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Abstract 

Type 2 diabetes mellitus (T2DM) is a chronic disease characterised by prolonged 

hyperglycaemia due to the inability of the liver, muscle, and fat cells to absorb glucose 

following insulin stimulation.  Several therapeutic targets have been identified and this 

includes the inhibition of α-amylase and α-glucosidase in the small intestine, promotion of 

glucose uptake by responsive tissue and the inhibition of hepatic lipid accumulation.   

The in silico enzyme inhibitory abilities of 1070 compounds found in 30 commercially available 

herbs, spices, and medicinal plants were assessed using docking analysis with Maestro from 

Schrodinger and AutoDock vina from DIA-DB; four compounds (18α-glycyrrhetinic acid (18α-

GA), curcumin, quercetin and rosmarinic acid) with docking scores more negative or similar 

to acarbose were selected for further analysis. In silico ADMET properties were obtained using 

canvas QikProp, pkCSM online tool, and the results were compared with acarbose. In vitro 

biochemical assays were used to confirm docking studies; these were the dinitrosalicylic acid 

(DNSA) and para-nitrophenyl-D-glucopyranoside (pNPG) assays for α-amylase and α-

glucosidase inhibition, respectively. The IC50 of each compound was determined after 48 hrs 

exposure with the Sulforhodamine B (SRB) assay in the C2C12, HepG2 and Caco-2 cell lines, 

representing the muscle, liver, and intestinal tissue respectively. Using the 2-[N-(7-nitrobenz-

2oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) assay, the ability of the compounds 

to promote glucose uptake was determined in the C2C12 and HepG2 cell lines. The reduction 

of lipid accumulation associated with non-alcoholic liver disease (NAFLD), a feature of T2DM 

was evaluated in the HepG2 cells exposed to oleic acid (OA). Effects were compared with 

known drugs, acarbose for α-amylase and α-glucosidase inhibition and metformin for glucose 

uptake and lipid accumulation studies.  

Herbs and spices with high levels of these compounds were then identified.  As green tea was 

also a rich source of compounds with antidiabetic effects, using UPLC-MS the levels of quinic 

acid, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) in five green tea Camellia 

sinensis, tea brands were determined. The aim was to identify, related to anti-diabetic effects 

the best tea that inhibits α-amylase and α-glucosidase. 

The relationships between in silico and in vitro inhibition results correlated well; a more 

negative docking score in silico correlated with a lower inhibition constant (Ki) in vitro. For α-



xiii 
 

glucosidase, the Ki values of curcumin, 18α-GA, and quercetin were significantly lower 

(p < 0.05) than that of acarbose, while there was no significant difference (p > 0.05) between 

acarbose and rosmarinic acid. These compounds were then identified as potential inhibitors 

of α-glucosidase. For α-amylase, the Ki values of curcumin, 18α-GA, quercetin, and rosmarinic 

acid were significantly higher (p < 0.05) than acarbose. An IC50 could be determined for 18α-

GA, quercetin and rosmarinic acid in the C2C12, 18α-GA and rosmarinic acid in the HepG2 and 

curcumin and rosmarinic acid in the Caco-2 cell lines. All other compounds showed no 

cytotoxicity. Generally, at the concentrations used to evaluate glucose uptake and lipid 

accumulation the compounds were not cytotoxic. The compounds and metformin did not 

promote glucose uptake under the experimental conditions used but did significantly reduce 

(p < 0.05) the accumulation of OA induced lipid droplets in HepG2 cells.  

Herbs and spices including green tea were identified as rich of these compounds and 

contained EGCG and ECG, known antidiabetic compounds. Further evaluation of five green 

tea brands confirmed α-amylase and α-glucosidase inhibition with Dilmah tea having the best 

inhibition. Other unidentified compounds in green tea may also contribute to activity.  

Key findings were that these compounds are present in herbs, spices, and teas, which are 

cost-effective, easily cultivated, and readily available plant products that can contribute to 

the alleviation of T2DM symptoms. Curcumin, 18α-GA, quercetin, and rosmarinic acid 

inhibited α-glucosidase, and reduced the accumulation of OA induced lipid droplets in HepG2 

cells with the potential to alleviate the consequence of prolonged hyperglycemia such as the 

development of NAFLD. Curcumin is found abundantly in turmeric and EGCG in green tea; a 

dose of 1.3 g of turmeric or 1.2 g of green tea is equivalent to a 50 mg acarbose dosage per 

meal. One teabag contains 2.5 g of green tea; therefore, one cup of green tea per meal may 

be helpful in preventing prolonged hyperglycemia. 
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Introduction 

1.1. Diabetes mellitus (DM) 

Ancient Egyptians first discovered diabetes around 1500 B.C, and it is mainly known as 

diabetes mellitus (DM). The word diabetes is from Greek, and it means “pass-through,” 

Mellitus is from Latin, and it means “sweet” because of the sugar taste in the urine of patients 

(Polonsky, 2012).  

Diabetes is a series of metabolic diseases associated with a high level of glucose in the blood, 

known as hyperglycaemia (Egan and Dinneen, 2019) and develops as a consequence of 

deficient secretion and/or action of insulin due to partial or complete malfunction of the 

pancreatic beta cells and the reduced response of tissue to insulin (Association, 2014). This 

can lead to macro and microvascular diseases such as kidney failure, blindness, renal 

dysfunction, and neuropathy (Nathan and Group, 2014). Some of these diseases are present 

at the early stages of diabetes (Egan and Dinneen, 2019), while others only develop later. 

1.2. Epidemiology of diabetes mellitus 

In developing countries the prevalence of DM has increased significantly (IDF, 2019). In 

contrast 40 to 50 years ago when it was less prevalent, today it is one of the leading causes 

of mortality and morbidity worldwide (Mohan et al., 2007). 

A recent report from the International Diabetes Federation (IDF) estimated that in 2019 

approximately 9.3% of adults worldwide were living with diabetes, and if no interventions 

were implemented, it might increase to 10.2% and 10.9% in 2030 and 2045, respectively (IDF, 

2019), as shown in Table 1. 

According to a report from World Diabetes Day held in November 2019, DM caused more 

deaths than tuberculosis (TB), human immunodeficiency virus (HIV), and malaria combined 

(Rheeder, 2019). In 2016 in South Africa, DM after TB was the second disease with the highest 

mortality rate (Rheeder, 2019). As shown in Figure 1, South Africa is among the countries in 

Africa with the highest prevalence of DM in adults. 
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Table 1. Global diabetes estimates and projection (IDF, 2019) 

 2019 2030 2045 

World population 7.7 billion 8.6 billion 9.5 billion 

Adults’ population 5.0 billion 5.7 billion 6.4 billion 

Diabetes mellitus (DM) 

Global prevalence 9.3% 10.2% 10.9% 

Adults with DM 463.0 million 578.4 million 700.2 million 

Death due to DM 4.2 million - - 

Children with DM 1.1 million - - 

 

 

Figure 1 Estimated the comparative prevalence of diabetes in adults (20–79 years) in 2019 

(IDF, 2019)  

1.3. Classification of diabetes mellitus 

The different types of diabetes mellitus include type 1 (T1DM), type 2 (T2DM) and gestational 

diabetes (GD) although other rarer forms do occur. 
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1.3.1. Type 1 diabetes 

Type 1 diabetes mellitus is an autoimmune disease resulting in the destruction of pancreatic 

beta cells (Atkinson et al., 2014), responsible for the production of insulin. The cause of T1DM 

is not fully understood, but a likely explanation is that cellular destruction is initiated by a 

combination of many genes and environmental factors (IDF, 2019). A consequence is a total 

deficiency of insulin (Egan and Dinneen, 2019) or very little insulin being secreted. Patients 

with T1DM require insulin injections to compensate for the shortage or absence of insulin and 

to minimize the increase in blood glucose levels. 

This type of diabetes is mainly diagnosed in children or young adults and is more common in 

boys and young men than in women (Atkinson et al., 2014). It is still one of the most chronic 

diseases of childhood, according to the IDF (IDF, 2019).  

It is also known as “insulin-dependent” and “juvenile-onset” diabetes (Association, 2014) 

because of insulin deficiency and its occurrence in children, respectively. 

1.3.2. Type 2 diabetes 

Type 2 diabetes mellitus is the most common type of diabetes and approximately 90-95% of 

all diabetes patients are diagnosed with this disease. It occurs mainly in adults (Association, 

2014) and is linked to genetic and adverse environmental factors with the contribution of the 

latter being greater (Kota et al., 2012) and these include obesity, hypertension, and impaired 

fasting glucose.  

In contrast to T1DM, T2DM is associated with a relative insulin deficiency and tissue insulin 

resistance (Chatterjee et al., 2017) and is referred to as non-insulin-dependent diabetes 

because the insulin deficiency is not absolute, or as adult-onset diabetes (Association, 2014). 

However, T2DM is increasingly being diagnosed in children and young adults. 

1.3.3. Gestational diabetes 

Gestational diabetes (GD) is less common and is associated with  any degree of glucose 

intolerance with onset or first recognition during pregnancy (Association, 2004). This type of 

diabetes is known as GD even if the condition continues after delivery, including the possibility 

that tolerance starts together with pregnancy (Association, 2014). 
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The World Health Organisation (WHO) classifies this type of diabetes as “hyperglycaemia 

during pregnancy” (HDP), and is present in women who had diabetes before pregnancy but 

were first diagnosed during pregnancy (IDF, 2019). However, most cases of hyperglycaemia 

during pregnancy are GD associated with approximately 75 – 90% of cases (IDF, 2019).  

1.3.4. Other types of diabetes 

There is an intermediate phase in which an individual has raised blood glucose levels higher 

than average but is not diagnosed with diabetes. That state is classified as prediabetes, and it 

is associated with impaired fasting glucose and glucose tolerance (Association, 2014). Blood 

glucose levels are higher than average but do not meet the criteria to be classified as diabetes 

according to the recommended diabetes diagnostic threshold (IDF, 2019). These individuals 

have a relatively high risk of being diagnosed with diabetes in the future. 

Other types of diabetes are linked to genetic factors associated with impaired insulin 

production with reduced or no deficiency in the action of insulin (Association, 2014). The most 

common is maturity-onset diabetes of the young, known as MODY, which is associated with 

a mutation in beta-cell and some genes (Egan and Dinneen, 2019).  

Another less common type is pancreatic diabetes, which is linked with exocrine pancreas 

dysfunction, which can later lead to T1DM or T2DM (Hardt et al., 2008), also known as type 

3c diabetes. Secondary diabetes is associated with pancreatic diseases such as 

hemochromatosis–related diabetes or corticosteroid hormone excess (Egan and Dinneen, 

2019). 

1.4. Complications associated with diabetes mellitus 

Most tissue in the body requires glucose for energy, and insulin produced by pancreatic beta 

mediates this process. However, if the tissue becomes resistant to the effects of elevated 

blood glucose levels, it leads to hyperglycemia which is associated with certain complications, 

such as chronic damage and failure of different organs (Deshpande et al., 2008). Symptoms 

accompanying hyperglycemia include polyuria, polydipsia, and blurred vision (Association, 

2014). The primary affected organ is the pancreas, hence insulin deficiency, but 

hyperglycemia also affects other organs, such as the heart, kidney, eyes, blood vessels, and 

nerves (Association, 2014).  
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Diabetes is linked to insulin resistance or decreased insulin sensitivity because of pancreatic 

beta cell dysfunction (see Figure 2). Factors that contribute to the deterioration of beta cell 

function are glucotoxicity, lipotoxicity, autoimmunity, inflammation, leptin, islet amyloid, 

insulin resistance, and incretins (Cernea and Dobreanu, 2013). The pharmacological agents 

that reduce these effects are also shown in Figure 2.  

 

Figure 2. Factors and agents that are either associated with or affect pancreatic beta cells 

function. TZD - thiazolidinedione; GLP-1 - glucagon-like peptide-1; DPP4 - dipeptidyl peptidase-

4; ACEi - angiotensin-converting enzyme inhibitors; ARB - angiotensin receptor blocker. 

(Cernea and Dobreanu, 2013).    

1.4.1. Diabetes and non-alcoholic fatty liver disease 

Factors that contribute to the development of T2DM are genetic, environmental, and physical 

factors. Obesity, age, and lack of physical activity are associated primarily with T2DM 

(Association, 2014) and often can lead to other complications, such as non-alcoholic fatty liver 

disease (NAFLD) (Pei et al., 2020). 

Non-alcoholic fatty liver disease is considered to be a major leading cause of liver disease 

globally and is linked with different factors such as fatty acid accumulation, ceramide 
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overload, and arachidonic acid metabolic disturbance. Lipotoxicity, insulin resistance, and 

disruption of insulin sensitivity all contribute to NAFLD (Pei et al., 2020) and are associated 

with T2DM and cardiovascular disease (CVD). The presence of T2DM leads to a more severe 

form of NAFLD such as non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular 

carcinoma. Additionally, NAFLD contributes to the increased incidence of T2DM (Xia et al., 

2019) through increased glucose production and hepatic insulin resistance. The relationship 

between the development of T2DM and the progression of NAFLD increases hepatic and 

diabetic mortality worldwide. Figure 3 clearly shows the link between T2DM, oxidative stress 

and the development of NASH, cirrhosis, and hepatocellular carcinoma. 

 

Figure 3. Relationship between type 2 diabetes and non-alcoholic fatty liver disease (Xia et al., 

2019). NAFLD participates in the development of diabetes through glucose production and 

insulin resistance leading to complications such as nephropathy and retinopathy. In addition, 

diabetes aggravates NAFLD, resulting in more severe complications such as NASH, cirrhosis, 

and hepatocellular carcinoma. 

1.5. Carbohydrate digestion 

Carbohydrates are the most abundant class of biological molecules, and are an essential 

component of all living organisms and a significant dietary component (Voet and Voet, 2011). 

Monosaccharides are the basic units of carbohydrates such starch in plants and glycogen in 

humans (Campbell et al., 2018). Monosaccharides (such as glucose, fructose, galactose) bind 

together through glycosidic linkage to form carbohydrates.  
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There are different sources of carbohydrates in the food, such as starchy vegetables, dried 

beans, rice, milk, and grains. The American Diabetes Association has classified the top three 

known sources of carbohydrates in diets as starch, sugar, and fibre.  

Specific enzymes hydrolyse dietary complex carbohydrates into monosaccharide monomers 

before entry into the appropriate cells for energy or storage (Adefegha et al., 2010). The two 

primary enzymes responsible for the hydrolysis of carbohydrates in the digestive tract 

(Bhandari et al., 2008). These enzymes are α-amylase and α-glucosidase found in the 

intestinal lumen and brush-border of the intestinal mucosa, respectively and they work in 

conjunction (Martin and Montgomery, 1996). Figures 4 and 5 below show the 3D structures 

of the both α-amylase and α-glucosidase and their mechanisms of action in the hydrolysis of 

carbohydrates.    

α-Amylase (𝛼-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1) is found in saliva and pancreatic 

juice. It is responsible for the hydrolysis of α-1,4 glycosidic linkage of complex carbohydrates 

from the diet to generate oligosaccharides and disaccharides (Adefegha and Oboh, 2012) 

(Kato et al., 2017). Saliva amylase starts the hydrolysis of dietary carbohydrates, and 

pancreatic amylase continues the digestion in the small intestine (Smith and Morton, 2001). 

α-Glucosidase (intestinal maltase-glucoamylase, EC 3.2.1.20) is a glycosylase found in the 

brush border of small intestine (Zhang et al., 2015). It hydrolyses the α-1,4 glycosidic linkage 

of oligosaccharides and disaccharides. α-Amylase hydrolyses complex carbohydrates into 

oligosaccharides and disaccharides, which are then hydrolysed into monosaccharides by α-

glucosidase (Ozougwu and Akuba, 2018).   

Pharmacologically both enzymes are important targets, as enzyme inhibition will delay 

glucose absorption and consequently reduce the development of hyperglycaemia after a meal 

in T2DM patients. In addition, in individuals with prediabetes, inhibition of these enzymes 

may delay or prevent the onset of disease. One of the known inhibitors of these enzymes is 

acarbose, this drug is an oligosaccharide analogue that reduces postprandial blood glucose by 

competitively inhibiting both α-amylase and α-glucosidase, the inhibitory action of the 

inhibitor leads to the prevention of the metabolism and absorption of dietary carbohydrates 

(Clissold and Edwards, 1988).   
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Figure 4. Three-dimensional structures of α-amylase (A) with PDB ID 4GQR and α-
glucosidase (B) with PDB ID 3L4Y. The structures were compiled using Maestro 12.9 from 
Schrödinger and accessed from RCSB protein data bank.  

 

Figure 5. Mechanism of α-amylase and α-glucosidase on carbohydrates to yield glucose. 
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1.5.1. Insulin mediated glucose uptake in tissue 

Insulin is an endocrine hormone secreted by pancreatic beta cells and released into the 

bloodstream in response to high blood glucose levels (Voet and Voet, 2011). Its primary 

function is to stimulate glucose uptake and storage in muscle, liver, and adipose cells (Voet 

and Voet, 2011). It is also involved in lipid metabolism.  

Pancreatic beta cells release insulin into the bloodstream, and insulin binds to and activates 

insulin receptor, a heterotetrameric α2β2 complex found on the surface of the cells that need 

insulin (Pessin and Saltiel, 2000). The binding of insulin to the receptor activates 

phosphatidylinositol-3-kinase (PI3k) and leads to multiple events, such as phosphorylation 

events, protein-protein interactions, and the production of secondary messengers (Meerza et 

al., 2013). Some of the secondary messengers bind to phosphoinositide-dependent kinase 1 

(PDK1). One of the known substrates of PDK is the protein kinase B (PKB), which plays an 

essential role by linking insulin-stimulated glucose transporter (GLUT4) to the insulin 

signalling pathway (Saini, 2010). Once GLUT-4 is activated, it moves to the cell's surface and 

transports glucose from the bloodstream into the cell, as shown in Figure 6. Therefore, in 

muscle and adipose cells, transportation of blood glucose into the cell depends on the 

translocation of insulin-stimulated GLUT-4 on the cell surface (Pessin and Saltiel, 2000). 

 

Figure 6. Insulin signalling pathway showing insulin binding to the insulin receptor leading to 

the activation of glucose transporter 4. pY: phosphorylated tyrosine; IR: insulin receptor; IRS: 

insulin receptor substrate; PIP2: phosphatidylinositol-3,4-bisphosphate; PIP3: phosphatidyl-

inositol3,4,5-trisphosphate. Adapted from (Saini, 2010)  
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When body tissues have reduced sensitivity to the action of insulin, it leads to insulin 

resistance which is an inadequate biological response to insulin, independent of whether 

insulin is administered exogenously or endogenously (Goldstein, 2002) (Meerza et al., 2013). 

For patients with insulin resistance, normal insulin concentrations could not complete the 

insulin signalling pathway shown in Figure 6, preventing the translocation of GLUT-4 on the 

cell surface. 

The liver plays an important role in glucose metabolism, it reduces changes in glycemia by 

storing glucose as glycogen in the feeding state during modest hyperglycemia or by releasing 

glucose during the fasted state (Moore et al., 2012) (Hwang et al., 1995). In normal 

individuals, the liver helps to dispose of dietary carbohydrates and limits postprandial 

hyperglycemia through hepatic glucose uptake and production. This process depends on 

many factors, including the concentration of glucose in circulation, insulin, and neural 

mediators such as norepinephrine (Moore et al., 2012). As the liver is important in the storage 

and production of glucose when necessary, alteration of these processes may contribute to 

postprandial hyperglycemia in diabetes patients(Hwang et al., 1995).  

Insulin resistance reduces the ability of insulin to complete the signalling pathway in Figure 6, 

hence affecting the process of storage of glucose by the liver. Studies have shown that lipid 

accumulation in non-adipocyte tissues such as muscle and liver might be a responsible for the 

development of insulin resistance leading to T2DM (Hana et al., 2020). A strong relationship 

has been observed between lipid accumulation and insulin resistance where lipids compete 

with glucose for substrate oxidation in tissue, and increased plasma fatty acid concentrations 

are linked with insulin resistance, obesity and T2DM (Hana et al., 2020, Shulman, 2000, Griffin 

et al., 1999, Reaven et al., 1988).  

1.6. Treatment of diabetes mellitus 

Diabetes mellitus is a growing problem worldwide; patients are treated with oral and 

subcutaneous medications. Antidiabetic drugs aim to maintain the concentration of blood 

glucose close to normal ranging between 3.5 and 5.5 mmol/L, to delay complications linked 

to diabetes and to prevent the symptoms of hyperglycemia (Güemes et al., 2016). However, 

choosing a specific treatment depends on the physiological effects, side effects, and cost 

(Turner et al., 2016). Common drugs used for the treatment of T2DM have several targets 

(Figure 7).  
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Figure 7. Mechanism of action of glucose-lowering drugs in humans and their respective 
target organs or tissues (Heine et al., 2006) 

Some drugs minimize glucose absorption by inhibiting carbohydrate hydrolysing enzymes, 

such as α-glucosidase and α-amylase. These inhibitors are acarbose, phaseolamine, miglitol, 

and voglibose (Kahn et al., 2014, Jayaraj et al., 2013). Meglitinide, sulfonylurea, and 

sulfonylurea derivatives treat insulin deficiency by increasing insulin secretion from 

pancreatic beta cells (Turner et al., 2016). Other drugs, such as thiazolidinedione antidiabetics 

(pioglitazone and rosiglitazone) improve insulin sensitivity by increasing glucose utilization in 

skeletal muscles and adipose tissue (Kahn et al., 2014, Turner et al., 2016). Many of these 

drugs have more than one target; for example, acarbose is an α-glucosidase inhibitor and 
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stimulates the secretion of glucagon-like peptide, while metformin inhibits hepatic 

gluconeogenesis, increases hepatic insulin sensitivity, and reduces lipotoxicity (DeLeon et al., 

2002, Foretz et al., 2010). 

The drugs listed in Figure 7 are orally administered, but some patients also require exogenous 

insulin. Examples of exogenous insulin treatments are rapid, short, intermediate, and long-

acting insulin (Kahn et al., 2014). Insulin is injected using insulin syringes, insulin pens, and 

insulin pumps (Polonsky, 2012). In addition, the use of glucose monitoring devices is 

necessary to prevent hypoglycemia and these devices are used in combination with insulin 

injections. 

Although all these drugs are currently in use and commercially available, searching for new 

potential treatments is still essential due to cost, drug interactions and side effects, such as 

headache, abdominal pain, vomiting, fatigue, dizziness, flatulence and diarrhea (Turner et al., 

2016, Proença et al., 2019). 

1.7. Nutritional and medicinal values of plants  

There are two significant sources of food: animal and plant-based food, with most of the food 

coming from plants. Examples of plant-based food in our everyday diet include fruits, leaves, 

roots, seeds, and crops. Plant-based foods are important sources of carbohydrate, vitamins, 

and minerals. 

The importance of plants is not limited to their nutritional benefits, but often also have 

medicinal advantages. Remembering Hippocrates (460 – 370 BC) with his statement: “Let 

food be your medicine and medicine your food” (Witkamp and van Norren, 2018). In search 

of medicinal drugs to treat diseases, humans search for possible solutions in nature 

(Petrovska, 2012). Many people in various countries rely on traditional medicine by using 

plants/herbs to treat several diseases (Emeka et al., 2018). In addition, the use of plant-based 

food is associated with a reduced risk of several diseases, including diabetes, cancer, CVD and 

hypertension (Adelakun et al., 2018, Adams and Standridge, 2006).  

Plants are sources of bioactive compounds and secondary metabolites that have shown 

significant benefits in medicine. The different compounds found in plants are alkaloids, 

phenolics, flavonoids, tannins and steroids, which have been shown to have some therapeutic 
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effects against a variety of diseases (Murevanhema et al., 2018) and several have served as 

lead compounds for drug development.  

Some medicinal plants/herbs have been investigated for their ability to help in the 

management of T2DM and have shown anti-diabetic properties by enzyme inhibition, 

minimizing insulin resistance, or increasing insulin sensitivity (Pereira et al., 2019, Christensen 

et al., 2009, Khacheba et al., 2014). 

Table 2. Examples of herbs and spices and their origin in plants (El-Sayed and Youssef, 2019). 

Part of Plants Herbs and Spices 

Leaves Basil, Oregano, Bay leaf, Thyme, Mint, Sage, Curry leaf, Tarragon, Marjoram 

Bark Cinnamon, Cassia 

Fruits, berries Clove, Chilli, Black pepper, Allspice,  

Bulbs Onion, Garlic, Leek 

Root Ginger, Turmeric 

Seed Ajowan, Aniseed, Caraway, Coriander, Dill, Fennel, Celery, Fenugreek, 
Mustard 

As shown in Table 2, herbs and spices are derived from different parts of plants, and are used 

in our diet to add flavour and to enhance the taste of foods (El-Sayed and Youssef, 2019). 

Herbs and spices are commercially available and have been reported to have therapeutic 

properties such as antimicrobial, antihypertension, anti-inflammatory, and antidiabetic 

effects (Srinivasan, 2005, Naimi et al., 2017, Pereira et al., 2019). Several studies have shown 

that phenolic and flavonoid compounds commonly found in medicinal plants might be 

responsible for the antidiabetic effects and unlike some commercially available drugs, may 

cause fewer side effects (Adelakun et al., 2018, Naimi et al., 2017, Xu, 2010). Table 3 lists 

some common compounds found in some herbs and spices and a short description of each is 

provided. 
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Table 3. Common compounds and antidiabetic effects thereof in some herbs and spices 

Compounds Description Reference 

Catechins Green tea (Camelia sinensis) is a widely consumed 
beverage in the world and the identified health 
benefits are increasing and related to a large 
number of catechins with the major component 
being epigallocatechin (EGCG). Potent inhibition 
of α-glucosidase by EGCG and ECG identifies both 
as potential antidiabetic compounds. 

(Higdon and Frei, 2003) 
(Moore et al., 2009) 
(Yang et al., 2019) 
(Li et al., 2010) 
(Musial et al., 2020) 

Curcumin The polyphenol, curcumin is found in turmeric 
(Curcuma longa) and curry powder (Murraya 
koenigii). In addition to its culinary use, it is also 
used in medicine and cosmetics. Inhibition of 
cellular signalling pathways and regulation of gene 
transcription contributes to the anti-cancer and 
anti-inflammatory properties. 

(Goel et al., 2008) 
(Sharma et al., 2005) 

18α-Glycyrrhetinic 
acid 

Glycyrrhetinic acid, a pentacyclic triterpenoid is a 
bioactive metabolite of Glycyrrhiza glabra; 
isolated from the roots also known as liquorice. 
The medicinal properties of extracts are anti-
inflammatory, anti-bacterial, anti-viral, and 
promotes healing of ulcers wounds. 

(Zígolo et al., 2018) 
(Esmaeili et al., 2010) 

Quercetin Quercetin, a flavonoid is abundantly present in 
almost all herbs and spices and vegetables and 
fruits, including food products and cosmetics. It 
can transform into many derivatives, with anti-
inflammatory, antioxidant, antibacterial, and 
anticarcinogenic properties. Antidiabetic effects 
are related to the inhibition of carbohydrate 
hydrolysing enzymes, often used as a positive 
control for α-glucosidase inhibition.  

(Lesjak et al., 2018) 
(Andres et al., 2018) 
(Lee et al., 2019) 

Rosmarinic acid Rosmarinic acid, a phenolic acid found in herbs 
and spices is the most abundant in peppermint 
(Mentha piperita) and rosemary (Salvia 
rosmarinus). The multitude of health benefits 
include anti-inflammatory, anti-mutagen, anti-
bacterial, anti-viral, and there are claims that it has 
anti-diabetic properties. 

(Petersen and 
Simmonds, 2003) 
(Petersen, 2013) 
(Ngo et al., 2018) 
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Figure 8. The structure of the catechins found in green tea. All are derivatives of the main 
structure of catechin with some additional functional groups (Musial et al., 2020) 

1.8. Strategies for identifying new antidiabetic plant derived molecules.  

Traditional methods for identifying plants with antidiabetic activity involve preparing a plant 

extract and then screening the extract for activity. This is followed by methodologies such as 

chromatography and mass spectrometry to isolate and characterise the compounds present, 

followed by the testing of each compound for activity using in vitro and in vivo methodologies.  

This hit and miss approach can be time consuming and expensive.  

The development of virtual screening or in silico analysis and subsequent in vitro investigation 

in a defined biological system followed by in vivo studies effectively reduces time and costs. 

The strategies used are presented in Table 4 and related to identifying antidiabetic targets 

will be described in greater detail. 

Table 4. Strategies to identify new antidiabetic compounds 

Disease targets 

In silico  Defined biological systems  In vitro cellular models  In vivo animal models  

Virtual screening of 
diabetic targets 
including enzymes 
and receptors   

Confirmation of virtual 
screening results using 
identified targets such as 
enzymes or receptors.  

In complex cellular 
systems measure the 
consequence of 
inhibition.  

Testing in an in vivo 
diabetic animal model  
 

Toxicity 

Virtual screening of 
ADME properties  

---------- Measure the effects on 
cell functioning.  

Measure blood levels of 
the compound and 
cellular and tissue 
markers of toxicity.  
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1.9. Virtual screening 

Virtual screening is also called in silico analysis and involves using software to screen, 

evaluate, predict, and analyse compounds or data prior to in vitro and in vivo analysis (Ekins 

et al., 2007). It includes several databases, structural relationships, similarity in searching, 

machine learning, and pharmacophores. This technique is now widely used in drug discovery 

because it provides an inexpensive and rapid alternative for initial new drug discovery. There 

are two approaches through which virtual screening assists in drug discovery (Hamza et al., 

2012). 

The first approach is ligand-based design, and it uses the similarity between the ligand and 

known drugs to predict the activity of the ligand. The second approach is structure-based drug 

design, which is also known as ligand docking and uses the structure of the protein and the 

ligand to predict the binding affinities and modes of ligand binding to the protein of interest 

(Hamza et al., 2012).  

1.9.1. Chemical structure 

Many formats are used to enable the computers to recognize the chemical structure of 

compounds. The most widely known formats are MOL, SDF, and Simplified Molecular Input 

Line Entry System (SMILES). The chemical structure can be obtained in any of the above 

formats in chemical databases such as PubChem (www.pubchem.ncbi.nlm.nih.gov/), 

ChemSpider (www.chemspider.com/), or eMolecules (www.emolecules.com/).  

The MOL format represents compounds in a graph connection table. SDF is a version of MOL 

used for multiple compounds, and SMILES provides a linear notation to represent chemical 

compounds using fixed alphabet terms and other characters (Hirohara et al., 2018, O’Boyle, 

2012). 

SMILES is currently widely used as a standard representation of chemical compounds. It is 

composed of a set of atomic symbols using the alphabet and a set of SMILES original symbols 

such as “=” and “#” for double bonds and triple bonds, respectively (Hirohara et al., 2018). 

SMILES can provide both the chirality and stereochemistry of compounds; it is also easy to 

read, learn and write, making it the best format to use (O’Boyle, 2012). The structure of a 

protein can be obtained from the Protein Data Bank (PDB) using an identifier code called PDB 

http://www.pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
http://www.emolecules.com/
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ID; such as for pancreatic α-amylase (PDB ID: 4GQR) and intestinal α-glucosidase (PDB ID: 

3L4Y) (Berman et al., 2000). 

1.9.2. Ligand docking - scoring function 

There are many tools available for ligand dockings, such as AutoDock vina and Glide, however, 

they differ in the scoring functions used. The scoring function evaluates docking by measuring 

the ability to generate and recognize different poses of the ligand when interacting with the 

protein of interest (Jain, 2006).  

AutoDock uses the empirical scoring functions, where a database is composed of reliable 

binding geometry and known binding affinity of ligand-protein complexes (Eldridge et al., 

1997). Glide uses the empirical Chemscore function, and analyses every position of the ligand 

in the active site of the target protein, it generates grids to represent each pose of the ligand 

(Friesner et al., 2004). In this project, Maestro, a Schrodinger software that uses Glide for 

ligand docking was used. The different poses of the ligand generated in Glide undergo a series 

of filters to evaluate their interaction with the target protein. The filter tests are performed 

in the following order: special fit of the ligand to the active site; examination of the ligand-

protein interactions using a grid-based method; evaluation and minimization of the grid 

approximation to the unbound ligand-protein interactions; scoring energy minimized poses; 

and finally ranking the poses by using glide score (Eldridge et al., 1997).  

Glide score is relative to the difference in Gibbs free energy (ΔG) between the free protein 

and ligand-protein complex. A more negative ΔG indicates stability and a favourable reaction. 

Therefore, a good ligand should have a more negative score to indicate good binding affinity. 

ΔG is the combination of interactions such hydrogen bonds, lipophilicity, van der Waals 

interactions, polar interactions in the active site, metal-ligation interactions, and rotatable 

bonds among the protein, ligand, and solvent (Jain, 2006). 

There are three forms of Glide: High-Throughput Virtual Screening (HTVS), Standard-Precision 

(SP), and Extra-Precision (XP). Glide HTVS reduces the number of intermediate conformations 

and the thoroughness of the refinement and sampling; glide SP is softer and adept at 

identifying ligands with a propensity to bind the active site; and glide XP performs extensive 

sampling and is efficient in removing false negatives (Friesner et al., 2004).  
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1.9.3. ADMET properties 

It is essential to predict the absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) properties of promising compounds because, despite the remarkable efficiency of 

compounds as therapeutic agents during in vitro studies, many of the identified compounds 

have failed to reach the market due to their side effects and poor ADMET profiles (Kola and 

Landis, 2004). Therefore, an early prediction of ADMET properties is necessary to reduce 

expenses, increase the rate of drug discovery, and minimize the failure rate in clinical trials. 

There are tools available that provide methods to determine the physicochemical properties 

and predict the pharmacokinetics and toxicity properties of compounds. For example, 

software such as Schrodinger provides tools that can be used to predict the properties of 

compounds using QikProp, and it relies on several databases based on the structural similarity 

to known drugs (Ioakimidis et al., 2008).  

Some online free tools, such as pkCSM (http://biosig.unimelb.edu.au/pkcsm/) are available, 

and it uses a series of databases and machine learning based on learning patterns to build 

predictive models (Pires et al., 2015).  

These tools calculate the rule of five for oral drugs described by Lipinski for physicochemical 

properties, including molecular weight, lipophilicity, hydrogen bond donors, and hydrogen 

bond acceptor (Lipinski, 2004). Table 5 describes some of the pharmacokinetic and toxicity 

properties that these tools can predict. 

Table 5. Examples of ADMET properties predicted by different tools (Schrodinger, 2012) 

Properties Description 

Water solubility Solubility of the compound in water. 

Intestinal absorption Proportion of compound to be absorbed through the human small 
intestine. 

P-glycoprotein inhibitors If the compound is likely to inhibit P-glycoprotein. 

HERG inhibitors Principal causes for acquiring long QT syndrome – compound likely 
to inhibit HERG K+ channels. 

Hepatoxicity If the compound is likely to disrupt the normal function of the liver.  

#Stars The number of property values that fall outside the 95% range of 
similar values for known drugs. 

http://biosig.unimelb.edu.au/pkcsm/
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1.10. Kinetic studies 

The findings of virtual screening need to be confirmed using defined biological systems, and 

for enzyme targets, it is essential to investigate the kinetics of inhibition. 

Enzyme assays are performed to determine enzyme activity; to study temperature and pH 

effects; and to determine constants such as inhibitory constant (Ki), the Michaelis constant 

(Km), maximum velocity (Vmax) (Wilson and Walker, 2010), and the inhibitory concentration 

where the response of the enzyme is halved (IC50). 

From the measured absorbance, the Beer-Lambert law is used to determine the 

concentration of the product and the associated enzyme activity. The data are used to plot 

both the Michaelis-Menten and Lineweaver-Burk plot.  

Enzyme activity = 
𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

𝑻𝒊𝒎𝒆
  

𝜺 × 𝒄 × 𝒅 = 𝑨  Beer-Lambert law   

A = Absorbance of the sample 

c = Concentration (M) 

ε = Molar absorption coefficient or molar extinction coefficient (M-1 cm-1) 

d = Path length (cm) 

After obtaining the enzyme activity using the Beer-Lambert equation, subsequent kinetic 

studies help to elucidate the enzyme mechanism by determining the constants, which are 

critical in analysing the effect of inhibitors. 
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Figure 9. Michaelis-Menten plot of velocity against substrate concentrations shows the Km 

and Vmax and yields the Michaelis-Menten equation. (Voet and Voet, 2011) 

𝑽 =
𝑽𝒎𝒂𝒙 [𝐒]

𝑲𝒎+[𝐒]
  

V = Initial rate or activity 

Vmax = maximum velocity 

[S] = Substrate concentration 

Km = Michaelis constant 

Using the Michaelis-Menten curve, it is challenging to measure V at high [S]. Therefore, a 

linear transformation of the Michaelis-Menten curve called the Lineweaver-Burk plot is used 

to more accurately measure the kinetic constants (Wilson and Walker, 2010). The 

Lineweaver-Burk plot is also used to determine the type of inhibition during enzyme inhibition 

by comparing the uninhibited to the inhibited plot. Each of which corresponds to how the 

inhibitor interacts with the enzyme (see Figure 10). 
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Figure 10. Lineweaver-Burk plot of different types of inhibition. This plot, together with the 

Lineweaver-Burk plot, is used to determine kinetic constants and types of inhibition. 

The straight-line equation obtained from the Lineweaver-Burk plot is used to calculate the 

constants. Below is the Lineweaver-Burk equation showing the linear transformation of 

Michaelis-Menten. 

𝟏

𝑽
=

𝑲𝒎

𝑽𝒎𝒂𝒙

𝟏

[𝑺]
+

𝟏

𝑽𝒎𝒂𝒙
  

1/Vmax = y-intercept 

Km/Vmax = Slope of the straight line 

The inhibitory constant Ki is obtained by a secondary plot using data from Lineweaver-Burk 

plots. The Ki of compounds is calculated by using varying inhibitor concentrations [I] of the 

inhibitor with a constant substrate concentration to plot the slope or intercept of the 

Lineweaver-Burk plot as a function of [I]. 

1.11. In vitro and in vivo models 

The next level of evaluation in the confirmation of activity observed in biological systems is 

the use of in vitro cellular models. This usually involves the use of cell lines that are 

representative of the affected tissue, and for T2DM this includes the use of liver, pancreatic, 

muscle cell lines. Initial evaluation is the determination of cytotoxicity in a cellular 

environment. This is followed by specific in vitro cell models that mimic aspects of disease, 
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such as insulin resistance and NAFLD, as used in the present study. A limitation of such studies 

is that aspects of disease are studied in isolation, especially for T2DM which is a disease 

involving several different tissues, such as the liver, muscle, and pancreas. Animal models 

such as rats or mice can be used to investigate these aspects, including toxicity and ADMET 

of candidate compounds. These models have some issues linked to the complexity and 

differences of species, the expression level, and functional activity should be considered (Tang 

and Prueksaritanont, 2010).  

In vivo animal models involved in the study of T2DM include rats and rabbits that mimic T2DM 

in humans (Chatzigeorgiou et al., 2009), and rodents are preferred because of their small size 

and availability. In vivo studies include the chemical induction of DM prior to treatment with 

the studied drugs/chemicals (Dewangan et al., 2017). The study is dependent on the dose 

administered and the route of administration. 

Finally, after evaluating in vitro and in vivo cytotoxicity and cellular models, the evaluation of 

identified compounds in clinical trials involving patients with T2DM is the final level of testing. 
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1.12. Aims 

This study aimed to: 

• To assess the in silico and in vitro antidiabetic activities of compounds commonly found in 

commercially available herbs and spices. 

• To investigate the effects of herbal compounds on cellular glucose uptake and hepatic 

lipid accumulation. 

• To assess the in vitro antidiabetic activities of five green tea brands and analyse the 

differences related to the levels of EGCG, ECG and quinic acid. 

1.13. Null hypothesis 

The null hypotheses were: 

• Null hypothesis 1: There is no significant difference in the Ki values between promising 

compounds and acarbose at the 95% confidence level. 

• Null hypothesis 2: There is no significant difference in the glucose uptake activity between 

promising compounds and insulin at the 95% confidence level. 

• Null hypothesis 3: There is no significant difference in oleic acid (OA) induced lipid 

accumulation between promising compounds and metformin at the 95% confidence level. 

1.14. Objectives 

The objectives of this study were: 

• To determine docking scores for α-amylase and α-glucosidase and the ADMET properties 

of these compounds using docking simulations. 

• To select compounds with docking scores and properties relative to the known enzyme 

inhibitor, acarbose. 

• To determine the biological inhibitory effect of promising compounds against α-amylase 

and α-glucosidase using DNSA and pNPG assays, respectively. 

• Kinetic studies to determine Ki, IC50, and types of inhibition of the promising compounds. 

• To determine IC50  of the promising compounds in the Caco-2, HepG2 and C2C12 cell lines 

using the SRB assay. 

• To determine the effect of promising compounds on glucose uptake in selected cells with 

the 2-NBDG assay. 
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• To determine the effect of promising compounds on OA induced hepatic lipid 

accumulation using Oil Red O (ORO) staining. 

• To identify herbs and spices with high concentrations of the promising compounds. 

• In the second part of this study, we quantified the concentrations of EGCG, epicatechin 

gallate, and quinic acid in the five green tea brands (Camellia sinensis) using UHPLC-MS. 

• To determine the inhibitory effect of the green tea brands against α-amylase and α-

glucosidase using the DNSA and pNPG assays, respectively. 

• To perform metabolomics on the five green tea brands using metaboAnalyst. 
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Materials and methods 

1.15. Materials 

- Chemicals 

Sodium phosphate monobasic and dibasic were obtained from Sigma Aldrich (Missouri, USA). 

Starch from potato and pNPG was used as substrate and were obtained from Sigma Aldrich 

(Missouri, USA). Acarbose, curcumin, DMSO, 18α-GA, quercetin, quinic acid, rosmarinic acid, 

oleic acid (OA), Oil red O (ORO), nerolidol and all UPLC-MS standards were purchased from 

Sigma Aldrich (Missouri, USA), and 2-NBDG was obtained from ThermoFisher Scientific 

(Massachusetts, USA). Both α-glucosidase (EC 3.2.1.20) from Saccharomyces cerevisiae and 

porcine pancreatic α-amylase (EC 3.2.1.1) were obtained from Sigma Aldrich (Missouri, USA). 

Potassium sodium tartrate tetrahydrate, DNSA, maltose monohydrate, p-nitrophenol, 

Dulbecco’s Modified Eagle Medium (DMEM), and SRB were purchased from Sigma Aldrich 

(Missouri, USA). C2C12 myotubes (American Type Culture Collection [ATCC] CRL-1772) and 

HepG2 hepatocarcinoma cells (ATCC HB-8065) were obtained from the ATCC. Caco-2 human 

colon adenocarcinoma cells (CCAC-FL) were obtained from CELLONEX Separation Scientific 

(Johannesburg, South Africa). Dilmah, Eve’s, Five Roses, Livewell, and Tetley green teas were 

purchased from a local store. 

- Instruments 

The instrumentation used was a heating block from Scientific (Johannesburg, RSA) and a pH 

meter from Jenway (Staffordshire, UK) were used to incubate at a specific temperature and 

to adjust the pH of the buffers and solutions. The SpectraMax paradigm from Molecular 

Devices (California, USA), Maestro v12-6, canvas from Schrodinger (New-York, USA), and 

ChemSketch from ACD/Labs (Toronto, Canada) were used to measure the absorbance, 

perform docking and computer simulations, and to draw chemical structures, respectively 

(Bhachoo and Beuming, 2017, Spessard, 1998). MetaboAnalyst 5.0 (Ontario, Canada) was 

used for metabolomics analysis (www.metaboanalyst.ca/). A Waters Synapt G2 Quadrupole 

time-of-flight mass spectrometer connected to a Waters Acquity ultra-performance liquid 

chromatography from Waters (Massachusetts, USA) was used for high-resolution UPLC-MS 

analysis.  

http://www.metaboanalyst.ca/
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1.16. Methods 

1.16.1. Selection of compounds 

Compounds selected and used in this project went through about three selection processes 

before being identified. The first was to confirm the antidiabetic properties of 1070 

compounds present in 30 commercially available herbs and spices (Pereira et al., 2019). Then, 

herbs and spices with either or both α-glucosidase and α-amylase inhibitory activities were 

identified. The most abundant compounds in selected commercially herbs and spices were 

then evaluated for their affinity to bind both enzymes using docking scores from AutoDock 

(DIA-DB). The docking scores were then compared to the those obtained from Maestro v12-

6 (Schrodinger, 2015). 

The scores are compared to a known inhibitor, acarbose, the current gold standard drug for 

the treatment of T2DM. Compounds with an affinity better than or similar to acarbose were 

selected for further analysis. A total of four compounds with docking scores more negative or 

similar to acarbose were selected, and two compounds with docking scores more positive 

than acarbose were selected as negative controls to compare in silico with in vitro studies. 

The compounds selected were curcumin, 18α-GA, quercetin and rosmarinic acid as promising 

compounds, with nerolidol and quinic acid as negative controls. 

1.16.2. Computer simulation 

- Ligand preparation 

Chemical structures of the compounds were imported from canvas to Maestro and with 

SMILES obtained from PubChem. The LigPrep function in Maestro was used to prepare 3D 

structures from 2D structures, pre-process the structures, and generate multiple poses from 

each structure (Vijayakumar et al., 2018). This function ensured that the structures were 

ready for docking.  

- Protein preparation 

The crystal structures of the enzymes were downloaded to Maestro from the PDB 

(www.rscb.org) using the respective PDB IDs for pancreatic α-amylase (4GQR) and intestinal 

α-glucosidase (3L4Y) (Berman et al., 2000). 

http://www.rscb.org/
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The protein preparation wizard in Maestro was used to prepare enzymes for molecular 

docking. All cofactors and water molecules were removed, and the structures were optimized. 

This wizard resolved structural issues and made the structures suitable for docking (structural-

based virtual screening). 

- Molecular docking 

The grid file and the ligand file are needed to run a docking job. The grid file was generated 

using the receptor grid generation tool in Maestro, keeping the default parameters. The tool 

was used to represent the active site of the proteins.  

Protein docking was performed using glide HTVS, and the prepared ligands were docked 

against the generated grid file of intestinal α-glucosidase and pancreatic α-amylase enzyme 

complex. Maestro was also used to illustrate the binding interactions between the 

compounds and the active site of the enzymes.  

The docking score is relative to the ΔG of the protein-compound interaction; a low, more 

negative score indicates stability, thus strong binding affinity of the compound to the receptor 

protein. Interactions in the protein-compound complex contribute to the estimation of ΔG, 

including hydrophobic interactions and hydrogen bonds (Eldridge et al., 1997, Friesner et al., 

2004). 

- Physicochemical properties 

Selected compounds were further analysed using Schrodinger’s canvas program and the 

online tool pkCSM to obtain pharmacokinetic and toxicity properties. The SMILES notations 

of the compounds were imported to pkCSM to calculate the physiochemical properties by 

using a series of databases and machine learning based on patterns to build predictive models 

(Pires et al., 2015). This is based on pattern recognition and algorithm to link similarities such 

between known compounds and possible potential drugs. 

1.16.3. Preparation of reagents 

Stock solutions of the inhibitors were prepared by dissolving the compounds in DMSO to a 

final concentration of 50 mM. Then, the respective buffers were used to prepare the required 

concentration for each assay. 
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Phosphate buffer was prepared and used to dilute the compounds for the α-glucosidase 

inhibition assay. A 100 mM phosphate buffer was prepared using equal concentrations of 

sodium phosphate monobasic and sodium phosphate dibasic in deionized distilled water, and 

the pH was adjusted to 6.9.  

A para-nitrophenol solution was prepared by dissolving 0.0139 g para-nitrophenol in 100 mL 

of deionized distilled water (ddH2O) to prepare a 1 mM solution used to make a standard 

curve and determine the molar absorption coefficient. A pNPG solution was prepared by 

dissolving 0.07531 g pNPG in 5 mL ddH2O to make a 5 mM solution. Intestinal α-glucosidase 

from Saccharomyces cerevisiae (0.2 U/mL) was prepared in phosphate buffer (100 mM, pH 

6.9). 

A sodium phosphate buffer containing NaCl was prepared and used to prepare other reagents 

for the α-amylase inhibition assay. A 20 mM phosphate buffer with 6.7 mM NaCl pH 6.9 was 

prepared by dissolving 0.7098 g NaH2PO4, 0.5999 g Na2HPO4 and 0.1957 g NaCl in 500 mL 

ddH2O.  

A maltose solution was prepared by dissolving 0.02 g maltose monohydrate in 10 mL 

phosphate buffer (20 mM pH 6.9) to prepare a 5.6 mM solution. The colorimetric reagent was 

prepared by dissolving 0.4380 g DNSA in 20 mL ddH2O to make a 96 mM solution and 12 g 

potassium sodium tartrate tetrahydrate dissolved in 8 mL of a 2 M NaOH to make the colour 

reagent. A 2% (20 mg/mL) starch solution was prepared by dissolving 0.50 g potato starch 

powder in 25 mL of phosphate buffer (20 mM pH 6.9) and then the solution was heated with 

constant stirring to facilitate solubility. Finally, the α-amylase solution was prepared by 

dissolving 3 mg porcine pancreatic α-amylase (10 U/mg) in 15 mL phosphate buffer 

(20 mM pH 6.9) to make a final solution of 2 U/mL. 

For the cell culture studies all cells were cultured at 37°C under an atmosphere with 5% CO2, 

and were maintained in DMEM with 5% FCS, non-essential amino acids, NaHCO3, 25 mM 

dextrose and 1% penicillin/streptomycin (DMEM/FCS). All compounds were initially dissolved 

in DMSO to make a stock concentration of 40 mM. Then, the stock solutions were further 

diluted with DMEM to the respective concentrations for the SRB assay. For the glucose uptake 

assay, the compounds were diluted with glucose-free DMEM containing nonessential amino 

acids, NaHCO3 and 1% penicillin/streptomycin (Glc-free-DMEM). Finally, for hepatic lipid 
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accumulation, the compounds were diluted with PBS containing 9.23 g of FTA 

hemagglutination buffer in 1L ddH2O at pH 7.2. The ORO stock solution was prepared (0.5% 

in 60% isopropanol) and dissolved in a 50°C water bath for 15 minutes. 

1.16.4. α-Glucosidase inhibition assay 

The in vitro ability of the promising compounds to inhibit α-glucosidase was assessed using a 

colorimetric pNPG assay, where pNPG acts as a substrate and the absorbance of the coloured 

product is measured spectrometrically.  Therefore, the enzyme activity is proportional to the 

colour of the solution, the darker the solution is, the greater the activity. The addition of an 

inhibitor such as acarbose can minimize the binding of pNPG to the catalytic site of the 

enzyme and reduce the amount of product generated.   

 

Figure 11.  The reaction of the substrate pNPG with α-glucosidase to yield glucose and p-
nitrophenol. Glucosidase breaks the α-glucopyranoside linkage of colourless pNPG, releasing 
a light-yellow p-nitrophenol and D-glucose. 

- Kinetics of α-glucosidase inhibition 

Working directly in a 96 well microplate, 50 µL of 0.2 U/mL in phosphate buffer (100 mM, 

pH 6.9) and 100 µL of the compound or acarbose (0 to 8 mM) were preincubated at 37°C for 
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10 min before adding 50 µL of pNPG at different concentrations (0, 0.3, 0.6, 0.8, 1.25, 2.5 and 

4 mM) in phosphate buffer (100 mM, pH 6.9). Next, the reaction was incubated at 37°C for 

30 min before adding 50 µL of a 1 M NaOH solution. The addition of the base led to the 

deprotonation of p-nitrophenol, which becomes basic and generates a dark yellow colour that 

can be read at 405 nm. When the experiment was performed without inhibitor, buffer was 

added to ensure that all final volumes were the same. The enzyme activity was determined 

as described in section 1.10. The initial velocity was calculated from the enzyme activity, and 

Lineweaver-Burk plots were generated by plotting inverse velocity against inverse pNPG 

concentration at different concentrations of the inhibitor. The straight lines were used to 

determine the Ki values by generating a secondary plot of the slope of the straight lines 

against inhibitor concentrations. 

- Inhibition of α-glucosidase by tea samples 

In a 96 well microplate, 50 µL of 0.2 U/mL the enzyme in phosphate buffer (100 mM, pH 6.9) 

and 100 µL of varying concentrations of tea 0.00001 - 1% w/v were preincubated at 37°C for 

10 min before adding 50 µL of 2 mM pNPG in phosphate buffer (100 mM, pH 6.9). The reaction 

was incubated at 37°C for 30 min before adding 50 µL of a 1 M NaOH solution. Subsequently, 

the absorbance was measured at 405 nm. The negative control consisted of the same amount 

of buffer instead of inhibitor. The in vitro inhibitory activity of α-glucosidase by the tea 

samples was measured by determining the IC50 of each tea brand using the formula below to 

obtain the percentage inhibition. 

%𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒊𝒐𝒏 =  
(𝑨𝒃𝒔.  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 − 𝑨𝒃𝒔.  𝒔𝒂𝒎𝒑𝒍𝒆)

𝑨𝒃𝒔. 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 × 𝟏𝟎𝟎% 

1.16.5. α-Amylase inhibition assay 

This assay screens the action of α-amylase with starch as the substrate. In this assay, the 

colour reagent, DNSA is reduced to 3-amino-5-nitrosalicylic acid, an orange-red product by 

reducing the sugar maltose. The presence of the inhibitor reduces the amount of maltose 

released from starch by preventing the interaction between starch and the catalytic site of 

the enzyme. Therefore, a decrease in the amount of maltose that reacts with DNSA and 

subsequently the amount of 3-amino-5-nitrosalicylic acid will be lower, decreasing the 

amount of measured enzyme activity. 
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Figure 12. The reaction of the colour reagent DNSA with the reducing sugar maltose produced 
from the hydrolysis of starch by α-amylase. This reaction results in an orange-red solution. 

- Kinetics of α-amylase inhibition 

To evaluate the amount of maltose released and to assess the inhibitory activity of the 

compounds against α-amylase the following procedure was followed. In different Eppendorf 

tubes, 100 µL of the inhibitor (0 to 1.5 mM) was mixed with 100 µL α-amylase (2 U/mL) and 

preincubated at approximately 25°C for 10 min before adding 100 µL of starch (0, 2, 4, 5, 6, 8, 

9 and 10 mg/mL). After incubation at approximately 25°C for 10 min, 100 µL of DNSA colour 

reagent was added. After 10 min incubation at 85°C on a heating block, the solution was 

cooled and diluted with ddH2O before transferring a 200 µL volume to a 96 well plate and the 

absorbance was measured at 540 nm. 

- Inhibition of α-amylase by tea samples 

In different Eppendorf tubes, 100 µL of varying concentrations of the tea sample 0.1 - 10% 

(w/v) was mixed with 100 µL of 2 U/mL α-amylase in phosphate buffer (20 mM pH 6.8) and 

was preincubated at approximately 25°C for 10 min. Then 100 µL of a 2% (w/v) potato starch 

solution was added and the solution was incubated at approximately 25°C for 10 min before 

adding 100 µL of the 96 mM DNSA colour reagent. After a further 10 min incubation at 85°C 

on a heating block, the solution was cooled and diluted with distilled ddH2O before a 200 µL 

volume was transferred to a 96 well plate, and the absorbance was then measured at 540 nm. 

The negative control was an equal amount of the solvent instead of the tea sample. The 

in vitro inhibitory activity of α-amylase by the tea samples was measured by determining the 

IC50 of each tea brand using the formula below to obtain the percentage inhibition. 
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%𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒊𝒐𝒏 =  
(𝑨𝒃𝒔.  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 − 𝑨𝒃𝒔.  𝒔𝒂𝒎𝒑𝒍𝒆)

𝑨𝒃𝒔. 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 × 𝟏𝟎𝟎% 

1.16.6. Cytotoxicity 

It is essential to perform cell cytotoxicity and proliferation assays to screen the response of a 

cell to the promising compounds (Adan et al., 2016). Several assays can be used to determine 

the in vitro cytotoxicity and commonly used assays are the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), the neutral red uptake assay, and the SRB assay.  

In the SRB assay, the cellular protein content (Orellana and Kasinski, 2016) is determined. SRB 

is a bright-pink dye that has two sulfonic groups on its structure that bind to basic amino 

residues of cellular proteins (Vichai and Kirtikara, 2006, Adan et al., 2016). It is important to 

determine cytotoxicity in more than one cell line due to the differences in metabolism and 

sensitivity. In this study three cell lines, the Caco2 adenocarcinoma, the HepG2 

hepatocarcinoma and C2C12 myotube cells were used to represent the site of absorption, 

metabolism, and insulin target tissue. 

 

Figure 13. Chemical reaction of SRB with the cell protein content. (www.cephamls.com) 

SRB assay was performed by the method used by (Vichai and Kirtikara, 2006), with slight 

modifications. In a 96 wells plate, a 100 µL cell suspension representing 1 × 105 cells was 

added to every well and then was incubated overnight at 37°C with 5% CO2 to allow cell 

attachment. Different concentrations (0.01, 0.1, 1, 10 and 100 µM) of the compounds in a 

volume of 100 µL were added, and then the plate was incubated at 37°C with 5% CO2 for 72 

hours. Wells containing only cells and media were used as the negative control. Saponin was 

used as the positive control, and wells containing only media were used as blanks. After the 

72 hours incubation period, the cells were fixed with 50 µL of 50% (w/v) trichloroacetic acid 
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solution and incubated overnight at 4°C. The plates were then washed with water and dried 

in an oven overnight before adding 100 µL of 0.057% w/v SRB solution. After incubation for 

30 min, the wells were washed with 1% v/v acetic acid and then dried overnight in an oven. 

Once dry, 200 µL Tris buffer (10 mM, pH 10.5) was added to each well, followed by gentle 

shaking at 550 rpm for an hour. The absorbance of the extracted dye was measured at 540 

nm, and the IC50 representing the concentration that induces 50% cell death was calculated 

for each compound. 

1.16.7. Glucose uptake assay 

Glucose is the primary energy source for many tissues, and the ability of the selected 

compounds to promote glucose uptake was evaluated in the HepG2 cells, where uptake is 

GLUT4 mediated. This will identify compounds with insulin mimetic properties. Many 

different assays can be used to evaluate glucose uptake including radioactive, fluorescence, 

luminescence and absorbance assays (Kanwal et al., 2012).  

In the 2-NBDG assay, 2-NBDG is a fluorescent glucose analogue (O’Neil et al., 2005, Yamada 

et al., 2000) that provides a direct and rapid method to measure glucose uptake in single  

living cells.  

The assay was carried out according to (Zou et al., 2005) and (Theerakittayakorn and 

Bunprasert, 2011) with some modifications. HepG2 cells were plated at a density of 1.0 × 105 

cells per well in DMEM/FCS in 96 well plates followed by a 24-hour incubation at 37 ֯C with 

5% CO2. The DMEM/FCS was removed and replaced by a Glc-free-DMEM containing 2.5% FCS 

(Glc-free-DMEM/FCS) and incubated overnight. Cells were treated with the promising 

compounds at a concentration range of 1 to 10 µM, 1 nM to 100 nM insulin and 1 to 10 µM 

metformin for 45 min. Then, 80 µM 2-NBDG was added for 1 hour. Insulin and metformin 

were the positive controls, and the negative control was Glc-free-DMEM/FCS at the same 

volume as the added compounds. The reaction was stopped by washing the monolayer twice 

with cold PBS. A final volume of 100 µL cold PBS was added to each well, and the fluorescence 

was measured at excitation and emission wavelengths of 460 nm and 544 nm, respectively. 

The data was expressed as relative fluorescence units. 
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1.16.8. Hepatic lipid accumulation 

Excess fat accumulation can cause NAFLD, linked with obesity, insulin resistance, and T2DM. 

In the HepG2 cell line exposure to OA led to the accumulation of intracellular droplets of lipids 

that could be observed with ORO staining, and subsequent extraction of ORO allows the 

quantification of lipid accumulation. 

The experiment was carried out according to (Huang et al., 2018, Theerakittayakorn and 

Bunprasert, 2011) with some modifications. HepG2 cells were seeded on 96 well plate at a 

density of 5 × 104 cells per well and incubated overnight for attachment. The cells were then 

treated with the compounds and 1 mM OA for 48 hours before fixing the cells with 2% 

formalin for 30 minutes at 37°C. The medium was discarded, and then 100 µL of the ORO 

working solution (ratio 3:2 of 0.5% ORO dissolved in H2O) was added and incubated for 1 hour 

at room temperature. The staining solution was removed, and the plate was washed with tap 

water until the water was clear. Then, the plate was blotted dry. Microscopic images were 

taken to visualize ORO-stained lipid droplets in the HepG2 cells. Then, the lipids were 

extracted with 100 µL of 60% isopropanol solution and the absorbance was measured at 

405 nm. The results are expressed as the percentage lipid accumulation relative to HepG2 

cells exposed only to OA using the formula below: 

 

 

1.16.9. Herbs/spices dose-related to acarbose dose 

Online databases such as Phenol-Explorer and previous studies were used to find the amount 

of each compound in several herbs and spices (Neveu et al., 2010). The herb or spice with the 

highest amount of the compound (mg of compound /100 g of the herb) was used to calculate 

the dose of each herb related to the dose of acarbose taken per meal, which is 50 mg. 

Glycyrrhizin is the main bioactive compound in Liquorice, and it is hydrolysed to produce 18α-

GA; hence the dosage of glycyrrhizin is presented instead (Tian et al., 2008, Li et al., 2014). 

1.16.10. Identification, profiling, and metabolomics of compounds in green tea 

Tea is an important beverage that is cost-effective and a readily available source of 

compounds that have reported antidiabetic effects such as: epicatechin gallate, and EGCG 

(Yang et al., 2019, Li et al., 2010). In this study, UPLC-MS was used to quantify the amount of 

% 𝒍𝒊𝒑𝒊𝒅 𝒂𝒄𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =  
(𝑨𝒃𝒔.  𝒕𝒆𝒔𝒕 𝒔𝒂𝒎𝒑𝒍𝒆)

(𝑨𝒃𝒔.  𝒐𝒍𝒆𝒊𝒄 𝒂𝒄𝒊𝒅 𝒐𝒏𝒍𝒚)
× 𝟏𝟎𝟎% 
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30 different metabolites in five different brands of green tea. The green tea brands were 

Dilmah, Eve’s, Five Roses, Livewell, and Tetley. For the purpose of this study, the focus was 

the levels of epicatechin gallate, EGCG, and quinic acid that were quantified.  

- Green tea extraction and standards preparation 

The contents of the green tea bags were ground to a powder, and then 0.25 g of the powder 

was weighed into a 2 mL Eppendorf tube. A volume of 1.6 mL of 50% methanol/1% formic 

acid in water solution was added. The tubes were vortexed for 1 min before extracting the 

samples in an ultrasonic bath for one hour. The tubes were then centrifuged at 12 100 g for 

5 min. The supernatants were diluted 10x with extraction buffer. The diluted solutions were 

then transferred into 1.5 mL glass vials for analysis. 

The standards were prepared as a cocktail; the cocktail was composed of 12 compounds: 

catechin, caffeic acid, chlorogenic acid, p-coumaric acid, epicatechin, epicatechin-3-O-gallate, 

epigallocatechin, EGCG, quercetin, quinic acid, rosmarinic acid, and rutin. The cocktail was 

prepared by adding 10 µL of a 1 mg/mL standard solution in acetonitrile (70%) of each 

compound to a total volume of 120 µL.  

- Liquid Chromatography-Mass spectrometry (LC-MS) analysis 

The LC-MS is a method that separates mixtures into each specific component based on their 

physical and chemical properties. This method also assists in identifying the components of 

the mixtures through the detection of peaks based on the mass spectrum (Korfmacher, 2005). 

In this study, the samples were sent at the Central Analytical Facilities at Stellenbosch 

University for analysis.  

The column eluate was first passed through a Photodiode Array (PDA) detector with a 

wavelength range of 230 to 650 nm before mass spectrometry. This process allowed 

simultaneous collection of UV and MS spectra. Electrospray ionization was used in negative 

mode with a cone voltage of 15 V, desolvation temperature of 275  ֯C, and desolvation gas at 

650 L/h, and the rest of the MS settings were optimized for the best resolution and sensitivity. 

Data were acquired by scanning the mass-to-charge 150 to 1500 mass-to-charge ratios in 

resolution and MSE modes. In MSE mode, two channels of mass spectrometry data were 

acquired at low collision energy (4 V) and at a collision ramp (40 – 100 V) to obtain fragments. 
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Leucine enkephalin was used as the reference mass to accurately determine the mass, and 

the instrument was calibrated with sodium formate. Separation was achieved on a Waters 

HSS T3, 2.1 x 100 mm, 1.7 µm column. An injection volume of 2 µL was used, and the mobile 

phase used consisted of 0.1% formic acid as solvent A and acetonitrile containing 0.1% formic 

acid as solvent B. The gradient started at 100% solvent A for 1 minute and changed to 28% 

solvent B over 22 minutes in a linear way. Then it was changed to 40% solvent B over 50 

seconds and a wash step of 1.5 minutes at 100% solvent B, followed by re-equilibration to the 

initial conditions for 4 minutes. The flow rate was 0.3 mL/min, and the column temperature 

was maintained at 55 ֯C. Data were processed using Mass Lynx for quantitative analysis; 

MSDIAL and MSFINDER can be used for unsupervised data processing (RIKEN Centre for 

Sustainable Resource Science: Metabolome Informatics Research Team, Kanagawa, Japan) 

(Lai et al., 2018, Tsugawa et al., 2015).  

1.17. Statistical analysis 

All experiments were performed in triplicate with at least three independent repeats, and the 

results are expressed as the mean ± standard error of the mean (SEM). Excel from Windows 

10 was used to analyse the data before exportation to other software for further analysis. The 

IC50 of the compounds was calculated using GraphPad Prism version 8.3.0 (San Diego, 

California, USA). Kinetic parameters of the compounds were calculated on Excel from 

Windows 10, and the graphs were generated using R Studio and Python 3.9. (Delaware, USA) 

on virtual studio code from Microsoft (Redmond, Washington, USA). The Ki values were 

obtained from the Lineweaver-Burk plot and by plotting secondary plots, and the data were 

analysed with a one-sided unpaired Student’s t-test. Significance was considered at p < 0.05 

and is indicated either with * or a different letter of the English alphabet. Multivariate analysis 

was performed using the online tool MetaboAnalyst 5.0 (www.metaboanalyst.ca/), and 

statistical analysis (one factor) and default settings were used on the analysed data obtained 

from the Central Analytical Facilities at Stellenbosch University. 

http://www.metaboanalyst.ca/
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Results 

1.18. In silico studies 

1.18.1. Chemical structures of selected compounds 

Many herbs and spices such as Oregano, Turmeric, Rosemary, and Liquorice are known to 

have antidiabetic activity (Pereira et al., 2019, El-Sayed and Youssef, 2019). These effects were 

attributed to the inhibition of carbohydrate hydrolysing enzymes and/or insulin action and/or 

other modes of action. Compounds that were the most abundant in these herbs and spices 

were selected and these compounds were curcumin, 18α-GA, quercetin and rosmarinic acid 

with nerolidol and quinic acid as negative controls based on the docking scores. 

The chemical structures of these compounds are drawn from SMILES using ChemSketch and 

are presented in Table 6. 
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Table 6. The structures of the compounds used in this study 

 
Name: Acarbose 

Structure: Saccharide 

 
Name: 18α-glycyrrhetinic acid 

Structure: Triterpenoid 

 

 
Name: Curcumin 

Structure: Polyphenol 

 

 
Name: Nerolidol 

Structure: Terpene 

 
Name: Quercetin 

Structure: Polyphenol flavonoid 

 
Name: Quinic acid 
Structure: Cyclitol 

 
Name: Rosmarinic acid 
Structure: Phenolic acid 
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1.18.2. Molecular docking 

For molecular docking studies, the PDB structures of intestinal α-glucosidase (PDB ID: 3LY4) 

from Saccharomyces cerevisiae and the human pancreatic α-amylase complex (PDB ID: 4GQR) 

were used. Docking was performed using glide scoring functions in Maestro, and the docking 

scores were then compared to those obtained from DIA-DB using the AutoDock vina 

algorithm. Maestro was used to prepare the protein structures as well as the different 

compounds that were used. 

The compounds, including acarbose the positive control, were docked in the active site of 

both α-glucosidase (Figure 14) and α-amylase (Figure 15), and the docking scores and 

interactions were generated with hydrogen bonding being the major interaction (see 

annexure A). Compounds with scores more negative than acarbose were considered to be 

potential inhibitors of α-glucosidase and α-amylase. 

 

Figure 14. Representation of the compounds on the active side of α-amylase. This shows that 
all the compounds were docked in the same binding site in the enzyme pocket. The following 
colours represent the compounds: red (acarbose), yellow (curcumin), green (18α-GA), blue 
(nerolidol), orange (quercetin), purple (quinic acid) and pink (rosmarinic acid). 
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Figure 15. Representation of the compounds on the active side of α-glucosidase. This shows 
that all the compounds were docked in the same binding site in the enzyme pocket. The 
following colours represent the compounds: red (acarbose), yellow (curcumin), green (18α-
GA), blue (nerolidol), orange (quercetin), purple (quinic acid) and pink (rosmarinic acid). 

From Table 7, curcumin, quercetin and rosmarinic acid had more negative scores than 

acarbose for α-glucosidase with both Maestro and DIA-DB. These compounds were identified 

as promising compounds for further biological enzyme inhibition studies. On the other hand, 

nerolidol had a more positive score than acarbose in α-glucosidase for both Maestro and DIA-

DB; hence, it was used as a negative control for enzyme inhibition studies. 
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Table 7. Docking scores of compounds docked to α-glucosidase 

  Docking score (Kcal/mol) 

Compound Glide AutoDock 

Quinic acid -4.7 -4.5 

Quercetin -4.6 -7.2 

Rosmarinic acid -4.1 -7.3 

Curcumin -3.3 -7.5 

Acarbose -3.1 -6.5 

18α-GA -2.1 -7.4 

Nerolidol 0.4 -5.9 

 

Table 8. Docking scores of compounds docked to α-amylase 

  Docking score (Kcal/mol) 

Compound Glide AutoDock 

Acarbose -6.5 -7.5 

Quercetin -6.5 -8.1 

Curcumin -6.3 -8.2 

Rosmarinic acid -6.0 -8.3 

Quinic acid -5.2 -5.4 

18α-GA -4.1 -9.8 

Nerolidol -2.5 -5.9 

 

From Table 8, quercetin, curcumin and rosmarinic acid have similar scores to acarbose for 

Glide and more negative scores than acarbose for AutoDock vina. This identified quercetin, 

curcumin and rosmarinic acid as promising compounds for biological study of α-amylase 

inhibition. Nerolidol had more positive scores than acarbose for both Glide and AutoDock 

vina, and consequently, it was used as a negative control for the inhibition of α-amylase.  

In contrast to the Glide data, 18α-GA had a more negative score than acarbose for both α-

glucosidase and pancreatic α-amylase with AutoDock vina, and consequently, was also a 

promising compound of both enzymes. Quinic acid had a more positive score than acarbose 

in the inhibition of both enzymes in DIA-DB, in contrast to Maestro; indicating that it may be 

a poor enzyme inhibitor.  
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Table 9. Spearman's and Pearson's correlation coefficients between Glide and AutoDock vina 

 Spearman’s coefficient ρ Pearson’s coefficient r 

α-Amylase 0.51 0.57 

α-Glucosidase 0.46 0.31 

 

Correlation studies between Glide and AutoDock vina were conducted by plotting a graph of 

Glide against AutoDock vina docking scores. This graph was crucial in determining the 

relationship between the two methods. The R2 values represent the scattering of points 

around the straight line (Figure 16). The docking scores of quinic acid in α-glucosidase and 

18α-GA in α-amylase were removed due to the undue influence in determining the R2 values. 

Spearman and Pearson’s correlation coefficients were used to determine the relationship 

between the two algorithms; positive coefficients were obtained for the two algorithms in α-

amylase and α-glucosidase (Table 9). A positive coefficient between 0 and 1 indicates a 

positive relationship between the algorithm in predicting the affinity of the compounds for α-

amylase and α-glucosidase.  

 

Figure 16. The relationship between the Glide and AutoDock docking scores against alpha-

glucosidase (Left) and alpha-amylase (Right). 

Ligand interactions were observed in the binding pocket of the enzymes using Maestro. In 

addition, compounds with more interactions with the binding pocket had a more negative 

docking score, which suggests better affinity.  
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Curcumin, 18α-GA, quercetin, and rosmarinic acid were identified as promising compounds 

for further analysis based on the positive in silico enzyme docking interactions for both 

docking algorithms. In contrast, nerolidol and quinic acid were identified as negative controls 

due to poor inhibition of both enzymes in silico.  

1.18.3. ADMET proprieties  

The ADMET properties of selected compounds were obtained using Canvas a Schrödinger 

software and pkCSM’, and the properties of each compound were compared to acarbose, a 

gold standard antidiabetic drug.  

Table 10. Predicted toxicity properties of selected compounds 

 HERG inhibitor #Stars Bioavailability score Lipinski #violation 

Acarbose No 13 0.17 3 

Curcumin No 0 0.55 0 

18α-GA No 0 0.85 1 

Nerolidol No 2 0.55 0 

Quercetin No 0 0.55 0 

Quinic acid No 0 0.56 0 

Rosmarinic acid No 2 0.56 0 

 

From Table 10, all compounds have a higher bioavailability score than acarbose, indicating 

that they are absorbed and enter the systemic circulatory system. In addition, all the 

compounds, including acarbose, do not cause hepatotoxicity or are inhibitors of the HERG 

potassium channel. The promising compounds did not violate the Lipinski rules compared to 

acarbose, which violated three of the Lipinski rules. Acarbose had more stars, suggesting that 

acarbose is less drug-like than compounds with fewer #stars.  

1.19. In vitro enzyme inhibition 

The ability of the compounds to inhibit the enzymes was assessed by determining their Ki 

values compared to acarbose, the positive control. A lower value indicates more potent 

enzymatic inhibition. 
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The inhibitory constant of each compound was determined using kinetic assays by analysing 

the double reciprocal Lineweaver-Burk plots (see Annexure B). The inhibition potential was 

evaluated, and Ki values were compared using secondary plots generated from the slope of 

the Lineweaver-Burk plots against inhibitor concentration. For each compound, the types of 

inhibition were compared by calculating the critical kinetic parameters Km and Vmax, and by 

using the template in Figure 10 above (see section 1.10) compared to the plots in annexure B 

for each compound in the inhibition of both α-amylase and α-glucosidase.  

For α-glucosidase inhibition in Table 11, there was a significant difference (p < 0.05) between 

the Ki value of acarbose and those of 18α-GA, curcumin, and quercetin. These values were 

also significantly lower (p < 0.05) than acarbose, suggesting more potent inhibition of α-

glucosidase. Only rosmarinic acid had a Ki value not significantly different (p > 0.05) to 

acarbose and can also be considered a potential inhibitor of the enzyme. The remaining two 

compounds, nerolidol and quinic acid, had Ki values significantly higher (p < 0.05) than 

acarbose, indicating weaker inhibition of α-glucosidase. The type of inhibition differed. 

Acarbose, nerolidol and quinic acid exhibited a competitive type of inhibition in which these 

compounds compete with the substrate pNPG to bind to the active site of α-glucosidase. In 

contrast, 18α-GA exhibited a non-competitive type of inhibition where binding is at a site 

other than the active site and does not compete with the substrate, pNPG. Curcumin, 

quercetin and rosmarinic acid exhibited mixed-type inhibition, a mixture of competitive and 

non-competitive inhibition.  

For α-amylase inhibition (Table 12), there was a significant difference (p < 0.05) between the 

Ki value of acarbose and the compounds evaluated. The Ki value of acarbose was significantly 

lower (p < 0.05), indicating potent inhibition of α-amylase. Of the compounds evaluated 

curcumin had the second-lowest Ki value for the inhibition of α-amylase, indicating that it is a 

more potent inhibitor than the other compounds, except acarbose. The mode of inhibition 

for acarbose, curcumin, 18α-GA, rosmarinic acid, and quinic acid exhibited mixed-type 

inhibition. Inhibition by quercetin was competitive, while nerolidol type of inhibition was 

uncompetitive. 
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Table 11. Ki values and types of inhibition of α-glucosidase by the selected compounds. 

Compound Type of inhibition K
i
 ± SEM (μM) 

18α-GA Non-competitive 27 ± 4
b
 

Curcumin Mixed 33 ± 2
b
 

Quercetin Mixed 45 ± 6
b
 

Rosmarinic acid Mixed 94 ± 13
a
 

Acarbose Competitive 130 ± 10
a
 

Nerolidol Competitive 1075 ± 132
c
 

Quinic acid Competitive 2642 ± 394
c
 

Mean values with different letters are significantly different (p < 0.05) (n = 3) 

Table 12. Ki values and types of inhibition of α-amylase by the selected compounds. 

Compound Type of inhibition Ki ± SEM (μM) 

Acarbose Mixed 31 ± 4 

Curcumin Mixed 154 ± 17a 

Quercetin Competitive 465 ± 61a 

18α-glycyrrhetinic acid Mixed 723 ± 180a 

Rosmarinic acid Mixed 1082 ± 216a 

Quinic acid Mixed 2948 ± 169a 

Nerolidol Uncompetitive 3044 ± 100a 

aMean values significantly different to acarbose (p < 0.05) (n = 3) 

1.20. Relationship between Docking scores and Ki 

Correlation studies between docking scores and Ki were conducted by plotting a graph of 

Docking scores (Glide and AutoDock) against the Ki value of each compound. 

Spearman’s and Pearson’s correlation coefficients were used to determine the relationship 

between the two studies. Positive coefficients were obtained for both α-amylase and α-

glucosidase. A positive coefficient between 0 and 1 indicates a positive relationship between 

the in vitro and in silico study of the inhibition of α-amylase and α-glucosidase. A positive 

relationship between the two approaches with positive Spearman’s and Pearson’s correlation 
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coefficients was obtained (Tables 13 and 14). The Ki value of quinic acid was not included 

when plotting the graph of Glide scores vs. Ki value of each compound because it had a 

significant influence on the line, but it was included when plotting the regression line of 

AutoDock. 

 

Figure 17. Graphs showing the relationship between the docking scores Glide (Left) and 
AutoDock (Right) against the Ki of each compound for α-glucosidase. 

 

Figure 18. Graphs showing the relationship between the docking scores Glide (Left) and 
AutoDock (Right) against the Ki of each compound for α-amylase. 

Spearman’s and Pearson’s coefficients were positive in the relationship between in silico and 

in vitro studies for the inhibition of α-glucosidase when using both AutoDock and Glide 

docking scores. However, when comparing AutoDock scores with Ki values, coefficient values 

were higher than the Glide docking scores (Table 13).   
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Table 13. Spearman's and Pearson's correlation coefficients between in vitro and silico studies 
for α-glucosidase 

 Spearman’s coefficient ρ Pearson’s coefficient r 

AutoDock 0.93 0.93 

Glide 0.43 0.26 

 

Spearman’s and Pearson’s coefficients were positive for the relationship between in silico and 

in vitro studies for the inhibition of α-amylase when using both AutoDock and Glide docking 

scores. However, unlike in the inhibition of α-glucosidase, coefficient values when comparing 

Glide scores with Ki values were higher than those of AutoDock docking scores (Table 14).   

Table 14. Spearman's and Pearson's correlation coefficients between in vitro and in silico 
studies for α-amylase 

 Spearman’s coefficient ρ Pearson’s coefficient r 

AutoDock 0.32 0.32 

Glide 0.62 0.88 

 

1.21. In vitro cytotoxicity 

Cytotoxicity was tested against C2C12 myotubes, HepG2 hepatocarcinoma, and Caco2 

adenocarcinoma cells. Glucose uptake in the C2C12 and HepG2 cell lines occurs via the GLUT-

4 transporter; therefore, the concentration range used for the evaluation of toxicity included 

the concentration used for the glucose uptake studies. Caco2 adenocarcinoma cells represent 

cells of the human intestine and represent the site of α-amylase and α-glucosidase activity. 

Table 15. IC50 of selected compounds on C2C12 cells (Mean ± SEM) 

Compound C2C12 IC50 (µM) 

18α-GA 24 ± 1* 

Acarbose 60 ± 15 

Rosmarinic acid 81 ± 17 

Quercetin 87 ± 20 

Curcumin > 100* 

Quinic acid > 100* 

Nerolidol > 100* 
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18α-GA had the lowest IC50 and showed significant cytotoxicity in the C2C12 and HepG2 cell 

lines, with values significantly lower (p < 0.05) than acarbose. In C2C12 cells, rosmarinic acid 

and quercetin had IC50 not significantly (p > 0.05) different to acarbose while all other 

compounds have shown limited cytotoxicity where concentrations up to 100 µM did not 

induce 50% cell death (Table 15). The cytotoxicity of rosmarinic acid and quercetin was similar 

to that of acarbose in the C2C12 cell line. No IC50 value could be determined for curcumin, 

quinic acid and nerolidol, indicating the lack of toxicity at concentrations as high as 100 𝜇M.  

In the HepG2 cell line, 18α-GA, curcumin, and quercetin had significantly lower (p < 0.05) IC50 

values than acarbose (Table 16). In contrast, no cytotoxicity in this cell line was observed for 

rosmarinic acid, acarbose, quinic acid and nerolidol at concentrations up to 100 µM 

(Table 16).  

Table 16. IC50 of selected compounds on HepG2 cells (Mean ± SEM) 

Compound HepG2 IC50 (µM) 

18α-GA 28 ± 8* 

Curcumin 41 ± 2* 

Quercetin 54 ± 2* 

Rosmarinic acid > 100 

Acarbose > 100 

Quinic acid > 100 

Nerolidol > 100 

 

In the Caco2 cell line, the IC50 of curcumin and rosmarinic acid was significantly less than the 

IC50 of acarbose. Quercetin, nerolidol, acarbose, quinic acid and 18α-GA were not cytotoxic at 

any of the concentrations evaluated (Table 17).  
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Table 17. IC50 of selected compounds on Caco2 cells (Mean ± SEM) 

Compound Caco2 IC50 (µM) 

Curcumin 15 ± 1* 

Rosmarinic acid 83 ± 3* 

Quercetin > 100 

Nerolidol > 100 

Acarbose > 100 

Quinic acid > 100 

18α-GA > 100 

 

1.22. In vitro glucose uptake 

Glucose uptake was evaluated in C2C12 and HepG2 cells using the 2-NBDG uptake assay. 2-

NBDG is a fluorescent analogue of glucose that is taken up by these cell lines via the GLUT4 

transporter. Insulin and metformin were used as controls. For both compounds there was no 

significant increase in 2-NBDG uptake in C2C12 cells was observed at 25 and 50 nM insulin 

and 1, 10 and 100 𝜇M metformin. For all, no significant difference was observed (p > 0.05) 

when compared with the control at all concentrations evaluated (Figures 19 and 20).

 

Figure 19. Glucose uptake by C2C12 cells. C2C12 cells were exposed for 1h to 80 μM 2-NBDG 
as control (No drug added) or 2-NBDG with 25 nM – 100 µM of the following compounds, 
insulin, curcumin, 18α-GA (GA), metformin, nerolidol, quinic acid (QA), quercetin and 
rosmarinic acid (RA) in different concentrations. (Mean ± SEM) (n = 3). 
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 Figure 20. Glucose uptake by HepG2 cells. HepG2 cells were exposed for 1h to 80 μM 2-NBDG 
as control (No drug added) or 2-NBDG with 0.1 nM – 100 µM of the following compounds, 
insulin, curcumin, 18α-GA (GA), metformin, nerolidol, quinic acid (QA), quercetin and 
rosmarinic acid (RA). (Mean ± SEM) (n = 3). 

In HepG2 cells, there was no significant change (p > 0.05) in 2-NBDG uptake at any of the 

evaluated concentrations of insulin and metformin. In contrast the uptake of 2-NBDG was 

significantly reduced for all concentrations of the compounds evaluated (p < 0.05).  

1.23. Hepatic lipid accumulation 

Oleic acid induces lipid droplet accumulation in HepG2 cells, treatment with the compounds 

were compared to the control with OA added and the vehicle control (DMSO) with no OA 

added after 48 hours exposure.  

Quantification of lipid droplets after treatment with metformin at 1 and 10 µM caused a 

significant decrease in lipid accumulation. At 1 µM, treatment with curcumin, quercetin, and 

quinic acid caused a significant decrease in lipid accumulation. At 10 µM, all compounds 

except curcumin caused a significant decrease in lipid accumulation. Metformin and quercetin 

showed a significant dose dependent decrease in lipid accumulation.  Rosmarinic acid at 10 

µM induced the greatest decrease in lipid droplet accumulation compared with the other 

compounds. 
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Figure 21. Lipid accumulation in HepG2 cells. Cells were exposed for 48 hrs to oleic acid (OA) 
only or a combination of OA and 1 – 10 µM of the following compounds metformin, curcumin, 
18α-GA, (GA), nerolidol, quercetin, quinic acid (QA) and rosmarinic acid (RA). Data are 
represented as Mean ± SEM. * p < 0.05 compared to OA only treatment. 

Microscopic images (Figure 22) show the lack of ORO staining for the control, cells only and 

the DMSO vehicle control which contrasts with the red staining observed for cells exposed to 

OA. Although some staining was observed for all cells exposed to OA in combination with the 

tested compounds the intensity of staining was reduced and was confirmed following the 

extraction of ORO (Figure 21). 
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Figure 22. Light microscopy images showing the accumulation of lipids in HepG2 cells after 
staining with Oil Red O.  The controls were HepG2 cells alone, exposed to DMSO, (vehicle 
control), oleic acid (OA) (positive control) and 10 µM of metformin (Met), curcumin (Curc), 
18α-GA (GA), nerolidol (Ner), quercetin (Quer), quinic acid (QA) and rosmarinic acid (RA). 
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1.24. Herbs/spices dose-related to acarbose dose 

The herbs and spices with the highest contents of curcumin, glycyrrhizin, quercetin, quinic 

acid and rosmarinic acid were identified (Table 18). Curcumin and rosmarinic acid which are 

potent inhibitors of α-glucosidase and reduced hepatic lipid accumulation, were present in 

Turmeric as well as Peppermint and Rosemary, respectively. These results indicate that these 

herbs have antidiabetic properties. Quercetin and quinic acid are present in green tea 

(Table 19). The levels of these compounds and two known antidiabetic compounds, ECG and 

EGCG were determined in five brands of green tea.  

Table 18 is showing a small amount of Turmeric, 1.3 g dry weight may be required to match 

the dose of acarbose per meal. Green tea, Peppermint and Rosemary have also shown small 

amount, 1.9, 1.6, and 1.8 g dry weight, respectively. This relates to the moles of selected 

compounds to approximately match the moles in the dose of acarbose per meal. 

Table 18. Herb/spice dosage required relative to acarbose 

Compound 
Herb or spice 

(Species) 
Amount in herb/spice 

(mg/100 g) 

Amount (g) of herb 
relative to acarbose 

per meal 

Curcumin 

Turmeric 
(Curcuma longa) 

2213 1.3 

Curry powder 
(Murraya koenigii) 

285 10.0 

Epicatechin gallate 
Green tea 

(Camelia sinensis) 
1256 2.7 

Epigallocatechin gallate 
Green tea 

(Camelia sinensis) 
3000 1.2 

Glycyrrhizin 
Liquorice 

(Glycyrrhiza glabra) 
239* 27.0 

Quercetin 

Oregano 
(Lippia graveleones) 

42 56.0 

Green tea 
(Camelia sinensis) 

2.77 845 

Quinic acid 
Green tea 

(Camelia sinensis) 
795 1.9 

Rosmarinic acid 

Peppermint 
(Mentha piperita) 

1620 1.6 

Rosemary 
(Salvia rosmarinus) 

1534 1.8 

*(Tian et al., 2008) 
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1.25. LC/MS and metabolomic analysis on green tea 

1.25.1. Identification of the peaks in the teas 

LC/MS was used to identify the different compounds in five different tea brands: Dilmah, 

Eve’s, Five Roses, Livewell and Tetley. Twelve compounds were used as standards to be 

identified in Camellia sinensis green tea brands. The retention time and m/z ratio of the 

standards were identified, and these data are presented in Table 19 and Figure 23.  

Table 19. Peaks of standards according to the mass spectra from the negative ion mode. 

Name Molecular mass (Da) m/z ratio Retention time (min) 

Caffeic acid 180.042255 179.04 12.89 

Catechin 290.079041 289.07 11.78 

Chlorogenic acid 354.095093 353.09 12.11 

p-Coumaric acid 164.047348 163.04 15.73 

Epicatechin 290.079041 289.07 13.89 

Epicatechin-3-O-gallate 442.089996 441.08 17.40 

Epigallocatechin 306.073944 305.07 11.05 

Epigallocatechin gallate 458.084900 457.07 14.08 

Quercetin 302.053223 301.04 24.20 

Quinic acid 192.063385 191.06 1.860 

Rosmarinic acid 360.084503 359.07 20.07 

Rutin 610.153381 609.15 17.54 
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Figure 23. Chromatogram of the standards cocktail in ESI negative. The chromatograms show the retention time and the m/z ratio of the 12 
standards. 
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Figure 24. Chromatogram of the green tea in ESI negative. The chromatograms show the retention time and the m/z ratio of the compounds in 
the green tea compared to the standards in Figure 23. The number corresponds to the compound in Figure 23. 
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Figure 25. UV/Vis spectrum of the standards. It is used to identify standards in green tea that are only visible with UV/Vis. The top and bottom 
values represent the retention time and the wavelength respectively. 
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Figure 26. UV/Vis spectra of the green tea. It is used to identify standards from Figure 25 that are only visible with UV/Vis. The number corresponds 
to the compound in Figure 23. The top and bottom values below each compound represent the retention time and the wavelength respectively.
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In Figures 23 and 24, when comparing the chromatogram of the standards to that of the green 

tea samples in ESI negative, five standards were identified based on their respective retention 

times. The identified standards were: quinic acid (Peak 1), epigallocatechin (Peak 2), 

epicatechin (Peak 6), EGCG (Peak 7) and ECG (Peak 9). The same standards were also 

identified based on the UV/Vis spectrum of the standards compared with the spectrum for 

green tea (Figures 25 and 26).  

From the 12 standards, only the peaks of catechin, epicatechin, ECG, epigallocatechin, EGCG 

and quinic acid were identified in the five tea brands based on their retention times and m/z 

ratios as indicated in Table 19. The peak areas of the identified standard are shown in Table 

20. In addition, seven unidentified peaks (labelled UP1 – UP7) were selected based on their 

presence in the chromatograms of the five teas. Their retention times, m/z ratios and peak 

areas were determined (Table 21 and Table 22).  

Table 20. Average peak areas of the identified standards in the tea chromatograms 

 Dilmah Eve’s Five Roses Livewell Tetley 

Catechin 2328.15 1672.79 804.91 882.76 951.45 

Epicatechin 14464.52 8315.60 6343.48 6043.74 6051.43 

*ECG 15109.45 13511.51 10000.06 8968.80 8360.31 

Epigallocatechin 21144.23 15311.82 15331.98 15571.49 13797.43 

*EGCG 22070.77 24035.29 20819.63 19754.86 21180.79 

Quinic acid 13758.07 13935.07 16738.70 16257.02 16881.81 

*Epicatechin gallate **Epigallocatechin gallate 

Table 21. Retention times and m/z ratios of the unidentified peaks (UP) 

 Retention time (min) m/z ratio 

UP1 2.10 341.11 

UP2 2.81 173.09 

UP3 6.09 169.01 

UP4 6.90 343.07 

UP5 8.60 305.07 

UP6 16.92 771.19 

UP7 18.37 755.2 

UP: Unidentified peaks 
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Table 22. Average peak areas of the unidentified peaks (UP) in the tea chromatograms 

 Dilmah Eve’s Five Roses Livewell Tetley 

UP1 2127.77 2788.89 9020.37 7998.25 9184.54 

UP2 1012.86 1708.82 1009.24 1273.29 1529.14 

UP3 1161.35 1123.33 1296.63 1365.79 1105.62 

UP4 4233.63 4697.76 2568.99 2919.58 3231.52 

UP5 6234.90 2498.56 1992.38 2169.4 2403.18 

UP6 1520.60 2038.74 2330.1 2219.74 2208.09 

UP7 466.763 1833.37 1419.7 1418.46 1406.39 

 

1.25.2. Quantification of metabolites in green tea 

Quinic acid, epicatechin gallate, and EGCG were identified and quantified in the five green tea 

brands based on their retention times, and m/z ratios (Table 19 and Figure 23).  

From Table 23, Dilmah had a higher mean %w/w dry weight of quinic acid and ECG than the 

other green tea brands.  No significant difference was observed in the mean %w/w dry weight 

of ECG in Dilmah, Eve’s, and Five Roses. However, Eve’s had a significantly higher mean %w/w 

dry weight of EGCG than the other green tea brands. 

Livewell and Tetley had significantly lower mean %w/w dry weights of quinic acid and ECG, 

while Tetley had a significantly lower mean %w/w dry weight of EGCG.  

Table 23. Quantification of quinic acid, epicatechin gallate and epigallocatechin gallate in the 
5 tea brands. Values presented as (Mean ± SEM) % w/w dry weight 

 Quinic acid Epigallocatechin gallate Epicatechin gallate 

Dilmah 0.80 ± 0.01a 2.85 ± 0.04a 1.26 ± 0.01a 

Eve’s 0.50 ± 0.02b 3.00 ± 0.05b 1.18 ± 0.01a 

Five Roses 0.30 ± 0.01c 2.76 ± 0.02a 1.01 ± 0.01a 

Livewell 0.42 ± 0.01d 2.85 ± 0.05a 0.93 ± 0.01b 

Tetley 0.41 ± 0.01d 2.68 ± 0.04c 0.92 ± 0.01b 

Average 0.49 ± 0.01 2.82 ± 0.04 1.06 ± 0.01 

 Mean values with different letters are significantly different (p < 0.05) (n = 6) 

1.25.3. Inhibition of α-amylase and α-glucosidase by green tea 

The DNSA and pNPG assays were used to determine the inhibition of both enzymes by the 

five green tea brands. A lower IC50 value indicated potent inhibition.  
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Table 24. IC50 of the green tea brands for the inhibition of α-amylase and α-glucosidase (Mean 
± SEM)  

 α-Amylase (mg/mL) α-Glucosidase (mg/mL) 

Dilmah 19 ± 4a 0.98 ± 0.02a 

Eve’s 33 ± 1b 1.30 ± 0.01b 

Five Roses 25 ± 2a 1.70 ± 0.01c 

Livewell 23 ± 2a 0.26 ± 0.01d 

Tetley 31 ± 3b 0.44 ± 0.01e 

 

Mean values with different letters are significantly different (p < 0.05) (n = 3) 

From Table 24, Dilmah and Livewell had lower IC50 values for α-amylase and α-glucosidase, 

respectively. However, no significant differences were observed in the IC50 values of Dilmah, 

Five Roses, and Livewell in the inhibition of α-amylase. The IC50 for Tetley was significantly 

higher than that of the other tea brands. For α-glucosidase, inhibition, Livewell had the lowest 

IC50 and Eve’s tea the highest. 

Dilmah and Livewell brands are more effective inhibitors of both enzymes and are used to 

perform multivariate analysis; Eve’s and Five Roses tea can be considered to be weaker 

inhibitors compared to the other tea brands.  

1.25.4. Correlation between peak areas in green tea brands and enzyme inhibition by 

green tea brands 

Spearman and Pearson’s correlation coefficients were used to determine the relationship 

between the identified peak areas in the chromatograms and the inhibition of α-amylase and 

α-glucosidase by the five tea brands. The relationship between peak areas and enzyme 

inhibition was determined for the identified standards in Table 20 and the unidentified peaks 

(UP) in Table 22. 

Table 25. Spearman's and Pearson's correlation coefficients between peak areas of the 
identified standards and α-amylase inhibition by the green tea brands 

 Spearman’s coefficient ρ Pearson’s coefficient r 

Catechin 0.1 0.1 

Epicatechin 0.1 0.1 

ECG 0.3 0.3 

Epigallocatechin 0.3 0.3 

EGCG -0.1 -0.1 

Quinic acid 0.3 0.3 
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Catechin, epicatechin, ECG, epigallocatechin and quinic acid had a positive correlation 

coefficient, suggesting a positive correlation between the peak areas of these compounds in 

the five green teas and the inhibition of α-amylase by the five green tea brands (Table 25). 

Among the five standards with positive correlation, ECG, epigallocatechin and quinic acid 

correlated best with enzyme inhibition.  

Table 26. Spearman's and Pearson's correlation coefficients between peak areas of the 
identified standards and α-glucosidase inhibition by the green tea brands 

 Spearman’s coefficient ρ Pearson’s coefficient r 

Catechin 0.1 0.1 

Epicatechin -0.6 -0.6 

ECG -0.5 -0.6 

Epigallocatechin -0.5 -0.5 

EGCG 0 0 

Quinic acid 0.2 0.2 

 

Catechin and quinic acid had a positive correlation coefficient when comparing the peak areas 

and the inhibition of α-glucosidase by the five green tea brands (Table 26). Quinic acid 

correlated best with enzyme inhibition, with a correlation coefficient of 0.2 compared to 0.1 

for catechin.  

Table 27. Spearman's and Pearson's correlation coefficients between the peak areas of the 
unidentified peaks (UP) and α-amylase inhibition by the green tea brands 

 Spearman’s coefficient ρ Pearson’s coefficient r 

UP1 -0.4 -0.4 

UP2 -0.7 -0.7 

UP3 0.6 0.6 

UP4 -0.3 -0.3 

UP5 0.1 0.1 

UP6 -0.1 -0.1 

UP7 -0.7 -0.7 

 

Unidentified peaks UP3 and UP5 had a positive correlation with correlation coefficients of 0.6 

and 0.1, respectively, when comparing the peak areas and the inhibition of α-amylase by the 

five green tea brands. UP3 correlated better with enzyme inhibition than UP5 (Table 27).  

Comparing the peak areas and the inhibition of α-glucosidase by the five green tea brands, 

unidentified peaks UP1, UP2, UP3 and UP5 had positive correlation with UP2 having the best 

positive correlation coefficient of 0.3 (Table 28).  
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Table 28. Spearman's and Pearson's correlation coefficients between the peak areas of the 
unidentified peaks (UP) and α-glucosidase inhibition by the green tea brands 

 Spearman’s coefficient ρ Pearson’s coefficient r 

UP1 0.1 0.1 

UP2 0.3 0.3 

UP3 0.1 0.1 

UP4 0 0 

UP5 0.1 0.1 

UP6 -0.1 -0.1 

UP7 -0.5 -0.5 

 

Compounds belonging to UP3 and UP5 have a positive correlation between their peak areas 

and inhibition of α-amylase and α-glucosidase with UP3 having a better correlation than the 

identified standards for the inhibition of α-amylase.  

Table 29. Details on UP3 and UP5 according to the obtained mass spectra 

 Retention 
time (min) 

m/z 
ratio 

Proposed 
formula 

Fragment 
ions 

Tentatively 
identified 

compounds 

Reference 

UP3 6.09 169.01 C7H6O5 125 Gallic acid (Lin et al., 2008) 
(Jin et al., 2019) 

UP5 8.60 305.07 C15H14O7 125, 179 Gallocatechin (Jin et al., 2019) 

www.pubchem.ncbi.nlm.nih.gov/ and www.genome.jp/kegg/compound/  

The compounds UP3 and UP5 were tentatively identified as gallic acid and gallocatechin 

respectively (Table 29). Figures 27 and 28 show the fragment ions of the two proposed 

compounds. The KEGG pathway website was used to determine the different compounds 

with the proposed molecular formula and PubChem, and previous studies revealed ms/ms 

fragments that corresponded to those observed in the present study.

http://www.pubchem.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/compound/
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Figure 27. Molecular structures and ms/ms fragment ions of the proposed compound UP3. 



65 
 

 

Figure 28. Molecular structures and ms/ms fragment ions of the proposed compound UP5
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1.25.5. Multivariate data analysis 

PCA and OPLSDA were performed to evaluate the variability between the five green tea 

brands. Samples with similarities are clustered together, and samples with fewer similarities 

are separated.  

On the PCA score plot (Figure 30A), Dilmah and Eve’s green teas were separated from the 

other tea brands. Five Roses, Livewell, and Tetley clustered together. In the separation, PC1 

and PC2 were 87.3% and 4.7%, respectively.  

The OPLSDA (Figure 30B) showed more differences in the metabolite content, where there 

was further separation between the clustered tea brands in the PCA. Five Roses seem to show 

a slight separation, while Livewell and Tetley remain slightly more clustered.   
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Figure 29. PCA (A) and OPLS-DA (B) score plots of the metabolite content of the five green tea 

brands. 
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Figure 30. OPLS-DA (A) and volcano plot diagram(B) of α-amylase and α-glucosidase inhibition 

by the five green tea brands. 
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In the OPLS-DA in Figure 31A, the stronger inhibitors tea brands such as Dilmah and Livewell 

were located on the left side of the confidence interval, and the weaker inhibitors such as Five 

Roses and Eve’s tea brands were on the right side of the confidence interval. The principal 

component T score [1] was 23.7%, and the orthogonal T score [1] in the OSC process was 

43.3%. The volcano map in Figure 21B shows that 31 metabolites (see Table 1D in Annexure 

D) were detected and screened; 20 of the metabolites were not significantly changed, 11 

metabolites were significantly changed where 10 metabolites were downregulated, and one 

metabolite was upregulated. Significantly changed metabolites accounted for approximately 

35.5% of the total metabolites detected; this indicates a significant change in metabolites 

between strong (Dilmah and Eve’s) and weak (Livewell and Tetley) inhibitors.  

Discussion 

1.26. In silico studies 

In silico studies were performed before any biological studies to predict the binding abilities 

of the herbal compounds in the active site of α-amylase and α-glucosidase were undertaken. 

It was also used to predict the physiochemical, pharmacokinetic, and toxicity properties of 

the compounds.  

In silico studies were used as a step in the selection of the compounds to be used. Compounds 

were selected based on the docking scores compared with a drug known to inhibit these 

enzymes, acarbose. The compounds were docked in the active site of α-amylase and α- 

glucosidase. The docking scores of the compounds were obtained using Maestro and 

AutoDock vina. Maestro is a Schrödinger software that uses the Glide scoring function; this 

scoring function analyses the different interactions in the ligand-protein complex and 

minimizes any steric clashes to generate docking scores (Friesner et al., 2004). AutoDock vina 

uses the empirical scoring function that focuses on simple contact terms,  the contribution of 

lipophilic and metal-ligand interactions in the ligand-protein complex to estimate the Gibbs 

free binding energy between the ligand and the protein (Eldridge et al., 1997). The scores 

from AutoDock vina were obtained from the DIA-DB (https://bio-hpc.eu/software/dia-db/). 

The compounds interact with the amino acid in the enzyme's catalytic site to generate binding 

energy where a more negative binding energy indicates a spontaneous interaction and a 

stronger affinity between the ligand and protein, thus more potent inhibition.  

https://bio-hpc.eu/software/dia-db/
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The scores were used to select seven compounds, including acarbose. These were four 

compounds with an affinity better or similar than acarbose and two compounds with an 

affinity lower than acarbose.  

For α-glucosidase in silico inhibition (Table 7), the order of affinity was as follow: quinic acid 

> quercetin > rosmarinic acid > curcumin > acarbose > 18α-GA > nerolidol when docked with 

Glide; and curcumin > 18α-GA > rosmarinic acid > quercetin > acarbose > nerolidol > quinic 

acid when docked with AutoDock vina. Similar to these findings Jhong et al. (Jhong et al., 

2015), reported a higher in silico binding affinity to α-glucosidase for curcumin with docking 

scores more negative than acarbose. However, they used PDB ID 2ZE0 while we used PDB ID 

3L4Y, and the authors used AutoDock for their scoring function. A study by Tolmie et al. 

(Tolmie et al., 2021) reported that rosmarinic acid has a higher in silico binding affinity to α-

glucosidase than acarbose, and as in the present study, the same PDB ID and the glide scoring 

function were used. 

For pancreatic α-amylase in silico inhibition (Table 8), the order of affinity was as follow: 

acarbose > quercetin > curcumin > rosmarinic acid > quinic acid > 18α-GA > nerolidol when 

docked with Glide; and 18α-GA > rosmarinic acid > curcumin > quercetin > acarbose > 

nerolidol > quinic acid when docked with AutoDock vina. Compared to acarbose, curcumin, 

18α-GA, quercetin, and rosmarinic acid are considered potential inhibitors of α-amylase and 

α-glucosidase. Nerolidol was considered to be a weak inhibitor of both enzymes, and quinic 

acid had different affinities when comparing the two docking algorithms.  

A positive correlation was observed between the two docking algorithms with a R2 value 

slightly higher than 0.5; although this can be interpreted as a positive correlation, it can be 

interpreted as a low effect on the prediction (Lewis-Beck and Skalaban, 1990, Moore and 

Kirkland, 2007). These results were used as motivation to perform in vitro enzyme inhibition 

to further investigate the potential inhibitory activities of these compounds against 

pancreatic α-amylase and α-glucosidase. 

For systemic applications, it is important to determine the ADMET properties of the 

compounds. This was generated in silico using Schrödinger software known as QikProp and 

an online free tool, pkCSM. These programs help predict the ADMET properties of the 

compounds. In Table 10, all compounds, including acarbose, were predicted not to be 



71 
 

hepatotoxic and had no HERG potassium (K+) channel inhibition.  Potential cardiotoxicity was 

also evaluated, and this involved the prediction of effects on the KCNH2 channel, as it takes 

part in the electrical activity of the heart and modulates some cellular functions of the nervous 

system. In the heart, an inhibition or blockage of this channel may result in a disorder called 

long Q-T syndrome (LQTS) (Aronov, 2005, Hedley et al., 2009, Ntie-Kang, 2013).  

A bioavailability score  close to 1, indicates that these drugs are absorbed into the circulation 

before reaching their target (Ntie-Kang, 2013). The bioavailability of the compounds was 

assessed and compared to acarbose, which mediates its effect in the gastrointestinal tract 

and had a lower bioavailability score of 0.17. 18α-GA had the highest bioavailability score of 

0.85. Curcumin, nerolidol, quercetin, quinic acid, and rosmarinic acid had a bioavailability 

score of 0.5, showing that almost half of these compounds are absorbed into the circulation. 

This is of importance if there are multiple targets such as the inhibition of 𝛼-amylase and 𝛼-

glucosidase, as well as systemic targets.  

The #stars are an indication of the drug-likeness of the compounds. Canvas QikProp uses 

approximately 20 descriptors to determine the drug-likeness of the compounds. The #stars 

indicates the number of descriptors significantly different from known drugs' 95% value range 

(Schrodinger, 2012). Findings were that the selected compounds are more drug-like than 

acarbose having more #stars than all compounds. 

The Lipinski rule of five is used to determine the parameters associated with 90% of orally 

administered drugs that have passed the phase II clinical stage trial (Lipinski et al., 1997, 

Lipinski, 2004). The results from Table 6 show that acarbose violated three rules; 18α-GA 

violated one rule, while the remaining compounds did not violate the rule of five. However, 

Lipinski has also stated that some of the orally active drugs may lie outside of the rule of five 

and can still be used, mainly because these drugs are substrates of naturally occurring targets, 

and the rule of five does not guarantee that the compound is drug-like (Lipinski et al., 1997, 

Lipinski, 2004). 

1.27. In vitro enzyme inhibition 

α-Amylase and α-glucosidase are necessary critical enzymes in the digestion of dietary 

carbohydrates. These enzymes are among the therapeutic targets in T2DM, and inhibition of 
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these enzymes reduces the increase in postprandial blood level glucose by delaying hydrolysis 

and absorption of carbohydrates (Nguyen and Le, 2012, Tiwari et al., 2014). 

Acarbose, voglibose, and miglitol are currently commercially available inhibitors of these 

enzymes in clinical use, but these inhibitors cause some side effects such as abdominal stress 

diarrhea, flatulence, and other gastrointestinal effects (Wang et al., 2016). Therefore, it is 

important to find new inhibitors that are readily available, cost-effective, and possibly have 

fewer side effects. Dietary intervention based on plant derived products that can contribute 

to reducing hyperglycaemia can also reduce the required dosage of these drugs thereby 

reducing side effects. 

Two values are commonly used parameters to compare the potency of inhibitors. The first is 

the constant inhibition value, Ki which is the equilibrium constant of the dissociation of the 

inhibitor-enzyme complex; the second value is the IC50 which is the inhibitor concentration 

that reduces the rate of the enzyme-catalysed reaction by half (Burlingham and Widlanski, 

2003). Data are commonly reported using either or both, where a smaller value/s denotes a 

higher binding affinity, thus more potent inhibition. 

The increasing order of the Ki values in the inhibition of α-glucosidase was as follows: 18α-GA 

< curcumin < quercetin < rosmarinic acid < acarbose < nerolidol < quinic acid (Table 11). The 

compounds, 18α-GA, curcumin, and quercetin showed stronger in vitro inhibition of α-

glucosidase than acarbose, the positive control, with Ki values significantly lower (p < 0.05) 

than acarbose. In contrast, the efficacy of rosmarinic acid was similar to that of acarbose for 

the inhibition of α-glucosidase with a Ki value not significantly different (p > 0.05) from that 

of acarbose. Jhong et al. (Jhong et al., 2015) also reported more potent inhibition of α-

glucosidase by curcumin and quercetin compared to acarbose. In this study, the IC50 values 

were used for comparison, with the IC50 values of curcumin and quercetin being lower than 

that of acarbose. No data have previously been reported for the inhibition of α-glucosidase 

by 18α-GA, although, Ko et al. (Ko et al., 2007) reported some antidiabetic properties for 18α-

GA related to insulin-stimulated glucose uptake in adipocytes. 

None of the selected compounds showed stronger in vitro inhibition of pancreatic α-amylase 

than acarbose, with the Ki value of acarbose being significantly lower than that of the selected 

compounds. The increasing order of Ki values was as follows (Table 12) acarbose < curcumin 
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< quercetin < 18α-GA < rosmarinic acid < quinic acid < nerolidol, where a lower Ki indicates 

more potent inhibition. Of the compounds evaluated, curcumin had the most potent 

inhibition. Likewise Jhong et al. (Jhong et al., 2015), showed that curcumin had more potent 

inhibition of pancreatic α-amylase than quercetin with the IC50 of curcumin being lower than 

that of quercetin. In the latter study, a more potent inhibition of pancreatic α-amylase by 

curcumin and quercetin compared with acarbose, with their IC50 values being lower than that 

of acarbose. Although some compounds showed mild inhibition of α-amylase, this may be 

preferred as it may help prevent excessive bacterial fermentation that can lead to adverse 

gastrointestinal side effects (Etxeberria et al., 2012, Tolmie et al., 2021). 

Kinetics studies not only helped us determine the inhibitory constant; it was also used to 

determine the type of inhibition of the compounds. For example, acarbose is a competitive 

inhibitor of α-glucosidase and a  mixed inhibitor of α-amylase (Kim et al., 1999, Proença et al., 

2017). In this study, the type of inhibition of acarbose was confirmed, with competitive and 

mixed inhibition of α-glucosidase and α-amylase, respectively. In addition, this study also 

determined the type of inhibition of curcumin, 18α-GA, quercetin, and rosmarinic acid in the 

inhibition of α-glucosidase and α-amylase, as seen in Tables 11 and 12. Although indicating a 

weaker inhibition of α-glucosidase, nerolidol and quinic acid, as competitive inhibitors, had 

the same mode of action as acarbose for the inhibition of α-glucosidase. Curcumin, 18α-GA, 

rosmarinic acid and quinic acid being mixed inhibitors of α-amylase, these compounds had 

the same mode of action as acarbose for the inhibition of α-amylase. 

1.28. In vitro cytotoxicity 

The cytotoxicity of the promising compounds against C2C12, HepG2, and Caco2 cells was 

quantified after 48 hours exposure with the SRB assay and the IC50 was calculated.  

Cytotoxicity in the Caco2 cells was used to predict the effect of the tested compounds in the 

small intestine where both carbohydrate hydrolysing enzymes are located. For curcumin and 

rosmarinic acid, IC50 values of 15 and 83 µM, respectively could be determined while for the 

remaining compounds at the highest concentration of 100 µM, a 50% toxicity could not be 

determined. A study by (Şueki et al., 2019) showed that Caco2 cells are more resistant to 

curcumin where at 50 µM only 16.2% toxicity was observed in Caco2 cells after 24 hours 

exposure.  
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In the C2C12 cell line, curcumin, quinic acid, and nerolidol were not toxic even at 100 µM the 

highest concentration used. The compounds for which the IC50 could be determined were 

18α-GA > acarbose > rosmarinic acid > quercetin with IC50 values of 24 ± 1, 60 ± 15, 81 ± 17 

and 87 ± 20 µM, respectively. A study by (Tolmie et al., 2021) reported IC50 values of 83 and 

60 µM for rosmarinic acid and acarbose in C2C12 cells, which are similar to the findings of the 

present study. In another study by (Chen et al., 2020) quercetin showed no toxicity in C2C12 

cells at a concentration as high as 100 µM after 24 hours exposure compared to the 50% 

toxicity at a concentration of 87 µM in the present study after 72 hours. Toxicity is dependent 

on dosage, exposure time and the assay used for quantification. Increased exposure time will 

show a time related increase in toxicity and may account for the observed differences. 

Recently limited cytotoxicity of curcumin was reported even at a concentration of 100 µM 

(Septisetyani et al., 2020). 

Rosmarinic acid, acarbose, quinic acid, and nerolidol were not cytotoxic in the HepG2 cell line. 

The IC50 values for 18α-GA > curcumin > quercetin was 28 ± 8, 41± 2, 54 ± 2 μM, respectively. 

This confirms the findings of (Tolmie et al., 2021) who reported a lack of toxicity in the same 

cell line even at concentrations as high as 500 µM.  

The different cell lines responded differently to the compounds and may be related to the 

doubling times and cellular metabolism related to cellular ADMET, with HepG2 and C2C12 

cells being more sensitive. For example, for 18α-GA, an IC50 was obtained in the C2C12 and 

HepG2 cell lines but not in the CaCo-2 cell line. The highest concentrations used in the glucose 

uptake studies in the C2C12 and HepG2 cell lines was 100 µM, and exposure was only for 45 

min, probably not sufficient to have any cytotoxic effects considering that cytotoxicity is also 

time dependent. Likewise, for the lipid accumulation studies, the HepG2 cells were exposed 

to 10 µM of the compounds for 48 hours, where these compounds would have limited 

toxicity. Microscopy images of HepG2 cells exposed to OA (Figure 22) and the compounds 

also show the lack of cellular features associated with toxicity. 

1.29. In vitro glucose uptake 

The ability of the promising compounds to stimulate glucose uptake in C2C12 and HepG2 cells 

was determined using the 2-NBDG assay. Both cell lines represent insulin target tissue where 

insulin stimulates glucose uptake through the translocation of glucose transporters. The 

positive controls, insulin and metformin did not increase glucose uptake in the studied cells. 
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Likewise, a study by (Zou et al., 2005) observed no glucose uptake in HepG2 cells when treated 

with insulin and metformin. In contrast, anti-diabetic drugs such rosiglitazone, glibenclamide, 

and chiglitazar mediated cellular glucose uptake possibly through mechanisms different from 

insulin (Zou et al., 2005). Another study by (Park et al., 2014) showed an increase in cellular 

glucose uptake in differentiated C2C12 cells in the presence of 100 nM insulin compared to 

untreated cells. No change in glucose uptake was found for the compounds investigated in 

this study. 

A study by (Yamamoto et al., 2015) identified the advantages and disadvantages of the 2-

NBDG assay where the method of quantification is a major consideration with quantification 

of microscopic images being the method of choice rather than plate formats. In other studies 

(Zhang et al., 2010, Kim et al., 2012) measured glucose uptake in HepG2 and C2C12 cells by 

first inducing insulin resistance prior to adding specific drugs to evaluate subsequent glucose 

uptake. In contrast, in the present study, the cell lines were not insulin resistant, and rather 

the direct effects on glucose uptake were studied. This is an important aspect that should be 

included in future studies. 

1.30. Hepatic lipid accumulation 

Rosmarinic acid and 18α-GA caused the highest decrease in hepatic lipid accumulation at 10 

µM compared with the other compounds. A study by (Balachander et al., 2018) showed a 

similar results to the present study where both rosmarinic acid and metformin significantly 

reduced OA induced lipid accumulation in HepG2 cells and can be considered potential 

compounds in the management of NAFLD. Curcumin reduced lipid accumulation in OA 

induced HepG2 cells after 24 hours exposure (Kang et al., 2013). Likewise (Vidyashankar et 

al., 2013, Li et al., 2013) also found a reduction in hepatic OA induced lipid accumulation by 

quercetin, and the proposed mechanism was the enhancement of tyrosine phosphate and 

downregulation of the levels of sterol regulatory element-binding protein-1c (SREBP-1c). 

In the present study, the promising compounds improved hepatic lipid accumulation and can 

be used as a potential treatment in NAFLD by decreasing OA induced lipid accumulation while 

also taking into consideration the bioavailability scores (Table 10). The present study confirms 

the findings of previous studies for curcumin, rosmarinic acid and quercetin but the beneficial 

effects for 18α-GA, quinic acid and nerolidol have not yet been reported.  
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Furthermore, there are suggestions that the mode of action involved in the reduction of lipid 

accumulation may involve pathways such as: insulin signalling, lipogenic enzymes, cholesterol 

biosynthesis, TG biosynthesis, and fatty acid β-oxidation and should be evaluated in more 

detailed studies. 

Several different herbs and spices can be a source of these compounds, and screening of 

herbs and spices identified Turmeric as a rich source of curcumin, and Rosemary as a rich 

source of rosmarinic acid (Table 18). An identified rich source of these bioactive molecules 

was green tea, where the polyphenols in green tea have been identified to contribute to the 

antidiabetic activity of green tea (Juśkiewicz et al., 2008, Polychronopoulos et al., 2008).  

1.31. Qualitative and quantitative analysis of green tea 

The levels of quinic acid, EGCG and ECG were determined in Dilmah, Eve’s, Five Roses and 

Livewell green tea. Levels of quinic acid, EGCG and ECG were similar in all teas. Quinic acid 

and epicatechin gallate levels were the highest in Dilmah tea while the levels of ECG were the 

highest in Eve’s tea. 

In the present study the anti-diabetic effect of green tea brands related to the inhibition of α-

amylase and α-glucosidase was also evaluated. Lower IC50 values were observed in the 

inhibition of α-glucosidase than α-amylase, showing that green tea is a better inhibitor of α-

glucosidase. In a previous study, Camellia sinensis green tea was shown to be a more potent 

inhibitor of α-glucosidase and a less potent inhibitor of α-amylase than acarbose (Yilmazer-

Musa et al., 2012).   

Among the five green tea brands, Dilmah and Livewell showed better inhibition of both 

enzymes than Eve’s and Five Roses. A metabolomic approach was taken to analyse the 

difference between the tea brands to identify the best tea related to enzyme inhibition. PCA 

showed an apparent clustering of Dilmah and Eve’s while the other brands clustered together. 

The PCA plot in Figure 25 shows that the good inhibitors clustered on the negative side, while 

the poor inhibitors were located on the positive side of the T score [1]. This finding was 

confirmed with the volcano plot in Figure 26B; 35.5% of the total metabolites were 

significantly different between the good and poor inhibitors.  

The ability of the green tea brands to inhibit the enzymes may be linked to the metabolites 

that are present. The difference among them may be linked to the % w/v dry weight of the 



77 
 

compounds present in the green tea brands. Epigallocatechin and ECG are potent inhibitors 

of α-glucosidase and have been quantified in the five green tea brands (Yang et al., 2019, Li 

et al., 2010).  In the present study, the levels in Dilmah tea were higher than those in the other 

green tea brands, which may be linked to the inhibitory activity of Dilmah. Although Eve’s tea 

is identified as a poor inhibitor, it contains significant amounts of epigallocatechin and ECG. 

Two conclusions can therefore be drawn: the first is that - other metabolites may contribute 

to activity, and secondly although differences are statistically different the biological effects 

may be similar. Therefore, to address the possible role of additional metabolites, it was 

necessary to identify and annotate other peaks using software applications such as MSDIAL 

and MSFINDER. This software helps to identify metabolite differences among the green tea 

brands. 

Using the peak areas, identified standards and unidentified selected peaks were screened for 

correlations with the enzyme inhibition. Unidentified peaks 3 and 5 (UP3 and UP5) showed 

better or similar correlations to some authentic standards, therefore, it was necessary to 

putatively identify the two peaks. Using previous studies as well as different databases 

www.pubchem.ncbi.nlm.nih.gov/ and www.genome.jp/kegg/compound/, gallic acid and 

gallocatechin were identified as the compounds occupying UP3 and UP5, respectively. These 

compounds might be among the compounds that contributed to the activity of the green tea 

brands to inhibit α-amylase and α-glucosidase, however, an individual in vitro testing of these 

compounds in the inhibition of both α-amylase and α-glucosidase together with reviews of 

previous studies will help strengthen this assumption. Gallic acid showed strong inhibition of 

starch hydrolysing enzymes in previous studies (Limanto et al., 2019, Gutierrez et al., 2020) 

with an IC50 better than acarbose. Gallic acid has been reported to play a role in the quality of 

green tea (Le Gall et al., 2004), and it has been quantified in Chinese green tea products at a 

concentration of 0.52 mg per 100 mg green tea (Lin et al., 1998). Gallocatechin is part of the 

catechin family, which is known to have inhibitory activities against starch hydrolysing 

enzymes, and it has been reported to be present in green tea at a concentration of 0.30 mg 

per 100 mg green tea (Lee et al., 2014). These findings may explain the positive correlations 

observed in the present study, and relative to the amount of gallic acid and gallocatechin in 

green tea, doses of 2.50 g and 7.90 g of green tea relate to the 50 mg acarbose per meal, 

respectively.  

http://www.pubchem.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/compound/
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Lastly, it will be important to determine the biological relevance of the significant differences 

observed related to enzyme inhibition using a diabetic rat model such as DM induction in 

db/db or ob/ob mice that are extremely obese and mimic human T2DM with hyperglycemia 

and hyperinsulinemia as major defects (Jeong et al., 2012), and it will also be important to 

determine the concentration of these compounds in water extracts mimicking tea 

consumption. 

Conclusion 

Based on the obtained results, the first null hypothesis is rejected for α-amylase inhibition by 

the promising compounds. For α-glucosidase, the first null hypothesis is rejected for 18α-GA, 

curcumin, and quercetin and is not rejected for the inhibition of α-glucosidase by rosmarinic 

acid. There is a positive relationship between the in vitro and in silico studies for pancreatic 

α-amylase and intestinal α-glucosidase inhibition, this was evaluated by using correlation 

coefficients. 

The second null hypothesis is not rejected; however, uptake studies should be undertaken in 

an insulin resistant model, mimicking T2DM.   

The third null hypothesis is not rejected; the control, metformin and the compounds reduced 

OA induced lipid accumulation in HepG2 cells, and the mode of action is related to metabolic 

pathways linked with lipogenesis. 

Curcumin, 18α-GA, quercetin, and rosmarinic acid inhibited α-glucosidase, and decreased 

hepatic lipid accumulation, indicating the potential of these compounds to alleviate the 

prolonged hyperglycemia and potentially manage NAFLD.  

Many of these compounds are found in herbs, spices, and teas which are cost-effective, easily 

cultivated, and readily available. For example, curcumin is found abundantly in Turmeric and 

EGCG in green tea and is specifically more abundant in Eve’s green tea brand. Related to the 

levels of curcumin in Turmeric, a dose of 1.3 g relates to the 50 mg dose of acarbose per meal. 

For green tea, 1.2 g of green tea is required and as one teabag contains 2.5 g green tea; one 

cup of green tea per meal may help prevent prolonged hyperglycaemia. 

In addition, green tea was also found to be a rich source of quinic acid as well as other 

polyphenols, such as EGCG and epicatechin, with reported anti-diabetic effects. Further 
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studies determined the levels of these compounds in several green tea brands with the 

purpose of identifying the best tea brand related to the inhibition of 𝛼- amylase and 𝛼-

glucosidase activity. Analysis confirmed that green tea strongly inhibited α-glucosidase, and 

if consumed with a meal may prevent the development of hyperglycemia. Furthermore, 

synergism between compounds and other unidentified compounds may have further 

beneficial effect/s and future research can focus on these aspects. 
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Annexures 

1.32. Annexure A: Binding interactions 

 

Figure A1. The interactions of acarbose, quinic acid, rosmarinic acid and quercetin in the 

binding pocket of α-glucosidase. Showing the composition of the binding pocket; hydrogen 

bonds (purple arrow) and pi-pi stacking (green arrow) interactions between the enzyme and 

the compounds. 
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Figure A2. The interactions of acarbose, curcumin, 18α-GA and nerolidol in the binding pocket 

of α-glucosidase. Showing the composition of the binding pocket; hydrogen bonds (purple 

arrow) between the enzyme and the compounds. 
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Figure A3. The interactions of acarbose, quinic acid, quercetin and rosmarinic acid in the 

binding pocket of α-amylase. Showing the composition of the binding pocket; hydrogen bonds 

(purple arrow) and pi-pi stacking (green arrow) interactions between the enzyme and the 

compounds. 
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Figure A4. The interactions of acarbose, nerolidol, curcumin and 18α-GA in the binding pocket 

of α-amylase. Showing the composition of the binding pocket; hydrogen bonds (purple arrow) 

and pi-pi stacking (green arrow) between the enzyme and the compounds.  
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1.33. Annexure B: Lineweaver burk plots 

Figure B1. Lineweaver-Burk graphs of the inhibition of α-glucoside by compounds with [I] in 

µM.  

 



98 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

Figure B2. Lineweaver-Burk graphs of the inhibition of α-amylase by compounds with [I] in 

µM 
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1.34. Annexure C: Cell viability graphs 

 

Figure C1. C2C12 cells viability after 72 h exposure to selected compounds (n=3, SEM error 

bars). 

 

Figure C2. Hepg2 cells viability after 72 h exposure to selected compounds (n=3, SEM error 

bars). 
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Figure C3. Caco2 cells viability after 72 h exposure to acarbose and selected compounds (n=3, 

SEM error bars). 
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1.35. Annexure D: Metabolites detected 

Table 1D. Metabolites detected in volcano map and their significance changes between 

strong and weak inhibitors among the five green tea brands. 

 Metabolites Significance 

1 Theogallin Not significant 

2 (-)-Gallocatechin Not significant 

3 (6-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl] 
oxy}-3,4,5-trihydroxyoxan-2-yl)methyl (2E)-3-(4-hydroxyphenyl)prop-
2-enoate 

Significant down 

4 Cryptochlorogenic acid Significant down 

5 (-)-Epigallocatechin Not significant 

6 3-O-p-Coumaroylquinic acid Not significant 

7 3'-Galloylprodelphinidin B2 Significant down 

8 Catechin Not significant 

9 MINEs-444181 Not significant 

10 Corilagin Not significant 

11 Chlorogenic acid Significant down 

12 Crypto Chlorogenic acid Significant down 

13 Procyanidin B5 Not significant 

14 Vitexin 2'-O-rhamnoside Not significant 

15 Procyanidin isomer Not significant 

16 Epigallocatechin-(4beta->8)-epicatechin 3-O-gallate Not significant 

17 Epicatechin Not significant 

18 Epigallocatechin gallate Not significant 

19 Epigallocatechin gallate isomer Not significant 

20 Isoneotheaflavin Not significant 

21 Myricetin 3-galactoside Not significant 

22 Myricetin 3-glucoside Not significant 

23 Kaempferol 3-sophorotrioside Not significant 

24 (-)-Epigallocatechin 3-(3-methyl-gallate) Significant down 

25 Kaempferol 3-sophorotrioside Not significant 

26 (-)-Catechin 3-O-gallate Not significant 

27 Quercetin 3-galactoside Significant down 

28 Kaempferol 3-gentiobioside 7-rhamnoside significant up 

29 Unknown Significant down 

30 Epicatechin 3-O-(4-methylgallate) Significant down 

31 Quercitrin Significant down 

 



102 
 

1.36. Annexure E: Tentative identification of peaks 

Table 1E. Details on the unidentified peaks according to mass spectra obtained 

 
Retention 

time 
(min) 

m/z 
ratio 

[M-H] 
fragments 

Proposed compounds Reference/s 

UP1 2.10 341.11 133, 191 1-O-Caffeoylglucose KEGG 

UP2 2.81 173.09 151 Theanine 
(Jin et al., 2019) 

PubChem 

UP3 6.09 169.01 125 Gallic acid  
(Lin et al., 2008) 
(Jin et al., 2019) 

PubChem 

UP4 6.90 343.07 191 
Galloylquinic acid  
1-O-Caffeoylglucose theogallin  

(Jin et al., 2019) 
(Lin et al., 2008) 

UP5 8.60 305.07 --- Gallocatechin  (Jin et al., 2019) 

UP6 16.92 771.19 
169, 183, 
287, 457, 
471, 593 

Quercetin 3-O-galactosylrutinoside  
Quercetin 3-O-glucosylrutinoside  

(Lin et al., 2008) 

UP7 18.37 755.2 
169, 441, 

463 

Quercetin 3-O-
dirhamnosylglucoside  
Kaempferol 3-O-
galactosylrutinoside 
Kaempferol 3-O-glucosylrutinoside  

(Lin et al., 2008) 
(Jin et al., 2019) 
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1.37. Annexure F: Ethical approval  

 


