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APPENDIX A
PROOF OF LEMMA 1
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(a) follows after Rayleigh fading assumption and (b) is ob-
tained after applying PGFL of PPP in polar coordinate form.
Solving the integral and making γ = 2π

α , (c) is obtained. This
completes the proof.
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Note that our interest is in obtaining interference from SUs
in the space except SUs located inside any disk b(ysi , d),
where ysi (i = 1, ...n) is a typical active secondary receiver
assumed to be located at the origin of a disk of radius
d. Since interfering SUs cannot be located inside active
PUs’ exclusion region, the idea is to capture interference
generated outside all disks b(ypi , R) and b(ysi , d), bearing in
mind that there may be overlap of protection regions. To do
this, we refer to Fig. 1. The first part of (a) gives
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(b) involves application of PGFL of PPP in polar coordinate
form. From Fig. 1, each PU has a circle centered at its pri-
mary receiver with protection region R denoted as b(ypi , R).
Hence, r should be bounded in the range v−R ≤ r ≤ v+R
and for every r within that range, θ should be bounded in

Fig. 1. Area of integration under PU with SU interference control
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(c) and (d) follow applying PGFL of PPP in polar coordinate
form. Substituting the solutions of the first and second
integrals back into (a) gives Lemma 5. This completes the
proof.


