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In the recent years there has been a great deal of attention on the optimal demand and supply side

strategy. The increase in renewable energy sources and the expansion in demand response programmes

has shown the need for a robust power system. These changes in power system require the control of

the uncertain generation and load at the same time. Therefore, it is important to provide an optimal

scheduling strategy that can meet an adequate energy mix under demand response without affecting

the system reliability and economic performance. This thesis addresses the following four aspects to

these changes.

First, a renewable obligation model is proposed to maintain an adequate energy mix in the economic

dispatch model while minimising the operational costs of the allocated spinning reserves. This method

considers a minimum renewable penetration that must be achieved daily in the energy mix. If the
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renewable quota is not achieved, the generation companies are penalised by the system operator. The

uncertainty of renewable energy sources are modelled using the probability density functions and

these functions are used for scheduling output power from these generators. The overall problem is

formulated as a security constrained economic dispatch problem.

Second, a combined economic and demand response optimisation model under a renewable obligation

is presented. Real data from a large-scale demand response programme are used in the model. The

model finds an optimal power dispatch strategy which takes advantage of demand response to minimise

generation cost and maximise renewable penetration. The optimisation model is applied to a South

African large-scale demand response programme in which the system operator can directly control

the participation of the electrical water heaters at a substation level. Actual load profile before and

after demand reduction are used to assist the system operator in making optimal decisions on whether

a substation should participate in the demand response programme. The application of these real

demand response data avoids traditional approaches which assume arbitrary controllability of flexible

loads.

Third, a stochastic multi-objective economic dispatch model is presented under a renewable obligation.

This approach minimises the total operating costs of generators and spinning reserves under renewable

obligation while maximising renewable penetration. The intermittency nature of the renewable energy

sources is modelled using dynamic scenarios and the proposed model shows the effectiveness of the

renewable obligation policy framework. Due to the computational complexity of all possible scenarios,

a scenario reduction method is applied to reduce the number of scenarios and solve the model. A Pareto

optimal solution is presented for a renewable obligation and further decision making is conducted to

assess the trade-offs associated with the Pareto front.

Four, a combined risk constrained stochastic economic dispatch and demand response model is presen-

ted under renewable obligation. An incentive based optimal power dispatch strategy is implemented

to minimise generation costs and maximise renewable penetration. In addition, a risk-constrained

approach is used to control the financial risks of the generation company under demand response

programme. The coordination strategy for the generation companies to dispatch power using thermal

generators and renewable energy sources while maintaining an adequate spinning reserve is presented.

The proposed model is robust and can achieve significant demand reduction while increasing renewable

penetration and decreasing the financial risks for generation companies.
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CHAPTER 1 INTRODUCTION

The need for clean and renewable energy sources (RES) has resulted in new mandates to augment and

in some cases replace conventional fossil-based generation with RES. Renewable energy is derived

from natural sources such as the sun, wind, hydro power, biomass, geothermal, ocean and fuel cells.

The limiting of greenhouse gas emission, the avoidance of the construction of new transmission circuit

and large generating units, diversification of energy sources to enhance energy security, quality and

reliability, and support for competition policy are some important drivers in environmental, commercial

and national/regulatory aspects behind the growth of renewable energy sources.

1.1 PROBLEM STATEMENT

The need for increasing RES penetration is very important in modern power system. In this thesis

the problem of integrating large scale RES is investigated. More importantly, the need to quantify it

using renewable obligation policy is analysed. In addition, the use of demand response (DR) is also

investigated as a tool to increase RES in the power system operation. Firstly, the uncertainty related to

RES penetration is modelled for the purposes of integrating it to the power system. Thereafter, the

stochastic programming is used to adequately quantify the maximum RES that can be injected in a

small and large power system.

1.2 BACKGROUND

The economic dispatch (ED) optimisation is a classical power system operational problem that has

been a subject of intense research for many years. The objective of the ED problem is to minimise the

total fuel cost function of the generation units by selecting the optimal output power per generator. The

typical cost function is minimised subject to several constraints that include the load balance, upper

and lower limits of the generating units as well as the ramp up and ramp down of each generating unit

[1], [2]. The ED problem can be divided into two parts, namely static and dynamic. The static ED

problem mainly focuses at the snapshot of the power system to determine the optimal generator output.
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While the static ED problem has the advantage of providing steady state performance of the power

system, it cannot provide a dynamic output which is more important to provide an optimal solution

for real time power system operation. This has led to the second ED problem commonly known as

dynamic economic dispatch (DED) problem. Contrary to the static ED problem, the DED problem is

performed over a finite horizon to determine the optimal operation of the power system [3]. Moreover,

during the period between two consecutive schedules, the generators participate in managing power

imbalance based on the participation factors from previous economic dispatch. This approach also has

an advantage of “looking ahead” which takes into consideration the forecasted load trends to allocate

output power per generator over a time horizon that is determined by the system operator (SO).

As a promising renewable energy source, the solar power has been attracting a great deal of attention

as an alternative clean source of energy. However, the integration of RES to the grid still remains a

challenge due to the stochastic nature and variability of the RES [4], [5]. This integration introduces

many challenges to the operation and planning strategy of the grid operator [6], [7]. Moreover, the

variability and uncertainty in RES have led to an increase in ancillary services requirements. Solar

power can be considered less uncertain as compared to wind which is more uncertain [8], [9]. The

variability of a PV generator is quantified by a distribution of frequencies derived from irradiance data;

while the uncertainty is quantified by a probability distribution which depends upon the information

about the likelihood of what the single true value of uncertain quantity is [10]. This intermittency nature

of RES affects the efficient operation of the power system and increases associated costs because of the

wind and solar variability. The capacity factor is described as a parameter to measure the effectiveness

of the RES [11]. It is defined as the ratio of actual energy output of the plant to the installed capacity

of the plant which is normally expressed as a percentage. In South Africa the Integrated Resource Plan

(IRP) assumes a capacity factor that is between 19.4% to 25% for PV and a capacity factor between

30% to 36% for wind [12].

Several methods have been proposed to limit the uncertainty and variability of the RES for the DED

problem. These methods are divided into two main approaches which are the probabilistic and

deterministic approach. In [13], a method based on probabilistic approach for short term forecasting is

used. The probabilistic method is selected and trained as base predictors in order to obtain a sample of

the predictive distribution with optimal characteristics of sharpness and reliability. The field of PV

power forecasting, probabilistic ensembles based on deterministic predictors are obtained through

machine learning techniques such as gradient boosting, or assuming a specific normal distribution
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CHAPTER 1 INTRODUCTION

from single predictors. For wind power, several investigations have looked at the prediction of wind

speed for uses in determining the available wind power. These investigations have been based on fuzzy

logic, neutral networks and time series [14].

The traditional real time constraint ED solves energy dispatch and ancillary service for one target

interval. The additional advantage of real time DED is the inclusion of demand forecast. This advantage

must be taken into consideration when adding RES since their output power can change by as much

as 70% in 10 minutes or less [9]. The conventional DED solves the problem over a 24-hour period.

The inclusion of RES will certainly affect the generation pattern which brings the need for spinning

reserves for conventional generators in order to compensate the short fall that may arise from RES not

meeting their forecasted energy output [15].

In recent times wind and PV solar generation integration studies have been fixed to one-time resolution,

thus this makes it difficult to analyse the effect of variability and uncertainty within a single time

frame. In [16], a real time DED algorithm is designed to compute real time dispatch as well as real

time pricing that is compliant to the Midwest Independent System Operator’s energy and ancillary

market business rules. In [17] a methodology for stochastic DED is presented that guarantees secure

operation in real-time scenario. While in [18], a discussion on various methods that can be used

to deal with variability and uncertainty are presented ranging from reserve rules, demand response,

storage and flexible transmission. The dynamic reserves are integrated into two settlement market

clearing mechanism, where energy and reserves are dispatched and priced simultaneously. In addition,

a stochastic mixed integer linear programming scheduling model minimizing system operating costs

and treating load and wind power production as stochastic input is presented in [19].

Other forms of DED have also been proposed that include emission dispatch [20], [21]. In [22], a load

dispatch model that minimises the emission is proposed and the effects of wind power on emission

control are investigated. A better approach is proposed in [23] where a probabilistic methodology to

estimate demand curve for operating reserves and the curves represent the amount the SO is willing

to pay for the services using the membership function for the total fuel cost. The demand curve is

quantified by the cost of unserved energy and the expected loss of load which accounts for uncertainty

from generator contingencies, load forecasting errors and wind power forecasting errors. Moreover, a

short-term forward electricity market clearing problem with stochastic security capable of accounting

for non-dispatchable and variable wind power generation is presented [24]. The authors show that
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CHAPTER 1 INTRODUCTION

the benefit of their approach is that it allows greater wind power penetration without affecting the

network security. Many authors have used evolutionary algorithms to solve DED problems such as

hybrid swarm intelligence algorithm found in [25] and harmony search algorithm found in [26]. The

approach that is used for solving the optimisation problem is based on evolutionary algorithm due

to the complexity added by the ramp rate, valve point effects, spinning reserve requirements, load

balance constraints, operating limits, and network losses. Genetic algorithm is a numerical optimisation

approach that is easy to implement and significantly faster than other algorithms.

1.2.1 Research gap

There is a lack of focus on the incorporation of RES obligation requirement from the supply side. In

particular, there is no research that incorporates a renewable obligation (RO) in the optimal scheduling

of RES while incorporating incentive based DRP for large scale residential customers.

1.3 RESEARCH OBJECTIVE AND QUESTIONS

The primary goal of this thesis is to present a combined DR and economic dispatch model under

renewable obligation considering the current state of the network which has a lot of fluctuations due to

RES integration. Firstly, this thesis focuses on increasing the RES penetration in the network under

the current operating conditions. The renewable obligation model is introduced as a quantity-based

instrument to measure the impact of RES penetration in a small and large power system network. To

deal with the uncertainty related to RES penetration, demand response is introduced to handle the

deferrable loads and incorporate it to the RO model. A new joint DRP under RO is presented under

deterministic and stochastic scenarios to ascertain the level of RES penetration that can be achieved

without affecting the network reliability and economic benefit. As such, an incentive-based demand

response is implemented for residential customers participating in this program. Overall, the financial

risk associated with a joint operation of RES and DR is evaluated for the conventional generation

companies. Therefore, the research question listed below are addressed:

• What is the maximum RES penetration that can be achieved?

• What is the impact of DR on RES penetration level and operating cost?

• What is the benefit of a joint DR and economic dispatch under renewable obligation?

1.4 RESEARCH CONTRIBUTION

The contributions of this work are listed below:
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1. A renewable obligation framework is mathematically modelled and incorporated into a security

constrained economic dispatch (SCED) to allow maximum RES penetration while penalising

generation companies for not complying with the minimum RES quota. This model is aligned

to the quantity-based instrument which measures the quantity of RES injected into the grid to

achieve a cost-effective energy mix.

2. A multi-objective optimisation model is presented with two objective functions. The first

objective functions are related to the minimisation of the total operating cost and spinning

reserve cost of thermal generators. The RO model is included in the first objective function to

ensure a minimum RES quota is achieved, and if it is not achieved a penalty will be imposed to

thermal generators. The second objective function maximises the total RES energy generated

from wind and PV power plants.

3. A multi-objective economic dispatch model is presented which integrates deferrable demand

within a real DLC DRP intermittent renewable energy under renewable obligation.

4. The combined incentive DRP and DED with RES quota obligation model are applied to large

scale residential customers.

5. The BESS system is included to reduce the thermal generator spinning reserve requirement by

utilising BESS for ancillary services.

6. Real data from South African DRP are taken in the optimisation model so that the system

operator can decide whether a substation needs to respond to the DR request.

7. A combined risk constrained RO and demand response model is presented under value-at-risk

(VaR) to decrease financial risk of the generation companies.

1.5 HYPOTHESIS AND APPROACH

In order to address the problems identified in this thesis, the following hypothesis are given as

follows:

1. The proposed renewable obligation model will provide an adequate energy mix between renew-

able energy and conventional thermal generators.

2. Incorporating demand response will increase the renewable energy penetration and reduce the

total operating cost of thermal generators.

3. Renewable obligation will decrease the total operating cost of thermal generators.
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1.6 RESEARCH OUTPUTS

The resulting contribution from this research have been published in peer reviewed journals. A

publication list of articles that resulted from the research is provided as follows:

1. T. G. Hlalele, R. M. Naidoo, J. Zhang, and R. C. Bansal, “Dynamic economic dispatch with

maximal renewable penetration under renewable obligation," IEEE Access, vol. 8, pp. 38794 -

38808, 2020.

2. T. G. Hlalele, R. M. Naidoo, R. C. Bansal, and J. Zhang, “Multi-objective stochastic economic

dispatch with maximal renewable penetration under renewable obligation," Applied Energy, vol.

270, pp. 1 - 16, 2020.

3. T. G. Hlalele, J. Zhang, R. M. Naidoo, and R. C. Bansal, “Multi-objective economic dispatch

with residential demand response under renewable obligation," Energy, submitted June 2020,

under review.

4. T. G. Hlalele, J. Zhang, R. M. Naidoo, and R. C. Bansal, “Risk-constrained stochastic

economic dispatch with demand response under renewable obligation," still to be submitted.

1.7 OVERVIEW OF STUDY

The thesis is organised as follows. In Chapter 1 the thesis is introduced, the background and motivation

for the current work is presented. Lastly the contribution of the current work is presented. In Chapter 2

a detailed literature review on the different renewable integration policy framework which ultimately

builds the current research framework. The chapter also presents a background on the current state-

of-the-art in terms of power system operation problem related to economic operation and demand

flexibility. Thereafter, a brief introduction of modelling renewable energy sources is presented. In

Chapter 3 the basic renewable obligation model is presented and integrated to the security constraint

economic dispatch problem. The chapter models two renewable energy sources, i.e., wind and PV

using the probability density function. The RES generators are incorporated into the model for a

joint energy and reserve dispatch model. In Chapter 4 a residential load management (RLM) demand

response programme is integrated to a renewable obligation model. A joint demand response and

economic dispatch is presented for residential customers participating in an incentive-based demand

response programme. In Chapter 5 an extension of the renewable obligation model presented in

Chapter 3 is used to incorporate the uncertainty related to renewable energy sources. In this Chapter, a

stochastic version of the RO model is presented to ascertain the actual impact of incorporating RES

in a SCED under RO. In addition, battery energy storage system (BESS) is added to minimise the
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required spinning reserves which reduces the total operating cost. In Chapter 6 a unified model from

the previous chapters is modelled under uncertainty and financial risk to the generation companies.

The impact of demand response is modelled to show the ability of load flexibility to increase RES

penetration while decreasing financial risk to the system operator that owns thermal generators. This

model shows that both RES and conventional generators can operate in a mutually beneficially system

under demand response where both can increase their profitability without affecting the customers.

Chapter 7 summarises the work presented in this thesis and provides suggestions for future work.
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CHAPTER 2 LITERATURE STUDY

In this chapter a detailed literature review related to the modelling of renewable energy sources is

presented. Thereafter, different types of demand response programmes are also reviewed to provide a

detailed background.

2.1 INTRODUCTION

This chapter provides a detailed literature review on a renewable obligation policy framework and

the incentive-based demand response programme. The different policy framework available for

encouraging the penetration of renewable energy in the grid are discussed in details and the framework

for this research is explained. Moreover, different types of demand response programme available

to residential customers are explained. Finally, the modelling techniques used for renewable energy

sources are also explained and the stochastic programming method for scenario generation and

reduction are presented.

2.2 RENEWABLE ENERGY POLICIES

Policy makers around the worlds are implementing measures to accelerate the connection of renewable

energy sources (RES) in order to meet low carbon or sustainable objectives. As such, the number

of countries that have some form of target setting for utilising renewable energy has reached 164 as

of 2016 [27]. There are two main categories of regulatory generation focused on renewable energy

support mechanism: tariff-based instrument and quantity-based instrument. The tariff-based instrument

provides an economic incentive for generating electricity using renewable energy sources. The Feed-in-

Tariff (FIT) is an example of a tariff-based instrument. On the other hand, quantity-based instruments

work by setting a minimum target for renewable energy in the overall energy mix and hold certain

parties in the energy supply chain responsible for these targets. An example of the quantity-based

instrument is the renewable obligation (RO) which imposes a minimum quota or a share of renewable

production on electricity suppliers. Figure 2.1 shows the policy framework for the renewable energy
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support mechanisms.

FrameworksPolicies
Renewable 

Energy 
Strategies

Renewable 
Penetration 
Integration 

Price based 
policy

Feed-in Tariff 
(FiT) framework

Tendering 
scheme 

framework

Quantity based 
policy

Renewable 
obligation 
framework

Figure 2.1. Global renewable energy support mechanisms.

2.2.1 Feed-in-Tariff

The FIT scheme guarantees energy price over long periods which may be more effective and may

encourage RES investment. FIT schemes can improve rapid investment while reducing investment

risks and improving energy cost transparency [28], [29]. Some of the advantages of FIT schemes

shows that there is more controllability of electricity price rise and an improvement in energy security.

However, some of the disadvantages of the FIT scheme shows that tariff can increase public costs and

taxes, increase equipment costs and operation and maintenance fees while limiting RES investment

returns. These limitations are the reason why the auction scheme was introduced to overcome this

shortcoming.

2.2.2 Auctioning

An auction support mechanism is like FIT scheme, it is normally introduced in the market to support

and complement the FIT scheme as it provides the same benefit to the FIT scheme. The only exception

to the auction support mechanism comes from the tariff where the renewable energy supply companies

contest for the most attractive tariff. This policy structure takes advantage of the FIT to complement its

shortcomings by applying a policy mix instead of a single policy. For example, FIT guarantees the

price of RES by setting fixed prices over the market price of electricity for a long period [30]. One of
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CHAPTER 2 LITERATURE STUDY

the advantages of the auction scheme as opposed to FIT is the ability to mitigate the high price risk

associated with RES technology energy cost since all competitors auction for the best energy tariff.

The disadvantage of the auction is the high transaction costs for small RES power plants which is the

reason why a renewable obligation scheme is introduced to overcome this challenge.

2.2.3 Renewable obligation

A renewable obligation policy mechanism obligates the thermal generators to acquire a percentage of

their energy from renewable energy. This can be achieved in one of two ways, (i) by either supplying

the RES from their own RES power plants or (ii) by purchasing renewable obligation certificates in

the secondary spot market. The RO scheme is considered a market-oriented policy as the market

competition among RES companies determines winners in RES market, unlike a guaranteed return

under FIT [31]. As a result of this policy framework, the market participation encourages incentives

for cost reduction. The main advantage of the RO policy is the sale of ROC in the secondary market

which makes it an attractive option for a deregulated energy market.

2.3 RENEWABLE ENERGY MODELLING

The increase in renewable energy sources is very evident in today’s power system operation. This

increase in renewable energy penetration is largely attributed by the Paris Agreement which aimed

to reduce the average global surface temperature below 2oC [32] and thus minimise the greenhouse

gas emission. As a result of this agreement there has been an upsurge in the integration of RES and

distributed energy sources in the power system. These RES can be found in different capacity and sizes

and different technologies ranging from wind, PV, CSP, geothermal and biomass. Although the benefit

is clear from the reduction in greenhouse gas emission, there is still a challenge in their integration due

to the corresponding variability and uncertainty, e.g., wind and PV. This is because most RES depends

on the environmental condition for energy production. For example, wind energy production relies on

the wind speed and PV energy production relies on the solar irradiance and temperature. All these

environmental parameters make the integration of RES a challenge for power system operators since

the dispatchability of generators depends on the knowledge of power production which is normally

fixed.

To overcome this challenge, many researchers have studied the impact of RES penetration on the

voltage, frequency, power quality environment, power system dynamics and power losses [33]. It is

important to also consider the impact of RES penetration from weather-dependent sources to increase

the accuracy of their production and to anticipate their variations on the power system operation.
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University of Pretoria

10

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

The study of weather-dependent RES generation is broadly studied from two perspectives, that is,

qualitative and quantitative methods.

In the following, various models for forecast and stochastic modelling in both dependent, independent,

and the multi-dimensional state are shown in Figure 2.2

Stochastic analysis 
of RES

Independence 
methods

Point Forecast

Probabilistic 
forecast

Density forecast

Predictive interval

Quantile forecast

Scenario

Analytical 
methods

Monte Carlo 
Simulation

Figure 2.2. Various methods of stochastic analysis of renewable energy sources

2.3.1 Stochastic independency

Forecast and scenario are in fact extrapolation. In means that a model is built and fitted to a set of

data. The correlation between different stochastic variables may not be considered, and the scenario

generation or forecast is conducted, independently.

2.3.2 Point independency

Many scholars adopt advanced theories and methods to improve wind and solar power prediction

accuracy. Most methods are deterministic prediction, that is, only a certain output value of wind and

solar power at a certain moment in the future can be acquired. The point prediction results only provide

single point forecast, and since this is the most basic method there are a lot of application in this regard

[34]. Since both wind and PV are dependent on external environmental conditions, the deviation

between forecasted and actual value is relatively large for this type of prediction method. This results

in power system operation risks due to the large deviation of forecasted and actual value and poor
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performance. Due to the limited nature of point forecast it is important to include the probabilistic

forecast. The probabilistic forecast can provide more prediction information by including a prediction

interval and probability density function [35].

The physical methods are based on numerical weather prediction model and are computationally

extensive. The statistical methods provide prediction by using historical data [36]. This type of

prediction assumes a linear relationship between historical and current data. The artificial intelligence

methods use methods such as fuzzy logic, support vector machines and artificial neural network. A

hybrid method combines the performance of AI methods with statistical method to provide better

forecasting performance [37].

2.3.3 Probability forecast

Uncertainty of wind and solar power affects the power system operation and, therefore, it is important to

model the uncertainty of wind and solar power using probability density functions. For the probabilistic

forecast a range of all possible variations in wind and PV is generated within a predefined confidence

interval which has the lower and upper bounds. This provides more flexibility as it has a wider range

of possible outcomes of wind and PV output power. The probability density prediction provides more

information by computing all the probability of all possible outcomes. The traditional approaches

for probabilistic interval prediction include delta, Bayesian, mean-variance, bootstrap and quantile

regression [37].

2.3.4 Forecast interval

Quantile forecast method does not deliver any information about forecast uncertainty level. To this

end, the forecast interval is used in [38]. Forecast interval is usually proper for robust optimisation.

Forecast interval has a nominal coverage rate and lower and upper bounds which define, for example,

the probability that a wind farm generation is higher than a specific amount. Forecast interval can cover

point forecast and quantile forecast through considering different nominal coverage rates. Therefore,

full forecast distribution of stochastic variable like wind power can be obtained by this method

[39].

2.3.4.1 Modelling of renewable energy sources

In this section the statistical modelling of Wind and PV generators is presented using the Weibull

PDF.
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2.3.4.2 Wind energy system

The intermittent output power of a wind turbine can be characterised as a random variable which is

related to the wind speed at the hub of the turbine. The actual intermittent power can be represented as

a function of wind speed (2.1), [6]. Moreover, the wind output power can be transformed from wind

speed using a statistical transformation given in [40], [41].

Pm,t,gen(vm,t) =


0 if πm,t < πm, πm,t > πo,

Pm,rΓ(t) if πm ≤ πm,t ≤ πr,

Pm,r if πr ≤ πm,t ≤ πo.

(2.1)

The wind speed πm,t is a random variable that varies over time; where πm, πr and πo, are the wind

turbine cut in speed, rated speed and cut out speed all in m/s. This means that the corresponding wind

power is also a random variable and Γ(t) is shown in (2.2).

Γ(t) =
(

πm,t −πm

πr−πm

)
(2.2)

2.3.5 Weibull distribution function

The Weibull distribution function has been used by many authors [42], to model the percentage of

time that the wind spends at a given speed on an annual basis. The Weibull distribution function is

characterised by two parameters, namely the shape parameter κ and the scaling velocity σ as shown in

(2.3).

fπ(π) = (
κ

σ
)(

π

σ
)κ−1e(−1(π/σ)κ ) (2.3)

The cumulative distribution function (CDF) of the wind speed is given in (2.4).

Fπ(π) = 1− exp
[
−πκ

σ

]
(2.4)

The PDF of the wind power is a random variable, and when the wind speed is between cut-in and rated

wind speed Pm,t in the m-th period is given in (2.1). The Weibull PDF for the wind speed is transformed

to the corresponding wind power distribution using linear transformation [43], [44]. More details can

be found in [41], for the derivation of the wind power PDF. It follows from (2.4), that the CDF of the

wind power is similar as shown in (2.5).

Fm(Pm,t) =


0 if Pm,t < 0,

1− e−(
1+ δ p

Pm,r
πm

e )κ

if 0≤ Pm,t ≤ Pm,r,

1 if Pm,t ≥ Pm,r.

(2.5)

Therefore, the maximum forecast wind power is calculated using (2.6).

Pm,t,gen = Pm(πm,t)Fπ,m(Pm,t(πm,t)) (2.6)
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CHAPTER 2 LITERATURE STUDY

2.3.6 Solar Energy System

For a PV energy system, a relationship among radiation resource, temperature and output power can

be found in [23], which is also given by the function (2.7);

Pv(Ω) =


Pvr(Ω

2
t /ΩstdRc) if 0 < Ωt < Rc,

Pvr(Ωt/Gstd) if Ωt > Rc,

0 if Gt = 0.

(2.7)

where PV cell temperature is neglected, and the solar active power generation can be controlled by

maximum power point tracking (MPPT) algorithm or be charged into batteries. This means that the

maximum penetration of the PV generator is limited by the available maximum active power generation

which is subject to solar irradiation and temperature [4], [5].

2.3.7 Bimodal Weibull distribution function

The output power of a PV plant depends on irradiance and temperature. The distribution of irradiance

at a location usually follows a bimodal distribution function. The distribution function is a linear

combination of two unimodal functions. These unimodal functions can be modelled by Weibull, Log-

normal and Beta PDF [16]. In this chapter a Weibull distribution as given in (2.8) is considered.

fΩ(Ωt) = β (κ1/e1)(Ωt/σ1)
κ1−1e((−Ωt/σ1)

κ1 )+(1−β )(κ2/σ2)(Ωt/σ2)
κ2−1e((−Ωt/σ2)

κ2 ) (2.8)

The Weibull PDF of solar PV output random variable is given in [5]. The maximum forecasted PV

power is calculated by (2.9).

Pv,t,gen = Pv(Ωv,t)FΩ,v(Pv,t(Ωv,t)). (2.9)

2.4 DEMAND RESPONSE FLEXIBILITY AND RES INTEGRATION

Demand response is a tool used to shift or reduce system load by taking advantage of high demand

and low demand periods electricity prices. This tool can also be used to increase the level of RES

penetration in the network by curbing the uncertainty of RES generators. This is achieved by using

demand flexibility as reserves instead of the conventional spinning reserves from thermal generators.

Therefore, any changes related to the uncertainty of RES production is managed by the demand

flexibility. The core assumption of demand response is that consumer consumption is elastic and

response to higher prices by demand reduction. Therefore, one of the main advantages of DR is its

ability to balance these RES fluctuations and thereby increasing RES penetration.

There are some challenges with the implementation of DR, namely, (i) insufficient experience which

leads to poor assumption in modelling and evaluations; and (ii) the need for a full automated smart
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CHAPTER 2 LITERATURE STUDY

grid that will allow constant bi-direction communication between supplier and consumer of electricity.

It has been shown that by addressing the two shortcomings, an effective demand response programme

can yield positive economic results for both the consumer and the supplier [45]. Therefore, if a DR

programme is successfully implemented, then an overall electricity price reduction can be achieved for

both the consumers and supplier.

Another advantage of DR that is especially important is the coordination of this programme with RES

penetration. One such example is the implementation of direct load control (DLC) for residential

customers to provide load flexibility to reduce the impact of RES fluctuations. Another way that can

increase RES penetration is the use of time of use tariff that changes electricity usage based on high

demand and low demand prices which ultimately pushes customers to consume less energy during

peak period due to the high cost of electricity. This shows that there is a clear price-base elasticity

consumption pattern [46].

2.4.1 Demand response modelling techniques

In order to show the effectiveness of a joint demand response with RES penetration there are several

DR models that can be used to increase RES penetration. Demand response is defined as the changes in

electricity usage by end-use customers from their normal consumption patterns in response to changes

in the price of electricity over time, or to incentive payments designed to induce lower electricity usage

at times of high wholesale market prices or when system reliability is jeopardized [47]. In this section

different DR frameworks are briefed.

2.4.2 Demand response programmes

Demand response programmes are classified into two main categories, i.e., price based and incentive-

based programmes. In other literature this is classified as dispatchable and non-dispatchable with first

being non-dispatchable and the last being dispatchable [33], [48]. The naming conversion largely

depends on the scholars. The two categories and their sub-categories are shown in Figure 2.3. In first

category, the customers are incentivized for changing their demand patterns as per instructions from

the supply side. For the second category, the consumers are charged by different rates for different

consumption periods which are related to demand patterns.

1. Direct load control programmes – in these programmes the customers participate in the program

by allowing the utility to automatically switch on and off their appliances when it is required

especially during peak demand periods [49]. In [50] residential customers participate in a DLC
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Demand response programmes

Incentive based demand response

Direct load 
control (DLC)

Interruptible 
curtailable 
service (IC)

Emergency 
demand 
response 

programme 
(EDRP)

Capacity 
market 

programme

Demand 
bidding

Ancillary 
service 

demand 
response

Price based 
demand 
response

Critical peak 
pricing (CPP)

Time of use 
(ToU)

Real-time 
Pricing (RTP)

Figure 2.3. Demand response programme categories

program on a voluntarily basis by allowing the utility to switch on/off the air conditioning system

while in [51] an incentive is paid to participating customers. This means that the participation of

this program can be both incentivized and voluntarily.

2. Load curtailment program – in this type of program the utility pays customers to curtail their

consumption and if they participating customer does not curtail then they pay a penalty to the

utility for failing to meet their curtailment obligation. A typical example of such a program is

implemented in [52] where industrial customers are participating in load curtailment to support

utility generation flexibility.

3. Demand bidding programs – this is generally offered to large-scale consumers where consump-

tion is anywhere over 1 MW [53]. Similar to load curtailment, the demand bid programs offer

relief to a constrained network where the demand is very high, and generation is very expensive.

The consumers can bid to curtail their consumption. Normally they participate in this program

using the demand aggregator.

4. Emergency demand reduction – this is implemented during critical constraint on the power

system and an instruction is sent out to reduce the demand in order to improve power system

reliability [54].
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CHAPTER 2 LITERATURE STUDY

Price-based DR programs: For the price-based demand response programmes, the consumers are

charged with different rates for different consumption periods. This means that when consumption is

very high a high price is also charged to consumers to encourage demand reduction. Therefore, by

increasing the electricity price during peak demand period it is expected that consumers will reduce

their demand.

1. Time of use (TOU) pricing – electricity price is normally divided into standard, peak and off-peak

tariff. The consumers are charged based on their consumption and normally pay a high price

during peak tariff which corresponds to high demand.

2. Critical peak price – this is like TOU with the exception that for the time when the power system

is under critical conditions then the normal peak price is replaced by high tariff price.

3. Real-time pricing – The price of electricity is dependent on real time market supply-demand

patterns and generally changes every hour which reflects the relationship between supply and

demand. A day-ahead price is released to all consumers to allow customers to plan their energy

consumption activities related to the market prices and decide whether demand bidding can be

implemented [47].

2.4.3 Demand response conditions

For the implementation of DR programs, due to lack of enough experience, some assumptions should

be considered in modelling approaches. Therefore, advantage of DR model highly depends on this

assumption and it needs to be evaluated. Some models and assumptions are necessary as presented in

the next section.

2.4.4 Demand aggregator and demand bidder

The framework for the demand bidding involves the demand aggregator. Demand aggregators are

there to help customers quantify and participate in the demand bidding process by providing and

analysing demand forecasts for participating customers. In the market structure framework, the demand

aggregator is an independent entity such as a distribution company, load servicing entity or a financial

entity. The demand entities are put in place to interface with the customers and the system operator or

independent system operator to provide a smooth transition of demand response. They are responsible

for aggregating customers bids and sending such bids to the system operator. A typical relationship

between the system operator, customers and demand response aggregator is shown in Figure 2.4.

The main purpose of the DR aggregators is to evaluate the customers potential to dedicate the special
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CHAPTER 2 LITERATURE STUDY

Figure 2.4. Demand bidder and demand aggregator

DR quantity and price based on physical and operational constraints. The DR aggregators provide

demand bids to the SO and clear the market to maximise social welfare. Social welfare is defined as

the sum of the surpluses of the producer and consumer.

2.5 SUMMARY

In this chapter a detailed background on the renewable energy policies is presented coupled with

the types of demand response programmes available. As shown in the literature review, renewable

obligation (RO) policy offers more advantage than the FIT and auction approach and direct load control

(DLC) offers the simplest approach to DR. The next chapters will develop models for RO and DLC

that can be integrated to the economic dispatch model to increase RES penetration and maximise profit

for generation companies.
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CHAPTER 3 MAXIMAL RENEWABLE

PENETRATION UNDER RENEWABLE

OBLIGATION

In this chapter, a renewable obligation model is presented for generation companies in order to attain

an adequate energy mix in the daily power dispatch.

3.1 INTRODUCTION

In the past decade there has been an acceleration in the integration of variable renewable energy sources

(RES) in the power grid as part of the transition towards decarbonisation of the electricity sector. The

decarbonisation was motivated by the need to reduce greenhouse gas emission caused by thermal

generators which threatens global climate change. Although greenhouse gas emission can be attributed

to many other sectors such as residential, transport, industrial, and commercial, the largest contribution

comes from the industrial sector, from electricity generation [55]. The EU has set a binding target for

all its member states to reduce greenhouse gas emissions by 20% by 2020, whilst in South Africa a

target has been set to reduce the total energy supply from conventional thermal generators to less than

30% by 2030 and a further 10% by 2050 [56].

There are generally two policy frameworks used to encourage the penetration of RES for a complete

energy mix. The two frameworks are divided into quantity based and tariff-based instruments. Tariff

and quantity-based instruments are the key funding frameworks used by regulators to encourage

investment in renewable energy. A tariff-based instrument, such as the Feed-in Tariff (FIT), provides

an economic incentive for generating electricity using RES. This type of instrument guarantees grid

access, long term contracts for the electricity producer and purchase prices that are based on RES

generation costs [57], [58]. In contrast, a quantity-based instrument is utilised to keep role-players

within the energy value chain accountable for meeting the minimum renewable energy targets. A
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

renewable obligation (RO) is a quantity-based tariff instrument that requires electricity suppliers to

adhere to the minimum renewable energy production quota. The failure to meet the obligation quota is

penalised, and this approach encourages the generation companies to comply with their RES obligation.

The renewable obligation certificates (ROC) are also awarded to companies that comply with their RES

obligation which can further be traded in the market and typically one ROC certificate is equivalent to

1 MWh of renewable energy production. This quota mechanism has been adopted by countries such as

Great Britain, Italy, Chile, Belgium and other parts of the US [59], [60].

A generation expansion planning (GEP) model is presented in [59], where the approach is to design

an effective and efficient incentive policy that increases the level of RES injection in the grid. The

approach adopted in [59], focuses on the inception level instead of the operational level. The design

approach concept is based on stimulating an investment policy that increases the level of RES injection

by specifically focusing on improving the cost competitiveness of RES in the short term by using a

bi-level optimisation approach. The bi-level optimisation finds a minimum trade-off between economic

benefit and environmental impact and the most efficient incentive policy that can achieve maximum

RES penetration. In [60], a GEP problem is presented that evaluates different RES incentive schemes

such as quantity based and tariff-based instruments. The work presented in [60] shows the impact of

RES incentives and CO2 mitigation policies in the GEP framework from the generation companies’

point of view. The inclusion of RES in the grid has mostly been considered from the GEP perspective,

with less focus on the operation point of view. A review of the different RES supporting schemes is

presented in [61], for increasing the RES level in the grid; and the impact of feed-in tariff is analysed

from the priority dispatch rule, negative prices and economic compensation.

In [62], a dynamic FIT is introduced for a wind farm that is integrated with thermal generators to

encourage the maximum export of wind power generation without adversely affecting the conventional

generators. The concept of dynamic cost coefficient is introduced in order to account for the variable

wind speed and fluctuating power demand which increases the wind penetration in the overall energy

mix. The economic dispatch model is presented to account for the hourly dispatch of thermal and

wind generators using fuzzy logic to provide the best dynamic cost coefficient of the wind generators.

In [63], a unit commitment model is used to quantify the operational impacts of incentivising RES

generation when the energy prices are negative. The negative prices affect the flexibility of system

operation and increase the thermal generator cycling costs. Therefore, it is important to consider the

increase in RES penetration from an operational point of view such as economic dispatch within the
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

renewable energy obligation framework. Fundamentally, the classical economic dispatch problem

optimises the schedule power of each generator in order to minimise the fuel costs while meeting the

demand and machine ramp rates [1], [2].

The impact of increasing the RES in the network has resulted in a high requirement for spinning

reserves which is used to balance the deviations emanating from variable RES generation. This

increased level of RES penetration has resulted in a high cycling rate for thermal generators and has

subsequently increased the maintenance costs of thermal generators and the overall operating expenses.

Reference [64] presents, a security constrained economic dispatch (SCED) which focuses on the level

of uncertainty caused by the increased level of RES penetration while considering the operational

reserves. The approach proposed in [64] studies the impact of wind reserve margins from the market

implication perspective by considering reserves policies that can mitigate the uncertainty associated

with wind power generation. A probabilistic spinning reserve approach is presented in [65], which

increases the integration of wind power generation using an algorithm that integrates the stochastic

wind forecast of a day ahead security constrained unit commitment approach. In [66], a two stage

SCED with robust optimisation is presented for reserve requirement and energy scheduling model

where the operational risk is presented using a Wasserstein ball-based method. The model presented

minimises the projected operating costs of producing energy while providing spinning reserves and

satisfying the operational constraints.

A classical economic dispatch that incorporates the wind energy and system spinning reserves for

optimal energy scheduling is presented in [67]. The model includes the under and over estimation

of the available wind energy in the optimal scheduling of different generators. A similar approach is

presented in [19] and [68] where a day ahead model is presented in a SCED model that minimises the

spinning reserve requirements and ancillary services for high RES penetration in a FIT environment.

The importance of spinning reserve requirements is further illustrated in [69], where a hybrid method

is used for allocating SR in a risk based deregulated electricity market for the operation of a reliable

system which includes high wind penetration. A new approach is presented in [70], where energy

storage system (ESS) is used to complement high level of wind penetration in order to minimise

transmission infrastructure expansion and increase the RES penetration in a FIT environment. The

energy storage improves the accommodation of renewable generation by mitigating the emergency

overflow under the post contingency state. In [71], a stochastic security constrained unit commitment

with wind energy considering coordinated operation of price-based demand response and energy storage
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

is presented. The price-based demand response is formulated as a price response dynamic demand

bidding mechanism. A multi-objective stochastic economic dispatch is presented in [72], which is

based on two objective functions. One objective function minimises the expected power purchase costs

and the second objective function minimises the pollution of gas emission from conventional thermal

generators. A Pareto based algorithm is used to solve the multi-objective optimisation problem using

the normal boundary intersection method. Moreover, the stochastic dispatch method is approached

from scenario-based decomposition.

None of the referenced studies have investigated the RES penetration from an obligation point of

view. Instead, they have focused on the underestimation and over-estimation of RES on the cost

function to compensate for under performance and over performance of the RES [8], [73]. In this

study, a novel multi-objective function that includes the RES quota is presented in order to minimise

the operating costs of thermal generators, spinning reserve, and maximise the RES penetration. The

basis for this approach emanates from the need to achieve a moderate energy mix in the network that

includes RES and thermal generators. The model sets a target obligation that the SO imposes on the

network. If the generators do not achieve a minimum obligation set out, then a penalty is imposed

to the thermal generators. Moreover, it is important to note that in most practical systems, the RES

contributes all its generated energy into the grid if it does not exceed the contractually agreed achieved

capacity. This means there is no need for penalising the RES for over supply since a curtailment is

already implemented in the operation of the RES generators. Hence, the only penalty that is imposed

is the failure to meet the minimum quota set out by the SO. The contributions of this work are listed

below:

1. A renewable obligation policy framework is mathematically modelled and incorporated into

a SCED to allow maximum RES penetration while penalizing generation companies for not

complying with the minimum RES quota. This model is aligned to the quantity-based instrument

which measures the quantity of RES injected into the grid to achieve a cost-effective energy mix.

2. A multi-objective optimisation model is presented with two objective functions. The first

objective function is related to the minimisation of the total operating cost and spinning reserve

cost of the thermal generators. The RO model is included in the first objective function to ensure

a minimum RES quota is achieved and if it is not achieved a penalty is imposed to thermal

generators. The second objective function maximises the total RES energy generated from wind

and photovoltaic (PV) power plants.
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

3.2 PROBLEM FORMULATION

The approach considered in this chapter assumes that wind and PV power generators are non-

dispatchable. The following assumptions are made for the formulation of the DED problem with RES

obligation;

1. All the RES (wind and PV) must be consumed first and the thermal generators must reduce their

generation capacity to give preference to RES generators.

2. An hourly dispatch period is considered in all the case studies.

3. All RES is non-dispatchable and cannot be used as part of spinning reserves unless they have

storage.

4. The SO is responsible for dispatching all the generators including RES generators.

5. Only thermal generators can be used for spinning reserve.

6. All the RES generators are owned by independent power producers (IPP).

7. We simplify the RO model by ignoring the secondary trading market of ROC.

3.2.1 Objective function

The objective function is made up of two objective functions, i.e. the fuel cost minimisation with

renewable energy obligation requirement, and the RES energy maximisation function. The objective

functions are as follows:

min J1 =CT (3.1)

max J2 = ERES (3.2)

3.2.1.1 Minimisation of the total operating cost CT

The operating cost in (3.3), is made up of two parts. The first part of (3.3), is related to the operating

cost for all generators. It includes the fuel cost for operating thermal generators, the spinning reserve

cost to guarantee continuity of supply and the energy cost incurred by the SO to pay the IPPs for the

RES generators. The second part of (3.3), is related to the policy requirement from the quantity-based

instrument which is known as RO [74], [75]. This ensures that a total quantity of energy exported to

customers includes a certain percentage of RES generation per day. The level of obligation is normally

provided on an annual basis to the electricity suppliers and all the renewable energy suppliers provide

their generated capacity on a monthly basis. The conventional electricity suppliers or generation

companies are responsible for ensuring that a portion of their electricity supply comes from RES

generators. If the generation companies do not meet their renewable obligation, a penalty is imposed.
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

In the second expression of (3.3), ϒ represents the RO cost which is further calculated in (3.8).

CT =
T

∑
t=1

(
NG

∑
g=1

Cg(Pg,t)+
NR

∑
r=1

Cr(Pr,t)+
NM

∑
m=1

Cm(Pm,t)+
NV

∑
v=1

Cv(Pv,t)

)
+ϒ (3.3)

Cg(Pg,t) is the generator cost function which is a quadratic equation as shown in (3.4), where the units

for the cost coefficients are $/MWh2, $/MWh, and $/h and the generator spinning reserve cost is

a linear function as shown in (3.5). In this chapter, the wind and PV plants are owned by the IPPs,

therefore the SO must pay a price proportional to their scheduled power. The cost function for RES is

given in (3.6) and (3.7).

Cg (Pg,t) =
NG

∑
g=1

(
agP2

g,t +bgPg,t + cg
)

(3.4)

Cr (Pr,t) = ρrPr,t∆t (3.5)

Cm (Pm,t) = ζmPm,t∆t. (3.6)

Cv (Pv,t) = ϕvPv,t∆t. (3.7)

The RO mathematical model is shown in (3.8).

ϒ = γ

(
α

T

∑
t=1

(
NG

∑
g=1

Pg,t +
NM

∑
m=1

Pm,t +
NV

∑
v=1

Pv,t

)
−

T

∑
t=1

(
NM

∑
m=1

Pm,t +
NW

∑
v=1

Pv,t

))+

(3.8)

The α value in (3.8), is the required RO which means that a portion of the total scheduled output power

must come from RES, or else a penalty cost is imposed for the undelivered renewable generation. The

notation ϒ(·)+ is the sigmoid function which is equal to γ if the RES obligation is unattained and 0

otherwise. The γ value in (3.8), is the penalty value that must be paid by generation companies if

they do not meet the annual RES obligation. The obligation is set daily [74], [76] and the thermal

generation companies are required to produce a percentage of their energy from RES. The generation

companies’ can also buy ROC from the eligible renewable electricity companies to complement

their RES energy production shortfall. These ROCs are presented to the independent regulator to

demonstrate compliance to the RO. If the thermal generation companies do not have enough ROC or

renewable energy production to meet their obligation, then a penalty is paid to the SO.

3.2.1.2 Maximisation of the renewable energy penetration

The second objective function aims to maximise the injection of renewable energy into the grid. It is

worth noting that the second objective on the maximum renewable energy is not completely covered

by the minimisation of RO penalty cost in the first objective function. This is because although the

renewable energy obligation can be achieved in the first objective function the amount of renewable

energy scheduled to the grid may not be maximal. With the second objective function, the amount of

dispatched renewable energy must be maximised to overcome the limitation of merely meeting the

obligation without maximising the RES energy penetration. The second objective function is shown in
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

(3.9).

ERES =
T

∑
t=1

(
NM

∑
m=1

Pm,i,t∆t +
NV

∑
v=1

Pv,t∆t

)
(3.9)

3.2.2 Constraints

The DED problem under investigation has five constraints which are considered as hard or soft

constraints. These constraints are:

1. Real power balance which represents the sum of all generating units i.e. the thermal generators,

wind power generators and PV plant generators that should meet the forecast demand as given

in (3.10).
NG

∑
g=1

Pg,t +
NM

∑
m=1

Pm,t +
NV

∑
v=1

Pv,t =
NB

∑
b=1

Pb,t ∀t (3.10)

2. Generator ramp rate limits: This is only applicable to thermal generators. The ramp up (UR)

and ramp down (DR) units are in MW/h as given in (3.11).

Pg,t −Pg,t−1 ≤URg ∀t (3.11a)

Pg,t−1−Pg,t ≤ DRg ∀t (3.11b)

3. Generator limits: The generator limits are applicable to both thermal generators and RES

generators. Equations (3.12) to (3.13) show the thermal generator limits. Since Pm,r and Pv,r are

the dispatched wind and solar power into the power system, they are represented by (3.14) and

(3.15), where the top limit is the forecast wind power generation and solar power generation at

time t respectively, which include both the amount of power dispatched to the network and the

remaining amount which is either consumed locally or curtailed due to line capacity limit.

P̄g,t ≤ min(Pg,max,Pg,t−1 +URg) ∀t (3.12)

P
¯ g,t ≥ max(Pg,min,Pg,t−1−DRg) ∀t (3.13)

Pm,t ≤ Pm,t,gen ∀t (3.14)

Pv,t ≤ Pv,t,gen ∀t (3.15)

4. Spinning reserve constraints:

Pg,t +Pr,t ≤ Pg,max ∀g, t (3.16)

0≤ Pr,t ≤ SRRr,max ∀g, t (3.17)
NR

∑
r=1

Pr,t ≥ SSRR ∀t (3.18)

NG

∑
g=1

Pg,t +
NR

∑
r=1

Pr,t ≥
NB

∑
b=1

Pb,t ∀t (3.19)
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

where Pr,t is the reserve contribution of unit g during time interval t. Constraint (3.16), shows

that the sum of the thermal generator and spinning reserves is limited by the maximum thermal

generator limit. Constraint (3.17), represents the maximum reserve contribution for each gener-

ator where SRRr,max is the maximum contribution of unit g to the reserve capacity. Constraint

(3.18), requires that the total system spinning reserves be provided during period t and (3.19),

simply means that the total generation and spinning reserve must be able to support the demand

without the use of RES generators.

5. Network transmission constraints: For the economic dispatch problem, only the active power of

the transmission line under RES forecast is considered, as shown in (3.20).

−Pl,max ≤ Pl,t ≤ Pl,max ∀l, t (3.20)

The transmission line power of line l at time interval t, which is calculated by DC power flow

and disregards system losses for large size power systems as shown in (3.21), [77] and [78]. A

SCED approach is used in order to ensure that the power delivered matches the demand while

ensuring that the transmission limits are respected.

Pl,t =
NG

∑
g=1

Gl,gPg,t +
NM

∑
m=1

Fl,mPm,t +
NV

∑
v=1

Hl,vPv,t −
NB

∑
b=1

Dl,bPb,t (3.21)

where Gl,g, Fl,m, Hl,v and Dl,b denote the active power transfer coefficient factor between line l

and thermal generator, wind farms, solar plant and loads; Pb,t is the demand at bus b at time t.

In summary, the optimisation problem is formulated incorporating two objective functions; (3.1) and

(3.2), which are subject to constraints, (3.10) - (3.21).

3.3 FORMULATION OF MULTI-OBJECTIVE OPTIMISATION MODEL

The proposed multi-objective optimisation model presented in the previous section is presented in its

compact form as follows:

min J(x) = {J1(x),J2(x), · · · ,Jk(x)} ∀k ∈ K (3.22)

s.t hi(x) = 0;∀i ∈ NI (3.23)

g j(x)≤ 0;∀ j ∈ NJ (3.24)

where J1(x) to Jk(x) represent multiple objective functions in (3.1) and (3.2) where the value of K

is 2 and x is the output vector which consists of an optimal dispatch solution for thermal and RES

generators. The equality constraint in (3.10) is indicated by (3.23) and the inequality constraints from

(5.14) to (3.21) are denoted by (3.24).
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

Figure 3.1. Pareto fronts for a bi-objective optimisation problem.

3.3.1 Pareto optimal solution

The multi-objective optimisation problem in (3.22) to (3.24), can be solved using the Pareto optimality

principle. The optimal solution x∗ in the feasible design space S is the Pareto optimal solution if and

only if there exists no other point x in the set S such that J(x)≤ J(x∗) with at least one Jk(x)< Jk(x∗).

The set of all Pareto optimal points refers to an optimal solution that is a compromise between the

two objective functions. It also follows that an efficient solution exists if a point x∗ in the feasible

design space S is efficient and there is no other point in x in the set S such that J(x)≤ J(x∗) with at

least one Jk(x)< Jk(x∗). Otherwise, x∗ is inefficient. Therefore, the set of all efficient points is called

the efficient frontier. The Pareto optimal set is on the boundary of the feasible criterion space which

also has a unique point called the Utopia point. A point J0 in the criterion space is called the utopia

point if J0
k = min{Jk(x)} for all x in the set S [79], [80]. This point is obtained by minimising each

objective function without consideration of the other objective functions. Figure 3.1, shows the Pareto

fronts for bi-objective minimisation and maximisation problems.

It also shows that the direction of the Pareto front depends on whether the bi-objective function is

maximisation or minimisation as illustrated by objective functions f1 and f2. The Pareto optimal

solutions show that there is no single dominant solution in the Pareto frontier and thus there is a set of
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

solutions that can gives an optimal Pareto solution. Moreover, it is clear from the Pareto frontier that

there is a trade-off associated with each Pareto point.

3.3.2 Normalising objective functions

Since there are two objective functions that have different meanings and order of magnitudes, it is

important to normalise the objective functions in order to reduce the difficulty in comparison. It is

usually necessary to transform the objective functions so that they all have similar orders of magnitude.

The objective functions are normalised in (3.25), as follows:

Jnorm
k =

Jk(x)− J0
k

Jmax
k − J0

k
, ∀k ∈ K (3.25)

where J0
k is the best point also known as the Utopia point of the objective functions and Jmax

k is the

worst point of the objective functions. The overall objective function Jnorm
k will give values within the

range of 0 and 1.

3.3.3 Weighted sum objective function

The Pareto frontier is generated using the weighted sum approach where each point of the weighted

sum gives a Pareto point. This is achieved by uniformly changing the weights from 0 to 1, which

provides a series of Pareto points on the Pareto frontier. The two objective functions in (3.1) and (3.2)

are presented in (3.26).

Jnorm(x) = λ1Jnorm
1 (x)−λ2Jnorm

2 (x) (3.26)

The weights are varied between 0 and 1 such that their sum is equal to 1. In order to generate the

equidistant points for the weights on the Utopia line, the weight is selected as follows in (3.27) and

(3.28):

λ1 = q/w = 0,0.02,0.04, · · · ,1. (3.27)

λ2 = 1−q/w = 1,0.98,0.96, · · · ,0. (3.28)

where q and w are the anchor points of the two single objective optimisation functions. The q value

is set as 1 and the w value is set as 50, which means there are 50 Pareto points that form the Pareto

frontier. Therefore, a total of 51 equidistant Utopia points are created from the q and w.

3.4 NUMERICAL SIMULATIONS

In this section, two case studies are proposed for demonstrating the effectiveness of the proposed model.

The proposed model is demonstrated on a modified IEEE Reliability Test System and IEEE 118-bus

system [65], [42]. In the first test system, there are 32 thermal generators and 38 transmission lines,

and all the hydro units have been replaced with thermal generators. The ramp rates and quadratic cost

coefficients are taken from [65]. Four RES generators are added to buses 3, 5, 17, and 19 respectively,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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that is, two wind farms and two PV plants. The data for the four RES generators can be obtained

from [81], [82]. The second test system consists of 54 thermal generators and 186 transmission lines.

Ten additional RES generators are added onto the system at buses 1, 33, 38, 52, 68, 75, 96, 102, and

117. In the second test system, a combination of five wind farms and five PV plants is used. The

details of the quadratic cost coefficients, transmission limits and generator ramp rates can be found

in [83]. Moreover, the fixed demand at each bus is a portion of the total capacity at each sampling

period. The transmission flow limit is simulated by using DC power flow. A sampling interval of

one hour is considered for generation dispatch and the optimisation problem is solved over a 24-hour

period. In cases where RES penetration level is unattained, a penalty of $100,000 per day is imposed

on generation companies by the SO. In all case studies, a 10% RES penetration level is used as a

base scenario for comparison. In addition, the system spinning reserve requirement is based on 10%

of the maximum thermal generator capacity and the spinning reserve requirement of each generator

is equivalent to the maximum generator capacity. The wind turbine characteristics in terms of the

cut-in speed, rated speed and cut-off speed is 3 m/s, 13 m/s, and 25 m/s respectively. The optimisation

problem presented in Section II is a quadratic programming problem; the model has been implemented

using MATPOWER for power system analysis [84] in order to find the power transfer distribution

factors used in the DC power flow; and the MATLAB FMINCON optimisation algorithm is used as a

solver on a notebook with an Intel Core i5 at 2.70 GHz and 8 GB RAM. The optimisation problem is

solved in approximately 5 to 10 minutes depending on the number of buses involved. The IEEE 24-bus

RTS bus system is used to demonstrate the effectiveness of the modelling considering the following

cases:

1. A comparison of the traditional DED model with the proposed model in terms of the maximum

RES penetration that can be achieved, the operating cost, and the spinning reserve requirements;

2. A Pareto frontier optimal solution for the multi-objective optimisation problem; and

3. The impact of RO requirement on the model sensitivity.

Thereafter, IEEE 118-bus test system is also used to test the model on a large-scale network to quantify

the effectiveness of the proposed model.

3.4.1 IEEE 24-bus RTS System

In this section, the proposed model benefits are demonstrated by comparing them to the classical

economic dispatch approach. The maximum renewable energy penetration, the total operating cost,
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

and the power flow achieved for the proposed and classical economic dispatch model are used for

comparison. The sizes of the two PV plants are 75 MW and 140 MW and the sizes of the two wind

farms are 300 MW and 500 MW respectively. A total installed capacity of RES generators is 1015

MW. The IPP cost of energy for PV is 35 $/MWh and 39 $/MWh, while the cost of energy for wind is

34 $/MWh and 30 $/MWh respectively. Figure 3.2, shows the forecasted RES generation.
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Figure 3.2. Forecasted load demand and RES generation.

The intermittent and variable RES information for the PV and wind power generators is given in Table

3.1 and Table 3.2 respectively, and the details of the transmission line data can be found in [65].

The details of the 32 thermal generator coefficients, capacity and ramp rates are provided in Table 3.3.

There are 32 thermal generators which are connected to different buses on the IEEE 24 RTS network

as shown in [85]. The details of the hourly demand requirements are shown in Table 3.4.

3.4.1.1 Comparison of traditional DED and proposed DED with RES obligation

In order to compare the traditional DED with the proposed model, it is important to make a distinction

between the traditional model and the proposed model in Section II. For the traditional model, the
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Table 3.1. PV solar irradiance profile for site 1 and 2.

Description PV 1 PV 2

Kc (W/m2) 150 150

Ω (W/m2) 1000 1000

β 0.5 0.600

κ1 0.8 1.2

κ2 4.13 5.4

σ1 (W/m2) 150 140

σ2 (W/m2) 900 980

Table 3.2. Wind speed profile for site 1 and 2.

Description Wind 1 Wind 2

κ 1.70 2.0

σ (m/s) 6.653 5.0

Sigmoid function in (3.8), which represents the RO requirement, is ignored. Moreover, the traditional

DED model is a single objective function optimisation problem. This means that the maximisation

objective function is also ignored. Therefore, the only function involved in the traditional DED problem

is the cost function for the thermal generators, the spinning reserve and the cost paid to IPPs for PV

and wind power generation. The traditional DED is solved maintaining the spinning reserves as the

maximum capacity of the largest generator. For the proposed model, we solve the DED with two

conflicting objective functions; one which aims to minimise the total operating cost and the other

which maximises the RES penetration level. A comparison of the RES penetration level between the

classical DED and proposed model is shown in Figure 3.3.

From Figure 3.3, the RES penetration level for the traditional DED is lower than the Pareto optimal

point, which means that the achieved RES penetration for the traditional DED is less than the required

10% obligation. As a result, a penalty is imposed on the traditional DED which results in a higher

operating cost in comparison to the Pareto end point 2 as shown in Table 3.5. The impact of RES

obligation is shown by the second anchor point which shows a consistent 10% RES obligation. A
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Table 3.3. Thermal generator parameters.

Unit No. Pmin Pmax ag bg cg RU DR

G1 5 2.40 12 0.025 25.5 24.4 48 60

G2 4 4.00 20 0.012 37.6 117.8 31 70

G3 6 0.00 50 0 0.5 0 60 60

G4 4 15.20 76 0.009 13.3 81.1 39 80

G5 3 25.00 100 0.006 18 217.9 51 74

G6 4 54.24 155 0.005 10.7 142.7 55 78

G7 3 68.95 197 0.003 23 259.1 55 99

G8 1 140.00 350 0.002 10.9 177.1 70 120

G9 2 100.00 400 0.002 7.5 311.9 51 100

Table 3.4. Forecasted demand.

Hour Load (MW) Hour Load (MW) Hour Load (MW)

1 1495.2 9 2369.8 17 2460.3

2 1557.8 10 2480.3 18 2474.7

3 1532.7 11 2561.4 19 2461.0

4 1546.1 12 2419.8 20 2591.1

5 1620.6 13 2435.0 21 2624.7

6 1737.1 14 2371.3 22 2546.4

7 1872.2 15 2508.0 23 2309.4

8 2246.3 16 2662.7 24 1924.5

comparison of the thermal and RES generation is made in Table 3.5 which shows the 0.98% increase

in operating cost between the Pareto optimal solution and the traditional DED.

The traditional DED RES penetration level is affected by the RES generation cost. Table 3.6, shows

the changes in RES energy cost from 100%, 50% to 10%.

It is important to note that the maximum RES injected is achieved when the energy cost is reduced
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Figure 3.3. Hourly RES injection level between traditional DED and proposed model.

by 90%, which results in 20.85% of RES penetration. The maximum RES achieved for the Pareto

solution shown in Figure 3.3, is 25% for the first end point which is 4% more than the traditional DED

even with the reduction in RES energy cost. This demonstrates the effectiveness of the proposed model

compared to the traditional DED.

3.4.1.2 Pareto frontier solution

In order to find the Pareto frontier for the two objective functions presented in Section II, the first

step is to find the minimisation and maximisation point of the two functions in order to normalise the

overall function. These two points are called the Pareto anchor points. Table 3.7 presents the anchor

points of the two objective functions.

The anchor points are evaluated by finding the letting λ1 and λ2 to be 0 and 1, which will provide the

first anchor point for J2 and when λ1 and λ2 are 1 and 0, then the second anchor point of J1 provided as

shown in Table 3.7. The Pareto frontiers are presented for the non-normalised and normalised Pareto

solution in Figure 3.4.
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Table 3.5. Comparison between Pareto optimal solution and traditional DED.

Description Pareto point Traditional DED

Thermal (MWh) 45992.61 51820.18

PV (MWh) 1441.55 56.51

Wind (MWh) 4449.65 7.11

SR (MWh) 15565.14 15565.14

RES inj (%) 11.14% 0.12%

Cost ($) 1166356 1077753.11

Penalty cost ($) - 1177753.11

Table 3.6. Impact of RES penetration on energy cost changes.

Description 100% cost 50% cost 10% cost

Thermal (MWh) 51820.18 50064.19 41066.34

PV (MWh) 56.51 1098.67 1292.03

Wind (MWh) 7.11 720.94 9525.44

SR (MWh) 15565.14 15565.14 15565.14

RES inj (%) 0.12% 3.51% 20.85%

Cost ($) 1077753.11 1 039 575.94 944 719.63

Penalty cost ($) 1177753.11 1 139 575.94 -

The Pareto optimal point shown in Figure 3.4, corresponds to the total operating cost of $1,166,356

and RES energy of 5891.2 MW . The Pareto solution is any solution that lies on the Pareto front curve,

the anchor or end points correspond to the scenario where maximum RES penetration is achieved at a

maximum operating cost or where a minimal operating cost is achieved with low to minimum RES

penetration. A compromise solution is any solution that is on the Pareto front curve where enough

RES penetration is achieved at an optimal operating cost with adequate spinning reserves. The RES

penetration level for the first anchor point, Pareto point and last anchor point are shown in Figure

3.5.

From the three Pareto points shown in Figure 3.5, all the points satisfy the RES obligation requirement
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Table 3.7. Pareto anchor points.

Description Objective: J1 [$] Objective: J2 [MWh]

Minimisation point J0 1,151,590 5188.4

Maximisation point Jmax 1,587,000 12,463
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Figure 3.4. Normalised Pareto optimal solution for the IEEE 24 RTS system.

of 10%. In the first end point, a maximum of 38% of RES injection is achieved at 12h00 which

corresponds to the maximum solar irradiance available. The overall average RES penetration achieved

for the first anchor point is 25.07%. The optimal Pareto point chosen corresponds to the average

RES injection level of 11.14% and in the last anchor point the achieved RES penetration level is 10%.

It is important to note that the Pareto optimal solution shows the compromise between minimising

the total operating cost while maximising the RES penetration and hence the RES penetration level

has decreased in comparison to the first anchor point. In the last anchor point, the effectiveness of

the proposed model is demonstrated by the achieved RES obligation of 10% with minimal operating

cost.
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Figure 3.5. Pareto optimal solution for RES injection level of the anchor points and optimal point.

A comparison of the total energy generated over a 24-hour period for the thermal generators, RES

generators and required spinning reserves is shown in Table 3.8. In all the Pareto points, the thermal

Table 3.8. Pareto optimal solution generation.

Description End point 1 Optimal point End point 2

Thermal Gen (MWh) 39420.85 45992.61 46695.42

PV Gen (MWh) 1479.71 1441.55 1441.55

Wind Gen (MWh) 10983.24 4449.65 3746.83

SR (MWh) 16295.7 15565.14 15565.14

PV Curtailment (MWh) 0 38.16 38.16

Wind Curtailment (MWh) 67.87 6601.47 7304.28

generator contributes the most energy as expected. In the first anchor point, more RES is generated and

there is a small wind curtailment of 67.87 MWh and no PV curtailment. The average spinning reserve

required is 31.41%. For one of the Pareto optimal points, the PV and wind curtailment is 38.16 MWh

and 6601.47 MWh with the achieved RES injection level of 11.14%. The average spinning reserve

required to guarantee continuity of power is 30% as shown in Table 3.8. For the last anchor point, the
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average RES injection level achieved is 10%, which complies with the RES obligation requirement.

The curtailment of RES and minimum spinning reserves is also presented. The Pareto optimal frontier

demonstrates the effectiveness of the proposed model by achieving the RES obligation and minimising

the total operating costs.

3.4.1.3 Impact of RO on the model operating cost

In this simulation study, the RO is varied from 5% to 50% at a step of 5%. The objective is to find the

total RES penetration that can be achieved before any penalty can be imposed. The Pareto frontiers for

each RES obligation are shown in Figure 3.6.
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Figure 3.6. Pareto optimal solution for variation in RES penetration from 5% to 50%.

The impact of RES obligation is variable. The RES obligation is achieved for the 5% to 20% case

and any RES obligation over 25% to 50% is not achieved. The limitation in this case is based on the

available forecasted generation, which means that if more RES generators are added to the network,

the limit will increase in the same proportion. From Figure 3.6, the Pareto frontier for 25% is the

same as the Utopia line which means that anything over 25% will result in a dominant solution. The

maximum RES penetration level is also indicated by the 20% RES Pareto front solution which forms

the top limit for all the other Pareto curves. Therefore, from the normalised Pareto optimal solutions
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Table 3.9. Pareto optimal solution for a variable RES penetration level.

Description 5% 10% 15% 20% 25%

Thermal [MWh] 49290 45993 44101 39888 39888

PV[MWh] 1215 1292 1292 1480 1480

Wind[MWh] 1379 3896 6491 10517 10517

SR[MWh] 15565 15565 15565 15565 15565

Cost[$] 84968 40998 40998 15257 15257

we observed that the Utopia line corresponds to a 25% RES penetration level. This also shows that any

RES penetration over 25% is not attainable from the forecasted RES generation.

As expected, the total operating cost increases with the increase in RES obligation requirement due

to the high RES energy cost. Table 3.9 shows the Pareto optimal point for the operating cost and the

achieved RES penetration level for thermal and RES generators. When the RES obligation changes,

generally the spinning reserve changes in the same proportion. The reason for such a change is the

spinning reserve requirement imposed by constraint (3.19), which requires that the thermal generators

must be able to sustain the total demand without RES generation. It should also be noted that the

total operating cost increases as the RES penetration increases and the transmission thermal limits are

respected in all scenarios.

3.4.2 IEEE 118-bus System

The IEEE 118-bus system consists of 118 buses, 186 transmission lines, 91 load sides, 54 thermal

generators, 10 RES generators with 5 PV and 5 wind farms. The total demand over a period of 24 hours

is 126,854 MWh. In this case study, a RES obligation is maintained at 10% in order to investigate the

impact of adding RES generators to the network. Moreover, an optimal RES obligation is investigated

to attain the optimal cost of operating an energy mix that consists of thermal generators and RES

generators. The ten RES generators are made of 5 PV plants and 5 wind farms with the following

sizes: 500 MW, 200 MW, 150 MW, 140 MW and 260 MW for the wind farms; whilst the PV farms

are made up of 75 MW, 140 MW, 300 MW, 28 MW and 66 MW. The total installed capacity of the

RES generator is 1859 MW. A penalty of $100,000 is imposed if the RES obligation is not achieved.

Table 3.10 and 3.11 show the site parameters for PV and wind plants respectively.
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Table 3.10. PV solar irradiance profile for site 1 to 5.

Description PV 1 PV 2 PV 3 PV 4 PV5

Kc (W/m2) 150 150 140 160 160

Ω (W/m2) 1000 1000 950 1100 1050

β 0.5 0.6 0.5 0.5 0.5

κ1 0.8 1.2 0.8 1.6 0.9

κ2 4.13 5.4 4.13 5.8 4.5

σ1 (W/m2) 150 140 150 140 160

σ2 (W/m2) 900 980 930 970 900

Table 3.11. Wind speed profile for site 1 to 5.

Description Wind 1 Wind 2 Wind 3 Wind 4 Wind 5

κ 1.70 2.0 1.90 2.8 2.5

σ (m/s) 6.7 5.0 7.2 5.4 7

Figure 3.7, shows the forecasted curves for demand and RES generation for the IEEE 118-bus sys-

tem.

It is important to note that during winter seasons in South Africa wind speed can reach rated speed

during the day in coastal areas which makes the forecasted wind power depicted in Figure 3.7 possible

[81].

3.4.2.1 Pareto frontier solution

The RES obligation is maintained at 10% and the energy cost for wind and PV plants is given in [86].

As part of the Pareto solution, Table 3.12 shows the anchor points and one of the points on the Pareto

frontier curve.

The Pareto point in Table 3.12, shows the trade-off between achieving maximum RES penetration at a

high operating cost or a scenario of low-RES penetration at a minimum operating cost. Therefore, any

solution on the Pareto front will realise a non-dominant solution. Figure 3.8, shows the Pareto frontier

curves for non-normalised and normalised.
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

Figure 3.7. Forecasted demand and RES generation for IEEE 118-bus system.

Table 3.12. Pareto anchor points.

Description Objective: J1 [$] Objective: J2 [MWh]

Minimisation point J0 3,038,231 13,043

Pareto point 3,041,191 13,087

Maximisation point Jmax 4,703,000 32,115

In Figure 3.8, the minimum point corresponds to the RES obligation requirement of 10% which

demonstrates the effectiveness of the proposed model. A 10% RES obligation is achieved, and the

total operating cost is $3,038,231. The RES penetration levels for the two end points and one of the

Pareto points are shown in Fig 3.9.

From Figure 3.9, the average RES penetration level for the first anchor point is 25.46% and the

minimum average RES penetration corresponds to the last anchor point which is 10.07%. In addition

to the anchor points shown in Figure 3.9, a single point in the Pareto frontier curve depicted shows an
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Figure 3.8. Pareto frontier solution for IEEE 118-bus system.

average RES penetration level of 10.31%; this means the RES obligation is attained for this scenario.

Table 3.13 shows the achieved generation for thermal and RES generators, the minimum spinning

reserves required, the curtailment of RES generators and the achieved RES penetration for each Pareto

point.

The RES penetration achieved on the first anchor point demonstrates the typical Pareto solution

compromise, which means that for a maximum RES penetration level, the total operating cost is

also high. On the contrary, for the first end point, where more RES generation is injected, there

is no curtailment for PV generators and a small curtailment for wind generators. This curtailment

corresponds to transmission line limit. A significant curtailment is shown for the other Pareto points,

however, in all Pareto curves the RES obligation is still attained. This demonstrates the effectiveness of

the proposed model which means that a solution that rests anywhere on the Pareto frontier will realise

an optimal solution with a compromise between operating cost and RES penetration level.
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Figure 3.9. Pareto optimal solution for RES injection level of the anchor points and optimal point.

3.4.2.2 Impact of RO on the model operating cost

In this scenario, the impact of varying RES penetration level is investigated to ascertain the maximum

RES penetration that can be attained for the forecasted RES generation. As mentioned in the previous

case study, the RES penetration level is varied from 5% to 50% at a step of 5%. It is important to note

that the task of selecting an adequate solution from a set of optimal solutions is difficult, therefore, to

overcome this challenge a sequence of Pareto optimal solutions is presented in Figure 3.10 for different

RES penetration levels.

The different Pareto front optimal solutions presented in Figure 3.10, show the impact of RES penetra-

tion level. Firstly, we observed that the maximum RES penetration achieved for the IEEE 118-bus

system corresponds to the 25% RES penetration Pareto frontier. This means any Pareto optimal

solution that is less than 25% RES penetration is attainable without the need for penalty. The 25%

penetration level is the Utopia line for the bi-optimisation problem. It was also observed that the 20%

RES penetration level is the top Pareto optimal solution that covers all the other Pareto solutions, which
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

Table 3.13. Pareto optimal solution generation.

Description End point 1 Pareto point End point 2

Thermal Gen (MWh) 95096 114125 114169

PV Gen (MWh) 3788 1324 1324

Wind Gen (MWh) 28327 11762 11719

SR (MWh) 38934 38056 38056

PV Curtailment (MWh) 0 2464 2464

Wind Curtailment (MWh) 435.3 17000 17044

RES injection (%) 25.46 10.31 10.07
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Figure 3.10. Pareto optimal solution for variation in RES penetration from 5% to 50%.

means an optimal Pareto solution for the forecasted RES generation lies in the range of 20% to 25%

and any solution over 25% of RES penetration is unattainable due to the limitation in the forecasted

RES generation.
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

3.5 DISCUSSION

In Section 3.4, we presented a case study that investigated the impact of RES penetration from a

RO point of view. Three case were presented; in the first case a comparative study between the

classical SCED and the proposed RO is investigated. Then the impact of varying the RES energy cost

is investigated and compared to the RO model to better appreciate the proposed model robustness

to attain the RO. In the second case study a Pareto optimal solution is presented which shows a

compromise between maximising the RES energy penetration and minimising the total operating cost

while maintaining the renewable energy quota. The final case study shows the impact of varying the

RES obligation on the sensitivity of the model. We vary the obligation target from 5% to 50% with a

step of 5% to show its impact on the total operating cost and the RES penetration level.

The impact of increasing RES penetration level using renewable obligation policy framework it is

better appreciated when we compared the classical SCED. Figure 3.3 shows a comparison between

classical SCED and the RO SCED model. The RO model shows a Pareto optimal solution for the

end points and optimal point, i.e., minimum, optimal and maximum Pareto point. The RO model

can meet the required renewable energy quota compared to the classical SCED model. The classical

model shows poor performance in terms of RES penetration and this is due to the cost associated

with procuring RES energy which is higher than the traditional thermal generator energy cost. It is

interesting to note that for the RO model, the cost of RES is not an important factor in achieving the

RES penetration. This is due to the penalty imposed for not achieving RES which is much higher

compared to the RES energy cost, and hence in all cases the RO is achieved. To overcome the impact

of RES energy cost, Table 3.6 shows the RES penetration level for different energy cost reduction,

i.e., from nominal to 90% RES energy cost reduction. Note that in these simulation studies, the RO

is set as 10%. It is clear from the simulation results that RES obligation is achieved only when the

RES energy cost is reduced by 90%. The first case study demonstrates the importance of including a

penalty cost in the RO model by ensuring that the renewable energy quota is achieved. Therefore, the

RO models presented in Section II is dependent on the penalty cost which mean that if the penalty cost

is low then the RES quota is ignored, and if it high then the RES obligation is achieved based on the

available resource and the line thermal limits. This part of the model demonstrates a useful tool for

policy makers to encourage energy mix. When we compare the total operating cost of the classical

SCED and the proposed RO model we notice that the proposed model operating cost is lower than

the classical SCED cost and this is due to the penalty cost imposed for not achieving the RO quota.

However, when the RES energy cost is reduced by 90%, the classical SCED operating cost becomes
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

competitive and the renewable energy quota is achieved. This means that for the RES to be competitive

on the classical model, its energy cost must be lower than the thermal generators.

The Pareto optimal solution presented in Section 3.4 shows that there is not a single solution to the

model but several optimal solutions. This is clearly demonstrated by Figures 3.6 and 3.10 for the

IEEE 24 RTS and 118-bus system. This means that if the first objective function is set to zero, then

the overall optimisation problem changes to a maximisation of RES energy penetration that can be

achieved without any curtailment. The solution to this problem corresponds to the first end point of

the Pareto frontier curve. On the contrary, if the second objective function is set to zero, then the aim

simply turns into minimising the total operating while achieving the minimum RES quota set out by

the SO and this point is also known as the Pareto end point. These two points are the anchors of the

Pareto frontier curves and all the points that lie on the curve forms the Pareto frontier as demonstrated

in Figures 3.4 and 3.9. The impact of varying RO is illustrated by the Pareto frontiers shown in Figures

3.6 and 3.10 for the two test systems. The variation in the Pareto frontier curves is due to different

RO requirements. For example, if we consider Figure 3.6 for IEEE 24 RTS system, we can observe

that the RO is achieved from 5% all the way to 25% of RES penetration. The 25% Pareto frontier

forms a Utopia line which shows the maximum RES that can be achieved without any penalty. A RES

penetration level over 25% is shown in the same figure which is far less than the RES penetration of all

Pareto frontier curves. This demonstrates the effectiveness of the proposed RO model to meet different

RES quota obligation.

To summarise the finding of Section 3.4, a RO model leads to higher RES penetration while minimising

the total operating cost and spinning reserves. The RO model shows that the only limiting factor to

maximum RES penetration is the available resource and transmission thermal limit. Although the CO2

emission reduction is not quantified in this study, we can infer that the RO model has a potential to

decrease CO2 emission and significantly reduce the operating cost of thermal generators.

3.6 CONCLUSION

A new DED model with RES obligation is presented which integrates RES generation to maximise the

RES penetration while minimising the total operating cost and the spinning reserves. The approach

presented determines the optimal RES penetration level that minimises the operating cost and spinning

reserves while providing continuity of power supply. A bi-optimisation problem is presented that

minimises the operating cost and maximises the RES energy penetration. The formulation shows a
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CHAPTER 3 MAXIMAL RENEWABLE PENETRATION UNDER RENEWABLE OBLIGATION

trade-off between maximum RES penetration and minimum operating costs. Generally, the proposed

model has the advantage of achieving a maximum RES penetration based on the RES obligation and

minimising the required spinning reserves and total operating costs. In all the case studies presented,

the power transfer flow is respected. The results of the case studies demonstrate the robustness of the

proposed optimisation model in terms of RES obligation requirement and optimal operating cost and a

trade-off between economical operation and maximum RES penetration.
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CHAPTER 4 MULTI-OBJECTIVE ECONOMIC

DISPATCH WITH RESIDENTIAL

DEMAND RESPONSE PROGRAMME

UNDER RENEWABLE OBLIGATION

In this chapter, the renewable penetration is improved by incorporating demand response. Residential

customers are paid an incentive for participating in the demand response programme. The mathematical

model of the demand response model under renewable obligation is presented.

4.1 INTRODUCTION

In recent years there has been a great deal of attention on the optimal demand and supply side strategy.

From the supply side the focus has been on reducing conventional generators by increasing the

penetration level of renewable energy sources (RES). While on the demand side several programmes

have been introduced to create customer awareness of utilising energy in an efficient manner. The

intermittency and stochastic nature of RES such as wind and photovoltaic generators makes it difficult

for their integration in the power system. This means that the RES generators cannot be completely

regulated by producers throughout the day as they are weather dependent and an increase of RES in

power systems requires a robust system. Moreover, the need for capacity margins during peak hour

demand coupled with the inherent limited ramping capacity of thermal generators affect the system

security whenever the RES generators decrease their output power due to meteorological conditions. To

tackle this challenge, the system operator takes the advantage of demand side strategy by either shifting

or cutting down the load to balance the RES production. Therefore, it is essential to evaluate the

effectiveness of demand response strategy in relation to increasing RES penetration without affecting

the system reliability and security.
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CHAPTER 4 ECONOMIC DISPATCH WITH RESIDENTIAL DEMAND RESPONSE

4.1.1 Literature review

Demand side management (DSM) has two fields that focus on demand management, i.e., energy

efficiency (EE) and demand response programmes (DRP). EE concentrates on retrofitting electrical

equipment with more energy efficient equipment while DRP focuses on demand management through

price-based or incentive-based demand reduction programmes. Both programmes are used to encourage

the customers to use electricity prudently. Although a comparison between EE and DRP shows that

DRP is more cost-effective in terms of capital expenditure, and as a result it is the most common

demand management strategy utilised. DRP takes the advantage of load flexibility patterns to increase

the efficient operation of power system. For example, flexible load from residential customers such as

electric water heaters can be shifted to low demand period which improves the system performance and

allows the system operator (SO) to schedule an optimal energy mix at a least operating cost. Flexible

demand is therefore, defined as the potential to modify the consumption profile by varying power

consumption, time of operation and the activation time of electrical equipment [51].

Demand response has two components, i.e., tariff and incentive-based instruments that are used to

encourage electricity end-users to respond either to changes in electricity prices over time or provide

an incentive to customers for reducing their electricity use. The main idea behind all price-based DR is

to encourages electricity end-user to take the advantage of the electricity prices in different hours to

adjust their flexible loads and move them to low demand periods. The types of price-based demand

response are (i) time-of-use (TOU) pricing, (ii) critical peak pricing, (iii) peak load pricing; and (iv)

real-time pricing.

On the contrary the incentive-based demand response offers customers incentives in addition to

their retail electricity rate for achieving demand reduction on the flexible loads when the system

reliability is required or when electricity prices are too high. The types of incentive-based demand

response are (i) direct load control (DLC), (ii) interruptible service, (iii) demand bidding/buy back, (iv)

emergency demand response programme (EDRP), (v) capacity market programme; and (vi) various

ancillary service markets. The demand response is applied to all customers base, i.e. industrial,

commercial and residential, and it is normally implemented on non-critical loads that are reducible

and deferrable.

A significant amount of research has been conducted in the combined field of dynamic economic

dispatch (DED) and DRP which focuses on different types of customers, e.g., residential, commercial
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CHAPTER 4 ECONOMIC DISPATCH WITH RESIDENTIAL DEMAND RESPONSE

and industrial [87], [88]. A day ahead stochastic economic dispatch with price-based demand response

is implemented in [89] where maximum wind energy is added into the grid by encouraging the customer

to shift their demand profile which improves the utilisation of the wind energy and reduces the total

operating cost. The main disadvantage with this type of price based DRP is the direct dependence of

the customer behaviour to voluntarily decrease the demand and it fails to show the impact of direct

or indirect load rebound effects [90], [91] due to the DRP implementation. A more robust approach

that provides the system operator (SO) with more control and predictability of the demand is the

incentive-based demand response. In the US alone, it is estimated that an incentive based DRP can

realise up to 93% of the peak load reduction [92]. This direct approach of controlling the customer

demand by incentives has resulted in a great deal of interest in researchers. In [93], [94], a stochastic

unit commitment with incentive based DRP is presented and a price quantity package for incentive

based DRP is reported in [95]. Authors in [96] consider a robust optimisation approach to economic

dispatch with renewable energy sources and incentive DRP. A DR approach which considers EDRP

and DLC based price elasticity and linear responsive loads i.e. power, exponential and logarithmic

models are presented in [97]. A combined DED and DR is used to determine an optimal incentive for

customers considering different responsive loads.

In [98], a deep neural network for incentive based DRP is reported where the uncertainties in price and

demand are studied by deep learning and neural network. This is to ensure that an optimal incentive

price is achieved for the energy demand balance and to improve the grid reliability. A combined

dynamic economic emission dispatch (DEED) and DRP for industrial customers is presented in [99]

where a game theory demand-based response programme is used to find an optimal hourly incentive

that can be offered to customers that participate in load curtailment. The model presented in [100]

finds an optimal incentive for customers in order to provide maximum relief to the power system by

providing customers incentives for participation throughout the day.

Ref. [46] presents the impact of applying both price-based and incentive-based DR on demand-price

elasticity concept while incorporating the customer benefit. In the study, the demand is categorised as

flexible load in a micro-grid with residential and commercial customers and the impact of different

price and incentive-based schemes are investigated. In [101], a DR scheduling model is presented for

smart residential community. The residential loads are classified into different categories based on

their demand response capability, i.e., interruptible load, controllable loads and deferrable loads, and

thereafter the load is reduced from peak to peak-valley without bringing any customer discomfort. The

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 ECONOMIC DISPATCH WITH RESIDENTIAL DEMAND RESPONSE

integration of distributed generators (DG) is also included to better manage the demand shifting. This

study did not incorporate the load rebound effects which results from deferrable load shifting from

peak demand period to low demand period.

In South Africa, the main electricity supplier has developed a large-scale residential load management

(RLM) programme which is aimed specifically at the residential sector [102]. The electric water heaters

also known as geysers account for about 30% and 50% of the electricity consumption in a household

[103] and the load can be classified as deferrable. Moreover, the utility’s residential customers consume

around 20% to 25% of the total electricity generated with their peak period amounting to 35%. The

RLM programme involves the connection of ripple control units to electric water heaters which allows

the units to be switched on and off remotely by the system operator.

Although all the studies have focused on providing a combined benefit from demand and supply side,

the disadvantages with their proposed methods are: (i) the level of customer discomfort caused by

regular demand reduction, (ii) the inability of the theoretical DRP models to include the load rebound

effects that result from demand reduction programmes due to arbitrary control of flexible load. The

literature review shows that residential flexible loads under DR with DLC is performed during periods

of high electricity cost and in [51] the authors did not show the impact of load increase outside of the

peak period and this implies that the flexible load is reducible. Reference [104] did not quantify the

demand reduction due to deferrable loads in their models. In cases where storage is used [105], [106]

the authors assume that the cost of electricity from storage is lower than the utility low tariff price

which implies that the flexible load during peak hours is automatically supplied by the storage system.

Although this may be a benefit, it is important to note that there are cases where the cost of storage is

higher than that of the utility and this is not shown in the literature. The use of DG and RES to offset

the electricity prices is also proposed by other authors. This approach is generally acceptable since the

flexible load can be supplied by RES or DG, however, there is also a challenge with this approach since

RES is intermittent and may not be available during peak period or the generation may be inadequate

to supply the demand. Lastly, most DRP with flexible residential loads in the literature assume that the

deferrable loads do not have load rebound effects and this is mainly due to the lack of real data.

4.1.2 Research Objectives

To address the challenges, this chapter aims to develop a combined demand and supply side economic

dispatch model. This includes the renewable obligation policy framework to maximise RES penetration
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CHAPTER 4 ECONOMIC DISPATCH WITH RESIDENTIAL DEMAND RESPONSE

and deferring residential flexible demands to period of low electricity price. A renewable obligation

policy aims to ensure that the deferrable demand can be supplied from RES during peak hours by

ensuring that a quota of RES generation is achieved. The customer discomfort level is minimised

by limiting the demand reduction to electric water heaters. All participating residential customers

have a smart home energy management system (HEMS) which incorporates a DLC unit connected

to the electric water heaters that allows remote switching. The main contributions of this chapter are

summarized as follows:

1. A multi-objective economic dispatch model is presented which integrates deferrable demand

within a real DLC DRP intermittent renewable energy under renewable obligation;

2. Real data from a South African DRP are taken in the optimisation model so that the system

operator can decide whether a substation needs to respond to the DR request;

3. The application of the real DRP data avoids traditional inaccurate approaches in assuming the

arbitrary controllability of deferrable load and can cover actual load rebound effect.

4.2 RESIDENTIAL LOAD MANAGEMENT FRAMEWORK

RLM is a utility programme that is focused on residential customers with the objective of reducing and

shifting the customers flexible load during peak demand periods. The flexible load considered in the

programme is the electric water heater.

The residential customers are generally connected at the end of the power grid, while large-scale

wind and PV plants are normally connected to the transmission power network as shown in Figure

4.1.

On the residential demand side, all the customers participating in the DRP use a DLC unit which is

integrated to the two-way smart metering system to send real-time status of the electric water heater.

The customers are aggregated together on each participating substation. A municipality distribution

system operator (DSO) acts as a demand aggregator and facilitates the communication between the SO

and the customers. The real-time data is used by the utility to manage real-time demand on the power

system. In the RLM programme implemented in South Africa, the residential customers participate on

a voluntarily basis. However, in this proposed model an incentive is paid to participating customers.

In fact, the SO uses DRP as a tool for load shifting and pays an incentive proportional to demand

reduction achieved. The customers can choose to participate in the programme during peak demand
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Figure 4.1. Typical RLM programme structure based on an arbitrary 6 bus network.

periods where electricity price is high. If the consumers chose to participate in the programme the

demand is reduced and deferred to low demand period and the customers receive an incentive. On the

contrary, if the customer declines to participate then the customer pays high electricity price associated

with peak demand. All the real-time demand information is managed through a HEMS.

The utility owns all the thermal generators while the RES is owned by independent power producers

(IPPs). The system operator is responsible for controlling and dispatching all generators to meet the

demand and achieve RO. The DSO is responsible for managing the residential participation to the DRP

programme through the substation DLC system. The demand is modelled like negative generation

with the minimum and maximum load changes based on customer participation level [107]. The

main objective from the SO point of view is to dispatch all the generators to meet the demand while

minimising the cost for thermal generators and achieving a RO with minimum power fluctuations from

RES generators by utilising demand response.
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CHAPTER 4 ECONOMIC DISPATCH WITH RESIDENTIAL DEMAND RESPONSE

4.3 PROBLEM FORMULATION

In this section a mathematical model of a renewable obligation model that incorporates the DRP for

residential customers is presented. In Section 4.3.1 the RO model is presented and then in Section 4.3.2

the RLM model is presented and finally in Section 4.3.2.3 the modelling or RES is presented.

4.3.1 Renewable obligation

The main purpose here is to minimise the total operating cost for the system operator thermal generators

while maintaining a percentage of renewable energy in the energy mix.

4.3.1.1 Objective functions

The total operating cost includes two terms. The first term is the cost of operating thermal generators

and the cost paid to IPP for RES generators. The second part is the penalty function that ensures that a

minimum renewable obligation is maintained in the dispatch period to guarantee the required energy

mix.

ϕ1 =
T

∑
t=1

(
NG

∑
g=1

Cg(Pg,t)+
NR

∑
r=1

Cr(Pr,t)+
NM

∑
m=1

Cm(Pm,t)+
NV

∑
v=1

Cv(Pv,t)

)
+ϒ (4.1)

where Cg(Pg,t) is the generator fuel cost function which is a quadratic equation, and Cr(Pr,t) is the

spinning reserve operating cost and Cm(Pm,t), and Cv(Pv,t) are the cost function for wind and PV

generators, respectively, as shown in (4.2) to (4.5).

Cg (Pg,t) =
NG

∑
g=1

(
agP2

g,t +bgPg,t + cg
)

(4.2)

Cr (Pr,t) =
NR

∑
r=1

ρrPr,t∆t. (4.3)

Cm (Pm,t) =
NM

∑
m=1

ζmPm,t∆t. (4.4)

Cv (Pv,t) =
NV

∑
v=1

τvPv,t∆t. (4.5)

The notation ϒ is the second part of the total cost which is a renewable obligation part of the model

shown in (4.6).

ϒ = γ

T

∑
t=1

(
α

(
NG

∑
g=1

Pg,t +
NS

∑
s=1

Ps,t +
NM

∑
m=1

Pm,t +
NV

∑
v=1

Pv,t

)
−

(
NM

∑
m=1

Pm,t +
NV

∑
v=1

Pv,t

))+

(4.6)

where γ is the penalty imposed to the thermal generators for not achieving the required renewable

obligation, α is the renewable obligation requirement in percentage. The notation ϒ(·)+ is the sigmoid

function which is equal to γ if the RES obligation is unattained and 0 otherwise. The penalty γ is

normally provided by the energy regulator as an annual value. This penalty value can be changed to a

daily penalty value corresponding to daily economical dispatch of generators.
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4.3.1.2 Maximise renewable energy penetration

The second objective function is to maximise the injection of renewable energy into the grid. It is

worthy to note that the second objective on the maximum renewable energy is not completely covered

by the minimisation of renewable obligation violation cost in the first objective function. This is

because at times the renewable energy obligation can be met in that case no penalty is paid, however,

the amount of renewable energy power scheduled to the grid may not be maximal. With the second

objective function the amount of dispatched renewable energy has to be maximised to overcome

the limitation of merely meeting the obligation without maximising the RES energy penetration.

In addition to the total operating cost in (4.1), the maximization of RES penetration is shown in

(4.7).

ϕ2 =
T

∑
t=1

(
NM

∑
m=1

Pm,t∆t +
NV

∑
v=1

Pv,t∆t

)
(4.7)

4.3.1.3 Constraints

The system constraints is divided into five parts, the power balance constraint (4.8), the system ramping

rates (4.9) to (4.12), the generator limits (4.13) to (4.16), spinning reserve constraints (4.17) to (4.20)
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and the network transmission capacity constraints (4.21) to (4.22).
NG

∑
g=1

Pg,t +
NM

∑
m=1

Pm,t +
NV

∑
v=1

Pv,t, =
NB

∑
b=1

Pb,t ∀t (4.8)

Pg,t −Pg,t−1 ≤URg∆t ∀t (4.9)

Pg,t−1−Pg,t ≤ DRg∆t ∀t (4.10)

Pr,t −Pr,t−1 ≤URg∆t ∀t (4.11)

Pr,t−1,−Pr,t ≤ DRg∆t ∀t (4.12)

Pg,t ≤ min(Pg,max,Pg,t−1 +URg∆t) ∀t (4.13)

Pg,t ≥ max(Pg,min,Pg,t−1−DRg∆t) ∀t (4.14)

Pm,t ≤ Pm,t,gen ∀t (4.15)

Pv,t ≤ Pv,t,gen ∀t (4.16)

Pg,t +Pr,t ≤ Pg,max ∀g, t (4.17)

0≤ Pr,t ≤ SRRr,max ∀t (4.18)
NR

∑
r=1

Pr,t ≥ SSRR ∀t (4.19)

NG

∑
g=1

Pg,t +
NR

∑
r=1

Pr,t ≥
NB

∑
b=1

Pb,t ∀t (4.20)

−Pl,max ≤ Pl,t ≤ Pl,max, ∀l, t (4.21)

Pl,t =
NG

∑
g=1

Gl,gPg,t +
NM

∑
m=1

Fl,mPm,t +
NV

∑
v=1

Hl,vPv,t −
NB

∑
b=1

Dl,DPb,t (4.22)

The maximum spinning reserve requirement SRRr,max is equal to the maximum thermal generator

capacity, and the system spinning reserve requirement (SSRR) is equal to 30% of demand Pb,t ; where

Gl,g, Fl,m, Hl,v, and Dl,D denote the generator shift factor (GSF) coefficient between line l and thermal

generator, wind farms, PV plant, and system demand at each bus. The transmission line power Pl,t of

line l at time interval t is calculated using DC power flow.

4.3.2 Residential load management

The programme considers voluntary participation by residential customers to reduce and shift their

demand. However, in this case the DRP model assumes an incentive is paid to participating customers.

The load reduction request from the utility can be anytime of the day and particularly when the demand

is high.
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4.3.2.1 Demand response programme model

The price-based DR objective function presented in (4.23) is known as the customer utility function

which aims to minimise the discomfort level due to the lack of electricity.

ϕ3 =
T

∑
t=1

NB

∑
b=1

((
λ

R
t −ξ

c
b,t
)(

Pb,t(1−ub,t)+ P̃b,tub,t
))

∆t +
T

∑
t=1

NB

∑
b=1

∆Pb,tub,tξ
i
b,t (4.23)

Equation (4.23) refers to the total cost associated with minimising the customer discomfort level

which measures the benefit the consumer achieves by using electricity during time period t, λ R
t is the

TOU price of electricity while ξ c
b,t is the benefit or willingness of the customer to buy electricity for

performing tasks requiring electricity. For simplicity, the benefit for the consumer is assumed to be

constant and time independent which implies that the residential load is deferrable since the task can

be performed at any time during the day.

To encourage residential customer participation, an incentive is introduced to the model to quantify

the impact of demand reduction and demand deferred as a result of the incentive and the residential

customers are incentivized only during peak hours which is assumed to correspond to high demand

period.

The incentive price paid to customers is ξ i
b,t and ∆Pb,t is the difference between the actual demand at

the participating DRP bus b before and after the demand reduction.

∆Pb,t = Pb,t − P̃b,t (4.24)

The DLC switching status ub,t is a binary variable that is equal to 1 if the RLM is implemented at bus

b in time t and 0 indicating that no RLM is implemented.

4.3.2.2 Constraints changes

The only changes in the constraints are due to the change in demand which is replaced by in (4.25);

the constraints affected by the demand reduction are (4.8), (4.19), and (4.20). The change of constraint

(4.19) is due to the fact that SSRR is equal to 30% of demand Pb,t that guarantee enough spinning

reserves.

Pb,t =
NB

∑
b=1

(
Pb,t(1−ub,t)+ P̃b,tub,t

)
∀t. (4.25)

The two cost functions can be added together to form a new objective function as shown in (4.26).

min ϕTC = ϕ1 +ϕ3 (4.26)
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4.3.2.3 Implementation steps for RES selection and output power estimation

The step-by-step approach for selecting RES location and estimate RES output are as follows.

1. Collect 1-year data for wind speed [81] and solar irradiance [82] related to each wind and PV

site.

2. Pre-data processing: remove measurement errors and outliers.

3. Formulate a histogram of the wind speed and solar irradiance data.

4. Calculate the average wind and solar power density from the real data.

5. Fit the histogram with the best PDF or multimodal PDF, i.e., Weibull and bimodal Weibull.

6. Estimate the initial parameters of the PDFs.

7. Calculate the wind and solar power density of the histogram which also includes the PDF.

8. Calculate the sum of wind power density and solar power density.

9. Estimate the PDF parameters using least square method in excel solver by finding the best

parameters that match the wind and PV power density curves.

10. Calculate the wind and solar CDF functions based on the estimated parameters.

11. Forecast wind power and PV output power

A flow chart representing a step-by-step approach is shown in Figure 4.2.

4.4 MULTI-OBJECTIVE OPTIMISATION APPROACH

There are generally several approaches that can be utilised to solve a multi-objective problem in the

literature. These methods are typically, the weighted sum [108], global criterion [109] and ε-constraint

[110] to mention a few. In this chapter, ε-constraint method is used to change the multi-objective

optimisation problem into a single objective problem. The reason for selecting this method originates

from the fact that it is efficient for solving non-convex and non-linear problems such as the one

presented. A single objective function is considered in the ε-constraint methods while the other

objectives are changed into constraints as shown in (4.27).

min ϕTC

s.t. ϕ2 ≥ ε

eqs. (4.8)− (4.22)

(4.27)

The constraints are increased from the minimum value to the maximum to generate a Pareto front. The

minimum and maximum values of the constrained objective function are calculated by maximising
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Figure 4.2. A step-by-step approach to estimating wind and PV PDF parameters and output power.

and minimising those functions. Thereafter, the ε-constraint bounds increase from the minimum to the

maximum function.

There are different methods used in the literature that assist in selecting the best compromise solution.

For example, in [110] a fuzzy set approach is used to select the best solution by using a linear mem-

bership function. The membership function is assigned to the objective function which varies from 0
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to 1 for measuring each Pareto optimal solution. In [109] a VIKOR technique is used for specifying

the preferred solution and then ranking all Pareto solution to the ideal solution. A preference-based

approach similar to [108] is used for the best compromise solution in a Pareto optimal set. To select

the best compromise solution, the SO is the main decision maker. All decisions are implemented con-

sidering demand reduction, renewable obligation requirements, spinning reserve allocation, operating

cost and RES penetration level. The SO determines the allowable values for both the demand reduction

operating costs and the maximum RES penetration level. To this end, the SO selects the minimum

lower bounds related to maximising RES penetration and upper limit for minimising the total operating

cost. These upper and lower bounds assist the SO to select the best compromise solution on a Pareto

optimal set.

4.5 NUMERICAL CASE STUDIES

The modified IEEE 30-bus and IEEE 118-bus test systems are used to validate the proposed DRP

model over a 24-hour time horizon using a temporal resolution of 60-minutes. The historical data of

RES generators is collected over a period of a year from January 1st 2018 to December 31st 2018

and it can be found in [81], [82]. The system load is obtained from a real RLM study performed in

SA [111] which also includes the total number of electric water heaters used, the capacity and the

temperature range of the storage tank. The modified IEEE 30-bus system has 6 thermal units and 41

transmission lines. The system data for IEEE 30-bus can be found in [112], which includes all the

ramp rates, thermal transmission limits and quadratic cost coefficients for the thermal units.

The modified IEEE 118-bus system consists of 54 thermal generators and 186 transmission lines.

The system detailed data of units and network parameters can be found in [83]. A total of 10 RES

generators (5 PV and 5 wind farms) are added to the network on buses 1, 33, 38, 52, 58, 75, 96, 102

and 117. The transmission line flow limit is simulated using DC power flow at a sampling interval

of 60-minutes. In all the simulation studies, a RES penetration level of 10% is used as a benchmark.

In the case where RES penetration level is not achieved a penalty of $100,000 per day is imposed.

In addition, the system spinning reserve required is based on 30% of the maximum demand and the

spinning reserve of each generator is equal to the maximum generator capacity.

The DSO is responsible for implementing the RLM switching at the substation based on SO DRP

requirement. An incentive of $40 per MWh is paid to participating customers for achieving demand

reduction. The utility sell electricity to all customers based on the TOU tariff scheme, which is divided
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into three periods, i.e., peak, off-peak, and valley. The electricity price is $200/MWh, $50/MWh and

$100/MWh for the TOU period. The customer willingness to buy electricity is $120/MWh. In this

study, peak period is classified as 07:00 to 09:00 in the morning, 18:00 to 20:00 in the evening; the

valley period is from 09:00 to 18:00 and from 20:00 to 21:00 and remaining period is classified as

off-peak.

The simulation is conducted on a notebook with an Intel Core i5 at 2.70 GHz and 8 GB of RAM. The

optimisation model is a mixed integer quadratic programming (MIQP) problem and it is built in IBM

ILOG CPLEX. The tolerance gap in the CPLEX solver is set to 0.02%. To show the effectiveness of

the DRP RO model, the effects of operating cost, spinning reserve allocation, incentive cost, substation

participation to RLM programme, RES penetration increase, peak RES increase or decrease, peak

demand reduction, demand deferred to other time periods and total demand reduction are analysed. The

DRP RO model is tested on the modified IEEE 30-bus system considering the following cases.

1. A base case scenario which considers the proposed model without the implementation of DRP

DLC;

2. The implementation of the proposed model with DRP DLC; and

3. Comparison of the base case to the proposed DRP DLC model.

Thereafter, IEEE 118-bus system is also used to test the model on a large scale and the sensitivity of

the model to RES penetration against DRP DLC in terms of spinning reserve, total demand reduction

and increase in RES penetration.

4.5.1 Implementation steps

The step-by-step approach for implementing the stochastic RO model for a combined energy and

reserve dispatch is as follows.

1. Input demand before and after RLM, 24-hour RES output data, TOU tariff, incentive cost for

DRP participation and customer willingness cost of electricity.

2. DSO provides daily demand reduction forecast for participating substations to SO.

3. Formulate ε-constraint optimisation model.

4. Evaluate RO and DRP requirements.

5. Provide an optimal Pareto set.
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6. Implement preference-based approach to select the best compromise solution using lower and

upper boundaries provided by the SO.

7. Schedule RO and DLC to participating substations according to the best compromise solution.

The overall implementation flow chart is shown in Figure 4.3.

Start

Input demand before and after RLM 

Input 24-hour RES output data from 

(32) and (35)

Input required renewable obligation 

Input customer incentive for DRP 

participation

DSO provides daily demand reduction 

forecast for participating substations to 

SO

Formulate ɛ-constraint optimisation 

model (36) 

Is the optimisation Gap < 0.02%

Provide optimal solution set

Provide optimal set & select the best 

compromise solution

Is ɛ-constraint > ɛ_max

Schedule RO, thermal generators, 

allocate spinning reserve and 

implement DLC to participating 

substations

Increase ɛ-

constraint to 

form next Pareto 

solution

No

Yes

Yes

No

Stop

Figure 4.3. Optimisation algorithm for solving multi-objective DRP-RO model with Pareto optimal

set and preference-based approach for selecting the best compromise solution.
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Table 4.1. Thermal generator parameters.

Unit Pmin Pmax ag bg cg RU DR

G1 50 350 0.0070 7 240 60 60

G2 50 250 0.0095 10 200 60 60

G3 50 150 0.0090 8 220 60 60

G4 50 350 0.0090 11 200 60 60

G5 50 450 0.0080 10.5 220 60 60

G6 50 500 0.0075 12 190 60 60

4.5.2 Modified IEEE 30-bus

The modified IEEE 30-bus test system has a total demand before and after RLM of 26822.5 MW and

26501.3 MW. The integrated PV and wind farms are connected to buses 7, 15, 22, and 24, i.e. two PV

plants and two wind farms. The sizes of the PV and wind farms are 75 MW, 140 MW, 300 MW and

500 MW with an installed capacity of 1015 MW. The parameters of thermal units and RES generators

are listed in Tables 4.1 - 4.3 respectively [86].

Table 4.2. PV solar irradiance profile for site 1 and 2.

Description PV 1 PV 2

Kc (W/m2) 150 150

Ω (W/m2) 1000 1000

β 0.5 0.600

κ1 0.8 1.2

κ2 4.13 5.4

σ1 (W/m2) 150 140

σ2 (W/m2) 900 980

The RLM programme is applied to load buses, also referred to as substations. The substations

participating in the RLM programme are located on buses 10, 14, 23 and 26. The total demand before

and after the implementation as well as the forecasted RES penetration is shown in Figure 4.4.
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Table 4.3. Wind speed profile for site 1 and 2.

Description Wind 1 Wind 2

κ 1.70 2.0

σ (m/s) 6.653 5.0
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Figure 4.4. Forecasted demand and RES generation before RLM is implemented.

4.5.2.1 Normal operation without demand response

In this case the normal operation without demand response is investigated in terms of total operating

cost, maximum achieved RES penetration and the allocated spinning reserves. In the first case, a

Pareto front is used to select the best compromise solution for the multi-objective optimisation problem.

The minimum and maximum values of the two objective functions are calculated and thereafter, the

ε-constraint method is used to generate multiple solutions related to the changes of the ε-constraint.

Table 4.4 shows the Pareto optimal set for different RES penetration level. The italic values refer, to

the minimum and maximum values used in formulating the Pareto set. To select, the best compromise
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Table 4.4. Pareto optimal set under renewable obligation of 10%.

RES (MWh) TC ($) SR (MW)

7934.70 313,880.00 8168.10

7983.70 313,880.00 8215.90

8053.70 313,890.00 8283.00

8115.30 313,910.00 8341.00

8149.30 313,930.00 8370.90

8158.00 313,940.00 8377.10

8158.00 313,940.00 8377.10

8160.80 313,940.00 8379.90

8241.00 313,980.00 8389.80

8241.00 314,520.00 8456.80

8592.30 1102400.00 30983.00

solution from a Pareto optimal set, the SO is the main decision marker. In this case the lower and upper

boundaries related to the total operating cost and RES penetration level are set to $400,000 and 8200

MWh. From the SO boundaries, the best compromise solution is highlighted in bold as depicted in

Table 4.4. A detailed analysis of the best compromise solution for a 24-hour dispatch period is shown

in Figure 4.5.

The generation from thermal units makes up the largest contribution and followed by RES generators.

The total operation costs for supplying electrical demand is $314,520. The thermal units generate

18581.5 MWh (69.28%) and RES generators contribute 8241.01 MWh (30.72%) to the total demand.

A maximum of 8456.80 MW is allocated for spinning reserve services.

4.5.2.2 Implementation of incentive based DRP

The demand on the IEEE 30-bus test system is divided into deferrable, firm and reducible loads. The

demand before and after the RLM is depicted in Figure 4.4. In this case, the impact of DLC is evaluated

considering the operation costs, spinning reserve allocation, substation participation level, incentive

paid to customers, total RES and thermal generation levels and the achieved demand reduction. A

Pareto optimal set is shown in Table 4.5 as well as the best compromise solution according to the

SO. The best compromise solution is highlighted in bold and corresponds to RES penetration level of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 ECONOMIC DISPATCH WITH RESIDENTIAL DEMAND RESPONSE

0

200

400

600

800

1000

1200

1400

0
0

:0
0

0
1

:0
0

0
2

:0
0

0
3

:0
0

0
4

:0
0

0
5

:0
0

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

G
e

n
e

ra
ti

o
n

/D
e

m
an

d
(M

W
)

Time (hours)

Thermal Generation

Wind Generation

PV Generation

Demand before RLM

Figure 4.5. Demand and generation for 24-hour dispatch period considering 10% RES penetration

level.

8296.30 MWh and total operation cost of $246,670.00.

When DRP is implemented on the substations, the total demand reduced during peak hour period is

830 MW while the demand deferred from peak to valley and off-peak is 509.72 MW. The difference

between the peak demand reduction and deferred load is 321.12 MW which is the actual achieved

demand reduction due to DLC implementation. This is properly shown in Figure 4.6 where the

RES and thermal unit generation makes up the hourly demand. From Figure 4.6 the morning peak

corresponds to the time when wind power is available and PV production is not a low and this is like

evening peak period. The total generation from thermal and RES units over a 24 our period is 18205

MWh (68.69%) and 8296.34 (31.31%) while the spinning reserve allocation is 8424.79 MW. The

substations contributing to RLM programme are active during peak hours which means they have

reduced their loads. In total throughout the peak period the RLM substation are actively participating

in the programme. This results in a total incentive of $12,844.8 MW to all the customers participating

in the RLM.
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Table 4.5. Pareto optimal set under renewable obligation of 10% and DLC.

RES (MWh) TC ($) SR (MW)

7951.30 245,640.00 8080.20

7987.60 245,640.00 8116.60

8044.00 245,650.00 8173.20

8095.20 245,670.00 8224.40

8111.20 245,680.00 8240.40

8112.20 245,680.00 8241.30

8113.60 245,680.00 8242.70

8134.50 245,720.00 8263.50

8174.60 245,840.00 8303.30

8296.30 246,670.00 8424.80

8592.30 1,091,700.00 31381.00

The reduction in demand during peak-demand period assists in lowering the system stress on the

flexible units to supply peak demand and reduce the overall operating costs. Moreover, the increase in

demand during valley period contributes to lowering the power production of highly loaded base load

generating units.

4.5.2.3 Comparison between base scenario and DRP DLC scenario

In this case study a comparison of Section 4.5.2.1 and Section 4.5.2.2 results is conducted. In the

first case a Pareto front curve for the two scenarios is presented in Figure 4.7 which shows the two

curves based on whether the DLC is implemented or not. From Figure 4.7, the Pareto front curve

where DRP is implemented is below the curve where there is no DLC programme. In this case, DRP

is implemented to improve the system flexibility by ensuring that more RES can be injected in the

power system. For the DRP Pareto front, more RES is injected at a low cost compared to the normal

case without DRP. This shows that the DLC programme increases RES penetration compared to the

normal RO penetration model without DLC. It also illustrates the importance of demand flexibility as

an important tool to improve fluctuations in RES generation by allowing more RES penetration.

Table 4.6 shows a detailed comparison of the base scenario RO model and the DLC RO model.
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Figure 4.6. Demand and generation for a 24-hour dispatch period under 10% RES penetration and

DLC.

To analyse the influence of DRP-DLC programme on the normal RO optimisation model, this section

evaluates the optimisation results as given in Table 4.6 which provides the optimisation results in

different scenarios. According to the results in Table 4.6, the demand before and after RLM is shown

as 321.12 MW which means that the implementation of DLC has significantly decreased the load

demand. This can be seen by the thermal unit output power over the dispatch period. In the first case

where no DLC is implemented, the overall thermal unit production is higher than the DLC case by

2.03%. This shows that the demand flexibility has reduced the need for an increase in thermal unit

production. The same analysis can be extended to the allocation of spinning reserve requirements

for the two scenarios. As clearly shown in Table 4.6, the base scenario has a higher requirement for

spinning reserve compared to the DLC case. The introduction of DLC reduces the spinning reserve

allocation by 0.38%. This leads to a reduction in the thermal unit ramping requirements as a result of

managing RES penetration fluctuations.

RES penetration level increase from base scenario to DLC scenario by 0.67%. This is mainly attributed
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Figure 4.7. Pareto front comparison between a DLC and non-DR programme.

by deferring load from peak period to valley period where PV production is at the highest. This is also

attributed by the low energy cost of RES compared to thermal units. More importantly, the flexibility of

demand response has increased the RES penetration. In fact, demand flexibility is acting a temporary

spinning reserve storage which in turn assists in improving network reliability and security associated

with an increased RES penetration.

The overall benefit of DLC is shown by a significant decrease in the total operation cost between the

two scenarios. Due to the reduced production of thermal units and minimised allocation of spinning

reserves the overall cost is also decreased for the DLC scenario. The reduction is operating cost also

includes an incentive that is paid to the participating customer. The overall cost reduction is 21.57%

lower than the base case scenario. These benefits are not only limited to demand reduction or the total

operating cost, but also includes a significant reduction in thermal generation capacity requirements

which also corresponds to a reduction in power flow congestion. This ultimately increases the utilisation

of RES units and it may speed up the integration of RES generators to power systems.
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Table 4.6. A comparison of base case and DRP case

Description Without DRP With DRP Delta

Daily demand (MW) 26822.5 26501.3 321.12

Thermal Gen (MWh) 18581.5 18205 376.5

RES Gen (MWh) 8241.01 8296.34 -55.33

SR (MW) 8456.80 8424.79 32

DR (MW) 0 321.12 -321.12

Peak RES Gen (MWh) 1774.03 1779.61 -5.581

Incentive ($) 0 12,844.80 -12,844.8

TC ($) 314,520 246,670 67,850

4.5.3 IEEE 118-bus test system

In this case study a large-scale power system is used to test the performance of the proposed DRP RO

mode on the IEEE 118-bus system. The system base line load is found from [83] and real data from

the RLM programme is used on load bus 2, 12, 18, 32 and 59. The total demand before and after the

implementation of RLM is 126,854 MW and 125,830.20 MW. The sizes and parameters of the RES

generators can be found in [86] and the total installed capacity is 1859 MW. The RES output power is

same as the one shown in Figure 4.4.

The two cases, which were studied in Sections 4.5.2.1 and 4.5.2.2 are also performed for the large-scale

system. Table 4.7 shows a comparison between the two cases studies. The overall performance of a

large-scale test system shows no deviation from a small network since the results are consistent with

previous system.

For example, in Table 4.7, the flexibility due to demand reduction is shown to increase the overall RES

penetration while decreasing the production of thermal units. In total, the thermal units reduce their

production by 2.14% while the RES penetration is increased by 3.49%. This is consistent with the

previous test system. The reduction in thermal unit production is also followed by the reduction in

spinning reserve allocation of 0.81%.

The implementation of the DLC programme has a positive impact on the operation cost. The overall
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Table 4.7. A large-scale comparison of base case and DRP case

Description Without DRP With DRP Delta

Daily demand (MW) 126854 125830.2 1023.78

Thermal Gen (MWh) 96895,69 94825.8 2069.89

RES Gen (MWh) 29958.00 31004.48 -1046.48

SR (MW) 38056 37749.07 306.93

DR (MW) 0 1023.78 -1023.78

Peak RES Gen (MWh) 6500 6500 0

Incentive ($) 0 40,951.20 -40,951.20

TC ($) 2,288,000 1,926,400 361,600

operating costs are reduced by 15.8% while an incentive of $40,951.20 is paid to participating customers.

The total demand reduction before and after the RLM implementation is 1023.78 MW. Figure 4.8,

shows the overall demand before and after the implementation of the RLM programme. In this case

study, there is no increase in RES production during peak hours as it remains the same.

4.6 CONCLUSION

This chapter proposes a demand response programme with renewable obligation with the aim of

maximising renewable penetration level while shifting and reducing flexible load. The proposed model

uses real data from a residential load management programme implemented in South Africa to test

the effectiveness of demand response on increasing renewable energy level in the network. To show

the effectiveness of the proposed mode, a 30-bus system is used to evaluate the maximum increase

in renewable penetration due to demand reduction. A comparative study is used to illustrate the

effectiveness of the proposed model in terms of the operating cost, peak load reduction, deferred load,

spinning reserve allocation and incentive paid. The conclusion related to all the key indicators are as

follows:

1. The proposed optimisation model helps the system in scheduling renewable energy sources

and thermal units while allocating enough spinning reserves. The proposed model introduces

demand response to improve the level of renewable energy penetration while minimising the

system total operating cost.

2. For the large-scale network, demand response is used to increase the overall renewable energy
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Figure 4.8. Comparison of demand before and after the implementation of RLM for a large-scale

network.

penetration by as much as 3.49% and the total operating cost is reduced by 15.8%. Transmission

constraints are reduced.

3. A comparison of the normal renewable obligation model and demand response model shows

that demand response is an effective tool to achieve system at a level of reliability at a minimum

operating cost.

The current renewable obligation and demand response model does not take into consideration the

uncertainty of renewable energy sources as well as real-time electricity prices. Therefore, the future

research will include uncertainty in renewable energy source modelling, and the demand/supply bid

curves in modelling the impact of demand response on renewable penetration.
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CHAPTER 5 MULTI-OBJECTIVE STOCHASTIC

ECONOMIC DISPATCH WITH

MAXIMAL RENEWABLE

PENETRATION UNDER RENEWABLE

OBLIGATION

In this Chapter, the deterministic renewable obligation model is extended to stochastic in order to

handle the uncertainty of renewable energy sources.

5.1 INTRODUCTION

The intermittent nature of renewable energy sources (RES) has created a challenge for their integration

into the conventional power system. This increase in stochastic RES generators has escalated the

cycling cost of thermal generators and has resulted in high operating costs. Consequently, it is very

important to include the stochastic nature of wind and photovoltaic (PV) power plants to reduce

uncertainty in generation scheduling and allow a smooth integration into the power system. As part

of the integration of RES generators to the power system it is important to quantify the level of RES

penetration to adequately operate the power system within its operational limits. A typical quantity-

based instrument used to quantify the level of RES penetration in the grid is known as a renewable

obligation (RO). It refers to the minimum renewable energy quota to be adhered to without imposing

any penalty for non-compliance. A useful tool used to quantify the dispatch of intermittent energy

sources is the classic economic dispatch. Economic dispatch is a power system operation problem

which optimises the generation resources within each dispatch interval.

In general, there are two policy frameworks that are commonly used to boost the penetration of RES
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CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

[86]. A tariff-based instrument is the feed-in tariff (FIT), which provides an economic incentive

for generating electricity using RES. A quantity-based instrument requires electricity suppliers to

comply to a minimum renewable energy quota. This is known as RO in the UK or renewable purchase

obligation (RPO) in other parts of the world. The RO allows electricity suppliers to buy a specified

amount of their electricity sales from renewable sources. For each renewable energy sale, a renewable

obligation certificate (ROC) is issued to demonstrate compliance to RES quota. Normally, a single

ROC is equivalent to 1 MWh of renewable energy production. If the RES quota is not achieved, a

penalty is payable by the generation companies. This approach of RO is used to support large scale

generation of RES by fast tracking the integration of RES in the power system. This type of policy

framework requires that a certain percentage of energy is attributed to RES and under this agreement a

penalty is imposed for non-compliance. Moreover, the renewable energy quota is measured annually.

This policy framework guarantees the use of renewables in the electricity generation as the RES target

is dependent on the countries renewable energy policy and is administrated by the system operator

(SO).

The increased level of RES penetration is normally approached from a dynamic economic dispatch

(DED) point of view. In [113], [114], a DED with wind and PV injection is considered using the

method of penalising the under and over estimation of the RES generators. The method used in

approximating the under and over estimation of RES penetration considers the Weibull probability

density function (PDF) for wind generation and a bimodal Weibull or Beta PDF for PV generation.

The conventional DED has made great strides in approximating the level of RES penetration in the

grid. It, however, has a limitation since it does not include the uncertainty of renewable generation

and system demand. This has led to two main approaches adopted by many researchers for including

uncertainty which are robust optimisation and stochastic programming.

The addition of large-scale intermittent energy sources such PV and wind generators has adversely

affected thermal generators performance in the power system. Their integration has increased the

cycling costs of thermal generators [115]. This has led to an overall increase in maintenance cost of

thermal generators [116]. To lower the variability and uncertainty of RES integration, both robust and

stochastic optimisation framework are used for optimal scheduling of RES and thermal generators

[117].

In the robust optimisation approach studied in [118], the aim is to scale down the ramping and cycling
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rates of thermal generators. This is performed to reduce the total operating costs associated with high

RES penetration using a chance constraint approach. In [119], a DED problem with wind penetration

is changed into a robust optimisation model and further transformed into a deterministic problem.

The purpose of the model is to lessen the uncertainty of the wind power generation and improve the

different levels of adjustable uncertainty budget. An adaptive robust optimisation is presented in [120],

where a multi-period economic dispatch is used to model the uncertainty related to temporal and spatial

correlations of wind power generators. In [121], [122] the stability of the power system is analysed

using robust optimisation considering a high level of wind generation. Although robust optimisation

has been applied to circumvent the challenges of uncertainty of wind and PV generators, the main

disadvantage is that it only considers the worst case in the analysis of RES penetration level. The

robust optimisation framework increases the operating cost that affects the optimal dispatch scheme.

This is especially the case when a multi-objective optimisation problem is considered. It is generally

unable to coordinate the multi-objective with a single min-max-min mathematical model [123].

In contrast to robust optimisation, the stochastic programming approach uses a large number of

scenarios to handle uncertainty in RES generation. In scenario generation method the stochastic

variables are identified by the location, environmental parameters and renewable energy type. The

analytical method includes fast Fourier transform method (FFTM), multi-linear simulation method

(MLSM) and point estimation method (PEM) [33]. On the other hand, simulation methods such as

Monte Carlo simulation (MCS) are used for PV and wind scenario generation, however, they are

computationally inefficient compared to Latin hypercube sample (LHS). A two-stage stochastic DED is

presented in [124], where the system variability is modelled in terms of uncertainty in wind generation

and demand. The model is solved using a stochastic decomposition algorithm to take the uncertainty of

wind generation and apply it to real-time applications. In [125], a stochastic unit commitment model is

given for long-term generator allocation and dispatch which considers the uncertainty related to the

load forecast errors and intermittent wind generation patterns. A multi-stage stochastic DED problem

in [126] presents a multi-area transmission constrained problem. The uncertainty model is related to the

multi-area RES production with the aim of increasing the dispatch storage. An integrated wind-thermal

and energy storage self-scheduling model is demonstrated in [127] for energy and spinning reserve

market. This study uses a three-stage stochastic framework to show the benefit of energy storage

in the spinning reserve market. Authors in [128] presented a two-stage DED for a multi-wind farm

generation considering copula correlation among the different wind farm sites. The solution is obtained

by decoupling the stochastic variables and reformulating the problem as a deterministic DED. In [129],
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a dynamic carbon emission trading scheme is proposed for reducing carbon emission of thermal power

generators by coordinating PV and wind generators in the energy mix to meet the Chinese carbon

emission reduction targets.

A combined wind-thermal stochastic generation is presented in [130], from the utility’s perspective.

The model presented minimises the dispatch of thermal generators in each dispatch horizon while taking

into consideration the uncertainty of wind generation and pool market. An optimal decomposition

technique is utilised to solve the problem in real time. The uncertainties of wind generation and market

electricity prices are modelled by a scenario generation approach. In [131], a stochastic scheduling

DED model with multiple time resolution is presented for a high RES injection problem. The problem

is presented in twofold, firstly a unit commitment problem is solved, and thereafter an economic

dispatch model is solved for short term operations.

The literature reviewed shows that it is possible to integrate RES to the power system considering

both the stochastic and robust optimisation framework while minimising RES curtailment. However,

there is still a need for a detailed and optimal framework which considers renewable integration from

the RO point of view. In this chapter, we extend on a renewable obligation framework presented in

[86] by introducing the stochastic nature of RES. This is done to quantify the level of RES generated

daily while minimising the expected system operating costs. In addition, the proposed model aims to

maximise the level of RES energy produced without the need for curtailment [132]. In this model, the

scenarios for wind and PV output power are created to realise a RES quota from the SO perspective.

The generation companies are subjected to penalties imposed by the SO, if they do not meet a minimum

set out obligation. The battery energy storage system (BESS) is added to the model to leverage on the

storage of excess energy from the RES to the BESS and it is only used in times of low-RES production

and high demand. Moreover, it is also used to reduce the spinning reserves of the thermal generators.

The contributions are listed below;

1. A novel stochastic multi-objective RO model is presented for joint scheduling of power dispatch

and maximising RES penetration.

2. A stochastic multi-objective RO model is changed into a single objective function using weight-

ing factor approach.

3. A preference-based approach is used to select an optimal solution from a Pareto Front set.

4. A BESS unit is introduced to support thermal generators in spinning reserve allocation.
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The contents of this chapter are organised into six sections. In Section 5.2 a renewable obligation

framework is presented for the proposed stochastic model. In Section 5.3, the stochastic DED model

is developed which includes PV, wind, BESS and conventional generators in the energy mix. In

Section 5.4, a scenario generation method for wind and PV uncertainty is presented. Additionally,

a scenario reduction method is presented and as well as a method for reducing redundant inactive

constraints for a stochastic security constraint economic dispatch (SCED). In Section 5.5, the feasibility

and efficiency of the proposed method are investigated on two test systems. Finally, in Section 5.6 the

conclusions are drawn.

5.2 RENEWABLE OBLIGATION POLICY FRAMEWORK

The RO policy is focused on increasing the level of renewable energy in the overall electricity pro-

duction. The fundamental premise behind any RO policy is to encourage investment in renewable

energy by ensuring that renewable energy production is included in the electricity production portfolio

of the country. Typically, the renewable target is set on an annual basis and increases gradually per

annum. The generation companies have the choice of building their own RES as a strategy to achieve

the RO target. Alternatively, they can also choose to buy ROC from third party companies. If they fall

short of meeting the required RO, they are required to pay a penalty associated with the RES target

deficit. This penalty is measured on every MWh of renewable energy produced. There are several

technologies that are considered in the RO target, i.e., offshore wind and onshore wind, PV plant, tidal

wave electricity generation, concentrated solar power generation, and geothermal generation. All the

technologies have different ROC rating with the emerging technologies such as tidal energy having the

highest ROC rating per MWh produced [133].

In the open market, where generation companies are competing against each other, RES can be at a

disadvantage due to its inherent nature of variability and uncertainty associated with power production.

The RO ensures that RES is included in the energy mix thus increasing the level of RES in the grid.

The general framework proposed is such that the SO is responsible for optimal dispatching of all

generators, and the RES generators are given first preference over thermal generators. Generation

companies provide forecasts to the SO with a 1-day lead time. The SO is responsible for optimally

scheduling the available power to meet the system demand. In addition, the SO also ensures the

renewable target is attained daily by continuously monitoring the energy production and providing

feedback to generation companies. A typical policy framework for a renewable obligation model is

shown in Figure 5.1.
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Figure 5.1. Renewable obligation policy framework for optimal energy mix and reserve allocation.

In Figure 5.1, the generation mix is made up of thermal, PV, wind, and BESS generating units. The

policy framework is made up of three main components, i.e., the generation companies, the regulator

or SO and the customers. The generators produce clean energy and the SO ensures that the renewable

quota is achieved while maximising RES penetration and optimally scheduling energy and allocating

the minimum spinning reserves.

5.3 PROBLEM FORMULATION

The approach considered in this chapter treats wind and solar power as non-dispatchable. The following

assumptions are made for the formulation of the DED problem with RES obligation. All the RES (wind

and solar) must be consumed first and the thermal generators must reduce their generation capacity to

give preference to RES generators. The dispatch period considered in all the case studies is fifteen

minutes. All RES is non-dispatchable and cannot be used as part of spinning reserves unless they have

storage. The SO is responsible for dispatching all the generators including RES and BESS generators.

The thermal and BESS generators can be used for spinning reserve. All the RES and BESS generators

are owned by independent power producers (IPP).
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5.3.1 Objective function

The objective is made up of two objective functions, i.e., the fuel cost minimisation with RO and the

RES maximisation function. The objective functions are as follows:

min J1 = E{CT} (5.1)

max J2 = E{ERES} (5.2)

5.3.1.1 Minimisation of the total operating cost CT

The expected operating cost E{CT} in (5.3) is made up of two terms. The first term is the total

operating cost of each generating unit, that is, thermal generators, RES generators and BESS. For each

scenario, the operating cost is multiplied by the probability of that scenario occurring. The second term

is related to the renewable obligation policy framework which ensures an adequate energy mix.

(5.3)E{CT} =
NΩ

∑
ω=1

T

∑
t=1

πω

(
NG

∑
g=1

Cg(Pg,t,ω) +
NM

∑
m=1

Cm(Pm,t,ω) +
NV

∑
v=1

Cv(Pv,t,ω) +
NS

∑
s=1

Cs(Ps,t,ω)

+
NR

∑
r=1

Cr,ω(Pr,t,ω)

)
+ Γ

The second term of the RO model is presented by the notation Γ which is shown in (5.4).

Γ = γ

NΩ

∑
ω=1

T

∑
t=1

πω

(
α

(
NG

∑
g=1

Pg,t,ω +
NM

∑
m=1

Pm,t,ω +
NV

∑
v=1

Pv,t,ω +
NS

∑
s=1

Ps,t,ω

)
−

(
NM

∑
m=1

Pm,t,ω +
NV

∑
v=1

Pv,t,ω

))+

(5.4)

The second term of the expression in (5.3) is the sigmoid function Γ(·)+ which is equal to γ if the

renewable target is not achieved and 0 otherwise; α is the required RO in percentage which means that

a portion of the total scheduled output power must come from RES. The penalty cost is represented by

γ , which is the cost imposed for not achieving the RES obligation requirement and πω is the probability

of each scenario. The generator cost function is a quadratic equation as shown in (5.5) where the units

for the cost coefficients are $/MWh2, $/MWh, and $/h and the generator spinning reserve cost is a

linear function as shown in (5.6).

Cg (Pg,t,ω) =

(
1
n0

) NG

∑
g=1

(
ag +bgPg,t,ω + cgP2

g,t,ω
)

(5.5)

Cr (Pr,t,ω) = ρrPr,t,ω∆t (5.6)
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Note n0∆t = 1 hour where n0 = 4 and ∆t = 0.25. This notation is introduced to ensure that the model

can be applicable to any sampling period as long as it satisfies n0∆t = 1 hour. The cost functions for

wind and PV generators are shown in (5.7) [86] and (5.8) [134], respectively, and the operating cost

for BESS generating unit is shown in (5.9) [135].

Cm (Pm,t,ω) = ζmPm,t,ω∆t. (5.7)

Cv (Pv,t,ω) = ϕvPv,t,ω∆t. (5.8)

Cs (Ps,t,ω) = τsPs,t,ω∆t. (5.9)

The costs of PV, wind and BESS comprise of a direct cost related to the SO buying energy from the

IPP, where ζm is the wind energy cost in $/MWh, ϕv is the PV energy cost in $/MWh and τs is the

BESS energy cost in $/MWh.

5.3.2 Maximisation of the renewable energy penetration

The second objective function is the maximisation of the expected renewable energy into the grid. It is

worth noting that the second objective of the maximum renewable energy is partially covered by the

minimisation of RO violation cost in the first objective function. If the renewable energy obligation

can be met, then no penalty is imposed. The amount of renewable energy power scheduled to the grid

may not be maximal. With the second objective function the amount of dispatched renewable energy

has to be maximised to overcome the limitation of merely meeting the obligation without maximising

the RES energy penetration. The second objective function is shown in (5.10).

(5.10)E{ERES} =
NΩ

∑
ω=1

T

∑
t=1

πω

(
NM

∑
m=1

Pm,t,ω∆t +
NV

∑
v=1

Pv,t,ω∆t

)

5.3.3 Constraints

The DED problem under investigation has five constraints which are considered as hard or soft

constraints. These constraints are:

1) Real power balance which represents the sum of all generating units, i.e., the thermal generators,

wind power generators and PV plant generators that should meet the forecast demand as given in

(5.11).
NG

∑
g=1

Pg,t,ω +
NM

∑
m=1

Pm,t,ω +
NV

∑
v=1

Pv,t,ω +
NS

∑
s=1

Ps,t,ω =
NB

∑
b=1

Pb,t ∀t,∀ω (5.11)
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The BESS stores excess energy and returns the energy back into the grid. In this chapter, positive Ps,t,ω

indicates the discharging mode and negative Ps,t,ω indicates the charging mode.

Ps,t,ω = Pd
s,t,ωxs,t,ω −Pc

s,t,ωys,t,ω ∀t,∀ω (5.12)

where Pd
s,t,ω and Pc

s,t,ω are the discharging and charging power of the battery, and xs,t,ω and ys,t,ω are

binary variables that ensure that discharging and charging do not take place at the same time as shown

in (5.13) [136], [137].

xs,t,ω | ys,t,ω =


1, if battery is charging;

0, if battery is discharging.
(5.13)

2) Generator ramp rate and BESS stored energy. This is only applicable to thermal generators. The

ramp up and ramp down units are in MW/h as given in (5.14).

Pg,t,ω −Pg,t−1,ω ≤URg∆t ∀g,∀t,∀ω (5.14a)

Pg,t−1,ω −Pg,t,ω ≤ DRg∆t ∀g,∀t,∀ω (5.14b)

Pr,t,ω −Pr,t−1,ω ≤URg∆t ∀r,∀t,∀ω (5.14c)

Pr,t−1,ω −Pr,t,ω ≤ DRg∆t ∀r,∀t,∀ω (5.14d)

Es,min ≤ Es,t,ω ≤ Es,max ∀t,∀ω (5.14e)

Es,0,ω = Es,t f ,ω ∀t,∀ω (5.14f)

3) Generator limits. The generator limits are applicable to thermal, RES and BESS generators.

Equations (5.15) and (5.16), show the thermal generator limits. Since Pm,t,ω and Pv,t,ω flow from

wind and PV systems into the grid, respectively, they are represented by (5.17) and (5.18). The top

limit is the forecasted wind power generation and solar power generation at time t, and scenarios ω ,

respectively. They both include the amount of power flow to the network and the remaining amount,

which is either consumed locally or curtailed due to line capacity limit. The BESS limits are shown

in (5.19) and (5.20). Equation (5.21), ensures that the charging and discharging of the battery cannot

happen at the same time. The energy balance of the battery that considers the amount of charged or
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CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

discharged energy and the relevant charging or discharging efficiency is given in (5.22).

Pg,t,ω ≤ min(Pg,max,Pg,t−1,ω +URg) ∀t,∀ω (5.15)

Pg,t,ω ≥ max(Pg,min,Pg,t−1,ω −DRg) ∀t,∀ω (5.16)

Pm,t,ω ≤ Pm,t,gen,ω ∀t,∀ω (5.17)

Pv,t,ω ≤ Pv,t,gen,ω ∀t,∀ω (5.18)

0≤ Pd
s,t,ω ≤ Pd

s,max ∀t,∀ω (5.19)

0≤ Pc
s,t,ω ≤ Pc

s,max ∀t,∀ω (5.20)

xs,t,ω + ys,t,ω ≤ 1 ∀t,∀ω (5.21)

Es,t,ω = Es,t−1,ω −
Pd

s,t,ω∆tys,t,ω

ηd
+ηcPc

s,t,ω∆txs,t,ω (5.22)

4) Spinning reserve constraints.

Pg,t,ω +Pr,t,ω ≤ Pg,max ∀g,∀t,∀ω (5.23)

0≤ Pr,t,ω ≤ SRRr,max ∀t,∀ω (5.24)
NR

∑
r=1

Pr,t,ω ≥ SSRR ∀t,∀ω (5.25)

NG

∑
g=1

Pg,t,ω +
NR

∑
r=1

Pr,t,ω +
NS

∑
s=1

Ps,t,ω ≥
NB

∑
b=1

Pb,t ∀t,∀ω (5.26)

where Pr,t,ω is the reserve contribution of unit g during time interval t and scenario ω . Constraint

(5.24) represents the maximum reserve contribution for each generator where SRRr,max is the maximum

contribution of unit g to the spinning reserve requirement (SRR). Constraint (5.25) is the minimum

total system spinning reserve requirement (SSRR) for each time interval, and (5.26), simply means

that the sum of the total generation, spinning reserve and BESS generators must be able to support the

demand without RES generators.

5) Network transmission constraints. For the economic dispatch problem, only the active power of the

transmission line under RES forecast is considered as shown in (5.27).

−Pl,max ≤ Pl,t,ω ≤ Pl,max, ∀l,∀t,∀ω (5.27)

The transmission line power of line l at time interval t and scenario ω , which will be calculated by a

nonlinear power flow for small size power systems, and DC power flow for large size power system is

shown in (5.28).

Pl,t,ω =
NG

∑
g=1

Gl,gPg,t,ω +
NM

∑
m=1

Fl,mPm,t,ω +
NV

∑
v=1

Hl,vPv,t,ω +
NS

∑
s=1

Ql,sPs,t,ω −
NB

∑
b=1

Dl,DPb,t (5.28)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

where Gl,g, Fl,m, Hl,v, Ql,s and Dl,D denote the active power transfer coefficient factor between line l

and thermal generator, wind farms, PV plant, BESS system and loads. The overall objective function

is summarised as follows in (5.29).

min J = (1−ϑ)J1−ϑJ2 (5.29)

where ϑ is the weighting factor that converts the multi-objective functions into a single objective

function, and a Pareto front is obtained by varying ϑ from 0 to 1. The objective function (5.29) is

subject to constraints (5.11) - (5.28).

5.3.4 Formulation of multi-objective optimisation model

The proposed multi-objective optimisation model presented in the previous section is presented in its

compact form as follows:

min J(x) = {J1(x),J2(x), · · · ,Jk(x)} ∀k ∈ K (5.30)

s.t hi(x) = 0;∀i ∈ NI (5.31)

g j(x)≤ 0;∀ j ∈ NJ (5.32)

where J1(x) to Jk(x) represent multiple objective functions in (5.1) and (5.2), the value of K is 2, and x

is the output vector which consists of an optimal dispatch solution for thermal and RES generators.

The equality constraint in (5.11) is indicated by (5.31) and the inequality constraints from (5.14) to

(5.28) is denoted by (5.32).

5.4 SCENARIO GENERATION FOR WIND AND PV GENERATORS

The principles of these techniques are explained in the following subsections.

5.4.1 Scenario generation using Latin hypercube sampling

The generation power of PV and wind turbine depends on the environmental input. The variation of

wind speed is a key factor for the evaluation of wind turbine output. As for the PV generation, the

variation of solar irradiance is used to determine the output power of a PV plant. The uncertainty of

wind power comes from the stochastic nature of wind speed while that of PV depends on external

weather conditions such as clouds. The forecast errors of the RES generators are taken as random

variables with specific PDF [138]. Afterwards, LHS method [139] is used to generate scenarios. The

associated PV and wind power output scenarios are as follows.

Pv,t, = Pv,t, f +∆Pv,t,e (5.33)

Pm,t = Pm,t, f +∆Pm,t,e (5.34)
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where Pv,t, f and Pm,t, f are forecasted value of the output wind and PV power and PV from the autore-

gressive moving average (ARMA) model and Pv,t,e and Pm,t,e are the prediction error of the output wind

and PV power at time t which is defined by the ARMA(1,1) [140], [141].

∆Pv,t,e = φv∆Pv,t−1 + ev,t +θvev,t−1 (5.35)

∆Pm,t,e = φm∆Pm,t−1 + em,t +θmem,t−1 (5.36)

where φ and θ are the auto-regressive and moving average parameters, which are obtained by minim-

ising the mean square error of the ARMA model from the historical data of RES output power. The

PDF of wind forecast error is considered as a Weibull distribution function. While a normal distribution

function is used for the PV power forecast error. Moreover, for scenario generation purposes the

empirical PDF and cumulative distribution function (CDF) from historical data are used. The RES

data profiles are taken from [142] for a period of 2018.

The LHS method in [33], [143], is the method used to create scenarios of RES generation. Firstly,

the PDF of the two uncertain variables are defined and their respective correlation matrix are created.

LHS are used to generate different outcomes of dependent variables from different PDFs [144]. The

following steps are employed to create 1000 scenarios of even probability.

1. Step 1: A Latin cube with the same number of independent variables is defined using the inverse

cumulative distribution function (ICDF) of the normal variable with zero mean and a standard

deviation of one to map the independent random variable of the sample to a value.

2. Step 2: The independent normal variables are formed from the Latin cube.

3. Step 3: The dependency to the independent normal variables is added using the Cholesky

transformation which results in dependent variables. This means that when a normal CDF is

applied to a normal random variable, the result is a uniform distribution between zero and one

which still maintains the dependency between the variables.

4. Step 4: In the final step, the dependent uniform distributions are mapped using the ICDF to their

original PDF, which results in dependent random variables.

5.4.2 Scenario reduction

In order to reduce the number scenarios, the initial scenarios are approximated by finite scenarios of

even probabilities. The scenario reduction determines a scenario subset and assigns new probabilities

to the preserved scenarios so that the corresponding reduced probability measure is the closest to

the original measure in terms of probability distance. The probability distance trades off scenario

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

probabilities and distance of scenario values, and the Kantorovich distance of probability distribution

is used for scenario reduction [42], [145]. The scenarios can be reduced using forward or backward

reduction algorithm as described in [146]. The final reduced scenarios with their respective probability

are used in the stochastic programming model as shown in Figure 5.2.

Start

Measured PV 

output power

Measured wind 

output power

Data pre-

processing

Collect time series data
Create a Latin cube 

independent variables

Evaluate PV and wind power 

output as per (34) and (35)

Generate random error 

terms using Latin 

hypercube sampling for 

ARMA model (36) and (37)

Model meets the 

convergence condition

Establish model ARMA(1,1)

Transform the samples 

using ICDF of the normal 

variables

Transform the samples 

using Cholesky 

transformation

Evaluate the normal CDF 

Map uniform dependent 

distribution using ICDF to 

original PDF  

Yes

No

Is scenario <1000

1000 PV and wind output 

power scenarios

Yes

No

MATLAB SCENRED function 

used to reduce initial 

scenarios to 10 

Input to stochastic 

optimisation model
End

Figure 5.2. The process of generating scenarios from historical data using ARMA and LHS process to

generate 1000 scenarios and then reducing the scenarios to 10 for stochastic optimisation model.
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5.4.3 Line capacity constraint reduction

The SCED increases the number of constraints based on the number of scenarios, number of trans-

mission lines involved and the time horizon considered. Generally, the constraints increase when the

problem is extended to the stochastic SCED model. Most security constraints are inactive and as a

result do not affect the optimal solution. It is important to identify these inactive constraints; these

can be eliminated to reduce the problem complexity. Authors in [147], identified an effective method

of eliminating the inactive constraints without affecting the original optimal solution. The inactive

constraints are only related to the system demand and transmission line parameters, and if the security

constraint is inactive, then it is applicable as long as the system demand does not change.

Theorem 1 [147]. For a SCED optimisation problem with a feasible region S = {x ∈ R | Ax≤ b}, there

exists a relaxed feasible region such that the kth constraint Ak
l,t,ωx≤ bk is inactive and can be omitted

in S and provided a new optimisation model max Ak
l,t,ωx≤ bk is feasible if Ak

l,t,ω ≤ Pl,max.

A new problem is formulated as follows.

Ak
l,t,ω = max

NG

∑
g=1

Gl,gPg,t,ω +
NM

∑
m=1

Fl,mPm,t,ω +
NV

∑
v=1

Hl,vPv,t,ω +
NS

∑
s=1

Ql,sPs,t,ω −
NB

∑
b=1

Dl,DPb,t (5.37)

The objective function in (5.37) is subject to a power balance constraint (5.11) and generator limit

constraints (5.15) to (5.21). The optimal solution is compared to the upper bound in (5.27) and if the

optimal solution is smaller than the upper bound, then the lth transmission line at time t and scenario

ω is considered inactive and can be removed from the optimisation model [42].

5.5 NUMERICAL CASE STUDIES

The proposed optimisation model is applied to the IEEE bus test systems, i.e., the modified IEEE

30 and 118-bus systems. The historical data of RES generators and system load are obtained from

Elia Group using a temporal resolution of 15-minutes [142]. The RES data is collected over a period

of a year from January 1st 2018 to December 31st 2018. The integrated PV and wind farms are

connected to buses 7, 15, 22, and 24. The modified IEEE 30-bus system has 6 thermal generators and

41 transmission lines. The ramp rates and quadratic cost coefficients are taken from [112]. The BESS

system is connected to buses 26 and 28 respectively. The second IEEE 118-bus system consists of

54 thermal generators and 186 transmission lines. Ten additional RES generators are added to the

system on buses 1, 33, 38, 52, 68, 75, 96, 102 and 117. In the second test system, a combination

of five PV and five wind systems is used. The BESS generators are added to buses 9 and 11. The

details of the IEEE 118-bus system can be found in [83]. The fixed demand at each bus is the portion
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of the total capacity at each sampling period. The transmission line flow limit is simulated by using

DC power flow and a sampling interval of 15 minutes is considered due to the intermittency of RES

generators. The optimisation problem is solved over a 24-hour period. In the simulation studies, all the

uncertainty is generated from 1000 scenarios which are further reduced to 10 scenarios and are solved

using a deterministic approach. In all simulation studies, a RES penetration level of 10% is used as a

benchmark and if the obligation is unattained, a penalty of $100,000 per day is imposed on generation

companies by the SO. In addition, the system spinning reserves requirement is based on 30% of the

maximum thermal generator capacity and the spinning reserves requirement of each generator is equal

to the maximum generator capacity.

The optimisation problem presented in Section 5.3 is a mixed integer quadratic programming (MIQP)

problem. The scenarios are generated and reduced using MATLAB [144], [145] and the optimisation

model has been implemented using IBM ILOG CPLEX optimisation studio [148] on a quad-core 3

GHz desktop computer. The MIQP model is implemented by CPLEX using optimisation program-

ming language (OPL). The main advantage of using CPLEX is the ease of software syntax to the

mathematical representation of the optimisation problem. In order to show the effectiveness of the RO

model the effects of the operating cost under RO target are analysed, the reduction in spinning reserve

allocation due to BESS operating units and the impact of RES penetration on the overall energy mix.

In all comparisons a RO target of 10% is used as a benchmark, and the RO model is tested on the IEEE

30-bus system to illustrate the effectiveness of the model by considering the following cases:

1. A comparison of the proposed stochastic RO model to the deterministic model to show the

impact of RES intermittency on the key comparison parameters;

2. The impact of varying the RO target from 5% to 50% at a step of 5% on the overall energy mix

and total operating cost;

3. The impact of using different penalty costs to measure the RES penetration level; and

4. The impact of changing the transfer limit on the overall RES penetration level.

Thereafter, IEEE 118-bus system is also used to test the model on a large-scale test system to measure

the effectiveness of the proposed stochastic RO model.
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5.5.1 Implementation steps

The step-by-step approach for implementing the stochastic RO model for a combined energy and

reserve dispatch is provided as follows.

1. Generate 1000 scenarios of wind and PV output power based on the scenario generation algorithm

in Section 5.4.1.

2. Due to the high computation requirement for large scenario sets, the fast-forward reduction

algorithm in [146] mentioned in Section 5.4.2 is applied to reduce the original 1000 scenarios to

10 scenarios.

3. Formulate the deterministic based joint energy and reserve scheduling under RO framework

using the reduced scenarios as the input to the model.

4. Using the inactive constraint theorem presented in (5.37) the preliminary optimisation problem

is solved, which reduces the number of inactive line capacity constraints that are related to the

system demand and transmission line parameters.

5. Set the weighting factor in (5.29) to zero and solve the reformulated optimisation problem.

6. The reformulated MIQP is solved using dynamic search in CPLEX which is a search strategy

for mixed integer programming (MIP) problems using the OPL parameter “MIPSEARCH”.

7. Increase the weighting factor from 0 to 0.1 and solve the reformulated optimisation problem;

iterate until the weighting factor is equal to 1.

8. Output the Pareto optimal set solution.

9. Applying the preference-based approach to select the best compromise solution using lower and

upper boundaries of RES penetration and total operating costs.

10. Implement the best compromise solution and provide the optimal RO dispatch strategy.

The overall implementation flow chart is shown in Figure 5.3.

5.5.2 Case study 1: IEEE 30-bus deterministic renewable obligation

In this section, the new model benefits are demonstrated by comparing the deterministic to the stochastic

model. In order to compare the proposed model, the total operating cost, actual RES penetration level

and the reduction in spinning reserves due to an increase in BESS penetration are used for comparison.

The sizes of the PV plants are 500 MW and 275 MW and the size of the wind farms are 300 MW

and 350 MW. The two BESS generators are rated at 15 MWh each and the charging and discharging
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Start

Obtain external data of wind and PV generation data:  Generate 

1000 scenarios of wind output power and photovoltaic output 

power

Scenario reduction: Calculate a scenario subset and assign new 

probabilities to the preserved scenarios.

Formulate 
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energy and reserve 

scheduling

Reduce Number of inactive line 

capacity constraints (38) s.t. 

(11), (15) – (21)

Optimisation 

solution
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generators 
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Figure 5.3. Optimisation algorithm for solving multi-objective stochastic RO model with Pareto

optimal set and preference-based approach for selecting the best compromise solution.

efficiency is considered as 90%. The total installed capacities of RES and BESS generators are 1425

MW and 30 MWh, respectively. All the transmission line thermal limits are maintained at 100%. The

IPP costs of energy for PV are 1.5 $/MWh and 3.0 $/MWh, and the costs of energy for wind are 1.3

$/MWh and 4.0 $/MWh and finally the costs for BESS are 1.36 $/MWh and 1.31 $/MWh, respectively

[149]. Table 5.1 shows the thermal generator data. The daily forecasted demand and the power transfer
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Table 5.1. Thermal generator data.

Unit Pmax Pmin ag bg cg RU DR

G1 350 50 240 7.00 0.0070 60 60

G2 250 50 200 10.0 0.0095 60 60

G3 150 50 220 8.00 0.0090 60 60

G4 350 50 200 11.0 0.0090 60 60

G5 450 50 220 10.5 0.0080 60 60

G6 500 50 190 12.0 0.0075 60 60

thermal limit of each transmission line is shown in Figure 5.4. The ARMA model for wind and PV
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Figure 5.4. Forecasted demand and transmission line thermal limit for IEEE 30-bus system.

output power is given in Table 5.2. All the fifteen minute data for demand and RES output power are

obtained from EirGrid [142]. Figures 5.5 – 5.12, shows the RES output power for 1000 generated

scenarios and the 10 reduced scenarios, respectively.

5.5.2.1 Solver parameter relaxation

A pre-solved relaxation parameter is used which performs the reduction with tight tolerances (1e−10)

than the default simplex tolerance (1e−6) and offers more compact matrix and identifies obvious

infeasibility much quicker. This is applied to the MIQP for root relaxation in order to perform
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Table 5.2. ARMA model for wind and PV output power.

Description φ θ

Wind 1 1.0 0.634012

Wind 2 0.968057 0.278895

PV 1 0.986552 -0.155482

PV 2 0.989746 0.072684
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Figure 5.5. Forecasted wind power plant 1 with 1000 generated scenarios.

preliminary reduction, elimination, substitution and coefficient modification in solving the optimisation

model. Moreover, a dynamic search algorithm is used for solving a MIQP using a parallel mode

switch parameter, and the continuous optimiser is set to solve the initial relaxation using dual simplex

optimiser for root relaxation under the CPLEX OPL environment. The impact of implementing the

relaxation parameter reduces the computing time and minimises the memory required to solve the

optimisation model. Typically, the root relaxation computing time takes between 4 to 6 s while the

overall root, branch and cut computing time is between 9 to 10 s compared to the default parameter

setting which is between 30 to 60 s for the modified IEEE 30-bus system. In the MIQP model, a

relative optimal solution gap parameter is set to 2%, which ensures that the relative tolerance on the
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Figure 5.6. Forecasted wind power plant 2 with 1000 generated scenarios.
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Figure 5.7. Forecasted PV plant 1 with 1000 generated scenarios.

gap between the best integer objective and the obtained objective falls below the 2% tolerance, this 2%

error is good enough for the power dispatch purpose. When this tolerance is reached, the optimisation
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Figure 5.8. Forecasted PV plant 2 with 1000 generated scenarios.

10 20 30 40 50 60 70 80 90

Time [min]

0

50

100

150

200

250

300

350

400

450

W
T

G
1

[M
W

]

Figure 5.9. Forecasted wind power plant 1 with 10 scenarios.

model terminates; however, under default settings, this parameter is set to 0.0001% which means that

the optimisation model will continue the search until the relative solution gap falls below 0.0001%. The
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Figure 5.10. Forecasted wind power plant 2 with 10 scenarios.
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Figure 5.11. Forecasted PV power plant 1 with 10 scenarios.

proposed parameter relaxation allows the optimisation model to reach an acceptable optimal solution

much faster and saves memory compared to the default setting parameter.
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Figure 5.12. Forecasted PV power plant 2 with 10 scenarios.

5.5.2.2 Comparison of a stochastic and deterministic RES obligation model

In order to quantify the effectiveness of the proposed model, a benchmark base case simulation study is

performed using the parameters in Table 5.1 and Table 5.2. The proposed model presented in Section

5.3, is compared to a deterministic version of the model. For the deterministic model, the total number

of scenarios is equal to one which converts the stochastic model to a deterministic model. In both the

deterministic and stochastic model, the RO is set as 10%. A comparison in terms of the reduction in

thermal energy production, an increase in RES production, a reduction in spinning reserve and an

increase in battery storage due to excess RES production is provided in Table 5.3.

A comparison of the deterministic to the stochastic model indicates that in both models, the RES

obligation requirement is attained, with the deterministic achieving a maximum of 45.84% of RES

penetration. For the stochastic model, the mean RES obligation is 39.57%. The best and worst RES

penetration levels are 46.74% and 30.04% respectively, which is above the RES obligation of 10%.

There is an increase of 0.9% in RES penetration when a stochastic model is used. The stochastic

solution presented in Table 5.3 corresponds to a single end point of the Pareto optimal solution when

the RES energy is maximised, and the total cost is minimised. Figure 5.13 shows a comparison of the

normalised Pareto front for the stochastic and deterministic model.
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CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

Table 5.3. Comparison between Pareto optimal solution and traditional DED.

Stochastic

Description Best Mean Worst Deterministic

Thermal (MWh) 58445 66125 76245 59144

PV (MWh) 31964 25894 17147 28954

Wind (MWh) 18890 17156 15533 20908

BESS (MWh) -515 -391 -140 -222

SR (MWh) 50490 45432 35861 51885

RES (MWh) 50854 43050 32679 49865

RES (%) 46.74 39.57 30.04 45.84
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Figure 5.13. Comparison of stochastic and deterministic Pareto front.

The maximum and minimum operating cost for the stochastic model is $829,910 and $415,555

respectively while the total operating cost for the deterministic model is $499,280 and $320,030

respectively. When comparing the results shown in Table 5.3 between the stochastic and deterministic

model, it can be inferred that modelling the intermittent nature of the RES generators increases the
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total operating cost whilst increasing the RES penetration and the required spinning reserves. The

stochastic model increases the operating cost by 66% compared to a deterministic model. On the

contrary, the stochastic model provides higher RES penetration and more precise solution for different

scenarios. This means that solving a stochastic optimisation model provides better insight for the SO

which provides the most likely scenarios in comparison to the deterministic approach.

5.5.2.3 The impact of renewable obligation requirement on the model sensitivity

In order to understand the impact of the RO parameter on the proposed model, the RO is varied from

5% to 50% at a step of 5%. This means the RES penetration level increases with each step change and

the thermal and BESS system must increase their generation to support the demand while the spinning

reserve will also increase with the increase in RES penetration. The Pareto frontiers for each RES

obligation are shown in Figure 5.14.

Figure 5.14. Pareto optimal solution for different RO target varying from 5% to 50%.

The impact of the RES obligation is variable. Figure 5.14 shows the Pareto fronts for different RES

penetration levels. The RES obligation is attained for a RES obligation of 5% to 45% and any RES

obligation over 46% is unattained due to the transmission thermal limit. It is important to note that the

Pareto front from 35% to 45% forms a Utopia line, which means that anything over 45% will result in

a dominant solution that cannot be achieved and thus a penalty will be imposed. Figure 5.15 indicates

the average operating cost and RES penetration level for the stochastic model.
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Figure 5.15. Expected average operating cost for different Pareto front and different RES penetration

level.

From Figure 5.15 it is observed that the total operating cost increases with the increase in RES

obligation requirement. The RES penetration level is achieved at all points except for when the

obligation is set to 50%, which corresponds to the highest operating cost.

The impact of the weighting factor on the optimal solution is shown in Table 5.4. When the weighting

factor is zero, the optimisation model in (5.29) changes into a minimisation of the expected operating

cost which consists of thermal generating units, RES, BESS and spinning reserve allocation cost.

The thermal generators produce more power, followed by wind and PV generators, and BESS units

produce the least. The spinning reserve allocation respects constraint (5.25) which ensures that a

minimum of 30% of the total production is always covered by thermal generators and BESS units. The

maximum RES achieved is 46.75% which occurs when the weighting factor is 1. It can also be seen

that for the maximum RES penetration scenario, excess RES energy is injected to the BESS units. This

complies with the requirements of using BESS as a storage for excess RES energy injection as well as

minimising spinning reserves from thermal generators. In this scenario, more spinning reserves are
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CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

Table 5.4. Demand and supply for different weighting factor with the RO set to 10%.

ϑ Gen (MWh) RES (MWh) SR (MW) BESS (MWh) TC ($)

0.00 97626.00 10878.00 32901.00 280.49 415560

0.10 96081.00 12422.00 32902.00 281.45 372851.8

0.20 92827.00 15672.00 32919.00 285.30 329881.6

0.30 87749.00 20754.00 32929.00 280.69 286331.8

0.40 84820.00 23696.00 32919.00 269.10 242215.6

0.50 83022.00 25500.00 32905.00 263.36 197720

0.60 82641.00 25905.00 32927.00 238.45 153021

0.70 82580.00 25976.00 32931.00 228.29 108278.8

0.80 80837.00 27971.00 34353.00 -23.92 63263.2

0.90 73819.00 35152.00 35137.00 -186.67 16080.2

1.00 58448.00 50860.00 50530.00 -523.51 -50860

allocated from thermal generators than any other scenario. This implies that when RES is maximised,

the SO must allocate more spinning reserves to overcome the intermittency nature of RES generators.

If the end points are selected as the optimal solution to the multi-objective function problem, then

the solution becomes bias as it only complies to a single requirement, i.e., the maximisation of the

expected RES penetration or minimisation of the expected operating costs under RO. For example,

the first end point provides the least expected operating cost with the least RES energy penetration,

while the last end point gives a high RES energy penetration and high operating costs. An optimal

solution must provide a compromise between minimising the expected operating cost and maximising

the expected RES energy penetration. Based on the preference-based approach, the SO is the main

decision marker. The SO can select the best compromise solution considering lower boundaries related

to maximising RES penetration and upper boundaries for minimising the total operating cost.

Figure 5.16 shows the Pareto front of the stochastic RO model when the RES quota is set to 10% with

the optimal solution indicated by point A.

The lower and upper boundaries are selected as 30,000 MWh and $600,000. The Pareto optimal point

provides a solution that realises a compromise in the expected operating cost and the expected RES
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Figure 5.16. Pareto front optimal solution point ‘A’ with RO target set to 10%.

penetration. The knee point shown as A in Figure 5.16 corresponds to the weighting factor of 0.9

in Table 5.4. This point indicates a fair trade-off between minimising the expected operating costs

while maximising the expected RES penetration in the grid and matches with the SO boundaries; any

point away from the knee point will realise a non-compliant solution, in either direction. Although the

minimum RES quota is achieved in the RO model the second objective function aims to maximise the

expected RES penetration over and above the minimum RO requirement.

5.5.2.4 Importance of multi-objective functions

The RO model only focuses on setting a minimum quota in terms of renewable energy that must be

achieved daily according to (5.3). The limitation with the RO model is that it only aims to achieve the

minimum stipulated RO and does not increase renewable energy over the stipulated quota, hence, there

is a need to add an objective function that maximises the RES penetration. This function is shown

in (5.2) and (5.10) as a RES energy objective function. It is important to note that although objective

function achieves the RES obligation, it does not maximise the level of RES penetration. This is shown

in Table 5.4, which indicates the Pareto optimal points for different weighting factors. For example, if

a weighting factor of 0 is considered the operating cost is minimised and the RO is achieved, however,

the RES is not maximised. When the weighting factor is increased gradually, the impact of objective

function starts to increase the RES penetration over and above the RO quota in (5.3).
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CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

5.5.2.5 The impact of penalty cost on the model sensitivity

In this simulation study, the RES obligation penalty cost is varied in two steps, i.e., $1000 and $10,000

per day to quantify its impact on the RES penetration level which is varied from 10% to 20%. Figure

5.17 illustrates the two RES penetration levels when penalty is varied. For example, when the RES
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Figure 5.17. Average expected operating cost and RES penetration level.

obligation is 10% and the penalty is varied from $1000 and $10,000, the RES obligation is attained

without any penalty. However, when the RES obligation is increased to 20% while varying the penalty,

then the RES penetration is achieved only when the penalty is $10,000 which results in an average RES

penetration level of 27,463 MWh compared to 26,439 MWh of RES when the penalty is $1000. The

total operating costs for the two scenarios when RES obligation is 20% are $462,862.7 and $462,941.8,

respectively for the $1000 and $10,000 penalty. The operating cost increases because in the first case

when the penalty is $1000, it is acceptable to not attain the RES obligation since the operating cost

is minimal. The optimal solution presented shows that the proposed model is robust and can achieve

RES penetration while considering the minimal operating cost for different RES obligation penalty

cost.
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CHAPTER 5 STOCHASTIC ECONOMIC DISPATCH UNDER RENEWABLE OBLIGATION

5.5.2.6 The impact of transfer limits on RES penetration level

Initially, the transfer limits of the transmission line as shown in Figure 5.18 are divided into five

transfer limits which are 180 MW, 360 MW, 450 MW, 540 MW and 900 MW and the RES penetration

achieved is 46.74%. In order to show the effect of transfer limits on the RES penetration, two cases

are considered; the transmission transfer limit is increased and decreased by 10% respectively. The

optimal RES penetration level under different transfer limit is depicted in Figure 5.18.
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Figure 5.18. Impact of different transfer limits on RES penetration.

The impact of transmission limit is variable, which means that it may lead to an increase in total

operating cost as well as the RES penetration when the limit is increased. However, when the limit is

reduced, RES penetration level also decreases. This arises due to scheduling changes of the individual

units. Specifically, the reduction in outputs of some units results in more RES penetration, while an

increase in output of other units results in a decrease in RES penetration and spinning reserves as well

as the total operating cost. The impact of increasing the transfer limit increases the operating cost and

RES penetration level. On the other hand, the decrease in thermal limits leads to a decrease in total

operating costs and RES penetration level.
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5.5.3 Case study 2: IEEE 118-bus system

In the second case study, the proposed model is tested on a large-scale bus system. The system data for

the IEEE 118-bus is from [83] and this system consists of 54 thermal generators and 186 transmission

lines. The total thermal power installed is 12156 MW and the peak demand is 12147 MW. The sizes

of the five wind farms are 250 MW, 1050 MW, 350 MW, 320 MW and 1600 MW, while the sizes

of the five PV plants are 200 MW each. The two BESS generators are rated at 35 and 40 MWh with

the charging and discharging efficiency of 90%. The proposed model is used for calculating the total

operating cost and RES penetration level.

5.5.3.1 Computational efficiency of the proposed model

This section explores the computational efficiency of the IEEE 118-bus system, due to the stochastic

nature of the model presented in Section 5.3, there are generally many constraints that are inherent

because of the number of scenarios. For example, the total number of line capacity constraints is the

multiple of the time period (96), total number of transmission lines (186) and the number of scenarios

(10). For the IEEE 118-bus system, the total number of transmission constraints is 357,120. When

the inactive constraint reduction theorem presented in [147] is applied, the total number of inactive

constraints is identified as 87%. The new transmission line constraints are reduced to 46,426 which

reduces the solving time to 60 s.

In the first case the total number of line capacity constraints is considered, and the time taken to solve

the problem using parameter relaxation is 130 s compared to 60 s when the line constraints are reduced.

In both cases, the RES obligation is attained, and the total operating cost is $4,500,900 with a standard

deviation of 0.2%. From observations made, the computational efficiency shows that the proposed

method can be utilised in scheduling RES, thermal and BESS units in a large-scale bus system.

5.5.3.2 Impact of RES obligation on model sensitivity

The impact of RES penetration on the model sensitivity is investigated in the IEEE 118-bus system.

The total number of RES generators is increased from 4 to 10. The computed results are shown in

Figure 5.19 when varying the RES penetration from 10% to 50%. As can be seen in this figure, the

total operating cost increases with the increase in RES penetration level. It is important to note that the

total operating cost of the 30-bus system is considerably lower than that of the 118-bus system which

is to be expected since the demand has increased, and the network size is larger. The RES penetration

level is achieved until 30% and any requirement over that results in a penalty. The reason for this

limitation is due to the transfer limit on the transmission lines.
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Figure 5.19. Average RES penetration and average operating cost for IEEE 118-bus system.

The average RES penetration achieved for the different obligation starting from 10% to 50% is 30.15%,

32%, 30.5%, 27.4% and 32.6% respectively. The highest operating cost occurs at 50% RES obligation

which is $4,645,909, which corresponds to the RES penetration of 32.6% when the obligation is

50%.

5.5.3.3 Impact of BESS on spinning reserves and RES obligation

In this case study, 10 scenarios are considered for the evaluation of the proposed model. The achieved

expected operating cost is $4,376,923.81 and the achieved maximum RES injection level is 34.47%,

while the total reduction in spinning reserves is 0.19% and the BESS generation is -1132 $MWh$.

This means that throughout the dispatch period the BESS is charging up with minimum discharge. The

stochastic model proposed is better in the approximation of the RES penetration level. Table 5.5 shows

a comparison of the IEEE 118-bus generation for thermal, BESS, RES and the spinning reserves. The

average operating cost achieved for the deterministic model is $4,017,379.10.

5.6 CONCLUSION

This chapter proposes a stochastic economic dispatch model with renewable obligation requirement to

maximise renewable energy penetration. The system operator is responsible for scheduling energy

and spinning reserve under the renewable obligation framework. This framework aims to allocate

the required renewable energy as part of an optimal energy mix strategy that reduces greenhouse gas

emission. A dynamic scenario generation algorithm is used to characterise the intermittent nature
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Table 5.5. Comparison of stochastic and deterministic RES penetration for IEEE 118-bus.

Stochastic

Description Best Mean Worst Deterministic

Thermal (MWh) 669433 741970 843566 790605

BESS (MWh) -1132 -1874 -3095 -1272

SR (MWh) 370973 304732 208720 194101

RES (MWh) 352153 279979 178020 230981

RES (%) 34.47 29.83 17.43 22.61

of wind and photovoltaic output power and thereafter a scenario reduction algorithm is used in the

renewable obligation model to schedule an optimal dispatch energy and allocate spinning reserves.

To show the effectiveness of the proposed model, a 30-bus network with 6 thermal generators and

4 renewable energy sources is used to show the impact of high renewable energy penetration. Four

cases were used to illustrate the effectiveness of the proposed renewable obligation model; in the first

case a comparison of the deterministic and stochastic renewable obligation was performed based on

the system operating costs, the reduction in spinning reserve allocation due to battery energy storage

system and the achieved renewable energy penetration level. The comprehensive benefit of the four

models were evaluated and thereafter we showed that the stochastic renewable obligation model is the

most effective model in terms of the key measurement parameters. The sensitivity analysis was used to

investigate other key parameters and the applicability of the proposed model. Our conclusion are as

follows:

1. A benchmark renewable obligation target of 10% was used for the energy mix and output power

of renewable energy sources was simulated using historical data. The simulated results show

that higher renewable obligation can be achieved over and above the target.

2. The key indicator for any renewable obligation programme is the energy produced from renew-

able energy sources, which is used to issue renewable obligation certificates to all qualifying

generation companies. The simulation studies show that it is possible to achieve high renewable

penetration at a reasonable operating cost using the Pareto front approach.

3. A penalty is normally paid by generation companies for any renewable obligation shortfall; the

simulation studies shows the different penalty factors used to validate the effectiveness of the
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proposed model and show the limitation and application in practical problems.

4. The maximum renewable penetration level is also limited by the available transmission thermal

limits on the 30-bus network.

5. In a large 118-bus network, the computational effectiveness is improved by reducing the inactive

transmission limit and a maximum of 87% inactive transmission constraints are reduced.

The current renewable obligation model does not take into consideration the trading of renewable

obligation certificates. Therefore, the future research will include the risk associated with trading

renewable obligation certificates in the secondary market.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6 RISK-CONSTRAINED STOCHASTIC

ECONOMIC DISPATCH WITH

DEMAND RESPONSE UNDER

RENEWABLE OBLIGATION

In this chapter, the deterministic demand response model is extended to stochastic model to handle all

the RES uncertainty.

6.1 INTRODUCTION

The variable and stochastic nature of renewable energy sources (RES) such as wind and photovoltaic

generators makes it difficult for their integration in the power systems. This means that RES generators

cannot be completely regulated by producers throughout the day as they depend on weather conditions.

Therefore, it is not easy to know the level of power production with certainty, however, this can be

forecasted with some level of accuracy. The increased level of RES in power systems requires a robust

demand side and supply side strategy from the viewpoint of the system operator. The need for capacity

margins during peak hour demand coupled with the inherent limited ramping capacity of thermal

generators affect the system security whenever the RES generators decrease their output power due to

meteorological conditions. To tackle this challenge, the system operator takes advantage of the demand

side strategy by either shifting or cutting down the load to balance the RES production. Therefore,

it is essential to carry out a joint strategy for RES penetration and demand response [141] to allow

the system operator to optimally dispatch power while meeting a specific renewable obligation for

energy mix and minimising the risk of profit loss. A useful tool to quantify the dispatch of thermal and

RES generators is the classical dynamic economic dispatch (DED). This tool can be used together

with demand response to quantify the level of RES penetration that can meet the required renewable
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

obligation while minimising the risk of profit loss for thermal generators.

An important aspect that helps in the increase of RES penetration is demand response (DR). There

are two main categories for DR programmes, namely, the price-based demand response (PBDR) and

incentive based demand response (IBDR) [150]. The PBDR uses time-varying tariff structure for the

sale of electricity to customers. The tariff structure is often divided into three parts, namely, peak,

standard and off-peak hour rates; while a two-part tariff with only peak and off-peak rates can also

be found in many places. The use of PBDR helps in reshaping the demand profile by moving peak

load to off-peak and reducing the operating costs. The main disadvantage of this DR strategy is that it

depends on the voluntary participation of customers and cannot be directly controlled by the system

operator [42]. On the contrary, the IBDR pays participating customers for reducing their demand when

requested by the system operator. This is most conveniently done using direct load control (DLC)

during periods of high demand and high electricity prices. The main advantage of using the IBDR

comes from the ability of the system operator to control the system reserves to create flexibility of the

system by increasing or curtailing demand. In [93] and [94], a stochastic unit commitment with IBDR

is presented and a price quantity package for IBDR is reported [95]. Authors in [96] consider a robust

optimisation approach to economic dispatch with RES and IBDR. A demand reduction approach is

presented in [97] where emergency demand response programme (EDRP) and DRP are considered

using price elasticity and linear responsive loads.

A detailed comparison of different demand response paradigms is presented in [151] for the integration

of renewable energy sources and deferrable demand considering the reserve requirements. The authors

show that coordinating flexible demand with renewable energy can increase RES penetration and

show that the conventional way of defining demand elasticity has to be adapted for deferrable loads.

Reference [152] presents a demand response model integrated to a day-ahead scheduling of electricity

and natural gas using stochastic unit commitment problem. In their model, they show that using demand

response can enhance the coordination of gas and electricity and reduce demand uncertainty.

In [153] a hybrid power plant is constructed considering the DR aggregator and wind power aggregator

to limit the inherent stochastic nature of wind generator to take part in the electricity market. The

model presented is a three-stage stochastic programming problem which participates in three electricity

markets and the risk is managed by the conditional value-at-risk (CVaR). In [154] shows a risk-

constrained bidding strategy for a hybrid power plant that participate in a joint operation of wind power
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and energy storage to maximise its profit. Different bidding curves are presented for an optimal day-

ahead market that maximises the expected profit for a coordinated operation of wind and compressed

air storage system.

In the network that has a high level of RES penetration, the issues of capacity margins during peak

hours are important for a reliable and continuously supply of energy. The literature reviewed shows

that the inclusion of demand response with high RES penetration is possible, however, there is still

a need for a detailed and optimal framework which considers the a risk constrained stochastic DED

under a renewable obligation and demand response from the system operator’s point of view who owns

and operate the thermal generators. The proposed model in this chapter takes advantage of quantifying

the level of financial risk to the system operator by incorporating a renewable obligation and demand

response in its generation portfolio. A framework for renewable obligation and demand response is

presented to increase the output power of RES generators by coordinating the operation of RES quota

and DR. The contributions are listed below;

1. The development of a combined IBDR model with renewable obligation for joint operation to

maximise the expected profit of generation companies while mitigating the uncertainties of RES

generators;

2. The implementation and analysis of the proposed model on a renewable obligation framework;

and

3. The inclusion of risk constrained model to minimise financial risk in the IBDR and renewable

obligation framework.

The contents of this chapter are organised into four sections. In Section 6.2.1, we provide the problem

formulation for the risk constrained stochastic DED with renewable obligation and IBDR. In Section

6.3, the solution approach for the risk-constrained model and in Section 6.4 the simulations and

numerical studies are presented. In Section 6.4, the conclusion and recommendations are drawn.

6.2 PROBLEM FORMULATION

In this section a mathematical model of a renewable obligation policy framework from [86], [155] is

extended to incorporate risk-based demand response to increase RES penetration. The model includes

the penalty function that is imposed by the system operator to thermal generators when the RES quota

is not achieved. Then an optimisation model is presented to include demand response by modifying a
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

renewable obligation model to allow for demand reduction while providing an incentive to residential

customers that participated in the IBDR program. The financial risk of system operator is quantified

to incorporate demand response and renewable obligation in the generation portfolio over a 24-hour

period.

6.2.1 Renewable obligation framework

The main purpose here is to maximise the economic profit of system operator thermal generators while

maintaining a percentage of renewable energy in the energy mix.

6.2.1.1 Objective functions

The main goal is to maximise the economic profit of the thermal generators which is defined as the

difference between the revenue and total operating cost as shown in (6.1).

Maximise E{PF}= E{RV}−E{TC} (6.1)

where E{PF}, E{RV}, and E{TC} are the expected economic profit, the expected revenue of thermal

generators, and the expected total operating costs respectively. The thermal generators sell power in

the energy market and ancillary service market. In the ancillary market the RES companies pay the

thermal generators for allocating the reserves for balancing the RES shortfall. This cost is paid despite

whether the reserves are used or not. On the contrary, the thermal generators must buy energy from the

renewable energy producers to ensure that a certain minimum quota is achieved. The revenue for the

generation companies is calculated as follows.

E{RV}=
Nω

∑
ω=1

T

∑
t=1

NG

∑
g=1

πω (Pg,t,ω∆tϒt +Pr,t,ω∆tϑt) (6.2)

where Pg,t,ω is the thermal generator output power of generator g at time t and scenario ω , ϒt is the

forecasted market price for electricity at time t, Pr,t,ω is the spinning reserve of thermal generator g at

time t and scenario ω , and ϑt is the market price for spinning reserves at time t.

The total operating cost includes two main terms. The first term is the cost of operating thermal

generators and the cost paid to IPP for RES generators. The second part is the penalty function

that ensures that a minimum renewable obligation is maintained in the dispatch period to guarantee

adequate energy mix.

E{J1}=
Nω

∑
ω=1

T

∑
t=1

πω

(
NG

∑
g=1

Cg(Pg,t,ω)+
NM

∑
m=1

Cm(Pm,t,ω)+
NV

∑
v=1

Cv(Pv,t,ω)

)
+Γ (6.3)

where πω is the probability of each scenario, Cg(Pg,t,ω) is the generator fuel cost function which is a

quadratic equation, and Cm(Pm,t,ω) and Cv(Pv,t,ω) are the cost function for wind and PV generators,
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

respectively, see (6.4) to (6.6).

Cg (Pg,t,ω) =
NG

∑
g=1

(
ag +bgPg,t,ω + cgP2

g,t,ω
)

(6.4)

Cm (Pm,t,ω) =
NM

∑
m=1

ζmPm,t,ω∆t (6.5)

Cv (Pv,t,ω) =
NV

∑
v=1

ϕvPv,t,ω∆t (6.6)

The notation Γ is the second part of the total cost which is a renewable obligation part of the model

shown in (6.7).

Γ = γ

Nω

∑
ω=1

T

∑
t=1

πω

(
α

(
NG

∑
g=1

Pg,t,ω +
NM

∑
m=1

Pm,t,ω +
NV

∑
v=1

Pv,t,ω

)
−

(
NM

∑
m=1

Pm,t +
NV

∑
v=1

Pv,t

))+

(6.7)

where γ is the penalty imposed to the thermal generators for not achieving the required obligation, α is

a renewable obligation requirement in percentage. The notation Γ(·)+ is the sigmoid function which is

equal to γ if the RES obligation is unattained and 0 otherwise. The penalty γ is normally provided by

the energy regulator as an annual value. This penalty value can be change to a daily penalty value to

correspond to daily economical dispatch of generators. In addition to the total operating cost in (6.3),

the renewable producers also want to maximise their profit which is shown in (6.8).

E{J2}=
Nω

∑
ω=1

T

∑
t=1

πω

(
NM

∑
m=1

Pm,t,ω∆tρt +
NV

∑
v=1

Pv,t,ω∆tτt

)
(6.8)

where ρt and τt are the forecasted market price for electricity at time t. The overall expected total

operating cost is the minimal difference between the operating cost and profit of renewable operators

as shown in (6.9).

E{TC}= E{J1}−E{J2} (6.9)

6.2.1.2 Constraints

The system constraints is divided into five parts, the power balance constraint (6.10), the system

ramping rates (6.11) to (6.14), the generator limits (6.15) to (6.18), spinning reserve constraints (6.19)
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

to (6.22) and the network transmission capacity constraints (6.23) to (6.24).
NG

∑
g=1

Pg,t,ω +
NM

∑
m=1

Pm,t,ω +
NV

∑
v=1

Pv,t,ω =
NB

∑
b=1

Pb,t ∀t,ω (6.10)

Pg,t,ω −Pg,t−1,ω ≤URg∆t ∀t,ω (6.11)

Pg,t−1,ω −Pg,t,ω ≤ DRg∆t ∀t,ω (6.12)

Pr,t,ω −Pr,t−1,ω ≤URg∆t ∀t,ω (6.13)

Pr,t−1,ω −Pr,t,ω ≤ DRg∆t ∀t,ω (6.14)

Pg,t,ω ≤ min(Pg,max,Pg,t−1,ω +URg∆t) ∀t,ω (6.15)

Pg,t,ω ≥ max(Pg,min,Pg,t−1,ω −DRg∆t) ∀t,ω (6.16)

Pm,t,ω ≤ Pm,t,gen ∀t,ω (6.17)

Pv,t,ω ≤ Pv,t,gen ∀t,ω (6.18)

Pg,t,ω +Pr,t,ω ≤ Pg,max ∀g, t,ω (6.19)

0≤ Pr,t,ω ≤ SRRr,max ∀t,ω (6.20)
NR

∑
r=1

Pr,t,ω ≥ SSRR ∀t,ω (6.21)

NG

∑
g=1

Pg,t,ω +
NR

∑
r=1

Pr,t,ω ≥
NB

∑
b=1

Pb,t ∀t,ω (6.22)

−Pl,max ≤ Pl,t,ω ≤ Pl,max, ∀l,∀t,∀ω (6.23)

Pl,t,ω =
NG

∑
g=1

Gl,gPg,t,ω +
NM

∑
m=1

Fl,mPm,t,ω +

NV

∑
v=1

Hl,vPv,t,ω −
NB

∑
b=1

Dl,DPb,t (6.24)

The maximum spinning reserve requirement SRRr,max is equal to the maximum thermal generator

capacity, and the system spinning reserve requirement (SSRR) is equal to 30% of the peak demand;

where Gl,g, Fl,m, Hl,v, and Dl,D denote the generator shift factor (GSF) coefficient between line l and

thermal generator, wind farms, PV plant, and system demand at each bus. The transmission line power

Pl,t,ω of line l at time interval t and scenario ω is calculated by nonlinear power flow for small size

power systems, and DC power flow for a large system.

6.2.2 Incentive based demand response model

In this section, the addition of demand reduction strategy is added to the model (6.1) using an incentive

to motivate residential customers participating in the demand response programme. A large-scale

residential load management (RLM) program is implemented in South Africa by installing a DLC at a
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

local substation to switch on and off the electric water heaters. The motivation for this implementation

comes from the fact that electric water heaters account for 30% to 50% of the electricity consumption

in a household and the overall consumption of household is between 20% to 25% of the total electricity

produced by the utility. The objective function in (6.3) is modified to include demand response as

shown in (6.25).

(6.25)E{J3} =
Nω

∑
ω=1

T

∑
t=1

NB

∑
b=1

πω

((
λ

R
t − ξ

c
b,t
)(

Pb,t,ω(1− ub,t,ω) + P̃b,t,ωub,t,ω
))

∆t

+
Nω

∑
ω=1

T

∑
t=1

NB

∑
b=1

πω∆Pb,t,ωub,t,ωξ
i
b,t∆t

Equation (6.25) is the total cost paid by the generation companies for demand reduction to participating

residential customers, ∆Pb,t is the difference between the actual demand at bus b before and after the

demand reduction see also (6.26); and ξb,t is the incentive cost paid to residential customers during

peak period Tp.

∆Pb,t = Pb,t − P̃b,t (6.26)

The switching status ub,t,ω is a binary variable that is equal to 1 if the RLM is implemented at bus b in

time t and scenario ω , and 0 indicating that no RLM is implemented.

The only change in the constraints is due to the change in demand which is replaced by in (6.27); the

only the constraints affected by the demand reduction are (6.10), (6.21), and (6.22). The change on

constraint (6.21) is because SSRR is equal to peak demand Pb,t .

Pb,t =
NB

∑
b=1

(
Pb,t(1−ub,t,ω)+ P̃b,tub,t,ω

)
∀t,ω (6.27)

6.2.3 Risk constrained model

The model is further updated to include the value at risk in order to account for the potential profit loss.

This means for a given probability µ ∈ (0,1), the value-at-risk (VaR) is equal to the largest value η

ensuring that the probability of obtaining a profit less than η is lower than (1−µ). In other words, the

VaR(µ,x) is (1−µ)-quantile of the profit distribution [156]. Mathematically, the VaR(µ,x) is defined

as shown in (6.28).

VaR(µ,x) = max{η : Prob(ω) | PF(x,ω)< η ≤ 1−µ},∀µ (6.28)
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

The variable x represents all the decision variables and Prob is the probability. The updated objective

function with VaR is shown in (6.29).

Max E{VaR(µ,x)}= E{(1−β )PF +βη} (6.29)

where η is a variable whose optimal value is equal to the VaR(µ,x) and β is the weighting parameter

used to transform the two objective functions to a single objective function. In addition to the modified

constraints the following additional related to the risk model are added.

η−PF ≤Mθω , ∀ω ∈ Nω (6.30)
Nω

∑
ω=1

πωθω ≤ 1−µ (6.31)

where θω is a binary variable which is equal to 1 if the profit in scenario ω is less than η and equal to

0 otherwise; and M is a large enough constant.

6.3 SOLUTION APPROACH

The proposed optimisation model is applied to IEEE 118-bus system. The test system consists of 54

thermal generators and 186 transmission lines. Two bulk RES generators are added to buses 20 and

33. The sizes of the PV and wind generators are 1000 MW and 3600 MW respectively. The details

of the 118-bus system can be found in [83]. The transmission flow limit is simulated by using DC

power flow. A sampling interval of one hour is considered for generation dispatch and the optimisation

problem is solved over a 24-hour period. In cases where RES penetration level is unattained, a penalty

of $100,000 per day is imposed on thermal generators by the system operator. In all case studies,

a 10% RES obligation is used as a basis for comparison. In addition, the system spinning reserve

requirement is based on 15% of the maximum thermal generator capacity and the maximum spinning

reserve requirement of each generator is equal to the maximum generator capacity. The combined

risk-constrained multi-objective stochastic economic dispatch with renewable obligation and demand

response problem is a mixed integer quadratic programming problem (MIQP), which is simplified

into a mixed integer linear programming (MILP) problem by replacing the quadratic cost functions

with a piecewise linear function [157]. The reason for this replacement to minimise the computational

time required to handle the quadratic constraint in the VaR constraint. The model can be solved by

using commercial solvers such as CPLEX. MATPOWER has been used to for power system analysis

in order to find the power transfer distribution factors used in the DC power flow.

The scenario generation methodology is applied to the data obtained from EirGrid [142] for one-year

data in 2018. Time series forecasting is used for forecasting wind and PV power output. For simplicity,
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wind and PV power output are assumed to follow a Weibull and normal distribution. The associated

PV and wind power output are forecasted using moving average (MA) and autoregressive (AR) model.

The prediction error of the output power at time t is obtained by minimising the mean square error of

the AR or MA model from the historical data of RES output power. Furthermore, we assume that the

system uncertainty are independent. Based on the distribution of uncertainty parameters, the Latin

hypercube sampling technique is employed to generate 1000 scenarios with even probability where

each scenario contains the information of the hourly load, the hourly wind and PV output power over

the operating day. The fast-forward reduction algorithm is utilised to reduce the original 1000 scenarios

to 10 scenarios [158]. In particular, we used MATLAB software to generate and reduce the scenarios

[159] and [145]. Table. 6.1 shows the parameters used in the simulation studies.

Table 6.1. Constant parameters used in the simulations.

Description Parameter 1 Parameter 2

M 1e6 -

µ 0.95 -

α (%) 10 -

τ ($/MWh) 1.70 2.0

ρ ($/MWh) 1.70 2.0

MA{2} 0.92 0.95

AR{2} 1.43 -0.49

In general, a large number of scenarios results in higher computational time while a small number of

scenarios may reduce the accuracy of the results. All the test cases are implemented on a notebook with

an Intel Core i5 at 2.70 GHz and 8 GB RAM. The optimisation problem is solved in approximately 360

seconds. The IEEE 118-bus system is used to demonstrate the effectiveness of the model considering

the following cases;

1. Case 1: A deterministic model is used as a base case where the RO is set to 10% under DR

implementation;

2. Case 2: A stochastic model is used with RO set to 10% without DR;

3. Case 3: A stochastic model in Case 2 with DR implementation; and
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4. Case 4: Risk-constraint is implemented on the stochastic model with DR to measure the impact

on the expected profit deviation.

In order to compare the proposed model, the expected profit, the actual RES penetration level and the

demand reduction is used for comparison. The total installed capacity of RES is 4600 MW. All the

transmission line thermal limits are maintained at 100%. The utility sells electricity to all customers

based on the TOU tariff scheme, which is divided into three periods, i.e., peak, off-peak and standard.

The electricity price are $200/MWh, $50/MWh and $100/MWh. The customer willingness to buy

electricity is $120/MWh. In this study, peak periods are between 07:00 to 09:00 in the morning, 18:00

to 20:00 in the evening; the standard period is from 09:00 to 18:00 and from 20:00 to 21:00 and the

remaining period is classified as off-peak. The total demand before and after the implementation of the

RLM programme is shown in Figure 6.1.
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Figure 6.1. IEEE 118 demand before and after implementation of RLM.

The system baseline load is found in [83] and the real data from the RLM programme is used on load

bus 2, 12, 18, 32 and 59 [111]. The total demand before and after the implementation of RLM is
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126,854 and 125,830.20 MW. The framework for demand reduction is based on a load management

programme which is developed by the system operator focusing specifically on residential customers.

The programme considers participation of residential customers to reduce their demand by providing

an incentive. The RLM participation can occur anytime of the day, however, an incentive is only

paid during peak hours. As part of the RLM programme, a small control unit is installed in the

customer’s home. This unit will switch off the supply to the hot water heater during peak demand for a

predetermined period. A group of hot water heaters are controlled and monitored centrally from each

participating substation by means of a radio ripple-based communication.

6.4 NUMERICAL RESULTS

In order to evaluate the performance of the proposed method on a large-scale IEEE test system four

cases are investigated and a comparison of them is evaluated.

6.4.1 Case 1: Deterministic base case

In this case the normal operation is investigated using a deterministic model. This means that the

scenario index is set to one in the problem formulation to represent a deterministic model. The total

renewable obligation is maintained as 10% and all the quadratic cost functions are changed into

piecewise linear functions. A key performance indicator for this case study is the maximum profit

achieved, the total RES penetration level and demand reduction attained. The total RES penetration

achieved is 39.08% compared to the base requirement of 10%. The demand reduction of 5.412 MW is

achieved which results in a total profit of $1,041,811.64.

Table 6.2. Total profit before and after RLM implementation with 10% RES penetration level, α=10%

and λ1=0.5

Description DED without RLM DED with RLM Delta

Total cost ($) 1,060,336.99 1,041,811.64 18,525.35

Total PD (MW) 126,854 126,848.588 5.412

Incentive ($) − 216.48 216.48

SR (MW) 12,685.4 12,684.3 −

αact (%) 38.40 39.08 0.68

The total profit achieved for the base scenario without RLM programme is higher than the case when

RLM is implemented. This is an increase of $18,525.35, in terms of the profit which can be explained
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by the decrease in demand. It is important to note that in both cases, the RES penetration level is

realised and hence no penalty is imposed on the thermal generation companies. Moreover, for the

required RES injection level of 10%, the spinning reserve required does not change at all. The overall

incentive paid to participating customers is $216.48, and the actual achieved savings is the difference

between the savings in operating cost and incentive paid to customers which is $18,308.87. It is

important to note that a demand reduction of 5MW increases the RES penetration by 0.68% which

shows the benefit of DRP.

6.4.2 Case 2: A stochastic model without demand response

In order to show the effectiveness of the DR model, first a stochastic model without DR is used as a

baseline for comparison. The total profit and RES production are used for comparison purpose. The

allocated spinning reserve are also included in the analysis. When a renewable obligation of 10% is

used as a baseline, the stochastic model can inject an average 18.52% of renewable energy with a

maximum injection of 26.70% and a worst injection of 10.49% which is still over the required RES

obligation. The overall profit of $854,570.47 per day is achieved using the stochastic model. The

average allocated spinning reserve allocation for the joint dispatch problem is 79146 MW while the

minimum and maximum reserve allocation are 44265 MW and 118061 MW, respectively. The total

demand for the 24-hour period is 126854 MWh and the thermal generators contribute an average of

81.47% with the minimum and maximum contribution of 73.30% and 89.50%, respectively. Table

6.3 summarises the stochastic model results in terms of achieved RES penetration and generation mix.

Table 6.3. Comparison between stochastic and deterministic model without DRP.

Stochastic

Description Best Mean Worst Deterministic

Thermal (MWh) 113539 103348.9 92990 78142.06

PV (MWh) 10308.96 7129.74 2751.00 17195.31

Wind (MWh) 31112.0 16375.41 3006.06 31516.62

SR (MW) 118061.03 79146.28 44265.00 12,685.4

RES (MWh) 33864 23505.15 13315.03 48711.94

RES (%) 26.69 18.53 10.49 38.40
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The total renewable penetration for a deterministic case is very optimistic and gives higher RES

penetration. However, it should be noted that since wind and PV have uncertainty due to weather

dependent wind speed and solar irradiance. The deterministic case should only be considered with

caution. Overall, the profit for a deterministic case is shown in Table 6.2 and it is higher than the

stochastic case. Therefore, the stochastic case provides a more conservative estimation under different

scenarios, i.e., best, medium and worst case whereas the deterministic model only provides a single

scenario without any variance.

6.4.3 Case 3: Stochastic model with demand response

In this case a stochastic model with DR is investigated under RO. The total demand before and after

RLM is the same as before. The stochastic model under DR is investigated to find the maximum profit

that can be realised for the generation companies and the maximum demand reduction achievable.

When the stochastic model is used, the average renewable penetration level is 17.83% and the minimum

and maximum are 26.67% and 10.18%, respectively. In all scenarios, the RES penetration is over

10% target. The average demand reduction for the 10 scenarios is 90.92 MW and all the participating

substation are active during peak and valley period. Notice that during peak hours, the flexible demand

from the electric water heaters is reduced. A maximum demand reduction of 398.33 MW is achieved

in one of the scenarios and a minimum demand reduction of -87.59 MW is also achieved. The negative

demand means that there is an increase in demand by 87.59 MW over the entire dispatch period.

Therefore, in this scenario there is no demand reduction. Table 6.4 shows a comparison of demand

reduction for stochastic and deterministic case.

Table 6.4. Comparison between stochastic and deterministic model without DRP.

Stochastic β=0

Description Best Mean Worst Deterministic

Thermal (MWh) 113878.5 104162.7 92725.71 78142.06

PV (MWh) 10494.82 7304.92 3013.00 8081.63

Wind (MWh) 30371.06 15295.42 2424.25 41493.82

SR (MW) 117621.5 77914.16 43841.44 12,685.4

RES (MWh) 33730.06 22600.34 12919.08 49572.43

RES (%) 26.67 17.83 10.18 39.08

DR (MW) 398.33 90.93 -87.59 5.41
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Figure 6.2 shows the demand reduction for 10 scenarios with the two lower and upper limits. Note

that the lower limits are related to the total demand reduction and the top limit is the actual demand

without any demand reduction.
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Figure 6.2. Demand response participation under different stochastic scenarios with RES obligation

set to 10%.

The average incentive paid to customers is $3,636.80 and the overall profit achieved is $988,642.98.

The average substation participation level is 43 with the minimum and maximum participation of 15

and 59 times per day on the RLM substations.

6.4.4 Case 4: Stochastic model with demand response and Value-at-Risk

In order to characterise the risk associated with maximising the profit of generation companies under

demand response and renewable obligation a VaR is used as a risk measure to profit loss. This risk

measure allows a comparison between a risk averse strategy and risk-based strategy for the generation

companies. A risk neutral strategy is already considered in case study 3 with β = 0, in this case

the risk factor in (6.29) is set to β = 1 to analyse the extent of incorporating risk to the model. The

probability used in the analysis is µ = 0.95 and the average RES penetration level is increased slightly
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from 17.83% to 17.85% with the minimum and maximum penetration level of 10.18% and 26.86%,

respectively. The average demand reduction is 87.92 MW and the minimum and maximum demand

reduction are -87.60 MW and 357.86 MW. The average profit achieved considering the risk on profit

is $987,494.29 and VaR of $940,850.23. This result indicates that the highest VaR is not achieved by

the means of maximising demand reduction. In fact, for the maximum demand reduction result in

a VaR of $780,521.50 and the expected profit of $988,642.98. Table 6.5 shows the summary of the

expected profit, RES penetration and demand reduction compared to the average values of stochastic

case without VaR.

Table 6.5. Comparison between stochastic and deterministic model without DRP.

Stochastic β = 1

Description Best Mean Worst Case 3

Thermal (MWh) 114018.3 104140.10 92507.16 104162.7

PV (MWh) 10494.83 7264.85 3013.00 7304.92

Wind (MWh) 30629.98 15361.17 2424.26 15295.42

SR (MWh) 117621.5 77914.16 43841.44 77914.16

RES (MW) 33988.98 22626.02 12919.08 22600.34

RES (%) 26.87 17.85 10.18 17.83

DR (MW) 357.86 87.92 -87.60 90.93

The impact of the risk factor on the average demand reduction is shown in Table 6.5. The risk

factor reduces the average demand while also increasing the RES penetration. It is important to

notice that the average spinning reserve allocation does not change regardless of the risk factor, while

the average thermal generation is reduced slightly which corresponds to the slight increase in RES

penetration.

6.4.5 Case 5: Comparison of the different cases

In order to evaluate the effectiveness of the proposed model. The previous case studies are compared

to show the benefits of the proposed model. In the first case, the classical deterministic model is used

for two cases that consider the impact of demand response. It can be seen from Table 6.2 that including

demand response increases the RES penetration slightly while the profit is reduced. Further to the

deterministic model, in Case 2, a stochastic model without DR is investigated and compared to the

classical deterministic model. From Table 6.3 the stochastic model shows better qualities in terms of
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

the prediction of RES penetration level and provides a mean and standard deviation. This shows the

benefit of using stochastic model to handle the uncertainty related to RES generation. The overall RES

penetration is decreased for the stochastic model compared to the deterministic model but provides a

measurable confidence interval. This means that the best-case scenario that can ever exist is related

to RES penetration of 38.40% compared to the probable best scenario of 26.69%. In Case 3, the

impact of DR is also included in the model to measure the increase of RES penetration due to demand

response. As clearly shown in Table 6.4, there is an increase in the average demand of 90.93 MW when

compared to the deterministic case. Moreover, the average spinning reserves allocation are reduced for

the stochastic case which also translates into an increase in the profit. The average RES penetration is,

however, reduced when compared to the deterministic case. When Table 6.3 and 6.4 stochastic results

are compared, there is a slight decrease in the average RES penetration level of 0.7%. However, the

profit for the DR scenario is increased by $132,923.82 for a small reduction in RES penetration.

A further comparison between the stochastic DR case with VaR reveals that incorporating the risk to

the model improves the profitability of the generation companies and increases the RES penetration.

Although there is a slight decrease in demand reduction, the overall benefit in profitability complements

this decrease. Figure 6.3 shows the renewable penetration under different case studies.
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Figure 6.3. Demand response participation under different stochastic scenarios with RES obligation

set to 10%.
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CHAPTER 6 STOCHASTIC DEMAND RESPONSE UNDER RENEWABLE OBLIGATION

6.5 CONCLUSION

In this chapter, a stochastic risk-based demand response under renewable obligation is proposed as

a tool to increase RES penetration while achieving demand reduction. The proposed model takes

advantage of the residential load management programme to present an optimal joint strategy for

increasing RES penetration, allocating spinning reserves and reducing demand to deal with RES

fluctuations. To this end, the proposed risk-based DR model is used to evaluate the optimal solution

considering the risk of profit loss for generation companies. The proposed model illustrates the

importance of including financial risk in finding the best compromise between increasing demand

reduction while increasing RES penetration from an economical point of view. It also shows that the

highest average demand reduction does not necessarily imply the optimal RES penetration and an

increase in the profitability of generation companies. Finally, the proposed model shows that both RES

generation companies and thermal unit companies can benefit from DRP.
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CHAPTER 7 CONCLUSION

In this chapter a detailed conclusion of all the previous chapters is summarised and the chapter ends

with a recommendation for future study.

7.1 CONCLUSION

This work proposes a comprehensive optimal framework for renewable obligation and demand response

for residential customers using economic dispatch approach. In Chapters 3 and 3.6 the RO and DR

models are presented in a deterministic form to show the effectiveness of the proposed framework.

The last two chapters 4.6 and 5.6 consider a more complex multi-stage stochastic demand response

model under renewable obligation framework. This approach shows improved results compared to the

deterministic case and the contributions are highlighted below.

1. Using a deterministic renewable obligation model, a target of 10% was used to evaluate the

energy mix and from the results higher RES penetration was achieved in the range of 45%.

2. An extension to the deterministic model was introduced in Chapter 4.6 which shows the impact

of RES penetration under multi-stage stochastic programming. The results of the multi-stage

stochastic programming show a more conservative RES penetration compared to the determin-

istic case. A maximum RES penetration of 26% was achieved for the large system compared to

36% of the deterministic case. However, the total operating cost is significantly reduced for the

stochastic case.

3. A deterministic demand response model was presented in Chapter 4, the results shows that more

RES can be increased using demand response tool. An overall increase of 15.8% was achieved

with an operating cost reduction of 3.49% for the deterministic case.

4. A stochastic programming approach was used in Chapter 6 to investigate the maximum RES

penetration that can be achieved while increasing the profit for thermal generating companies.

The total RES penetration achieved was 17.83% without financial risk, and a RES penetration
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CHAPTER 7 CONCLUSION

of 17.85% is achieved when considering financial risk. The overall model shows that included

financial risk to the analysis can assist the thermal generation companies to anticipate loss of

profit while increasing RES penetration. More importantly, the demand reduction reduced by

3MW from a base case without financial risk to a case with financial risk. The impact of financial

risk to the stochastic model can assist system operators by providing better bidding curves for

the generation companies while incorporating demand response under renewable obligation

policy framework.

The current research shows positive results for a joint demand response and renewable obligation

policy strategy is applied to residential customers. There is savings in the total operating cost and

an increase in the profitability for the generation companies. This can be achieved under any of the

deterministic and stochastic programming frameworks.

7.2 RECOMMENDATION AND FUTURE WORK

There are several future research extensions from the current work which are briefly enumerated

below:

1. The incorporation of the renewable energy certificate market that can be included in the current

model.

2. The inclusion of the supply and demand bid curves to select the optimal energy price in the

secondary market.

3. The inclusion of elasticity to the demand response model to allow maximum demand response

for the flexible residential load.

4. The incorporation of a bi-level and robust model to find the worst-case demand reduction and

renewable penetration level.

All these points are left open to be investigated further in research papers.
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ADDENDUM REFERENCES
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ADDENDUM A DERIVATIONS

A.1 QUADRATIC COST FUNCTION LINEARIZATION

The fuel cost function is represented by a quadratic function which is non-convex that can be converted

into a set of incremental piecewise linear functions [157]. The economic dispatch formulation uses

this quadratic cost function for all the thermal units in all the standard IEEE test systems as given in

chapters 3 to 6. The function is commonly divided into the production range between minimum output

and the capacity of the unit. Figure A.1, shows a quadratic function that is approximated by K straight

lines.

x

y

x1 x2 x3 xk+1

y1

y2

y3

y k+1

Figure A.1. Piecewise linearization of a quadratic cost function.

The linear function is composed of two points on both ends, the linear values of y and x are calculated
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ADDENDUM A DERIVATIONS

as shown in (A.1) and (A.2) respectively. The continuous variable is represented by θ as shown in

(A.3) and (A.4).

y = y1 + ∑
k∈ΩK

(yk+1− yk)θk (A.1)

x = x1 + ∑
k∈ΩK

(xk+1− xk)θk (A.2)

0≤ θk ≤ 1, k ∈ΩK (A.3)

θk+1 ≤ lk ≤, 1≤ k ≤ K (A.4)
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