Supplementary information

Occurrence, fate, effects, and risks of dexamethasone: ecological implications post-

COVID-19

Ndeke Musee^{1,*}, Lemme P. Kebaabetswe², Shepherd Tichapondwa³, Gosaitse Tubatsi³, Ntombikayise Mahaye¹, Samuel K. Leareng¹, Philiswa Nomngongo⁴

- ¹ Emerging Contaminants Ecological Risk Assessment (ECERA) Group, Department of Chemical Engineering, University of Pretoria, Pretoria South Africa
 - ² Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- ³ Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
- ⁴ DSI/NRF SARChI Chair: Nanotechnology for Water, Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa

* Corresponding author (N Musee), Email address: ndeke.musee@up.ac.za or museen2012@gmail.com

DEXA	Organism type	Organism	Exposure	Exposure	Duration	Effects studied	Effects observed	NOEC, F	Refs
Properties			concentratio	conditions		(Endpoints)		LC ₅₀ /EC ₅₀	
			n						
	Microbiol	Doctorio	500 mg/l	Aquifor modio		Microbiol	DEVA completely	ND	[1]
DEXA	WICTODIAI	вастепа	500 ng/L	Aquiler media,	50 a	WICTODIAI	DEXA completely	INK	[1]
	community			Beijing Chaobai		community	degraded, with		
				River (BJ), Hebei		changes	removal rates varying		
				Hutuo River (HB),			due to microbial		
				and Tianjin			diversity and		
				Duliujian River			composition		
				water samples					
Irradiated and	Photobacterium	Bacteria	NR	2% NaCl solution	15 min	Bioluminescence	The solution	N.D before	[2]
non-	phosphorium					test	containing DEXA was	irradiation,	
irradiated							more toxic than DEXA		
DEXA							following irradiation		
							for 24 h	EC ₅₀ =133.80	
								mg/L	
								following	
								irradiation	

Table S1. The ecotoxicological effects of DEXA on organisms at different levels of organization

DEXA and TPs	Pseudokirchenerie Algae	NR	ISO procedure	72 h	Growth inhibition	DEXA had no effect on	$EC_{50} = 12.15,$	[3]
	lla subcapitata		8692, under			algal growth, while	40.75, > 100	
			continuous			TPs inhibited algal	mg/L, for	
			illumination of			growth	TP11, TP12	
			8000 lux at 25 ± 1				and DEXA,	
			°C				respectively	
Non-	Microcystis flos- Algae	25, 50 and	BG 11 medium,	14 d	-Algal growth	-Non-irradiated DEXA	NR	[4]
irradiated	aquae	100 mg/L	light/dark cycle of		-Chlorophyll-a	induced		
DEXA			12 h/12 h, at 25 ±		content	concentration-		
			1 °C			dependent algal		
	Scenedesmus					growth promotion,		
4 000 gamma-	obliquus					and increase		
irradiated						chlorophyll-a content		
DEXA						for both algal species		
						- For radiated DEXA,		
						chlorophyll-a content		
						of <i>M. flos-aquae</i>		
						increased by 4.27%,		
						but decrease by		
						25.65% for S. obliquus		

DEXA and TPs	Brachionus	Rotifer	NR	Moderately hard	24 h	Mortality	TPs were more toxic	LC ₅₀ =	13.20,	[3]
	calyciflorus			medium			than parent DEXA	44.66	and	
				EPA, Hardness				48.22	mg/L,	
				was 80–100 mg/l				respec	tively	
				CaCO ₃ , dissolved				for TP	11, TP	
				oxygen content				12 and	DEXA	
				was at least 90%,						
				25 \pm 1 °C in the						
				dark						
DEXA and TPs	Thampocenhalus	Crustacea	ND	Moderately bard	24 h	Mortality	TPs were more toxic	10	20.0	[3]
DEAA dilu TFS	mannocephalas	Clustacea		Moderately flatd	2411	Wortanty	TPS were more toxic	LC50-	20.9,	[5]
	platyurus	n		EPA medium, 25 ±			than parent DEXA	30.52	and	
				1 °C in the dark				60.11	mg/L,	
								respec	tively	
								for TP	11, TP	
								12 and	DEXA	
	Danhaia maana	Crustacaa		Aaratad cunthatic	24 h	Immobilization	The wore more toxic	FC -	10.99	[2]
DEXA and TPS	Daphnia magna	Crustacea	NK	Aeraled synthetic	24 N	Immobilization	TPS were more toxic	EC50=	10.88,	[3]
		n		reconstituted,			than parent DEXA	17.82,	and	
				hardness 250				48.30,r	ng/L,	
				mg/I expressed as				respec	tively,	

				CaCO ₃ , 20 ± 1 °C				for TP 11,TP	
				in the dark				12 and DEXA	
				freshwater					
DEXA and TPs	Ceriodaphnia	Crustacea	NR	Synthetic	7 d	Population	TPs were more toxic	EC ₅₀ = 0.05,	[3]
	dubia	n		reconstituted		growth inhibition	than parent DEXA	0.13, and 0.06	
				aerated hard ISO				mg/L for	
				medium,				DEXA, TP 11	
				hardness 250				and TP 12,	
				mg/I as _{CaCO3} , at 25				respectively	
				±1 °C with a 16:8-					
				h light: dark cycle					
				(500 lux).					
DEXA	Ceriodaphnia	Crustacea	0.05 to 3.2	Moderately hard	48 h	Immobilization	Immobility was	EC ₅₀ = 0.75	[5]
	dubia	n	mg/L	reconstituted			observed	mg/L	
				water					
DEXA	Ceriodaphnia	Crustacea	1.95-125	Moderately hard	NR	Multigenerational	Significant reduction	NR	[5]
	dubia	n	μg/L	reconstituted		chronic bioassays	in reproduction was		
				water			observed at the		

lowest concentration

of 3.9 µg/L

DEXA	Rainbow	trout	Fish	0.39,	19.62	Freshwater		10 min	Fish	CYP1A-	No effect on EROD	NR	[6]
	(Oncorhynch	nus		mg/L		14±1°C and	DEXA		enzyme	activity	activity		
	<i>mykiss),</i> (h	epatic				prepared	in		(EROD)				
	microsomes)				DMSO	and						
						METOH	and						
						exposure at	21°C						
DEXA with	Rainbow	trout	Fish	0.39,	19.62	Freshwater		10 min	Fish	CYP1A-	EROD activity declined	NR	[6]
indole-3-	(hepatic			mg/L		14±1°C and	DEXA		enzyme	activity			
carbinol	microsones)					prepared	in		(EROD)				
						DMSO	and						
						METOH	and						
						exposure at	21°C						
Betamethaso	Japanese me	edaka	Fish	0.01, 0	0.1, 1.0	Continuous	flow	0-133 d	-Secondar	y sexual	-Wet weight was low	NOEC = 0.	1 [7]
ne				μg/L u	ised in	through d	liluter		character	isation,	-Endocrine related	μg/L	
				two-		system/wate	er		-vitelloge	nin	disruptions developed		
				genera	tion				expression	n			

fish full life -Lifetime exposures cycle resulted in low reproductive success, -3-fold increase in vitellogenin expression in males at 1.0 μg/L

DEXA	Adult	Hoplias	Fish	0, 0.03, 0.3,	Filtered	and	30 d	-	Oxidative	No	effect	of	EROD	NR	[8]
	malabario	cus		or 3 µg/kg	dechlorinate	ed tap			stress	activ	vity				
					water.			-	Biotransforma						
					Trophic exp	osure			tion in liver						
					light/dark cy	cle of			and gonads						
					12b/12b at	24+1		-	Endocrine						
					1211/1211 at	24±1			disruption						
					٥C										
DEXA	Sparus au	ırata L.	Fish	800 mol/m ³	DEXA		35 d	-	Intermediary	-	Lower		growth		[9]
					administere	d			metabolism		rates				
					through	food		-	Growth	-	Lower	boc	ly mass		
					pellets										

High

-

hepatosomatic

index (HIS)

- Reduced plasma

cortisol levels

- Reduced TAG
- High acid levels
- Increased
 - oxidation in both

liver and muscles

- High GPDH

(glucose

metabolism)

- Enhanced

hepatic storage

- Higher GLDH and

LDH activities in

muscles

- Plasma

osmolality higher

DEXA	Damio	rerio	Fish	50/500 mg/L	E3	medium	for	4 d	Glucocorticoid	Unregu	lated		EC ₅₀ =1.8nM	[10]
	larvae and	adult		5/50 mg/L	120	h at 28 ±	0.5		responsive genes	express	sion	of		
	male fish				°C					pepck,	biap2	in		
					12 h	at 29 ± 1.	0 °C			zebrafis	sh larvae			
									-	Baiap	02, prx, a	and		
										mmp.	2			
										unreg	gulated	in		
										adult	zebrafis	h		

DEXA	Male and female Fish	-0.1, 0.2, 4	Egg water at 28°C		- dynamics o	f -uptake dependent on	NR	[11]
	juvenile zebrafish	and 15.8		All	glucocorticoid	developmental stages		
		mg/L		exposed	uptake by	y of the embryo		
			14 h light/10 h	from 1 h-	zebrafish			
			darkness cycle,	48 h and	chlorinated			
			water and air at 4	48 h - 96	embryos			
			°C and 23 °C,	h nost				
			respectively	n post				
				intections				

Eggs:13 h light/11

h dark at 28 °C

DEXA	-Rainbow trout	Fish	50,	100	Killfish at 19-20°C	48 h	Metabolic rates	- Killifish exhibited	NR	[12]
	-Mummichog		mg/kg (1	trout)	on recirculating			higher metabolic		
	killifish (<i>Fundulus</i>		100 r	mg/kg	sea water			rates		
	heteroclitus)		(killifish))				- DEXA induced 3-		
								cyano-7-		
					Trout at 12-15°C			ethoxycoumarin		
					in flow-through			metabolism		
					water					
DEXA	Fathead Minnow	Fish	62.5,	125,	Dimethylformami	28 d	Survival and	-decreased survival	LC ₅₀ =254 μg/L	[13]
	(Pimephales		250,	500,	de or METOH		growth	-growth not impacted	NOEC= 254	
	promelas)		1000 µg	;/L					μg/L, and	
									LOFC=577	
					16 h light/8 h dark					
					at 28 °C ± 1 °C				µg/L	
DEXA	Fathead Minnow	Fish	0.1, 50	, 500	Continuous flow-	-21 d	-reproductive	-500 μg/L exposure at	NR	[14]
			µg/L		thru exposures	reproduct	toxicity and early	21 d caused:		
					conducted by	ion study	life effects	-reduction in		
					pumping diluted	-29 d		fecundity, female		
					DEXA at 25±1°C	embryo-		plasma estradiol,		
					with a	larvae		increase in plasma		
					photoperiod of 16					

						h light and 8 h				vitellogenin protein		
						dark.				levels		
										-500 μg/L exposure at		
										29 d resulted in		
										deformed gill		
										opercula, reduction in		
										weight and length		
DEXA	Crucian	Carp	Fish	20 mg/l	_	Dechlorinated	1, 2, 4, 6,	-effects	on	-smaller fins	NR	[15]
	(Cyprinus ca	rpio)				water at 25°C	8, 10 d	regeneration		-regeneration delayed		
								process in cau	dal	but no apparent		
								fin		inhibition		
DEXA	Rainbow tro	ut	Fish	0.39,	3.93,	Freshwater	5, 10, 30	-Inhibitory effe	cts	-no inhibitory potency	NR	[16]
				19.62	and		min	of Dexa on	3	on any enzyme		
				39.25 m	ng/L			CYP450 mediat	ted			
								activities; (ERC	DD,			
								CYP1A)				
								(BFC-OD, CYP34	4)			
								(PNPH, CYP2E1))			

DEXA	Rainbow	trout	Fish	3, 30 300 and	Freshwater	21 and 42	-effects on	-no change in CYP450	NR	[16]
	(juvenile)			3000 ng/L		d	CYP450 system on	activities		
							fish	-induction of the		
								CYP3A protein		
								observed at the		
								lowest concentration		
DEXA	Crucian	carp	Fish	200 µg/kg	NR	0, 3, 6 and	- effects on the	- fish exposed to DEXA	NR	[17]
	(Carassius					9 d	immune response	and then infected		
	auratus)						of DEXA treated	with a pathogen, had		
							fish infected with	higher mortality		
							Aeromonas	-Immune gene		
							hydrophila	expression <i>il-1β, cxcl-</i>		
								<i>8, tnfα,</i> and <i>crp</i> down-		
								regulated		
DEXA	Sterlet (<i>Aci</i> µ	oenser		0.8 mg/ml	Aerated tanks at	0, 1, 3, 7,	- effects of dexa	- activation of lipid	NR	[18]
	ruthensus L.)			16-18°C, fish	14 and 21	on the oxidative	peroxidation		
					exposed to DEXA	d	processes in the			
					in Ringers solution		immunocompete			

nt organs (liver, -decrease in and antioxidant activity kidney spleen) 2 and 20 mg/l Freshwater. 14 h 24 h - effects of stress -anxious behaviour, NR [19] light and 10 h behaviour, lower on level of dark. melatonin and melatonin, higher

> mRNA expression of stress-related

gene expression nfkb

(nfkb)

DEXA and	Adult Zebrafish	Fish	-Melatonin	Freshwater. 14 h 24 h	- effects on	-PB enhanced sleep NR [19]
Piper betle L.			(10mg/kg)	light and 10 h	behaviour and	behaviour in fish
(PB) leaf			- Piper betle	dark.	expression of	-aanat2 suppression
extract and			L.(30mg/kg)		- levels of	on PB, melatonin and
Melatonin			exposed to		melatonin related	DEXA treated fish
			fish after		genes (<i>MTI, MT2,</i>	-MT2 increased
			DEXA		aanat1, aanat2)	expression on PB,
			treatment		and stress-related	melatonin and DEXA
					(<i>nfkb</i>) gene	

DEXA

Adult Zebrafish

Fish

-no change in the MT1

						and aanat1
						expression.
						-suppressed nfkb
						mRNA expression
DEXA	Crucian Carp	Fish	1mg/L	Dechlorinated tap 35 d	- assessing	-100% mortality on NR [20]
				water at 25-26°C.	immunomodulato	bacteria-infected fish
					ry effects of	exposed to DEXA
				14b light: 10b	chemical	- lower leukocytes and
				1411 light. 1011	pollutants on fish	haemolytic
				dark,	using DEXA	complement activity
					followed by	
					exposure to	
					Aeromonas	
					salmonicida	

NR-not reported

Table S2. Removal of DEXA during wastewater treatment in WWTPs with techniques utilized across geographical regions globally in selected studies.

Location	Technology	Water Typ	e (Environmental	Influent conc.	Effluent conc.	%Removal	Sludge	Reference
		matrix)						
Italy	Adsorption	Dexamethasor	e sodium phosphate	100 mg/L		GAC (35.7%), Clay		[21]
	Modified clay / GAC	(DSP) from Wa	stewater			(< LQL) (Outlet)		
Brazil	Electrocoogulation	Hospital waste	water	0.1 mg/l		200/		[22]
BrdZli	Electrocoagulation		water	0.1 mg/L		38%		[22]
								[23]
Croatia	Adsorption	Industrial Was	tewater	80 mg/L		80%		[24]
	Waste							
	Sludge							
India	Electro coagulation	Synthetic wast	ewater	1 400 mg/L		86%		[25]
								[4]

Photocatalysis	Synthetic wastewater	5 - 50 mg/L	20 – 100%	[4]
ZrO_2 and WO_3				
Photocatalysis	Synthetic wastewater	15 mg/L	30 – 70%	[26]
Ag/TiO ₂ visible light				
Sono-nanocatalysis	Synthetic wastewater	15 – 45 mg/L	60 – 90 %	[27]
Membranes	Synthetic wastewater	10 mg/L	> 90%	[28]
NF and RO				[29]
Membrane bioreactor	Hospital Wastewater	147 ng/L ND	100%	[30]
		2 <i>t</i>		[24]
Ozonation	Synthetic wastewater	2 mg/L	60%	[31]
Photocatalysis	Synthetic wastewater	10 mg/L	100%	[32]
	Photocatalysis ZrO ₂ and WO ₃ Photocatalysis Ag/TiO ₂ visible light Sono-nanocatalysis Membranes NF and RO Membrane bioreactor Ozonation Photocatalysis	PhotocatalysisSynthetic wastewaterZrO2 and WO3PhotocatalysisSynthetic wastewaterAg/TiO2 visible lightSono-nanocatalysisSynthetic wastewaterMembranesSynthetic wastewaterNF and ROOzonationSynthetic wastewaterPhotocatalysisSynthetic wastewaterSynthetic wastewater	PhotocatalysisSynthetic wastewater5 - 50 mg/LZrO2 and WO3	Photocatalysis Synthetic wastewater S - 50 mg/L 20 – 100% ZrO2 and WO3

TiO₂–UV light

	Adsorption Modified		5 – 40 mg/L		35 – 80%		[33],
	clinoptilolite zeolite						[119]
Spain	Adsorption	Synthetic wastewater	50 mg/L		90.6%		[21]
	Montmorillonite						
China	Gamma irradiation	Synthetic wastewater	2 – 50 mg/L		95 – 100%		[34]
	Lagoons	Swine wastewater	260 ng/L	37.8 ng/L	85%	35.0	[35]
						ng/g	
	Biological WWT	WW influent (Huiyang WWTP)	22.6 ng/L	ND*	100%	ND	[36]
		WW influent (Meihu WWTP)					

			3.8 ng/L	ND*	100%	ND	
USA	AOP and Membranes	WW effluent	0.11-0.16 ng/L	< 0.06 ng/L		-	[37]

Ozone, UV, RO, MF

Australia	Biological WWT	Municipal wastewater	60 ng/L DEX	Sequence	[23]
	including constructed		equiv. (SBR)	batch reactor	
	wetlands			(SBR) below	
				LQL	
				Increases after	
				chlorination	
				70 ng/L DEX	
			51–85 ng/LDEX	equiv.	
			equiv.		
China	Dielogical Mastavistar	Musicinal wastewater	0.81 mg/l	0.02 mg/l	<0.02 [28]
China	Biological Wastewater	iviunicipal wastewater	0.81 ng/L	0.03 ng/L	<0.02 [38]
	Treatment				ng/g

*Conc.: concentration; LQL: lower quantification limit

References

- Li, X.; Ma, M.; Rene, E.R.; Ma, W.; Zhang, P. Changes in Microbial Communities during the Removal of Natural and Synthetic Glucocorticoids in Three Types of River-Based Aquifer Media. *Environ Sci Pollut Res* 2019, *26*, 33953–33962, doi:10.1007/s11356-018-2748-x.
- Kawabata, K.; Sugihara, K.; Sanoh, S.; Kitamura, S.; Ohta, S. Photodegradation of Pharmaceuticals in the Aquatic Environment by Sunlight and UV-A, -B and -C Irradiation. *The Journal of Toxicological Sciences* 2013, 38, 215–223, doi:10.2131/jts.38.215.
- DellaGreca, M.; Fiorentino, A.; Isidori, M.; Lavorgna, M.; Previtera, L.; Rubino, M.; Temussi, F. Toxicity of Prednisolone, Dexamethasone and Their Photochemical Derivatives on Aquatic Organisms. *Chemosphere* 2004, 54, 629–637, doi:10.1016/j.chemosphere.2003.09.008.
- Guo, Z.; Guo, A.; Guo, Q.; Rui, M.; Zhao, Y.; Zhang, H.; Zhu, S. Decomposition of Dexamethasone by Gamma Irradiation: Kinetics, Degradation Mechanisms and Impact on Algae Growth. *Chemical Engineering Journal* 2017, 307, 722–728, doi:10.1016/j.cej.2016.08.138.
- Bal, N.; Kumar, A.; Du, J.; Nugegoda, D. Multigenerational Effects of Two Glucocorticoids (Prednisolone and Dexamethasone) on Life-History Parameters of Crustacean *Ceriodaphnia Dubia* (Cladocera). *Environmental Pollution* 2017, 225, 569–578, doi:10.1016/j.envpol.2017.03.024.
- Sakalli, S.; Burkina, V.; Pilipenko, N.; Zlabek, V.; Zamaratskaia, G. In Vitro Effects of Diosmin, Naringenin, Quercetin and Indole-3-Carbinol on Fish Hepatic CYP1A1 in the Presence of Clotrimazole and Dexamethasone. *Chemosphere* 2018, *192*, 105–112, doi:10.1016/j.chemosphere.2017.10.106.
- Vestel, J.S.; Hong, J.-Y.; Meng, Q.; Naumann, B.D.; Robson, M.G.; Sargent, E.V. The Endocrine Disruption Potential of Betamethasone Using Japanese Medaka as a Fish Model. *Human and Ecological Risk Assessment: An International Journal* 2017, 23, 879–894, doi:10.1080/10807039.2017.1292841.
- Guiloski, I.C.; Ribas, J.L.C.; Pereira, L. da S.; Neves, A.P.P.; Silva de Assis, H.C. Effects of Trophic Exposure to Dexamethasone and Diclofenac in Freshwater Fish. *Ecotoxicology and Environmental Safety* 2015, *114*, 204– 211, doi:10.1016/j.ecoenv.2014.11.020.
- Jerez-Cepa, I.; Gorissen, M.; Mancera, J.M.; Ruiz-Jarabo, I. What Can We Learn from Glucocorticoid Administration in Fish? Effects of Cortisol and Dexamethasone on Intermediary Metabolism of Gilthead Seabream (Sparus Aurata L.). *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 2019, 231, 1–10, doi:10.1016/j.cbpa.2019.01.010.
- Chen, Q.; Jia, A.; Snyder, S.A.; Gong, Z.; Lam, S.H. Glucocorticoid Activity Detected by in Vivo Zebrafish Assay and in Vitro Glucocorticoid Receptor Bioassay at Environmental Relevant Concentrations. *Chemosphere* 2016, 144, 1162–1169, doi:10.1016/j.chemosphere.2015.09.089.
- Steenbergen, P.J.; Bardine, N.; Sharif, F. Kinetics of Glucocorticoid Exposure in Developing Zebrafish: A Tracer Study. *Chemosphere* 2017, *183*, 147–155, doi:10.1016/j.chemosphere.2017.05.059.

- Smith, E.M.; Wilson, J.Y. Assessment of Cytochrome P450 Fluorometric Substrates with Rainbow Trout and Killifish Exposed to Dexamethasone, Pregnenolone-16α-Carbonitrile, Rifampicin, and β-Naphthoflavone. *Aquatic Toxicology* 2010, *97*, 324–333, doi:10.1016/j.aquatox.2010.01.005.
- Overturf, M.D.; Overturf, C.L.; Baxter, D.; Hala, D.N.; Constantine, L.; Venables, B.; Huggett, D.B. Early Life-Stage Toxicity of Eight Pharmaceuticals to the Fathead Minnow, Pimephales Promelas. *Arch Environ Contam Toxicol* 2012, *62*, 455–464, doi:10.1007/s00244-011-9723-6.
- LaLone, C.A.; Villeneuve, D.L.; Olmstead, A.W.; Medlock, E.K.; Kahl, M.D.; Jensen, K.M.; Durhan, E.J.; Makynen, E.A.; Blanksma, C.A.; Cavallin, J.E.; et al. Effects of a Glucocorticoid Receptor Agonist, Dexamethasone, on Fathead Minnow Reproduction, Growth, and Development. *Environmental Toxicology and Chemistry* 2012, 31, 611–622, doi:10.1002/etc.1729.
- 15. Ochandio, B.S.; Bechara, I.J.; Parise-Maltempi, P.P. Dexamethasone Action on Caudal Fin Regeneration of Carp *Cyprinus Carpio* (Linnaeus, 1758). *Braz. J. Biol.* **2015**, *75*, 442–450, doi:10.1590/1519-6984.16813.
- Burkina, V.; Zlabek, V.; Zamaratskaia, G. Clotrimazole, but Not Dexamethasone, Is a Potent in Vitro Inhibitor of Cytochrome P450 Isoforms CYP1A and CYP3A in Rainbow Trout. *Chemosphere* 2013, *92*, 1099–1104, doi:10.1016/j.chemosphere.2013.01.050.
- Qi, X.-Z.; Li, D.-L.; Tu, X.; Song, C.-G.; Ling, F.; Wang, G.-X. Preliminary Study on the Relationship between Dexamethasone and Pathogen Susceptibility on Crucian Carp (Carassius Auratus). *Fish & Shellfish Immunology* 2016, *59*, 18–24, doi:10.1016/j.fsi.2016.10.017.
- Mikryakov, D.V.; Mikryakov, V.R.; Silkina, N.I. Effect of Dexamethasone on Oxidative Processes in the Immunocompetent Organs of Sterlet Acipenser Ruthenus L. *Inland Water Biol* 2014, *7*, 397–400, doi:10.1134/S1995082914040117.
- Kumari, Y.; Choo, B.K.M.; Shaikh, M.F.; Othman, I. Melatonin Receptor Agonist Piper Betle L. Ameliorates Dexamethasone-induced Early Life Stress in Adult Zebrafish. *Experimental and Therapeutic Medicine* 2019, *18*, 1407–1416, doi:10.3892/etm.2019.7685.
- Nakayama, K.; Yamashita, R.; Kitamura, S.-I. Use of Common Carp (Cyprinus Carpio) and Aeromonas Salmonicida for Detection of Immunomodulatory Effects of Chemicals on Fish. *Marine Pollution Bulletin* 2017, 124, 710–713, doi:10.1016/j.marpolbul.2016.12.060.
- Pazoki, M.; Parsa, M.; Farhadpour, R. Removal of the Hormones Dexamethasone (DXM) by Ag Doped on TiO₂ Photocatalysis. *Journal of Environmental Chemical Engineering* 2016, 4, 4426–4434, doi:10.1016/j.jece.2016.09.034.
- 22. Jia, A.; Wu, S.; Daniels, K.D.; Snyder, S.A. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. *Environmental Science & Technology* **2016**, *50*, 2870–2880.
- Pflug, N.C.; Kupsco, A.; Kolodziej, E.P.; Schlenk, D.; Teesch, L.M.; Gloer, J.B.; Cwiertny, D.M. Formation of Bioactive Transformation Products during Glucocorticoid Chlorination. *Environ. Sci.: Water Res. Technol.* 2017, 3, 450–461, doi:10.1039/C7EW00033B.

- 24. Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. *Water* **2020**, *12*, 102, doi:10.3390/w12010102.
- 25. Tahar, A.; Choubert, J.-M.; Coquery, M. Xenobiotics Removal by Adsorption in the Context of Tertiary Treatment: A Mini Review. *Environ Sci Pollut Res* **2013**, *20*, 5085–5095, doi:10.1007/s11356-013-1754-2.
- Boxall, A.B.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? *Environmental health perspectives* 2012, *120*, 1221–1229.
- 27. Sorell, T.L. Approaches to the Development of Human Health Toxicity Values for Active Pharmaceutical Ingredients in the Environment. *AAPS J* **2016**, *18*, 92–101, doi:10.1208/s12248-015-9818-5.
- Sulaiman, S.; Khamis, M.; Nir, S.; Lelario, F.; Scrano, L.; Bufo, S.A.; Karaman, R. Stability and Removal of Dexamethasone Sodium Phosphate from Wastewater Using Modified Clays. *Environmental Technology* 2014, 35, 1945–1955, doi:10.1080/09593330.2014.888097.
- 29. Arsand, D.R.; Kümmerer, K.; Martins, A.F. Removal of Dexamethasone from Aqueous Solution and Hospital Wastewater by Electrocoagulation. *Science of the Total Environment* **2013**, *443*, 351–357.
- Garcia-Segura, S.; Eiband, M.M.S.G.; de Melo, J.V.; Martínez-Huitle, C.A. Electrocoagulation and Advanced Electrocoagulation Processes: A General Review about the Fundamentals, Emerging Applications and Its Association with Other Technologies. *Journal of Electroanalytical Chemistry* 2017, 801, 267–299, doi:10.1016/j.jelechem.2017.07.047.
- Brnardić, I.; Ćurković, L.; Sofilić, T.; Pavlović, D.M.; Matijašić, G.; Grčić, I.; Rađenović, A. Removal of Heavy Metals and Pharmaceuticals From Contaminated Water Using Waste Sludge–Kinetics and Mechanisms. *CLEAN–Soil, Air, Water* 2017, 45, 1600509.
- 32. Babu, B.R.; Venkatesan, P.; Kanimozhi, R.; Basha, C.A. Removal of Pharmaceuticals from Wastewater by Electrochemical Oxidation Using Cylindrical Flow Reactor and Optimization of Treatment Conditions. *Journal of Environmental Science and Health, Part A* **2009**, *44*, 985–994, doi:10.1080/10934520902996880.
- Sirés, I.; Brillas, E. Remediation of Water Pollution Caused by Pharmaceutical Residues Based on Electrochemical Separation and Degradation Technologies: A Review. *Environment International* 2012, 40, 212–229, doi:10.1016/j.envint.2011.07.012.
- Rahmani, H.; Rahmani, K.; Rahmani, A.; Zare, M.-R. Removal of Dexamethasone from Aqueous Solutions Using Sono-Nanocatalysis Process. *Research Journal of Environmental Sciences* 2015, 9, 320–331, doi:10.3923/rjes.2015.320.331.
- Dolar, D.; Vuković, A.; Ašperger, D.; Košutić, K. Effect of Water Matrices on Removal of Veterinary Pharmaceuticals by Nanofiltration and Reverse Osmosis Membranes. *Journal of Environmental Sciences* 2011, 23, 1299–1307.
- Dolar, D.; Košutić, K.; Ašperger, D. Influence of Adsorption of Pharmaceuticals onto RO/NF Membranes on Their Removal from Water. *Water, Air, & Soil Pollution* 2013, 224, 1377.

- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C.S. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. *Environmental science & technology* 2012, *46*, 1536–1545.
- Calza, P.; Pelizzetti, E.; Brussino, M.; Baiocchi, C. Ion Trap Tandem Mass Spectrometry Study of Dexamethasone Transformation Products on Light Activated TiO₂ Surface. J Am Soc Mass Spectrom 2001, 12, 1286–1295, doi:10.1016/S1044-0305(01)00319-1.