a) 
1. 

the situation would even be worse. 

An exact measurement of the speed has been studied by Muira [61] 

for the BVP model. Our method was to follow a fixed point on 

the wave front (u = 0 ,5) and then interpolate (using cubic 

polynomials) to find the distance it had travelled for a certain 

lapse of time. As the wave settles to a fixed shape the speed 

converges to a fixed value. This method which is far less 

complicated that the one Muira used gave satisfactory results 

and employment of a more intricate method was considered un-

necessary. 
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CHAPTER 5 

A FINITE ELEMENT STUDY OF THE HODGKIN-HUXLEY EQUATIONS 

5.1. Introduction 

In this chapter the models of impulse propagation in the nerve 

are studied numerically. We first investigate the three simpler 

models, namely Nagumo's, FitzHugh-Nagumo's and the BVP model. 

A Finite Element scheme is constructed by means of which it is 

possible to investigate aspects such as the qualitative beha­

viour of solutions and the asymptotic speed of propagation of 

travelling pulses, emerging as long-time solutions for suffi-
1 

ciently large stimuli. Another aspect to which considerable 

attention is paid is the boundary data necessary to generate a 

single pulse or a train of pulses. 

The Hodgkin-Huxley system is studied in greater detail than 

the three simpler models. We employ the Finite Element method 

once again and investigate the effect of various types of boun­

dary data on the solutions. Of particular interest are the 

results obtained for repetitive stimulation (such as periodic 

boundary data). In this case not only the initiation of pulse 

and train solutions will be discussed but also the speeds of 

individual pulses in a train which need not necessarily be the 

same for all pulses. 

5.2. Solution of Nagumo's equation 

5.2.1. Numerical procedure 

Nagumo's equations are given by (2.43, 2.44): 

d 2 u 
ax 2 

+ u ( 1-u) (u-a) - w 

aw at= bu 0 <a< 1 
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We note that equation (2.43) differs from Fisher's equation 

(2.3) with f(u) = u(l-u) (u-a) only in the last term of (2.43) 

with the variable w making it's appearance, which is then con­

nected to the variable u through equation ( 2. 4 4) • We intend 

following basically the same proced~re as for solving Fisher's 

equation described in § 4. 2. 

Our solution is based on the c·ontinuous time Galerkin Method 

where the weak solution 

au v) a2 u v) (at' = ( ax 2 1 + 

and aw bu at = 

r u E H , 

( f, v) -

w ·E H1 satisfy 

(w ,v) V VE HI ..... ( 5. 1) 

..... (5.2) 

We approximate u and w by U E KN and W E KN, respectively, 

where KN = span{cp
1

, ••• , ¢N}, a finite-dimensional subspace of 

H 1 , 

N 

U(x,t) = L 
i=1 

N 

W(x,t) = L 
i=1 

U.(t)¢.(x) 
l l 

W. (t) ¢. (x) 
l l 

where are basis functions and U. (t), W. (t), 
l l 

1 ~ i ~ N, are time dependent coefficients. 

We first deal with the simpler equation (5.2) which reduces to a 

first order differential equation 

N 
L 

i=1 

. 
wi(t)¢i(x) = b 

N 

LU. (t)¢. (x) 
. l l l 
1.= 

Using the Trapezoidal rule formula, we obtain 

• •••• {5.3) 
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1 ~ i ~ N, ..... (5.4) 

m= 0,1,2, ... 

where k is the time-increment as before, W~ an approximation 
l. 

to w (xi, km) . 

Equation (5.1) becomes, after integration by parts 

j=l,2, ... ,N 

( 5. 5) 

where [ ~~ ¢j] an is a boundary term which is zero unless pos­

sibly when j = 1, N. For conditions other than homogeneous 

Dirichlet or Neumann conditions,the boundary terms are not zero 

and are taken to be b
1 

and bN respectively. 

Evaluation of (5.5) leads to the system of ordinary differen­

tial equations 

Ma +Sa = F (a) - My + b 

where M = ((¢i,¢j)), s = ((¢.',<P~)Y, a = (U 1 , . . . , U )T 
1 J - N 

y = (W 1 , • • • I 
W ) T and b = (b 

1 
, 0, • • • I QI b )T 

N N 

Using th~ Crank-Nicolson Method to discretise in time we obtain: 

N m ' N 1 y Jn+ 1 y Jil 
-(f( L !(um+l + U.)¢.),¢.)-+-· L 2 (w. +w.)(¢.,¢.)-b. = 0 ... (5.6) 

l.
·=1 2 i 1. 1 J 1 1 1 J J 

i=1 

j = 1, •.• , N 

where f(u) = u(l-u) (u-a) and b. = 0 unless possibly when j = l,N. 
J 
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Solving for \l.1+ 1 in (5.4) and inserting this relation in (5.6) 
l. 

changes the relevant term to 

(5.7) 

We then solve the set of non-linear algebraic equations (5.6) 

at each time step using Newton's method [49] as outlined in 

§ 4.2. The solution is required in the semi-infinite strip 

[ 0 ~ X ~ L] X [ t ~ 0] • As basis function¢. (x), 
1 

we choose piece-wise linear functions, once more, depicted in 

Figure 4. 1. In all calculations k = h = 0, 5 with initial con­

ditions given _by: . 

u(x,O) = 0 

w(x,O) = 0 

X > 0 

X ~ 0 

The choice of initial conditions is motivated from the physical 

nature of the nerve. The nerve is initially in a state of rest 

and is then stimulated at the one end for a certain duration of 

time. We assume the stimulated end to be the left-hand end. 

The stimulus can be modelled as either a Neumann or a Dirichlet 

boundary condition at x = 0. This will be discussed in the next 

paragraph. At the other end of the nerve, that is, the right­

hand boundary of the problem, x = L, we use either of the follow­

ing: 

(i) u(L,t) = 0 

(ii) au(L t) = o ax , 

t ~ 0 

t ~ 0 

(5.9) 

(5.10) 

The first of these is used for L large compared to the dis-

tance an initiated pulse travels before termination (for 

example when we investigate the initiation of a pulse and not 
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the long-time behaviour). 

The second condition is used for all other calculations, that 

is, when a pulse does reach the right-hand boundary. It is 

supposed to "let go" the pulse across the boundary without 

changing the speed close to the boundary. More appropriate is 

the travelling wave condition 

c au(L t) + au (L,t) = 0 ax , at 

but this requires the speed c to be known in advance and was 

not used in this study. 

5.5.2. Results 

We are primarily interested in the initiation of either a single 

pulse or a train of pulses. These may arise as a result of 

different prescribed boundary conditions at x = 0. The following 

types were investigated: 

1. u(O,t) = {I for O ~ t ~ T 
0 fort> T 

I constant. 

The calculations show that a single travelling pulse is obtained 

provided I and T exceed certain threshold values. For a finite 

Land condition (5.10) the time-progressing solution approaches 

the zero steady state as t ➔ 00 , whether a pulse had been trig­

gered or not. The threshold values for the initiation of a 

pulse depend on both a and b as do the shape of the pulse and 

the speed of propagation. 

In particular for b = 0, 0025, I= 1, 0, a travelling pulse is 
\ 

obtained for values o~,a in the range O ~ a ~ 0, 265. For 

a= 0,1 and b = 0,002'5. a particular set of threshold values 
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are I= 1,0 and T = 3,97, approximately. The threshold in­

creases with increasing a. 

The shape of the pulse, for various values of a, is shown in 

Figure 5.1. Note that the shape of _the pulse for a= 0,0 is 

remarkably different from that for a= 0,25. All these figures 

are plotted for~~ 120. A feature to be noted is the remark­

ably flat "roofs" of the pulses for smaller values of a. 

Although the qualitative behaviour of this model is in agree­

ment with that of the original Hodgkin-Huxley model, the shape 

of the pulses for smaller values of a differs from the shape 
I 

of the experimental, as well as calculated, action potent~al 

curve (see Figure 2.5 (Ch 2) and 5.15 (Ch 5)). This does not· 

come as a surprise because, as has been pointed out in it's 

construction (§ 2.3.5), the model was intended to simulate 

qualitative rather than quantitative behaviour in the nerve. 

The speed and height curves for a range of values of a and b for the 

travelling pulse is shown in Figures 5.3 and 5.4 respectively. 

The "knees" of these curves are 

extremely difficult to calculate. 

The possible lower parts of each 

of these curves which turns and 

stretches back from the "knees" 

to the c-axis represent the 

soeeds of the unstable solutions 

of which the existence had been 
I 

discussed in§ 3.3.3.1. In 

C 

Figure 5.2. 

[From McKean [53]] 

Figure 5.2 we show a proposed speed diagram of McKean [53] for 

Nagumo's equation. The resemblance to the present computed 
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Figure 5.1: Solution of Nagurno's equation for b= 0,0025, 

a as indicated and t = 120. 
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Figure 5.3: Speed curves of Nagumo's equation for various 

values of b. Bounds on the speed, determined 

by Sleeman [79] are indicated: 

no 1: c = (1-a) 2
, upper bound for c 

no 2: Huxley speed c = 12 ( \ - a) , b = 0 

no 3}· 
no 4 • C = 2/b 

( 1-a) ' lower bound for c. 
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speed diagram as far as the upper parts of the speeds are con­

cerned is clear. 

Rinzel and Keller obtained the upper as well as lower parts of 

the speed curves for their simplified model (Fig. 3.5) by 

solving the ordinary differential equation (3.14) to find 

travelling wave solutions. From a time-progressing solution 

such as ours it is possible only to obtain results for the stable 

travelling pulse and thus the upper parts of the speed diagram. 

One clear advantage of our calculations over that of Rinzel and 

Keller for their simplified model is to be noted in the speed . 
I 

diagram.' Their choice of the Heavi-side function as reaction-

term has the effect that the speed of the faster, stable pulse 

H 

0.95 

0.90 

0~65 

0.60 

0.75 

t-
I 0.70 
c., 

UJ 
I 0.65 

0.60 

o.ss 

~ 

m_ 
0.50 

O.',S 

o. ,.o ..___ _ ___. __ _____._~ _ ___._ __ J.._ _ ____JL...._ _ _J__ a 
o.oo 0.05 0.10 0.15 0.20 0.25 0.30 

Figure 5. 4: Height curves for Nagumo' s equation for various 

values of b. 
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tends to infinity as a ➔ 0. The speed contours are so steeply 

inclined close to a= 0 that for a < 0, 15 it is nearly impos­

sible to determine the speed. 

In Figure 5.3 we also indicate the upper and lower bounds for 

the speed given by Sleeman [ 79] and quoted in § 3.3.3.2. The 

bound on the value of b was particularly useful in finding 

appropriate values for a and b. The straight line c = /2 (..!. - a) 
2 

represents b = 0. This is the Huxley speed which was discussed 

in connection with Fisher's equation ( § 3. 3. 2. 4 eq. ( 3. 9 )). 

2. u(0,t) = I t ~ 0, I constant 

For this boundary condition, which represents a constant 

stimulus of infinite duration, the expected train of pulses is 

not obtained. A single travelling pulse is produced which tails. 

to a boundary layer at x = 0. (See Figure 5.5). One would expect 

repetitive firing under infinite stimulation (experimental evi­

dence of this was described in § 2.3.3) but this boundary con­

dition fails to provide it. The value of I (provided the value 

exceeds threshold) has no influence on this phenomenon, in­

creasing the strength of the stimulus still produces no second 

pulse. 

3. 
I 

u(o,t) = { 
0 

, n (Tl + T 2 ) ~ t ~ n (Tl + T 
2

) + Tl 

, n(Tl +T2) +Tl< t < (n+l) (Tl +T2) 

n= 0,1,2, ... 

This boundary condition represents repetitive stimulation. It 

was found that careful tuning of T and T
2 

results in a train of . 1 

travelling pulses being fired. For example of a= O ,075 and 
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Solutions of Nagumo's equati9n with conditions on left-hand 

boundary as indicated: (a=0,075, b=0,01). 

::) 
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lf> 

o. 
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Figure 5. 5: u ( 0, t) = 1 , t ~ 0. 

Single pulse tailing to a boundary layer. 

u 

_ __J __ x 
120 

-0. 5 -

Figure 5.6: Repetitive stimulation causing repetitive 
firing as described in 3. of§ 5.2.2. 
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b=0,01, I= 1, 0 a train of. pulses for T
1 

= 20, T 2 = 110 is 

obtained. The first two pulses are shown in Figure 5.6 for 

t = 2 00. · One expects this phenomenon to be related to the con­

cept of an absolute refractory period in the sense that T
2 

should 

exceed the duration of the absolute .refractory period following 

excitation of the nerve. We recall from § 2.3.1.2 that during 

this period no stimulus, however strong, will be able to produce 

a second pulse. 

Increasing the value of I above 1,0 has no influence on the 

speed or the height of a travelling pulse. 

From the application of the above three Dirichlet boundary con­

ditions we see that repetitive stimulation was the only way qf 

obtaining repetitive firing. We now discuss the case where a 

Neumann boundary condition is prescribed. 

4. au (O t) = ax , I= l I*, - 2 t > 0, · I constant, r* > 0 

u(x,0) = 0, X ~ 0. 

'l'11e reason for the relation I = - ½ r* will become clear in the 

next paragraph where restrictions on r* are discussed. 

This Neumann boundary condition is applied to a range of values 

of I, a and b. The experiments indicate that this boundary con­

dition produces only a single pulse whereafter it settles to a 

boundary layer which steadies down as depicted in Figure 5.7. 

Thus, again, the infinite current fails to produce repetitive 

firing (a wave-train). 

This observation is in agreement with the following comment of 

Rinzel [71]: 
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"On the other hand d = 0 (Nagumo's Equation) is apparently in­

appropriate for repetitive firing under constant current stimu­

lation. Numerical experiments, with a simplified FiyzHugh-
i 

Nagumo equation, for a point stimulated cable indicate that 

steady repetitive firing is not achieved for constant r* but 

that the solution after an initial transient approaches at­

independent steady state as t ➔ 00 " 

The steady state which Rinzel refer~ to above is either zero for 

all values of x (if r*=0) or a monotone decreasing state which 

is non-zero close to the left-hand boundary (if I** 0). This 

coincides with our findings for this particular boundary con­

dition. 

5.3. Solution of the FitzHugh-Nagumo system 

5.3.1. Numerical Procedure 

The FitzHugh-Nagumo system is given by (2.41, 2.42): 

au a2 u 
at= dX2 + u(l-u) (u-a) - W 

aw at= b(u- dw), b > 0, d ~ 0, a E (0,1) 
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The approximation scheme used in this case is similar to that 

applied to Nagumo's equation. The differences are outlined: 

The second equation (2.42) is approximated by an implicit 

Finite Difference scheme, corresponding to (5.7) 

.!.c~+1 - T..m) 
k i wi 

b = 2 

Solving (5.11) for ~+l renders 
i 

d(w:1+ 1 + w:1> l 1. 1. 

w1:1 + 1 = kb ( U~ + 1 + U~) + 2 - kbd Wm 
1. 2 + kbd 1. 1. 2 + kbd, i 

Inserting (5.12) in (5.6) gives the C.N.G. scheme: 

N 

~ [ _kl ( u1:1 + 1 - u1:1 ) ( <P • , <P • ) + _21 ( um1.· + 1 + u1:1 ) ( <P .' , cp ~ ) l 
, l 1. 1. 1 J 1. 1 J 
J= 

- b. = 0 
J 

j = 1,2, ... , N 

..... (5.11) 

..... (5.12) 

In all our calculations k = h = 0 ,5 again and the initial con­

dition as well as the boundary condition on the right-hand 

boundary were the same as for Nagumo's equation. The basis 

functions are piece-wise linears as depicted in Figure 4.1. 

5.3.2. Results 

For the Dirichlet conditions on the left hand boundary : 

I for 0 < t < T, I constant 
1. u(O,t) = { 

0 for t > T 

2. u(O,t) = I, t ~ 0, I constant 
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and 3. 
I, 

u(0,t) = { 

131. 

n (Tl + T2) ~ t ~ n (T + T ) + T 
1 2 1 

n = 0,1,2, .... 

The results are qualitatively the same as for Nagumo's model. 

In the first case a single pulse (Figure 5.8) is obtained for 

sufficient stimulus after which the zero steady state is reached 

eventually. In the second case a single pulse is fired which 

tails to a boundary layer (Figure 5.9), provided the stimulus 

strength is above threshold. Once again no train of pulses 

is produced. A stimulus below threshold fails to trigger a 

pulse, a boundary layer forms on the left-hand boundary which 

steadies down to an equilibrium state. A stimulus exceeding 

the value 1,0 has no influence on the height or speed of the 

pulse, as can be seen in Figure 5.10 where u(0,t) = 2, t > 0. 

Parameters a and b were given values which are feasible for 

the simpler Nagumo equations, and for parameter d the value 

2,54 was used. The third boundary condition produced repeti­

tive firing for the same values as for Nagumo's equation (See 

Figure 5.11). 

The only interesting case was the Neumann boundary condition: 

4 . au (0 t) =I= - -
2
1 I*, t > 0, I constant, I*> 0 ax , 

u(x,0) = 0, x ~ 0. 

We recall that this condition failed to produce repetitive 

firing for the simpler Nagumo model. It is obtained, however, 

for the full FitzHugh-Nagumo system (See Figure 5.12). 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

132. 

The choice of parameter values to get this phenomenon is very 

critical. A particular set which does the trick is a= 0,139, 

b = 0,008, d = 2,54 and r* = 0,6. The wave train is shown 

in Figure 5.10. The relative magnitudes are in agreement with 

the results of Green and Sleeman [ 33] discussed in § 3.3.3.2. 

Numerical experiments carried out by Rinzel and Keller [74] and 

Rinzel [71] suggest that for values a, band c for which re­

petitive firing occur, r* must lie in one of two ranges 

I 1 < r* < I 2 or I
3 

< r* < I 4 , (I
2
< I

3
). The value of 

r* =0,6 presumably lie in the upper range, the lower range re­

presenting unstable solutions. 

Finally two interesting features of the model are observed. The 

first of these occurs when triggering two pulses simultaneously 

from the left-and right-hand boundaries respectively, one 

travelling to the right, the other to the left. On collision 

the two pulses eliminate each other and as time progresses the 

zero steady state is reached. Hodgkin (45] states that nerves 

can conduct impulses in both directions and the velocity is in­

dependent of the direction in which it is travelling. This is 

in correlation with our findings. Our calculations also indi­

cate that two such pulses cannot "pass through" each other, 

that is, soliton behaviour is not obtained. 

The second case is when the nerve is stimulated at a point near 

the centre of the nerve. A stimulus, sufficiently strong, 

grows in height, splits into two to produce two pulses, one 

propagated to the left, the other to the right. 
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Solution of the·FitzHugh-Nagumo system for a= 0,139, b= 2,54 

and conditions on the left-hand boundary as indicated: 

1.0 

0.5 

0.0 
0 

-0.S 

u 

20 40 

Figure 5.8: u(O,t= 1 

= 0 

u 

1.0 

--0. 5 

Figure 5.9: u(O,t) = 1 

60 

0 ~ t < 20 

t ~ 0 

t ~ 0. 
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J .J '1 • 

Figure 5.10: u(O,t) = 2, t ~ 0 

100 

Figure 5.11: Repetitive firing obtained from repetitive 
stimulation, conditions as in 3. of§ 5.2.2. 
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u 

1.0 

0.6 

0.6 -

0.2 

Figure 5.12: Repetitive firing 

obtained for the Neumann condition 

4. of § 5.3.2. 

5.4. Solution of the BVP model 

5.4.1! N~merical procedure 

The BVr equations are given by (2.45, 2.46). 

au = a 2 u 
+ 1 u3 

at u - - w 
ax 2 3 

aw 
<P (u + a - bw) = at 

1 -
2f < a < 2 , 0 < b < 1 , b < 1 

-2 

<P 

We will discuss this model only briefly because of it's simi­

larity to the Nagumo and FitzHugh-Nagumo models which were dis­

cussed in the previous two paragraphs. 

In the latter two models the stimulus to excitation is modelled 

by the specification of an appropriate boundary condition. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

136. 

Another way of applying a stimulus is by adding an extra term, 

representing the stimulus, to the right-hand side of the 

principal equation. This method is employed in the BVP model 

of Muir a [ 61] ( see also § 5. 5. 2. 1) . 

Here it is decided to follow Muira's formulation in which 

(2.46) becomes 

au a2 u 1 3 
at = ax2 + u - 3 u - w + s 

where the stimulus-term is given by 

S(x,t) 
-x2 

= S
0 

exp (-2-), 

XO 

The boundary conditions are 

0 ~ t ~ t 
0 

au 
ax (0,t) = 0, u(L,t) = 0, t ~ 0 

and the initial conditions are 

u(x,0) = uR, 

where (uR, wR) is the unique resting state corresponding to 

the given values of the constants and determined from (2.45, 

2.46) by setting au - aw -at - at - o. 

These values of the constants are 

UR= -l,!99408035 , 

¢ = 0,08 , 

t = 0,5 , 
0 

a= 0,7 , 

x 2 = 0,1 , 
0 

WR = - 0, 0624260044 

b = 0,8 , i = 3,0, 

S = 15 and L = 50 
0 

Whereas Muira uses a Finite Difference scheme we employ the 
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Crank-Nicolson-Galerkin method as formulated for the Nagumo 

and FitzHugh-Nagumo systems. 

We approximate, once again, u and w by 

U(x,t) 
N 

= L 
i=l 

U.(t)¢.(x) 
:1. l 

and W(x,t) 
N 

= L 
i=l 

W. (t)¢. (x) 
l l 

respectively. We give the changes in the C.N.G. scheme out­

lined in § 5. 2. 1: 

The second equation (2.46) is solved implicitly by: 

~+1 _~ 
i i 

k 

which implies that 

~+1 
i 

2 - b k ¢ T..m ¢ k 
= 2 +bk¢ wi + 2 +kb¢ 

The scheme corresponding to (5.6) is 

+ a) 

. Um+l Um . + . 
1 1 

2 

N 

L [ .! ( u~ + 1 
- u~ ) ( ¢ . , ¢ . > + .! ( u~ + 1 + u~ > ( ¢ .' <P ~ > 1 

i=l k 1 1 l J 2 1 1 1' J 

+ 
2 ¢ k a 

2 + k b ¢ 

(5.13) 

N 1 m+ 1 m 
- (f( L 2 (u. +U.)¢.),¢.) + 

i=l 1 1 l J 

N 
L 

~+1 +~ 
i i 

2 
(¢.,¢.) - (S,¢.)=O 

l J J i=l 

j= 1,2, ... ,N 

where Wm+l is given by (5.13) and 
i 

f(u) 1 3 = u - -u 
3 

(5.14) 
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5. 4. 2. Results 

For the given boundary conditions a single pulse is produced. 

Figures 5.13a and 5.13b show the two variables u and w at 

different stages. 

Muira [ 61] uses various methods to find an accurate value 

for the speed of propagation. By solving the travelling wave 

equations (a system of ordinary differential equations ob­

tained by introducing the variable ~ = x - ct) and using 

"wave integrals" Muira establishes the value c = 0,811765 as 

an accurate approximation for the speed in this case. 

For a time-progressing calculation such as ours the speed is 

obtained after the pulse has settled down. Muira uses a Crank­

Nicolson Finite-Difference scheme with ~t = 0,008 and 

~x = 0,0625 and obtains a value of c = 0,81288 for the speed 

at t = 4 4. 

Using a coarser grid-size h = 0, 5 our calculations for the speed 

at t = 44 is 0, 84522 for a time-step k = 0, 5. Reducing the time­

step to k = 0, 1 the speed is 0, 82601. Further reducing of the 

time-step to k= 0,05 reduces the speed to 0,82211. It is clear 

that a smaller time-step gives a better approximation to the 

speed. 

Figure 5.14 depicts the solution of the reduced BVP-system 

where the variable w in (2.45, 2.46) is kept at it's resting 

value instead of being allowed to vary according to the dif­

ferential equation 2.46. The solution in closed form which 

is available in this case (§ 3.3.3.3) is also depicted. 
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Figure 5.13a: Solution of the BVP model showing u at 

various stages. 

w 

X 

Figure 5.13b: The corresponding changes in the recovery 

variable W 
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Figure 5.14: Solution of the BVP reduced system. 

5.5. Numerical solution of the Hodgkin-Huxley system 

5.5.1. Numerical procedure 

We recall the governing equations of the Hodgkin-Huxley system 

from Appendix B: 

(5.15} 

an = at cp ( a ( 1-n} - 8 n} 
n n 

am = at cp ( a ( 1-m} - 8 m} m m 
(5.16} 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

141. 

where ¢ (T) = 3 (T -
6 

' 3 ) / 1 O, T. temperature, and the variables 

V, n, m and h are functions of both x and t. The functions 

an' am, ah, Bn, Bm and 6h are dependent only on V(and therefore 

implicitly an x and t), the exact form of these together 

- - -
with the values of the constants a, R, Cm, gK, gNa' gt' VK, 

VNa and V£ are given in Appendix B. 

In order to use a Crank-Nicolson-Galerkin scheme similar to 

that used for the other models we define the following approxi­

mations: 

N 
V(x,t) . L V.(t)¢.(x) 

i=l 
l l 

N 
n 4 (x,t) L 

4 
¢. (x) n. (t) 

i=l 
l l 

N 

m3 (x,t) L 3 
¢i(x) = m. (t) . l 

i=l 

N . 
h(x,t) = L h. (t) ¢. (x) 

i=l l l 

where ¢ i ( x) , i = 1, ... , ~ are basis functions. 

We refer the reader to· § 5.2.1 where details concerning the 

C.N.G. method is described. 

The procedure for solving the Hodgkin-Huxley system at every 

time-instant is outlined: 

I 
m+l 

A first approximation for n. 
l. 

m+l 
m. 

l. 
and 

m (where n. 
l. 

approximates n(xi, mt) etc) is obtained by using Euler for­

ward differences: 
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m+l m . m 
n. = n. + kn. 

l. l. l. 

m+l m+ ·m m. = m. km. 
l. l. l. 

h~+l = h~ + k h.m i~ 1,2, ... ,N) ..... (5.17) 
l. l. l. 

The last terms in the three equations (5.17) are calculated 

from the right-hand sides of the subsidary equations (5.16) 

m by using V. , i= 1, ... , N 
l 

m+l These approximated values for n. mm+l and hm+l 
, i i are then 

l. 

used in II to obtain V~+l, i=l, ... , N. 
I l. 

II. The C.N.G. formula for solving the principal equation is 

where b. as before and 
J 

j=l, ... ,N 

N N N 
+ gN ( L ( m ~ ) 3 ¢ . ) ( L h m ¢ . ) ( L Vrn ¢ . - V N ) 

a . l 1. l . l i l . l i l a 
1.= 1.= 1.= 

N 

+ gi( L V~ <Pi - Vi) 
i=l 

The resulting set of linear equations is solved by using 

Gaussian elimination [49], if the basis functions¢. are 
l 

piece-wise linears. 

(5.18) 
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III. The values obtained for V~+l, i= 1, ... , N are now used 
1 

to recalculate n:+l, m:+l and h:+l from the Trapezoidal 

rule formulas 

m+l m k ·m •m+l n. = n. + 2(ni + n. ). 
1 l 1 

m+l m k ·m ·m+l m. = m. + 2(mi + m. ) 
1 1 1 

h~+l = hm + ~(hm + h~+l) ..... (5.19) 
1 2 i 1 

1 

A return step to II gives a second approximation to 

V~+l, i= 1, ... , m. This is compared to the first approxi­
i 

! 
mation and if the maximum difference exceeds 10- 4 another 

calculation of III and a return step to II is required. In 

our calculations not more than two return steps to II were 

required to achieve the necessary accuracy. 

Unless otherwise stated, we use time-step k=0.01 and 

mesh size h= 0,05. The corresponding initial and boundary 

conditions are described in what follows. 

5.5.2. Results 

5.5.2.1. Initiation of single and periodic pulse solutions 

In this section the intention is to investigate the numerical 

solution of (5.15, 5.16) for various types of boundary data using 

the C.N.G. scheme described in § 5.5.1. We are interested in 

the initiation and propagation of single as well as periodic 

pulse solutions. 

Before discussing the initial and different types of boundary 
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data in detail, we pause to. discuss the shape of a single pulse 

or train of pulses and the asymptotic speed of propagation as 

obtained from the present calculations. 

Figure 5.15a shows the shape of an action potential over a dis­

tance of 10 cm at t = 3,5 msec. Figures 5. 15b and 5. 15c show 

the corresponding changes in the variables n, m and hand the 

conductances gNa and gK, respectively. (For initiation of this 

pulse condition 5, described subsequently, was used on the 

left hand-boundary). 

Figure 5.15a can be seen to duplicate the experimentally ob­

tained curve of Hodgkin and Huxley far better than do the 

solutions of the other models (see Figures 2.5, 5.1, 5.8 and 

5.13). 

Figure 5. 15b shows that the fast variable m reaches it's 

maximum rapidly and follows a nearly horizontal path before de­

creasing rapidly to a value below the original value, whereafter 

it increases slowly again to the original value. The slow 

variables n and h are recovery variables and their turning 

points are reached after that of V and m. 

From Figure 5.15c it can be seen that the rapid rise in potential 

is due, almost entirely, to sodium conductance. As the sodium 

conductance decreases the potassium conductance increases to 

dominate the situation whereafter it decreases once more to the 

original value. 

Figure 5.16a shows the behaviour of solutions to the Vm-reduced 

system. The slow variables n and h are kept at their resting 

state values. Excitation is not followed by recovery. The 
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Solution of the Hodgkin-Huxley system: Single travelling pulse. 

at t = 3,5 msec 
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Solution of the Hodgkin-Huxley system: Train of pulses 

at t = 7 msec 
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height of the "plateau" potential is slightly higher than the 

maximum height of a single pulse. The sodium conductance in­

creases to a value much higher than that reached during a 

proper action potential, the potassium conductance not changing 

at all. 

Figure 5.17a shows a train of pulses, obtained by applying a 

constant current stimulus (condition 4 on the left-hand boundary, 

described subsequently). Figures 5.17b and 5.17c depict the 

corresponding changes in the variables n,mand h and the potas­

sium and sodium conductances, respectively. 

Speed: Using the Finite Element scheme described in § 5. 5. 1 we 

obtain a value of 18,89 m/sec for the asymptotic speed of 

propagation for a single pulse at 18,5 °C and for mesh size 

h = 0, 05, time-step k = 0, 01. Hodgkin and Huxley observed a 

speed of 18,8 m/sec experimentally. Subsequent calculations 

of Cooley and Dodge [11], using an implicit Finite Difference 

scheme showed the corresponding value of the speed to be 18,69 

m/sec, which is slightly lower than the value obtained presently. 

Being interested in the effect of various types of boundary data 

on the initiation of either a single pulse or train of pulses, 

we turn our attention to these aspects: 

Initial conditions: We assume the nerve to be in a state of 

rest before applying an external stimulus, therefore (§ 2.3.4) 

V(x,0) = 0 for all x > 0. 

The resting state values of the other three variables are ob-

an tained by setting at= 0, am 
at = 0 and:~= 0 and substituting 
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V = 0 in the subsidary equations ( 5. 16) . These conditions 

signify a time-independent equilibrium state. 

It follows that 

n(x,0) = m(x,0) = 5 
& 

h (x,O) = 7e 3 + 1 

7e 3 + 107 2 
Be -3 

Boundary conditions: 

On the right-hand boundary we use either of 

(i) u(L,t) = 0 for L large 

or (1·1·) au ( ) o ax L,t = 

On the left-hand boundary one of five different types of 

boundary conditions are used. Each of these will be discussed 

separately. For Dirichlet boundary conditions on V(x,t) at 

the left-hand boundary the variables n, m and h satisfy: 

an 0, am 0 and ah 0, that at = a-E - at = so 

a (V) ah(V) a (V) 
n(0,t) n h(0,t) m(0,t) m = a (V) + f3 (V) ' = ah (V) + Sh (V) ' = a (V) + f3 (V) n n m m 

The Dirichlet condition on V(0,t) usually implies that V(0,t) is 

kept at a constant value for a certain duration of time and 

therefore one expects this to be accompanied by similar constant 

states of n, m and h, described above. 

For a Neumann condition on the left-hand boundary the values of 

n, m and h were calculated at every time-instant from (5.17) and 

no extra condition was necessary. The same applies for the 

right-hand ·boundary. 
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Temperature: Hodgkin and Huxley [45] originally did their 

experiments for temperatures 6,3 °C and 18,5 °C. In this 

section·the latter was chosen for our experiments, the reason 

being that at the higher temperature the speed of the travel­

ling pulse is higher and a pulse requires less computing time 

to be initiated. 

P if O ~ t ~ T 
1. V(0,t) = { 

0 if t > T 

A single pulse is produced travelling to the right, provided 

P and T exceed threshold _values, whereafter the nerve returns 

to a state of rest. The threshold strength and duration curve 
I 

is time-consuming to calculate. We give, instead, approximations 

for the minimum values of P and T obtained from our calculations. 

At 18, 5 ° C these minimum values are T = 0, 065 m sec and P = -13,5 mV. 

The implication is that any stimulus, however strong, applied 

for less than O, 065 m sec will fail to produce a pulse. Like-·. 

wise, a stimulus of modulus strength less than 13,5 mV of how­

ever long duration will fail to produce a pulse. 

2. V(0,t) = P, t ~ 0, P constant. 

This boundary condition represents a stimulus applied at the 

left-hand boundary for an infinite duration of time. A stimulus 

above threshold produces a single travelling pulse but fails to 

produce a second pulse. A boundary layer is formed on the left­

hand boundary. Contrary to expectations no train of pulses is 

formed. This coincides with the observations for the simplified 
I 

models. One can conclude that this Dirichlet type of boundary 

condition is inappropriate for simulating a constant current 

stimulation of infinite duration, since in actual experiments 
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/ 

of Hodgkin and Huxley [45], . a train of pulses was observed 

for an infinite constant current applied externally. This 

requires an explanation: Whereas it was difficult to inter­

pret corresponding results of the simplified models physically, 

it is possible to do so for the full Hodgkin-Huxley system. The 

present results can be given a physical interpretation by 

stating that excitation from a state of rest of the nerve may 

trigger off a pulse but if one end of the nerve is kept in this 

excited state the nerve looses the ability to trigger another 

pulse. 

It is essentially the changes in the variables n, m and h that 

bring the trigg~ring of a pulse about. The reader is referred 

to § 2. 3. 1. 2 and § 2. 3. 4 where it is stated that changes in . 

sodium and potassium permeability brings the triggering of pulses 

about. The sodium conductance variables are m and h and that 

of potassium is n. If the potential V(O,t) is kept at a con­

stant value, the boundary conditions on the variables n, m and 

h would imply that they are kept at fixed values and the lack 

of necessary changes in the values of n, m and h would fail to 

produce a second pulse. 

3. 
p if n(Tl +T2) ~ t ~ n(Tl +T2) + Tl 

V(O,t) = { 
0 if n ( T 

1 
+ T 

2 
) + T 

1 
< t < ( n+ 1) ( T 

1 
+ T 

2 
) , 

n=0,1,2, .... 

This particular boundary condition represents a train of stimuli 

and is applied with the purpose of producing a train of pulses 

(repetitive firing). We do obtain the required train but this 

is subject to certain conditions. A one-to-one correspondence 

between stimuli and pulses is possible, provided the stimuli do 
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not follow each other too closely. When a pulse is triggered 

it is followed by an absolute refractory period ([ 29] [45]). 

When a stimulus is given during this period no second pulse will 

be fired. To verify this the following train of strong but 

brief stimuli is applied: 

- ;!_ 
~ 

y_ 
~ 

;L - f_ 

. . . I . 

1 2 3 4 5 6 7 8 9 19 11 

t(m.sec) Frequency= 900/sec 

Every second stimulus produces a pulse. This means that the 

duration of the absolute refractory period is more than 1,25 

~ 

m sec but less than 2, 5 m sec. Moving the second stimulus 

along in time with steps of O, 01 m sec it was found to trigger 

a pulse when positioned at 2 msec. The absolute refractory 

period for 18,5 °C is therefore in the region of 2 msec. 

For a temperature of 6,3°C the pulse needs a much stronger 

stimulus to trigger a pulse. The "width" of the pulse is big­

ger, too, so that the absolute refractory period is longer too. 

According to our calculations it is in the region of 9 m sec. 

Returning to experiments with a temperature of 18,5°C and in-

creasing the time lapse between stimuli to more than 2 m sec, 
I 

we still obtain a one-to-one-correspondence between stimuli and 

firing. 

. 
1 2 
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Decreasing the time lapse between stimuli, that is, ~lowing the 

stimuli to follow each other rapidly, results in no train being 

produced~ As example of this consider the following stimulation 

pattern: 

0 
2 3 

I 

4 
t(msec) 

Frequency 2000/msec 

A single pulse is triggered whereafter no second pulse is pro­

duced. 

This-behaviour can probably be explained by saying that the 

variables n, m and hare not allowed enough time to undergo the 

necessary changes to be able to produce a pulse once more. 

We now consider the following Neumann boundary conditions: 

4. av (O,t) = ax Q I t ~ 0. 

In this case the necessary stimulus was obtained by adding a 

term acting as stimulus to the right-hand side of the principal 

equation (5.15). If the stimulating current is given by I
5 

then 

the density across the membrane at the stimulated end is 

Letting 
N 

L 
i=l 

I 

I 

s1 

s. 
l. 

=t 0 

= 0, i ~ 1 
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the C.N.G. formula (5.18) gains one more term, added to the 

left-hand side, namely 

1 
27rah 

Now let I 5 (t) = P for t ~ 0. This represents a constant 
1 

stimulus of infinite duration from an external source. In 

contrast to Case 1 the first pulse is followed naturally by 

more pulses to form a train of pulses. The number of pulses 

in a train depends on the strength of the stimulus and for a 

certain range of P the number of pulses in a train is infinite. 

We will now discuss this interesting phenomenon in greater 

detail. 

This particular example, of a stimulus added to the right-hand 

side of the principal equation (5.15) has also been considered 

by Cooley & Dodge [ 11] in a Finite Difference study, the reader 

is referred to § 3.4.4 where details of their scheme is dis­

cussed. Although they do not give actual numerical values for 

the range of values of P which trigger a train of pulses, they 

do give a diagram, reproduced here as Figure 5.18, which shows 

the response for a few parameter values. 
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Response of ,the continuous axon to a steady stimulu~ 

of various intensities showing time course of the 

membrane potential V at x = 0 (heavy lines) anc 

at x = 2 cm (lighter lines) [Reprinted from [ 11 ]] 

From our numerical experiments we observe the following: 

Not all values of P trigger trains of pulses. For a range of P between 

.. -2,8 µa and -10,8 µa more tha·n one pulse were triggered. This 

boundary condition is therefore more appropriate for simulation 

of an infinite constant current than was Case 2. 

Increasing the modulus of the stimulus strength P from 2, 8 µa 

to 10,8 µa we find that close to the lower bound first two (and 

then three) pulses occur in a train after which a boundary layer 

forms. The boundary condition on the right hand causes the 

pulse (s) , which were triggered, to leave smoothly across the· 

boundary so that a steady equilibrium state is finally reached 
I 

across the x-interval. This steady state is non-zero only 

close to the left-hand boundary, the value on the boundary de­

pending on the stimulus strength. 
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The number of pulses in a train increases rapidly as the 

stimulus strength increases to the middle of the range. 

It seems likely that the number of pulses in a train resulting 

from a stimulus in the middle of the range (-5 µa for example) 

is infinite. The reason for this deduction being that there is 

no indication of termination at all even if the program is run 

for a long period of time. An infinite number of evenly spaced 

pulses is a periodic solution and this could correspond with 

Rinzel's (71] results on the simplified FitzHugh-Nagumo equation 

for which he proves the existence of a range of stimulus 

values for which periodic solutions exist (See § 5. 3. 2). 

For a stimulus strength less than 2, 8 µa, bigger than 1, 2 µa 

a single pulse is formed and for a strength less than 1, 2 µa 

no pulse is triggered at all. For a stimulus strength exceeding 

10,8µa only a single pulse is triggered whereafter a boundary 

layer forms. 

We return to experiments for values of stimulus strength in the 

range exhibiting repetitive firing. As the stimulus strength 

increases we observe that pulses are produced more rapidly and 

the distance between travelling pulses decreases. (For P = -10 µa 

the distance between two adjacent pulses in a train is 7,2 cm 

and for P = -4 µa the distance is 9, 0 cm) . These observations 

do not include the first few pulses in a train of which the 

behaviour will be discussed in the next paragraph. 

To every infinite constant stimulus a corresponding period may 

be associated. The relation between the strength of the con­

stant stimulus and the corresponding period (time lapse between 
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two consecutive pulses) can ~e seen in the graph below. We 

also show the frequency (ond period) against stimulus strength 

in Figure 5.19. 
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Figure 5.19 

The conclusion to be made is that the frequency of the pulses 

in a train is determined by the strength of the infinite con­

stant stimulus. 

-
The behaviour which we observe with our numerical experiments 

is supported physiologically by a conjecture of Hodgkin [45]: 

"Experiments prove that the nervous impulses in one 

fibre is of constant amplitude and shape and that it's charac­

teristics cannot be altered by changing the strength or the 

quality of the stimulus. The inference is that the intensity 

of a sensation or a movement is controlled by varying the 

frequency of impulses and the number of fibres in action." 
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5. In this case the stimulus is added to the right-hand 

side of the principal equation (5.15) as an extra 

term (as in 4.), that is 

N 
~ 

i=l 
I = 0 s. 

1 

except 

when i = 1. 

Stimuli is then given in the form of rectangular pulses, ·that 

is 

r5 . = P (co:1stant) for a certain time duration and for 
1 

a particular value of P and is then set to zero. This 

is repeated. All experiments are for 18,5°C. 

We apply trains of stimuli for various values of P, evenly 

spa
0

ced in time and then examine the behaviour of the solutions 

obtained. 

Applying a strong stimulus, such as - 25 µa for a duration of 

0,25 m sec at intervals pictured below, every second stimulus 

fires a pulse. 

--- :!.. -- :!.. ~ ~ " ,-- ,__ 

.. 
. . . . . . . . 

1 2 3 4 5 6 7 8 9 10 II 

,--

t(msec) Stimulus frequency 800/sec 

Firing frequency 400/sec 

Decreasing the strength of the stimulus to-Bµa but keeping the 
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same spacing results in one pulse for every fourth stimulus. 

A weaker stimulus, therefore, requires longer interstimulus 

intervals. The effect in the figure above, a pulse for every 

second stimulus, can be obtained for the weaker stimulus 

strength of - 8 µa by increasing the time lapse between stimuli 

as shown below: 

V " 

n I I D n I D 
2 3 4 5 6 7 8 9 10 II 

t (msec) Stimulus frequency 400/sec 

Firing frequency 200/sec 

Here again every second stimulus produced a pulse. One can 

conclude that strong stimuli can follow each other more rapidly 

than weak stimuli to produce the same ratio of number of puls~s 

per number of stimuli. 

A likely explanation for this phenomenon comes from the concept 

of a relative refractory period. According to Hodgkin [44] and 

FitzHugh [29] the absolute refractory period (during which no 

pulse can be fired) is followed by a relative refractory period 

during which a second stimulus can produce a pulse, but the 

threshold value for this second stimulus is higher than the 

threshold of the resting fibre. During the relative refractory 

period, which is of indefinite duration, the threshold falls 

and gradually approaches it's original resting value. This ex­

plains why the stronger stimulus ( - 25 µa) can produce a second 

pulse after a shorter time lapse than in the case of the weaker 

I~ 
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stimulus ( - 8 µa). 

Returnirg now to case 4 where an infinite constant current was 

applied we recall that a natural period was associated with 

every stimulus strength. The pulses were produced at regular 

time intervals. One is tempted to say that only •" certain parts" 

of the stimulus is necessary to trigger pulses. One would expect 

that the constant current can be replaced by a sequence of short 

stimuli to obtain the same results, provided that the period be­

tween stimuli is the same as the natural period determined by 

the stimulus strength. 

Our calculations prove this conjecture to be only partly true. 

A constant current of infinite duration and of strength r 8 can-
1 

not in general be replaced by short stimuli of the same strength 

and duration and still retain the same frequency of pulses. 

For a strength of - 8 µa an infinite current produced pulses 

every 3, 75 m sec. For rectangular pulses of - 8 µa of duration 

0,25msec a one-to-one correspondence between stimuli and pulses 

occurred only for stimuli 5 m sec apart. 

Keeping the strength of the stimulus fixed (-8 µa) and increasing 

the duration of the stimulus allows a decrease in the length of 

interstimulus intervals for which it is possible to obtain a 

one-to-one correspondence between stimuli and pulses. 

The natural period of pulses generated by an infinite constant 

stimulus of - 8 µa is 3, 75 m sec. This can be imitated by a 

sequence of rectangular stimuli as follows: 
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For the first pulse to be tr~ggered a duration of 0, 15 m sec was 

sufficient. 

For the second and subsequent pulses, however, this was insuf­

ficient. A stimulus of the same strength (-8µa) had to be 

applied for 0,30 msec which is twice the duration required for 

the first pulse. This can be explained again by the conjecture 

that the second pulse is triggered in the relative refractory 

period following the first pulse. 

The subject of this paragraph has mainly been the effect of 

various boundary conditions on the initiation of pulses. In 

the following paragraph we will concern ourselves with the be­

haviour of individual, especially the first few, pulses in a 

train. 

5.5.2.3. Changing of speed in trains 

In a recent paper of Miller and Rinzel [57] the following con­

jecture is made concerning the speed of the various pulses in 

a train: "Propagation speed of an impulse is influenced by 

previous activity. A pulse following it's predecessor too 

closely may travel more slowly than a solitary pulse. In con­

trast, for some range of interspike intervals, a pulse may travel 

faster than normal because of a possible super excitable phase 

of it's predecessor's wake". 

We have observed this phenomenon too and report our findings in 

what follows. Miller and Rinzel computeda diagram for the 

relation between speed and frequency (the dispersion relation) 

for steadily propagating periodic wave trains for three tempe-
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ratures: 6, 3 ° C, 18, 5 °C and 26 °C. A maximum frequency is 

obtained and the solitary pulse is obtained in the limit as 

the frequency tends to zero. 

We proceed to give results of a few of our numerical experi­

ments, conducted at 18,5°C. We first consider Case 4 of the 

preceding paragraph, we recall that this particular boundary 

condition represented a constant current of infinite duration. 

For the range of values of current strength which produced re­

petitive firing, we investigated the speed of the individual 

pulses. 

The first pulse in a train travelled at the expected speed for 

a single pulse, determined by temperature alone (see§ 5.5.2.3). 

The second pulse, however, travelled significantly slower than 
. 

the first, the third pulse a little slower than the second. The 

speeds of subsequent pulses were the ·same (difference less than 10- 2
) • 

The pulses in a train produced by an infinite constant current 

thereforepresurnably travels slower than a single pulse in 

general. 

We now turn to Case 5 of the preceding paragraph, which, as we 

recall, represents a sequence of rectangular pulses given at 

fixed intervals. 

We apply the following sequence of strong stimuli which produces 

one pulse- per stimulus 1: 
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-.. . - . . 
~ . . . 

I 2 .3 4 5 6 7 8 9 10 II 

---- 3. 75 rnsec ----1 t (rnsec) · 

The pulse produced by the first stimulus travels at the single 

pulse speed (18,89 mfsec), the second travels slower, at 18,3 

m sec, the third at 18,1 mfsec. The fourth and subsequent 
I 

pulses travel at the same speed, namely 18,0 rr{sec (speed 

measured at 5 cm). 

A second sequence of stimuli is applied as follows (time lapse 

. . . 
I I . . 
I 2 3 4 5 6 7 8 9 10 

1------5 rnsec --------~ t (rnsec) 

The pulse produced by the first stimulus travels again at the 

single pulse speed. The second pulse travels faster than the 

first, at a speed of 19,51 rrfsec. The speed of the third pulse 

is a slight increase on the previous one, but the fourth and 

subsequent pulses travels at approximately the same speed. 

From the two numerical experiments above the question might be 

asked whether a train of pulses travelling at the same speed 

12 
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as the.first one can be obtained. Our calculations indicate 

that for stimuli at intervals of 4,78 msec all pulses in a 

train travel at the same speed 

5.5.2.3. The effect of temperature 

We conclude our study by making a few observations concerning 

the general effect of temperature on a single travelling pulse. 

When a single pulse is generated from the left-hand boundary we 

observe the following: A change of temperature has two major 

effects on the travelling pulse: The shape of the pulse changes 

and the speed changes. The latter can be calculated directly 

and the former will be measured in terms of the amplitude of 

the pulse. Conversely: The height and the speed of a single· 

travelling pulse is changed only by a change in temperature. 

(For repetitive firing this does not hold as had been shown in 

§ 5.5.2.2). Boundary or initial conditions does not affect the 

speed or height of a pulse, provided a pulse is fired. This 

phenomenon had been referred to previously as the all-or-none 

response of nerve activity (§ 2.3.3). 

The effect of temperature on the speed and amplitude of a single 

travelling pulse is shown in Figure 5.20. 

Turning to the simpler models for impulse propagation (§ 5.2 -

5.4) we see that there is no single parameter playing the role 

of temperature. Changes in shape and speed of a single pulse is 

brought about by changes in a and h in Nagumo's model and a, 

band din the FitzHugh-Nagumo model. We expect, therefore, 

a correlation between these parameters and the Hodgkin-Huxley 

temperature T. 
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In Nagumo' s model for a fixed b and decreasing a the height 

and "width" of a pulse increase as had been observed in § 5. 2. 2. 
, 

This corresponds to the results of a decreasing temperature f~r 

the Hodgkin-Huxley system. The speed, however, increases for 

decreasing a {in Nagumo's model) in contrast to the decreasing 

speed for decreasing temperature in the Hodgkin-Huxley model. 

The same behaviour is observed for decreasing b. It is there­

fore not obvious what the exact relation is between parameters 

a and b and the temperature. 

As the temperature i~creases above 20°C the height of the single 

travelling pulse decreases rapidly and for temperatures above 

36°C no travelling pulse can be obtained. This maximum tempera­

ture is a little lower than had been observed experimentally by 

Hodgkin and Huxley - they observed a maximum temperature of 

38 °C. 
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Increased temperature has the effect of speeding up the re­

covery processes, thus decreasing the refractory period and 

allowing stimuli to follow each other more rapidly and still 

produce one pulse per stimulus. 

Another effect of increasing temperature is to decrease the 

threshold to stimulation. For the boundary condition 

V(0,t) = P, t ~ T 

= 0 , t > T 

a stimulus of - 100 mV for a duration of 0, 065 m sec was suf-

ficient to produce a travelling pulse at a ~emperature of 

18,5°C whereas at a temperature of 6,3°C a stimulus of -100 mV 

for a duration of 0, 26 m sec was required. 
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CHAPTER 6 

CONCLUSION 

Although the main purpose of the pre~ent study was a mathematical 

one, that is to conduct a numerical investigation into mathema­

tical models of two reaction-diffusion physiological processes, 

it was also necessary to briefly study the physiological proces­

ses themselves and to consider the construction of the mathemati­

cal models describing the physical reality. The processes were 

therefore introduced through a description of their basic features 

which brought to the fore the existence of interesting physio-
1 

logical phenomena. This knowledge proved to be invaluable, if 

not essential, for the subsequent mathematical investigation i'nto 

the models representing these processes. An exposition of the 

assumptions, on which the mathematical models are based, lead to 

the framing of the governing equations. The governing equations 

of these models were ~hen shown to be particular exa~ples of a 

general system of reaction-diffusion equations. 

The present study emphasizes that the importance of numerical work 

in the study of reaction-diffusion systems cannot be under­

estimated because of the increasing difficulties encountered when 

conventional methods of analysis are applied to more realistic 

models which may be represented by complicated systems of diffe­

rential equations. It is pointed out, for example, that for 

Fisher's equation, which is representative of the simpler scalar 

case, analytical results exist for many
1 
different prescribed con­

ditions as opposed to the very little that is available for the 

more complicated non-scalar Hodgkin-Huxley system. 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

168. 

The vast number of analytica\ results existing in the literature 

on the different models are systemized here and provides an over­

view of .available information. The most important feature emer­

ging is the aspect of travelling wave solutions. Special atten­

tion is therefore given to results OD the existence and stability 

of travelling wave solutions. The analytical results do not 

always provide a ?lear understanding of what the exact relation­

ship is between the existence of travelling wave solutions for 

various speeds and the asymptotic speed of propagation associated 

with a particular model. 

Numerical investigation, as presented here,gives a clearer 
I 

picture as to the relationship between these concepts. The 

travelling wave equation associated with a particular model is 

an ordinary differential equation and may possess an infinite 

number of solutions, although only one of these is obtainable from 

a time-progressing solution of the original partial differential 

equation, namely the one travelling with asymptotic speed c*. 

The numerical solution of Fisher's equation, as presented in this 

study, shows that concepts such as the stability of an equili­

brium state, the asymptotic speed of propagation and convergence 

to a travelling wave solution are very closely related. For ex­

ample, for the case when f(u) = u(l-u); any disturbance from the 

unstable zero steady state will evolve in time to the stable 

unity steady state, the shape of the disturbance converging in the 

process to a wave front (or two wave fronts in some cases) travel­

ling with asymptotic speed. 

I 
For Fisher's equation in the case where f(u) = u(l~u) (u-a) theore-

tical results indicate the existence of a threshold property. 
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This deduction is confirmed by calculated threshold curves, 

presented here for both the pure initial value problem and 

initial boundary value problem. 

The existence of solutions other than travelling wave solutions, 

investigated by using a method of Fife (21], rendered only one 

interesting case, as far as "stationary patterns" are concerned, 

namely for f(u) = u(l-u) (u-a), 1 a= 2 , where the existence of two 

local adjacent maxima on the potential curve ensures the existence 

of a stable time-independent steady state. 

The matter of extensions to Fisher's model, touched upon when 

considering the addition of the so-called drift term, leaves an 

open door for further investigation. The sudden appearance of 

oscillations is an interesting phenomenon and has been observed 

in other investigations of similar equations. A non-zero con­

vection term in the general system of reaction-diffusion equa­

tions (3.1) requires a more sophisticated numerical technique than 

that adopted here. 

It is apparent from the literature survey that the usual method 

for investigating reaction-diffusion systems is to transform the 

given partial differential equations into,ordinary differential equations, 

called the travelling wave equations. On the one hand this ap-

proach has it's merits because results for more than one speed, 

corresponding to stable as well as unstable solutions, may be 

obtained. The· unstable solutions are impossible to obtain from 

solving the partial differential equations in a time-progressing 

manner. On the other hand, the partial differential equations 

represent a physiological process which develops with time and 

therefore are preferable to be solved in a time-progressing man-
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ner. By doing so the actual. physiological process is simulated 

in a more natural and realistic manner. 

In this study, for the first time, Finite Element methods have 

been applied to the numerical study of these models. The Finite 

Element method with linear test and trial functions gives satis­

factory results, not only for Fisher's equation, but also for 

the models of impulse propagation of the nervous system. For 

the Hodgkin-Huxley system good agreement is found with results 

of the Finite Difference method employed by Cooley and Dodge 

[ 11). The employment of quadratic basis functions was found to 

be impractical from the computational point of view and it is 

doubtful whether it's use would significantly have added to the 

actual accuracy obtained. 

From the numerical solution of Nagumo's model it is possible 

to calculate a speed diagram which has not been published before 

and which resembles the upper part of a diagram proposed by 

McKean [53). This speed diagram represents an improvement on 

the one obtained by Rinzel and Keller [74) for a simplified 

Nagumo model. One advantage of their diagram, though, lies in 

the lower parts of these curves which they calculated from sol­

ving the corresponding travelling wave equations. 

The investigation, carried out here, on the effect of boundary 

conditions for the Nagumo and FitzHugh-Nagumo models leads to 

the following conclusions: The Dirichlet boundary condition is 

not appropriate to model a stimulus of infinite duration. 

Experimental evidence indicate that a maintained stimulus should 

produce repetitive firing, which the Dirichlet condition failed 

to produce. The n~n-homogeneous Neumann condition (FitzHugh-
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Nagumo model) succeeded in producing repetitive firing and may 

therefore be considered more appropriate to model such a stimu­

lus. 

In the case of the Hodgkin-Huxley system the same effect was 

observed, namely that the Dirichlet boundary condition failed 

to produce repetJtive firing. The homogeneous Neumann boundary 

condition with the stimulus added as an extra term to the 

principal governing equation produced the desired firing effect. 

Although various numerical studies have been conducted on the 

Hodgkin-Huxley system, a great deal of work on this interesting 

model still remains to be done. Numerical results obtained here 

should contribute to the existing knowledge. In particular, 

the relationship between stimulus strength and one-to-one 

correspondence between stimuli and firing established by the 

present calculations show that the duration of the absolute and 

relative refractory periods play major roles. Furthermore it 

is shown that the frequency of a train of pulses is dependent 

on the stimulus strength, the precise relationship being given 

by a computed curve which is in quantitative agreement with 

limited results given by Cooley and Dodge [ 11] and Stein [81]. 

An interesting observation recorded in the present study is that 

a constant stimulus of infinite duration is equivalent to a 

sequence of short but unequal stimuli. In the calculations the 

second stimulus had to be applied for twice the duration of the 

first. Stimuli following one another too rapidly fail to produce 

a train of pulses. The remarkable phenomenon, investigated by 

Miller and Rinzel [ 57], namely that individual pulses in a train 

may travel with different speeds was confirmed by the present ob-
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servations. It is also shown, with examples, that a pulse 

following it's predecessor too closely will travel with a slower 

speed .. In other cases the second pulse may travel faster and 

for a special given case all pulses in a train travel with the 

same speed as the single pulse. 

Speed and height diagrams, similar to that obtained for Nagumo's 
. 

equation, were constructed for the Hodgkin-Huxley system. A 

comparison between these showed remarkable differences. Summa­

rizing one can say that although it appears that the parameters 

a and b of Nagumo' s model play the same role as the tempera­

ture parameter in the Hodgkin-Huxley system, namely that 

changes in height and speed of single pulses are brought about 

by changes in these parameters, the exact relationship is not 

clear. It is clear, however, that Nagumo's model should simply 

be regarded as a simplification of the Hodgkin-Huxley model which 

exhibits qualitatively some of the features of the original 

process. 

In conclusion it may be stated that reaction-diffusion equations, 

because of their wide range of application, will continue to be 

a subject of great interest for a long period to come. In the 

studies stimulated by this interest numerical investigations, 

such as presented here, will increasingly be required as aids in 

the further analysis of reaction-diffusion systems. 
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APPENDIX A: GENETICAL BACKGROUND OF 
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aa aA 

X X 

aA AA aa aA -- -- -- --
2aa/2aA 4aA 2aa/2aA 1aa/2aA/1AA --

P1P2 P1 P3 P1P2 p2 
2 

~ Ratio of densities of the three classes: 

Density of aa: 

Density of aA: 

Density of AA: 

p2 
[ p2 + p p + ~] = 

1 1 2 4 [ p 1 

2 

p 
+ ~] 2 

2 

plp2 p2p3 P2 
2[ p p + -- + -- + - ] :=; 

1 2 2 2 4 

P2 P2 
2[pl + 2](p3+ 2] 

p2 

[p: + P3P2 + -fl = 
P2 2 

[ P3 + 2] 

AA 

X 

AA aa aA AA -- -- -- _,,_ 

2aA/2AA 4aA 2aA/2AA 4AA -- ----
p2p3 plp3 p2p3 p2 
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APPENDIX B 

THE HODGKIN-HUXLEY SYSTEM 

an 
a ( 1-n) - S. n at = 

n n • • • • • ( 2) 

am a (1-m) - S m at = 
m m 

• • • • • ( 3) 

• • • • • ( 4) 

a (V) V + 10 - 1) , S (V) = 0 I 125 V = 0 , 0 1 ( V + 1 0 ) / ( exp ( 1 0 ) exp(80) n n 

a (V) V + 25 - 1) , s (V) =4 V = 0, 1 (V + 2 5) / ( exp ( 10 ) exp (18) 
m m 

V 1 = = ah(V) 0,07 Sh(V) exp(20> I V + 30 (exp ( 1 0 ) + 1 ) 

t = time ( m sec ) 

x = distance along axon from stimulated end (cm) 

V(x,t) = membrane potential (mV) 

m(x,t), n(x,t), h(x,t) = conductance variables, dimensionless 

a 

R 

cm 

gNa 

VNa 

= 

= 

= 

= 

= 

radius of axon (0,0238 cm) 

specific resistance of axoplasm (35,4 ohm cm) 

specific membrane capacitance (1 µf/cm 2
) 

maximum sodium conductance (120 mmhq/cm 2
) 

sodium equilibrium potential (115 mV) 
i 

gK = maximum potassium conductance (36 mmho/cm 2
) 

VK = potassium equilibrium potential (- 12 mV) 

gt = non-specific leakage conductance (0,3 mmho/cm 2
) 

Vt = equilibrium potential of leakage current (10,5989 mV) 
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APPENDIX C: DERIVATION OF THE FITZHUGH-NAGUMO SYSTEM 

f(e) 

i 
0 

cot 0 = R 

e 
0 

We recall equations (2.31, 2.32): 

j dv 
i f(e) j de = c- - - 1~ =-c dt -dt 

L di+ Ri= e-E L 
di + Ri -v = dt 0 dt 

1 
(e - e ) 3 

f(e) = i - {(e - e ) 20 }, p 
0 p 0 3K 

i - f(e) 

= e - E 
0 

> 0, K>O 

For e 
2 

< E < .e , 
0 l 

~ 1 and ~
2 

can be found as shown in the 

figure above. 

( 1) 

( 2) 

Equation (1) can be written as j = - c de - i -[ f(e) - f(~ )]-f(~ ) dt 1 1 

Now let e* = 

Therefore f (e) - f (~ 1 ) 

(e - e ) 3 

20 } 

3K 
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Thus f* (0) = 0, f* (1) = 0, f* (a) = 0 for some a E (0,1) 

1 f* (e*) = e* (e* - 1) (e* - a), a E (0,1) 
p 

NOW 1 et i * = i + f ( ~ 1 ) 

di* 
and L d t + R ( i * - f ( ~ 1 )) = ( ~ 

2 
- ~ 1 ) e * + ~ 1 - E 

0 

But Rf ( ~ l) = Eo - ~ l 

then (4) reduces to 

(cot e = R in figure above) 

Lett*= 

i** = pi* 

di* 
L + Ri* = 

dt 

t J * - p· - ], 

L 

K = l 

then (3) and (5) reduces to 

de* 
J* = - dt* - i ** + e* (1 - e*) (e* - a) 

( 3) 

• • • • • ( 4 ) 

• • • • • ( 5) 

( 6) 

K1 > 0,K
2 

> 0, aE (0,1) ... (7) 

In the case of a propagated action potential we have 

j = -
r as2 

• • • • • ( 8) 

or 

By setting x = s we obtain J* 

1£.c~ -~) r 2 l 
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so that (6) reduces to 

ae* 
at* 

= a 2 e* 
- i** + e*(1-e*)(e*-a) 

ax 2 
• • • • • ( 9) 

By renami~g the variables in (7) and (9) we obtain the system 

which is usually referred to as the FitzHugh-Nagumo system 

au 
at 

aw 
at 

= 

= 

a 2 u + u ( 1-u) (u-a)-w 
ax 2 

b (u - dw) b > 0, d > 0, a E (0,1) 
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APPENDIX D: HAMMING'S PREDICTOR-CORRECTOR METHOD, RUNGE-KUTTA 

FOURTH ORDER METHOD AND GAUSSIAN ELIMINATION 

Initial value problem: 

y'=f(x,y), y(a) = n 

Runge-Kutta fourth order method: 

Y - y - h6 (kl+ 2k2 + 2k3 + k4) n+l n -

kl = f(x n, yn) 

k2 f(x 1 
+ ~hkl) = + 2h, yn n 

k3 f(x 1 1 = + 2h, yn + 2h k2) n 

k4 = f(x + h, yn + hk 3 ) n 

Hamming's Predictor-corrector method: 

[ 0] -[ 1] 4h 
c2i 11 -[ 1 ] 

2 
-[ 1 ] 

P: Yn+4 - y = 3 - f + f n+ 1) ' n n+3 n+2 

.... [ 0] [ 0] 112 [ 1 ] [ 0] 
M: Yn+4 = Yn+4 + 

121 (y n+3 - Yn+3), 

-[ 0] .... [ 0] 
E: f = f(xn+4'Yn+4)' n+4 

[ 1] 9 .... [ 1] 1 .... [ 1 ] 3h .... [ o] -[1 ] -[ 1 ] 
C: Yn+4 - 8Yn+4+ 8 Yn+1 = a<fn+4 + 2f - f 2) , n+3 n+ 

-[ 1 ] [ 1 ] 9 [ 1 ] [ 0] 
M: Yn+4 = Yn+4 - 121 (yn+4 - y n+4) 

_[ 1] - [ 1 ] 
E: f = f(x 4 , Yn+4) n+4 n+ 
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Gaussian Elimination 

We describe the standard method for solving a tridiagonal 

system of linear equations of the form 

Ax = f , 

where x is the unknown n-dimensional vector, f is an n­

dimensional vector of constants, and 

I A= 

~he method involves writing 

L and U so that 

b a 
n-1 n-1 

C 
n-1 

b a 
n n 

A as the product of two matrice's 

Ax= f ~ LUx = f. 

Letting g _ Ux, we first solve for g 

Lg = f , 

and then obtain x as the solution of 

Ux = g • 

The advantage of this method is that the equations for both 

g and x can be solved by back-substitution. 
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Step 1. Factor A. 

1 

A= LU= 

b 
n 

where al = al , 

Y1 = c1/a1 , 
I 

a. a. - b. y. i i = 2, 
l. l. l. l. -

Yi = c./a. , i = 2, 
l. l. 

Step 2. Solve for g . 

f 
Lg f ⇒ 1 = gl = -

a . 
l. 

gi = (f. -b. g. 
1
)/a. 

l. l. 1..- l. 

Step 3. Solve for x . 

Ux = g ⇒ x - g n - n 

1 

1 

• • • I n , 

• • • I n- 1. 

, i=2, ... n. 

X. = g. - ( X. + l) Y. , i = n-1, .•. 1 2 1 1 • 
1 1 1 1 

If several systems of equations must·be solved using the same 

matrix A (i.e., with different f vectors), then only 

steps 2 and 3 need be repeated. 
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