Appendix A

Proof of Lemma 1

(a) follows after Rayleigh fading assumption and (b) is obtained after applying PGFL of PPP in polar coordinate form. Solving the integral and making $\gamma=\frac{2 \pi}{\alpha}$, (c) is obtained. This completes the proof.

Appendix B

Proof of Lemma 5

$$
\begin{gathered}
I_{s p}=\sum_{x_{i}^{s} \in \Phi_{s} \cap \Xi_{R}^{c} \cap \Xi_{d}^{c}} P_{s} h_{x}\left\|y_{i}^{p}\right\|^{-\alpha} \\
\mathcal{L}_{I_{s p}}(s)=E\left\{\exp \left(-s \sum_{x_{i}^{s} \in \Phi_{s} \cap \Xi_{R}^{c} \cap \Xi_{d}^{c}} P_{s} h_{x}\left\|_{i}^{p}\right\|^{-\alpha}\right)\right\}
\end{gathered}
$$

$$
\stackrel{(a)}{=} \exp \left\{-\lambda_{s} \int_{R^{2} \backslash \Xi_{R}} \frac{1}{1+\frac{\|y\|^{\alpha}}{s P_{s}}} d y\right\} \exp \left\{\lambda_{s} \int_{\Xi_{d}} \frac{1}{1+\frac{\|y\|^{\alpha}}{s P_{s}}} d y\right\} \stackrel{(c)}{\leq} E_{\Phi}\left\{\prod_{x_{i}^{s} \in \Phi_{s}^{11}} \exp \left(2 \int_{w-d}^{w+d}\left(\frac{-d^{2}+w^{2}+r^{2}}{2 w r}\right) \frac{r}{1+\frac{r^{\alpha}}{s P_{s}}} d r\right\}\right.
$$

Note that our interest is in obtaining interference from SUs in the space except SUs located inside any disk $b\left(y_{i}^{s}, d\right)$, where $y_{i}^{s}(i=1, \ldots n)$ is a typical active secondary receiver assumed to be located at the origin of a disk of radius d. Since interfering SUs cannot be located inside active PUs' exclusion region, the idea is to capture interference generated outside all disks $b\left(y_{i}^{p}, R\right)$ and $b\left(y_{i}^{s}, d\right)$, bearing in mind that there may be overlap of protection regions. To do this, we refer to Fig. 1. The first part of (a) gives

$$
\begin{gathered}
\stackrel{(b)}{=} \exp \left\{-\pi \frac{\gamma \lambda_{s}\left(s P_{s}\right)^{\frac{\gamma}{\pi}}}{\sin (\gamma)}\right\} \times \\
\exp \left\{\lambda_{s} \prod_{x_{i}^{p} \in \Phi_{p}^{1}} \iint_{r, \theta \in b(y, R)} \frac{r}{1+\frac{r^{\alpha}}{s P_{s}}} d r d \theta\right\}
\end{gathered}
$$

(b) involves application of PGFL of PPP in polar coordinate form. From Fig. 1, each PU has a circle centered at its primary receiver with protection region R denoted as $b\left(y_{i}^{p}, R\right)$. Hence, r should be bounded in the range $v-R \leq r \leq v+R$ and for every r within that range, θ should be bounded in

Fig. 1. Area of integration under PU with SU interference control
the range $-\cos ^{-1}\left(\frac{-D^{2}+v^{2}+r^{2}}{2 v r}\right) \leq \theta \leq \cos ^{-1}\left(\frac{-D^{2}+v^{2}+r^{2}}{2 v r}\right)$ following the cosine rule. Hence,

$$
\begin{gathered}
\exp \left\{-\lambda_{s} \int_{R^{2} \backslash \Xi_{R}} \frac{1}{1+\frac{\|y\|^{\alpha}}{s P_{s}}} d y\right\} \leq \exp \left\{-\pi \frac{\gamma \lambda_{s}\left(s P_{s}\right)^{\frac{\gamma}{\pi}}}{\sin (\gamma)}\right\} \\
\exp \left\{-2 \pi \lambda_{p}^{1} \int_{R}^{\infty}(1-\exp (f(v))) v d v\right\}
\end{gathered}
$$

where $f(v)=\int_{v-R}^{v+R} \cos ^{-1}\left(\frac{-R^{2}+v^{2}+r^{2}}{2 v r}\right) \frac{2 \lambda_{s} r}{1+\frac{r}{s P_{s}}} d r$. Now, we solve the second integral.

$$
\int_{\Xi_{d}} \frac{1}{1+\frac{\|y \mid\|^{\alpha}}{s P_{s}}} d y=E_{\Phi_{s}^{11}}\left\{\prod_{x_{i}^{s} \in \Phi_{s}^{11}} \int_{b\left(x_{i}^{s}, d\right)} \frac{1}{1+\frac{\|y\|^{\alpha}}{s P_{s}}}\right\}
$$

Hence,

$$
\begin{gathered}
\exp \left\{\lambda_{s} \int_{\Xi_{d}} \frac{1}{1+\frac{\|y\|^{\alpha}}{s P_{s}}} d y\right\} \stackrel{(d)}{\leq} \\
\exp \left\{-2 \pi \lambda_{s}^{11} \int_{d}^{\infty}(1-\exp (f(w))) w d w\right\} .
\end{gathered}
$$

(c) and (d) follow applying PGFL of PPP in polar coordinate form. Substituting the solutions of the first and second integrals back into (a) gives Lemma 5. This completes the proof.

$$
\begin{aligned}
& I_{p p}=\sum_{x_{i}^{p} \in \Phi_{p}^{1} \backslash x_{k}^{p}} P_{p} h_{X}\left\|y_{i}^{p}\right\|^{-\alpha} \\
& \mathcal{L}_{I_{p p}}(s)=E\left\{\exp \left(-s \sum_{x_{i}^{p} \in \Phi_{p}^{1} \backslash x_{k}^{p}} P_{p} h_{X}\left\|y_{i}^{p}\right\|^{-\alpha}\right)\right\} \\
& =E_{\Phi}\left\{\prod_{x_{i}^{p} \in \Phi_{p}^{1}} E_{h_{X}}\left(\exp \left(-s P_{p} h_{X}\left\|y_{i}^{p}\right\|^{-\alpha}\right)\right)\right\} \\
& \stackrel{(a)}{=} E_{\Phi}\left\{\prod_{x_{i}^{p} \in \Phi_{p}^{1}} \frac{1}{1+s P_{p}\left\|y_{i}^{p}\right\|^{-\alpha}}\right\} \\
& \stackrel{(b)}{=} \exp \left\{-2 \pi \lambda_{p}^{1} \int_{0}^{\infty} \frac{r}{1+\frac{r^{\alpha}}{s P_{p}}} d r\right\} \\
& \stackrel{(c)}{=} \exp \left\{-\pi \frac{\gamma \lambda_{p}^{1}\left(s P_{p}\right)^{\frac{\gamma}{\pi}}}{\sin (\gamma)}\right\}
\end{aligned}
$$

