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Abstract

This paper uses a nonlinear model of the pressure and flow dynamics inside a gas header to obtain the optimal pressure measure-
ment location for buffering control. The nonlinear model is derived from governing equations using the spectral element method
(SEM). The pressure states at the collocation points are estimated using an extended Kalman filter (EKF) and subsequently used
as potential measuring locations. A staggered regulatory pressure control scheme is used to evaluate the closed-loop performance
of the objective function in a self-optimising control (SOC) framework. It is found that there are opposing goals in the optimisa-
tion scheme and that the final pressure location selection is dependent on the economic importance of these goals. The economic
goals which cause opposing control objectives include minimising flaring, providing down-stream consumer stability, and limiting
expensive supplier use.

Keywords: gas pipelines, measurement selection, nonlinear modelling, process control applications, self-optimising control, state
estimation, spectral element method

1. Introduction

Gas pipe headers in industrial chemical and petrochemical
processes are used to transport products in the gas phase from
an upstream unit operation to downstream unit operations as a
feedstock. Gas header buffering control is challenging as gas
exhibits nonlinear behavior with fast integrating dynamics that
are sensitive to changes in pressure, composition and tempera-
ture.

Large headers behave as integrators, therefore any offset in
the mass balance between supplier and consumer results in ei-
ther flaring or a cut-back. Controlling the mass balance at a dy-
namic optimum becomes difficult when there are frequent load
changes that occur when numerous consumers and suppliers in-
teract on one header. The control of gas headers is typically
focused on regulatory control where the pressure is controlled
at set-point (SP) and flaring is used to remove gas from the net-
work during high pressure scenarios. This results in valuable
product loss, emission penalties and unnecessary energy con-
sumption in upstream processing and gas compression. The
problems are particularly evident in large gas to liquid and coal
to liquid facilities with gas loops [1]. Due to the fast dynamics
of the gas headers, upstream disturbances are quickly propa-
gated through multiple gas circuit units. It is beneficial to reject
these disturbances even partially in the gas headers which con-
nect the various process units.

A possible way to address these problems is to use the buffer-
ing capacity of the headers to absorb dynamic disturbances.
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This will minimise flaring and improve the stability of con-
sumer flows. However, buffering capacity is a fixed parameter
dependent on the design of the process, and is often dependent
on other upstream and downstream process parameters. The in-
fluence of process design choices on process control has been
an area of interest for many years [2, 3, 4], but a study specifi-
cally aimed at gas header design choices could not be found.

As a first step, this study aims to investigate the optimal pres-
sure measurement location under various disturbances and op-
erating conditions. These insights may then be used to assist
in the design of controllers for gas headers. The pressure mea-
surement location influences the closed-loop control behaviour
due to physical pipe parameters such as friction, diameter, and
length.

Self optimising control (SOC) is well suited to find the opti-
mal selection of controlled variables (CVs) given an objective
function [5, 6, 7]. SOC techniques are mostly applied to lin-
earised models and are optimised around operating points. As
an improvement over the local optimisation techniques, SOC
methods were expanded recently so that the CVs are selected
based on the global solution space where Monte Carlo simu-
lations are used to evaluate the objective function [8, 9]. SOC
is mostly used for static optimisation problems [10] which is
not suitable for pressure measurement location selection in gas
pipelines because the integrating responses are governed by the
mass balance. Therefore, steady-state operation is not of inter-
est but rather the ability to reject cyclic disturbances optimally.
Dynamic SOC was recently implemented for batch processes
[10], as an extension of the null-space method [11], for an oil
reservoir water-flooding process [12], and for robust reservoir
management [13].

This study requires a model which can spatially describe the
pressure and flow profiles inside a gas header as well as ac-
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curately capture the gas dynamics. To this end, the model
developed in [14] and validated on an industrial methane-rich
gas network, is chosen. This model uses the spectral element
method (SEM) [15, 16] to spatially discretise and solve the par-
tial differential equations as a system of ordinary differential
equations (ODEs). The SEM model makes the pipe pressure
and flow profiles available at the collocation points.

State estimators are required to evaluate the different pres-
sure measurement locations at the collocation points if online
measurements are not available. State estimation has been used
for the monitoring [17], simulation [18, 19, 20], leak detection
[21, 22, 23, 24, 25], and control [26] of gas pipelines. Kalman
filters are well suited for systems that can be described by ODEs
[18]. The extended Kalman filter (EKF) was shown to work
well for SEM hydraulic applications [27], and was applied suc-
cessfully to non-linear gas pipeline models [21, 22].

The contribution of this paper is the use of a SEM-based
model combined with an EKF to estimate gas header pressure
profiles and subsequently evaluate the impact of the pressure
measurement location on the pressure control performance us-
ing a dynamic SOC framework. More specifically, the pressure
measurement location on the pipe length is determined that will
provide the buffering control performance required to minimize
flaring, expensive supplier intake, and to improve consumer sta-
bility.

The paper is organised as follows. Section 2 presents the
derivation of the state-space model from the governing equa-
tions using the SEM method. Section 3 performs a frequency
analysis to illustrate the impact of measurement location on dis-
turbance rejection and controllability, and designs an EKF to
provide pressure estimates at unmeasured locations. Section 4
develops a staggered regulatory pressure control scheme for the
header model described in Section 2, and evaluates the trade-
off between flaring, expensive supplier use, and consumer sta-
bility. Section 5 presents the main findings and contribution of
this study. The nonlinear SEM model in Section 2, the EKF
designed in Section 3, and the PI controllers in Section 4 are
used to evaluate the optimal measurement location for different
disturbance scenarios. Section 6 concludes the study.

2. Model Development

This section provides a brief summary of the model used for
the simulations in this study, and provides a dynamic simulated
example of the pressure responses. The model nomenclature is
shown in Table 1. (A more detailed model description can be
found in [14].)

2.1. Process Description

The process shown in Fig. 1 is an example of a typical pro-
cess which will be used as the case study for this work. Other
configurations are possible. Pz and Qz are the header inlet pres-
sure and flow rate, and PL and QL are the header outlet pressure
and flow rate respectively. The process feed (Q4) is supplied
to the header via a compressor which cannot be manipulated.
Gas can be flared at the inlet of the header (Q1) during high

pressure scenarios and gas can be pulled in from an expensive
second supplier (Q3) during low pressure scenarios. The header
outlet supplies gas to one consumer (Q2). The pipe pressures do
not have to be controlled tightly at SP. Qz and QL are calculated
using a mass balance as,

Qz = Q4 + Q3 − Q1, (1a)
QL = Q2. (1b)

It is desirable to minimise flaring (Q1) and expensive supplier
use (Q3), and provide stability for the consumer in the face of
load changes from the standard supplier (Q4).

2.2. Process Model
A general model of gas flow in a pipe is discussed below.

This model is used to represent the process in Fig. 1. The
pressure and flow dynamics inside a pipe can be described by
the continuity (2a) and momentum (2b) equations [28]. The
ideal gas law compensated for compressibility (2c) is used to
relate the gas properties in the header.

∂P
∂t

+
ZR T
AMw

∂Q
∂z

= 0, (2a)

∂Q
∂t

+ A
∂P
∂z

+
f ZR T Q|Q|
2DAMwP

= 0, (2b)

PAL −
mZRT

Mw
= 0. (2c)

P is the pressure, Q is the mass flow rate, R is the gas constant,
A is the cross sectional area of the pipe, L is the pipe length, Z is
the gas compressibility, T is the temperature, f is the coefficient
of friction, D the pipe diameter, m is the gas mass, and Mw is
the mixed gas molecular weight.

2.3. Weak formulation
Multiplying (2a) and (2b) by a suitable set of test functions

υ and integrating on the interval [0, L], the weak formulation is
written as [16],∫ L

0

∂

∂t

[
κP
αQ

]
υdz =

∫ L

0

[
Q
P

]
∂υ

∂z
dz

−

∫ L

0

[
0
τ Θ

]
υdz −

[
Q
P

]∣∣∣∣∣∣L
0
υ,

(3)

Figure 1: Case study process diagram. The dashed lines indicate streams which
may be manipulated and the thick line indicates the header.
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Figure 2: Pipe discretisation into elements and mapping to local coordinates.

where,

κ =
AMw

ZRT
, α =

1
A
, τ =

f ZRT
2DA2Mw

, Θ =
Q|Q|

P
. (4)

2.4. Pipe Segmentation

The weak formulation in (3) is partitioned into n elements
denoted by Ωe such that Ωe = [ze−1, ze], with 0 = z0 < z1 <
· · · < ze = L. This results in,∫

Ωe

∂

∂t

[
κP
αQ

]
υdz =

∫
Ωe

[
Q
P

]
∂υ

∂z
dz −

∫
Ωe

[
0
τ Θ

]
υdz, (5)

for e = {1, . . . , n}. By making use of the mapping function
described as,

z(ξ)e =
ze − ze−1

2
ξ +

ze − ze−1

2
, (6)

the element global coordinates, ze and ze−1 for each element, are
mapped to a local coordinate system ξ ∈ [−1, 1]. The process
of pipe segmentation and mapping is illustrated by Fig. 2. To
account for the coordinate transformation inside the integral in
(5), the functions have to be multiplied by the Jacobian which,
for the one-dimensional case and varying element lengths, can
be defined as,

Je =
dz
dξ

=
ze − ze−1

2
. (7)

2.5. Integration

Integration over each element in the interval ξ ∈ [−1, 1]
is performed by making use of the Gauss-Lobatto-Legendre
(GLL) quadrature of integration defined as [15],

∫
Λ

f e(ξ)dξ ≈
N∑

k=0

ωk f e(ξk), (8)

where ξk and ωk are the collocation points and integration
weights of the GLL quadrature of order N respectively. Cal-
culated values for ξk and ωk are available in literature [15].

Figure 3: Langrange Polynomials of order 3. The vertical dashed lines indicate
the collocation points.

2.6. Interpolation
Barycentric Lagrange interpolation [29] is used to interpolate

the element functions. The element functions f e(ξ) are approx-
imated using the interpolation scheme as,

f e(ξ) ≈
N∑

i=0

f e(ξi)`N
i (ξ), (9)

where f e is restricted to the segment [ze−1, ze]. Lagrange poly-
nomials `N

i of order N have the property,

`N
i (ξ j) = δi, j, for j = 0, . . . ,N, (10)

where δi, j is the Kronecker Delta function. As an example, La-
grange polynomials of order 3 are shown in Fig. 3.

2.7. Mass and Stiffness Matrices
Sections 2.5 and 2.6 are applied to (5) to derive the elemental

mass matrices as,

(Mφ)e
i j =

N∑
i=0

N∑
k=0

φi(ξk)ωk J(ξk)δi, j, (11)

for j = 0, . . . ,N where φ ∈ {κ, α, τ}. The mass matrices are
diagonal and non-singular, and can therefore be inverted. Sim-
ilar to the mass matrices, the elemental stiffness matrices are
derived as,

S e
i j =

N∑
i=0

N∑
k=0

ωk`
′
i (ξk)δ j,k, (12)

for j = 0, . . . ,N where `′i is the first derivative of the Lagrange
polynomial. The global mass (Mφ) and stiffness (S ) matrices
are assembled by diagonally combining the elemental matrices.

2.8. State-space description
The final global system of equations are,

dP
dt

= M−1
κ [S Q + Qzb0 − QLbL], (13a)

dQ
dt

= M−1
α [S P − MτΘ + Pzb0 − PLbL], (13b)
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and in condensed form,

ẋ = f (x,u), (14)

where the vectors indicated in bold are defined as,

P = [P1, . . . , Pc]T , (15a)

Q = [Q̃1, . . . , Q̃c]T , (15b)

Θ =

[
Q̃1|Q̃1|

P1
, . . . ,

Q̃c|Q̃c|

Pc

]T

, (15c)

and c is equal to the total number of collocation points. The
flow states in (15b) inherent to the model should not be con-
fused with the process flows in Fig. 1. A tilde (∼) is used to
differentiate between the flow states in (15b) and the process
flows in Fig. 1. The number of collocation points is depen-
dant on the choice of n and N, and calculated as nN + 1. The
boundary vectors are of the same length and are defined as,

b0 = [1, 0, . . . , 0]T , (16a)

bL = [0, . . . , 0, 1]T . (16b)

The boundary conditions Qz, QL, Pz, and PL for a pipe of length
L are defined as,

Qz = Q(0, t) and QL = Q(L, t), (17a)
Pz = P(0, t) and PL = P(L, t). (17b)

The pipe inlet Qz and outlet QL flows are chosen as model
inputs,

u = [Qz,QL]T . (18)

The boundary pressures are given by the following substitu-
tions [16],

Pz = P1 −

√
ZR T
Mw

AMw

2ZR T
(
Q̃1 − u1

)
, (19a)

PL = Pc −

√
ZR T
Mw

AMw

2ZR T
(
u2 − Q̃c

)
. (19b)

The outputs are the pipe inlet and outlet pressures extracted as
the first and last values in the vector P,

y = [P1, Pc]T = g(x,u). (20)

The outputs are used as measured states for the simulated pro-
cess in this study.

2.9. State-Space Model Summary

The final state-space model of the system is as follows,

ẋ = f (x,u), (21a)
y = g(x,u), (21b)

where f (x,u) is given by (13), x = [PT ,QT ]T as in (15a)-(15b),
u = [Qz,QL]T as in (18), and y = [P1, Pc]T as in (20).

2.10. Dynamic Simulation

To showcase the simulation capability of the model and pro-
vide a visual representation of the header profile responses, the
nonlinear model is initialised at the conditions shown in Ta-
ble 1, and provided with a sequence of inputs to Qz and QL.
PL is initialised from Pz using a simplification of (2b) [30].
The states are initialised by interpolating between the bound-
ary conditions. For n = 2 and N = 3, there are 7 collocation
points along the length of the pipe. P1 to P7 in (15a) represent
the pressures at the 7 collocation points with c = 7. P1 and
P7 are the pressure states at the inlet and outlet of the pipe re-
spectively. The simulation is propagated using the fourth order
Runge-Kutta explicit time discretization scheme.

Table 1: Model initialisation values.

Parameter Value Units
Initial Inlet Pressure (Pz) 3000 kPa
Initial Outlet Pressure (PL) Pz −

f ZR T Q|Q|L
2DA2 MwPz

kPa

Initial Mass Flow (Q) 10 kg/s
Friction ( f ) 0.2 -
Compressibility (Z ) 0.95 -
Gas Constant (R) 8314.47 J/kmolK
Temperature (T ) 300 K
Molecular Weight (Mw) 17.2 kg/kmol
Pipe length (L) 5000 m
Pipe Diameter (D) 0.5 m
Pipe Segments (n) 2 -
Polynomial Order (N) 3 -
Time step size (∆t) 1 s

The pressure responses are shown in Fig. 4. Mass balance
off-set, when Qz and QL are not the same, has an integrating
pressure response, and flow rate changes have first-order self-
regulating pressure responses. It is important to note that the
integrating gain is the same at all the collocation points but the
self-regulating responses vary in magnitude and direction de-
pending on the collocation point.

Fig. 5 shows where the pressure measurements are located
on the header at the collocation points for a choice of n = 2 and
N = 3 as well as the upstream and downstream directions as
used in this study.

3. Model Analysis and State-Estimation

The pressures at the collocation points on the plant are not
measured. Therefore, a state-estimator is necessary to estimate
the pressures so that they can be used for feedback control. Sec-
tion 3.1 completes a controllability and observability analyses
of the model in Section 2, Section 3.2 performs a frequency
analysis, and Section 3.3 develops a suitable observer to esti-
mate the unmeasured pressures followed by a simulation to test
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Figure 4: Dynamic responses of the states P in (15a) given flow inputs to Qz
and QL.

Figure 5: Locations of the pressures measurements P1 to P7 on the header.

the EKF accuracy in Section 3.4. As shown in Section 5, the
EKF provides feedback to the PI controllers designed in Sec-
tion 4 to evaluate the optimal measurement locations.

3.1. State Controllability and Observability
It is desirable to use a minimal realisation of a system for

simulation and analysis. To this end a state controllability and
observability analysis is done. Additionally, state observability
is essential for the design of state estimators. The linearised
state-space description has the form,

δẋ = Aδx + Bδu, (22a)
δy = Cδx + Dδu. (22b)

This formulation is obtained from the nonlinear equations of
Section 2 by obtaining the first order Taylor series expansion of
the functions f (x,u) and g(x,u) in (21) with respect to x and
u at a chosen steady state operation x = x0 and u = x0. The
deviation variables are defined as δx = x− x0, δu = u−u0, and
δy = y − y0. The matrices A, B, C and D for the equilibrium
condition in Table 1 are shown in Appendix A.

The number of states is calculated as 2(nN + 1). The lin-
ear state-space model (22) is found to be state controllable and
observable for choices of N = 3 and n = 2. Therefore, (22)
represents a minimal realisation [7]. The nonlinear state-space
model will be observable if the linearised state-space model is
observable [31, 32].

3.2. Measurement Location Frequency Analysis
In this section two concepts are illustrated in the frequency

domain:

Table 2: Input and output scaling factors.

Parameter Scaling Value Unit
Pressure 5000 Pa
Flows 5 kg/s

1. The pipe distance between the chosen measurement loca-
tion and the final control element influences the ability to
control the plant.

2. The pipe functions as a filter which is beneficial for distur-
bance rejection.

The Laplace transform of (22) results in the following trans-
fer function,

Ĝ(s) =

[
δP1(s)/δQz(s) δP1(s)/δQL(s)
δPc(s)/δQz(s) δPc(s)/δQL(s)

]
, (23)

where Ĝ(s) is calculated from (22) as,

Ĝ(s) = C(sI − A)−1B + D. (24)

For Section 3.2, the plant model (Ĝp(s)) and the disturbance
model (Ĝd(s)) are defined as,

Ĝp(s) = Ĝ22(s), (25a)

Ĝd(s) = Ĝ21(s). (25b)

Therefore, Ĝp(s) and Ĝd(s) are the unscaled transfer functions
between the outlet flow rate (QL) and the inlet flow rate (Qz)
to the chosen downstream pressure measurement (Pc) respec-
tively. The measurement location is chosen by varying the pres-
sure output in the second row of the C matrix in (22) as one of
the c = 7 collocation points.

The process is scaled as proposed by [7] and the scaling fac-
tors used to obtain the scaled transfer functions Gp and Gd are
shown in Table 2. The scaled linear model for δPc(s) is written
as,

δPc(s) = Gp(s)δQL + Gd(s)δQz. (26)

The remaining process parameters are unchanged as specified
in Table 1. The values for |Gp( jω)| and |Gd( jω)| over a fre-
quency range when varying the measurement locations from P1
to P7 are shown in Fig. 6a and Fig. 6b respectively.

The values for |Gd( jω)| are almost identical to |Gp( jω)| but
reversed in relation to the measuring location choice (i.e the
values of |Gp( jω)| at P7 in Fig. 6a are similar to the values
for |Gd( jω)| in Fig. 6b at P1). Therefore, choosing a measure-
ment location which is closer to the disturbance source (Qz)
than the final controlled element (QL) may result in |Gp( jω)| <
|Gd( jω)| −1, depending on the scaling, which is undesirable for
control [7]. At P4, |Gp( jω)| ≈ |Gd( jω)| because P4 is equidis-
tant from the disturbance source at Qz and the final control el-
ement at QL. The impact of measurement location choice is
reduced at lower frequencies.

Therefore, Fig. 6 illustrates the following two concepts:
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(a) |Gp( jω)| values.

(b) |Gd( jω)| values.

Figure 6: |Gp( jω)| and |Gd( jω)| values for measurement location choices at P1
to P7.

• The further the pressure measurement is from the manip-
ulated variable, QL, the more difficult it is to control the
plant due to the dynamic effect taking longer to reach the
measurement as indicated by the locations where |Gp( jω)|
crosses the line |Gp( jω)| = 1.

• The pipe between the measurement and the flow distur-
bance filters out high frequency signals [33], as indicated
by the locations where |Gd( jω)| crosses the line |Gd( jω)| =
1, which is advantageous for disturbance rejection.

The ability to reject disturbances and control the plant based on
measurement location is further investigated in Section 5.

3.3. Extended Kalman Filter

Since the plant model described in (14) and (20) is state ob-
servable as discussed in Section 3.1, an EKF will be used to
provide suitable state estimators for the internal pressures at the
collocation points. The model in (21) is rewritten in discrete
form as,

xk+1 = f k(xk,uk) + dk, (27a)
yk = Cxk + vk, (27b)

where x = [PT ,QT ]T , dk is the process noise with covariance
Ẑ > 0, and vk is the measurement noise with covariance R̂ > 0.

The matrix C extracts the desired pressure values from xk. The
discrete process model is expressed as an implicit trapezoidal
integration scheme,

xk+1 = xk +
∆t
2

(
f k(xk+1,uk) + dk+1 + f k(xk,uk) + dk

)
, (28)

and solved using the Newton-Raphson method. As shown in
(28), zero-order hold is applied to the input vector. The a-priori
estimate (x̂−k ) and estimation error covariance matrix (Ĥ−k ) is
solved as [32],

x̂−k+1 = f k(x̂+
k ,uk), (29)

Ĥ−k+1 = WkĤ+
k WT

k + VkẐkVT
k , (30)

where x̂+
k is the posterior state estimate. Wk and Vk are the par-

tial derivatives of f k to the states xk and process noise dk re-
spectively, and have the discrete forms,

Wk =
∂ f k

∂xk
,

= −

(
I −

∆t
2

(
∂ f k

∂x−k+1

∣∣∣∣∣∣
x̂k ,uk

))−1(
− I −

∆t
2

(
∂ f k

∂x+
k

∣∣∣∣∣∣
x̂k ,uk

))
,

(31)

and,

Vk =
∂ f k

∂dk
=

∆t
2

(
I −

∆t
2

(
∂ f k

∂x−k+1

∣∣∣∣∣∣
x̂k ,uk

))−1

. (32)

The observer measurement correction is [32],

kk = Ĥ−k CT
(
CĤ−k CT + R̂k

)−1
, (33)

Ĥ+
k =

(
I − k̂kC

)
Ĥ−k , (34)

x̂+
k = x̂−k + kk

(
yk −C x̂−k

)
, (35)

where kk is the Kalman gain. The state estimations and covari-
ance matrices are initialised as,

x̂+
0 = x0, (36a)

Ẑk = diag(ẐPI, ẐQI), (36b)

R̂k = diag(R̂PI, R̂QI). (36c)

ẐP, ẐQ, Ĥ−0 > 0 are tuning parameters. R̂P and R̂Q are chosen
using typical instrument accuracies.

3.4. State Estimation Accuracy

The simulation environment to test the EKF is created as fol-
lows:

• A sinusoidal disturbance is injected into the system with
an amplitude of 5 kg/s and a period of 1 minute: Qz =

5sin(2π/60t).

• The pressure states are sub-optimally initialised at the av-
erage header pressure to observe how they converge to the
true state values: Pc,k=0 = (Pz + PL)/2 for c ∈ [1, . . . , 7].
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Figure 7: Model simulated states compared to state estimations for pressures at the collocation points P1 to P7, the state estimation errors, and the flows Qz and QL
at the boundary conditions.

• Measurement noise is added to the outputs: vk∼N(0, σ2
v).

• Process noise is added to the plant pressure and flow states
respectively: dkp∼N(0, σ2

dP
), dkQ∼N(0, σ2

dQ
).

• Ĥ−0 is initialized as a matrix of ones.

• The simulation is propagated over time using an explicit
fourth order Runge-Kutta algorithm for a time frame of 5
minutes and a sampling period of ∆t = 1 s.

The state estimation parameters used in the simulation environ-
ment are shown in Table 3 and the remaining parameters are
initialised as shown in Table 1.

Table 3: EKF parameters.

Parameter Value Unit
ẐP 1 kPa
ẐQ 0.1 kg/s
R̂P 3 kPa
R̂Q 0.2 kg/s
σ2

v 1 kPa
σ2

dP
3 kPa

σ2
dQ

0.1 kg/s

The results are shown in Fig. 7 and it can be seen that
the state estimates converge to the true states. The root mean
squared error (RMSE) of all the pressures for the time period
after the states have converged (t > 0.3 minutes) is shown in
Table 4. From Table 4 it can be seen that the states are accu-
rately estimated by the EKF given the process and measurement
noise in Table 3.

The damping effect of the pipe length discussed in Section
3.2 can be seen in Fig. 7 where the sine waves have phase lag
and a decreased amplitude as the pipe length increases [34].
The combination of using the SEM model to provide pressure

Table 4: State estimation errors.

Measurement Location RMSE (kPa)
P1 4.9
P2 2.8
P3 7.1
P4 3.9
P5 7.1
P6 2.1
P7 0.6

profiles and using an EKF to attain the estimated states is at-
tractive for applications that require pressures values at non-
measured locations. The flow states Q in (15b) can be estimated
in a similar manner.

4. PI Control for Pressure Buffering

This section develops a typical control scheme to use for the
case study process in Fig. 1 using PI controllers. The header
control scheme and controller tuning rules are described in Sec-
tion 4.1. Section 4.2 describes how the controller error Ek is
calculated and how the SPs and process values (PVs) are de-
termined, and Section 4.3 provides a closed loop simulation in-
troducing the trade-off between flaring, expensive supplier use,
and consumer stability. The PI controllers developed here are
used in Section 5 to determine the optimal measurement loca-
tions.

4.1. PI Tuning
PID controllers may vary in their exact implementation de-

pending on the application. The typical solution to pressure
control is the standard PI controller represented in discrete ve-
locity form as,

Mk+1 =Mk + Kc

[(
Ek − Ek−1

)
+

∆t
τI

Ek

]
, (37)
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where Ek is the error, Kc is the controller gain, τI is the integral
time, andMk is the controller output at time step k.

The process gain (K) used for the tuning rules is derived from
(2c) as [30],

dP
dt

=
ZR T
ALMw

(
Qz − QL

)
, (38)

where the integrating gain of the pressure response is approxi-
mated as,

K ≈
ZR T
ALMw

. (39)

The simple internal model control (SIMC) tuning rules pro-
posed for integrating processes by [35] are as follows,

Kc,1 =
1

K(τc + θ)
, (40a)

τI = 4(τc + θ). (40b)

Following the reasoning in [36], the buffering controller gain
(Kc,1) is chosen and used to solve for the desired closed loop
time constant (τc) and process delay (θ), which is then used to
solve for the controller time constant (τI).

The gain of the buffering pressure controller is chosen as,

Kc,1 =
Qmax

Pmax
, (41)

from which τc + θ and τI is solved using (40). Qmax is the
maximum allowed consumer flow rate (Q2) deviation from the
initialised value and Pmax is the maximum allowed pressure de-
viation from SP at the chosen measurement location. Qmax is
chosen as 5 kg/s and Pmax is chosen as 100 kPa in this study.

A staggered pressure control scheme is used to control the
header pressure in Fig. 1. A buffering pressure PI controller
is used to control Q2, an under pressure PI controller is used
to control Q3 during low pressure scenarios, and an over pres-
sure PI controller is used to control Q1 during high pressure
scenarios. In this work the controller gains for the under and
over pressure controllers (Kc,2) are adapted from the tight level
control heuristics given in [37] for header pressure control as,

Kc,2 =
0.4

KQmax
, (42)

and the integral time used for the buffering controller is also
used for the over and under pressure controllers.

The over pressure controller (43a), buffering pressure con-
troller (43b), and under pressure controller (43c) are described
as,

Q1,k+1 = Q1,k + Kc,2

[(
E1,k − E1,k−1

)
+

∆t
τI

E1,k

]
, (43a)

Q2,k+1 = Q2,k + Kc,1

[(
E2,k − E2,k−1

)
+

∆t
τI

E2,k

]
, (43b)

Q3,k+1 = Q3,k − Kc,2

[(
E3,k − E3,k−1

)
+

∆t
τI

E3,k

]
. (43c)

The PI controller tuning parameters are given in Table 5. The
tuning rules developed are independent of the pressure measur-
ing location because the integrating gains are the same for all
the pressure measurement locations as shown in Fig. 4.

Table 5: Tuning values.

Parameter Value Units
K 140.32 Pa/kg
τI 570 s
Kc,1 0.05x10−3 kg/Pa.s
Kc,2 0.57x10−3 kg/Pa.s
τc + θ 143 s

4.2. PI Controller References and Feedback

The measurement locations for the buffering pressure con-
troller (p), and the over and under pressure controllers (o) are
selected as one of the c = 7 collocation points and provided to
the PI controllers as PVs.

The SP of the buffering controller is given a value equal to
the initialised pressure value for the selected collocation point at
p. The over and under pressure controllers receive a SP equal
to Pmax above and below the initialised value of the buffering
controller respectively. The value of Pmax is an engineering de-
cision based on the process design and alarm limits. Therefore,
because o and p can potentially be measured at the inlet and
outlet of the header respectively, Pmax should be chosen care-
fully to ensure that the pressure controller SPs do not become
coupled through the header pressure drop. The controller SPs
are given as,

r̄ = Pp,k=0 + Pmax, (44a)
r = Pp,k=0, (44b)
r = Pp,k=0 − Pmax, (44c)

where r̄, r and r are the SPs for the over (43a), under (43c) and
buffering (43b) pressure controllers respectively. It is important
to note that r̄ and r are defined relative to the buffering controller
measuring location p in this study because the header will oper-
ate at r when no disturbances are present. The controller errors
in (43) are defined as,

E1,k = r̄ − Po,k, (45a)
E2,k = r − Pp,k, (45b)
E3,k = r − Po,k. (45c)

4.3. Closed Loop Simulation

A simulation of the control scheme is shown in this section
highlighting the response of the buffering controller using the
tuning rules presented in Section 4.1 and the impact of the over
and under pressure controllers on the overall performance.

A sinusoidal disturbance is injected into the system through
Q4 with an amplitude of 5 kg/s and a period of 20 minutes. o
and p are selected as 4. Therefore, the over and under pres-
sure controllers, and the buffering pressure controller use P4 as
a measurement location in this simulation. The remaining pa-
rameters are initialised as shown in Table 1. The simulation
time is 70 minutes and the results are shown in Fig. 8.

8



Figure 8: Closed loop simulation.

It can be seen from Fig. 8 that the output of the buffering
pressure controller (Q2) moves slowly between the consumer
low limit (Q2) and high limit (Q̄2) which is determined by Qmax.
As P4 approaches the high and low limits the under pressure
and over pressure controllers take action as shown by the move-
ment in Q1 and Q3. It is desirable to tune the PI controllers so
that P4 does not come too close to the pressure limits r̄ and
r. Otherwise, slightly larger than expected disturbances and
process noise may cause nuisance alarms and in extreme cases
process upsets such as the lifting of pressure safety valves. The
SEM model inputs (Qz and QL) are also shown in Fig. 8 and
are calculated using (1).

Fig. 9 shows the simulation results when the over and under

Figure 9: Closed loop simulation with over and under pressure controllers dis-
abled.

pressure controllers are disabled. It can be seen in Fig. 9 that
P4 moves a lot closer to the pressure limits r̄ and r and that the
output of the buffering pressure controller saturates at the output
limits Q2 and Q̄2. Q2 and Q4 is equal to Qz and QL respectively
in Fig. 9 (refer to (1)).

The sum of incremental changes for Q2 is described as,

S∑
k=1

∣∣∣∣∣∣Q2,k − Q2,k−1

∆t

∣∣∣∣∣∣, (46)

where S is the total amount of time steps and k is the current
time step. The absolute change in Q2 is defined as the difference
between the maximum value and the minimum value observed
from Q2 in the simulations. Table 6 shows the sum of incre-
mental changes and the absolute change observed in Fig. 8 and
Fig. 9.

Table 6: Performance metrics for Fig. 8 and Fig. 9.

Consumer Flow (Q2) Stability Metric Fig. 8 Fig. 9
Sum of Incremental Changes (kg) 277.4 350.3
Absolute Change (kg/s) 7.94 10

It can be seen from Table 6 that the over and under pres-
sure controllers assist in providing improved consumer stability
as the sum of the incremental changes and absolute change is
lower in Fig. 8 than Fig. 9. However, this has an added cost of
flaring and expensive supplier use which is investigated further
in Section 5.

5. Optimal Pressure Measurement Location

This section contains the main contribution of this study. It
describes the simulation approach to find the optimal pressure
measurement locations and shows how the cost functions are
evaluated. As shown in the simulation setup in Fig. 10, the non-
linear SEM model in Section 2, the EKF designed in Section 3,
and the PI controllers in Section 4 are used in conjunction to
evaluate the optimal pressure measurement locations.

5.1. Pressure Constraints
The over and under pressure controllers, which influence the

header inlet flow rate, should not receive a pressure measure-

Figure 10: Block diagram of the simulation framework.
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ment which is further downstream than the pressure measure-
ment received by the buffering controller which controls the
outlet header flow rate. This restriction is due to the phase lag
between the measurement and the final control element which
may result in instabilities as discussed in Section 3.2. This re-
striction, mathematically given as p ≥ o, eliminates a large por-
tion of the potential p and o pairings.

It is assumed in this study that the header operates far enough
from design and alarm limits so that the pressures at upstream
and downstream collocation points do not violate pressure lim-
its if the pressure is controlled at any choice of p and o. In the
event that such violations do occur the pressure violation would
have to be quantified and included as constraints. If p ≥ o
holds, the upstream pressure constraint (47a) and downstream
pressure constraint (47b) can be mathematically expressed as,

Po < Pp +
f ZR T Q|Q|(Lp − Lo)

2DA2MwPr
< P̄o, (47a)

Pp < Po −
f ZR T Q|Q|(Lp − Lo)

2DA2MwPr
< P̄p, (47b)

where Lp is the length of Pp from the header inlet and Lo is the
length of Po from the header inlet. P̄o and Po are the high and
low pressure limits of Po respectively, P̄p and Pp are the high
and low pressure limits of Pp respectively, and Pr is a pressure
reference which was chosen as Pz in Table 1. Notice that if
the pressures and corresponding limits are selected at the same
locations, Lo = Lp, the pressure drop term becomes zero and
the constraint becomes Po=p < Po=p < P̄o=p. A typical solution
is to measure for over pressure protection at the header inlet and
under pressure protection at the header outlet thereby ensuring
that alarm and design limits are met across the header.

5.2. Cost Evaluation
The problem is how to choose the optimal pressure measure-

ment locations so that the control system can optimally use the
header buffering capacity to meet the process goals: minimise
flaring and expensive supplier use, and provide consumer sta-
bility.

The cost of flaring (J1), consumer stability (J2) and expen-
sive supplier use (J3) is expressed as,

J1 =

∑S
k=1 Q1,k

S W1
, (48a)

J2 =
1

S W2

S∑
k=1

∣∣∣∣∣∣Q2,k − Q2,k−1

∆t

∣∣∣∣∣∣, (48b)

J3 =

∑S
k=1 Q3,k

S W3
. (48c)

Therefore, (J1) is associated with the over pressure controller
(43a), (J2) is associated with the buffering pressure controller
(43b), and (J3) is associated with the under pressure controller
(43c). The total loss function (JT ) is,

JT = J1 + J2 + J3. (49)

S is the total amount of time steps, k is the current time step,
and the weights W1, W2, and W3 are used to scale the individual

loss functions relative their economic penalty. The weights are
chosen as shown in Table 7.

Table 7: Cost function weights.

Weight Value
W1 3.5
W2 0.018
W3 1.1

Similar to [12] and [13] a scenario based approach is used to
select the optimal measurement location. The optimal pressure
measurement locations are determined for varying sine wave
disturbance amplitudes and frequencies. Disturbances are ex-
plicitly induced and the objective function evaluated in a simu-
lation environment using a brute-force SOC method [6, 7] and
evaluated for every pairing of p and o where p ≥ o. This
methodology was chosen to overcome the following obstacles:

• The over and under pressure controllers introduce non-
linearities at the saturation boundaries.

• The cost functions need to be evaluated dynamically.

• Typical industrial header disturbances are oscillatory in
nature due to upstream and downstream process changes
such as equipment sequences, hourly demand cycles, and
controller tuning.

• The interaction between the over and under pressure con-
trollers and the buffering pressure controller is dependent
on the selected measuring locations.

• Information regarding the gradual change in the cost in-
curred when varying the measurement location is as valu-
able as finding the optimal measuring locations.

• To demonstrate the effectiveness of the methodology, all
the costs for the scenarios are shown as opposed to only
providing the optimal measurements.

• The measurement location changes the apparent operating
region of the header as the further downstream the pressure
is measured, the lower the header pressure is perceived to
be. Controlling the header pressure at chosen locations
changes the variability of the upstream and downstream
location pressures. This is important to consider when the
header pressure controller and the over and under pressure
controllers do not use the same measuring locations.

5.3. Results and Discussion
The disturbance sine wave amplitude is given three values:

0.75Qmax, Qmax, and 1.25Qmax with an initial value equal to
the consumer flow Q2. The sine wave frequency is changed by
choosing the sine wave period to be: 1 minute, 20 minutes, and
60 minutes. This results in a total of 9 scenarios which capture
small, typical, and large disturbance as well as fast, medium and
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(a) Loss functions for a sine wave disturbance amplitude of 0.75Qmax.

(b) Loss functions for a sine wave disturbance amplitude of Qmax.

(c) Loss functions for a sine wave disturbance amplitude of 1.25Qmax.

Figure 11: Associated costs for choices of p and o given disturbance sine wave amplitudes of 0.75Qmax, Qmax, and 1.25Qmax at periods of 1, 20, and 60 minutes.
J1 is the cost of flaring associated with the over pressure controller, J2 is the cost of consumer stability associated with the buffering controller, and J3 is the cost of
expensive supplier use associated with the under pressure controller. JT is the sum of all costs.
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slow disturbances. The remaining parameters are initialised as
shown in Table 1, Table 3, and Table 5. The results are shown
in Fig. 11 and the following observations are made:

• As the measurement location for the buffering pressure
controller (p) moves downstream on the header, the cost
of flaring (J1) increases while the cost of using the expen-
sive supplier (J3) decreases. The difference in direction
between the over and under pressure cost functions is due
to the real available buffering capacity changing size as p
moves downstream on the header. This is due to the header
pressure drop influencing the available buffering capacity
between o and p as shown by (47). The opposing direc-
tions of the over and under pressure control costs have a
balancing effect on the total cost which is influenced by
the economic weights W1 and W3.

• As the measurement location for the buffering pressure
controller (p) moves downstream on the header, the cost
of consumer stability (J2) decreases. This is in agree-
ment with the findings of Section 3.2 because the header
pressure becomes more controllable when the distance be-
tween the measurement and the final control element de-
creases which allows the controller to take less action
when controlling the pressure.

• At lower frequencies and lower disturbance magnitudes
the buffering controller is able to effectively mitigate flar-
ing and expensive supplier usage as expected. This is seen
where there is no flaring or expensive supplier use for a
disturbance period of 60 minutes for some choices of p
and o.

• A choice of o ≥ 6 and p ≥ 6 for sine wave disturbance am-
plitudes of 0.75Qmax and Qmax is particularly interesting.
Flaring and expensive supplier use for a disturbance with
the largest sinewave period of 60 minutes are mitigated by
the averaging controller. The disturbance with the smaller
sinewave period of 1 minute is absorbed by the pipe which
functions as a filter as shown in Fig. 6.

• In general, the locations where p = o have higher asso-
ciated costs for expensive supplier use (J3) and consumer
stability (J2), but lower associated costs for flaring (J1).
This is noteworthy as this is a standard measuring config-
uration on industrial headers.

• A selection of p and o which is close to the header out-
let has the lowest associated total costs given the chosen
economic weights W1, W2, and W3. This is attributed to
the filtering effect of the header length between the dis-
turbance and the measurement location, and the short dis-
tance between the measurement location and the buffering
pressure controller output Q2.

• At low frequencies the under pressure controller has to
take less action than the over pressure controller. This is
seen by the reduction in the cost contribution of the under
pressure controller (J3) for disturbances with a period of
60 minutes.

• For the current process layout and control structure it can
be seen that if the cost function weights are such that the
costs are similar, the total costs become similar for all the
different disturbance signals applied. Therefore, depend-
ing on the economic costs the difference in measurement
location may become negligible.

From these observations it is clear that the optimal measure-
ment location is dependant on the economic objectives of the
header, the size and frequency of the sinusoidal disturbances,
and if the control action influences the inlet or outlet header
flow rate.

Fig. 11a and Fig. 11b indicate that for the disturbances of
amplitude 0.75Qmax and Qmax, the pressure measurement lo-
cation should be selected close to the header outlet. However,
there are exceptions as highlighted by the optimal measurement
locations for the disturbances of amplitude 1.25Qmax shown in
Table 8. The disturbances of amplitude 1.25Qmax is used be-
cause there are unique optimum values for each scenario. This
is due to the large disturbance amplitude which makes it impos-
sible for the buffering controller to reject, or the pipe to absorb,
the disturbances.

Table 8: Optimal reference locations for disturbance sizes of 1.25Qmax.

Amplitude Period Reference Location (o, p)
(kg/s) (min) J1 + J3 J2 JT

1.25Qmax 1 7,7 1,7 7,7
1.25Qmax 20 7,7 1,7 2,7
1.25Qmax 60 7,7 2,7 4,4

It can be seen from Table 8 that the optimal pairing is de-
pendent on the period of the disturbance. If flaring and ex-
pensive supplier use is important then the optimal pairing is
(o = 7, p = 7) for all the periods used. If consumer stabil-
ity is important then a pairing of (o = 1, p = 7) provides the
best cost at lower periods whereas (o = 2, p = 7) provides the
best cost at the largest period. It can be seen that the combined
total cost varies for each disturbance period with a pairing of
(o = 7, p = 7), (o = 2, p = 7), and (o = 4, p = 4) providing
the best total cost for periods of 1 minute, 20 minutes and 60
minutes respectively.

At typical (Qmax) and small (0.75Qmax) disturbance magni-
tudes there are multiple pairings which are optimal due to the
buffering pressure controller or the pipe being able to com-
pletely absorb the disturbances. An example is shown in Fig.
12 where sinusoidal disturbances with periods of 1 minute, 20
minutes and 60 minutes are injected into the system with an
amplitude of Qmax. o and p are chosen as 7.

Fig. 12a shows that at a small period of 1 minute the pipe fil-
ters out the fast disturbance signals such that the pressure at P7
does not deviate substantially from the SP. Therefore, the over
and under PI controllers do not react and there is no deviation
in Q1 and Q3.

Fig. 12b shows that at a medium period of 20 minutes the
over and under pressure controllers assist to control the pres-
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sure. The over and under pressure controllers need to assist in
Fig. 12b because the disturbance signal is too fast to be rejected
completely by the slower tuned buffering controller but is slow
enough that the pipe which acts as a filter allows the disturbance
to pass through. Therefore, there is a deviation in Q1 and Q3 in
Fig. 12b similar to Fig. 8 in Section 4.3.

Fig. 12c shows that at the largest period of 60 minutes the
buffering pressure controller is able to reject the slow flow dis-
turbance without the assistance of the over and under pressure
controllers. Therefore, similar to Fig. 12a, there is no deviation
in Q1 or Q3.

6. Conclusion

This paper investigated the selection of optimal pressure
measurement locations with the intent of pressure buffering
control in gas headers. The SEM was used to obtain a non-
linear model in state-space format which provides the pressure
and flow profiles in the header. An EKF was designed to pro-
vide estimates of the pressure states along the pipeline. A stag-
gered PI pressure control scheme was applied to control the
header pressure and suitable cost functions for flaring, expen-
sive supplier use, and consumer stability were evaluated in a
dynamic SOC framework.

It was found that the optimal measurement location is in-
fluenced by the disturbance magnitudes and frequencies, the
pipe distance from the measurement location to the disturbance
source and final control element, and the economic values of the
process streams interacting on the header. The results obtained
are specific to the selected process layout and control structure
but the methodology can be applied to gas headers in general.
Furthermore, the insights obtained in this work can be used to
aid in the instrumentation design phase of gas headers to aid in
pressure transmitter location placement if the control objectives
are known.

It was assumed in this work that the design limits are suffi-
ciently far away from the operating conditions. Future work
may include design and alarm constraints which will limit
the available measurement pairings due to the pipe pressure
drop. Additionally, physical pipe design parameters such as
the length and operating pressure will also impact the buffering
capability. Investigating the extent to which the physical pipe
parameters impact the measurement location importance may
also prove insightful.

A single header was used for the case study in this paper. Fu-
ture work may investigate if the methodology presented can be
extended to networks of pipelines. i.e. to apply the method-
ology throughout a general network topology such that the en-
tire network would meet the control and economic goals in an
asymptotically stable manner.

The control scheme used in this study is a staggered pres-
sure control approach using PI controllers. However, the con-
trol scheme design and tuning will have a large impact on the
buffering control performance. Since a detailed process model
is available and the disturbance shapes are known, model-based
control or feed-forward control schemes may provide better

(a) 1 minute periodic disturbances.

(b) 20 minute periodic disturbances.

(c) 60 minute periodic disturbances.

Figure 12: Time domain comparison of sinusoidal disturbances with a magni-
tude of Qmax with periods of 1 minute, 20 and 60 minutes.

performance than PI control. However, the investigation of ad-
vanced process control falls outside the scope of this study, fu-
ture work aims to compare the performance of various advanced
process control schemes for gas header buffering control.
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Appendix A. Linear Matrices, Poles, and Zeros

The A, B, C, and D matrices linearised at the conditions
shown in Table 1 and the corresponding poles and zeros for the
system described by (22) are shown below. A brief discussion
around the integrating nature of the system is also given.

The A matrix is represented as,

A =
∂f(x,u)
∂xT

∣∣∣∣∣x0 ,u0

=

[
A11 A12
A21 A22

]
.

where,

A11 = O7x7,

A12 =



−1680 −2270 867 −281 0 0 0
454 0 −628 173 0 0 0
−173 628 0 −454 0 0 0
140 −434 1140 −5x10−7 −1140 434 −140
0 0 0 454 0 −628 173
0 0 0 −173 628 0 −454
0 0 0 281 −867 2270 1680


,

A21 =



4.7 −6.4 2.4 −0.79 0 0 0
1.3 0.012 −1.8 0.49 0 0 0
−0.49 1.8 0.011 −1.3 0 0 0
0.39 −1.2 3.2 0.012 −3.2 1.2 −0.39

0 0 0 1.3 0.013 −1.8 0.49
0 0 0 −0.49 1.8 0.016 −1.3
0 0 0 0.79 −2.4 6.4 −4.7


x10−4,

A22 =



−0.94 0 0 0 0 0 0
0 −0.83 0 0 0 0 0
0 0 −0.79 0 0 0 0
0 0 0 −0.83 0 0 0
0 0 0 0 −0.87 0 0
0 0 0 0 0 −0.94 0
0 0 0 0 0 0 −0.97


.

The matrices B, C, and D are,

B =
∂f(x,u)
∂uT

∣∣∣∣∣x0 ,u0

=



3400 0
0 0
0 0
0 0
0 0
0 0
0 −3400

0.89 0
0 0
0 0
0 0
0 0
0 0
0 0.89



,

C =
∂g(x,u)
∂xT

∣∣∣∣∣x0 ,u0

=



1 0
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0



T

,

D =
∂g(x,u)
∂uT

∣∣∣∣∣x0 ,u0

= O2x2 =

[
0 0
0 0

]
.

The determinant of A is,

det(A) = −9.9562x10−20 ≈ 0.

A value of 0 indicates that the A matrix is singular which is
further confirmed by the rank of A which is less than the amount
of states (2(nN + 1) = 14),

rank(A) = 13.

The singularity of A shows that at least one of the eigenvalues
of A is at the origin. The poles (pG) and zeros (zG) of (22) are,

pG =



−0.46 ± 1.1i
−0.47 ± 1.1i

01

−0.071
−0.43 ± 0.54i
−0.43 ± 0.44i
−0.43 ± 0.14i
−0.88
−0.78


, zG =



−0.33 ± 0.72i
−0.3 ± 0.59i
−0.082

−0.41 ± 0.45i
−0.36 ± 0.32i
−0.89
−0.81
−0.7


.

There are no right-half plane (unstable) poles or right-half
plane zeros which can impose restrictions on the closed loop
performance. The pole at the origin is due to the integrating
nature of the header pressures. The size of the matrices and the
number of poles and zeros are dependant on the choice of n and
N used to spatially discretise the governing equations in (2).

1value rounded from 1.8x10−16 ≈ 0.
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