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Abstract

A comparative performance analysis of two spectral methods on the hyperchaotic finance
system (HCFS) and the cryptocurrency pricing problem (CPP) is proposed. The first ap-
proach uses a differentiation matrix, the second method considers an integration matrix on
a single and multiple domains when the time intervals are large. Numerical simulations are
performed against the well established numerical method, Chebfun. It turns out that the
spectral method using integration matrix is more efficient than the other methods on both
problems.
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1. Introduction

Nonlinear chaotic systems have attracted many research works in the area of physics,
control theory, telecommunication artificial neural networks, biological networks, chemical
reactors, etc. They can describe the evolution of more complex systems in a reasonable
manner.

In the area of economics, the phenomenon of chaos was first discovered in 1985 and
later it was found in finance by Ma and Chen [12, 11]. Financial system dynamics have a
significant role in micro-economics. They become more and more complicated with economic
growth and contain many complex factors such as interest rate, the price of goods, investment
demand and stock. A typical case of an appearance of chaos in the financial system took place
during the world economic crisis where in 2007, the U.S subprime mortgage crisis triggered
the global economic crisis showing thus the existence of chaos in the finance system.

Over the past few years, many more hyperchaotic systems have been discovered in the
high-dimensional social economical systems. A hyperchaotic system is usually defined as a
chaotic system with at least two positive Lyapunov exponents. Jahanshahi et al. [13, 14, 15]
gives a good analysis of the dynamics of behaviour in varying several parameters and initial
conditions. Furthermore, a synchronization via sliding mode control and fuzzy method is
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provided. See also [21, 22, 26] for more details.

In addition to hyperchaotic system, we look at cryptocurrency pricing problem, which
comes with the world digital revolution. As the concepts stands new, very few literature is
found around cryptocurrency, however one can mention that a cryptocurrency is essentially
a type of digital asset used as money in a sense of the Austrian school of economics, i.e.
money emerges from a competition of medium of exchanges [3, 23]. A cryptocurrency value
is dictated by the supply and demand in a free economy where the intervention of any entity
or government is not possible in the issuance of its new units as to opposed fiat currencies.
From an asset flow perspective the pricing of cryptocurrency involves the resolution of non-
linear systems of ODEs [4].

In general, analytical solutions for the nonlinear chaotic systems are almost unachievable.
Therefore, we rely on numerical methods for computation of solutions since the HCFS is
actually a dynamical system that is described by a set of nonlinear ODEs. However most
methods used to solve hyperchaotic systems based on finite difference methods [20, 19],
finite elements [16], homotopy analysis or perturbation methods (HAM/HPM) together with
Adomian decomposition [7], etc. are known to suffer from the curse of dimensionality [1, 18]
and sometimes not capable of handling stiffness issues [9] that may arise in financial systems.

In this paper, we perform a comparative analysis of robust spectral methods to numer-
ically solve hyperchaotic finance and cryptocurrency systems. Spectral methods, however,
have the advantage of being fast converging methods. Their truncation error decays as fast
as the global smoothness of the underlying solution permits, their definite integrals are cal-
culated once by the quadrature rule [8].

Various modified and quadrature rules can be found in the literature of spectral methods,
including quadratures based on Chebyshev polynomials. The shifted Chebyshev-Tau method
is used to solve the Klein-Gordon equation [10]. An extension of this method is applied in the
case of fractional differential equations [5]. Bhrawy [2] introduces an operational matrix to
the shifted Chebyshev method to generate an even faster algorithm for fractional integration
in the sense that only a small number of shifted Chebyshev polynomials is needed to obtain
satisfactory results. Driscoll [6] presents a fast practical algorithm based on operational ma-
trices in which the matrices have a lower density. Trefethen [24] proposed a Matlab package
known as Chebfun, that exploits results from approximation theory, spectral methods, and
object-oriented software design. Trif [25] introduced the chebpack package that is based on
the Chebyshev-Tau method where the focus is more on the spectral space of coefficients
rather than the physical space. This approach takes advantage of the spectral properties of
Chebyshev polynomials resulting in sparse upper triangular matrices that allow to achieve
a tremendous gain in the computation.

In this paper, we use the technique proposed in Trif [25] to construct spectral methods
coupled with a domain decomposition to solve the HCFS and the cryptocurrency pricing
problem (CPP) using the integral and differential approaches. The methods are not entirely
new, but the combinations are very novel.

The rest of the paper is organised as follows, Section 2 presents the spectral methods
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based on Chebyshev polynomials. In Section 3, we apply these numerical methods to the
HCFS and CPP, and compare the results with solutions obtained from Chebfun. The last
section is allocated to the conclusion.

2. Chebyshev polynomials

The Chebyshev polynomial Tn(x) of 1st kind is a polynomial in x ∈ [−1, 1] of degree
n > 0 defined by the relation:

Tn(x) = cosnθ, for x = cos θ

ie. Tn(x) = cos(n arccos(x))

Note that the definition of the Chebyshev polynomials can easily be extended to any interval
[a, b] by just applying a shift mapping s : x → s(x) = 2

b−ax −
b+a
b−a . For this reason we shall

work on the interval [−1, 1] then apply the inverse shift mapping we can always get back to
any interval [a, b].
From the trigonometric relation.

cos(nθ) + cos(n− 2)θ = 2 cos θ cos(n− 1)θ (2.1)

we get

T0(x) = 1, (2.2)

T1(x) = x, (2.3)

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ... (2.4)

Which in turn can be expressed in a matrix form as:
1
−2x 1

1 −2x 1
. . . . . . . . .

1 −2x 1




T0(x)
T1(x)
T2(x)

...
Tn(x)

 =


1
−x
0
...
0

 . (2.5)

The zeros of Tn are the points

xk = − cos
(k − 1

2
)π

n
, k = 1, 2, . . . , n. (2.6)

The set {xk}k is termed as collocation points, also called Chebyshev points of first kind.
For any point x, the set {T0(x), T1(x), . . . } is an orthogonal basis according to the weighted
inner product defined by:

< f, g >=

∫ 1

−1

f(x)g(x)√
1− x2

dx (2.7)

for any continuous function f, g defined on [−1, 1]. This means that for any polynomial of
degree n > 0, there exists a unique set of coefficients {c1, c2, ..., cn} such that

pn(x) =
n∑
k=0

ckTk(x). (2.8)
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Considering that polynomials are dense in C ([−1, 1]), and since the set of Chebyshev poly-
nomials is complete, therefore we have the following theorem

Theorem 2.1. Let f be a Lipschitz continuous function on the interval [-1,1]. Then f admits
a unique representation as a series of the form:

u(x) =
c0

2
+
∞∑
k=1

ckTk(x). (2.9)

where Tk(x) are Chebyshev polynomials,

ck =
2

π

∫ 1

−1

u(x)Tk(x)√
1− x2

dx, k = 0, 1, 2, 3, ... (2.10)

This series converges uniformly and absolutely.

A Chebyshev approximation of order n > 0 of a function u continuous on an interval
[−1, 1] is defined as

un(x) =
n∑
k=0

ckTk(x) (2.11)

= c · T (x) (2.12)

where c = (c0, c1, . . . , cn) is the coefficient vector associated with the approximation un. It is
usually termed as the spectral representation of fn. The set of Chebyshev coefficient vectors
{c} of continuous functions on [−1, 1] is referred to as the frequency space.

For simplicity of notation, we shall write u(x) in place of un(x) to denote the Chebyshev
approximation of order n of u at x. Another discrete representation of the function u is to
directly interpolate u at the collocation points x′ks. This means u can be represented by a
vector v of its values on the grid x = (x0, x1, ..., xn), that is v = (u(x0), u(x1), ..., u(xn)). We
shall call v the physical representation of u.
On the collocation point, one writes

v(x) = T (x).c (2.13)

(v(x0), ..., v(xn)) =

(
n∑
k=0

ckTk(x0), ...,
n∑
k=0

ckTk(xn)

)
, (2.14)

where T is the matrix defined as follows

T =


T0(x0) T1(x0) . . . Tn(x0)
T0(x1) T1(x1) . . . Tn(x1)

...
. . .

...
T0(xn) T1(xn) . . . Tn(xn)

 .
Since

v = Tc

implying c = T−1v.

From the nature of T ′ks, the matrix T is sparse and FFT enables to get T−1.
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2.1. Some useful properties

Consider two functions a and u of a variable x, with spectral representation a and u
respectively. Then the product a(x) · u(x) admits also a spectral representation, denoted as
φ which is defined as:

φ = a.c (2.15)

where a is termed as the matrix representation of the function a(x) and c is the spectral
representation of function u, see [6].
An efficient way of getting the matrix a is to write the product in its discrete form.

Since a(x)f(x) =

[
n∑
k=0

akTk(x)

][
n∑
k=0

ckTk(x)

]
, (2.16)

then
n∑
k=0

φkTk(x) =
n∑
k=0

n∑
l=0

αklakclTkTl (2.17)

for some coefficients αkl, 0 ≤ k, l ≤ n. In addition, Given the following relation

Tk(x)Tl(x) =
1

2

[
Tk+l(x) + T|k−l|(x)

]
, for all k, l = 0, 1, ...n (2.18)

and in rearranging terms properly, it brings to existence a matrix a such that

n∑
k=0

φkTk(x) =
n∑
k=0

[
n∑
l=0

aklcl

]
Tk(x).

In the frequency space, this will write as:

φ = ac. (2.19)

2.2. Differentiation and integration

Recall again equation (2.11) and differentiate it

u′(x) =
n∑
k=0

ckT
′
k(x). (2.20)

The differentiation of relation (2.4) and relation (2.3) gives

T0 = T ′1 (2.21)

T1 =
T ′2
2

(2.22)

Tn+1(x) = nT ′n−1(x)− 2(1− x2)T ′n(x) (2.23)

ie. Tn =
T ′n+1

2(n+ 1)
−

T ′n−1

2(n− 1)
, n = 2, 3, ... (2.24)

Inserting this back into (2.20) shows the existence of a matrix D = (dkl)0<k,l<n such that

n∑
k=0

c′kTk(x) =
n∑
k=0

n∑
l=0

dklclTk(x) (2.25)

ie. c′ = Dc (2.26)
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where c′ stands for the spectral representation of the derivative function u′. Moreover, D is
a sparse upper triangular matrix, with the following properties

dkl = 0, for k ≤ l,
dkl = 0, if l − k is even,
dkl = 2k, if l − k is odd.

(2.27)

Applying the above result recursively we get the spectral representation c(p) of the derivative
at order p of u as:

c(p) = Dpc. (2.28)

For the case of integration, recall again relation

Tn+1(x) = nTn−1(x)− 2(1− x2)Tn(x) (2.29)∫
Tn(x)dx =

1

2

[Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

]
, n = 2, 3, (2.30)∫

T1(x)dx =
1

4
T2(x), (2.31)∫

T0(x)dx =
1

2
T1(x). (2.32)

As a linear operator, the integral of u will also be a continuous Lipschitz function in [−1, 1],
which will in turn have a unique expansion series of the form∫

u(x)dx =
n∑
k=0

IkTk(x), x ∈ [a, b]

where Ik’s are coefficients of the integral of u, and similarly as with differentiation there
exists a n× n-matrix J such that

Ik =
n∑
l=0

Jklcl (2.33)

or simply
I = J · c (2.34)

where I is the spectral representation of the integral of u. In fact,∫
u(x)dx =

∫ n−1∑
k=0

ckTk(x)

i.e
n−1∑
k=0

IkTk(x) =

∫ n−1∑
k=0

ckTk(x) dx

=
n−1∑
k=0

ck

∫
Tk(x) dx

n−1∑
k=0

n−1∑
j=2

JkjcjTk(x) =
n∑
k=2

ck
1

2

[ Tk+1

k + 1
− Tk−1

k − 1

]
.
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Performing a smart multiplication and rearranging terms we get the coefficients of J recur-
sively as follows:

Jkk = 0, J01 =
1

2
, Jk,k−1 = −Jkk+1 =

1

k
.

So then, the spectral representation of the integral of u is the vector d = J.c, and for any
continuous function a(x), the corresponding spectral representation for the integral of the
product a(x)u(x) is J a c where a is the matrix representation of a. We write∫

a(x)u(x)dx→ J a c. (2.35)

Consequently it can be seen with the help of elementary technique of integration by parts
that ∫

a1(x)u′(x)dx → (I − JD)a1 c∫ ∫
a2(x)u”(x)dx → (I − JD)2a2 c.∫ ∫ ∫
a3(x)

d3u

dx3
(x)dx → (I − JD)3a3 c

...∫
...

∫
am(x)

dmu

dxm
(x)dx...dx → (I − JD)mam c

where I stands for the identity matrix. Thus, for a general linear differential operator L

L u(x) =
m∑
i=0

ai(x)
diu

dxi
(x) (2.36)

we have

∫
...

∫
L u(x)dxm →

m∑
i=0

Jm−i(I − JD)iai c. (2.37)

The matrix

A =
m∑
i=0

Jm−i(I − JD)iai (2.38)

is the spectral representation of the integral operator of L.

Consider a general differential equation Au = f of order m for which the differential
operator can be written as A = L+N , where L and N are respectively the linear part and
the nonlinear part. The differential equation then writes as

Lu(t) +Nu(t) = f(t), (2.39)

Lu(t) = −Nu(t) + f(t) (2.40)
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Using the differential approach the equation (2.40) is directly taken into its spectral repre-
sentation

m∑
k=0

Dkc = −n + f̃, (2.41)

Ac = f, (2.42)

implying c = A−1 (f) , (2.43)

for some A =
∑m

k=0D
k, where n, f̃ are the spectral representation of Nu and f respec-

tively, and f = −n + f̃.
Using the integral approach, we first take the integral of the equation (2.40) then write

the resulting equation into its spectral form. That is,∫
...

∫
Lu(t)→ Ac = −n + Jmf, (2.44)

Ac = f, (2.45)

implying c = A−1f (2.46)

where n is the spectral representation of the integral of Nu at order m, and f = −n+Jmf
is the spectral representation of −Nu + f(t). We use the following algorithm 1 for both
differentiation and integration method:

Algorithm 1 Pseudo code

1: u0 ← initial solution
2: INITIALIZE L
3: Evaluate N , and f at u0

4: u := L−1 ∗ (N + f)
5: while ‖u− u0‖ > ε do
6: u0 ← u
7: Evaluate N , and f at u0

8: u = L−1 ∗ (N + f)

9: RETURN u

2.3. The multistep Spectral Method

For this section we consider Ih to be a mesh on the interval [0, T ] and N be the number
of subintervals and

Ih := {tk : 0 = t0 < t1 < · · · < tN = T} .

We denote by Λk = [tk−1, tk], hk = tk − tk−1 and uk(t) the solution of (2.39) on the k-th
element, namely

uk(t) = u(t), ∀t ∈ Λk, 1 ≤ k ≤ N.

Let Mk > 0 be an integer and consider PMk
to be the space of polynomials of order at most

Mk built on Λk. We apply the spectral method as described in algorithm 1 to obtain a
numerical solution UMk

∈ PMk
on Λk. The spectral method using integral or differentiation
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approach, on the interval [0, T ] consists of a successive application of the spectral method
on each Λk to obtain a global numerical solution UM(t) of (2.39) defined such that:

UM(t) = UMk
(t), t ∈ Λk, 1 ≤ k ≤ N.

where M is taken to be the smallest of the Mks: that is, M = inf0<k≤N Mk.
For each subinterval [ti, ti+1], the equation (2.45) is applied.

A(i)c(i) = f(i), i = 0, ...,m− 1. (2.47)

The overall matrix A of the entire problem is then a diagonal matrix of the block matrices
A(i). 

A(1) 0
0 A(2) 0

. . . . . .

0 A(m)




c(1)

c(2)

...
c(m)

 =


f(1)

f(2)

...

f(m)

 (2.48)

By inversion of the matrix A(i) on each domain Λi, we obtain c(i) and therefore uMi
which is

UM on Λi.
In this case a global error can arise and jeopardise the convergence. However the following

theorem 2.2 still guarantees an exponential convergence even after discretization.

Theorem 2.2. Assume that u belongs to the broken Sobolev space: u ∈ H1(0, T ) and u|Λk
∈

Hrk(Λk), 1 ≤ k ≤ N with integers 2 ≤ rk ≤ Mk + 1, and there exists a constant L ≥ 0 such
that for any z1 and z2,

|f(z1, t)− f(z2, t)| ≤ L|z1 − z2|. (2.49)

Then for
2
√

2πhmaxL ≤ β < 1, (2.50)

we have

‖u− UM‖2
H1(0,T ) ≤ cβT exp(cβT )

N∑
i=1

h2ri−2
i M2−2ri

i |u|2Hri (Λ), (2.51)

where cβ is a positive constant depending only on β.

Where Λk = [tk−1, tk], hk = tk−tk−1 and the constant Mk is of the order of the Chebyshev
polynomial of approximation uk defined on Λk. The proof can be found in [12, 27].

3. Applications and numerical results on the hyperchaotic finance system

In this section, we apply our methods to HCFS and CPP then test the convergence, and
efficiency of the proposed methods. Since the exact solution is not available we choose the
ODE15s with relative and absolute tolerance 10−14 to serve as the benchmark solution. The
error E we consider is the maximal error given by:

||E|| = ||SolBenchmark − SolNumerical||∞. (3.52)

Let us now apply the above technique described in Section 2 to the nonlinear hyperchaotic
problems and cryptocurrency pricing problem.
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3.1. The hyperchaotic finance system

It has been shown (see Zhao et al. [29]) that four sub-blocks actually drive the dynamics
of the finance model: production, money, stocks and labor force. Their interaction is re-
ported by three nonlinear differential equations defining what is termed as the chaotic finance
system. Technically and more explicitly, the finance system describes the time variation of
three main state variable: the interest rate x, the investment demand y and the price index
of stock z. The interest rate is an amount expressed as the percentage of the principal by
lender to a borrower for an asset. The investment demand can be defined as the desired
capital and inventories by firms. The chaotics finance system is expressed as follows:

ẋ = z + (y − a)x,
ẏ = 1− by − x2,
ż = −x− cz,

(3.53)

where the parameters a, b, c are respectively the saving, the per-investment cost and the
elasticity of the demand [17]. These parameters are all considered to be non-negative and
constant. From the chaotic finance system (3.53) Yu et al. [28] found that the factors
affecting the interest rates are related not only to investment demand and price index but
also to the average profit margin. Moreover, the average profit margin and interest rate
are proportional. Hence an improved chaotic finance system is constructed by including an
additional state variable w that will stand for the average profit margin. The system is now
of four dimensional differential equations:

ẋ = z + (y − a)x+ w,
ẏ = 1− by − x2,
ż = −x− cz,
ẇ = −d xy − ew.

(3.54)

In oder to apply our numerical methods based on spectral Chebyshev methods, we first
write the system in the framework of Equation (2.40). That is,

ẋ+ ax− z − w = xy,
ẏ + by = 1− x2,
ż + x+ cz = 0,
ẇ + ew = −d xy,

(3.55)

which can also be written as:

a u′(t) +B u(t) = f(t), t ∈ [0, T ] (3.56)

where a = (1, 1, 1, 1), u(t) = [x(t), y(t), z(t), w(t)] , B =


a 0 −1 −1
0 b 0 0
1 0 c 0
0 0 0 e

 and f(t) =

[x(t)y(t), 1− x2(t), 0,−d x(t)y(t)].
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The spectral representation of the Equation (3.56) is
D + aI 0 −I −I

0 D + bI 0 0
Id 0 D + cI 0
0 0 0 D + eI




x
y
z
w

 =


f1

f2

f3

f4

 (3.57)

where x, y, z, w are the spectral representation of the unknown functions [x(t), y(t), z(t), w(t)]
respectively, and similarly [f1, f2, f3, f4] which represent the coefficient vectors of the nonlinear
part [xy, 1− x2, 0, dxy] respectively.

On the other hand we can approach the hyperchaotic problem by integration first then
apply Chebychev approximation to the resulting integral problem.

It is not difficult to see that the Chebyshev approximation of problem (3.54) at order n
in the space of Chebyshev polynomials after integration yields the following simultaneous
equations 

(I + aJ)x− Jz− Jw = f1

(I + bJ)y = f2

(I + cJ)z + Jx = f3

(I + eJ)w = f4

(3.58)

where x, y, z, w are defined as above, and similarly [f1, f2, f3, f4] which represent the coef-
ficient vectors of the integral of the nonlinear part [xy, 1− x2, 0, dxy] respectively. In other
words, 

I + aJ 0 −J −J
0 I + bJ 0 0
J 0 I + cJ 0
0 0 0 I + eJ




x
y
z
w

 =


f1

f2

f3

f4

 (3.59)

The two approaches generates nonlinear problem, we will apply an iterative method to
equations (3.59) and (3.57). The aim is to get the coefficient vector c of u(t) = [x(t), y(t), z(t)].
Lets then consider the fix point problem

Ac = f. (3.60)

We shall start with an initial guess coming out of the initial condition then get the new c
by c = A−1f where the old c is used to compute f in the iterations. Keeping in mind that
the chaotic finance (3.54) is also highly nonlinear on some interval, and in order to speed up
convergence we suggest the use of a splitting method on the interval [0, T ] into N -domains
0 = t0 < t1 < ... < tN = T and apply the spectral methods.

The results are implemented for a = 0.9, b = 0.2, c = 1.2, d = 0.2, e = 0.17. Figure 1
shows the phase portraits between variables for a long time T = 200. They both exhibit
chaos as expected.

The solution functions x(t), y(t), z(t), w(t) are plotted in Figure 2 where a 3-domains
decomposition has been used with 16 collocation points per domain and T = 5. It is clear,
the numerical solutions from both spectral approaches match the benchmark solution from
ODE15s.
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Figure 1: phase potraits 2D and 3D

We go on into investigating the effect of n and N on the decay error. Figure 3a shows
that employing more collocation points on a domain enhances the precision of the numerical
solution both from integration as well as differentiation method. It is also remarkable to see
that while it takes close 80 points for Chebfun to reach an accuracy of 10−4, the integral and
differentiation spectral methods only require 20 points to achieve same accuracy. However
the later methods tend to slightly lose this quality as the number of points gets larger (here
n = 120) as compare to Chebfun. This makes us consider a domain decomposition of the
interval [0, T ]. Introducing decompositions (2 and 4 sub-intervals) the spectral decay is re-
covered, see Figure 3b and 3c and better accuracy is obtained.

However, better accuracy can also bring along a cost in time. Figure 3e presents the
efficiency of the three methods. From the reading of that plot one can see that the spectral
integral method outperforms better than the other two methods on the hyperchaotic finance
system for time T = 5. In fact, it takes 0.01s for the integral method to achieve a precision
error of order 10−4 while the differentiation method and Chebfun would take respectively
1.25 and 3.2 times more. The reason for such is mainly due to the level of sparsity of the
matrices generated by the schemes. Figure 5 shows the sparsity structures of matrices gener-
ated for each method. The integral method has a matrix structure more porous than others,
giving it the advantage to be invertible faster than the matrix from differentiation method
which is upper triangular, and also matrix from chebfun which is full.

Another point to consider is the factor T . It is worth observing that during the course
of our simulations, the differentiation method starts malperforming when the size of the
domain gets greater than 2 and same remark would apply to the integral method but for
T > 4. For this additional reason, as T gets larger, we shall again require to decompose our
interval [0, T ] into multiple domains. The same remark also holds for Chebfun, it degenerates
whenever T > 11 as shown in Figure 3d. The remedy is the same, one has to consider a
domain decomposition into sub-intervals. Doing so turns out also to produce improvement
in the CPU running time. For instance Figure 4 shows that using 8-domains decomposition,
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Figure 2: plot of x, y, z, w variables using 3 domains and 16 collocation pts and T = 5

the integral method takes 0.1s to achieve an accuracy of order 10−8, while it would take
1s reach the same level of precision when using a singe domain only. The same observation
appears in the differentiation method (see Figure 4b) where it takes 1320s ie. 23min to obtain
an error of order 10−12 and will require 2048 points using one domain but with 8-domains
decomposition the algorithm will take less that 2min using differentiation method and less
than 1min using the integral method and obtain nearly same accuracy with the very same
total number of points 2048. In all cases, still the integral method performs faster than the
differentiation method.

As we vary the total number of collocation points from n = 32, 64, 128, 256, 512, 1024, 2048
and 4096, we record the error on each variable x, y, z and w. Figure 4c shows that when
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(c) Error versus n for T = 2 N = 4
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Figure 3: Convergence and efficiency of the three methods a we vary the number of collocation points
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Figure 4: Efficiency and convergence of integral and differentiation method as we vary the number of domains
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the number of collocation points get larger (here n > 2000) on each subinterval, the spectral
methods tend to converge with same rate no matter the number of subintervals. This agrees
with the observation we mentionned earlier regarding the number of points being enough to
allow convergence. In this condition, even when we vary the number of subinterval, We may
only experience a slight variation on the precision.
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Figure 5: Plots of the underlying matrix A of all three methods.

We also look at the influence of the number of domains N and the time T as it increases,
and maintaining the number n of collocation points constant equal 64. Figure 6 shows that
the error remains the same no matter how big is T , as long as the domain sizes are enough
to allow for the spectral method to run on each domain. The number of domains N does
not influence the error but helps in speeding up the algorithm.
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Figure 6: Plots of error as T increases to 100 and n = 64, for different number of domains

3.2. The cryptocurrency pricing model

Our next problem to investigate is cryptocurrency pricing problem. As we mentioned
earlier, From an asset flow perspective, Caginalp [4] proposed a model which discribes the
interaction between the market price of cryptocurrency P (t), the liquidity price L(t)at time
t and the trend-based component of investor preference at time t denoted as ζ1(t). This
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interaction is described by the following system:
τ0
dP
dt

= (1 + 2ζ1)L− P

c0
dL
dt

= 1− L+ q(1 + 2ζ1)L− qP

c1
dζ1
dt

= q1(1 + 2ζ1)L
P
− q1 − ζ1

(3.61)

The system admits only one equilibrium point obtained for L = P and ζ1 = 0.
The differentiation approach applied in problem (3.61) produces the following discrete

system: τ0D + I I 0
qI c0D + (1− q)I 0
0 0 c1D + I

P
L
Z

 =

f1

f2

f3

 . (3.62)

where P, L, Z are the coefficient vectors the variables P,L, ζ1; similarly [f1, f2, f3] represent
the coefficient vectors of the nonlinear part [2ζ1L, 1 + 2ζ1L, q1(1 + 2ζ1)L

P
] respectively.

As for the integral approach, we get the following system:

Ac = f. (3.63)

where

A =

 τ0I + J −J 0
qJ c0I + (1− q)J 0
0 0 c1I + J


and f is the coefficient vector of the integral of the nonlinear part N ,

N =

 2Jζ1L
J(1 + 2qζ1L)
J
(
q1(1 + 2ζ1)L

P
− q1

)
 .

We run our numerical methods for the following constant parameters τ0 = 1, c0 = −1, q =
0.5, q1 = 1.2, c1 = 1, T = 1 and compare the performance of the three methods as in section
3.1. The graph of efficiencies of the methods reported in Figure 7a shows again that the
integral method performs better than the differentiation method and better than the Chebfun
as it takes less than 0.01s to achieve an accuracy of order 10−6 while it takes more than 0.04s
for Chebfun to achieve the same order of precision.

Let us now focus on the spectral method using integration matrix, lets test its robustness
in varying the time T . For T = 4, we see already in Figure 7b that using a single domain
make the method to degenerate when the number of points is not large enough. This
weakness is covered when the domain is split into subintervals. The exponential convergence
is recovered with a slight loss in the accuracy as we increase the number of subintervals.
This observation is confirmed in Figure 7d where T is now equal to 8 and starting with 4-
domain decomposition, ie., convergence remains exponential. As for the efficiency, Figure 7c
and 7e show that increasing the number of subintervals improves the the method efficiency,
that is, the more we increase the number of subintervals, the faster and more precise the
spectral method gets. This comment is again in line with what was already pointed out in
the hyperchaotic problem in section 3.1.
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4. conclusion

In this article, a Chebyshev spectral method has been applied on time multiple domain
using differentiation matrix and also using integration approach. The methods prove to
be robust with the integral approach showing to be more efficient for hyperchaotic finance
problem and cryptocurrency pricing problem, than the method from differentiation approach.
The results are also compared with solutions obtained from other numerical methods in the
literature to confirm reliability of the solutions. The spectral methods presented here are
simple, fast and accurate for handling even more complicated ODEs. For future investi-
gation we intend to extend the spectral method designed though to the fractional case of
hyperchaotic systems.
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Figure 7: Convergence and efficiency of the three methods on the cryptocurrency problem
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