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Abstract: Osteoclasts are large, multinucleated cells that are responsible for the resorption of
bone. Bone degenerative diseases, such as osteoporosis, are characterized by overactive osteoclasts.
Receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) binding to its receptor on osteoclast
precursors will trigger osteoclast formation and resorption. The production of reactive oxygen
species (ROS) is known to play a crucial role in RANKL-induced osteoclast formation and resorption.
G-protein coupled receptor 120 (GPR120) signalling has been shown to affect osteoclast formation,
but the exact mechanisms of action require further investigation. RAW264.7 murine macrophages
were seeded into culture plates and exposed to the GPR120 agonist, TUG-891, at varying concen-
trations (20–100 µM) and RANKL to induce osteoclast formation. TUG-891 was shown to inhibit
osteoclast formation and resorption without affecting cell viability in RAW264.7 macrophages. TUG-
891 further decreased ROS production when compared to RANKL only cells. Antioxidant proteins,
Nrf2, HO-1 and NQO1 were shown to be upregulated while the ROS inducing protein, Nox1,
was downregulated by TUG-891. Gene silencing revealed that TUG-891 exerted its effects specifically
through GPR120. This study reveals that GPR120 signalling may inhibit osteoclast formation and
resorption through inhibition on ROS production.

Keywords: osteoclasts; GPR120; reactive oxygen species; resorption

1. Introduction

The skeleton is a metabolically active and dynamic tissue which allows for the move-
ment of muscles and protection and support of vital organs [1]. Bone is continuously
repaired by a process known as bone remodelling, whereby osteoclasts resorb old bone and
osteoblasts form new bone, to maintain the strength and integrity of bone [2]. Osteoclasts
are large multinucleated bone cells that are derived from the monocyte-macrophage lineage
of haematopoietic stem cells [3]. Osteoclasts are capable of resorbing bone when stimu-
lated by receptor activator of nuclear factor-κB ligand (RANKL) binding to its receptor,
RANK, on osteoclast precursors [1]. Over-active osteoclasts can lead to bone degenerative
disorders such as osteoporosis. Targeting osteoclast formation represents a viable strategy
in the treatment of such bone degenerative disorders.

Studies have shown that reactive oxygen species (ROS) production is crucial for
RANKL-mediated osteoclast formation [4,5]. RANK, a member of the tumour necrosis
factor (TNF) family, shares many features with other TNF receptors such as the increased
ROS production upon receptor binding [6]. When RANKL binds to RANK, the adapter
molecule TNF receptor associated factor 6 (TRAF6) is recruited, which results in the activa-
tion of nuclear factor κB (NF-κB) and mitogen activated protein kinases (MAPKs) signalling
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pathways, ultimately leading to the activation of the master regulator of osteoclast forma-
tion, nuclear factor of activated T-cells 1 (NFATc1) [7]. ROS are believed to be involved
in TRAF6 activation of NF-κB and MAPKs [6]. The source of ROS in osteoclasts is not
fully understood but nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(Nox) isoforms are thought to be involved [6]. Nox is considered the most important
mammalian enzyme in the production of intracellular ROS [8]. Lee et al. have shown that
inhibition of Nox1 decreased RANKL-induced osteoclast formation in murine bone mar-
row macrophages [4]. The transcriptional factor, nuclear factor E2-related factor 2 (Nrf2),
which controls the expression of antioxidant proteins such as heme oxygenase-1 (HO-1)
and NADPH:quinone reductase (NQO1), has been shown to be downregulated in osteo-
clast formation [9,10]. RANKL stimulation upregulates kelch-like ECH-associated protein
1 (Keap1), which prevents Nrf2 nuclear translocation and its associated ROS inhibiting
effects [10]. By upregulating Nox1 and inhibiting Nrf2 nuclear translocation, RANKL
stimulation allows the osteoclast precursor to maintain ROS levels which are necessary for
differentiation into bone resorbing osteoclasts.

G-protein coupled receptor 120 (GPR120), also known as a free fatty acid receptor
4 (FFA4), forms part of the rhodopsin-like family of GPRs and serves as a receptor for
long-chain polyunsaturated fatty acids (LCUFAs) [11]. Docosahexaenoic acid (DHA),
an ω-3 LCPUFA, has been shown to inhibit osteoclast formation and bone resorption
in vivo through GPR120 [12]. GPR120 agonists have also been shown to inhibit osteoclast
formation through inhibition of NF-κB and MAPK signalling pathways [13]. Indeed,
we have previously shown thatω-3 LCPUFAs can exert their anti-osteoclast effects through
activation of the GPR120/β-arrestin signalling axis [14]. These recent studies show the
potential bone protective effects of GPR120 however, the exact mechanisms of action
require further investigation. To our knowledge, the effect of GPR120 signalling on ROS
production in osteoclasts has not been studied. In this present study, we aim to further
elucidate the mechanisms of action of GPR120 signalling in osteoclasts by examining its
effect on ROS production in RANKL-induced osteoclast formation.

2. Results

2.1. TUG-891 Has No Effect on Cell Viability

A resazurin assay was conducted to test the effects of the highly selective GPR120
agonist, TUG-891, on cell viability in undifferentiated RAW264.7 murine macrophages.
Triton X-100 was used as a positive control and was shown to significantly reduce cell
viability (Figure 1). TUG-891 showed no effect on cell viability at all the concentrations
tested (20–100 µM).
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Figure 1. Effect of TUG-891 on cell viability in RAW264.7 macrophages. RAW264.7 macrophages
were seeded into 96-well plates and exposed to TUG-891 (20–100 µM) for 48 h. Triton X-100 (0.1%)
was used as a positive control for cytotoxicity. Cell viability was determined by a resazurin assay.
VH: vehicle control. **** p < 0.0001 vs. VH.
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2.2. GPR120 Signalling Inhbits Osteoclast Formation and Bone Resorption

A tartrate-resistant acid phosphatase (TRAP) cell count was undertaken to determine
the effects of TUG-891 on osteoclast formation. TRAP is an enzyme highly expressed in
mature osteoclasts [3]. TRAP positive cells with 3 or more nuclei were counted as mature
osteoclasts. TUG-891 significantly reduced osteoclast formation (40–100 µM) (Figure 2A).
Many large, stained osteoclasts can be seen in RANKL only wells, while fewer cells are
seen in the TUG-891 treated wells (Figure 2B).
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Figure 2. Effect of TUG-891 on osteoclast formation and resorption. (A) RAW264.7 macrophages were seeded into 96-well
plates and exposed to TUG-891 (20–100 µM) and RANKL (15 ng mL−1) together, for 5 days. Medium and all factors were
replaced on day 3. Tartrate-resistant acid phosphatase (TRAP) positive cells with 3 or more nuclei were counted. (B) TRAP-
stained cells were visualized under a light microscope. Cells that stain positive for TRAP appear pink. Scale bar = 500 µm.
(C) RAW264.7 macrophages were seeded into an osteo assay surface multiwell plate and exposed to TUG-891 (20–100 µM)
and RANKL (30 ng mL−1) for 5 days. Medium and all factors were replaced on day 3. The resorbed areas were quantified
using ImageJ software. (D) The plates were stained using a modified von Kossa stain. Resorption pits appear white.
Scale bar = 0.5 mm. VH: vehicle control. R+: RANKL only. R+T: RANKL + TUG-891. *** p < 0.001, **** p < 0.0001 vs. R+.

The effect of GPR120 activation on bone resorption was also evaluated by seeding the
cells into an osteo assay surface multiwell plate. After staining the wells using a modified
von-Kossa stain, the resorption area was quantified using ImageJ software. TUG-891
(80–100 µM) significantly reduced resorption on the osteo assay surface plate (Figure 2C).
Photomicrographs of the wells revealed large, resorption pits in the RANKL only wells
(Figure 2D). Resorption pits were greatly reduced in the TUG-891 treated cells.

2.3. GPR120 Signalling Promotes Nrf2 Nuclear Translocation, and HO-1 and NQO1 Expression
While Inhibiting Nox1 Expression

The expression of proteins involved in ROS production was evaluated by Western
blot. Cells were treated with RANKL (15 ng mL−1) alone or in combination with TUG-891
(100 µM) for 24 h. TUG-891 was shown to significantly increase the nuclear translocation
of Nrf2 (Figure 3A,B). HO-1 and NQO1 expression were similarly shown to be increased
by TUG-891 (Figure 3C–E). However, TUG-891 was shown to inhibit Nox1 expression.
This inhibition was shown to be statistically significant (Figure 3F).



Int. J. Mol. Sci. 2021, 22, 10544 4 of 9Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. Effect of TUG-891 on expression of proteins involved in ROS production. RAW264.7 macrophages were seeded 
into 6-well plates and exposed to TUG-891 (100 µM) and RANKL (15 ng mL−1). After 24 h a Western blot was performed 
to determine protein expression. (A) Representative Nrf2 and HDAC1 blot. (B) Quantification of Nrf2 blots from at least 
two repeated experiments. (C) Representative HO-1, NQO1, Nox 1 and GAPDH blot. (D–F) Quantification of HO-1, NQO1 
and Nox1 blots respectively from at least two repeated experiments. VH: vehicle control. R+: RANKL only. R+T: RANKL 
+ TUG-891. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. R+. 

2.4. TUG-891 Inhibits Reactive Oxygen Species (ROS) Production through GPR120 Signalling 
To show that the effects of TUG-891 were mediated through GPR120, gene silencing 

was conducted. GPR120 siRNA reduced GPR120 expression compared to the control 
siRNA (Figure 4A). TUG-891 was shown to increase HO-1 expression in control siRNA 
cells (Figure 4B,C). However, GPR120 silencing prevented the stimulatory effects of TUG-
891 on HO-1 (Figure 4D). 

To determine the effects of GPR120 activation on ROS production, an oxidative stress 
assay was conducted. The Muse® Oxidative Stress Kit and a Muse® Cell Analyzer were 
used to quantify intracellular ROS production. Menadione (100 µM) was used as a control 
for ROS induction and increased the percentage of ROS positive cells. In control siRNA 
cells, the percentage of ROS positive cells was significantly decreased by TUG-891 com-
pared to the RANKL only control (Figure 4E,F). However, when GPR120 was silenced, 
the percentage of ROS positive cells was unchanged by TUG-891 when compared to 
RANKL only cells (Figure 4G,H). 

Figure 3. Effect of TUG-891 on expression of proteins involved in ROS production. RAW264.7 macrophages were seeded
into 6-well plates and exposed to TUG-891 (100 µM) and RANKL (15 ng mL−1). After 24 h a Western blot was performed to
determine protein expression. (A) Representative Nrf2 and HDAC1 blot. (B) Quantification of Nrf2 blots from at least two
repeated experiments. (C) Representative HO-1, NQO1, Nox 1 and GAPDH blot. (D–F) Quantification of HO-1, NQO1 and
Nox1 blots respectively from at least two repeated experiments. VH: vehicle control. R+: RANKL only. R+T: RANKL +
TUG-891. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. R+.

2.4. TUG-891 Inhibits Reactive Oxygen Species (ROS) Production through GPR120 Signalling

To show that the effects of TUG-891 were mediated through GPR120, gene silencing
was conducted. GPR120 siRNA reduced GPR120 expression compared to the control
siRNA (Figure 4A). TUG-891 was shown to increase HO-1 expression in control siRNA
cells (Figure 4B,C). However, GPR120 silencing prevented the stimulatory effects of TUG-
891 on HO-1 (Figure 4D).
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control siRNA or GPR120 siRNA for 24 h. (A) GPR120 expression was determined by Western blot. (B) The expression of HO-1 was
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VH: vehicle control. R+: RANKL only. R+T: RANKL + TUG-891. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. R+.
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To determine the effects of GPR120 activation on ROS production, an oxidative stress
assay was conducted. The Muse® Oxidative Stress Kit and a Muse® Cell Analyzer were
used to quantify intracellular ROS production. Menadione (100 µM) was used as a con-
trol for ROS induction and increased the percentage of ROS positive cells. In control
siRNA cells, the percentage of ROS positive cells was significantly decreased by TUG-
891 compared to the RANKL only control (Figure 4E,F). However, when GPR120 was
silenced, the percentage of ROS positive cells was unchanged by TUG-891 when compared
to RANKL only cells (Figure 4G,H).

3. Discussion

GPR120 is anω-3 LCPUFA receptor that has been shown to mediate the anti-inflammatory
effects ofω-3 LCPUFAs [15]. Numerous studies have reported on the bone protective effects
ofω-3 LCPUFAs [16–19]. This has led to an interest in understanding the role of GPR120
in mediating the effects ofω-3 LCPUFAs in bone. Kishikawa et al. have reported that the
ω-3 LCPUFA, DHA, inhibited inflammation induced osteoclast formation and resorption
through GPR120, in vivo [12]. We have previously reported thatω-3 LCPUFAs utilize the
GPR120/β-arrestin 2 signalling axis to mediate their inhibitory effects on osteoclasts and
to stimulate osteoblast gene expression [14]. Similarly, in this present study we report
that the GPR120 agonist, TUG-891, inhibited osteoclast formation and bone resorption
in RAW264.7 murine macrophages. TUG-891 has previously been shown to stimulate
osteoblast differentiation and protect against ovariectomy induced bone loss [20]. Kim et al.
have reported that the GPR120 agonist, GW9508, can inhibit osteoclast formation and
resorption through inhibition of NF-κB and MAPK signalling pathways [13]. However,
the effect of GPR120 signalling on ROS production in osteoclasts is unknown.

ROS are known to play an important role in RANKL-induced osteoclast formation [4,5].
ROS may be crucial for TRAF6 mediated activation of NF-κB and MAPK signalling path-
ways in osteoclasts [6]. Treatment of osteoclast precursors with antioxidants, N-acetyl-L-
cystein and glutathione, has been shown to inhibit osteoclast formation through inhibition
of NF-κB and MAPK signalling [21]. These studies highlight the crucial role ROS play
in the formation and function of osteoclasts. Interestingly, ω-3 LCPUFAs have been
shown to exhibit antioxidant properties [22]. Nakamura et al. have shown that the in-
hibitory effects of the ω-3 LCPUFA, eicosapentaenoic acid (EPA), on Nox expression in
smooth muscle cells was cancelled by GPR120 silencing [23]. Similar results have been
shown by directly targeting the GPR120 receptor using agonists. TUG-891 was shown
to inhibit phorbol-12-myristate 13-acetate (PMA)-induced ROS generation in RAW264.7
murine macrophages [24]. PMA is known to induce ROS generation through Nox [25].
Here, we report that the GPR120 agonist, TUG-891, inhibited ROS generation in RAW264.7
macrophages after RANKL stimulation. We further showed that the inhibitory effects
of TUG-891 on ROS production were abrogated in the absence of GPR120. Inhibition
of ROS could explain the previously reported inhibitory effects of GPR120 agonists on
RANKL-induced NF-κB and MAPK signalling in osteoclasts.

Nox isoforms are the most important ROS producing enzymes [8]. Lee et al. reported
that Nox1 and Nox2 are expressed in undifferentiated bone marrow macrophages, while Nox3
and Nox4 are absent [4]. Studies have also shown that, when pre-osteoclasts are induced
with RANKL, Nox2 expression decreases while Nox1 expression increases [26]. Further-
more, Nox1 knockdown has been shown to inhibit RANKL-induced osteoclast formation
and MAPK signalling [4]. These results suggest that Nox1 is the key ROS inducing enzyme
in osteoclasts. Conversely, Sasaki et al. have reported that bone marrow macrophages from
Nox1 knockout mice did not result in decreased ROS production or osteoclast formation
compared to wildtype [26]. This may suggest that other Nox isoforms, such as Nox2,
can compensate ROS production in the absence of Nox1. Nevertheless, in this study we
report that TUG-891 inhibited RANKL-induced Nox1 expression. This suggests that the
GPR120 agonist, TUG-891, may abrogate ROS production in osteoclasts through inhibition
of Nox1.
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Nrf2 is another important transcriptional factor that regulates intracellular ROS in
osteoclasts [10]. Sun et al. reported that Nrf2 knockout mice show increases in osteoclasts
and bone resorption [27]. Oxidative stress triggers the translocation of Nrf2 into the nu-
cleus, where it will promote the expression of antioxidant genes. RANKL keeps Nrf2
in the cytoplasm by increasing the expression of Keap1, which binds Nrf2 and prevents
its translocation into the nucleus [10]. Liu et al. have reported that the GPR120 agonist
GW9508 can increase nuclear translocation of Nrf2 in human endothelial cells [28]. Simi-
larly, we have shown in this present study that TUG-891 increased nuclear translocation
of Nrf2 in RANKL-induced murine macrophages. Nrf2 regulates the expression of cyto-
protective proteins such as HO-1 and NQO1 [29]. Induction of HO-1 has been shown to
decrease osteoclast formation and resorption, in vitro and in vivo [30], while activation of
NQO1 inhibits RANKL-induced osteoclast formation, in vitro [31]. In this present study
we show that TUG-891 increased the expression of HO-1 and NQO-1. This could sug-
gest that GPR120 signalling can further inhibit ROS production in osteoclasts through
increased Nrf2 nuclear translocation resulting in increased expression of HO-1 and NQO1.
The increase in HO-1 expression induced by TUG-891 was abrogated by GPR120 silencing.
This further establishes that the effects of TUG-891 reported in this study were directly
through GPR120 signalling.

The results of this study suggest that the GPR120 agonist, TUG-891, may inhibit
osteoclast formation and resorption through inhibition of Nox1 expression and stimulation
of Nrf2 nuclear translocation, ultimately leading to a decrease in ROS production. GPR120
shows further promise as a drug target in the treatment of bone degenerative diseases.

4. Materials and Methods

4.1. Materials

Dulbecco’s modified Eagles’ medium (DMEM) was purchased from GIBCO (Invitro-
gen Corp, Waltham, MA, USA. Foetal bovine serum (FBS) was sourced from Capricorn
Scientific (Ebsdorfgrund, Germany). The GPR120 agonist, TUG-891, and all other chemicals
of research grade were acquired from Sigma-Aldrich Inc. (St Louis, MO, USA). RANKL was
obtained from Research and Diagnostic Systems (R&D Systems, Minneapolis, MN, USA).
All cell culture plasticware was supplied by LASEC (Cape Town, South Africa). Antibodies
against GPR120, HO-1, NQO1, Nox1, Nrf2, GAPDH and HDAC1 were provided by Abcam
(Cambridge, UK).

4.2. Cell Cultures

RAW264.7 murine macrophages were acquired from the American Type Culture
Collection (ATCC, Rockville, MD, USA) and cultured in DMEM supplemented with 10%
foetal bovine serum (FBS) (complete DMEM). The cells were incubated at 37 ◦C with 5%
CO2. Cells were passaged by scrapping.

4.3. Preparation of TUG-891

TUG-891 was prepared in dimethyl sulfoxide (DMSO) at a stock concentration of
100 mM and stored at −80 ◦C in the dark until required. Fresh dilutions of the stock
solutions were made at the required concentrations (20–100 µM) in complete medium.
All experiments contained a vehicle control that consisted of DMSO (0.1%).

4.4. Resazurin Assay

A resazurin assay was conducted as previously described [32]. In brief, RAW264.7
murine macrophages were seeded into a sterile 96-well plate in complete DMEM at a
density of 5 × 103 cells per well and incubated for 24 h to allow the cells to attach to the plate.
Medium was replaced and TUG-891 (20–100 µM) was added to the wells. After 48 h, Triton
X-100 (0.1%) was added as a positive control for cytotoxicity. Thereafter, 10% resazurin
solution was added to each well. The plates were then left to incubate at 37 ◦C for 4 h
and absorbance was measured using an Epoch Micro-plate spectrophotometer (BioTek
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Instruments Inc., Winooksi, VT, USA) at a wavelength of 570 nm and using a wavelength
of 600 nm as a reference.

4.5. Tartrate-Resistant Acid Phosphatase (TRAP) Staining Assay

RAW264.7 macrophages were seeded into a 96-well plate in complete DMEM at a
density of 5 × 103 cells per well. TUG-891 (20–100 µM) was added to the wells along with
RANKL (15 ng mL−1) for 5 days. Medium and all factors were replaced on day 3. At the end
of the culture period, the cells were fixed with a 3.7% formaldehyde in phosphate buffered
saline (PBS) (v/v). Thereafter, the cells were stained using napthol/dimethylformamide and
sodium nitrite as previously described [33]. Osteoclasts, identified as TRAP positive cells
that contain more than three nuclei, were counted and photographed using an Olympus
SC30 camera attached to an Olympus BH2 microscope (Olympus, Tokyo, Japan).

4.6. Bone Resorption Assay

RAW264.7 murine macrophages were seeded in complete DMEM into a 24-well
Corning® Osteo Assay Surface Multiwell Plate (Sigma-Aldrich Inc.) at a density of 1.5 × 104

cells per well. TUG-891 (20–100 µM) and RANKL (30 ng mL−1) were added to the wells
and the plates were incubated for 5 days. Medium and all factors were replaced on day 3.
After the incubation period, all wells were treated with 5% sodium hypochlorite for 5 min
to remove the cells. The plate was washed with water, left to dry and then stained using a
modified von Kossa stain [34] to visualise the resorption of the bone layer at the bottom
of the well. The wells were photographed with an Olympus SC30 camera attached to
an Olympus BH2 microscope (Olympus). The percentage resorption was analysed using
ImageJ software.

4.7. Gene Silencing

RAW264.7 murine macrophages were seeded into a 6-well plate in complete DMEM
at a density of 1 × 106 cells per well and allowed to attach overnight. Thereafter, the cells
were transfected with MISSION® predesigned control siRNA or GPR120 siRNA using
MISSION® siRNA transfection reagent (Sigma-Aldrich Inc.) according to the manufactur-
ers’ instructions. After 24 h, the medium was replaced and the cells were used for Western
blotting and oxidative stress experiments.

4.8. Nuclear Fractionation

Nuclear protein was isolated as previously described [32]. In brief, RAW264.7 murine
macrophages were seeded into a 6-well plate in complete DMEM at a density of 1 × 106 cells
per well and allowed to attach overnight. The following day the medium was replaced
with complete DMEM that contained RANKL (15 ng mL−1) alone or in combination
with TUG-891 (100 µM). After 48 h, the cells were lysed using cytoplasmic extraction
buffer. After centrifugation, the pellet was resuspended in nuclear extraction buffer and
centrifuged again. The supernatant was collected into a fresh tube.

4.9. Western Blot

Cells were lysed in ice-cold RIPA buffer supplemented with Protease Inhibitor Cocktail
(Sigma-Aldric Inc.) and phenylmethylsulfonyl fluoride (PMSF). Proteins were quantified
using a bicinchoninic acid (BCA) protein assay kit (Thermo Scientific, Rockford, IL, USA).
Equal amounts of proteins were separated on a 12% polyacrylamide gel and then electro-
transferred onto a nitrocellulose membrane using a tris-glycine transfer buffer (25 mM
Tris, 20% methanol and 192 mM glycine). Thereafter, the membranes were blocked using
a tris-buffered saline (TBS-T) solution containing 5% bovine serum albumin (BSA) for
60 min. The membranes were probed with rabbit polyclonal antibodies against HO-1,
NQO1, Nox1, Nrf2, GAPDH and HDAC1 (1:1000) overnight at a temperature of 4 ◦C.
The following day, the membranes were incubated with goat anti-rabbit IgG antibody,
HRP-conjugate (1:20,000) (Biorad) secondary antibody for 60 min and then developed
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using Clarity Western ECL Substrate (Biorad). A ChemiDoc MP (Biorad) was used to
visualize the blots and the images were analysed using ImageJ software to determine
densitometry data.

4.10. Oxidative Stress Assay

After transfection with control or GPR120 siRNA, the medium was replaced with
RANKL (15 ng mL−1) alone or in combination and TUG-891 (100 µM). Menadione (100 µM)
was used as a control to induce intracellular ROS production. After a 48-h incubation, in-
tracellular oxidative stress was analysed using a Muse® Oxidative Stress Kit (Luminex, TX,
USA) and a Muse® Cell Analyzer (Luminex) according to the manufacturer’s instructions.

4.11. Statistical Analysis

For each assessment, three separate experiments were conducted in triplicate, unless
otherwise stated. The data were expressed as a mean ± the standard error of the mean.
The data were analysed using GraphPad Prism software (San Diego, CA, USA). A one-way
analysis of variance (ANOVA) followed by a Dunnett’s post hoc test was employed to
analyse all the data obtained from the experiments performed in this study. All p-values
< 0.05 were considered significant.
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