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Abstract. Globally, the unprecedented increase in population in many cities has led to rapid
changes in urban landscape, which requires timely assessments and monitoring. Accurate deter-
mination of built-up information is vital for urban planning and environmental management.
Often, the determination of the built-up area information has been dependent on field surveys,
which is laborious and time-consuming. Remote sensing data are the only option for deriving
spatially explicit and timely built-up area information. There are few spectral indices for built-up
areas and often not accurate as they are specific to impervious material, age, colour, and thick-
ness, especially using higher resolution images. The objective of this study is to test the utility of
a new built-up extraction index (NBEI) using WorldView-2 (W V-2) to improve built-up material
mapping irrespective of material type, age, and color. The new index was derived from spectral
bands such as green, red edge, NIR1, and NIR2 bands that profoundly explain the variation in
built-up areas on WV-2 image. The result showed that NBEI improves the extraction of built-up
areas with high accuracy [area under the receiver operating characteristic curve, (AUROC) =
~0.82] compared to the existing indices such as built-up area index (AUROC = ~0.73), built-up
spectral index (AUROC = ~0.78), red edge/green index (AUROC = ~0.71) and WorldView-
Built-up Index (WV-BI) (AUROC = ~0.67). The study demonstrated that the new built-up
index could extract built-up areas using high-resolution images. The performance of NBEI could
be attributed to the fact that it is not material-specific, and would be necessary for urban area
mapping. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOL: 10.1117/1.JRS.15
.024510]
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1 Introduction

The global urban population proliferated from 220 million to 2.8 billion over the twentieth
century.! This unprecedented increase in population concentration in cities led to rapid urban
landscape changes.>? The highest rate of urbanization and associated land use or cover changes
have been observed in developing countries.* Over the last decades, Southern Africa has been
facing significant land use and land cover changes, such as loss of natural land, i.e., forest or
plantations, agricultural lands, and grasslands coupled with growing built-up impervious sur-
faces, which are developed and constructed artificial surfaces that water cannot infiltrate to
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reach the soil, such as buildings or rooftops, paved roads, driveways, roads sidewalks, parking
lots, and so on.” The dynamic nature of land use or cover is associated with economic benefits
and improved life. The latter effect has been associated with a series of ecological, environ-
mental, and climatic issues."®” Therefore, in recent years, detecting these human-made fea-
tures has attracted increasing interest especially for understanding their adverse impact in the
context of planning and improvement of the environment. Often, the determination of the built-
up area information has been dependent on field data collection, which is tedious and time-
consuming.

Satellite remote sensing data have served as a useful source of built-up area information in
previous studies due to large-area coverage and short revisit cycles.® Among these studies,
Landsat imagery is the most commonly used because the satellite series provide nearly 45-year
data records with wide-swath coverage, free availability, and relatively medium spatial resolu-
tion.” However, confusion among various urban land features based on factors such as the spec-
tral and spatial resolution of the data and technique employed has made it impossible to yield
desirable results.'” Weber'! earlier pointed out that due to the complexity of the urban landscape,
classification from satellite images is a difficult task because these images do not exhibit a unique
and distinguishable spectral response. On the other hand, high spatial resolution images [e.g.,
IKONOS, Quickbird, and WorldView (WV)-2/3] have provided new research opportunities
especially with the growing demands for monitoring most exceptional urban objects such as
building or rooftop footprints and road which were difficult to identify in medium resolution
images such as Landsat.'*'® The primary challenge with using high-resolution images is cost, but
when available, it provides useful information for urban assessment and monitoring as compared
to moderate resolution satellite images.

According to Sun et al.,'* the numerous ways to estimate the extent and quantities of built-up
areas from medium resolution imagery (e.g., Landsat) in the previous studies can be grouped into
five categories: pixel/object-based classification, spectral mixture analysis (SMA), regression
model, decision tree, and spectral index-based segmentation. They further asserted that though
these classification methods have been widely used, there are challenges and limitations for
applying at regional and global scales, e.g., subjective scene-to-scene data analysis, time-
consuming, and complicated computing.” The limitation of pixel-based approach which is com-
monly used but does not account for the spatial pattern (i.e., image texture, pixel proximity,
feature size, and shape) and mixed-pixel problems in the classification.'” The object-oriented
approach treats an image as a set of significant objects, which requires spatial, spectral, and
texture characteristics.'®!” These requirements create difficulty in optimizing segmentation
parameters that hinders the application of object-oriented classification to a large area.’
Although, SMA-based methods have proven useful for handling the mixed-pixel problems
in medium resolution imagery, built-up or impervious surface area (ISA), are commonly over-
estimated in areas with low-density urban features and underestimated in high-density urban
areas.'>!® SMA-based methods are also not suitable for large-area mapping due to difficulties
in end-members related to inter-class variability quantification, and complicated implementation
process.'”! Also, the regression models (e.g., decision tree) limitations are associated with
model calibration and validation from medium resolution images and high-quality ISA reference
data and extrapolation of the models in other study areas.'® Although decision tree is a rule-based
method that can effectively process large, high dimensional and nonlinear data, which is suitable
for large-area built-up mapping, it is more sensitive to noise and depends significantly on the
quality of sample data.'” Thus, all of the above mentioned are semi-automated and involves
human intervention such as a manual selection of representative samples required by the clas-
sifiers and incorporates urban morphology information.?**®

Thematic-oriented spectral indices have proven to be of good potential in large-area built-up
automated mapping due to their easy implementation, parameter-free, and convenience in
practical applications.’®?* Most of the built-up indices for rapid mapping of built-up areas have
been developed for medium resolution imagery.>> Table 1 lists built-up indices developed from
medium resolution multispectral Landsat with their merits and demerits. Sameen and Pradhan®
reported that most of the studies only developed spectral indices for the rapid extraction of
built-up areas from medium resolution satellite images (e.g., Landsat).
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Therefore, with the growing demands to observe, assess, and monitor land change processes
and biophysical characteristics of urban environments more accurately, it is necessary to develop
new built-up indices for recently available multispectral high spatial resolution satellite imagery
such as IKONOS, Quickbird, and WV-2/3.3° Based on the problems mentioned above in index-
based built-up (IBI) area mapping, there is a need to develop new indices that are accurate and
able to accommodate the spectral variability of the built-up materials. The objective of the study
is to propose and test the utility of a new built-up extraction index (NBEI) based on WV-2
imagery. The key research questions are:

1. Which WV-2 spectral bands are essential in characterizing built-up areas, i.e., consider
the spectral variability of the built-up materials (e,g., types, age, and colour)?

2. Could NBEI threshold analysis eliminate non built-up interference to ensure high accu-
racy for build-up ISA extraction?

3. In a comparative analysis with previous spectral indices, will NBEI perform better?

2 Material and Methods

2.1 Study Area

Geographically, the study site (Lynwood Ridge) is located between S25°45'29.66” E28°17’
33.66" (top left), S25°45'39.29” E28°17'44.52" (bottom right) and S25°45'29.57" E28°17’
44.42" (top right), S25°45'39.39” E28°17'33.76" (bottom left) Pretoria, Gauteng Province,
South Africa (Fig. 1). It is situated in the eastern part of Pretoria, which is in the north-northeast
of Johannesburg, Gauteng Province, South Africa (Fig. 1). It is a suburb known as the old east
and boasts having some of the city’s most high-end residential properties. Lynwood Ridge
has a topography 1336-m above sea level with a total area of 2.13 km? situated in the
Pretoria city that has an average temperature ranging from 37°C max to 18°C min according
to the South African Weather Service, SAWS, 2011. Based on the STATISTICS SA,
South African National census, 2011, Lynnwood Ridge has an estimated population of 3463
(1623.15 perkm?). For this comparative study (Fig. 2), Lynnwood Ridge a formal residential
area situated in Pretoria was selected.
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Fig. 1 The location of the study area relative to South Africa.
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Fig. 2 A flowchart showing the process followed for the formation of the NBEI for WV-2.

2.2 Study Data

One cloud-free WV-2 multispectral image of the study area was obtained from Digital Globe in
October 2015. WV-2 was launched in October 2009 as the first commercial multispectral
satellite that comprises 2-m eight multispectral bands and 0.5-m panchromatic bands.’’
The satellite has a swath width of 16.4 km, an average revisits time of 1.1 days and is capable
of collecting up to 9.75 x 10° km? per day. Therefore, the satellite has the spectral and spatial
resolutions that meet a variety of remote sensing applications such as mapping rooftops.***’
The Department of Environmental Affairs, South Africa subcontracted National Land Cover
classification dataset of 2013—2014 completed by a consulting company Geoterralmage (Pty),
1:10,000 aerial photography at 0.5-m spatial resolution (November 2015) from CDNGI
together with Google Earth search engine were used for validation purpose to verify the rooftop
colours in the study site. Software to be used for desktop analysis were; ESRI (ArcGIS),
EXELIS Environment for Visualizing Images (ENVI) IDL version 5.2, QGIS, Microsoft
Office, WEKA, R statistical software environment (RStudio, Inc., Boston, Massachusetts,
Version 1.1.463) software.
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Table 2 WV-2 imagery characteristics.

Spectral bands Wavelength (nm) Spatial resolution (m)
Coastal blue 400 to 450 2
Blue 450 to 510 2
Green 510 to 580 2
Yellow 585 to 625 2
Red 630 to 690 2
Red-edge 705 to 745 2
NIR1 770 to 895 2
NIR2 860 to 1040 2
Pan 450 to 800 0.5

2.3 Image Acquisition and Pre-Processing

The WV-2 scene used in this study was orthorectified and geometrically corrected by Digital
Globe.**** The WV-2 bands (Table 2) were then atmospherically corrected and transformed
into canopy reflectance using the Quick Atmospheric Correction extension in Environment for
Visualizing Images (ENVI) software (ENVI, 2015). After the radiometric calibration, the WV-2
multispectral bands pan-sharpening was performed using the ENVI Gram—Schmidt Spectral
Sharpening algorithm that improved the visualization of rooftop material.** Finally, the WV-2
image was then referenced to the Universal Transverse Mercator (UTM zone 35 South) projec-
tion using WGS-84 Geodetic datum.**

3 Feature Selection Using ReliefF Algorithm

3.1 Feature Selection

Feature selection is an important pre-processing step in pattern recognition and machine learn-
ing, artificial intelligence and data mining communities. It helps us to focus the attention of a
classification algorithm on those features or bands that are the most relevant to predict the classes
(i.e., built-up).* Based on statistical distribution using a large number of features as the inputs of
initiating algorithms have the disadvantage (e.g., inefficient as it consumes memory and time,
irrelevant features may confuse classification algorithms) and advantages (e.g., improving under-
standability and lowering the cost of data acquisition and handling). Feature selection methods
can be grouped into two categories, which are ranking features according to the same evaluation
criterion and choosing a minimum set of features that satisfies an evaluation criterion. In this
work, we implemented the ReliefF algorithm for feature ranking in the WEKA software to iden-
tify the significant wavelengths sensitive to the built-up areas (e.g., road and rooftops).

3.2 Algorithm Implementation

In this study, we employed the use of the robust ReliefF algorithm because of its ability to handle
both a binary and multiclass problems and accommodate an incomplete and noisy data.*® Based
on the generated training or stratified random sample points (n = 130) on built-up areas (e.g.,
roads and rooftops), we first extracted from the eight WV-2 bands (i.e., features) reflectance
values using the “extraction” module of the spatial analyst tool of ArcGIS software. Before this
step, the validity of all these sample points selected was carefully checked through visual inspec-
tion of both aerial photography (November 2015) as well as Google Earth engine to avoid mis-
labeling problems. Subsequently, the ReliefF algorithm was implemented in the WEKA software
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using the k-nearest neighbors (KNN). The ReliefF algorithm randomly selects from the training
a sample 7n;, and then performs searches for KNN in two ways, i.e., from the same class (nearest
hits /;) and a different class, called nearest misses mj(C) [see Egs. (1) and (2)]. It updates the
quality estimation W[A] for all attributes “A” depending on the WV-2 reflectance values asso-
ciated with the training sample (#;) hits and misses. The contribution for each class of the misses
is weighted with the prior probability of that class p(C) (estimated from the sample points).
Since we want the contributions of hits and misses in each step to be in 0 to 1 symmetric,
we ensured that misses probability weights sum to 1. As the class of hits is missing in the sum,
we divided each probability weight with factor 1 — p (class (n;)) (which represents the sum of
probabilities for the misses). The process is repeated for ¢ times. Selection of k hits misses and
ensured greater robustness of the ReliefF algorithm about the noise. k parameter that controls the
locality of the estimates was set to 10.**® Finally, the ReliefF algorithm ranked the WV-2 bands
sensitiveness to the built-up areas based on the estimated weight ranging from 0 to 1 with large
weights assigned to important WV-2 bands. ReliefF algorithm was used successfully for feature
extraction, #3478

3.3 Algorithm Representation

The input: for each training instance a vector or point of the attribute (i.e., either road or
rooftop)

Algorithm 1

Output: the vector w of estimations of the qualities of attributes.
1. set all weights w[A] := 0.0;
2. fori:=1tot do begin
3. randomly select an instance n;;
4. find k-nearest hits h;;
5. for each class C # class (n;) do
6. from class C find k nearest misses m; (c);
7. forA:=1toado
Bk Sk 4 diff(a, nihj)

k . Lo __PE

_ diff(A,ni, hj) {1—p(class(ni

WA =wA =Y e T D mK)
j=1 C+#classn;

9: End

4 Built-Up Spectral Index Creation

4.1 Spectral Index Creation

Spectral indices are part of processing methods called multi-spectral transformations.'® Caloz
et al.*” earlier defined an index as a variable synthetic, digital characterizing the intensity or the
extension of an overly complex phenomenon to be broken down into a manageable number of
parameters. The stratified random sampling technique was used to develop an empirical method
to formulate the built-up index. Deng et al.” asserted that the selection of stratified random sam-
ples is vital for the construction of the spectral index. Gao and Mas® pointed out that in the
selection of samples, the large number represents the reliability of specific land cover spectral
signature much better than small numbers. Therefore, in this study as a compromise of efficiency
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and reliability, the generated stratified random sample points or pixels on built-up materials used
in the above feature ranking were comprehensively used to examine their spectral pattern. In the
development of the NBEI we employed the following steps:

1. Evaluating the spectral pattern to identify significant WV-2 wavelengths that are sensi-
tive to dissimilarities in a target’s spectral response, which represent the built-up areas as
compared to other land features.!

2. We postulate that the significant WV-2 bands obtained from the feature ranking using the
ReliefF algorithm will be the same spectral bands that show the absorption and reflec-
tance regions of the spectral pattern.

3. Since built-up samples may exhibit a high spectral variability due to their complex
materials, we hypothesize that an effective spectral index will be developed based on
the ratios (i.e., band combinations) between the sum of spectral bands that signifies the
absorption and reflectance regions of the spectral pattern.

4.2 Comparative Analysis

To better examine the performance of NBEI in creating a distinction between built-up and non-
built-up features in WV-2 imagery, we also conducted a comparative analysis. In this study,
five related spectral indices: built-up area index (BAI),* built-up the spectral index (BSI),* red
edge/green index (RGI),” and WorldView built-up index (WV-BI)** were implemented for the
comparative analysis since they could enhance built-up features information with a degree of
vagueness. The empirical formulas of these indices are expressed in Table 3 below. Finally, the
threshold technique employed in the study for the separation of built-up and non-built-up areas,
i.e., to determine the optimal threshold value follows the same steps employed in the study of
Refs. 28 and 30.

4.3 Precision Evaluation

In this study, the accuracy of the five BSIs was assessed based on un-stratified random evenly
distributed samples (n = 244) obtained from reference data (aerial photo at 0.5-m spatial res-
olution and visual inspection on Google Earth) to validate the index derived image. 10-fold
cross-validation was used to rearrange the samples to ensure that each fold is a good represen-
tation of the whole datasets, i.e., with a lower sample distribution variance compared to the hold-
out cross-validation. Finally, we implemented the performance evaluation metrics using the
area under the receiver operating characteristic curve (AUROC) which is a graph that summa-
rizes the performance of the indices (classifier) over all possible thresholds. It is generated by
plotting the true positive rate (y axis) against the false positive rate (x axis). Wieland and Pittore*’
further explained that the true positive rate is the proportion of actual positives that are classified
as positives, while true negative rate, is the proportion of actual negatives, which are classified as
negatives. It was computed using InformationValue and plotROC package in the R statistical
software environment.>>

Table 3 List of compared WV-2 images built-up indices.

Name Formula Reference
BAI [(Blue — NIR1))/ [(Blue + NIR1)] 52
BSI [(Yellow — 2*NIR1)/ (Yellow + 2*NIR1)] 35
RGI [(red edge — green)/ (red edge + green)] 53
WV-BI [(coastal blue - red edge)/ (coastal blue + red edge)] 37, 54
NBEI [(NIR2 +NIR1) — (green + red edge)]/ [(NIR2 +NIR1) + (green + red edge)] This study
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Fig. 3 WV-2 spectral bands features ranked by their importance for identifying built-up areas.

5 Results

5.1 An Empirical Analysis of ReliefF Algorithm

Figure 3 shows an overview of the WV-2 bands importance for delineating built-up using the
ReliefF algorithm. As shown in Fig. 3, NIR2 is ranked the highest with weight of 0.017.
Amongst the eight spectral band features, the most important features that can be used for the
formulation of the new normalized band ratio for built-up area delineation were NIR2, NIR1, red
edge, and green or yellow.

5.2 Reflectance Profile of Built-Up Surfaces and Spectral Index Creation

The concept for developing spectral indices is to identify the weakest and strongest reflectance
band from multi-spectral data.’® Figure 4 shows that the built-up (i.e., rooftop and roads) reflec-
tance is distinct. As shown in Fig. 4, the spectral profiles of rooftop and road exhibit a similar
reflectance pattern of shape but differ largely in the magnitude particularly in the red edge to NIR
spectrum. The built-up surfaces indicated reflection highly in the NIR (centered between 833
and 950 nm) regions and absorption at the green (545 nm) and red edge (725 nm) regions of
the WV-2.

5.3 Spectral Index Creation and Threshold Selection for Built-Up Mapping

Based on the identified weakest and strongest bands coupled with conventional approaches,
Wagqar et al.'” explained that spectral indices are formed to enhance required land cover over
wide range of wavelength values and suppress others. To develop the NBEI, the WV-2 bands
NIR2, NIR1, red edge, and green were used, respectively. NBEI was developed using normal-
ized ratio of the addition of NIRs and green and red edge spectral regions which is mathemati-
cally expressed as

((NIR2+ NIR1) — (Green + Red edge))
((NIR2 + NIR1) + (Green + Red edge))

NBEI = 2)
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Fig. 4 WV-2 mean spectral profiles of built-up areas extracted.

The NBEI can enhance the built-up land feature easily because the subtraction of the green and
red edge bands from the NIR bands will result in positive values for built-up land pixels only, i.e.,
the index takes advantage of the condition where the features with higher NIR2 and NIR1 values
but lower Green and Red edge values. Likewise, the subtraction of the green and red edge bands
from the NIR bands in the band combination helped enhance the depiction of built-up area while
suppressing other non-built-up areas.” Evidently, the NBEI is a normalized difference index
with features such as: (1) a ratio-based index, (2) values ranging between —1 and +1, and
(3) enhanced built-up information has positive values, while the suppressed land covers
(e.g., vegetation, base land, or soil) has zero to negative values.

Furthermore, based on threshold analysis of binary images (Fig. 6) derived from previously
developed built-up indices, the results of the comparative study in Fig. 5 indicate the following
threshold values in Table 4, respectively.

In comparison, our developed index (i.e., NBEI) demonstrated its potential to map built-up
rooftops and asphaltic roads based on the produced index threshold values in Table 4 and Fig. 5.
The stratified 10-fold cross-validation indicate the AUROC of NBEI improved the detection of
built-up (AUROC = ~0.82) as compared to the existing ones such as BSI (AUROC = ~0.78),
BAI (AUROC = ~0.73), RGI (AUROC = ~0.71), and WVBI (AUROC = ~0.67), respec-
tively (Fig. 8). The threshold values indicate built-up or impervious surfaces (i.e., n = 130 strati-
fied random samples of built-up pixels). Threshold values within the range of 0.03 to 0.509
(see Table 4), are primarily clustered values with histogram frequencies of 5 to 20. Threshold
values within ranges of <0.03 and >0.509 are mostly frequency that optimizes non-built-up
areas. Overall, our results shows that NBEI has successfully separated built-up areas from other
land cover types with relatively high precision.

6 Discussion

According to Varshney and Rajesh,® index-based algorithms it is possible to classify built-up
areas such as roads and rooftops and so on. Automatically at the minimal time when compared
to the conventional image classification process. Due to the convenience of spectral indices in
detecting specific land cover, a large number of indices have been developed in the past decade.’
However, few spectral indices are available to enhance built information directly from the very
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Fig. 5 Histogram showing the range of the threshold pixel values depicting built-up areas in
(a) BAI; (b) BSI; (c) proposed (NBEI); (d) RGI; (e) WV-BI.

high resolution image (e.g., WV-2). This study proposed NBEI for built-up extraction based on
WV-2 bands. Accuracy assessment results show that overall extraction accuracy for built-up
areas using NBEI is greater than that of previously developed indices. This shows that our pro-
posed NBEI can be used to achieve much better results for extraction and better delineating of
built-up areas in our study area.

In this study, we examined the capability of NBEI to identify different roads and to build
rooftops materials. Amongst the eight WV-2 spectral bands, the significant bands used for
the formulation of the new index for built-up area detection were NIR2, NIR1, red edge, and
green. These significant wavelengths were able to depict a significant difference in the shape of
spectral signature.” The NIR1 and NIR2 bands located at the reflectance region and the Green
band at the absorption region helped to enhance built-up areas’! while the red edge band sup-
presses the vegetation.®"*%> Although previous WV-2 built-up indices employed for comparison
were based on various bands (i.e., coastal blue, blue, green, yellow, red edge, and NIR1), the
ReliefF algorithm employed in our approach, found that green, red edge, NIR1, and NIR2 are the
most suitable bands to extract the built-up areas from the WV-2 image. Also, the visual exami-
nation of these spectral indices performance presented in Fig. 7, further explains the superior
performance obtained of NBEIL For instance, the low accuracy of BAI, RGI, and WV-BI
(AUROC < 0.73) could be attributed to the fact that many rooftops (e.g., red and brown) were
not detected accurately. This might be because of the absence of NIR2 in these indices that can
comprehend the different rooftops surface illumination. Also, the subtraction of the green and
red edge bands from the NIR bands in the band combination was helpful in enhancing the depic-
tion of built-up area while suppressing other non-built-up areas,” i.e., vegetation and bare land
or soil. BSI performed reasonably well with negative threshold values when compared to NBEI
which had good coverage of built-up areas with positive threshold values. Even though the study
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Fig. 6 Result of compared spectral indices images (a) BAI; (b) BSI; (c) proposed (NBEI); (d) RGl;
(e) WV-BI.

Table 4 Dynamic ranges of previous WV-2 built-up indices.

Index Threshold

BAI —0.09 > built-up > -0.81
BSI —0.390 > built-up > —0.894
NBEI 0.03 > built-up > 0.509
RGI 0.085 > built-up > 0.69
WV-BI —0.009 > built-up > —0.689
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Fig. 7 Thematic output after thresholding of (a) BAI; (b) BSI; (c) proposed (NBEI); (d) RGlI; (e) WV-BI.

area comprises a heterogeneous natural (e.g., vegetation, bare land, or soil) and artificial land
cover, NBEI developed in this study provides the advantage of independence from making a
mask for non-built-up to focus only on built-up areas.

7 Conclusion

The new spectral index (NBEI) proposed in this study improves the extraction of built-up areas
automatically from WV-2 imagery. The evaluation of the NBEI compared with four other
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spectral built-up indices developed for WV-2 imagery in the previous study showed a better
result for the detection and extraction of built-up areas with less time and pre-processing.
Since the performance of the spectral index depends on the spectral response of land cover char-
acteristics that vary from one region to another due to climatic, topographic and socio-economic
changes, the effectiveness of the NBEI for WV-2 still needs to be tested at different study sites

within the urban settings (e.g., commercial and industrial), provided there is the availability of
this commercial satellite imagery.
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