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Preface 

This work primarily provides some detail of results on domain properties of closed ( un­

bounded) derivations on C*- algebras. The focus is on Section 4: Domain Properties 

where a combination of topological and algebraic conditions for certain results are illus­

trated. Various earlier results are incorporated into the proofs of Section 4. 

Section 1: Basics lists some basic functional analysis results, operator algebra theory 

(of particular importance is the continuous functional calculus and certain results on the 

state and pure state space) and a special section on operator closedness. Some Hahn­

Banach results are also listed. The results of this section were obtained from various 

sources (Zhu, K. [24), Kadison, R.V. and Ringrose, J.R [8), Goldberg, S. [6), Rudin, W. 

[20), Sakai, S. [22), Labuschagne, L.E. [10) and others). The development of the repre­

sentation theory presented in Section 1.1.7 was compiled from Bratteli, 0. and Robinson, 

D.W. [3), Section 2.3. 

Section 2: Derivations provides some background to the roots of derivations in quan­

tum mechanics. The results of Section 2.2 (Commutators) are due to various authors, 

mainly obtained from Sakai, S. [22). A detailed proof of Theorem 45 is given. Section 2.3 

(Differentiability) contains some Singer-Wermer results mainly obtained from Mathieu, 

M. and Murphy, G.J. [13) and Theorem 50 is proved in detail. Section 2.4 deals with 

conditions for bounded derivations (Sakai, S. [22)) and (Johnson-Sinclair, cf. (Sakai, S. 

[22))), and Theorem 51 is proved in detail. Section 2.5 deals with the well published 

derivation theorem (Sakai, S. [22), Section 2.5 and Bratteli, 0. and Robinson, D.W. [3), 

Corollary 3.2.47) and a slightly weaker version of the W*- algebra derivation theorem as 

published in Bratteli, 0. and Robinson, D.W. [3), Corollary 3.2.47, is proved here. 

Section 3: Derivations as generators first introduces some basic semi-group theory ( ob­

tained from Pazy, A. [16), Section 1.1 and 1.2) after which the well-behavedness property 

is introduced in Section 3.2. Some general results mainly obtained from Sakai, S. [22), 

Section 3.2, is detailed. The proofs of Theorems 61 and 62 makes use of various previ­

ous results and were conducted in detail. Section 3.3 (\Vell-behavedness and generators) 

draws a link between the well-behavedness property and conditions for a derivation to 

be a semi-group generator. The results are obtained from Pazy, A. [16), Section 1.4, and 

Bratteli, 0. and Robinson, D.W. [3), Section 3.2.4. Special care was taken in the outlined 

proof of Theorem 68. A proof of a domain characterization theorem (due to Bratteli, 0. 

and Robinson, D.W. [3), Proposition 3.2.55) is provided (Theorem 69) and used in the 

construction of the counter example of Section 4.G. 
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Section 4: Domain properties is occupied with un-bounded derivations on C*- algebras 

and their domain properties. Some initial complex function theory is developed after 

which four important domain preserving theorems are proved in full detail: the inverse 

function (Section 4.2), the exponential function (Section 4.3), Fourier analysis on the 

domain (Section 4.4) and C 2- functions on the domain (Section 4.5). The non domain 

preserving C 1 function counter example is presented in Section 4.6. 

The results of Section 4 appear in Bratteli, 0. and Robinson, D.W. [3], Section 3.2.2, 

and Sakai, S. [22], Section 3.3, and the counter example is due to McIntosh, A. [11). All 

the results in Section 4 are presented in full detail not available in this format from any 

of the sources used. Some Toeplitz operator theory is used with reference to Brown, A. 

and Balmos, P.R. [4], 94, and the Fourier coefficients of a required function is calculated. 

Some results on direct sum spaces and the core of a linear operator were used from Kadi­

son, R.V. and Ringrose, J .R. [8), Section 2.6 and page 160, as well as Zhu, K. [24), Section 

14.2. 

5 
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Notation 

Unless otherwise specified, the following notation is adopted. Where symbols have more 

than one definition, the relevant one will be clearly specified in the context of the appli­

cation. 

p 

1-l 

rp 

B(1-l) 

A,B 
7r 

linear functional, state, pure state, multiplicative linear functional 

multiplicative linear functional 

Hilbert space 

element of a Hilbert space 

bounded linear operators on a space 1-l 

C* - algebra or a Banach algebra 

a * -morphism 

a *-automorphism 

a * -isomorphism 

a * -homomorphism 

C continuous functions 

X, Y, W, K, normed linear spaces 

x, y elements of a Banach algebra 

elements of a C*- algebra 

elements of a normed linear space 

elements of IR 

V(T) 
p, n, m, i 

R(T) 
N(T) 
Q(T) 
C(T) 

)., a, f3 

IR 

C 
C1 (IR) 

C2 (IR) 

Co(IR) 

L1 (IR) 

L2 (IR) 
j 
j 

the domain of a linear operator T 

indexing numbers 

range of a linear operator T 

kernel of a linear operator T 

graph of a linear operator T 

core for a linear operator T 

elements of C 

real numbers 

complex numbers 

once continuously differentiable functions on IR 

twice continuously differentiable functions on IR 

continuous functions on IR vanishing at ± infinity 

integrable functions on IR (Ju~. If I < oo) 

square integrable functions on IR (JR 1!12 < oo) 

Fourier transform of f 
inverse Fourier transform 

8 
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1 Basics 

1.1 Operator algebra 

This section lists some of the standard operator algebra results used later in this work. 

The most important results are contained in the subsections on states and representations 

and the continuous functional calculus which is used in a number of proofs throughout. 

1.1.1 Banach algebras 

Definition 1 (Banach algebra) A Banach algebra is a unital algebra A with unit 11 
and with a complete norm II · II satisfying the following conditions: 

111111 = 1 

llxzll ~ llxllllYII Vx, y E A 

The complex field C with llzll lzl is the simplest example of a Banach algebra. B(H), 

the space of bounded linear operators on a Hilbert space H together with the operator 

norm is another example of a Banach algebra. 

The spectrum (denoted as a-(x)) of an element x in a Banach algebra is defined as the 

set of all complex numbers ,,\ such that 11,,\ - x is not invertible in A. The compliment of 

a-(x) in C is called the resolvent of x. The spectrum of any x E A is non-empty (Zhu, K. 

(24], 17), is a compact subset of the complex field C and is contained in the closed disk 

{z E Cllzl ~ llxll} (Zhu, K. (24], 18). The spectral radius r(x) for x E A is defined as 

r(x) = sup{j.\jj.\ E a-(x)} 

1.1.2 Multiplicative linear functionals 

Definition 2 (Multiplicative linear functional) A linear functional q> on a Banach 

algebra A is called a multiplicative linear functional if q> is non-trivial and ¢>( xy) = 
cp(x)cp(y) for every x, y E A. Denote 

.,\,1A {¢ E A*l¢>(xy) = ¢>(x)¢>(y)forx,y EA} 

It will be shown later that in the case of A commutative, MA corresponds to the maximal 

ideal space of the algebra A. 

Theorem 1 For a multiplicative linear functional ¢> on a Banach algebra A we always 

have that 11¢11 = 1. 

9 
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Proof: From 11¢11 2:: 1¢(11)1 = 1¢(1111)1 = 1¢(11)1 2 we have 1¢(11)1 = 1 and 11¢11 2:: 1. 

Now assume 11¢11 > 1. Then there exists an element x E A with llxll = 1 with l</>(x)I > 
1. Put xo = x - </>(x)l. Then </>(xo) = </>(x) - </>(x) = 0. Also Ill + </>(~) II = II </>G

1
)I 

l~G~l)I < 1 which implies that </>(~) is invertible. Thus ¢(xo)¢(x0
1

) = 1 which contradicts 

</>( xo) = 0 earlier. 

Remark 1 From Theorem 1, it is clear that MA is contained in the closed unit ball of the 

continuous dual space A*. Naturally, MA is topologized by the weak* topology inherited 

from the continv,ous dual A*. The following result follows from Alaoglu 's theorem. 

Theorem 2 MA is a weak*- closed and compact Hausdorff space contained in the closed 

unit ball of A*. 

Proof: It is easy to verify that MA is closed in the weak* topology of A*. From 

Alaoglu's theorem, it follows that BA* is weak*- compact. Since MA is a closed set 

contained in a compact Hausdorff set BA*, it follows that MA is weak*- compact and 

Hausdorff as well. 

1.1.3 Maximal ideal space 

Proposition 1 If I is a proper maximal ideal in a unital Banach algebra A, then I is 

norm closed and the quotient algebra A/I is a Banach algebra. If A is commutative then 

A/I is a division algebra isomorphic to C. 

Proof: If I is a proper maximal ideal in A, then no element in I is invertible. From 

(Zhu, K. (24), 10) we have 1111 - xii 2:: 1 for every x E I which shows that 11 is not in the 

closure of I so that the closure of I is a proper ideal in A. From the maximality of I it 

follows that I = I which implies that I is closed. The quotient algebra A/I is a Banach 

algebra with norm ll(x]II = inf {!Ix - YIIIY E I} where [x] E A/I. 

If A is commutative and I a maximal ideal in A, then A/I is a division algebra so that 

from the Gelfand - Mazur theorem (Zhu, K. (24), 19) we know that A/I is isometrically 

isomorphic to CC. 

Proposition 2 If A is an arbitrary Banach algebra and p is a multiplicative linear func­

tional on A, then the kernel M (= N(p)) of p is a proper maximal ideal in A. 

Proof: It is clear that N(p) is a proper ideal for all p E MA- For maximality, let 

x E A - N(p). Then 

11 (11 - p~x)) + p~) 
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The vector in parentheses is in N (p) so that the linear span of x and N (p) contains 11 

so that any ideal containing both N(p) and x must be the whole algebra. Thus N(p) is 

maximal. 

Theorem 3 ( Commutative Banach algebras) If A is a commutative Banach algebra 

then the set of maximal ideals is in one-to-one correspondence with MA, the multiplicative 

linear functionals on A. 

Proof: From Proposition 2 it follows that we can always associate a multiplicative 

linear functional of A with a maximal ideal in A. 
Assume that I is a proper maximal ideal in A. From Proposition 1 it follows that I 

is closed. Since A is commutative and I is closed it follows from Proposition 1 that 

A/I is a division algebra. Again by Proposition 1 there exists an isometric isomorphism 

¢ : A/I ➔ C. Let 1r be the quotient mapping from A onto A/I. Then the composition 

</> o 1r is a multiplicative linear functional on A with kernel I. This correspondence is 

one-to-one: Let p1 and p2 be multiplicative linear functionals on A with common kernel 

I. For any x E A we can write 

(x - p2(x)ll) - (x - pn(x)ll) 

Both terms on the right are in I and therefore (p1 ( x) - p2 ( x)) 11 is in I so that p1 (p1 ( x) -

p2(x))ll) = 0. Therefore p1(x) = p2(x) and P1 = P2• 

Remark 2 The commutativity of the algebra A is important here: If A is not commuta­

tive and I is a maximal ideal in A, then A/I may not be a division algebra so that there 

might be no multiplicative linear functional associated with I. 

The following result gives some more connections between the multiplicative linear func­

tionals and the spectrum of an element x E A: 

Theorem 4 (Multiplicative linear functionals) Let x be an element of a commuta­

tive Banach algebra A, cr(x) the spectrum of x in A, r(x) the spectral radius of x, </> E .1\.-1A 

a multiplicative linear functional on A and Q(A) the invertible elements in A. Then: 

,\ E cr(x) ~ </>(x) = ,\ for some</> E MA 

x E Q(A) ~ </>(x) -:p O V <P E MA 

</>(x) E cr(x) Vx E A,</> E MA 

l</J(x)I ~ r(x) ~ llxll V x E A, <P E MA 

Proof: Rudin, W. [20], 364 

11 
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1.1.4 The Gelfand Transform 

Definition 3 (Gelfand transform) Let A be a Banach algebra. The mapping r : 
A ----t C(jvtA), where MA is topologized with the weak*- topology inherited from A*, 

defined by 

f(x)(¢) = </>(x) = = (¢, x) 

mapping the Banach algebra A into the continuous complex valued functions on MA, is 

called the Gelfand transform. 

Remark 3 From f(xy)(</>) = </>(xy) = </>(x)</>(y) it is clear that the Gelfand transform 

is a homomorphism. From llf(x)(</>)11 = llx(</>)11 ~ 11</>llllxll = llxll (</> is multiplicative) 

it also fallows that r is contractive. 

Theorem 5 If A is a commutative Banach algebra, then x E A is invertible in A if and 

only if f(x) is invertible in C(MA)- It then follows that 

where R(f(x)) denotes the range of f(x), and 

r(x) = llf(x)lloo = sup{j¢(x) I</> E MA} 

Proof: If x is invertible in A, then f(x- 1 ) ( ¢) = ¢(x- 1 ) and ¢(x- 1 )</>(x) = ¢(11) = 1 

V </> E MA so that f(x) is invertible in C(MA)-

If x is not invertible then x is in a proper maximal ideal I in A. By Theorem 3 there 

exists a multiplicative linear functional </>o E MA with I = N(</>o)- Now 

f(x)(</>o) = </>o(x) = 0 

so that f(x) is not invertible in C(MA)-

Any z in the range of f(x) will be in a-A(x) because if f(x)(</>) = ¢(x) = z, we have that 

</>(zll - x) = 0. 

Conversely take any z E a-(x). Then the element zll - x must be in a maximal ideal I 

of A so that by Theorem 3 there exists </> E MA with </>(zll - x) = 0. Then </>(x) = z 

so that z is in the range of r. 

Theorem 6 (Spectral mapping theorem) If x is any element in a Banach algebra A 

and f is an analytic function in lzl ~ llxll, then 

a-(f(x)) = {f (z)lz E a-(x)} 

12 
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Proof: Zhu, K. [24], 29. 

Theorem 7 (Spectral radius theorem) For every element x in a Banach algebra A 
we have 

Proof: Zhu, K. [24], 31. 

1.1.5 C*- algebras 

Definition 4 (Involution mapping) A mapping x ➔ x* on a Banach algebra A zs 

called an involution on the algebra A if it satisfies the following: 

{i} (x*)* = X for all x E A 

{ii} (ax + by)* = ax* + by* for all x, y E A and a, b E C 

(iii) (xy)* = y*x* for all x, y E A 

Definition 5 (C*- algebra) A C*- algebra is defined as a Banach algebra A with an 

involution mapping x ➔ x* on A satisfying llx*xll = llxll 2 for all x E A. The involution 

preserves the norm and the mapping x ➔ x* is therefore a continuous mapping on A. 

Definition 6 (Special elements of a C*- algebra) For x in a C*- algebra A, 

x is self-adjoint if x = x* 

x is normal if xx* = x* x 

x is positive if x = y*y for some y E A 

For a C* - algebra A, we have the following inclusions: 

{x E Al x = y*y, y E A} C {x E Al x = x*} ~ {x E Al x*x = xx*} 

Remark 4 (General decomposition) Any general element x of a C*- algebra A has a 

unique decomposition in terms of self-adjoint elements X1, x2 E A such that 

The real part of x zs given by x 1 = ( x + x*) /2 and the imaginary part is given by 

x 2 = (x - x*) /2i. Clearly x 1 and x2 are self-adjoint. 

13 
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The square root ft ( or x ½) of a positive element x E A can be defined as the unique 

positive element y E A such that y2 = x. More specifically, for self-adjoint x E A, 
the modulus (or absolute value) lxl can be defined as #. This leads to the following 

orthogonal decomposition theorem: 

Theorem 8 Let x = x* be a self-adjoint element of a C* - algebra A. Define X± = 

(lxl ± x)/2 where lxl is defined as above. Then X± is a unique positive map under the 

conditions listed below: 

X = X+ - X_ 

llxll = max (llx+II, llx-11) 

Proof: Bratteli, 0. and Robinson, D.W. [1), 35, or Zhu, K. [24), 37. 

Theorem 9 Let x E A be a normal element in a C*- algebra A. Then r(x) llxll-

Proof: Zhu, K. [24), 52. 

Theorem 10 Let x be a self-adjoint element in a C*- algebra A. Then a-(x) C IR. 

Proof: Zhu, K. [24), 53. 

From Theorem 9 and 10 and Remark 4, it follows that for any self-adjoint x in a C* -

algebra A, 

a-(x) C [-llxll, llxll] 
a-(x2

) C [O, llxll 2
] 

1.1.6 States and Pure states 

and 

The states of a C* - algebra A is a special class of linear functionals that takes positive 

values on the positive elements of A and one on the unit of A. The states and pure 

states on A play an important role in representations of C* - algebras. First some basic 

functional analysis: 

Theorem 11 (Hahn-Banach) If f is a bounded linear functional on a subspace M of 

a normed linear space X, then f can be extended to a bounded linear functional F on X 

so that 11111 = IIFII-

14 
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Proof: Rudin, W. [20), 104. 

The following corollary to the Hahn-Banach theorem is used in the proof of Theorems 

62 and 63. Here d = d(x, M) = infyEM llx - yJI-

Corollary 1 (Hahn-Banach) Let M be a subspace of a normed linear space X. For 

every x E X with d(x, M) > 0, there exists a bounded linear functional f on X such 

that 

11111 = 1 

J(M) = 0 

J(x) = d(x, M) 

Proof: Goldberg, S. [6], 20. 

Definition 7 (Positive linear functionals and states) Let c/> be a linear functional 

on a C*-algebra A. Then: 

c/> is positive if c/>(x) 2: 0 for all x 2: 0 (positive) 

c/> is a state if c/> is positive and ¢( 11) = 1 

Positivity of a linear functional ¢ can also be defined by the requirement ¢(xx*) 2: 0 for 

all x in a C* - algebra A. The Schwartz inequality holds for all positive linear functionals: 

lc/>(y*x)l2 < c/>(x*x)cj>(y*y) 

The following result for positive linear functionals is required in the proof of Theorem 62: 

Theorem 12 If c/> is a bounded linear functional on a C* - algebra A with ¢( x) 

for some positive x E A, then c/> is a positive linear functional. 

Proof: Sakai, S. [21], 9. 

llc/>llllxll 

Theorem 13 A linear functional c/> on a C*- algebra A is positive if and only if c/> is 

bounded with 11 ¢11 = ¢( 11). There/ ore, c/> is a state on A if and only if 11 ¢11 = ¢( 11) = 1. 

Proof: Zhu, K. [24), 80. 

Let S(A) denote the space of all states on a C*- algebra A. Then S(A) is contained in 

the closed unit ball of the dual space (linear functionals) of A. S(A) is topologized with 

the weak star topology inherited from the dual space of A. S(A) is always non-empty: 

15 
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Theorem 14 (State space) If x is any element in a C* - algebra A, then for each ,,\ E 

o- ( x) there e.rists a state q> on A with </>( x) = ,,\. 

Proof: Zhu, K. [24], 80. 

This correspondence between the spectrum of an element x E A and the states allows 

the following useful characterization of positive, self-adjoint and normal elements in terms 

of S(A): 

Theorem 15 (S(A)) Let A be a C*- algebra with S(A) the state space of A. Then for 

XE A, 

X = 0 {:} q>(x) = 0 

x = x* {:} q;(x) E IR 

X ~ 0 {:} q>(x) ~ 0 

\/ </> E S(A) 

\/ </> E S(A) 

\/ </> E S(A) 

xx* = x*x ⇒ ~q> E S(A)!llxll = l</>(x)I 

Proof: Zhu, K. [24], 81. 

The state space S(A) is a convex, weak-star compact and Hausdorff subspace of A* 

- the dual space of A (Zhu, K. [24], 81). Therefore, from the Krein-Milman theorem 

(Zhu, K. [24], 6), S(A) is the weak-star closed convex hull of the set of extreme points of 

S(A). The set of extreme points of S(A) is denoted by P(A) and elements in P(A) are 

called pure states of A. Every q> E S(A) can therefore be approximated in the weak-star 

topology by elements of the form t1 ¢ 1 + t2</>2 + ... + tn<Pn with <Pi E P(A) and ti E (0, 1) 

with t 1 + t 2 + ... + tn = l. In other words, a pure state is a state that cannot be written 

as a convex combination of other states. 

Like the state space, the pure state space is sufficiently large to distinguish certain 

properties of elements of A. Theorem 15 can be re-stated with S(A) replaced by P(A). 

Theorem 16 A non-trivial linear functional q> on a commutative C* -algebra A is a pure 

state if and only if q> is multiplicative. 

Remark 5 From Theorem 16 it can be seen that (for a commutative C* -algebra A) the 

pure states (multiplicative linear functionals/ maximal ideals) is a weak-star closed sub­

space of the state space of A 

16 
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1.1. 7 Representations 

This section lists a short summary of basic representation theory. The main result is the 

Gelfand, Neumark, Segal representation construction which states that every C* algebra 

A is C*- isomorphic to a C*- subalgebra of B(H) for some Hilbert space 1-l. First some 

definitions: (B(H) denotes the bounded linear operators on a Hilbert space 1-l) 

Definition 8 ( *- morphism) A *-morphism between two*- algebras A and Bis a map­

ping 1r defined for all x E A f-t 1r ( x) E B such that: 

(i} 1r(ax + f3y) = a1r(x) + f31r(y) 

(ii) 1r(xy) = 1r(x )1r(y) 

{iii} 1r(x*) = 1r(x)* 

for x, y E A and a, f3 E C. 

For C* - algebras, * - morphisms are continuous: 

Theorem 17 ( * - morphisms) For C* - algebras A and B, and a * - morphism 1r of A 

into B we have 

x ?: 0 ⇒ 1r(x) ?: 0 (positivity preserving) 

1r is continuous with ll1r(x) II ~ llxll \/x E A 

Proof: Bratteli, 0. and Robinson, D.W. [3], 42. 

The range { 1r(x) Ix E A} is a closed C* - subalgebra of B (in the setting of Theorem 

17). If {1r(x)lx E A} = Band each element of Bis the image of a unique element in 

A (onto and one-to-one), then 1r is called a *- isomorphism. A * - morphism 1r of a C*­

algebra A onto a C*- algebra Bis a*- isomorphism if N(1r) = {x E Al1r(x) = 0} = {0}. 

The kernel N(1r) = {x E Al1r(x) = 0} is a two-sided ideal of A: For x, y E A 

and y E N( 1r) we have 1r(xy) = 1r(x )1r(y) = 0 and 1r(yx) = 1r(y )1r(x) = 0. Also, 

from the inequality ll1r(x)II ~ llxll it follows that N(1r) is closed. This leads to the 

construction of the quotient C*- algebra Arr = A/N(1r) with the equivalence classes 

defined as x = {x + klk E N(1r)}. The morphism 1r induces a morphism ir from Arr to B 

by ir(x) = 1r(x) and since N(ir) = {0}, iris a isomorphism between Arr and ir(Arr) ~ B. 

Definition 9 (Basic representation) A representation of a C* - algebra A is defined 

as a pair (1-l, 1r) where 1-l is a Hilbert space and 1r a * - morphism of A into B(H), the 

bounded linear operators on the Hilbert space 1-l. 

17 
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A representation (H, 1r) is faithful if and only if 1r is a * - isomorphism between A 

and 1r(A) (if and only if N(1r) = {0} ). The terminology 1r is a representation of A on 

H is also often used. Every representation (H, 1r) of a C* - algebra A defines a faithful 

representation of the quotient algebra A1T. 

A *- automorphism 1r of a C*- algebra A is a * - isomorphism of A into itself. 1r is a 

* - automorphism if it is a * - morphism of A with range equal to A and kernel equal to 

{O}. Each * - automorphism is norm-preserving - ll1r(x)II = llxll V x E A. 

A trivial representation of a C* - algebra A is given by the trivial * - morphism 1r = 0 

with 1r(x) = 0 V x E A. A representation may be non-trivial (in general) but still have 

trivial (invariant) parts. IfH0 CH is defined as Ho= {<p E Hl1r(x)cp = 0\/x EA} 
then Ho is invariant under 1r and the corresponding representation 7ro = PHo 1r PHo is triv­

ial (PHo is the orthogonal projector with range Ho)- A representation 1r is non-degenerate 

if Ho = {O}. In general, a set of bounded linear operators B acts non-degenerately on H 

if {<p E Hlx(<p) = 0\/x E B} = {0}. 

An element <p E H is cyclic for a set B of bounded linear operators on H if the set 

{ x ( <p) Ix E B} is dense in H. 

Definition 10 ( Cyclic representation) A cyclic representation of a C* - algebra A is a 

triple (H, 1r, <p) where (H, 1r) is a representation of A and <p E H is cyclic in the Hilbert 

space H for the set {1r(x)I x E A}. 

Theorem 18 (Cyclic representation) Every non-degenerate representation (H, 1r) of 

a C* - algebra A is the direct sum of a family (Ha., 1r a. )a.EI of cyclic representations of A. 

Proof: Bratteli, 0. and Robinson, D.W. [3], 46. 

Theorem 18 allows a reduction from general representations to cyclic representation. 

This is useful in the construction of representations. 

Definition 11 (Irreducible representation) A set B of bounded linear operators on 

a Hilbert space H is irreducible if the only closed subspaces of H invariant under B is 

H and {O}. A representation (H, 1r) of a C*- algebra A is irreducible if the set 1r(A) is 

irreducible on H. 

The following theorem establishes some identification of irreducible sets of operators. 

The commutant M
1 

of a set of bounded linear operators M on a Hilbert space H is 

defined as M
1 = {y E B(H)lxy = yx \/ x E M}. 
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Theorem 19 (Irreducible sets) Let B be a self adjoint set of bounded linear operators 

on a Hilbert space 1i. Then B is irreducible if and only if B
1 

consists of multiples of ll. 

Proof: Bratteli, 0. and Robinson, D.W. (3), 47. 

Positive linear functionals, and in particular the states and pure states play an im­

portant role in the existence proof and construction of representations. Let (H, 1r) be a 

representation of a C* - algebra A and <p E 1i a non-zero unit vector. Define 

for all x E A. Then w'P is a vector state on 1r(A). Every representation therefore has a 

(vector) state associated with it. The following theorem shows that the converse is also 

true: every state ¢> over a C* - algebra is a vector state in a suitable representation. 

Theorem 20 (State representation) If¢> is a state on a C* - algebra A, then there 

exists a cyclic representation (Hep, 1r ep, ({)ep) of A such that 

¢>(x) = (<pep, 1rep(x)<p'P) 

for all x = A, so that ll'Pepll 2 = 11¢11 = 1. 

Proof: Bratteli, 0. and Robinson, D.W. (3], 56. 

This cyclic representation (1iep, 1rep, <pep) constructed from the state¢> on A is defined 

as the canonical representation of A associated with ¢>. 

The nature of pure states and their canonical representation is given in the following 

theorem: 

Theorem 21 (Pure state representation) Let¢> be a state over a C* - algebra A with 

(Hep, 7rep, <pep) the associated cyclic representation. Then (Hep, 7rep) is irreducible if and only 

if ¢> is a pure state. 

Proof: Bratteli, 0. and Robinson, D.W. (3), 57. 

1.1.8 Commutative C*- algebras 

Theorem 22 Let A and B be C* - algebras and 1r : A ➔ B a C* - homomorphism. Then 

for every x E A, O"( 1r(x)) C O"(x) and ll1r(x) II ::; llxll-
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Proof: Zhu, K. [24], 55. 

Theorem 23 Let 1r be a C*- 'isomorphism of C*- algebras A onto B. Then a(1r(x)) 

a(x) and ll1r(x)II = llxll for every x E A. 

Proof: Zhu, K. [24], 56. 

Theorem 24 (Gelfand transform) Every commutative C*- algebra is * - isomorphic 

to C(K) for some compact Hausdorff space K. In particular, for a commutative C* -algebra 

A, the Gelfand transform is a C*- isomorphism from A onto C(MA)-

Proof: Let r : A ➔ MA be the Gelfand transform: r(x)(¢) = < x, ¢ > = ¢(x) 

for every¢ E MA and x E A. From Remark 3 we know that r is an algebraic homo­

morphism into C(MA)- It needs to be shown that r is one-to-one, onto and involution 

preserving. 

Involution preserving: (To prove: f(x*) = f(x). z denotes the complex conjugate for 

z E C.) Define for every x E A 

X + x* 
and X1 

2 
X - x* 

X2 
2i 

Now x = x1 + ix2 and x* = x1 - ix2 and both x1 and x 2 are self adjoint. Since A is com­

mutative it follows from Theorem 5 that the range of f(xi) is a(xi) which is (by Theorem 

10) contained in JR for i = 1, 2. Now r(x*) = r(xi) - if(x2) = f(xi) + if(x2) = r(x). 

One-to-one: (To prove: llf(x)IICX) = llxll) From Theorem 5 we have r(x) = llr(x)lloo­

Now llf(x)II~ = llf(x)*r(x)lloo = llf(xx*)lloo = r(x*x). But clearly (x*x) = (xx*) so 

that (x*x) is self adjoint and normal. From Theorem 9 it follows that r(x*x) = llx*xll = 

llxll 2 so that r is norm preserving and hence one-to-one. 

Onto: (To Prove: Image r equal to C(MA[x])). Since A is a Banach algebra and r 

is an isometry, we know that the image of r in C(MA) is a closed *- subalgebra of 

C(MA) which contains the constant functions. Furthermore, for any two distinct ele­

ments ¢1 and ¢2 of .. A,1 A, we can choose an x E A not in the kernel of ¢1 - ¢2 so that 

r(¢1 - ¢2)(x) = (¢1 - ¢2)(x) -=p O so that ¢ 1 (x) -=p </>2(x) which shows that the image 

of r separates points of MA- By the Stone-Weierstrass theorem, r is onto. 

Remark 6 From Theorem 16 we know that MA = P(A) for a commutative C* - algebra 

A where P(A) is topologized with the weak* - topology. Therefore, Theorem 24 can be 

restated with MA replaced by P(A). 

20 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Theorem 25 Let A be a C* - subalgebra of a C* - algebra B with x E A. Then x is 

invertible in A if and only if xis invertible in B. From this it follows that aA(x) = a8 (x). 

Proof: Zhu, K. (24], 59. 

1.1.9 Continuous functional calculus 

Let A[x] denote the C*- subalgebra generated by x E A. If x is a normal element of a 

C* - algebra A, then A[x] is commutative. The next theorem will make it clear that an 

element y E A is in A[x] if and only if y can be approximated in norm by polynomials 

in 11, x and x*. 

Theorem 26 (Spectral theorem) Let x be a normal element of a C*- algebra A. Then 

MA[x] is homeomorphic to a(x). If we identify MA[x] with a(x), then the Gelfand trans­

! orm r on A[ x] has the property that r (p( x, x*)) = p( z, z) Jor every polynomial p of two 

variables { z E C}. 

Proof: From Theorem 24 and Remark 3 at the beginning of this section if follows that 

r : A[x] ➔ C(MA) is a surjective C*- isomorphism. From Theorem 5 and Theorem 25 

we can define the mapping 

by 

\JI(¢) r(x)(</>) = </>(x) 

with ¢ E MA[x] so that \JI is well defined and onto. To show that \JI is one-to-one, 

suppose '11(¢1 ) = '11(¢2 ) or <J>i(x) = ¢2 (x). From the proof of Theorem 24 we have that 

</>1 (x*) = </>2 (x*) so that 

for every polynomial p of two variables. Such polynomials are dense in A[x] and hence 

¢ 1 = ¢ 2 so that \JI is one-to-one. 

For \JI to be a homeomorphism, we need to show that \JI preserves convergence ( the 

topology). Therefore, take any net <Pa. in MA[x] converging to ¢ with respect to the 

weak*- topology. Then clearly <Pa.(Y) ➔ </>(y) for every y E A[x]. Also <Pa.(x) ➔ </>(x) 

since x E A[x], so that '11(</>a.) ➔ \JI(¢) which shows that \JI is continuous. Now \JI is 

a one-to-one continuous function from one compact Hausdorff space MA[x] to another 
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compact Hausdorff space a-(x) and therefore W is a homeomorphism. 

By the above we can identify MA[x] with a-(x) and then the Gelfand transform 

r: A[x] ➔ C(a-(x)) 

satisfies f(x)(z) = z for all z E a-(x). (Note that z E a-(x) is identified with </> E MA 

such that </>(x) = z (Theorem 14)). Since r is a C*- homomorphism, it follows that 

r(p(x, x*))(z) = p(z, z) for every polynomial p of two variables. 

Theorem 27 Let x E A be normal in the C*-algebra A and C(a-(x)) the continuous 

complex valued functions on a-(x). Define z E C(a-(x)) by z(t) = t for all t E a-(x). Then 

there exists a unique *-isomorphism 1r : C(a-(x)) ➔ A such that 1r(z) = x. For each 

f E C(a-(x)), 1r(f) is normal in A and 1r(f) is the limit of a sequence of polynomials in 

ll, x and x*. The set 

A[x] {1r(f)lf E C(a-(x))} 

is the smallest commutative C* -subalgebra of A that contains x. 

Proof: Existence of C* - isomorphism: 

Let B be any commutative C*-subalgebra of A that contains x. Then (by Theorem 24) 

there exists a *- isomorphism 1r from B onto C(X) where X is compact Hausdorff. With 

u = 1r(x) in C(X), it follows from Theorem 24 that 

a-s(x) = a-C(x)(1r(x)) = a-c(x)(u) = {u(x)jx E X} 

For every f E C(a-s(x)) = C( { u(x) jx E X} ), the composite function f o u is continuous 

on X. Thus the mapping f ➔ f o u is a*- isomorphism from C(a-(x)) into C(X). From 

the*- isomorphisms f ➔ f ou and 1r-1 : C(X) ➔ B, the composition 'ljJ : f ➔ 1r-1 (f ou) 

is a*- isomorphism from C(a-(x)) into A. Also 

Uniqueness of the C*- isomorphism 1r follows from the fact that 1r : z ➔ x implies that 

polynomials in z are mapped to polynomials in x. By the Stone-Weierstrass theorem, this 

determines the action of 1r on all of C ( a-( x)). 

1.2 Closedness 

Some very interesting parts of the study of derivations relates to unbounded, closed deriva­

tions. A short introduction to closed operator theory with definitions, properties and some 

results are given here. Theorem 28 is used often throughout this work. 
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1.2.1 Open mapping theorem 

Assume throughout the rest of this section that V(T) C X and R(T) C Y, where X and 

Y are normed linear spaces. Also, let T denote a linear operator mapping the domain 

V(T) into Y. 

Definition 12 (Closed operator) Let Xx Y be the normed linear space of all ordered 

pairs (x, y) with x E X and y E Y and norm given by ll(x, y)II = max{llxll, IIYII}- Let 

T be a linear operator mapping from X into Y with V(T) C X. Define the graph of T as 

Q(T) = {(x,Tx)lx E V(T)}. JfQ(T) is closed in Xx Y then the operatorT is said to 

be closed. 

Theorem 28 (Closedness) An operator Tis closed if and only if: Xn E V(T); Xn -+ x 

and Txn -+ y imply x E V(T) and Tx = y. 

Proof: For every x E V(T), z = (x, y) is in the graph Q(T) of T if and only if Tx = y. 

For every Xn E V(T), (xn, Txn) -+ (x, y) E Q(T) if and only if Xn -+ x and Txn -+ y. 

Therefore, if T is closed, then Xn -+ x and Txn -+ y imply (xn, Txn) -+ (x, y) E 

Q(T) = Q(T) which implies Tx = y. Conversely, if Xn E V(T), Xn -+ x and Txn -+ y 

imply x E V(T) and Tx = y, then (x, y) E Q(T) and (xn, Txn) -+ (x, y) E Q(T) so 

that Q(T) = Q(T). 

Definition 13 (Closable operator) Let T be a linear operator mapping from X into 

Y with V(T) C X. T is closable if there exists a linear extension of T which is closed in 

X. 

Theorem 29 ( Closability) An operator T is closable if and only if for any y -=f O in 

Y, (0, y) (J. Q(T). 

Proof: Goldberg, S. [6], 54. 

This result is often used to prove closability by assuming (0, y) E Q(T) and showing 

y = 0. The assumption (0, y) E Q(T) implies the existence of Xn E V(T) with x 11 -+ 0 

and T(xn) -+ y -=f 0. Therefore, Theorem 29 can be restated as: 

A linear operator T mapping from a normed space X into a normed space Y with 

V(T) C X, is closable (pre-closed) if and only if the existence of a sequence { Xn} E V(T) 

with x 11 -+ 0 and Tx 11 -+ z implies z = 0. 
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Remark 7 (Partially defined inverse) In the following theorem the notation r- 1 refers 

to a 'partial inverse' of T whereby T is only required to be 1-1. T is neither onto nor 

defined on the whole of X. This inverse injectively maps R(T) onto V(T) and will exist 

if T is 1-1. 

Theorem 30 (T 1-1 and closed) If T mapping V(T) into Y is 1-1 and closed, then 

r-1 is closed. 

Proof: Suppose T is 1-1 and closed. Clearly r- 1 exists. Also T : V(T) ➔ R(T) 

is onto and r- 1 : V(r- 1 ) ---t R(T- 1 ) is onto. Consider Q(r- 1 ) = { (Tx, r- 1Tx)lx E 

V(T)} = {(Tx, x)lx E V(T)}. Since 9(T) = {(x, Tx)lx E V(T)} is closed in Xx Y 
we have that Q(r- 1 ) is closed in Y x X so that r-1 is closed. 

Definition 14 (Open mapping) An operator mapping from X into Y is called open if 

it maps open sets in X onto open sets in Y. An operator is called relatively open if it 

maps open sets in X onto sets open in R(T). 

Remark 8 (Open mapping) The notion of openness (resp. relatively openness) of an 

operator T mapping from X into Y can also be characterized as an operator that maps 

interior points of an arbitrary set W C X onto interior points of TW C Y {resp. interior 

points of TW C R(T)). For if this is the case, then clearly all open sets in X will be 

mapped onto open sets in Y {resp. R(T)). 

Adopt the following notation: 

Sx(r) 

S1,(r) 

{zlz E X, llzll ~ r} and 

{zlz E X, llzll < r} 

with r E IR, r > 0. Note that S1(r) denotes the set of interior point of Sx(r) with Sx(r) 

a neighborhood of O in X. 

Remark 9 (Interior points) The following theorem makes use of the inclusion si(r) C 

TSx(l) with r E IR, r > 0. This inclusion implies that O E X, an interior point of 

Sx(l), is mapped onto the interior point 0 E Y of TSx(l), because clearly si(r) is a 

neighborhood of 0 in Y that is contained in TS x ( 1). Observe that for any open set V C X 

and any x E X, x + V is also open. By linearity of T, it follows for any point x of V(T) 

that T(x + Sx(l)) :::) Tx + si(r) so that Tx is an interior point of T(x + Sx(l)). 

Remark 8 and 9 together thus yield: 

T open ¢> si(r) c T Sx(l) 

for some r E IR, r > 0. T is called nearly open when si(r) C TSx(l) for some r E IR 

and r > 0. 
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Theorem 31 (Nearly open implies open) Let X be complete and T : X ➔ y be 

closed. If for some r > 0, si(r) c TSx(l) then si(r) c TSx(l). 

Proof: Assume first that for every O < t < l we have si ( r) c TS x ( 1 ~f). Since 

si(r) is open, y E si(r) implies that 6 E si(r) fort small enough. Hence there exists 

x E Sx( 1~J such that Tx = 6 or T((l - t)x) = y. Since 11(1- t)xll ::; 1, we have 

y E TSx(l). Therefore si(r) c TSx(~) VO < t < l implies si(r) c TSx(l). 

It needs to be shown that si(r) C TSx(l) implies S~(r) c TSx( 1~1:) for every 

O<t<l. 

Assume S~(r) C TSx(l) and T is closed and let y E si(r) be given. Since for ev­

ery set K, C X, aK, = aK for a > 0 a scalar and S~(r) C TSx(l) given, it fol­

lows that si(nn) C TSx(tn). Taking n = 0, there exists x 0 E Sx(l) such that 

IIY - Txoll < rt or y - Txo E si(n). Taking n = l, there exists x1 E Sx(t) such that 

IIY - Txo - Tx1II < rt2 or y - Txo - Tx1 E S~(rt2
). Proceeding in this manner, there 

exists a sequence Xi E Sx(ti) with IIY - I:7=o Txill < rtn+I. Now define the sequence 

Zn = I:7=o Xi where llxill ~ ti. Then llxoll ::; 1, llx1 II ~ t, llx2II ~ t 2 and so on, so 

that L~o llxill ~ 1~1: < oo (geometric series). Thus, {zn} is Cauchy and since X is 

complete, it follows that there exists x E X such that Zn ➔ x with llxll ~ 1~1:· Clearly 

Tzn = T(I:7=1 (xi)) ➔ y, and since Tis closed, x E 'D(T) n Sx( 1~f) and Tx = y. 

Thus y E TSx( 1~f) and hence si(r) c TSx( 1~f). 

Lemma 1 (T nearly open) Let Y be of the second category and T onto. Then T is 

nearly open. 

Proof: It needs to be shown that there exists r > 0 such that si ( r) C TS x ( t). Since 

R(T) = Y, we may write Y = U~=1nTSx(l), and since Y is of second category, at least 

one of the sets pTSx(l) has a non-empty interior. The map gp defined by gp(x) = px 

is homeomorphic. Therefore TSx(l) must also contain an open set (non-empty). Also 

g½(TSx(l)) = TSx(½) and thus TSx(f) also contains a non-empty open set V. Now 

t t 
0 E V - V C TSx( 2) - TSx( 2) c TSx(t) 

The second inclusion above is justified by noting that TSx(f) - TSx(f) = T(Sx(f) -

Sx(!)) c TSx(t) c TSx(t). 

Now V - V is an open set around 0, which indicates that there exists r > 0 such that 

si(r) c V - V c TSx(t). 

With Baire's category theorem in mind, the open mapping theorem now follows: 
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Theorem 32 (Open mapping theorem) Let X be complete and Y of second category. 

If T is closed and onto, then T is an open mapping. 

Proof: Goldberg, S. [6], 45. 

1.2.2 Closed graph theorem 

Theorem 33 (Closed graph theorem) Let X and Y be Banach spaces and T a closed 

operator mapping X into Y. Then T is continuous. 

Proof: Since Q(T) is closed in the Banach space X x Y, Q(T) is complete. Define 

the mapping f : 9(T) ➔ X by J((x, Tx)) = x. f is bijective and since IIJ((x, Tx))II = 
llxll ::::; ll(x, Tx)II, f is continuous. (The norm on Xx Y is defined as ll(x, y)II = (llxll 2 + 
IIYll 2 )½). From Theorem 32 we know that J- 1 

: X ➔ Q(T) is continuous. Now 

IITxll ::::; ll(x, Tx)II = llf- 1 (x)II ::::; llf- 1 llllxll 

so that T is bounded (continuous). 

Theorem 34 (Extension of closed graph theorem) Let X and Y be complete. Any 

two of the following imply the third: 

1. V(T) is closed 

2. T is closed 

3. T is continuous 

Proof:(1,2 ⇒ 3) Let V(T) be closed and T mapping V(T) into Y be closed. Since 

V(T) is closed, we have that V(T) is complete and by the closed graph theorem, T is 

continuous. 

(1,3 ⇒ 2) Suppose V(T) is closed and T continuous. Now for Xn E V(T) and Xn ➔ x 

we have x E V(T), since V(T) is closed. Furthermore, if also Txn ➔ y, then since by 

continuity, Txn ➔ Tx, we get Tx = y. Thus by Theorem 28 we have that Tis closed. 

(2,3 ⇒ 1) Let T be closed and continuous. Now for x E V(T), there exists Xn E V(T) 

such that Xn ➔ x. Consider 

Therefore Tx 11 is Cauchy and Txn ➔ y ( E Y) since Y is complete. Since T is closed, 

it follows from Theorem 33 that x E V(T) (and Tx = y). Therefore V(T) = V(T) 

because x E V(T) was arbitrary. 
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Theorem 35 (Kernel of a closed operator) The kernel N(T) of an operator T is 

closed if T is closed. 

Proof: Suppose Tis closed. Take any x E N(T). Then there exists {xn} E N(T) C 

V(T) such that Xn ➔ x. Clearly Txn = 0 for all n and therefore Txn ➔ 0. Since T is 

closed, it follows from Theorem 28 that x E N(T) (since Tx = 0) so that N(T) = N(T) 

and N(T) is closed. 

Theorem 36 (Induced operator) Let N(T) be closed and T : V(T)/N(T) ➔ Y the 

1-1 operator induced by T defined as T([x]) = Tx where [x] E V(T)/N(T). Then T is 

closed if and only if T is closed. 

Proof:(⇒) IfT is closed, suppose [xn] ➔ [x], with [xn] E V(T)/N(T), and T([xn]) ➔ 

y. Then there exists { vn} E N(T) such that Xn - Vn ➔ x. Now T(xn) = T(xn - Vn) = 

T([xn]) ➔ y. Since T is closed, x E V(T) and T(x) = y by Theorem 28. Thus 

[x] E V(T) and T([x]) = y. Hence Tis closed. 

( {=) Let T be closed. Suppose Xn ➔ x and Txn ➔ y. Then [xn] ➔ [x] and 

T([xn]) = Txn ➔ y. By the closedness of T, it follows that [x] E V(T) and T([x]) = y. 

Thus x E V(T) and Tx = y and hence T is closed by Theorem 28. 

Theorem 37 (Existence of the inverse - 1) Let V(T) = X. r- 1 exists and is con­

tinuous if and only if there exists m > 0 such that IITxll ~ mllxll for every x E X. 

Proof: ( {=) Suppose IITxll ~ mllxll- Then x -=J. 0 implies Tx -=J. 0 so that T is injec­

tive. Hence r- 1 exists. Now 11r- 1Txll = llxll ~ m-1 IITxll. Therefore r- 1 is bounded 

and continuous. 

( ⇒) Let r- 1 be continuous. Then llxll = 11r-1Txll ~ IIT-1 IIIITxll for every x E X. 

Choosing m = lfr¼, the desired property follows. 

Theorem 38 (Existence of the inverse - 2) Let X and Y be Banach spaces and T 

closed. Then r- 1 exists ( as a map from R(T) to V(T)) and is bounded if and only if T 

is 1-1 and R(T) is closed. 

Proof:(⇒) Suppose T has a bounded inverse. Suppose Txn ➔ y E Y. From the 

existence of the bounded inverse it follows from Theorem 37 that there exists m > 0 such 

that IITxn - Txmll ~ mllxn - xmll which shows that {xn} is Cauchy in X and hence 

converges to some x E X. Since T is closed, x E V(T) and Tx = y by Theorem 28. 

Thus R(T) is closed. 
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( ¢=) Suppose T is 1-1 and R(T) is closed. Then r- 1 is closed (by Theorem 30) as an 

operator from R(T) into X. Since R(T) is closed and hence complete in the Banach space 

Y, it follows from the closed graph theorem that r-1 is continuous. 

1.2.3 Minimum modulus 

The following consideration leads to the definition of a number 'Y(T) associated to each 

operator T having a closed kernel. Let T be a closed operator and X and Y com­

plete. Let T be the 1-1 operator induced by T. Since T is closed, we have from 

Theorem 35 that N(T) is closed and hence V(T)/N(T) is a normed linear space with 

norm ll[x]II = d(x, N(T)). Now by Theorem 38, R(T) = R(T) is closed if and only 

if T has a bounded inverse (T is 1-1). By Theorem 37, this means that there ex­

ists an m > 0 such that for every [x] E V(T), mll[x]II :S IIT[x]II- Equivalently 

0 < inf { 11
1
{i1J/

1
11 j[x] E V(T), x ~ N(T) }. Since IIT[x]II = IITxll and ll[x]II = d(x, N(T)) 

it follows that 0 < inf { d(J~'VJ~)) jx E V(T), x ~ N(T)}. This infimum is called the 

minimum modulus of the operator T. 

The following observation will be used in Theorem 39. Consider the normed linear 

space V(T)/N(T) with elements [x]. Then y E [x] if and only if AY E [Ax]. This can be 

seen by noting that y E [x] implies x - y = m for some min N(T). Then AX - AY = Am 

and since Am E N(T) if and only if m E N(T) (from linearity), it follows that AY E [Ax]. 

Definition 15 (Minimum modulus) Let N(T) be closed. The minimum modulus 'Y(T) 

of T is defined as 1(T) = infxEV(T) d(J'.0i~)) where § is defined to be oo. 

Theorem 39 (Minimum modulus) T is relatively open if and only if "f(T) > 0. 

Proof:(¢=) Let 'Y(T) > 0 and assume T -# 0 to avoid 'Y(T) = oo. By definition 

of 'Y(T) = inf n E N(T) d(J'.'VJ~)) ( = A > 0) we have d(J~~i~)) ~ AV x ~ N(T) which 

implies IITxll ~ Ad(x, N(T)). Now if IITxll < A = infyEV(T) d(J'.'!Ji~n then since 

IITxll < A :S d(J'.~i~)) it follows that IITxll < d(J~~i~)) from which it follows that 

d(x, N(T)) < l. From IITxll < A we have that Tx E AS~(r/1). Now let n E N(T) 

be such that llx - nil < 1 (n exists, since d(n, N(T)) < 1). Then x - n E Sv(r)(l). 

Call z = x - n (llzll :S 1). Now T(z) = T(x - n) = Tx - Tn, but Tn = 0. Thus 

Tz = Tx where z E Sv(T)(l), so that ASn(r)(l) C TSv(T)(l). This shows that the 

interior point 0 of Sv(T) ( 1), is mapped onto the interior point 0 of Sn(T) ( 1). It follows 

that T is relatively open. 
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( ⇒) If T is relatively open then there exists a ,\ > 0 such that 

(1) 

Choose y = Tx E S.~(T) (,\) (x E V(T)) so that ,\ - E :::; IITxll < ,\ (,\ > E > 0). 

Then (from equation (1)) there exists z E si(T) (1) (llzll < 1) with Tz = Tx. But 

Tz - Tx = 0 so that n = z - x E N(T). Now d(x, N(T)) = infnEN(T) llx - nil :::; 

llx - z - xii = llzll < l. Then 

0 < ,\ _ E < IITxll 
d(x, N(T)) 

Theorem 40 (Extension of open mapping theorem) Let X and Y be complete. Any 

two of the following three imply the third: 

1. R(T) is closed 

2. T is closed 

3. ,(T) > 0 

Proof: (1,2 => 3) Let R(T) be closed in Y and T closed. Since Y is complete, R(T) is 

complete and by the open mapping theorem, Tis relatively open so that ,(T) > 0. 

(2,3 ⇒ 1) Let T be closed and ,(T) > 0. By Theorem 39 we have, since ,(T) > 0, T is 

relatively open. Now define the 1-1 operator i' induced by T where V(T) = V(T)/N(T) 

and i': V(T) into Y, by T[x] = Tx. Since N(T) is closed by Theorem 12, V(T)/N(T) 

is a normed linear space with norm ll[x]II = d(x, N(T)). Clearly R(T) = R(T). R(T) 

will be closed if (and only if) T has a bounded inverse, by Theorem 38. Now 

. IIT[x]II A mf{lfizjjfl[x) E V(T), x ~ N(T)} 

. IITxll 
mf { d(x, N(T)) Ix E V(T), x ~ N(T)} 

,(T) > 0 

Therefore there exists, > 0 such that IIT[x]II ~ ,ll[x]II for all [x] E V(T)/N(T). Since 

i' is 1-1, we have that f- 1 exists. Clearly lli'- 1i'[x]II = ll[x]II :::; ~IIT[x]II which shows 

(by Theorem 38) that f- 1 is bounded. Therefore R(T) = R(T) is closed. 

(3,1 ⇒ 2) Let 1(T) > 0 and R(T) closed. Then T is relatively open. As before, let T 

be the 1-1 operator induced by T. Since R(T) is closed and i' is 1-1, f- 1 exists and 

is bounded (by Theorem 38), and hence continuous. Furthermore V(i'- 1 ) = R(T) is 

closed in Y and therefore f- 1 is closed by Theorem 34. Since f- 1 is 1-1 and closed, 

(i'- 1 )- 1 = Tis also closed (by Theorem 30). Hence by Theorem 36, T is closed. 
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2 Derivations 

2 .1 Introduction 

Definition 16 Let A be a Banach algebra and c5 a linear mapping in A. Then c5 is a 

derivation if: 

1. D(c:5) is a dense sub-algebra in A 

2. <5(ab) = <5(a)b + a<5(b) Va, b E A 

If A is a *- Banach algebra, then <5 is a *- derivation if 

3. <5(a*) = c5(a)* Va EA 

Derivations with the property J(x*) = J(x)* are also referred to as symmetric deriva­

tions. Derivations that can be expressed as a commutator (J(b) = ab - ba) for all b E A 

and for a E A, are called inner derivations. 

Derivations in operator algebras originate from quantum mechanics where the coordi­

nates of particle momentum and position are identified with operators p and q respectively, 

satisfying the commutation relations 

PiPJ - PJPi 0 

QiQj - QJQi 0 

and 

-iMiJll 

where h is Planck's constant. These operators p and q were tentatively proposed (by 

Heisenberg) in terms of matrix operators. It will be shown shortly that the relation 

pq - qp = -ihll cannot hold for both p and q bounded. Thus operators p and q were 

assumed to act on an infinite dimensional Hilbert space 1-l. Physically each vector 'I/; E 1-l 
corresponds to a state of the system and for 'I/; normalized, the inner-product ('I/;, At'I/J) 

corresponds to the expected value of the observable A at time t. The equation determining 

the change of any such observable A with the time t was specified as 

where 

dA 

dt 

H 

(2) 

p2 
2m + V(q) (3) 
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is the Hamiltonian, combining kinetic and potential energy as functions of p and q respec­

tively. 

The theory of commutators in quantum mechanics stimulates the study of bounded 

derivations on operator algebras in the following way: Let x, y E B(A) where A is a 

Banach space. (B(A)) denotes the algebra of bounded linear operators on A). Define the 

derivation bx by 

bx(Y) = xy - yx 

That bx is a derivation, follows from the associativity of the algebra B(A) and the obser­

vation that if bx(Y) = xy - yx and bx(z) = xz - zx then 

x(yz) - (yz )x 

(xy )z - y(zx) 

(bx(Y) + yx)z - y(xz - bx(z)) 

bx (y )z + yxz - yxz + ybx (z) 

The observation llbx (y) II ~ 2llxyll ~ 2llxll llYII shows that bx is bounded. 

Consider the Schrodinger operators p and q on the Hilbert space £ 2 [-oo, +oo) defined by 

p(f) 

q(f)(x) 

.df 
-i-

dx 
xf(x) 

Then the commutation relation for p and q yields 

(pq - qp)f (pq)f - (qp)f 

p(xf) - q(-i df) 
dx 

-i_!!_(xf) + ix_!!_ f 
dx dx 

f . df . df -i - ix- + ix-
dx dx 

-if 

This study of derivations begins with some general results on derivations as commu­

tators. 
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2.2 Commutators 

The following result is used in the proof of some of the commutator results as well as 

elsewhere in this work: 

Theorem 41 (Kleinecke-Sirokov, cf. (Sakai, S. [22], Theorem 2.2.1)) Let A be a 

Banach algebra and 8 a bounded derivation on A (D(8) = A). Suppose that 82(x) = 0 

for some x EA. Then 8(x) is a generalized nilpotent - i.e. (ll8(x)nll)-¼ ➔ 0 as n ➔ oo. 

Proof: The proof that 8n(xn) = n!8(x)n makes use of induction of 8n(xn). For n = l 

we have 81 (x1 ) = 1!8(x)1. Now suppose that 8n(xn) = n! 8(x)n. Consider Leibniz's 

formula: 

t. (~)o•(v)on-•(u) 

n(n - l)(n - 2) ... (n - k + l) 
kl 

where 

Then, for the case n + l we have that 

+ 

Thus 

8n+l (xnx) 

~ (n; 1) o•(xn)on+i-•(x) 

(n; l)O(xn)On(x) + (n; 1)02(xn),5n-l(x) + ... 

(
n + 1) 8n-1 (xn)82(x) + (n + 1) 8n(xn)8(x) + (n + 1) 8n+l (x)x 
n-l n n+l 

8n+l (xn)x + (n + l)8n(xn)8(x) 

8(8n(xn))x + (n + l)n! 8(x)n+l 

8(n! 8(x) · · · 8(x) )x + (n + 1)! 8(x)n+l 
~ 

n times 

n-1 times 
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Therefore 

llc5n(xn) ~II¼ 
n! 

< llc5llllxll( ~) ¼ ➔ o 
n. 

Theorem 42 (Wielandt-Wintner, cf. (Sakai, S. [22], Corollary 2.2.2)) Let A be 

a Banach algebra. Then there exist no two elements a, b E A such that ab - ba = 11. 

Proof: For x E A let c5a(x) = ax - xa = [a, x]. Then c5a(x) is continuous since for 

every c5 < 0 there exists E = 2ilallc5 < 0 such that if !Ix - xoll < c5 then llc5a(x) - c5a(xo)II ::::; 

2llallllx - xoll = 2jjajic5 = E. Hence c5a(x) is continuous at xo and linear; and thus bounded 

on A. 
Now if ab - ba = 11, then 

c5~(b) c5a(ab - ba) 

c5a (11) 

a - a 

0 

But then c5a(b) is a generalized nilpotent (as in theorem 41) which contradicts the fact 

that llc5a(brll¼ = ll(ab - ba)n11¼ = 1 for all n. 

As noted in the introduction, the physical significance of this result is that the rela­

tion pq - qp = -ihll only holds for at least one of p or q unbounded, which leads to the 

unbounded-operators-on-Hilbert-space formalism proposed by Heisenberg. 

In terms of derivations as operators on normed algebras, this result reveals that the iden­

tity element of A can not be expressed as the commutator of two elements in the algebra. 

Also, if we define c5a(b) = ab - ba, then no such derivation can map onto the identity op­

erator. We extend the trivial fact that if A is commutative, we have that ab - ba = 0 for 

all a, b E A and therefore all derivations defined as c5a(b) = ab - ba will equal the trivial 

operator. This result is formalized in Theorem 46 and following are some required results. 

Theorem 43 (Rosenblum, cf. (Sakai, S. [22], Theorem 2.2.5)) Let A be a C* -

algebra and c5 a bounded, everywhere defined derivation on A. Suppose c5(x) = 0 for some 

normal x (x*x =xx*) of A. Then c5(x*) = 0. 

Proof: Consider the representation x i---+ ei.>.x. Then 

c5(ei.>.x* ei>.xe-i>.x) 

c5(ei.>.x* ei>.x)e-i>.x + ei.>.x* ei>.xc5(e-i>.x) ,,\EC (4) 
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It is given that 8(x) = 0. Now suppose 8(xn) = 0. Then 8(xn+I) = 8(xn)x + xn8(x) = 0. 

Thus by induction in n we have 8(xn) = 0 for (n = l, 2, 3 · · •). We have 8(11) = 0 and 

since 8 is bounded, 

- 1 -2 1 -3 
8(11) + 8(-i>i.x) + 8(-(-i>i.x) ) + 8(-(-i>i.x) ) + · · · 

2! 3! 
0 

Therefore ( 4) reduces to 

But 

8(eiAx* ei>.x)e-i>.xe-iAx* 

8( ei(Ax* +>.x))e-i(>.x+Ax*) 

Normality of x is used to show that eiAx* eiix = ei(Ax·+Ix). Now put 

f (A) 8(ei(Ax*+>.x))e-i(>.xHx*) 

8(eiAx* )e-iAx* 

Then f (A) is differentiable on the whole plane <C and 

IIJ(>i.)11 118( eiAx* )e-iAx* II 

ll8(ei(Ax* + >.x))e-i(>.x + Ax*) II 

< 11811 llei(Ax* + >.x) 11 lle-i(>.x +Ax*) II 

11811 

so that f(A) is a constant by Liouville's theorem. But J(O) = 8(ei(O)x*)e-i(O)x* = 0 since 

8(11) = 0. Hence8(eiAx*) =OandsoO = /A(8(eiAx*))IA=O = 8(d1eiAx*)IA=O = 8(ix*). 

Theorem 44 (Fuglede, cf. (Sakai, S. [22], Corollary 2.2.6)) Let T be a bounded nor­

mal operator on a Hilbert space 1-l and Sa bounded operator on 1-l. If[S, T] =ST-TS= 0 

then [S, T*] = ST* - T* S = 0 for all x E 1-l. 

Proof: Consider the C* - algebra B(H) and define the derivation 8s on B(H) by 

8s(T) = ST - TS for T and S E B(H). We have that 8s(T) is bounded. Now by 

Theorem 43, since 8s is bounded on B(H), we have that given 8s(T) = 0 it follows that 

8s(T*) = ST* - T* S = 0. 
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Theorem 45 (Sakai, S. [22), Theorem 2.2.7) Let A be a C* algebra and b a deriva­

tion on A. If [b(x), x] = 0 for some normal x E A, then b(x) = 0. 

Proof: From Theorem 44 it follows that if [b(x), x] = 0 for normal x E A, then 

[b(x), x*] = 0. Then 

From this we get 

b(x* )x + x* b(x) 

b(x*)x - xb(x*) 

[b(x*), x] 

b(x*x) 

b(xx*) 

b(x)x* + xb(x*) 

b(x)x* - x*b(x) 

[b(x), x*] = 0 

so that again by Theorem 44 [b(x*), x] = 0 implies [b(x*), x*] = 0. Now x is in the 

center of the sub-algebra B of A generated by {ll, x, x*, b(x), b(x*) }. The idea is to show 

that ¢(b(x)) = 0 for every¢ E P(A), the pure states on A, so that b(x) = 0. 

Since B is a C* - algebra, we can write x = x1 + i x2 where x1 and x2 are both 

self-adjoint (Theorem 8). From Subsection 1.1.7 there exists a pure state¢ E P(B) and 

an irreducible representation (H, 7r¢) of B generated by the GNS construction, which 

implies that 1r¢(B)
1 

(the commutant of 7r¢(B)) consists of multiples of ll. Therefore, 

the center Z(1r¢(B)) = 7r¢(B) n 7r¢(B)' consists only of multiples of ll. (Note that 

7r¢(Z(B)) = Z(1r¢(B))). 

Since x = x1 + i x2 is in the center of B, then (because by normality x1, x2 E Z(B)) 
7r¢(xi) E Z(1r¢(B)) which implies 7r¢(x1) = .\ll for some.\. But then y = x1 - .\ll E 

N(1r¢), the kernel of 7r¢ which is a closed ideal in B. Now y = x1 - .\ll = Y+ - Y- and 

by letting~ = a 1 and~ = a2, we obtain x1 - .\ll = a? - a~ with a1, a2 E N(1r¢) 
(because v1f± E N(1r¢)). Then 

b(xi) = b(x1 - .\ll) = b(a1)a1 + a1b(ai) - b(a2)a2 - a2b(a2) 

and b(a1), b(a2 ) E B. From the Cauchy-Schwartz inequality we get 

l</>(b(xi))I < l¢(b(a1)a1)I + l¢(a1b(a1))I + l<t>(b(a2)a2)I + l</>(a2b(a2))I 

< ¢(b(ai)*b(a1))½¢(a1 2)½ + ¢(b(a2)*b(a2))½¢(a22)½ 

+ ¢(b(a1 )b(a1 )*) ½ ¢(a1 2) ½ + ¢(b(a2)b(a2)*) ½ ¢(a22) ½ 

0 
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so that 8(xi) E N(¢). Since this holds for arbitrary¢, we have 8(x1 ) 

8(x2) = 0 so that 8(x) = 0. 

0. Similarly 

Theorem 46 (Singer, cf. (Sakai, S. (22), Corollary 2.2.8)) Let A be a commuta­

tive C* -algebra and let 8 be a bounded everywhere defined derivation on A. Then 8 = 0. 

Proof: Since A is commutative, xx* = x* x and 

[8(x), x] = 8(x)x - x8(x) = 0 

for every x E A. Then by Theorem 45 we have that 8 ( x) = 0 for every x E A. 

Theorem 47 (Putnam, cf. (Sakai, S. [22), Corollary 2.2.9)) Let T be a bounded 

normal operator on a Hilbert space 1-l and let S be a bounded operator on 1-l. If[T, [T, S]] = 
0 then [T, S] = 0. 

Note that (by expansion) [T, [T, S]] = [[S, T], T]. 

Proof: Let B(H) be the C*- algebra of all bounded operators on 1-l. Then T, S E 

B(H). Put 8s(X) = [S, X] where X E B(H). Now 

and therefore 

8s(T) [S, T] 

ST-TS 

[8s(T), T] 8s(T)T - T8s(T) 

[S, T]T - T[S, T] 

= [[S, T], T] 

-[T, [S, T]] 

Now if [[S, T], T] = 0 then [8s(T), T] = 0 and by Theorem 45, since Tis a normal element 

of the C*- algebra B(H), we have that 8s(T) = [S, T] = 0. 

Corollary 2 (Putnam, cf. (Sakai, S. [22], Corollary 2.2.10)) Let A E B(H) and 

suppose [A, [A*, A]] = 0. Then [A*, A] = 0 -i.e. A is normal. 
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Proof: Put 6A (X) = [A, X] with X E A. Now consider 

6A([A, A*]) 

[A, [A, A*]] 

[A, (AA* - A* A)] 

[A, -(A* A - AA*)] 

[A, -[A*, A]] 

-[A[A*, A] - [A*, A]A] 

-[A, [A*, A]] 

0 

Then by Theorem 41, 6A(A*) is a generalized nilpotent. Thus 

r(AA* - A* A) = lim ll(AA* - A* A)nll¾ = 0 
n➔oo 

Now since (AA* - A* A)* = (AA*)* - (A* A)* = AA* - A* A, it follows that AA* - A* A 

is self adjoint and hence normal. Therefore 

IIAA* - A* All = r(AA* - A* A) 0 

which leads to AA* - A* A = 0. 

2.3 Differentiability 

After this brief look at derivations as commutators, we now investigate the differentiation 

properties inherent in derivations. The conclusion from this section is that if a process 

of differentiation behaves as intuitively expected and is everywhere defined and bounded, 

then it is trivial (J = 0). Therefore, any reasonable non-trivial process of differentiation 

must admit elements which are not differentiable. The Singer- Wermer theorem is the 

main result. 

The commutation relation [a, b(a)] = ab(a) - b(a)a = 0 for every a, holds if and 

only if b(p(a)) = p'(a)b(a) for every a and pa polynomial in a. This intuitive chain rule 

can therefore be translated into the requirement [a, 8(a)] = 0. 

First some commutative Banach algebra basics: 

• Every maximal ideal M of a commutative Banach algebra A is the kernel of some 

homomorphism of A onto the complex plane (multiplicative linear functionals). 
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• For x E A we have>. E a(x) if and only if h(x) = >. for some h E MA 

• From these two results and the spectral radius formula, limn-+oo llx11 II¼ = 0 implies 

that x is in the radical of A (the intersection of all maximal ideals of A). 

The notation radA refers to the radical of a Banach algebra A. A Banach algebra is 

said to be semi-simple if radA = {0}. 

The Singer-Wermer theorem states that bounded derivations on semi-simple commu­

tative algebras are trivial: 

Theorem 48 (Singer-Wermer, cf. (Sakai, S. [22], Corollary 2.2.3)) If A is a com­

mutative Banach algebra and 8 a bounded derivation on A, then 8(A) C radA. 

Proof: Sakai, S. [22], 20. 

The following two results derive a local version of the Singer-Wermer theorem for non­

commutative Banach algebras. The notation Q(A) denotes the set of all quasi-nilpotent 

elements of A: Q(A) = {x E Al lim11 llx11 II¼ = 0}. 

Theorem 49 (Mathieu, M. and Murphy, G.J. [13], Theorem 2.2) Let 8 be a bounded 

derivation on a Banach algebra A. If [a, 8(a)] = Ov' a E A then 8(A) C Q(A). 

Proof: Let B = B(A) be the Banach algebra of all bounded linear operators on 

A. If 8 E B is a derivation, then it can be extended uniquely to a bounded derivation 

on the unitization of A by setting 8(11) = 0. Now A may be considered as a closed 

subalgebra of B by means of the representation a t--+ La defined by La(b) = ab. Under 

this identification 8 becomes an inner derivation as L6(a) = -[La, 8]. 

Consider 

-[La, L6(a)] 

-L[a, 6(a)] 

0 

because [a, 8(a)] = 0 is given. By the spectral mapping theorem we have r(8(a)) 

r(L6(a))- It follows from Theorem 41 that r(L6(a)) = r(8(a)) = 0, or equivalently 

(ll8(a) 11 II) ¼ ➔ 0 as n ➔ oo. 
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This result will now be used to somewhat relax the restrictions in the statement of 

the Singer-Wermer theorem. 

Theorem 50 (Mathieu, M. and Murphy, G.J. [13), Theorem 3.6) Let A be a Ba­

nach algebra and 8 a derivation on A. Suppose 8(A) C Q(A). Then 8(A) is contained 

in the radical of A. 

Proof: The following facts are used to reduce the proof to the invertible elements of 

A: Obviously 8(11) = 0 and therefore for >. > llall we have 8(a + >.11) = 8(a) for every 

a E A. Thus 8(A) = 8(A n A- 1
) ((a + >.11) is invertible in A since>. ¢ o-(a)). 

For X a Banach space, consider the homomorphism 1r : A --+ B(X) defined by 1r(a)(x) = 
a(x) for every a E A, x E X, which is an irreducible representation of A in B(X). 

By composition of 1r and 8, we may define the map J ·- 1r o 8 : A --+ B(X) by 

1r(8(a))(x) = 8(a)(x). Now, for a, b E A 

b(ab) 1r(8)(ab) 

1r(8(ab)) 

1r ( 8 (a) b + a8 ( b)) 

1r(8(a))1r(b) + 1r(a)1r(8(b)) 

8(a)1r(b) + 1r(a)8(b) 

so that J is a 'derivation-like' operator from A to 1r(A). 
It is given that 8(A) C Q(A). Since 1r is a continuous homomorphism, it follows that 

il1r(8(a)n)II ¼ 

< ll1rll¼ ll8(a)n11¼ 

which shows that 8(A) = 1r(8(A)) ~ Q(1r(A)) for every irreducible 1r : A --+ B(X). 

Therefore, showing 8(A) = 1r(8(A)) = {O} for every irreducible representation 7r of A, 
is the same as showing 8(A) C rad(A). The intersection of the kernels of all irreducible 

representations 1r is contained in the radical of A. We may therefore assume that A is 

unital and that it acts irreducibly on a Banach space X. 

The proof is conducted in two steps: Step one shows that for any x E X, ax and 8(a)x 
are linearly dependent; and step two uses this fact to show that 1r(8(a)) = 0 for the 

invertible elements a in A, and for every irreducible 1r. 

Step one: We want to show that 1r(a)(x) and 1r(8(a))(x) are linearly dependent. Take 

a E A and x E X such that 1r(a)(x) = 0. Then 1r(8(a))(x) = 0, because if not, 
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then since 1r is irreducible, there exist b E A such that 1r(b(c5(a)))(x) = x. Hence 

1r(c5(ba))(x) = 1r(M(a))(x) + 1r(c5(b)a)(x) = x so that 1 is an eigenvalue of c5(ba), which 

contradicts r(c5(ba)) = 0. Thus if 1r(a)(x) = 0 then 1r(c5(a))(x) = 0. 

Consider for any x E X and a E A the vectors a(x) and b(a)(x). We claim that 

there exists >.(x) E C such that c5(a)(x) = >.(x)a(x). For if not, then by the Jacobson 

density theorem (Palmer, T.W. [15], 465), there exists b E A such that ba(x) = 0 and 

M(a)(x) = -a(x). Then (c5(b)a)(x) = (c5(ba) - M(a))(x). But from the previous para­

graph we have that c5(ba)(x) = 0. Thus (c5(b)a)(x) = a(x) so that 1 is an eigenvalue of 

c5(b), which contradicts nil-potency. 

Step two: Take a E A invertible, then for every x E X we showed that 1r(c5(a))(x) = 
>.(x)1r(a)(x) for some >.(x) E C. We need to show that,,\ is independent of x. 

Choose any linearly independent x, y E X - i.e if ax + f3y = 0 then a = /3 = 0 for 

a, f3 E C. Now 

so that 

>.(x + y)(x + y) 1r(a)-11r(c5(a))(x + y) 

1r(a)-11r(c5(a))(x) + 1r(a)-11r(c5(a))(y) 

>.(x )x + >.(y )y 

(>.(x + y) - >.(x))x = (>.(y) - >.(x + y))y 

From the linear independence of x and y it follows that >.(x) 

Therefore 

>.(x + y) = >.(y). 

(5) 

Now if,,\ # 0, then 

r ( 7r ( a )- 11r ( c5 (a))) lim 11 ( 7r ( a )-11r ( c5 (a))) n I I ¼ 
n 

> l>-1 > 0 

It is given that c5(A) C Q(A) (for all a E A, 116(a)nll¼ ➔ 0). It follows from the 

commutativity of 1r(a)-1 and 1r(c5(a)) (equation (5)) and the spectral radius theorem that 

r(1r(a)- 11r(c5(a))) < r(1r(a)- 1 )r(1r(b(a))) 

lim ll1r(a)-nll¼ lim ll1r(c5(a))nll¼ 
n-too n-too 

0 
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which contradicts ,,\(x) =J 0. Therefore 1r(b(a))(x) 

vertible. 

0 (for every x) whenever a is in-

Remark 10 Let A be a Banach algebra and suppose that for every a E A, [a, <5(a)] E 

rad(A) would imply <5(A) C Q(A) without requiring <5 to be bounded. Then, from the 

previous result, an unbounded version of the Singer- Wermer theorem would be proved. 

2.4 Boundedness 

This study of bounded derivations is limited (as will become evident later) and the focus 

of this work is on unbounded derivations. This section briefly states when derivations can 

be expected to be bounded. 

Theorem 51 (Sakai, S. [22], Theorem 2.3.1) Let A be a C* algebra and <5 a deriva­

tion on A. Then <5 is bounded. 

Proof: It can be assumed that A has an identity because if not, then an identity can 

be added to A to form the new algebra A. Define on A the derivation J with 6(1) = 0 and 

letJ*(x) =<5(x*)* wherex EA. Clearlyb* is also a derivation. Thenb= 0-+;/* +ii0*;i0
, 

which shows that every derivation is a unique combination of * -derivations. Henceforth 

we may assume <5 to be a *- derivation. 

Take x E Asa - i.e x = x*. Let ¢ be a state on A such that 1¢(x)I = llxll- We shall see 

that ¢(<5(x)) = 0 for x E Asa· (From 1¢(x)I = llxll, we may assume that ¢(x) = llxll, 

otherwise consider - x instead of x.) 

Put llxllll - x = h2 with (h 2:: 0, h E A). Then 

From 

¢(/i2) ¢(11xllll - x) 

llxll¢(ll) - ¢(x) 

llxll - llxll = 0 

b(llxllll - x) b(llxllll) - <5(x) 

= llxllb(ll) - <5(x) 

-<5(x) 
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we have 

I - ¢(8(x))I 1¢(8(11xll11- x))I 

= l¢(8(h2))I 

l<t>(M(h)) + ¢>(8(h)h)I 

< l<t>(M(h))I + 1¢>(8(h)h)I 

¢(h2)½¢(8(h)2)½ + ¢(8(h)2)½¢(h2)½ = 0 

by the Cauchy-Schwarz inequality. Hence ¢>(8(x)) = 0. 

(6) 

We want to show that 8 is a closed ( or closable) linear operator. Then since V( 8) 

( = A) is complete, it will follow from the closed graph theorem (Theorem 33) that 8 is 

bounded. 

Therefore suppose that Xn = x~ ➔ 0 and 8(xn) ➔ y. y is self adjoint since 8 is a *­

derivation. From the discussion following Theorem 29 we need to show that y = 0. 

Let <Pn E S(A) such that l</>n(y+xn)I = lly+xnll- Then by equation (6), l<l>n(8(y+xn))I = 

0. Let ¢0 be an accumulation point of (¢n) in the weak*- topology of S(A) (compact). 

Now 

l<Pni (y + Xni) - <Po(Y)I l<Pni (y + Xni) - <Pni (y) + <Pni (y) - <Po(Y)I 

for some subsequence (nJ) of (n). 

< l<Pni (y + Xni) - <Pni (y)I + l<Pni (y) - <Po(y))I 

l<Pni (xni )I+ l<Pni (y) - <Po(y))I 

< llxnJ + l<Pni (y) - <Po(Y)I ➔ 0 

Therefore l</>o(Y)I = IIYII and from equation (6) we have ¢o(8(y)) = 0. But 0 = 

<Pni (8(y + Xni )) = <Pni ((8(y) + 8(xni )) ➔ </>o(8(y) + y) = </>o(8(y)) + </>o(Y) which leads 

to IIYII = </>o(Y) = 0 so that y = 0. Therefore 8 is a closed linear operator and since 

V(8) = A, by the closed graph theorem (Theorem 33) we have that 8 is bounded. 

Theorem 52 (Johnson-Sinclair, cf. (Sakai, S. [22), Theorem 2.3.2)) Let A be a 

semi-simple Banach algebra and 8 a derivation on A. Then 8 is continuous. 

Proof: Sakai, S. [22], 23. 
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2.5 Derivation Theorem 

The derivation theorem is well documented in Sakai, S. [22], Section 2.5 and Bratteli, 0 

and Robinson, D.W. [3], Corollary 3.2.47. The version proved here was obtained from 

Bratteli, 0 and Robinson, D.W. [3], Corollary 3.2.47, slightly relaxed by not requiring 

the result to include 11h11 ~ IIJll/2, where h is the element in M given below. 

Theorem 53 (Bratteli, 0. and Robinson, D.W. [3], Corollary 3.2.47) Let6 be an 

everywhere defined, bounded, symmetric derivation of a Von Neumann algebra M. Then 

there exists a self-adjoint h = h* E M such that J(x) = i[h, x] for every x E V(J) = M. 

Proof: The proof of the derivation theorem depends on results in the next section and 

is therefore deferred to after Corollary 3 in Section 3. 
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3 Derivations as generators 

Derivations arise as generators for various operator groups. This section provides some 

basic semi-group theory required for the understanding of derivations as generators, and 

the well known Lumer-Phillips theorems for derivations are only arrived at after the 

introduction of well-behavedness. 

3.1 Semi groups 

Definition 17 A one parameter family f(t) of bounded linear operators from a Banach 

space A into A is a semi-group of bounded linear operators on A if: 

r(O) = I 

f(t + s) = r(t)r(s) for every t, s > 0 

The linear operator A defined by 

V(A) 
r(t)x - X 

{ x E Al lim ---- exists}, and 
t..j,.0 t 

A 1
. r(t)x - X 

X = Im----
t.J,O t 

d+r(t)x I for x E V(A) 
dt t=O 

is the infinitesimal generator of the semi-group r(t) and V(A) the domain of A. 

3.1.1 Uniform continuity 

A semi-group of bounded linear operators is uniformly continuous ( continuity at I) if 

lim llr(t) - Ill = 0 
t..j,.0 

Characterization of the generators and conditions that will ensure a linear operator to be 

a generator is important and in the case of uniform continuity, the answer is quite simple: 

Theorem 54 (Pazy, A. [16], Theorem 1.2) A linear operator A is the infinitesimal 

generator of a uniformly continuous semi-group if and only if A is a bounded linear oper­

ator. 

Proof: Pazy, A. [16], 2. 

Thus, everywhere defined derivations will always be a generator of a uniformly con­

tinuous semi-group. It is easy to verify uniqueness of the generator, and uniqueness of 
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the semi-group can be shown. By uniqueness of the semi-group we mean that if two 

semi-groups have the same infinitesimal generator, then they must agree. 

Theorem 55 (Pazy, A. [16], Theorem 1.4) If r(t) is a uniformly continuous semi­

grov,p of bounded linear operators, then there exists a unique bounded linear operator A 

snch that r ( t) = et A and A is the infinitesimal generator of r ( t). 

Proof: From Theorem 54 we know that the generator A of f(t) is bounded, and from 

the ( norm converging) series expansion 

it follows that A is also the generator of etA so that by the uniqueness of the semi-group 

we have r(t) = etA. 

From Theorem 51 (Bounded derivations) and Theorem 54, we have the following corol­

lary for derivations: 

Corollary 3 (Uniform continuous generators) Let A be a C*- algebra. Then a lin­

ear operator 8 defined on A is an everywhere defined symmetric derivation of A if and 

only if 8 is the generator of a norm-continuous one-parameter group of*- automorphisms 

of A. 

Proof: The proof of this result is a simplification of the proof of Theorem 68 and will 

therefore not be expounded in any detail. 

The derivation theorem (Theorem 53) from the previous section can now be proved: 

Proof of Theorem 53 : Since 8 is a bounded * - derivation, it follows from Corollary 3 

that 8 is the infinitesimal generator of a uniformly continuous group of* - automorphisms 

on M. Let O'.t, t (2' 0) E IE. be the group of* - automorphisms on M. Then, by Theorem 

55 

~ tk Ok 
L k! 
k=O 

From (Pederson, G.K. [17], 324), the uniform continuity of O'.t assures the existence of a 

uniformly continuous unitary group { ut} ~ M such that 
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for every x E M. Let A be the infinitesimal generator of the unitary group Ut. Then 

from Stone's theorem (Pazy, A. [16], 41), it follows that h = h* where A = ih (since A 

is skew adjoint) so that we can write 

Ut \/t 

Uniform continuity of Ut implies (from Theorem 54) that h is bounded and 

1 
-(Ut - 11) 
t 

~(eith _ 11) 
t 

➔ ih 

in the strong operator topology on M. Since Ut 

closed, it follows that h E M. We now have 

11 E M \/t and M is strong-operator 

and with differentiation at t = 0: 

UtXU; 

eithxe-ith 

d I t8 
dt t=Oe (x) bet8(x)lt=O 

= b(x) 

and 

so that b(x) = i[h, x]. 

(iheithxe-ith - iheithxe-ith) lt=O 
ihx - ixh 

i[h, x] 

Since we are more interested in unbounded (closed and densely defined) derivations, 

uniform continuity is too general and we therefore need to look at strongly continuous 

semi-groups. 

3.1.2 Strong continuity 

A semi-group of bounded linear operators on a Banach space A is strongly continuous 

(Co) if 

lim r(t)x 
t.J,.O 

X \/x E A 
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Theorem 56 (Pazy, A. (16], Theorem 2.2) Let r(t), 0 s t < oo, be a C0 semi­

group of bounded linear operators on a Banach space A. There exists constants w > O 

and M ~ l such that 

11r(t)II s M ewt forO st< oo (7) 

Proof: Assume that there exists a 1J > 0 such that llf(t)II is bounded for O s t s 11· 

If not, there is a sequence tn with tn ~ 0, limn➔oo tn = 0 and 11r(tn)II ~ n. From 

uniform boundedness it follows that for some x E A, llr(tn)xll is unbounded, which 

contradicts the definition of Co- continuity. Therefore, IJf(t)II s M for O s t s TJ. Since 

IJf(0)JI = 1, M ~ l. Let w = * ln(M) ~ 0. Given t ~ 0 we have t = n11 + 8 where 

0 s 8 < 1J and therefore by the semi-group property, 

Characterization of the generator of a C0- semi-group is not so obvious and the Hille­

Yosida or Lumer-Philips theories needs to be developed to present a full account of the 

generator character. The following 'one-way' result is however useful and sufficient for 

the construction of the counter example in Section 4. 

Theorem 57 (Pazy, A. [16], Corollary 2.5) If A is the infinitesimal generator of a 

C0 - semi-group r(t) then the domain V(A) is dense in A and A is a closed linear operator. 

Proof: Pazy, A. [16), 5. 

The 'closed, densely defined' character allows for unbounded derivations to be in­

finitesimal generators of C0- semi-groups. 

The proof of Theorem 57 requires the following standard semi-group result. A is a 

Banach space. 

Theorem 58 (Pazy, A. [16], Theorem 2.4) Let r(t) be a Co- semi-group on A and 

A its infinitesimal generator. Then: 

(i) For x E A, 

11t+h 
lim -h r(s)xds = r(t)x 
h➔O t 

with the convergence in norm V x. 
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{ii) For x E A, f Ji r(s)xds E V(A) and 

A( l r(s)xds) 

{iii) For x E V(A), r(t)x E V(A) and 

f(t)x - X 

d 
dt r(t)x = Ar(t)x = r(t)Ax 

(iv) For x E V(A), 

f(t)x - r(s)x 

Proof of Theorem 5 7: 

• (Denseness) Set for every x E A, Xt 

as t -!,. 0, V(A) is dense in A. 
½ Ji f(s)xds. Since Xt E V(A) and Xt -+ x 

• (Closedness) Let Xn E V(A), Xn -+ x and Axn -+ y as n -+ oo. From (iv) in 

Theorem 58 

Let n -+ oo : f(t)x - x 

1' r(-y)Axnd-y. 

[ r('Y)yd-y 

Since Axn -+ y in norm and f(,) is continuous for every ry 2: 0, we may write 

limn Ji f(,)Axnd"f = Ji r(ry) limn Axnd"f to obtain the above. Then 

f(t)x - X 

t 
Lett-!,. 0: Ax 

~ ( r(ry)ydry. 
t lo 
y. 

Sox E V(A) from (i) in Theorem 58 and the definition of the semi-group generator. 

As mentioned previously, more semi-group theory is required for proper generator char­

acterization. More applicable to derivations would be the development of the well­

behavedness of derivations. 

3.2 Well-behavedness 

Before we can continue with the study of derivations as generators, the notion of well­

behavedness needs to be introduced. Well-behavedness properties are also relevant in 

minima-maxima problems. 
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3.2.1 Definitions 

Definition 18 (Well-behaved element) Let 8 be a *- derivation in a C* - algebra A. 

Then x = x* E V(8) is well-behaved with respect to 8 if there is a state cf>x on A such 

that lc/>x(x)I = llxll and cf>x(8(x)) = 0. 

The existence of cf>x E S(A) with lc/>x (x) I = llxll is guaranteed by x = x* ( or 

llxll = r(x)) and the fact that the compactness of a(x) implies the existence of a,,\ E a(x) 

such that llxll = IA! and the fact that for every ,,\ E a(x) there is a¢ E S(A) such that 

¢(x) = ,,\. Well-behavedness therefore intuitively refers to the behavior of the derivation 

at a minimum / maximum. 

Definition 19 (Well-behaved derivation) A *- derivation 8 on a C* - algebra A is 

well-behaved if every x = x* E V(8) is well-behaved with respect to 8. (8 is then also 

called conservative and both -8 and +8 are dissipative). 

Let C0 (IR) be the continuous functions on IR (complex valued) which are vanishing at 

± infinity, and let CJ (IR) be the subset of elements in C0 (IR) that are once continuously 

differentiable. If A = C0 (IR) and 8 = ft with V(8) = CJ(IR), then 8 is well-behaved. 

Definition 20 (Quasi well-behaved derivation) A*- derivation is quasi well-behaved 

if the self-adjoint portion in V(8) has a dense open subset of well-behaved elements. 

If A = C([0, 1]) and 8 = ft with V(8) = C1 ([0, 1]), then 8 is quasi well-behaved. 

This follows from the observation that, for f E C1 (0, 1] to be well-behaved, it must attain 

its maximum or minimum on the interval (0, 1). Such functions are dense in C1 [0, 1]. 

3.2.2 General results 

The first result stated connects closability of a derivation to the well-behavedness prop­

erty. The proof of Theorem 51 can be simplified using this result: 

Theorem 59 (Sakai, S. (22], Theorem 3.2.9) If a *-derivation 8 in a C*-algebra A 

is quasi-well-behaved, then 8 is closable and its closure 8 is again quasi-well-behaved. 

Proof: Sakai, S. [22], 60. 

Theorem 60 (Sakai, S. (22], Corollary 3.2.10) If 8 zs well-behaved, then 8 is also 

well-behaved. 
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Proof: Sakai, S. [22], 61. 

Theorem 61 (Sakai, S. [22], Proposition 3.2.12) Let 8 be a *-derivation in a C*­

algebra A with identity. Then 8 is well-behaved if and only if for every x E V(8)+ 

{positive) there is a state <Px E S(A) such that <Px (x) = llxll and <Px ( 8(x)) = 0. 

Proof: ( ⇒) Positive elements x E V( 8) + are self-adjoint and the result follows from 

the definition of well-behavedness. 

( ¢::) Let y be a self adjoint element of V(8) and y = Y+ - Y- be the orthogonal decom­

position of y. Then Y+ and Y- are positive (and self-adjoint), Y+Y- = Y-Y+ = 0 and 

IIYII = max(IIY+II, IIY-11). From the self-adjointness of y it follows that a(IIYllll ± y) E JR+ 

so that the elements IIYII 1l ± y are positive. By assumption, there exist states <PiiYlill±y 

with <Piiyllll±y(IIYllll ± y) = IIIIYllll ± YII and <Pi1Yllll±y(8(11Yll1l ± y)) = </>11yllll±y(8(y)) = 0. 

If IIYII = IIY+ II then consider 

</>11yi111+y(IIYll1l + y) = IIIIYllll + Y+ - Y-11 

By the continuous functional calculus we can assume that Y+ and Y- are real valued 

functions, so that the right hand side can be reduced to 

But, 

and 

sup l(IIY+II + Y+ - Y-)(t)I 
tEsupp(Y+) 

</>11yi111+y(IIYll ll + Y) 

¢11y1ill+y(IIYll1l) = IIYII 

2IIY+II 

2IIYII 

so that we get </>11yllll+y(y) 

</>11y1111-y(Y) = IIYII-

IIYII- A similar argument shows that if IIYII = IIY-11 then 

The following three theorems establish the connection between well-behavedness and 

the requirements of a linear operator to be a generator of a strongly continuous group of 

automorphisms, to be used in the Lumer-Phillips results (see Theorem 68). 

Theorem 62 (Sakai, S. [22], Proposition 3.2.17) Let 8 be a *-derivation in A. An 

element x E V(8)+ is well-behaved if and only if ll(ll + ,M)(x)II ~ llxll for all,\ E IR. 
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Proof: ( ⇒) Suppose x ( = x*) is well-behaved. Then (from Theorem 61) 

11(11 + Ab)(x)II 2 l</>x((ll + Ab)(x))I = l</>x(x)I = llxll 

({=) Given x > 0 and 11(11 + Ab)(x)II 2 llxll for A E IR, define Bas the subspace of A 
spanned by J(x). Then, since Re((ll + Ab)(x) + iµJ(x)) = (11 + Ab)(x), 

11(11 +(A+ iµ)J)(x)II 11(11 + Ab)(x) + iµJ(x)II 

> 11(11 + Ab)(x)II 

> llxll 

for all A, µ E IR so that d(x, B) 2 llxll > 0. From Corollary 1 we can choose a linear func­

tional¢ on A with 11¢11 = 1, ¢(x) = d(x, B) and ¢(8) = 0. But ¢(x) = d(x, B) ::; llxll 

so that ¢(x) = llxll- Since x 2 0 and ¢(x) = 11</>llllxll, it follows from Theorem 12 that¢ 

is bounded and positive. By the Hahn-Banach theorem (Theorem 11), ¢ can be extended 

to a bounded, positive linear functional on A. ¢ is a state since 11¢11 = 1. 

Theorem 63 (Sakai, S. [22], Proposition 3.2.18) If a* -derivation b in A with iden­

tity is well-behaved, then there is a¢ E S(A) such that </>(b(x)) = 0 for all x E V(J). 

Proof: Since J is well-behaved, we have that for every self-adjoint x(= x*) E V(J), 

there exists <Px E S(A) such that l<l>x(x)I = llxll and <Px(b(x)) = 0. Assume that for 

x = x* E V(J), 1111- J(x)II < 1. Then 

l<l>x (11) I l</>x(ll) - <Px(b(x))I 

l</>x(ll - J(x))I 

< 1111 - J(x)II 

< 1 

so that ¢x(ll) < 1 which contradicts the fact that <Px E S(A). Therefore d(ll, J(A)) = 
inf{llll - J(x)lllx = x* E V(J)} 2 1. From the proof of Theorem 62, we can choose a 

bounded linear functional ¢ on A with 11¢11 = 1, ¢(11) = 1 and ¢(J(a)) = 0 for every 

a E V(J). 

Theorem 64 (Sakai, S. [22], Proposition 3.2.19) Let b be a *-derivation in A and 

suppose that b is well-behaved; then 11(11 + Ab)(x)II 2 llxll for all x E V(J) and A E IR. 

Proof: Take the state <Px*x as in the definition of well-behavedness. Then 

<Px•x((ll + Ab)(x*)(ll + Ab)(x)) <Px•x((x* + Ab(x*))(x + Ab(x))) 

<Px•x(x*x + Ab(x*)x + Ax*J(x) + A2b(x*)J(x)) 
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But b(x*)x + x*8(x) = b(x*x), thus 

<Px·x((ll + ,M)(x*)(ll + ,\8)(x)) = <Px·x(x*x + ,\b(x*x) + ,\2 J(x*)J(x)) 

and since <Px·x(b(x*)J(x)) = <Px•x(l8(x)l2) ~ 0 we have 

<Px•x((ll + ,\J)(x*)(ll + ,\J)(x)) > <Px•x(x*x + ,\8(x*x)) 

<Px•x(x*x) + ,\<f>x•x(b(x*x)) 

But <Px•x(b(x*x)) = 0 since x*x E V(8) an<l 8 is well-behaved, so that 

<Px•x((ll + ,\J)(x*)(ll + ,\b)(x)) > <Px•x(x*x) 

llx*xll = llxll 2 

Therefore II (11 + ,\J)(x) 11 2 > llxll 2
. 

3.3 Well-behavedness and generators 

We now return to the classification of derivations as generators for strongly continuous 

one-parameter semi-groups. The well-behavedness property and results from the previous 

subsection is utilized in the Lumer-Phillips theorems. 

First some definitions: 

Let f(t) be a C0 semi-group. From Theorem 56 we know that there exists constants 

w ~ 0 and M ~ l such that llf(t)II ~ Mewt_ When M = l and w = 0, then f(t) is 

called a C0 semi-group of contractions. 

If A is a Banach space with dual A*, we denote the value of x* E A* at x E A by the 

inner-product (x*, x) or (x, x*). For every x E A the duality set F(x) ~ A* is defined 

as 

F(x) = {x*lx* E A*; (x*, x) = llxll 2 

From Hahn-Banach, F(x) # 0 for every x E A. 

Definition 21 (Dissipativeness) A linear operator A is dissipative if for every x E 

V(A) there exists ax* E F(x) such that Re(Ax, x*) ~ 0. 
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The following standard semi-group theory result is a useful characterization of dissi­

pative operators: 

Theorem 65 (Pazy, A. [16], Theorem 4.2) A linear operator A is dissipative if and 

only if 

II (,\11 - A)xll 2:: ,\llxll 

Proof: Pazy, A. (16), 14. 

for all x E V(A), ,\ > 0 

The following three versions of the Lumer-Phillips theorem were compiled from Pazy, 

A. (16), Theorem 4.3, and Bratteli, 0. and Robinson, D.W. (3), Theorem 3.2.50. The 

result for Banach space contractions is as follows: 

Theorem 66 (Lumer-Phillips for contractions) Let A be a linear operator with a 

dense domain V(A) in a Banach space A. 

(i) If A is dissipative and there is a ,\0 such that R(,\o 11 - A) 

infinitesimal generator of a Co semi-group of contractions. 

A, then A is the 

{ii) If A is the infinitesimal generator of a C0 semi-group of contractions on A, then 

R(,\11 - A) = A for all ,\ > 0 and A is dissipative. 

Proof: Pazy, A. [16), 14. 

The result for Banach space isometries is as follows: 

Theorem 67 (Lumer-Phillips for isometries) If 8 is an operator on a Banach space 

A, then 8 is the infinitesimal generator of a strongly continuous group of isometries rt if 

and only if 8 is closed, V( 8) is dense, and 

11(11 - a8)xll > llxll 
R(ll - a8) A 

for all a E IR and x E V(J). 

Proof: Pazy, A. [16), 14. 

The result for closed operators on C*- algebras and automorphisms is as follows: 
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Theorem 68 (Lumer-Phillips for --k- automorphisms) Let 8 be a norm-closed oper­

ator on a C* algebra A with dense domain V( 8). 8 is the generator of a strongly continuous 

one-parameter group of*- automorphisms of A if and only if: 

{i) V( 8) is a *- algebra and 8 is a symmetric derivation 

(ii) (ll + .M)(V(8)) = A 

(iii) II (ll + M)AII 2:: IIAII 

for every.,\ E JR\ {O} 

for every .,\ E JR and A E V( 8) 

Proof outline: ( ⇒) Assume first that 8 is the generator of a strongly continuous 

one-parameter group t ➔ rt of*- automorphisms of A. Property (i) (the derivation 

property) is arrived at by differentiation of the *- automorphism properties at t = 0. Let 

A, B E V(8). 

Since 

and since 

ft(AB) 

d 
dt r t(AB) lt=o 

⇒ 8(AB) 

⇒ 8(AB) 

r t(A*) 

! r t(A*) lt=o 

! f t(A)* lt=O 

ft(A)ft(B) then (8) 
d 
dt [ft(A)ft(B)] lt=O 

d d 
d/t(A)lt=ofo(B) + fo(A) dt ft(B)lt=O 

8(A)B + A8(B) 

ft(A)* then (9) 

8f0 (A*) = 8(A*) 

8f0 (A)* = 8(A)* = 8(A*) 

Properties (ii) and (iii) of the theorem follows from the Lumer-Phillips theorem by noting 

that rt and r -t are inverses of each other and hence isometric by Theorem 67 since both 

are contractive. 

( {:::) Next assume conditions (i), (ii) and (iii) hold. Again from the Lumer-Phillips the­

orem it follows that conditions (ii) and (iii) suffices for 8 to be a generator of a strongly 

continuous one-parameter group rt of isometries. It remains to be shown that condi­

tion (i) implies the *- automorphism properties 8 and 9. This is done by proving the 

result on the dense set of analytic elements for 8, from first principles. An element 

A E 1)00 (8) = n~=l V(8n) is analytic with respect to 8 if there is a positive number t 
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( depending on A) such that L~=O ~~ ll8n(A) II < oo. 

The second property (9) requires the use of Leibniz's formula: 

= f :~ [t (;)J(n-k)(A)J(k)(B)] 
n=O k=O 

tO tl tl t2 2 t2 t2 2 

= O!O!AB + 0!1!8(A)B + l!O!A8(B) + 0!2!8 (A)B + l!l!8(A)8(B) + 2!0!A8 (B) + ... 
~ 

n=O n=l n=2 

k=O 
tl t2 t3 2 

+ [-
1
-

1
A8(B) + -

1
-

1
8(A)8(B) + -

1
-

1
8 (A)8(B) + ... ] 

1.0. 1.1. 1.2. 

k=l 

[ 
t2 2 t3 2 t4 2 2 ] + -
1
-

1 
A8 (B) + -,-, 8(A)8 (B) + -,-, 8 (A)8 (B) + ... + ... 

2.0. 2.1. 2.2. 

k=2 

= [ ~ tn 8(n) (A)] to B + [ ~ t'n 8(n) (A)] ~8(B) + [ ~ tn 8(n) (A)] t2 8(2) (B) + ... 
L n! 0! L n! 1! L n! 2! 
n=O n=O n=O 

The un-conditional convergence ( to allow inter changing the arrangement of n and k 

terms above) follows from the absolute convergence of the series 
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lim IISmll 
1n-+oo 

1n n n 1 
lim II~!__ [ ~ n. 8(n-k>(A)8(k>(B)] II 

m-+oo L n! L n!(n - k)! 
n=O 1,_~=0 

< lim ~ [ ~ tn IIJ(n-k\A)IIIIJ(k\B)II] 
m-+oo L L n!(n - k)! 

n=O k=O 

< 00 

The last step follows from the assumption that A and B are analytic. Note that con­

dition (iii) is equivalent to well-behavedness (from Theorem 64). 

The following theorem characterizes the domain of a generator and is required in the 

construction of the domain property counter example of Section 4: 

Theorem 69 (Bratteli, 0. and Robinson, D.W. [3], Proposition 3.2.55) Let H be 

a self-adjoint operator on a Hilbert space 1-l and let 

A E B(1-l) 

be the corresponding one-parameter group of automorphisms of B(1-l). If 8 is the in­

finitesimal generator of O'.t, then A E D(8) if and only if A(D(H)) ~ D(H) and 

¢ ➔ 8(A)¢ = i[H, A]¢ {¢ E D(H)) is bounded; i.e IIH A - AHII < oo. 

Proof: Assume A E D(8) and <p, ¢ E D(H). From Definition 17 we have 

(cp, 8(A)¢) ]~ f { (<p, eitH Ae-itH ¢) _ (<p, A¢)} 

]~ f { (e-itH <p, Ae-itH ¢) _ (<p, Ae-itH ¢) + (<p, Ae-itH ¢) _ (<p, A¢)} 

!~ f { ((e-itH _ I)<p, Ae-itH ¢) + (<p, A(e-itH _ I)¢)} 

(-iH <p, A¢) + (cp, A(-iH)cp) 

which implies that the sesqui-linear form la( <p, ¢) I = I (cp, 8(A)¢) I is bounded, since 

la(<p, ¢)1 l(cp,8(A)¢)1 = li(H<p, A¢) - i(<p, AH¢)1 

< 118(A) 11 ll'PII 11¢11 

Therefore, 

a(<p, ¢) (<p, 8(A)¢) 

-(iH <p, A¢) - i(cp, AH¢) (10) 
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This can be re-written as (H <.p, A¢) = (c.p, AH¢) - i(cp, 8(A)¢) for cp, q> E V(H). Then 

l(H(cpi - <.p2), A¢)1 < l(c.pi - <.p2, AH¢)1 + li(<.pi - <.p2, 8(A)¢)1 

< lie.pi - c.p2 II IIAH ¢II + lie.pi - 'P2 II ll8(A)¢II 

= ll'Pi - c.p2 II (IIAH 4>11 + ll8(A)¢11) 

so that the mapping <.p ➔ (H cp, A¢) is continuous for fixed ¢ E V(H). Further, we then 

have that A¢ E V(H*) = V(H), that <.p ➔ (c.p, H* A¢) is continuous, and (H <.p, A¢) = 

(c.p, HA¢). Equation (10) can now be written as (c.p, 8(A)¢) = i(cp, [H, A]¢). Therefore 

¢ ➔ 8(A)¢ = i[H, A]¢ is bounded. 

Conversely, if A(V(H)) ~ V(H) and IIH A - AHII < oo, then (to prove A E V(8)) 

we need to show that 

1
. a 8 (A) - A 
im 

s-!,.0 S 

exists. 

If B is the bounded extension of HA - AH to all of 1-l, then with a similar argument as 

before one gets 

d 
dt (cp, at(A)</>) = (c.p, at(B)</>) 

for all cp, 4> E V(H). So on integrating (a0 (A) = ll(A)) 

(,p, [a,(A) - A]q\) = (,p, 1' a,(B)q\dt) 

By the density of V(H) we get 

a,(A) - A = 1' a,(B)dt 

Then 

1
. a 8 (A) - A 
im 

s-!,.0 S 
I 18 

= lim - at(B)dt 
s-!,.O S o 

= B 

by Theorem 58(i) so that A E V(8) with 8(A) = B. 
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4 Domain properties 

This section investigates the domain properties, and specifically the so-called 'chain-rule', 

on the domain V(8) of a closed *-derivation 8 defined in a general C* - algebra A. Consider 

first the case where A is an Abelian algebra and let A = A* E V(8). (Unless otherwise 

stated, in this section A, B will denote elements of a C*- algebra and x, y elements in JR). 

By commutativity we have 

and thus for any polynomial P(A) with A E V(8) we have 

8(P(A)) 8(ao) + a18(A) + a28(A2) + a38(A3) + ... + an8(An) 

a18(A) + a22A8(A) + a33A28(a) + a44A38(A) + ... + annAn-18(A) 

8(A)[a1 + a22A + a33A2 + a44A3 + ... + annAn-l] 
j=n 

8(A) 2)i)ajAj-I (11) 
j=l 

so that P(A) E V(8) and 8(P(A)) = 8(A)P'(A). From A = A* we know that A[A] (the 

smallest C*- algebra containing A) is commutative and MA[A], the maximal ideal space 

of A[A], can be identified with a(A) C [-IIAII, IIAII]- The continuous functional calculus 

mapping each f E C(a(A)) to an element in A[A], is defined by J(A) = r- 1 (!) (r the 

Gelfand transform). For example, the function f (t) = t2 is in C(a(A)) and therefore 

there exists a (unique) B E A[A] with B = J(A) and B = A2. 

Because A = A*, we know that a(A) C IR is closed, bounded and hence compact and 

(given f E C1 (a(A))) from the Stone-Weierstrass theorem we can select polynomials Pn 
with Pn ➔ f and P~ ➔ f' on the spectrum of A. Replacing Pn into P earlier, it follows 

from the closedness of 8 that f (A) E V(8) and 

8(f(A)) = 8(A)j'(A) 

This result relies heavily on two assumptions: the commutativity of V(8) C A and 

the function f E C1 . Firstly, if we drop the commutativity assumption, then equation 

( 11) above fails to hold and the argument is no longer valid. Section 4.6 provides an 

example of an f E C1 on a non-commutative algebra with f (A) ¢ V(8). 

Less obvious, however, is the effect of the choice of functions f for which the result is 

still valid. If we restrict the functions to f E C2 (a(A)) and maintain the commutativity of 
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A then of course the property still holds, but relaxing commutativity immediately raises 

the following questions: 

1. Is the domain property valid for non-commutative A and f E C2 ? 

2. If 1 holds, by how much can the restrictions on f be relaxed without ruining the 

result for non-commutative A? 

4.1 Background 

Consider the complex function f>.. (z) = >. ~ z where ,,\, z E (C - the complex plane. By 

Taylor series expansion there exists a unique power series expansion of f>.. around a E (C 

of the form 
00 

where 

ik) (a) 
ak = _>. __ 

kl 

If we consider a = 0, then a0 = 0 and ak = ~ for k > l so that 

00 

f.x(z) L(~l (12) 
k=O 

The limit l" l~I Imk --+oo ak ½ and the series converges on lzl < ,,\ and diverges on 

lzl > ,,\. 

Let A = A* E A (a C*-algebra) so that cr(A) C [-IIAII, IIAII] (C ~) and consider the 

element A(,,\11 - A)- 1 . By the continuous functional calculus for A = A*, this element 

corresponds to the element f : z ➔ >. ~ z in C ( o-( A)). Therefore, from equation ( 12) we 

can write 

f>..(A) = f ,,\\ Ak (13) 
k=O 

where ,,\ E C, A E A. This series converges for all 1,,\1 > IIAII (outside the spectrum of 

A). (Equation (13) is a so called Neumann series and its convergence can also be estab­

lished as a convergent geometric series for all 1,,\1 > IIAII) 

We now restrict the focus to the subalgebra V(J) - domain of a closed *-derivation 

in a C*- algebra A - and we wish to investigate the behavior of functions on V(J). Both 

the inverse and the exponential function are fundamental to functional analysis and the 

following two sections deal with them. 
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4.2 The inverse function on V( 8) 

Theorem 70 (Bratteli, 0. and Robinson, D.W. [3], Proposition 3.2.29) Let 6 be 

a norm closed derivation on a C*-algebra A with identity 11. If A = A* E V(6) and 
>. ¢ a(A), then A(>.11 - A)- 1 E V(6) and 

6(A(>.11 - A)- 1
) = >.(>.11 - A)- 16(A)(>.11 - A)- 1 

Proof: This theorem is proved in three steps. 

Step 1 proves the result for all l>-1 > IIAII -i.e j>.j larger than the spectral radius of 

A= A*. 
Step 2 proves the result for>. in a small neighborhood of each >.0 with j>.0 j > IIAII. 

Step 3 consists of an analytic continuation argument proving the result for general >. ¢ 
a(A). 

First consider the function f>-.(A) = A(>.11 - A)- 1 = A,\ (as before). By the contin­

uous functional calculus on a(A) for A = A* we know that A(>.11 - A)- 1 corresponds to 

the element in C[a(A)] defined by f : x ➔ ,\~x for>. ¢ a(A). We then have 

IIA,\11 = IIA(>.11 - A)- 1 11 = llflloo = sup l-'Y-1 
-yEo-(A) ). - 'Y 

This representation always reduces the complexity of problems in that we only need to 

investigate functions on C (the complex plane). 

Step 1: Set A,\ = A(>.11 - A)- 1 (= f,\(A)) and let l>-1 > IIAII. As shown before, the 

Neumann series (geometric series) 

Sm = f (1)n 
n=l 

converges to A,\ = A(>.11 - A)- 1 and 

IIA,\11 = II f>1tll A A 2 A 3 (A)n II 11 I + (I) + (I) + ··· + I + ... 
n=l 

< IIAII + ( IIAII )2 + ( IIAII )2 + 
l>-1 l>-1 l>-1 ... 

l>-1(1>-I - IIAll)- 1 

because j>.j > IIA,\11- Furthermore, An+I E V(6)\/n so that Sm E V(6). Finally we 

need to look at 6(Sm)- From 6(An+ 1 ) = E;= 0 AP6(A)An-p and the Neumann series 

Sm = E:2:o(1) 11 + 1 we construct the double series (sum) 

( 6 (Sm)) : = ½ f t ( 1 )P 6 (A)( 1 t - P 
n2:0p=0 
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Now 

and with the ratio test 

< 

lim Sm+l 
m-+oo Sm 

__!_ ~ ~ 11:i11pll8(A)llll:i11n-p 
IAI~~ A A 

l~I ll&(A)II ff_ 11111n 
n2'.0 p=O 

1 m A 
~ I:(n + l)IIIlln 

n2'.0 

. (m + 2)11.:1.llm+l 
hm >. 

m-+oo (m + l)ll{llm 
A 

IIIII < 1 

this double series also converges. An expansion of 8(A>.) yields 

p=O p=l p=O p=l p=2 
p= 0 ,__.,.._____ ,__.,.._____ ------. ,-----._ ------. 

1 [ ---.. A A A A A A l 
8(A>.) ~ ~ + [ 8(A)( I)+ ( I )8(A)] + [ 8(A)( I )2 + I8(A)I + ( I )28(A)] + ... 

n=O n=l n=2 

and by grouping terms with equal p- indexes together, we get 

so that for each fixed value of p (say p = 2), n can assume p, p + I, p + 2 .. (2,3,4, ... ). The 

following matrix indexation helps to visualize the fact that no terms are gained or lost in 

the re-arrangement. For any pair (p, n), there is only one term: 

p 

0 1 2 3 

1 2 3 4 

n 2 3 4 5 

3 4 5 6 

The absolute convergence of 8(Sm) implies its un-conditional convergence, which assures 

the same limit irrespective of the arrangement. It follows from the closedness of 5 that 
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AA E V( 8) and 

Step 2: Assume now that O -=/- Ao > IIAII so that Ao is outside the disk in <C with 

radius equal to the spectral radius of A. From step 1 we know that AA
0 

E V( 8) and 

We will now prove the result of step 1 for all A with I Ao; A I < IIAA0 11-1 , i.e we prove the 

result for all A inside a (small) neighborhood of IAol > IIAII- Since IAo ~Al > IIAA0 II, we 

may substitute Ao~ A for A into the Neumann series discussed in step 1 to get the series 

S _ ~ ( AAo )n + 1 
m - ~ A(A - A)- 1 

n~O O 

so that we have 
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Again by the closedness of 8 it follows that A.x E 'D( 8) and 

8(A_x.) = (~) L [(Ao; A)A_x.oY8(A,x.o) L [(Ao; A)A,x.or 
p~O n~O 

Ao[~ll - (Ao - A)A_x.0 ]-1 8(A )[~ll - (Ao - A)A_x.0 ]-1 
A A A -X.o A A 

Ao [(( Ao 1]-1 A Aoll - A) - ( A - l)A)(Aoll - A)- 8(A,x.0 ) 

[ ( ( Ao 1l - A) - ( ~ - 1) A)( Ao 1l - A )-1 r 1 

~ ~ [(Aoll - A)(All - A)-1
] 8(A_x.0 ) ~ [(Aoll - A)(All - A)-1

] 

From step 1, 8(A,x.0 ) = Ao(Aoll - A)-18(A)(A0 1l - A)-1 so that 

8(A_x.) = A(All - A)-1 8(A)(A1l - A)-1 

Step 3: Recall IAol > IIAII and the region I _x./- ,x. I > IIA,x.0 II from step 2. By the 

continuous functional calculus for A = A*, A(Aoll - A) corresponds to an element 

I : A --+ A(Ao - A)- 1 for all A E C(a(A)). This allows us to investigate the region in C 

for which 

< IIA_x.o 11-l 

11111~1 

( sup I ' n-1 
,Eo-(A) Ao - 'Y 

To continue the prooffor general A ¢ a(A,x.), we need to be able to select a sequence An ¢ 
a(A) with An --+ A such that A,x.n E 'D('5) and '5(A_x.n) = An(Anll - A)-1'5(A)(An1I -

A)- 1 , so that the result for general A ¢ a(A,x.) then follows from an analytic continuation 

argument. 

Therefore, we have to understand the region introduced in step 2 a little better. To 

simplify matters we set 11111~1 = a. Let Ao = (xo, Yo) and A = (x, y) with x, y, xo, Yo 

all real numbers. Then 

I (xo, Yo) - (x, y) I 
(x, y) 

l(xo - x), (Yo - Y)I 

x5 - 2xxo + x2 + y5 - 2yy0 + y2 

Now investigate the following three cases: 

Case 1: a = 1 

x5 - 2xxo + y5 - 2yoy 0 

a 

y 
2 2 

xo (xo + Yo) --x+ 
Yo 2yo 
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which describes a line perpendicular to the line joining (x0 , y0 ) and (0, 0) and intersecting 
· · ( 1 1 ) 1t m 2xo, 2yo . 

Cases 2 and 3 require completion of the squares (a -f. 1) in equation (14): 

becomes 

(a2 - l)[x + xo 12 -
a 2 - 1 0'.2 - 1 

X6 + Y6 Y5 
a 2 - 1 

[ xo ] 2 [ Yo ] 2 
x + (a2 - 1) + y + (a2 - 1) 

x5 Y5 x5 + Y5 
a 2 - 1 + a 2 1 + ( a 2 - 1) 2 ( a 2 - 1) 2 

a2(x5 + y5) 
(a2 - 1)2 

This is a circular region with center on the line joining (x0 , y0 ) and (0, 0) and radius 

Q~ 

In -11 . 

Case 2: a> 1 

Select Ao on the positive imaginary axis. Then (a2 
- 1) > 0 so that 

0
r~- 1 > 0 and 

0
,!°_ 1 ➔ oo as a .j, 1 so that the center of the circle approaches -oo i as a .J, 1. Also, the 

d. Q~ 11 rams la=il ➔ ooasa+. 

Case 3: a< 1 

Here a 2 - 1 < 0 so that 
0

l°_ 1 < 0 and 
0

,!°_ 1 ➔ -oo as a t 1 so that the center 

of the circle approaches +oo i as at 1. 

Recall a = (sup-r E u(A) I A/- ))-
1 = inf-y E u(A) I Ao; 1' I inf-r E u(A) I~ - 1 I and re­

strict Ao to the positive imaginary axis. Then (since a(A) C IR;. is compact) it follows 

that I~ - 1 I = /1 + ( ~ )2 > 1 for all 'Y E a(A) so that a > 1 for Ao on the imaginary 

axis. This is case 2 above and we see that the circle will intersect the imaginary axis at 

[ + Yo ]2 
y a 2 - 1 

Yo 
y + a 2 - 1 

y 

2 2 a Yo 
(a2 - 1)2 

ayo 
± a 2 - 1 
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For Ao on the positive imaginary axis, we have that a > 1 and therefore I¥-~ >.o I = 1 < 
2 

a shows that ¥ is also in the region I >.a-;: >. I < a. A similar argument shows that if Ao 

is on the negative imaginary axis, then ¥ is also in this region. Furthermore, for any A 

in the half plane given by sgnlmA = sgnlmAo and IImAI > llmAol, we have 

I ( 0, Yo) - ( x, Y) I 
(x, y) 

x2 + (yo - y)2 
x2 + y2 

< 1 < O'. 

because llmAj > jlmAol and (Yo - y) 2 < y2
• 

To conclude, we now have the following: Given any A ¢ a-(A), there exists a se­

quence An ¢ a(A) with An ➔ A such that A>.n E 'D(8) and 8(A>.n) = An(Anll -
A)- 18(A)(An11 - A)- 1 for all n. Thus 

A>.n E 'D(8) 

A>.n A(Anll - A)- 1 

➔ A(All - A)- 1 = A>. 

in norm as An ➔ A (since (Anll - A)- 1 ➔ (All - A)- 1 ). 

Also 

An (Anll - A)- 18(A) (An 11 - A)- 1 

➔ A(All - A)- 18(A)(All - A)- 1 

so that by the closedness of 8 (Theorem 28), it follows that 

A>. E 'D(8) 

8(A>.) A(All - A)- 18(A)(All - A)- 1 

for all A ¢ a(A) and A = A* E 'D(<5). 

Remark 11 If 11 E 'D(<5), then the result of Theorem 70 can be restated with the element 

A(All - A)- 1 replaced by (All - A)- 1 . We write 

11 (All - A)(All - A)- 1 

A(All - A)- 1 - A(All - A)- 1 

so that A(All - A)- 1 = A(All - A)- 1 - 11. Since 11 E 'D(8), we have (All - A)- 1 E 'D(<5). 
Also, 8(A(All - A)- 1 ) = A8((All - A)- 1 ) since 8(11) = 0. 
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4.3 The exponential function on V( b) 

Theorem 71 (Bratteli, 0. and Robinson, D.W. (3], Lemma 3.2.31) Let 8 be a norm 

closed derivation of the C*- algebra A and let A = A* E D(8). Define Uz = ezA for 

z E C. Then Uz E D(8) and 8(Uz) = z J; Utz8(A)U(l-t)zdt. 

Proof: The proof follows the following steps: 

Step 1 uses the binomial theorem for general r E IR to show that limn -+ 00 11 U z - ( 1 -

\1 )-nll = 0. 

Step 2 sets f (t) = Utz8(A)U(l _ t)z, defines f n(t) = (11 - t~A )-nJ(A)(ll - (l-!)zA )-n 

and shows that f n(t) ➔ f (t) uniformly on (0, l]. 
Step 3 defines a partition Pk of (0, 1] and shows that for all Riemann-integrable g(t) we 

have S(A, g(t)) ➔ f0
1 

g(t)dt where S(Pk, g(t)) = L~=o(Pm - Pm-1)g(pm)- This step 

involves looking at the adjusted left sums over the interval (0, 1]. 

Step 4 combines steps 2 and 3 and implements the double limit (iterated limit) theorem 

to show that limk[S(Pk, limn fn(t))] = limk[limn S(Pk, fn(t))] = limk[S(Pk, f(t))] = 
z J; f (t)dt. 

Step 1: Consider the binomial series expansion for powers of general r E R If lxl < 1, 

then 

(15) 

where (D is defined as 

(
r) = r(r - l)(r - 2) ... (r - k + l) 
k k! 

For n large enough we have 11(-~A )II < 1 so that we can replace x := (-~A) and r := -n 

in 15. Then 

f= (-t)t-~A)k 
k 

f= (-n (~l)k(zA)' 
k 

The first two coefficients of the right hand side is 1, and 

Fork = 2: 

66 

-n(-n - 1) 
2!n2 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Fork = 3: 

= 

In general, 

= 

Therefore, 

< 

= 

Step 2: 

n2 +n 

1 
21 2 .n 

➔= 
n 2! 

-n(-n-l)(-n-2) -1 3 
3! (-;;:-) 

n 3 + 3n2 + 2n 
3!n3 

(-n)(-n -1) ... (-n - k + l) (- )k 
k' k l .n 

l n (n + 1) (n + k - l) 
k!n n n 
1 

~(2_~n+l ___ n+k-l _ 2_)llzAllk 
L k!n n n k! 
k=O 

(l _ llzAII )-n _ ellzAII 
n 

0 

1~ IIUtzJ(A)U(l-t)z - (ll - tzA)-nJ(A)(ll - (l - t)zA)-nll = 
n n n 

1~ IIUtzJ(A)U(l-t)z - (ll - tzA)- 11 J(A)(ll - (l - t)zA)-n -
n n n 

(ll - tzA)-nJ(A)U(l-t)z + (ll - tzA)-nJ(A)U(l-t)zll = 
n n 

?" tzA n tzA n (1 - t)zA n 
lnn II [Utz - (ll - -)- ]J(A)U(l-t)z + (ll - -)- J(A) [u{l-t)z - (ll - ---)- ] II :=:; 
n n n n 
= tzA = (1 - t)zA 

lim II Utz - (ll - -)-nllllJ(A)U(l-t)zll + KjjJ(A)jj lim IIU(l-t)z - (ll - ---)-nil 
n n n n 

= 0 
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follows from step 1, the continuity of multiplication of the Banach algebra and the bound­

edness of {(ll- t1)-n}. K (above) is chosen as an upper bound for ll(ll - t~A)nll-

Step 3: Define a partition A~ of (0, 1) by t0 = 0, t 1 = ½, ... , tk = l so that tm 

Now construct the lower (left) sum as follows: 

1 k-1 

Z lo Utz8(A)U(l-t)zdt = 1T1 f L U Tz8(A)U(l-T )z 
m=O 

k-1 
00 z ~ 

li.f k L Umj;-8(A)U(k-m)( f;-) 
m=0 

1n 
T· 

The last step above is achieved by multiplying (from the left) by U f;- efzA without 

affecting the limit in k, since limk-too e¼zA ➔ ll. 

Step 4: From the formula (Leibnitz) 8(An) = I:~,:~ Ak8(A)An-I-k and an applica­

tion of Theorem 70 (Remark 11) it follows that 

n-1 (.:_) L (ll - zA)-m-18(A)(ll - zA)-n+m 
n n n 

m=0 
n-1 ( .:_) L (ll - zA )-(m+l) 8(A) (ll - zA )-(n-m) (17) 

n n n m=0 

We now construct a double limit from equations (16) and (17) and in each term of 

the Darboux sum, we have (from step 2) (ll - z:)-(m+l) = ((ll - z:)-7J(m+1)* with 

(ll - z: )-7 ➔ eA as n ➔ oo. Also (ll - z: )-(n-m) = ((ll - z: )-7J(n-m)¾. Consider 

the sequence 

In order for the iterated limit theorem to be applicable, we need to show that both 

limk XJ..:n = Zn and limn XJ..:n = Yk exist, and that for at least one set of limits the con-
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vergence is uniform. 

For the limit in k, we use the partition as defined in step 3 and construct an adjusted 

left sum: 

z (1 (11 - zA)_nt8(A)(11- zA)-n(l-t)dt 
lo n n 

k-1 

lim( ~) L [(11- zA)-n] T 8(A)[(11- zA)-n(,/" 
k k n n 

m=O 

k-1 

lim(~ )[(11- zA)-n]t L [(11- zA)-n]i"8(A)[(11- zA)-n]~ 
k k n n n 

m=O 

k-1 

lim(~) L [(11- zA)-n]~8(A)[(11- zA)-n]~ 
k k n n 

m=O 

so that 

with 

The uniform convergence of limn f n(t) = limn(ll - z: )-nt = etzA fort E [O, 1] assures 

the uniform convergence in n of the series Xnk ---+ Yk above, so that the iterated limit 

theorem applies. 

Now from step 3 and equation (17) it follows that 

lim( ~) ~ (11- zA)-(m+1)8(A)(11- zA)-(n-m) 
n n n n 

m=O 

lim lim ~ ~ [(11 - (zA) )-n](m+l)t 8(A)[(11 - (zA) )-n](k-m)t 
k nk~ n n 

m=O 

k-1 
= lim ~ ~ e(m+l)¥8(A)e(k-m)¥ 

k k ~ 
m=O 

Z 1' Utz'5(A)U(1-t)zdt 

From the closedness of 8 (Theorem 28), we now have the following: 
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which implies 

4.4 Fourier analysis on 'D( <5) 

Theorem 72 (Bratteli, 0. and Robinson, D.W. [3], Theorem 3.2.32) Let 6 be a 

norm-closed derivation of a C* -algebra A with identity 11 and assume 11 E V(6). Let 

f E £ 1 (IR) be a function of one real variable so that J exists, and assume further the 

condition 

/ If (x)llxldx < oo 

is satisfied. If A = A* E V(6), then f(A) E V(6) and 

f(A) (21r)-½ / f(x)eixAdx 

d(f(A)) = i(2,r)-½ / i(x)x{1
1 

e'''AJ(A)ei(l-t)xAdt}dx 

Proof: The proof follows the following steps: 

Step 1 proves J E C0 (IR) by means of the dominated convergence theorem. 

Step 2 proves ~hat j E / 1 (IR). _ 

Step 3 proves J exists, J = f a.e and J E C0 (IR). 

Step 4 involves a Riemann sum construction of f J, shows that LN(f (A) E V(6) 

and then shows that 6(LN f (A)) converges (the previous exponential function theorem 

is used here). The result follows from the closedness of 6. 

Step 1: By definition, J(t) = J f (x)e-ixtdx. If tn ➔ t E IR, then 

lf(tn) - f (t)I IL [f(x)e-ixtn - J(t)e-ixt]dxj 

< L If (x)lle-ixtn - e-ixtldx 
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Now le-ixtn - e-ixtl ~ 2 implies the integrand is bounded by 2lf(x)I and tends to 0 for 

every x as n ----+ oo. From the dominated convergence theorem (Rudin, W. (20], 29) we 

have 

liml/(tn) - /(t)I < lim/. lJ(x)lle-ixtn - e-ixtldx 
n n IR 

/. 
lim [If (x) lle-ixtn - e-ixt I] dx 

IR n 

OVxE~ 

so that /(tn) ----+ ](t) which implies J is continuous. To prove vanishing at infinity, note 

that erri = -1 so that 

(Note the substitution x := x + If). Hence 

2](t) = /_
00 

{J(x) - J(x - ~) }e-itxdx 
-oo t 

The map 7f ----+ ft = f (x - If) is uniformly continuous (Rudin, W. (20], 182), so that 

Step 2: From step 1, J is continuous on the compact subset [-1, 1] so that J is 
bounded. Now 

/,,Iii = (1i1 + f Iii+ f 1i1 

and clearly lf(x)I < lxllf(x)I on ~\[-1, +1] so that 

L: li(x)I ~ L: lxlli(x)I ~ I: lxlli(x)I < 00 

by assumption. ft If (x)I < oo follows from a similar argument. 

Step 3: Since f, J E L\ (~) (steps 1 and 2) it follows from the in_yersion theo~em 

(Rudin, W. (20], 185) that g(x) = J ~(t)eixtdt, g E Co and f = g = J a.e. Since J is 
continuous on ~, we can replace f by J if necessary and assume f to be continuous. 
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Step 4: Since f E £ 1 (JR) n C0 (JR), we can construct a Riemann sum 

N 

I)n = L(Xj - Xj-1)/(xj)eix;A 
N j=l 

From f E £1 (JR) it follows that LNU) is convergent. Looking at 8(EN(f)), it follows 

from the exponential function theorem that 

O(eiz;A) = ix; 1' eitz;AO(A)ei(l-t)z;Adt 

so that 

N I 

8(L(f)) = L(Xj - Xj-1)/(xj)ixj 1 eitx;A8(A)ei(I-t)x;Adt 
N ~I 0 

From the closedness of 8, we now have that the following (Theorem 28): 

imply 

LNU(A)) E D(8) 

LN(f(A)) ➔ X 

8[EN(f(A))] ➔ Y 

X = f (A)= f (A) = f~
00 

/(x)eixAdx E D(8) 

8(X) = 8(f (A)) = i f~oo /(x)x J; eitxA8(A)ei(I-t)xAdx 

which concludes the theorem. 

Note that from first principles and step 3 

/
y,..,(x) r J (x + h) - J (x) 

h~ h 

lim _!_ /_oo [ei(x+h)t - eixt]J(t)dt 
h➔Oh -00 

The integrand is bounded by 21/(t)I (/ E £1(JR)) so that the dominated convergence 

theorem implies 
y/ 

f (x) /_oo lim _!_ [ei(x+h)t - eixt] /(t)dt 
-00 h➔O h 

= 1_: it/(t)e'''dt 

Also I J~
00 

it/(t)eixtdtl ~ J: ltll/(t)ldt < oo by assumption, implying 8(EN(f)) con­

verges. This shows that the conditions for f in the hypothesis is stronger than C1 . 
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4.5 C2 functions on V( 8) 

The following theorem illustrates the domain preserving nature of C2 functions on V(t5): 

Theorem 73 (Sakai, S. [22], Theorem 3.3.7) Let A = A* E D(8) (8 is norm-closed) 

and f E C2 ([-IIAII, IIAII]) a twice continuously differentiable function. Then f(A) E 

V( t5). 

Proof: The theorem can be proved by showing that the conditions for f given, implies 

J~
00 

lxllf(x)I < oo, which will imply the result from the previous theorem. 

Define g(x) = Ix+ il- 1 and h(x) = lx2 + ixllf (x)j. Then 

Looking at ll9llllhll; 

ll9llllhll 

< g, h > = /_
oo 1x2 + i_xl If (x)ldx 

-oo Ix+ ii 

/_
oo Jx4 + x2 If (x)ldx 

-oo vx2TI 

/_

00 

x2 (x
2 

+ 1)1f(x)ldx 
-oo x2 + 1 

1_: lxllf(x)ldx 

( ( lg(x)l 2dx) ½ ( 1_: lh{x)l 2dx) ½ 

( 1_: llx + W' ( dx) ½ ( 1_: llx2 + ixllf(x)i1 2 
dx) ½ 

The first integral can be reduced to J~
00 

Ix+ il-2 dx = J~
00 

l~x2 dx = 1r. 

For the second integral, note that the function f E C2([-IIAII, IIAII]) can be extended 

to f E C2 (IR) with the support J- 1 ((0, oo)) compact, by adding polynomial pieces to the 

end points (at x = -IIAII and x = +IIAII) so that for some r > IIAII, the polynomial 

extensions are C2 on the interval [-r, r] with J(i)(±r) = 0 for i, = 0, 1, 2. If we set 

f = 0 on IR\[-r, r], then f extends to a C2 function on IR with compact support. 

Now 
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Applying Parseval's identity (Rudin, W. [20), 187), the second integral therefore reduces 

to 

/_
r I d2 f - df 12d 

d 2 d X 
-r X X 

< 00 

where the support {xlf(x) =/- 0} ~ [-r, r]. 

By the Cauchy-Schwarz in-equality (I < g, h > I :::; ll9llllhll) it follows that f E 

C2[-IIAII, IIAII] implies J~
00 

lxllf (x)ldx < oo, and hence J(A) E V(<5). 

4.6 A counter example 

In this section it is shown that the results obtained in Section 4, can not be extended for 

functions f E C1 . The counter example uses a function of the form f (x) = !xi (suitably 

smoothed at x = 0) defined on a closed interval in IR containing the spectrum of A = A* 

and a derivation arrived at as the infinitesimal generator of a strongly continuous one­

parameter group of*- automorphisms of a C*- algebra A. A boundedness property for 

the elements in the domain V(<5) of the derivation is then violated by the element f (A), 
proving the results of Section 4 false for general f E C1

. 

The function used is defined for all n 2'.: 0 on [-e- 1 , e- 1] as 

(In j ln le- 1 !xi I j)a 
0 

Jo = lxl and fa E C1 when n > 0. 

x=O 

The following three results are required in the proof of the counter example. We want 

to construct two operators A and Bin a Hilbert space with A bounded, A(V(B)) C V(B) 

and AB - BA bounded, but f a(A)B - Bfa(A) un-bounded. 

The proof of Theorem 7 4 requires some background on Toeplitz matrices and their 

corresponding functions. A brief summary of (Brown, A. and Halmos, P.R [4], 89-94) is 

listed here. Let 'If denote the unit circle in C and II)) the disk in C with radius 1 and consider 

the orthogonal basis {en} for £ 2 ('Ir) defined by the bounded functions en ( z) = Zn for all 

lzl = 1 and n = 0, ± 1, ±2, ±3, .... A function f E £ 2 (11') is analytic if the negatively 

indexed Fourier coefficients vanish - i.e if J fen = 0 for n = -l, -2, -3 .... The analytic 
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functions in £2 is denoted by Y)2. A bounded function </> on 'IT' induces two operators in 

the following ways: 

For every f E £2, define the Laurent operator L = L,p : £ 2 ➔ £ 2 by Lf = </>f 

For every f E £ 2, define the Toeplitz operator T = T : fJ 2 ➔ Y) 2 as the compres­

sion of L to fJ2 by T f = PL¢ f = P ( </> f), where P is the orthogonal projection 

from £ 2 onto Y)2. 

Clearly IILJll2 :S ll</>lloollfll2- Thus IIT¢II < IIL¢II < 11</>lloo 

Laurent operators 

The special Laurent operator Le1 is called the bilateral shift - denoted by W. The 

description 'shift' is evident from the fact the Wen = en+I for n, ±1, ±2, ±3 .... 

Result 1: An operator L on £ 2 is Laurent if and only if L commutes with the bilateral 

shift operator. 

Every operator A on £2 has an infinite matrix [aij] with respect to the basis {en} 

given by [aij] = (Aej, ei)- Now if L,p = A for some bounded function</>, then the matrix 

[ aij] of A has an expansion in terms of the Fourier coefficients of </>: 

where 

For a Laurent operator L we have 

O:ij (Aei, ei) = (¢ei, ei) = (ej</>, ei) 

= (Wi </>, ei) = (</>, W*i ei) = (</>, ei-j) = O:i-i 

which motivates the definition of a Laurent matrix: 

Define a Laurent matrix as a two way infinite matrix [aij] (i, j = 0, ±1, ±2, ±3, .. .) 

with [ai+1,H1] = [aij] 

Result 2: An operator L on £ 2 is Laurent if and only if the matrix [ aij] of L with 

respect to the basis { enln = 0, ±1, ±2, ±3, ... } is a Laurent matrix. 
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How do we recapture ¢ from the matrix of A? Since ¢ = Ae0 , it follows that the 

Fourier coefficients of¢ are the matrix (Ae0 , ei) which is the 0- column of the matrix of A. 

Toeplitz operators 

The following results for Toeplitz operators follows from the preceding: 

If¢= 1, then T,p is the identity. 

If¢ = w.p + fJ, then T,p = aTcp + /JT-y. 

If¢=¢ then T,p = r;. 
The mapping ¢ ➔ T,p is one-to-one. 

T,p is positive if and only if ¢ is positive. 

If ¢ is a bounded function, then T,pf = P L,pf for every f E f) 2 • Therefore, for 

i, j ~ 0 we have (as before) 

(P L,pe1, ei) = (L,peJ+1, ei+1) 

(PL,peJ+i, ei+1) = (T,peJ+I, ei+1) 

which leads to the definition of a Toeplitz matrix: 

Define a Toeplitz matrix as a one way infinite matrix [ai1] (i, j 

[ai+l,J+I] = [ai1] 

0, 1, 2, .. .) with 

Result 3: An operator T on Sj2 is a Toeplitz operator if and only if the matrix [ai1] of 

T with respect to the basis { enln = 0, l, 2, ... } is a Toeplitz matrix. 

The proof is listed in (Brown, A. and Balmos, P.R [4], 93), and the proof of sufficiency 

is briefly as follows: 

Assume A is an operator on f)2 such that (AeJ+1, ei+i) = (Ae1, ei) for i, j = 

0, 1, 2, .... It needs to be shown that A is a Toeplitz operator. Consider the operator on 

£ 2 given by 

An Vn > 0 

(18) 

where W is the bilateral shift operator. It can be shown (Brown, A. and Balmos, P.R 

[4], 93) that the sequence {An} of operators on £ 2 is weakly convergent to a bounded 
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operators A00 on £ 2 , that A00 has a Laurent matrix which implies that A00 is a Laurent 

operator, and that 

PAoof = Af \If E fJ 2 

Therefore, A is the compression to f) 2 of the Laurent operator A00 and is hence a Toeplitz 

operator. 

How do we recapture¢ from the matrix of A? If A = T</>, then A00 = L</> (as in the 

proof of Result 3) so that the Fourier coefficients of</> are the entries in the 0- column of 

the matrix of A00 • An expression in terms of A is evident from the following: If i, j 2: 0, 

then 

so that 

Vi 2: 0 

and 

\I j 2: 0 

Therefore, ¢ is the function who's positively indexed Fourier coefficients are the entries 

of the 0- column of the matrix of A, and who's negatively indexed Fourier coefficients are 

the entries of the 0- row of the matrix of A. 

In particular, given the (Toeplitz) matrix W with 

[ 0 

1 1 
2 

-1 0 1 
w = _.!. -1 0 2 l 

it needs to be shown (Brown, A. and Halmos, P.R (4), 94) that the function f(x) 

i('rr - x) \Ix E (0, 1r) has its forward Fourier coefficients (positive index) equal to the 

terms in the 0 - column of the matrix of vV and its backward Fourier coefficients (negative 

index) equal to the 0 - row of the matrix of W. 

The general Fourier series expansion of f ( x) is as follows: 

f(x) where 
n=-oo 
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Therefore, for f ( x) i(1r - x) V x E (0, 21r) we have 

Co 
1 127T 

- i ( 7r - x) dx = 0 
27r 0 

and 

2 

Partial integration (factor integration) yields the following: 

and 

Integral l : !._ ( ~ 1 )e-inx 12rr 
2 m 0 

Integral 2 : 

_ ___!__[cos(nx) - i sin(nx) l~rr] 
2n 
1 

--((1 - 0) - (1 - 0)] 
2n 

0 ni0 

i I . i I I . i2rr -x e-mxdx - - [ e-mxdx]ldx 
27r 21r 0 

ix(-l) -inx i 1(-l) -inxd 12rr --e -- -e x 
21r in 21r in ° 
-X -inx + i -inx 12 rr --e --e 
2n1r 2n21r 0 

[
2
-x + _.i:_2 ](cos(nx)-isin(nx))l

0

2
rr 

n1r 2n 1r 
-27r i i 

[ 2n1r + 2n21r] cos(2n1r) - [O + 2n21r] (1) 

1 i i 
--+-----

n 2n21r 2n21r 
1 

n 

Replacing 1 and 2 back into equation (19) yields the required result 

-1 
Cn 0--

n 
1 

ni0 
n 
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Toeplitz matrix operators and their corresponding functions are useful in deriving the 

norm of the matrix operator. The following theorem makes use of this connection: 

Theorem 7 4 (McIntosh, A. [11], Theorem 1) For every integer m ~ 3 there is a 

self-adjoint operator U = U* and a skew-adjoint operator V in the Hilbert space cm 
satisfying e-mn ::; u ::; e- 1 11, IIUV + VUII ::; 7r, and ll!a(U)V - V f a(U)II > 
½(log(½m)) 1-a for O ::; O'. < 1. 

Proof: Define a skew-adjoint operator Won cm by WiJ (j - i)- 1 when i i j and 

Wii = [O] when i = j: 

0 1 1 1 
2 m-1 

-1 0 1 1 
m-2 

W= 
1 -1 0 1 

-2 m-3 

-1 -1 -1 0 m-1 m-2 m-3 

Wis a mxm Toeplitz matrix with corresponding function g(0) i(1r - 0) on O < 0 < 21r 

so that IIWII ::; 1r. 

Define U by the diagonal matrix Uii = ui = e-i: 

0 0 ... l e-2 0 ... 
0 e-3 

Define the skew-adjoint operator V by the matrix Vij 
e-j)-1: 

V= 

Then 

l(e-1 +e-2)-1 

0 

-l(e-3 + e-2)-1 

-½(e-4 + e-2)-1 

79 

½(e-1 + e-3)-1 

l(e-2 + e-3)-1 

0 

-l(e-4 + e-3)-1 

½(e-1 + e-4)-1 

½(e-2 + e-4)-1 

l(e-3 + e-4)-1 
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(UV+ VU)= 

1 e-
1

+e-
3 l 2[e-1+e- 3 ] • • • 

-2+ -3 
(e_2+e_3] ... 
e e = W 

0 ... 
. . . . . . 

so that IIUV + VUII ::; 1r. Now put S f a(U)V - V f a(U). Then Sij = Ua(Ci) -

fa(e-i))Wij(e-i + e-i). We need to show that Sis unbounded as m ➔ oo. 

e-i 
(In(i+l}} 0 so that 

e-i e-i 
(ln(i+l)) 0 (ln(j+I)) 0 

(j - i)(e-i + e-i) 

so that Sij 2:: 0 Vi, j = 1, 2, ... , m. Looking at the upper triangle only (i < j), then 

ln(i + 1) < ln(j + 1) and e-i > e-i so that 

> 

(j - i)2e-i[In(j + l)]a 

1- e-Hi 

2(j - i)(ln(j + l)]a 

1 - e-1 

2(j - i)[ln(j + l)]a 

Hence for 2 ::; j ::; m 

m j-l 1 1 1 1 1 
> ~Sij 2:: 2(1-e-1 )(ln(j+l)]-o:{1+ 2 + 3 + ... + j-

2
+ j-l} 

i=l 

> ~(1 - e- 1 )(ln(j + l)ta J,i ~dt 
2 1 t 
1 

2 ( 1 - e - I ) (In (j + 1) ]-a In (j) 

> 25-½ (ln(j + 1)) 1
-0: 

The last step follows from the fact that lnl(j~L > :~m for 2 ::; j ::; m which is motivated 
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by noting that log2 (j) = :~g~ and log3 (j + 1) = 1
~~(;)

1
) and setting x = log2 (j). Then 

for (j ~ 2, x ~ 1) 

which implies x ~ Iog3 (j + 1). 

Let L = [1, 1, 1, ... , 1] be a vector in cm so that 11£11 2 = m and 

m m 

j=l i=l 
m 

> L)ln(j + 1))2-2a 

> 

j=2 
m 

(In( ~m) )2-2a 
2 

j=l(m+l)/2J 

1 1 > (-m)(ln(-m))2-2a 
2 2 

It follows that llfa(U)V - Vfa(U)II = IISII > vbOn(½m)) 1-a > ½On(½m)) 1
-

0
• 

Theorem 75 (McIntosh, A. [11), Theorem 2) There exists for every integer m ~ 3 

self-adjoint operators Am and Bm in the Hilbert space c2m satisfying e-mn ~ IAml ~ 

e- 1 n, IIAmBm - BmAmll ~ 7r but llfa(Am)Bm - Bmfa(Am)II > ½(In(T)) 1-a for 

O~a<l. 

Proof: Define Am and Bm as 

A = [ U O ] 
m O -U 

and B _ [ 0 V ] 
m - V* 0 

with U and V as defined in Theorem 74. Then 

AmBm = [ O UV ] 
-UV* 0 

and B A - [ 0 -VU l 
m m - V*U 0 
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so that (since U = U*) it follows that 

Again from Theorem 7 4 we have 

IIAmBm - BmAmll = IIUV + VUII < 1r. Also (since Jo: is an even function) we have 

[ 
lo:(U) 0 l 

o lo:(U) 

so that 

It then follows from Theorem 7 4 that 

We now want to construct an infinite dimensional case from the cases c2m, Am and 

Bm and some direct sum techniques for Hilbert spaces are required. 

Suppose {Hm}mEN is a family of Hilbert spaces. The direct sum H 
consists of elements x = { Xm}mEN with Xm E Hm such that 

llxll 2 = L llxmll 2 < 00 

mEN 

H EBmEN Hm is a Hilbert space with the inner product defined as 

(x, y) with x, y EH 
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If Am is a bounded linear operator defined on Hm for every m E N with supm IIAmll < 
oo, define 

as 

Then EBmEN Am is linear on EBmEN Hm with norm defined as 

= sup{IIAmllH,J m EN} = sup { sup {IIAmxmll}Hm Jm EN} 
m m llxmll=l 

The direct sum of bounded linear operators have the following properties: 

EB (nAm + ,BAm) ll EB Am + ,B EB Am 
mEN mEN mEN 

( EB Am)* EB A:n 
mEN mEN 

( EB Am) ( EB Em) EB AmBm 
mEN mEN mEN 

The notion of a core C(B) of a linear operator B is required in the proof of the following 

theorem: 

Definition 22 (Core) Let B: V(B) C H ➔ H be a linear operator. A subset C(B) of 

V(B) is a core of B if it is graph norm-dense (II· 11B = II· II + IIB(·)II) in V(B). 

Remark 12 (Core) The definition of a core can be re-stated as follows: 

A subset C(B) is a core for a linear operator B if for every x E V(B) there exists a 

sequence {xn} E C(B) such that 

and 
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Definition 23 (Symmetric operator) Let B : V(B) C 1i ➔ 1i be a linear operator 

with dense domain in the Hilbert space 1t. If (Bx, y) = (x, By) Vx, y, E V(B), then B 

is called symmetric. 

Remark 13 (Symmetric operator) Since B* (the adjoint of B) is always closed (Re­

mark 2. 7.6 Kadison, R. V. and Ringrose, J.R. [BJ, 157) and 9(B) ~ 9(B*), it follows 

that B is closable if it is symmetric. If B = B* (self-adjoint), then B is symmetric and 

closed. Conditions for a closed ( closable} operator B to be self-adjoint is given in Theorem 

2. 7.10 of Ko.dison, R. V. and Ringrose, J.R. [BJ, 160. 

Theorem 76 (McIntosh, A. [11], Theorem 3) There exist self-adjoint operators A 

and B in a Hilbert space 1i such that IIAII ~ e-1
, A(V(B)) C V(B), IIAB - BAIi ~ 1r 

but f 0(A)B - BJ0 (A) is unbounded for O ~ O'. < l. 

Proof: Define H = E9m23 c2m, A = E9m23 Am and B = E9m23 Em with Am and 

Em as defined in Theorem 75. The proof is conducted along the following steps: 

Step 1 Show that IIAII ~ e-1 

Step 2 Show that there exists a core C(B) for B with A(C(B)) C C(B). 

Step 3 Show that IIAB - BAIi ~ 1r 

Step 4 Show that A and B are self-adjoint and hence closed. 

Step 5 Show that AV(B) c V(B) from A(C(B)) c C(B), closedness of B and the 

boundedness of A and AB - BA on C(B). 

Step 6 Show that f 0(A)B - Bf 0 (A) is un-bounded. 

Step 1: From Theorem 75 

IIAll11 sup{IIAmllc2m Im ~ 3} 
m 

Step 2: ConsiderthesetC(B) = {x = {xm}lallbutfinitelymanyofthexmarezero}. 

According to Definition 22, this set is a core of B if for every x = {xm} E V(B) = 

V(E9m23 Bm), there exists a sequence Zn E C(B) such that Zn ➔ x = {xm} (m ~ 3) 

and B(zn) ➔ B(x) = E9m23 Bm({xm}). Choose Zn = {x3, X4, X5, ... ,Xn, 0, 0, ... }. 

Then clearly Zn E C(B), Zn ➔ x = {xm} E V(B) and 

as n ➔ oo. From the boundedness of A it is clear that Azn ➔ Ax and B(Azn) ➔ BAx. 
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Step 3: To show that IIAB - BAIi :::; 1r, note that since AB - BA is densely defined 

and bounded on C(B), EBm~ 3 (AmBm - BmAm) extends AB - BA to 1i and we have 

II EB(AmBm - BmAm)IIH sup{IIAmBm - BmAmllc2m Im 2: 3} 
m~3 

m 

< 7r 

from Theorem 75. 

Step 4 : The sclf-adjointncss of A follows from the sclf-adjointncss and boundedness 

of Am \/m and Theorem 75: 

A = EB Am = EB A:n = ( EB Am)* = A* 
rn m m 

Since IIBmll V mis un-bounded, the same argument cannot be used to show self-adjointness 

for B. It needs to be shown that B is symmetric ( (Bx, y) = (x, By), B ~ B*, B is 

closable) and the operator B ± ill has a dense range, because then from Theorem 2.7.10 

(Kadison, R.V. and Ringrose, J .R. [8], 160)) B can be extended to a self-adjoint ( closed) 

linear operator on V(B). 

To show that B is symmetric ( and closable), we know from Theorem 75 that Bm is 

self-adjoint and hence (closed and) symmetric (Kadison, R.V. and Ringrose, J.R [8], 160). 

By definition of the inner product on 1i = EBm~ 3 1lm it follows that (V x, y E C(B)) 

m m 

so that B is symmetric. 

To show that (B ± ill) has a dense range, note that with Bm self-adjoint (symmetric 

and closed), it follows from Theorem 2.7.10 (Kadison, R.V. and Ringrose, J.R. [8), 160) 

that Vm, 

Then V N 2: 3 

N N 

(B ± ill)( EB 1tm) EB ( EB {O}) ( EB (Bm ± ill)1im) EB ( EB {O}) 
m=3 m~N+l m=3 m~N+l 

N 

( EB 1tm) EB ( EB {o}) 
m=l m~N+l 
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so that the range of (B ± ill) is dense in EBm2'.: 3 1-lm = 1-l. The closedness of B can now 

be used in the following step: 

Step 5: The following is true at this point: For any x E V( B), there exists a sequence 

Xn E C(B) with Xn ➔ x and Bxn ➔ Bx and from the boundedness of A, we also have 

ABxn ➔ ABx and Axn ➔ Ax. 

If we can show that B(Axn) ➔ y (for some y), then by the closedness of B (from 

Step 3) it follows that Ax E V(B) so that we have the result A(V(B)) C V(B). 

To show that B(Axn) converges, consider (for Xn E C(B)) 

BAxn - ABxn + ABxn 

-(AB - BA)xn + ABxn 

Now ABxn ➔ ABx and (AB - BA) is bounded (step 3) so that BAxn is convergent. 

Step 6: 

llf a(A)B - Bf a(A)II 
m m m m 

m 

sup{llf a(Am)Bm - Bmf a(Am)lllm 2: 3} 
m 

and un-boundedness follows again from Theorem 75. 

The counter example is given in the following theorem: 

Theorem 77 (McIntosh, A. [11], Theorem 4) There is a closed symmetric deriva­

tion 8 of a C* - algebra A with dense domain V( 8), an element A = A* E V( 8), and a 

function f E C1 on a closed interval containing the spectrum of A, such that J(A) ¢ V(8). 

Proof: Choose A, Band 1l as above and define the one parameter family rt : .C(1l) ➔ 
.C(1l) by r t(C) = eitBce-itB for each t E IR, C E .C(1l). Let A be the C*- algebra gen­

erated by {rt (A) It E IR}. The construction of the counter example follows the following 

steps: 

Step 1 shows that rt is a group of *- automorphisms of A. 
Step 2 shows that rt is strongly continuous. 
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Step 3 shows that the infinitesimal generator 8 for rt is a symmetric derivation with the 

required domain properties V(J) = { C E AIC(V(B)) C V(B) and IIBC - CEIi < oo }. 

step 4 shows that 8 is closed and V( 8) is dense in A. 

By taking l as one of the functions lo: defined earlier with o E (0, 1), it then fol­

lows that A E V(J), but l(A)B - Bl(A) is unbounded (from Theorem 76) so that 

l(A) (j. V(8). 

Step 1: To 8how that for any given t, ft is *- automorphic on the larger algebra 

[,(H) is straight forward: For example for C, D E £(H), ft(CD) = eitBCDe-itB = 

eitBC[e-itBeitB]De-itB = ft(C)ft(D) and ft(C)* = [eitBce-itB]* = (e-itB)*(eitBC)* 
eitBC*e-itB = ft(C*). From ft(eit' B Ae-it' B) = ei(t+t')B Ae-i(t+t')B, it is clear that 

the generators of A is mapped into A. Also, r -t(eitB Ae-itB) = A, so that the map­

ping is one-one and surjective. The semi-group properties r 0 (A) = A and r t+s(A) 
e(t+s)iB Ae-(t+s)iB = ft(eisB Ae-isB) = ft(f s(A)) are easily verified. 

Step 2: Strong continuity follows directly from the continuity of eitB on the Hilbert 

space H: limt-+O < eitB Ae-itBx, y > = limt-+O < Ae-itBx, e-itBy >=<Ax, y >. 

Step 3: The infinitesimal generator 8 of ft is obtained by differentiating rt at t = 0: 

= !!__ I eitB Ae-itB 
dt t=O 

iB(eitB Ae-itB) + eitB A(-iB)e-itB lt=O 
i(BA - AB) 

for A E V(J). Then from Theorem 69, 8 is a symmetric derivation with domain 

V(8) = {C E AIC(V(B)) C V(B) and IIBC - CEIi < oo}. 

Step 4: It follows from Theorem 57 section 3.1.2 that V(J) is dense in A and 8 is 

closed. 

Now select A, B and H as in the previous theorem and a function l E C1 from the 

family lo: with o E (0, 1). Clearly A E V(J), but l(A) will result in the unbounded 

element l(A)B - Bl(A) (from Theorem 76), violating the domain restrictions so that 

l(A) (j. V(8). 
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