A QUESTION OF ZHOU, SHI AND DUAN ON NONPOWER SUBGROUPS OF FINITE GROUPS

C.S. Anabanti
Institut für Analysis $\begin{aligned} & \text { Zahlentheorie, Technische Universität Graz, Austria, and }\end{aligned}$ Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa.
E-Mail anabanti@math.tugraz.at, chimere.anabanti@up.ac.za, chimere.anabanti@unn.edu.ng

A.B. Aroh
Department of Mathematics, University of Nigeria, Nsukka, Nigeria. E-Mail blaise.aroh.231881@unn.edu.ng

S.B. Hart
Department of Economics, Mathematics and Statistics, Birkbeck, University of London, UK.
E-Mail s.hart@bbk.ac.uk

A.R. Oodo
Department of Mathematics, University of Nigeria, Nsukka, Nigeria. E-Mail amara.oodo.231880@unn.edu.ng

Abstract

A subgroup H of a group G is called a power subgroup of G if there exists a non-negative integer m such that $H=\left\langle g^{m}: g \in G\right\rangle$. Any subgroup of G which is not a power subgroup is called a nonpower subgroup of G. Zhou, Shi and Duan, in a 2006 paper, asked whether for every integer $k(k \geq 3)$, there exist groups possessing exactly k nonpower subgroups. We answer this question in the affirmative by giving an explicit construction that leads to at least one group with exactly k nonpower subgroups, for all $k \geq 3$, and infinitely many such groups when k is composite and greater than 4 . Moreover, we describe the number of nonpower subgroups for the cases of elementary abelian groups, dihedral groups, and 2-groups of maximal class.

Mathematics Subject Classification (2020): 20D25, 20D60, 20 E 34.
Key words: Counting subgroups, nonpower subgroups, finite groups.

1. Introduction. A subgroup H of a group G is called a power subgroup of G if there exists a non-negative integer m such that $H=G^{m}$, where $G^{m}:=\left\langle g^{m}: g \in\right.$ $G\rangle$. The identity subgroup and the whole group are examples of power subgroups of any group G. If H is a power subgroup of G, then H is normal in G; but the converse is not necessarily true. For instance, no subgroup of index 2 in the quaternion group Q_{8} of order 8 is a power subgroup of Q_{8}, even though they are
normal subgroups. A subgroup of G which is not a power subgroup is called a nonpower subgroup of G.

Let k be the number of nonpower subgroups of a group G. The authors (Zhou, Shi and Duan) of [4] proved the following:
(a) $k \in(0, \infty)$ if and only if G is a finite noncyclic group;
(b) $k=0$ if and only if G is a cyclic group;
(c) $k=\infty$ if and only if G is an infinite noncyclic group.

They also remarked that neither $k=1$ nor $k=2$ is possible in any group. With respect to the case $k \geq 3$, they asked (see [4, Problem]):

Question 1. (Zhou, Shi and Duan) For any integer k ($k \geq 3$), do there exist groups possessing exactly k nonpower subgroups?

In this paper, we show that the answer to this question is yes. In fact, we prove that there is at least one group possessing exactly k nonpower subgroups for each $k \geq 3$ (see Theorem 5). Our method of proof also shows that there are infinitely many such groups for each $k>4$ and k not prime. The constructions we used are given in Section 2; part of it involves the direct product of a dihedral group with a carefully chosen cyclic group.

There are further questions one could ask. For example, given a positive integer n, what is the maximum number of nonpower subgroups in a group of order n ? To supply further examples of the possible numbers of nonpower subgroups in a group of a given order, we also explore in Section 3 some special cases: elementary abelian p-groups, dihedral groups, and 2 -groups of maximal class. For example, we observe (see Corollary 10) that the elementary abelian p-group $C_{p} \times C_{p}$ (p prime) contains exactly $p+1$ nonpower subgroups, and the generalised quaternion group $Q_{2^{n}}$ (where $n \geq 3$) contains exactly $2^{n-1}-1$ nonpower subgroups (see Theorem 16). All the groups studied here are finite.

We end this introductory section by briefly establishing the notation we will use. For a positive integer n, we write C_{n} for the cyclic group of order n, with $D_{2 n}$ being the dihedral group of order $2 n$.

Notation. Let G be a group. We write $s(G)$ for the total number of subgroups in G. Also, we write $p s(G)$ for the number of power subgroups, and $n p s(G)$ for the number of non-power subgroups. For example, in $C_{2} \times C_{2}$ we have $s(G)=5$, $p s(G)=2$ and $n p s(G)=3$.
2. Groups with exactly k nonpower subgroups. In this section, we give constructions that supply, for each $k \geq 3$, at least one finite group containing exactly k nonpower subgroups. Moreover, for $k \neq 4$ and k not prime, our constructions give infinitely many finite groups containing exactly k nonpower subgroups.

REmark 2. Let G be a finite group. If n is coprime to $|G|$, then $G^{n}=G$ as the map $g \mapsto g^{n}$, while not a homomorphism, is certainly a bijection from G to itself in this case. More generally, $G^{m n}=G^{m}$ for any positive integer m.

Lemma 3. Let A and B be finite groups such that $|A|$ and $|B|$ are coprime. Then every subgroup of $A \times B$ is of the form $U \times V$, where $U \leq A$ and $V \leq B$. Moreover, a subgroup of $A \times B$ is a power subgroup if and only if it is of the form $U \times V$, where U is a power subgroup of A and V is a power subgroup of B. In particular,

$$
\begin{align*}
s(A \times B) & =s(A) \times s(B) \tag{1}\\
n p s(A \times B) & =s(A) \times s(B)-p s(A) \times p s(B) \tag{2}
\end{align*}
$$

Proof. Let $G=A \times B$. The fact that the subgroups of G in this case are the direct products of subgroups of A and B is well-known, but we include the proof for completeness. Suppose $H \leq G$ and let $(a, b) \in H$. Since $|A|$ and $|B|$ are coprime, the orders r and s of a and b respectively are also coprime. Therefore, there exist integers q and t such that $r q+s t=1$. Now $(a, b)^{s t}=(a, 1)$ and $(a, b)^{r q}=(1, b)$. Hence, $(a, 1)$ and $(1, b)$ are elements of H. It follows that $H=U \times V$, where $U=$ $\{a \in A:(a, 1) \in H\}$ and $V=\{b \in B:(1, b) \in H\}$. Therefore, $s(G)=s(A) \times s(B)$.

Consider the power subgroup G^{m} of G, for a positive integer m. We have that $G^{m}=A^{m} \times B^{m}$, because this group is generated by elements $(x, y)^{m}=\left(x^{m}, y^{m}\right)$, and we have observed that $\left(x^{m}, y^{m}\right)$ is contained in a subgroup H if and only if $\left(x^{m}, 1\right) \in H$ and $\left(1, y^{m}\right) \in H$. For the converse, suppose that $U=A^{\ell}$ and $V=B^{m}$, for some positive integers m and ℓ. We may assume that ℓ divides $|A|$ and m divides $|B|$, by Remark 2. Now, let $n=\ell m$. Since ℓ and m are therefore coprime, we have that $A^{n}=A^{\ell}$, and $B^{n}=B^{m}$. Therefore, $U \times V=G^{n}$. Thus, a subgroup of G is a power subgroup if and only if it is of the form $U \times V$, where U is a power subgroup of A and V is a power subgroup of B. In particular, $p s(G)=p s(A) \times p s(B)$. Hence, $n p s(G)=s(G)-p s(G)=s(A) \times s(B)-p s(A) \times p s(B)$.

Let n be a positive integer. Zhou et al. showed that $n p s\left(C_{n}\right)=0$. We also note that $s\left(C_{n}\right)=p s\left(C_{n}\right)=\tau(n)$, where $\tau(n)$ is the number of divisors of n.

Corollary 4. Suppose $G=A \times C_{n}$, where n is a positive integer and A is a finite group whose order is coprime to n. Then $n p s(G)=\tau(n) \times n p s(A)$.

Proof. We have that $s\left(C_{n}\right)=p s\left(C_{n}\right)=\tau(n)$. Therefore in Equation (2), we have $n p s(G)=(s(A)-p s(A)) \tau(n)=\tau(n) \times n p s(A)$.

Before the next result we note that if p is an odd prime, then $n p s\left(D_{2 p}\right)=p$. This is because $D_{2 p}$ has exactly $p+3$ subgroups; the p cyclic subgroups of order 2 are the nonpower subgroups. The remaining groups (the trivial subgroup, the cyclic subgroup of index 2, and the whole group) are the power subgroups $D_{2 p}^{2 p}, D_{2 p}^{2}$ and $D_{2 p}^{1}$, respectively. For a full description of nonpower subgroups in arbitrary dihedral groups, see Section 3.

THEOREM 5. Let k be a positive integer, with $k \geq 3$. Then there exists a finite group G with exactly k nonpower subgroups. If k is composite and $k>4$, then there are infinitely many such groups.

Proof. Let k be a positive integer with $k \geq 3$. Then either k is divisible by 4 , or k is divisible by an odd prime p (or both). Suppose first that k is divisible by an odd prime p. Let q be any odd prime other than p, and let $r=\frac{k}{p}-1$. Then $\tau\left(q^{r}\right)=\frac{k}{p}$. We observe that $n p s\left(D_{2 p}\right)=p$. Therefore, by Corollary 4 , we get $n p s\left(D_{2 p} \times C_{q^{r}}\right)=k$. On the other hand, if k is divisible by 4 , then let $r=\frac{k}{4}-1$, and let q be any prime greater than 3 . A quick calculation shows that $n p s\left(C_{3} \times C_{3}\right)=4$; whence $n p s\left(\left(C_{3} \times C_{3}\right) \times C_{q^{r}}\right)=k$. We note that, in each case, if $k>4$ and k is composite, then the exponent r is strictly positive. Therefore, since there are infinitely many choices for q, there are infinitely many finite groups G with exactly k nonpower subgroups.

3. Special cases.

Notation. For a prime p and a positive integer n, we write C_{p}^{n} for the elementary abelian p-group of finite rank n, and denote the number of subgroups of rank r in C_{p}^{n} by $N_{p}(n, r)$.

Theorem 6. ([3, Theorem 1]) Let V be a vector space of dimension n over the finite field $G F(q)$, where q is a prime power. The number of subspaces of V of dimension r is

$$
\left(\frac{q^{n}-1}{q-1}\right)\left(\frac{q^{n-1}-1}{q^{2}-1}\right) \cdots\left(\frac{q^{n-r+1}-1}{q^{r}-1}\right) .
$$

REmARK. (a) The group $G=C_{p}^{n}$ can be realised as an n-dimensional vector space (say V) over $G F(p)$. Now, the number of subgroups of rank r in C_{p}^{n} is equal to the number of subspaces of dimension r in V. In the light of Theorem 6 therefore, given any prime p and positive integers n and r, with $n>r \geq 2$, we have that

$$
\begin{equation*}
N_{p}(n, r)=\left(\frac{p^{n}-1}{p-1}\right)\left(\frac{p^{n-1}-1}{p^{2}-1}\right) \cdots\left(\frac{p^{n-r+1}-1}{p^{r}-1}\right)=\prod_{k=0}^{r-1}\left(\frac{p^{n-k}-1}{p^{k+1}-1}\right) \tag{3}
\end{equation*}
$$

(b) $N_{p}(n, 0)=1=N_{p}(n, n)$ for any prime p and natural number n, and for $n>1$,

$$
N_{p}(n, 1)=\frac{p^{n}-1}{p-1}=\sum_{k=0}^{n-1} p^{k}=N_{p}(n, n-1)
$$

Proposition 7. For prime p and positive integers n and r (with $n>r \geq 2$), we have:
(a) $N_{p}(n-1, r)=\left(\frac{p^{n-r}-1}{p^{r}-1}\right) N_{p}(n-1, r-1)$;
(b) $N_{p}(n, r)=p^{r} N_{p}(n-1, r)+N_{p}(n-1, r-1)$.

Proof. Setting $n=n-1$ and $r=r-1$ in Equation (3), we have that

$$
\begin{equation*}
N_{p}(n-1, r-1)=\left(\frac{p^{n-1}-1}{p-1}\right) \cdots\left(\frac{p^{n-r+1}-1}{p^{r-1}-1}\right)=\prod_{k=0}^{r-2}\left(\frac{p^{n-(k+1)}-1}{p^{k+1}-1}\right) \tag{4}
\end{equation*}
$$

Setting $n=n-1$ in Equation (3), we have that

$$
\begin{aligned}
N_{p}(n-1, r) & =\left(\frac{p^{n-1}-1}{p-1}\right) \cdots\left(\frac{p^{n-r+1}-1}{p^{r-1}-1}\right)\left(\frac{p^{n-r}-1}{p^{r}-1}\right)=\prod_{k=0}^{r-1}\left(\frac{p^{n-(k+1)}-1}{p^{k+1}-1}\right) \\
& =N_{p}(n-1, r-1)\left(\frac{p^{n-r}-1}{p^{r}-1}\right)(\text { from Equation }(4))
\end{aligned}
$$

which settles the (a) part. For the (b) part, we multiply Equation (5) by p^{r}, add the result to Equation (4) and regroup the terms to get the desired result.

The recurrence relations given in Proposition 7 would be a good source for OEIS https://oeis.org/. We now turn to the first main result of this study; see Theorem 8.

Theorem 8. For prime, p and a natural number $n>1$,

$$
n p s\left(C_{p}^{n}\right)=s\left(C_{p}^{n}\right)-2=\sum_{r=1}^{n-1} N_{p}(n, r)
$$

Proof. Let p be a prime and $n>1$ be an integer. We write $G=C_{p}^{n}$. For $m \in \mathbb{N} \cup\{0\}$,

$$
G^{m}=\left\{\begin{array}{lll}
\{1\}, & \text { if } m \equiv 0 & \bmod p \\
G, & \text { if } m \not \equiv 0 & \bmod p
\end{array}\right.
$$

This tells us that the only power subgroups of G are the unique subgroups of ranks 0 and n (viz; the two trivial subgroups). That is, $n p s(G)=s(G)-2$. In particular, the nonpower subgroups of G are the subgroups of ranks $1,2, \ldots, n-1$. Thus, the number of nonpower subgroups of G is $\sum_{r=1}^{n-1} N_{p}(n, r)$.

The following result is an immediate consequence of Theorem 8.
Corollary 9. Let $n>1$ and p be prime. Then the elementary abelian p-group C_{p}^{n} contains exactly $\sum_{r=1}^{n-1} N_{p}(n, r)$ nonpower subgroups.

In particular, when $n=2$, we have the following.
Corollary 10. Let p be prime. The elementary abelian p-group C_{p}^{2} contains exactly $p+1$ nonpower subgroups.

Definition. A 2-group of maximal class is a group of order 2^{n} and nilpotency class $n-1$ for $n \geq 3$.
Remark. It is known (for instance, see Theorem 1.2 and Corollary 1.7 of [1]) that any 2-group of maximal class belongs to one of the following three classes:
(i) $\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, x y=y x^{-1}\right\rangle, n \geq 3$ (Dihedral);
(ii) $\left\langle x, y \mid x^{2^{n-1}}=1, x^{2^{n-2}}=y^{2}, x y=y x^{-1}\right\rangle, n \geq 3$ (Generalised quaternion);
(iii) $\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, x y=y x^{2^{n-2}-1}\right\rangle, n \geq 4$ (Semidihedral).

Definition. For $n \geq 3$, we write

$$
D_{2 n}:=\left\langle x, y \mid x^{n}=1=y^{2}, x y=y x^{-1}\right\rangle
$$

for the dihedral group of order $2 n$.
Remark. $\quad D_{2 n}=\left\{1, x, \ldots, x^{n-1}, y, x y, \ldots, x^{n-1} y\right\}$. In $D_{2 n}$, each element of $\{y$, $\left.x y, \ldots, x^{n-1} y\right\}$ is an involution. In particular, there are $n+1$ involutions in $D_{2 n}$ when n is even.

Theorem 11. ([2]) For $n>2, s\left(D_{2 n}\right)=\tau+u$, where τ is the number of positive divisors of n and u is the sum of the positive divisors of n.

Proposition 12. Let $G=D_{2 n}, n>2$. Writing u for the sum of positive divisors of n and r for the number of even proper divisors of n, we have the following: (i) if n is odd, then $n p s(G)=u-1$; (ii) if n is even, then $n p s(G)=s(G)-(r+2)$; (iii) if n is a power of 2 , then $n p s(G)=u$; (iv) if $n=2 p$ for an odd prime p, then $n p s(G)=s(G)-3=3 p+4$.

Proof. Let τ denote the number of positive divisors of n and u denote the sum of positive divisors of n. By Theorem 11, $s(G)=\tau+u$.

Let $m \in \mathbb{N} \cup\{0\}$ be arbitrary. Then

$$
G^{2 m+1}=\left\langle 1, x^{2 m+1}, \ldots, x^{-(2 m+1)}, y, x y, \ldots, x^{n-1} y\right\rangle
$$

As $\left\{1, y, x y, \ldots, x^{n-1} y\right\} \subseteq G^{2 m+1}$, we see immediately that $\left|G^{2 m+1}\right|>\frac{1}{2}|G|$. The fact that $G^{2 m+1}$ is a subgroup of G helps us to conclude that $G^{2 m+1}=G$.

On the other hand,

$$
G^{2 m}=\left\langle 1, x^{2 m}, x^{4 m}, \ldots, x^{-4 m}, x^{-2 m}\right\rangle=\left\langle x^{2 m}\right\rangle
$$

(i) Let n be odd. Then $\left\langle x^{2 m}\right\rangle$ is of the form $\left\langle x^{v}\right\rangle$, where v is a positive divisor of n. Therefore the set of all power subgroups of G is given as

$$
\{G\} \cup\left\{\left\langle x^{v}\right\rangle \mid v \text { is a positive divisor of } n\right\} .
$$

Thus $p s(G)=\tau+1$, and we conclude that $n p s(G)=(\tau+u)-(\tau+1)=u-1$.
(ii) Let n be even. Then $\left\langle x^{2 m}\right\rangle$ is of the form $\left\langle x^{\mu}\right\rangle$, where μ is an even proper divisor of n. Therefore the set of all power subgroups of G is given as
$\{\{1\}, G\} \cup\left\{\left\langle x^{\mu}\right\rangle \mid \mu\right.$ is an even proper divisor of $\left.n\right\}$.
So $p s(G)=r+2$, where r is the number of even proper divisors of n. Whence, $n p s(G)=s(G)-(r+2)$.
(iii) Let $n=2^{\ell} \geq 4$. In the light of (6), the set of power subgroups of G is

$$
\left\{\{1\}, G,\left\langle x^{2}\right\rangle,\left\langle x^{4}\right\rangle,\left\langle x^{8}\right\rangle, \ldots,\left\langle x^{n / 2}\right\rangle\right\}
$$

where $\left\langle x^{2}\right\rangle \cong C_{n / 2},\left\langle x^{4}\right\rangle \cong C_{n / 4},\left\langle x^{8}\right\rangle \cong C_{n / 8}, \ldots,\left\langle x^{n / 2}\right\rangle \cong C_{2}$. So $p s(G)=\tau$. Therefore, $n p s(G)=s(G)-p s(G)=(\tau+u)-\tau=u$.
(iv) Let $n=2 p$ for an odd prime p. In the light of (6), the set of power subgroups of G is
$\{\{1\}, G\} \cup\left\{\left\langle x^{\mu}\right\rangle \mid \mu\right.$ is an even proper divisor of $\left.2 p\right\}=\left\{\{1\}, G,\left\langle x^{2}\right\rangle\right\}$,
where $\left\langle x^{2}\right\rangle \cong C_{p}$. Hence, $p s(G)=3$, and we conclude that $n p s(G)=s(G)-3=$ $\tau+u-3=4+(1+2+p+2 p)-3=3 p+4$.

Corollary 13. Given an integer $n \geq 3, s\left(D_{2^{n}}\right)=2^{n}+n-1$ and $n p s\left(D_{2^{n}}\right)=$ $2^{n}-1$.

Proof. The results follow from a direct application of Theorem 11 and Proposition 12(iii) since the number of positive divisors of 2^{n-1}, which is the same as the number of subgroups of $D_{2^{n}}$ in $\langle x\rangle$, is n, and the sum of positive divisors of 2^{n-1}, which is the same as the number of subgroups of $D_{2^{n}}$ not contained in $\langle x\rangle$, is $2^{n}-1$.

Definition. For $n \geq 3$, we write

$$
Q_{2^{n}}:=\left\langle x, y \mid x^{2^{n-1}}=1, x^{2^{n-2}}=y^{2}, x y=y x^{-1}\right\rangle
$$

for the generalised quaternion group of order 2^{n}.
REmARK. $Q_{2^{n}}=\left\{1, x, \ldots, x^{2^{n-1}-1}, y, x y, \ldots, x^{2^{n-1}-1} y\right\}$. Each element of $\{y, x y$, $\left.\ldots, x^{2^{n-1}-1} y\right\}$ has order 4 in $Q_{2^{n}}$, and the element $x^{2^{n-2}}$ is the unique involution in $Q_{2^{n}}$.

Definition. For $n \geq 4$, we write

$$
S D_{2^{n}}:=\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, x y=y x^{2^{n-2}-1}\right\rangle
$$

for the semidihedral group of order 2^{n}.
Remark. $S D_{2^{n}}=\left\{1, x, \ldots, x^{2^{n-1}-1}, y, x y, \ldots, x^{2^{n-1}-1} y\right\}$. In $S D_{2^{n}}$, any element of $\left\{x y, x^{3} y, \ldots, x^{2^{n-1}-1} y\right\} \cup\left\{x^{2^{n-3}}, x^{-\left(2^{n-3}\right)}\right\}$ has order 4 while elements of $\{y$, $\left.x^{2} y, \ldots, x^{2^{n-1}-2} y\right\} \cup\left\{x^{2^{n-2}}\right\}$ are involutions. $S D_{2^{n}}$ contains $2^{n-2}+1$ involutions and $2^{n-2}+2$ elements of order 4 .

Lemma 14. Let G be any of the three 2-groups of maximal class. If A is a noncyclic proper normal subgroup of G, then $[G: A]=2$.

Proof. Let G be any of the three 2-groups of maximal class and of order 2^{n}, and let A be a noncyclic proper normal subgroup of G. Clearly, $A \not \subset\langle x\rangle$. Let $a \in A$ be such that $a \in\left\{y, x y, \ldots, x^{2^{n-1}-1} y\right\}$. Now, suppose G is either dihedral or generalised quaternion. We have that $a=x^{i} y$ for some $i \in\left\{0,1, \ldots, 2^{n-1}-1\right\}$. Using the relation $x y=y x^{-1}$, we obtain that $x a x^{-1}=x^{2}\left(x^{i} y\right)=x^{2} a$. As A is normal in G and $a \in A$, we deduce that $\left(x a x^{-1}\right) a^{-1}=x^{2} \in A$. So $\left\langle x^{2}\right\rangle \subseteq A$. Let G be a semidihedral group. If $a=x^{2 i+1} y$ for some $i \in\left\{0,1, \ldots, 2^{n-2}-1\right\}$, then using the relation $x y=y x^{2^{n-2}-1}$, we obtain that $x a x^{-1}=y x^{-2 i-3}$. Therefore $a\left(x a x^{-1}\right)=x^{2 i+1} y y x^{-2 i-3}=x^{-2}$. As A is normal in G and $a \in A$, we conclude that $x^{-2} \in A$; whence $\left\langle x^{-2}\right\rangle=\left\langle x^{2}\right\rangle \subseteq A$. If $a=x^{2 i} y$ for some $i \in\left\{0,1, \ldots, 2^{n-2}-1\right\}$, then using the relation $x y=y x^{2^{n-2}-1}$, we obtain that $x a x^{-1}=y x^{2^{n-2}-2 i-2}$. So $a\left(x a x^{-1}\right)=x^{2 i} y y x^{2^{n-2}-2 i-2}=x^{2^{n-2}-2} \in A$. But the order of $x^{2^{n-2}-2}$ is the same as the order of x^{2}; whence $\left\langle x^{2^{n-2}-2}\right\rangle=\left\langle x^{2}\right\rangle \subseteq A$. In all the cases, we have these three in common: $\left[G:\left\langle x^{2}\right\rangle\right]=4,\left\langle x^{2}\right\rangle \subseteq A \subseteq G$ and $\left\langle x^{2}\right\rangle \neq A \neq G$. Therefore $[G: A]=2$.

Proposition 15. Let G be any of the three 2-groups of maximal class, and of order 2^{n} for some $n \geq 4$. Given $k \in\{1,2, \ldots, n-2\}$, the number of subgroups of order 2^{n-k} is $2^{k}+1$.

Proof. Let $G=G_{2^{n}}$ be any of the three 2-groups of maximal class, and of order 2^{n} for some $n \geq 4$, and let $k \in\{1,2, \ldots, n-2\}$ be arbitrary. We show that there are $2^{k}+1$ subgroups of size 2^{n-k}. The first case $(k=1)$ follows from the well-known fact that there are 3 subgroups of index 2 in G; the subgroups of index 2 in G are

$$
\langle x\rangle,\left\langle x^{2}, y\right\rangle \text { and }\left\langle x^{2}, x y\right\rangle,
$$

where

$$
\langle x\rangle \cong C_{2^{n-1}} \text { and }\left\langle x^{2}, y\right\rangle \cong G_{2^{n-1}} \cong\left\langle x^{2}, x y\right\rangle
$$

Let H be a non-trivial subgroup of G. Recall that every non-trivial subgroup of a 2-group is contained in an index 2 -subgroup of the group. Let $k \in\{1,2, \ldots, n-2\}$, and suppose H is a subgroup of size 2^{n-k} in G. In the light of Lemma $14, H$ is contained in either $\langle x\rangle$ or one of the noncyclic subgroups of index 2 in any (noncyclic) subgroup of G which is isomorphic to $G_{2^{n-k+1}}$. But there are 2^{k} noncyclic subgroups of index 2^{k} in $G_{2^{n}}$ for any $k \in\{1,2, \ldots, n-2\}$, where $n \geq 4$. Thus, the subgroups of size 2^{n-k} (i.e., subgroups of index 2^{k}) in $G_{2^{n}}$ are the unique cyclic subgroup of size 2^{n-k} and the 2^{k} non-cyclic subgroups of index 2^{k}. Therefore there are $1+2^{k}$ subgroups of size 2^{n-k} in $G_{2^{n}}$.

Theorem 16. Given an integer $n \geq 3, s\left(Q_{2^{n}}\right)=2^{n-1}+n-1$ and $n p s\left(Q_{2^{n}}\right)=$ $2^{n-1}-1$.

Proof. In the light of Proposition 15, the number of subgroups of size 2^{k} in $Q_{2^{n}}$ and $D_{2^{n}}$ are equal for each $k \in\{2,3, \ldots, n-1\}$. As the the number of subgroups of index 2 in both D_{8} and Q_{8} is 3 , one sees immediately that the assertion is also true
for both D_{8} and Q_{8}. The distinction between the number of subgroups of various sizes in $Q_{2^{n}}$ and $D_{2^{n}}$ (where $n \geq 3$) is in the subgroups of size 2. In particular, we have only one subgroup of size 2 in $Q_{2^{n}}$ as opposed in $D_{2^{n}}$, where there are $2^{n-1}+1$ subgroups of size 2 . Thus,

$$
\begin{aligned}
s\left(Q_{2^{n}}\right) & =s\left(D_{2^{n}}\right)-\left(2^{n-1}+1\right)+1 \\
& =2^{n-1}+n-1(\text { by Corollary } 13)
\end{aligned}
$$

For the second part, let $m \in \mathbb{N} \cup\{0\}$ be arbitrary, and $G=Q_{2^{n}}$ for $n \geq 3$. Firstly, $G^{4 m+1}=\left\langle 1, x^{4 m+1}, \ldots, x^{-(4 m+1)}, y, x y, \ldots, x^{2^{n-1}-1} y\right\rangle$. But $\{1, y, x y, \ldots$, $\left.x^{2^{n-1}-1} y\right\} \subseteq G^{4 m+1}$; whence $\left|G^{4 m+1}\right|>\frac{1}{2}|G|$. As $G^{4 m+1}$ is a subgroup of G, we conclude that $G^{4 m+1}=G$. Secondly, $G^{4 m+3}=\left\langle 1, x^{4 m+3}, \ldots, x^{-(4 m+3)}, y^{-1}\right.$, $\left.(x y)^{-1}, \ldots,\left(x^{2^{n-1}-1} y\right)^{-1}\right\rangle$. As $\left|\left\{1, y^{-1},(x y)^{-1}, \ldots,\left(x^{2^{n-1}-1} y\right)^{-1}\right\}\right|>\frac{1}{2}|G|$, we deduce that $G^{4 m+3}=G$. Thirdly, $G^{4 m+2}=\left\langle 1, x^{4 m+2}, \ldots, x^{-(4 m+2)}, x^{2^{n-2}}\right\rangle=$ $\left\langle x^{2}\right\rangle \cong C_{2^{n-2}}$. Finally, $G^{4 m}=\left\langle 1, x^{4 m}, x^{8 m}, \ldots, x^{-8 m}, x^{-4 m}\right\rangle=\left\langle x^{4 m}\right\rangle$. If $G=Q_{8}$, then $\left\langle x^{4 m}\right\rangle \cong\{1\}$. If $G=Q_{16}$, then $\left\langle x^{4 m}\right\rangle \cong\{1\}$ or $\left\langle x^{4}\right\rangle$, where $\left\langle x^{4}\right\rangle \cong C_{2}$. Now, let $n \geq 5$, and suppose $\left\langle x^{4 m}\right\rangle \neq\{1\}$. Then $\left\langle x^{4 m}\right\rangle$ is exactly one of the following occuring subgroups of $Q_{2^{n}}$:

$$
\left\langle x^{2^{n-2}}\right\rangle,\left\langle x^{2^{n-3}}\right\rangle, \ldots,\left\langle x^{4}\right\rangle
$$

where

$$
\left\langle x^{2^{n-2}}\right\rangle \cong C_{2},\left\langle x^{2^{n-3}}\right\rangle \cong C_{4}, \ldots,\left\langle x^{4}\right\rangle \cong C_{2^{n-3}}
$$

Therefore, $p s\left(Q_{2^{n}}\right)=n$; whence $n p s\left(Q_{2^{n}}\right)=2^{n-1}+(n-1)-n=2^{n-1}-1$.

Theorem 17. Given an integer $n \geq 4$,

$$
s\left(S D_{2^{n}}\right)=3\left(2^{n-2}\right)+n-1 \text { and } n p s\left(S D_{2^{n}}\right)=3\left(2^{n-2}\right)-1
$$

Proof. In the light of Proposition 15, the number of subgroups of size 2^{k} in $S D_{2^{n}}$ and $D_{2^{n}}$ are equal for each $k \in\{2,3, \ldots, n-1\}$. The distinction between the number of subgroups of various sizes in $S D_{2^{n}}$ and $D_{2^{n}}$ is in the subgroups of size 2. In particular, we have only $2^{n-2}+1$ subgroups of size 2 in $S D_{2^{n}}$ whilst there are $2^{n-1}+1$ subgroups of size 2 in $D_{2^{n}}$. Thus,

$$
\begin{aligned}
s\left(S D_{2^{n}}\right) & =s\left(D_{2^{n}}\right)-\left(2^{n-1}+1\right)+\left(2^{n-2}+1\right) \\
& =3\left(2^{n-2}\right)+n-1(\text { by Corollary } 13)
\end{aligned}
$$

For the second part, let $m \in \mathbb{N} \cup\{0\}$ be arbitrary, and $G=S D_{2^{n}}$ for $n \geq 4$. Then

$$
G^{4 m+1}=G=G^{4 m+3}
$$

follows from similar arguments as in the proof of Theorem 16. On the other hand, the results for $G^{4 m}$ and $G^{4 m+2}$ are also the same with the results for the generalised quaternion cases. Thus, $p s\left(S D_{2^{n}}\right)=n$; whence $n p s\left(S D_{2^{n}}\right)=$ $3\left(2^{n-2}\right)+(n-1)-n=3\left(2^{n-2}\right)-1$.

Acknowledgement. The first author was supported by the Austrian Science Fund (FWF): P30934-N35, F05503 and F05510.

References

1. Y. Berkovich, Groups of prime power order, Volume 1, De Gruyter Expositions in Mathematics, Vol. 46, De Gruyter, Berlin, 2008.
2. S. Cavior, The subgroups of dihedral groups, Mathematics Magazine 48 (1975), 107.
3. M. Sved, Gaussians and Binomials, Ars Combinatoria 17A (1984), 325-351.
4. W. Zhou, W. Shi, and Z. Duan, A new criterion for finite noncyclic groups, Communications in Algebra 34 (2006), 4453-4457.

Received 22 December, 2020.

