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Abstract: Pneumonia is a leading cause of hospitalization in South Africa. Climate change could
potentially affect its incidence via changes in meteorological conditions. We investigated the delayed
effects of temperature and relative humidity on pneumonia hospital admissions at two large public
hospitals in Limpopo province, South Africa. Using 4062 pneumonia hospital admission records from
2007 to 2015, a time-varying distributed lag non-linear model was used to estimate temperature-lag
and relative humidity-lag pneumonia relationships. Mean temperature, relative humidity and diurnal
temperature range were all significantly associated with pneumonia admissions. Cumulatively
across the 21-day period, higher mean daily temperature (30 ◦C relative to 21 ◦C) was most strongly
associated with a decreased rate of hospital admissions (relative rate ratios (RR): 0.34, 95% confidence
interval (CI): 0.14–0.82), whereas results were suggestive of lower mean daily temperature (12 ◦C
relative to 21 ◦C) being associated with an increased rate of admissions (RR: 1.27, 95%CI: 0.75–2.16).
Higher relative humidity (>80%) was associated with fewer hospital admissions while low relative
humidity (<30%) was associated with increased admissions. A proportion of pneumonia admissions
were attributable to changes in meteorological variables, and our results indicate that even small
shifts in their distributions (e.g., due to climate change) could lead to substantial changes in their
burden. These findings can inform a better understanding of the health implications of climate
change and the burden of hospital admissions for pneumonia now and in the future.

Keywords: climate change; distributed non-linear lag model; environmental health; public health;
respiratory disease; pneumonia; South Africa; meteorology

1. Introduction

Pneumonia is a serious health problem especially among children under 5 years of
age. In 2017, approximately 808,694 children globally died from pneumonia [1]. The most
common causes of pneumonia are Streptococcus pneumoniae (a bacterium), Haemophilus
influenczae type b (Hib, also a bacterial pneumonia), respiratory syncytial virus and for
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infants with human immunodeficiency virus (HIV), Pneumocystis jiroveci is the most com-
mon cause of pneumonia [2]. Pneumonia is an acute respiratory disease and is especially
common among malnourished children, children with HIV, children living in crowded
homes, those who are exposed to environmental tobacco smoke as well as smoke from
burning biomass fuels indoors. A Global Action Plan for Pneumonia and Diarrhea by
the World Health Organization and UNICEF proposes several interventions to prevent
and treat pneumonia in children [3]. Prevention of pneumonia among children is through
promotion of adequate nutrition (including exclusive breastfeeding for the first six months
of life), good hygiene and clean air [1].

Seasonal patterns in pneumonia prevalence exist; however, they are inconsistent. A
bimodal seasonal pattern (summer and winter) with substantial variability was seen among
pneumonia patients in Thailand [4]. A similar pattern was seen among pneumonia patients
in Kilifi, Kenya where pneumonia prevalence was found to be higher during the rainy
season with a double peak in March and October [5]. A Taiwanese study found a single
peak in pneumonia admissions during cold months and associated a 1 degree Celsius
(◦C) decrease in ambient temperature with a ~0.03% increase in monthly pneumonia
admissions [6]. Given the variation in seasonality across studies of pneumonia admissions,
local studies at country level are necessary to inform local prevention and health promotion
campaigns.

The seasonal variations seen in pneumonia admissions have been related to climate
and meteorological variables: ambient temperature, relative humidity, rainfall, and air pol-
lution and their impact on both the host and the pathogen. Among 34,303 child (<15 years
of age) pneumonia admissions in Hong Kong, temperature exhibited a U-shaped associa-
tion with pneumonia with a minimum morbidity temperature of 25 ◦C and a long-lagged
effect up to 45 days [7]. Relative humidity also showed a U-shaped association with mini-
mum risk at 65% and lagged effect up to 45 days. In a study of Australian patients admitted
for pneumonia, a time-varying distributed lag non-linear model showed that relative rate
ratios (RR) associated with temperature were immediate and highest in late winter (lowest
temperature of effect was 16 ◦C; RR: 3.10, 95% confidence interval (CI): 1.80, 5.26) [8]. For
rainfall, the cumulative effect over the long range of 0–8 weeks showed two peaks for low
rainfall (12 mm, RR: 2.08, 95% CI: 1.38, 3.10) and moderately high rainfall (51 mm; RR: 3.16,
95% CI: 1.11, 9.03). Again, the seasonal differences vary by region/country.

The relationship between climate change and pneumonia is complex and mediated
through other factors, including socio-economic conditions, migration and exposure to
extreme events. Several studies have noted that pneumonia may increase as extreme
events increase, particularly in vulnerable communities with poor environmental health
conditions [9–12].

In South Africa, pneumonia is the second most prevalent cause of death among
children under five years of age [13]. Children who are poorly nourished, those with HIV
and those who are HIV-exposed have a high risk of severe pneumonia and death compared
to well-nourished and HIV-uninfected children [13]. While vaccines are one means with
which to prevent severe pneumonia morbidity and mortality, so too is understanding the
epidemiology of pneumonia, especially seasonal variations. Such patterns in respiratory
diseases including pneumonia may be changing with a changing climate [11] and thus
understanding baseline relationships between climate variables and pneumonia is essential.
This is deemed important for South Africa—a country projected to experience significant
changes in temperature and rainfall with climate change [14,15].

The aim of this study was to perform an exploratory analysis investigating the as-
sociation between two meteorological variables, temperature and relative humidity, and
pneumonia hospital admissions in Mopani District Municipality, Limpopo Province of
South Africa. Given that we expect the effects of these variables to have a delayed effect on
hospital admissions, we modeled their association using a framework that al-lows for in-
vestigation of this “lagged” effect, namely distributed lag non-linear models (DLNM) [16].
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2. Materials and Methods
2.1. Dataset

The infectious Disease Early Warning System (iDEWS) dataset contains hospital
admissions from two different hospitals in the Mopani district in South Africa (Figure 1)
and has previously been used to investigate climatic factors relating to diarrhea hospital
admissions [17]. Permission to conduct the study was granted by the Limpopo Department
of Health (REF 4/2/2), the management staff of Nkhensani Hospital and Maphutha L.
Malatjie Hospital. The South African Medical Research Council Research Ethics Committee
approved the study protocol (EC005-3/2014). In total there are 59,665 admission records in
the dataset, from calendar years spanning 2002–2017 (inclusive).
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Figure 1. Location of the two hospitals and meteorological stations in the study site in Limpopo
Province, South Africa.

Pneumonia admissions were identified based on their recorded reason for admission
at the time of admission, and therefore cases could be considered as “suspected pneumonia
admissions” rather than confirmed pneumonia (based on a diagnostic test). Although
microbiology and culture are performed routinely for patients admitted with pneumonia,
this focuses on bacteriology to ensure treatment strategies are appropriate. Viral typing is
not performed routinely. The following terms were used to identify pneumonia admissions
within the dataset (* indicate wildcard characters): *monia*; *brpn*; *bpn*; *pcp*; *bpn*;
and NOT *chem*; *pneumothorax*; *asp* (in order to exclude aspiration pneumonia). No
International Classification of Diseases (ICD-10) codes were available in the admissions
records.

Individual admissions were aggregated to calculate daily admission counts. Days
for which data were not available in the dataset were assumed to have zero admissions.
However, for the period of 1 January 2006 to 10 October 2007 no records are available, as
hospital admission books could not be found. We therefore restrict our analyses to dates
after 10 October 2007. Of patient admissions after this date, 9.8% were missing data on
age, and 21.2% were missing data on sex; 69.0% of admissions for which age was reported
were younger than 18 years, although this is likely to reflect bias towards reporting age in
younger patients rather than being an accurate representation of the age distribution in the
dataset.

For some cases, data were missing on the exact date of admission. As this was essential
for inclusion of admissions in the time series, we estimated date of admission by subtracting
the days spent in hospital from the date of discharge. If days spent in hospital were not
reported, we imputed this using multiple imputation. Variables used to predict missing
days spent in hospital were day of the year, day of the week, week month, year, season,
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average daily temperature, minimum daily temperature, maximum daily temperature,
average daily relative humidity, minimum daily relative humidity, maximum daily relative
humidity. Imputation was performed over 20 datasets using predictive mean matching and
model results were pooled using Rubin’s rules to account for uncertainty in the imputation
procedure [18].

Meteorological data were obtained from Thohoyandou where a weather station was lo-
cated approximately 40 km outside of the Mopani district. Data on mean daily temperature
(◦C) and relative humidity (%) were directly extracted from the dataset. Daily temperature
range (DTR) (◦C) was calculated as the maximum minus the minimum temperature for
each day. In a previous study [19], temperatures measured at the Thohoyandou weather sta-
tion and in dwellings in Giyani (the location of the hospital) were well correlated (R = 0.98,
p < 0.0001), suggesting that meteorological conditions did not vary substantially between
the station and the communities under study.

2.2. Statistical Methodology

We examined several published studies using different DLNMs and time series models
relating lagged meteorological data to pneumonia hospital admissions [20–22]. However,
models used in these studies were difficult to replicate as insufficient information was given
regarding the structure of the model and degrees of freedom/knots used for modelling
different non-linear functions. Therefore, we investigated relationships with some of the
key variables in these published models and used information that was available in them
(e.g., regarding lag duration) for developing our own models on the iDEWS dataset.

DLNMs can be used to simultaneously model non-linear exposure-response asso-
ciations and delayed effects, and as such they are particularly useful in environmental
epidemiology [16]. DLNMs were fitted to the hospital admission counts using generalized
linear models with a zero-inflated negative binomial likelihood that allowed for overdisper-
sion and a higher proportion of days with zero admissions than would be expected from a
typical Poisson distribution. Natural cubic spline basis functions with different numbers of
knots were investigated for the exposure response associations of different meteorological
predictors and their lagged effects on the rate (negative binomial) component of the model.
Model selection in DLNMs is challenging due to the bi-dimensional nature of simultane-
ously modelling both exposure and lags [23]. If a meteorological factor was found to have a
significant association (p < 0.05) with hospital admissions at any time across the lag periods
we investigated (21 days) it was included in the model. The number of knots was selected
by examining model residuals plotted against each predictor and investigating results of
sensitivity analyses (see Supplementary Material). The fit of the final model was confirmed
by examination of residuals and autocorrelation (see Supplementary Material).

In our final model, the rate (negative binomial) component incorporated associations
with mean daily temperature and relative humidity using natural cubic splines with a
lagged response over 21 days, and daily temperature range using a natural cubic spline
with no lagged response. Day of the week was included as a categorical variable, a periodic
seasonal effect was modelled using a Fourier series with a wavelength of 6 months, and
long-term trend in admissions was modelled using a natural cubic spline. The zero-
inflated (binomial) component included day of the week as a categorical variable, and we
added linear terms for the number of previous pneumonia admissions in the preceding 3
days. These additional terms help to account for the feature of pneumonia as an infectious
disease [24] and reduce the serial autocorrelation in the residual deviances of the model [25].
A more detailed definition of the model is given in Appendix A.

Models were fitted in R (version 4.0.2) [26] using the package dlnm (version 2.4.2) [23].
Analysis code is available at: https://github.com/hugaped/iDEWS_Pneumonia (accessed
19 May 2021). Results are plotted as predicted rate ratios (RR) at different exposure and
lag values. Predictions were centered at median values for mean daily temperature (21 ◦C)
and relative humidity (67%), and for DTR at the optimal lowest value in the dataset (1.3 ◦C)
meaning that at these values, RR will be equal to 1.

https://github.com/hugaped/iDEWS_Pneumonia
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The attributable risk fraction (AF) was calculated using a backward perspective
as the proportion of pneumonia admissions in the dataset that were attributable to the
lagged effects of each of the meteorological variables [27]. The same values were used for
centering as for predictions (see above), meaning that the AF represented the proportion of
admissions due to variations from these central values. A forward perspective was also
taken to examine the impacts of potential shifts in the distribution meteorological variables
that might arise due to long-term climate changes. Empirical 95%CIs were calculated using
Monte Carlo simulation over 1000 repetitions [27].

3. Results

There were 4048 admissions for pneumonia between 10 October 2007 and 31 December
2015. Of these, 34.3% did not report date of admission, but date of admission could be
calculated from date of discharge and imputed days spent in hospital. 4.5% of cases did
not report a date of admission or discharge, so these were excluded from the analysis.

Figure 2 shows the pattern of daily pneumonia hospital admission counts and meteo-
rological variables over time from a single example of an imputed dataset. There was a
clear seasonal trend for meteorological variables, though this was less visually apparent in
the daily hospital admission counts.
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Figure 2. Daily pneumonia hospital admissions and meteorological variables by date.

Model estimates in Table A1 (see Appendix B) showed a significant seasonal com-
ponent affecting the odds of whether there will be pneumonia hospital admissions on a
given day, and a clear association between day of the week and rate of admissions with the
largest rate occurring on Monday (RR vs. Sunday: 1.20; 95%CI: 1.03, 1.39) and the lowest
on the Sunday (the reference group). Hospital admissions also appeared to have increased
in more recent years (spline coefficient 5 RR: 1.53; 95%CI: 1.25, 1.88). Mean temperature,
relative humidity, and temperature range were all significantly associated with pneumonia
hospital admissions. The deviance of the model was still very high after accounting for
these variables, indicating that meteorological and chronological variables did not explain
much of the variability in hospital admissions (Figure S1).

Cumulatively across the whole lag period, lower mean daily temperature (12 ◦C
relative to 21 ◦C) was associated with an increased rate of pneumonia hospital admis-
sions (RR: 1.27, 95%CI: 0.75–2.16), and higher mean daily temperature (30 ◦C relative to
21 ◦C) was associated with a decreased rate of admissions (RR: 0.34, 95%CI: 0.14–0.82;
Figure 3). Lower mean daily temperature was most strongly associated with an increased
rate of pneumonia hospital admissions after 7–14 days lag, whereas higher mean daily



Int. J. Environ. Res. Public Health 2021, 18, 6191 6 of 16

temperature was most strongly associated with a decreased rate of hospital admissions
after 0–10 days lag (Figure 4 and Figure S2). The lagged effect of mean daily temperature
appeared to disappear after 17 days. We also investigated the effects of using minimum
and maximum daily temperature as independent predictors in the model in place of mean
daily temperature (see Supplementary Material).
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Figure 3. The top panel shows the cumulative association between mean daily temperature and
pneumonia hospital admissions across a 21-day lag period. The solid curve is the predicted relative
rates (RR), and the shaded region is the 95% confidence interval (CI). The lower panel shows the
distribution of mean daily temperature within the infectious Disease Early Warning System (iDEWS)
dataset. The median mean daily temperature (21 ◦C) is indicated by the dashed vertical line and is
used as the reference value against which the RR for other temperatures is compared.

For relative humidity, the cumulative association showed that higher relative humidity
(>80%) was associated with fewer hospital admissions for pneumonia, and lower relative
humidity (<30%) was associated with increased admissions over the whole 21-day lag
period (Figure 5). The strongest associations with pneumonia hospital admissions were at
0–5 days lag, at which high humidity was associated with decreased admissions, and at
15–21 days lag, at which low humidity was associated with increased admissions (Figure 6
and Figure S3).
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Figure 5. The top panel shows the cumulative association between relative humidity and pneumonia
hospital admissions across a 21-day lag period. The solid curve is the predicted relative rates (RR),
and the shaded region is the 95% CI. The lower panel shows the distribution of relative humidity
within the iDEWS dataset. The median relative humidity (67%) is indicated by the dashed vertical
line and is used as the reference value against which the RR for other relative humidity values is
compared.
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Figure 6. The association between relative humidity and pneumonia hospital admissions at different days of lag. The solid
curves are the predicted relative rates (RR), and the shaded regions are the 95%CI. The median relative humidity (67%) is
indicated by the dashed vertical line and is used as the reference value against which the RR for other relative humidity
values is compared.

Predictions for DTR suggested that higher variations (>21 ◦C) between maximum and
minimum daily temperature were associated with increased hospital admissions (Figure 7).
There was no evidence for a lagged association with admissions for this variable, meaning
that this represented the association with DTR and admissions on a given day (i.e., after
0 days lag).

Other meteorological variables (total rainfall, wind speed and wind direction) were
investigated but were not found to improve the model fit or further explain the variability
of daily hospital admissions for pneumonia.

The proportion of pneumonia hospital admissions attributable to mean daily tempera-
ture, relative humidity, and DTR across the full lag periods are shown in Table 1. Given
that most cases are accrued at more extreme exposure values, a long-term shift in the
distribution of any of these exposures could lead to a substantial increase/decrease in
admissions.
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Mean daily tempera-
ture 

−8.4% (−25%, 6.6%) 0.3% (−1%, 1.5%) −3.4% (−8.2%, 0.3%) 

Figure 7. The top panel shows the association between daily temperature range (DTR) and pneumo-
nia hospital admissions. No lagged association was modelled for this exposure, so this represents
the association on any given day (i.e., zero days lag). The solid curve is the predicted relative rates
(RR), and the shaded region is the 95% CI. The lower panel shows the distribution of DTR within the
iDEWS dataset. The optimal lowest DTR in the dataset (1.3 ◦C) is indicated by the dashed vertical
line and is used as the reference value against which the RR for other DTR values is compared.

Table 1. Proportion of pneumonia hospital admissions attributable to changes in meteorological exposures (AF = attributable
fraction), shown as the total AF, the AF due to lower values of the exposures, and the AF due to higher values of the
exposures. ± changes in meteorological exposures indicate how the AF would change if the exposure distribution was
shifted positively or negatively by the specified amount.

Meteorological Exposure Total (95%CI) Low a (95%CI) High b (95%CI)

Mean daily temperature −8.4% (−25%, 6.6%) 0.3% (−1%, 1.5%) −3.4% (−8.2%, 0.3%)
+2 ◦C −22.8% (−56.7%, −1.2%) 0% (−0.2%, 0.1%) −19.2% (−54.9%, −1.4%)
−2 ◦C −9.3% (−27.2%, 4%) 1.5% (−3%, 4.4%) −0.5% (−1.4%, 0.1%)

Relative humidity −2.1% (−12.9%, 7.7%) 2.2% (−0.8%, 4.1%) −4.4% (−11.6%, 0.6%)
+5% −9.3% (−29.7%, 4.6%) 1.2% (−0.5%, 2.4%) −9.5% (−25.4%, 1.1%)
−5% −0.6% (−13.2%, 9.4%) 3.6% (−0.6%, 6.5%) −1.8% (−4.8%, 0.3%)

DTR 6.7% (−19.4%, 26%) - 1.3% (−0.6%, 2.6%)
+2 ◦C 7.9% (−17%, 29.2%) - 3.8% (−0.9%, 7%)
−2 ◦C 5.3% (−20.4%, 24.7%) - 0.3% (−0.2%, 0.7%)

a The AF for mean daily temperatures <14 ◦C or relative humidity <40%. b The AF for mean daily temperatures >26 ◦C, relative humidity
>80% or DTR >20 ◦C.
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4. Discussion

This study reports the lagged association of two meteorological variables, tempera-
ture, and relative humidity, on hospital admissions for pneumonia symptoms in South
Africa. We found an association between pneumonia and mean daily temperature, relative
humidity, and daily temperature range (DTR), in addition to the presence of chronological
effects (e.g., seasonal).

Mean daily temperature was associated with pneumonia hospital admissions after
0–14 days, with higher temperatures associated with a lower rate of admissions, and lower
temperatures associated with a higher rate of admissions. This finding is supported by
the established global seasonality of the influenza virus. Laboratory based studies have
postulated possible explanations for these findings [28–30]. Lower temperatures increase
transmissibility of the pneumonia-causing influenza virus, and in controlled laboratory
conditions, a significantly increased transmissibility of the influenza virus was seen at 5 ◦C
as compared to higher temperatures. At these temperatures, there was also a substantially
higher shedding of the virus by the laboratory animals [28]. This could explain associations
with increased hospital admissions after longer lags.

These results are largely in agreement with previous studies, though the slightly
different lags of higher and lower temperatures we found here have not been reported
before. Liu et al. [31] also identified an association between low mean daily temperature
and increased pneumonia admissions over a slightly shorter lag period (2–5 days) than
in our model. In contrast to our results, they found higher mean temperatures associated
with increased admissions. However, findings from Sohn et al. [22] corroborate our re-
sults, showing that increased mean daily temperature was associated with lower rates of
admissions with 0–7 days lagged effects.

We identified an association between relative humidity and hospital admissions at
both shorter (0–5 days) and longer (15–21 days) lags. The association at shorter lags
would suggest (if causal) that high humidity might reduce the propensity for individuals
with pneumonia to go to hospital, either by decreasing symptom severity or perhaps by
decreasing the likelihood of travelling to the hospital [32]. Low humidity at 15–21 days
prior was associated with increased hospital admissions. Viral pneumonia infectivity
has been shown to be higher at lower relative humidity as droplet aerosols can remain
airborne for longer [32]. This increases the transmission of pneumonia-causing organisms,
such as the influenza virus [28], which could explain the delay between humidity and
hospitalization found in our model. In Mopani, low humidity is also associated with
formation of dust particulates, which has recently been shown to be another route of viral
influenza transmission [33].

There is debate in the literature over the effects of humidity on pneumonia trans-
mission and hospital admissions. Some authors suggest that after controlling for other
meteorological variables there is no association with relative humidity and pneumonia
admissions [22,34]. Others suggest either that higher [31] or lower [35] relative humidity is
associated with increased rates of admissions. Given the heterogeneity in these findings, it
is possible that the effects of humidity are mediated by local factors that differ between
these studies (e.g., dusty environments, population demographics).

Relative humidity has declined over the study period, which is most likely due to
increasing temperatures—mean annual temperatures have risen by at least 1.5 times the
global average [14]. Due to the relationship between relative humidity and temperature, for
the same moisture content in the air, an increase in temperature will lead to a reduction in
relative humidity. The relationship between the two is non-linear, hence why the trend for
relative humidity is greater than for temperature (Figure 2). For this reason, it is important
to model temperature and relative humidity simultaneously within the same model.

Our results showed that greater differences between maximum and minimum tem-
perature increased hospital admissions for pneumonia symptoms on any given day. Large
changes in temperature could exacerbate symptoms, making people more likely to go
to hospital for treatment [35], and this association has been reported previously [20,22].
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However, this association was only noticeable in our analysis when DTR was greater than
21 ◦C, which only happened 12 days each year on average across the whole dataset.

We also calculated the attributable risk of pneumonia admission for each meteoro-
logical variable, which indicated that a reasonable proportion of pneumonia admissions
(either increased or decreased) were attributable to changes in mean daily temperature,
relative humidity, and DTR. Given that the strongest associations between these variables
were often at exposure ranges at more extreme ends of the distributions (i.e., they occurred
only on a smaller number of days), the AF would change considerably if the distributions
shifted even by a small amount. For example, if the distribution of mean daily temperature
increased by 2 ◦C in line with projections for 2050 from the Intergovernmental Panel on
Climate Change (IPCC) scenario RCP4.5 [14], the number of days per year for which mean
daily temperature exceeds 26 ◦C would increase from 34 to 92, and this would have a
correspondingly large effect on AF (Table 1).

Projections for relative humidity and DTR are more varied, so it is difficult to predict
exactly how the distributions may shift due to climate change but, as with mean daily
temperature, small changes could have a considerable impact on the burden of pneumonia
hospital admissions. Increases in temperature would be likely to lead to lower relative
humidity thus off-setting to some extent the benefit of increased temperature on reducing
pneumonia hospitalization. However, given that changes in precipitation and relative
humidity are projected with much less confidence, it remains highly uncertain exactly how
future climate changes will impact on pneumonia hospitalizations.

Limitations

While the findings were robust to the various sensitivity analyses we conducted,
there were several factors that limited the conclusions that could be drawn from the data.
Although we identified associations between several meteorological variables and hospital
admissions, the model deviance was high, in part because daily hospital admissions
were extremely variable. The factors we included in our model only explained a small
proportion of the variance. Other patient-level variables may be much better predictors
of hospital admissions. However, in many hospitals in South Africa, recording of patient
demographics is very limited and is often performed at the discretion of healthcare staff
rather than as part of a standardized process of data collection. For characteristics that were
recorded (e.g., age, gender) they contained a high proportion of missing values, and we did
not feel it was appropriate to assume that they were ‘Missing at Random’ nor were there
sufficient predictive data to allow for imputation. One approach to reduce the variability
in admissions could be to model weekly rather than daily counts. However, because the
lagged meteorological effects are likely to occur over a period of days rather than weeks,
modelling daily admissions allows for greater sensitivity across lagged associations.

Another limitation of the dataset was that pneumonia was not confirmed either radio-
logically or microbiologically but based on the admitting physician’s clinical assessment
contained in the hospital admission records. There may also be selection bias as physicians
may have different criteria for admitting patients, based on clinical severity, type of in-
fection and healthcare access, choosing in some instances to treat on an outpatient basis.
As the hospitals were district hospitals, referral bias is likely to have been limited, as all
patients are required to be first seen at the district facility prior to referral to a regional
facility.

Other factors influencing the incidence and severity of pneumonia, including socio-
economic status and air pollution are not accounted for in our model, nor how they may
interact with meteorological variables and climate change. Furthermore, household air
pollution in particular may be an important factor here, as colder weather may lead to
increased burning of fuels for household heating. We could not source reliable ambient
or household air quality data that would permit this investigation, but this should be
considered in future studies.
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5. Conclusions

A proportion of pneumonia admissions were attributable to changes in meteorological
variables where even small shifts in their distributions could lead to substantial changes
in their burden. Understanding the impact of meteorological variables on the burden of
pneumonia illness and similar conditions in the healthcare service is of interest, particularly
given projected changes in climate over the next century due to global warming. Our study
provides good evidence to address this issue and to consider which factors are most likely
to drive changes in hospital admissions for these conditions. The findings of this study
can inform a better understanding of the health implications associated with pneumonia
in South Africa to support decision-making in healthcare and establish a strategy for
prevention and control of the disease. The findings will also support greater efforts to
understand the health implications of climate change in the country.
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Appendix A. Detailed Model Structure

For this component we included mean daily temperature using a natural spline with
3 equally spaced internal knots (at 18.1, 21.3 and 24.1 ◦C) and boundary knots (at 9.9 and
30.9 ◦C). Relative humidity was also included using a natural spline with 2 equally spaced
internal knots (at 59.9 and 72.4%) and boundary knots (at 15.3 and 97.0%). For both mean
daily temperature and relative humidity, a lagged response was modelled over 21 days
using a natural spline with 2 equally spaced internal knots (at 7 and 14 days) and boundary
knots (at 0 and 21 days).

We included daily temperature range, calculated by subtracting the maximum from
the minimum daily temperature, using a natural spline with 3 equally spaced internal
knots (at 9.0, 12.4 and 16.4 ◦C) and boundary knots (at 1.3 and 26.2 ◦C), with no lagged
response. Day of the week was included as a categorical variable, a periodic seasonal effect
was modelled using a Fourier series with a wavelength of 6 months, and long-term trend
in admissions was modelled using a natural spline with 4 equally spaced internal knots (at
599, 1204, 1802 and 2401 days from baseline).

The zero-inflated (binomial) component modelled the probability of whether a day
would have zero admissions or not. For this component we included day of the week as a
categorical variable, and we added linear terms for the number of previous pneumonia
admissions at the preceding 3 days. These additional terms help to account for the feature
of pneumonia as an infectious disease [24] and reduce the serial autocorrelation in the
residual deviances of the model [25].

An algebraic definition of the model is as follows:

rt ∼ ZINegBin(θt, µt, k)

log(µt

∣∣∣θt) = α + β1DOWt + β2 sin( 4πDayt
365 ) + β3 cos( 4πDayt

365 ) + ns(t, 5) + ns(DTRt, 4)+
ns(Ct, 4, 3) + ns(Ht, 3, 3) + β4rt−1:t−3

logit(θt) = α2 + φ1DOWt + φ2rt−1:t−3

where rt is the hospital admissions count on day t, θt is the probability of the count being
zero on day t, µt is the rate of hospital admissions on day t, and k is the negative binomial
overdispersion parameter. α is the model intercept, DOWt is a categorical variable for
the day of the week (reference: Sunday) and Dayt is the day of the year. ns(DTRt, 4) is
a natural cubic spline with 4 knots for daily temperature range, ns(Ct, 4, 3) represents a
cross-basis matrix with natural cubic splines for mean temperature (4 knots) and its lagged
effect (3 knots), and ns(Ht, 3, 3) represents a cross-basis matrix with natural cubic splines
for relative humidity (3 knots) and its lagged effect (3 knots).

β coefficients represent log-RRs. β1 is a vector of model coefficients for days of the
week, β2 and β3 are coefficients for the Fourier series, β4 is a linear coefficient for the lagged
effect of hospital admissions on the previous 3 days. φ coefficients represent log-odds ratios
(log-OR). φ1 is a vector of model coefficients for days of the week, φ2 is a linear coefficient
for the lagged effect of hospital admissions on the previous 3 days.
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Appendix B. Model Parameters

Table A1. Model parameter estimates, standard errors (SE) and p-values for the negative binomial
component of the model which corresponds to the log-rate of admissions (NegBin) and the zero-
inflated binomial component of the model which corresponds to the log-odds ratio of whether there
will be any hospital admissions for a given day (Zero). The overdispersion for the negative binomial
component is 7.41. “v1” corresponds to the gradient of the exposure-response association in the first
interval of a spline, “v2” to that in the second interval, and so on. “l1” corresponds to the gradient of
the lagged association in the first interval of a spline, “l2” to that in the second interval, and so on. A
value of 0 would represent no association or lagged response respectively in the given spline interval.

Parameter NegBin
Estimate NegBin SE NegBin p Zero

Estimate Zero SE Zero p

Intercept 1.686 0.793 0.033 −0.547 0.618 0.376

Mean Temp v1.l1 −0.137 0.099 0.165 - - -

Mean Temp v1.l2 −0.015 0.061 0.81 - - -

Mean Temp v1.l3 0.06 0.081 0.46 - - -

Mean Temp v2.l1 −0.088 0.092 0.34 - - -

Mean Temp v2.l2 0.044 0.058 0.44 - - -

Mean Temp v2.l3 0.009 0.075 0.899 - - -

Mean Temp v3.l1 −0.358 0.229 0.118 - - -

Mean Temp v3.l2 −0.136 0.153 0.372 - - -

Mean Temp v3.l3 0.123 0.193 0.524 - - -

Mean Temp v4.l1 −0.026 0.128 0.84 - - -

Mean Temp v4.l2 −0.141 0.08 0.079 - - -

Mean Temp v4.l3 0.08 0.104 0.443 - - -

Humidity v1.l1 0.004 0.053 0.944 - - -

Humidity v1.l2 −0.031 0.036 0.403 - - -

Humidity v1.l3 −0.023 0.042 0.579 - - -

Humidity v2.l1 0.199 0.184 0.281 - - -

Humidity v2.l2 −0.31 0.134 0.021 - - -

Humidity v2.l3 −0.218 0.155 0.159 - - -

Humidity v3.l1 0.134 0.073 0.066 - - -

Humidity v3.l2 −0.144 0.049 0.003 - - -

Humidity v3.l3 0.031 0.056 0.585 - - -

Temp Range v1 0.102 0.126 0.417 - - -

Temp Range v2 −0.15 0.125 0.232 - - -

Temp Range v3 0.395 0.302 0.191 - - -

Temp Range v4 0.576 0.224 0.01 - - -

sin(Annual) −0.017 0.054 0.756 - - -

cos(Annual) −0.037 0.09 0.678 - - -

Long-Term v1 −0.228 0.116 0.05 - - -

Long-Term v2 −0.053 0.142 0.71 - - -

Long-Term v3 −0.147 0.107 0.169 - - -

Long-Term v4 −0.108 0.228 0.637 - - -

Long-Term v5 0.425 0.104 <0.001 - - -

Monday 0.18 0.077 0.02 −0.831 1.41 0.556

Tuesday 0.108 0.078 0.168 −2.145 346.547 0.995
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Table A1. Cont.

Parameter NegBin
Estimate NegBin SE NegBin p Zero

Estimate Zero SE Zero p

Wednesday 0.108 0.078 0.167 −0.773 1.233 0.531

Thursday 0.122 0.079 0.121 −0.021 0.753 0.978

Friday 0.081 0.079 0.307 −0.136 0.943 0.885

Saturday 0.099 0.079 0.209 −0.432 1.156 0.708

Lagged admissions 0.047 0.006 <0.001 −0.575 0.272 0.034
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