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G Manjunath
1Department of Mathematics and Applied Mathematics, University of Pretoria, 0002, Pretoria, South Africa

Recurrent neural networks are successfully employed in pro-
cessing information from temporal data. Approaches to training
such networks are varied, and reservoir computing based at-
tainments such as the echo state network provides great ease in
training. Akin to many machine learning algorithms rendering an
interpolation function or fitting a curve, we observe that a driven
system such as a recurrent neural network renders a continuous
curve fitting if and only if it satisfies the echo state property. The
domain of the learnt curve is an abstract space of left-infinite
sequence of inputs and the codomain is the space of readout
values. When the input originates from discrete-time dynamical
systems, we find theoretical conditions under which a topological
conjugacy between the input and reservoir dynamics can exist,
and present some numerical results relating the linearity in the
reservoir to the forecasting abilities of the echo state networks.

I. INTRODUCTION

Many machine learning problems can be formulated as a

problem of finding an unknown interpolating function or fitting

a curve through a set of data points. In the case of neural

networks, feedforward networks were conceived as an input-

output relationship according to some mathematical function

ever since the idea of a perceptron was formulated. Although

they could handle static patterns, recurrent neural networks are

primarily designed to handle sequential or temporal data. We

show that the dynamics of a class of recurrent neural networks

that employ the reservoir computing methodology or, more

generally, the dynamics of a class of input driven dynamical

systems renders a curve fitting for the temporal data.

Temporal data is data that is obtained sequentially as streams.

Examples are ubiquitous, and with the advancement of tech-

nology, our ability to record rich and complex data has

increased profoundly. One way of processing temporal data

is inspired by how the brain maps a stimulus onto its enor-

mously higher-dimensional space by affecting the states of

a vast number of neurons. Such a projection of data onto a

higher-dimensional space is commonly found to exaggerate

certain features of the data to render better separability of

inputs. Inspired by such an idea, reservoir computing (RC)

employs an artificially generated reservoir analogous to a

collection of neurons to map the data into a state in a higher-

dimensional space. In RC, the reservoir is realized almost

randomly. A simple regression technique is then used to obtain

linear observables of the higher-dimensional states that aim to
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approximate the desired function of the temporal signal. Such

ease of training has made prediction, adaptive filtering, noise

reduction, recognition of temporal data in several domains

fructuous. Although the idea of RC can be traced back to

much earlier times, the methodology has gained the state-of-

the-art status since the work of two research groups involving

recurrent neural networks (RNNs) – Jaeger et al. in [1], [2] as

the Echo State Network (ESN) and Maass et al. in [3] as the

Liquid State Machine.

Today, RC has also been realized with dedicated hardware

comprising photonic chips, memristors, spintronic nanode-

vices. (e.g., [4], [5], [6]). Applications of RC are varied

and include robotics, prosthetic control, and epileptic seizure

detection besides classical application of prediction, filtering,

and information processing of temporal data (e.g., [7] and

references therein) and also potentially modeling of nonau-

tonomous dynamical systems [8]. There is a compelling need

to operate these systems under high-efficiency and hence the

quest for the mathematical underpinnings in designing good

reservoirs.

The principle behind training only an observable in the RC

methodology is that the evolving reservoir’s states for practical

purposes could be made independent of its initial state and

thus making its evolution primarily governed by the input.

Such evolution where the reservoir’s states are forgotten can be

framed as an asymptotic state-contraction property described

as the echo state property (ESP) in [1],[2] and recurrent neural

networks designed to achieve this asymptotic state contraction

are called echo state networks (ESNs). Also these evolutions

are easily computable since they have some attracting prop-

erties, specifically, they are always nonautonomous pullback

attractors [9], [10], [11], and uniform attractors [12] when

the input space is compact. The evolution of the network or

reservoir states xn and the read-out or output yn when n ∈ Z

can be formulated more generally as a discrete-state-space

model

xn+1 = g(un, xn) (1)

yn+1 = f(xn+1), (2)

where un belonging to an input space U and state xn

belonging to a compact space X together with a mapping

g : U × X → X constitutes a driven system in (1), and

f : X → Y is a continuous (function) read-out observable in

(2), with Y being the output space. An example of a discrete-

state space model that has gained traction for applications is
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that of a ESN of the form

g(u, x) = (1− a)x+ a tanh(Winu+Wx) (3)

f(x) = Woutx, (4)

where tanh(∗) is (the nonlinear activation) tanh performed

component-wise on ∗, a is a constant often called the leak

rate, Win and W are matrices of appropriate dimensions. The

read-out is linear mapping described by the matrix Wout. Such

discrete state space models are suitable for multi-tasking since

usually Win and W are not necessarily task specific and only

Wout is purposed to the given task.

For instance, in the task of predicting future of an input, we

deem the output space Y to be U itself, and the read-out f
is realized as a best (least-square) linear fit of the mappings

(xn, un−1) 7→ un for the available data, now a popular training

procedure [1]. Since un−1 is involved in the computation of

xn, we could treat the readout yn as a function of only the

reservoir state as in (2) above.

With a strong mathematical slant, several useful results have

been obtained recently. A universal approximation property

[13] shows that given an input-output causal relation, there

is a discrete-state space model, which is an ESN that can

approximate the causal relation to a given precision. Recently,

there is also a result [14], which says that given a driven

system g that has the RNN form, a read-out can be designed so

that any input and output causal relation can be approximated

to a given precision. Also recently, the author in [15] has

shown that a large class of driven systems encompassing

recurrent neural networks exhibit a stable response to input

if and only if they have the input-specific echo-state property

(see Section II).

Despite the mathematical results, we remark that, in prac-

tice, the performance of ESNs in prediction tasks involves

a great degree of variability. This can be demonstrated in the

context where the inputs originate from a dynamical system.

For instance, ESNs can be employed with great success in

predicting an input from the Mackey-Glass oscillator, while

for predicting an input from the Lorenz system, one has to

resort to feedback connections into the network, and prediction

is satisfactory for only about four lobe switchings [1, Sup-

plementary Online Information]. Although authors have often

brushed aside this inadequacy due to the sensitive dependence

on initial conditions in the learnt system, we remark that

after a few iterations the phase portrait of the learnt system

does not resemble that of the map used during training. We

illustrate this in Fig. 1 where we observe that soon after 100

time-steps, there is no resemblance of the ESN output to the

input originating from the full logistic map. Thus the phase

portrait, i.e., plot of yn+1 vs. yn (not shown here) cannot be

expected to resemble the graph of the full logistic map. It is

likely that the ESN in its autonomous mode of operation has

a spurious attractor and the dynamics has veered off from the

dynamics of the logistic map to such an attractor. We remark

Fig. 1. A times series of the full logistic map (in blue) and its prediction
from a linear read-out of a ESN (in red) plotted against time; ESN in (3) with
1000 neurons, a = 0.2 and a spectral radius 1.25 was used with a training
length of 2000.

that in obtaining the plot in Fig. 1, we have used the same

ESN network that predicts the Mackey-Glass attractor with

great success. No significant improvements in forecasting was

observed even when the number of neurons or the spectral

radius was varied. In fact, the universal approximation property

of ESNs [14] or the input-related stability property [15] of the

ESNs is inadequate to explain this variability in performance

in practice.

We also note that these mathematical results use the notion of

product topology. The distance between sequences x̄ = {xi}
and ȳ = {yi}, d(x̄, ȳ) :=

∑∞
i=−∞ d(xi, yi)/2

|i| generates the

product topology. This metric is insensitive to differences in

sequence tails and consequently there might be more profound

reasons for the failure. With the notion of a domain of learning

of a driven system, we point out in Section III that the reservoir

dynamics could get intricately woven due to what is called an

indecomposable continua that can make predictions prone to

errors. One of this paper’s goals is to initiate a line of research

that could explain the variability in the ESN performance,

keeping in mind the larger goal that it could lead to better

RC architectures in the future.

Towards this end, we show that given a task, the model of the

type (1)–(2) imparts a curve-fitting on a certain domain when

g has the echo state property (see Section II). Denote the left-

infinite product (· · ·×U×U) by
←−
U . The collection of all inputs

drawn for a specific task forms a subspace
←−
U task ⊂

←−
U .

So when ESNs are trained for a task, the inputs for training the

network are drawn from
←−
U task. Under the premise of the echo

state property, we show that for every model of the type (1)–(2)

there exists a state-independent continuous function Θ defined

on the left-infinite inputs
←−
U task and taking values in the output
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space, i.e., Θ : ~un 7→ yn where ~un := (. . . , un−2, un−1).
Although Θ is defined for all possible left-infinite inputs, the

domain of learning of Θ would be
←−
U task and its graph fits

a “curve” through the points {( ~uk, yk), ( ~uk+1, yk+1), . . .}. At

the heart of defining the map Θ is the existence of another

map called a universal semi-conjugacy h :
←−
U → X that is

independent of the task. The terminology of a universal semi-

conjugacy is since h establishes a relationship between the

shift map dynamics on the input space and and the evolution

of the state values xn as in (7) in Theorem 1. When the ESN is

fed with inputs from a deterministic dynamical system, and if

the network is such that the universal semi-conjugacy embeds←−
U task in X , then a reservoir (autonomous) map R : h( ~un) 7→
h( ~un+1) exists (see Theorem 2) for all ~u in

←−
U task. We make

use of this setting to explain the variability of the performance

of ESNs while forecasting dynamical systems. In particular,

we explain by discussing the role of the topological structure

of
←−
U task (see Section III).

Historically, data has been transformed into a different space

for processing to gain some advantages. For example, accord-

ing to Vapnik-Chervonenkis (VC) theory (e.g., [16]) mapping

data into a higher dimension often provides much greater

classification power. Mapping temporal data through a delay-

coordinate mapping in Takens delay embedding uncovers

hidden information [17]. In data-driven modeling employing

Koopman’s theory (e.g., [18], [19], [20]), approximating the

dynamics of a dynamical system through a linear dynamical

system in a higher dimensional space is often possible by

mapping the data sample-wise into the higher dimensional

space. In reservoir computing, the dimension of the state space

of the reservoir is typically much larger than the input space

while forecasting dynamical systems, and the map f in (2) is

supposed to have much lesser functional complexity than the

map that generates the data. This is not surprising since for

simple tasks, a linear regression has been found to be efficient

in evaluating the readout in ESNs. Here, inspired by the

Koopman’s theory, we explore the possibility of approximating

the reservoir dynamics (or the map R if it exists) through

a linear map (see Section IV). In the context of prediction

of data from dynamical systems, we find from numerical

simulations that whenever the resultant reservoir dynamics can

be approximated by a linear mapping, the ESNs are known to

perform very well for inputs from such dynamical systems.

Also, again through numerical simulations, when the resultant

reservoir dynamics cannot be approximated through a linear

map, it is found that the prediction performance for inputs

from such dynamical systems is known to be relatively poor.

The paper is organized as follows. In Section II we provide

the mathematical insights behind the map Θ and the universal

semi-conjugacy h – the terminology of conjugacy is defended

in Section III, where we also give an idea of the potential

complicated topological structure of
←−
U task . In Section IV, we

present a linear approximation to the reservoir dynamics. In

Section V we draw some conclusions from the results.

II. CURVE FITTING OF TEMPORAL DATA

We recall some results from [15] that were made in the context

where an input-specific ESP was considered, and then apply

to it to the case where g has the ESP for all inputs. The aim

is to show the existence of the state-independent continuous

function Θ and the universal semi-conjugacy h when g has

the ESP for all the inputs.

Preliminaries. A driven system would comprise an input

space U , a state space X and a function g : U × X → X
where (U, dU ) is a metric space, and (X, d) is a compact

metric space, and g is a continuous map. For brevity, we refer

to g as a driven system with all entities quietly understood.

If U is also compact, then we say g is a compactly driven

system. A sequence ū = {un}n∈Z ⊂ U which we call an

input, induces a sequence of self-maps {g(un, ·)}n∈Z defined

on X and the dynamics on X is generated by the update

equation xn+1 = g(un, xn).

Given a driven system g and an input ū, we call a sequence

{xn} an entire-solution if it satisfies xn+1 = g(un, xn) for

all n ∈ Z. For notational purposes we denote a left-infinite

sequence of U by ~u and bi-finite sequence by ū, and denote

a solution obtained by ū as {xn(ū)}.

If Y is a metric space then we denote the product space←−
Y :=

∏−1
i=−∞ Zi where Zi ≡ Y and equip this space with

the product topology.

Suppose a driven system g has been fed input values

um, um+1, . . . , un−1 starting at time m. Then the map g
transports a state-value x ∈ X at time m to give a state-value

gun−1
◦ · · · ◦ gum

(x) at time n.

Formally, for every choice of ū = (. . . , u−1, u0, u1, . . .)
we define for all pair of integers m ≤ n, the function

that ‘transports’ a system state at x at time m through the

inputs um, um+1, . . . un−1 to the state at time n given by

a composition-operator called a process by several authors

(e.g.,[9]); the composition operator is the map φū : Z2
≥×X →

X , where Z2
≥ := {(n,m) : n ≥ m,n,m ∈ Z} and

φū(n,m, x) :=

{
x if n = m,

gun−1
◦ · · · ◦ gum+1

◦ gum
(x) if m < n.

(5)

Since g(u, x) : X → X , it easily follows that φū(n,m −
1, X) ⊂ φū(n,m,X) (see [10] [15]), and since φ is continu-

ous in the variable x, these sets are all closed. Further, since

X is compact the set

Xn(ū) :=
⋂

m<n

φū(n,m,X) (6)
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is nonempty.

Note that only the left-infinite sequence (. . . , un−2, un−1)
influences Xn(ū), and Xn(ū) denotes the set of all attainable

states at time n. Hence when n = 0, we denote E( ~u) = Xn(ū)
and call it the encoding of the left-infinite sequence ~u. We

recall the following definitions from [10] and [15].

Definition II.1. A driven system g is said to be have the ESP

w.r.t. an input ~u if E( ~u) is a singleton subset of X . A driven

system g is said to have the ESP (w.r.t. the space U ) if g has

the echo state property w.r.t. every input ~u in
←−
U .

Definition II.2. A driven system g is said to be contractible

if there exists some input in ~u ∈ ←−U so that g has the ESP

w.r.t. ~u.

Definition II.3. A driven system is said to be an open driven

system if there is no input value u that maps any uncountable

set A in X to a single value, i.e., g(u,A) is not a singleton

when A is uncountable.

Definition II.1 that defines “g has the ESP w.r.t. a left-infinite

input ~u” is equivalent [15] to saying “g has the ESP w.r.t. an

right-infinite input ū” if there exists exactly one entire solution

for nonautonomous system {g(un, ·)}n∈Z, where the right-

half of the bi-infinite sequence ū can be chosen arbitrarily.

Also, (see [12] [15]) one can easily show that when there is

exactly one entire solution {xn} for an input ū then Xn(ū) is

the singleton subset containing xn for all n ∈ Z. Regarding

Definition II.3, all recurrent neural networks are open driven

systems [15].

We denote the collection of all nonempty closed subsets of

X by HX . On HX we employ the Hausdorff metric defined

by dH(A,B) := max(dist(A,B), dist(B,A)) := inf{ǫ :
A ⊂ Bǫ(B) & B ⊂ Bǫ(A)}, where Bǫ(A) := {x ∈ X :
d(x,A) < ǫ} is the open ǫ-neighborhood of A. We could

treat the encoding function E(·) and describe its continuity by

treating either as a multivalued function of ~u taking values in

X or as a set-valued function taking values in HX (see [15]).

We borrow the following facts from [15, Section 3]: (F1). If

E( ~v) is a singleton subset of X then E(·) is continuous at ~v.

(F2). If g is open and contractible and E(·) is continuous at ~v
then g has the ESP w.r.t. ~v. To state our theorem, we define

the subspace of HX that contains the singleton subsets of X
by SX , and define the mapping i : (X, d) → (SX , dH) by

i(a) = {a}. Clearly i is invertible.

Theorem 1. Let g be a driven system and f : X → Y be a

continuous observable. Suppose that g has the ESP then there

exists a continuous map Θ :
←−
U → Y and h :

←−
U → X so that

Θ( ~v) = f(h( ~v)) = f(x0( ~v))

for all ~v ∈ ←−
U and x0( ~v) is the component of the

entire-solution obtained by any bi-infinite input v̄ for which

(. . . , v−2, v−1) = ~v. Conversely, if g is open and contractible

and if h = i
−1 ◦ E is continuous then g has the ESP.

Fig. 2. Schematic to indicate the action of the universal semi-conjugacy h

Proof. Since g has the ESP it has the ESP w.r.t. all ~u ∈ ←−U .

Hence E( ~u) is a singleton subset of X for any ~u and by (F1),

E(·) is continuous. Let h = i
−1 ◦ E . Now, the mapping i is

an isometry since

dH(i(a), i(b)) = max

(
sup
a∈{a}

d(a, b), sup
b∈{b}

d(b, a)

)

= max(d(a, b), d(b, a)) = d(a, b).

We know if there is an isometry i between spaces, then both i

and i
−1 are continuous. Hence h = i

−1◦E is continuous if and

only if E is continuous. We already know E is continuous and

thus h is also continuous. By definition of E , E( ~u) = {x0(ū)}
where ū is such that its left-infinite part (. . . , u−2, u−1) is ~u.

Hence f(h( ~u)) = f(x0( ~u)). Since f and h are continuous,

Θ = f ◦ h is continuous.

Proof of the second (converse) statement: Since i is an

isometry, E is continuous on
←−
U . When g is contractible and

open, by (F2). g has the ESP. �

The map h in the above theorem would be called the universal

semi-conjugacy of the driven system g. Given ū one can obtain

a left infinite sequence ~uk = (. . . , uk−2, uk−1) for each k ∈ Z.

From the above theorem it follows easily that h( ~uk) = xk for

each k ∈ Z (see Figure II).

III. INVERSE LIMIT SPACE: THE DOMAIN OF LEARNING

We now consider the task of predicting an autonomous discrete

dynamical system. Such systems are stand-alone models or

also can be obtained by discretization of an ordinary dif-

ferential equation. Predicting their dynamics are used as a

benchmark for predicting complex temporal data. An au-

tonomous discrete-time dynamical system comprises a tuple

(U, T ), where T : U → U is a surjective map and U is a
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compact metric space. A sequence {un} ⊂ U is an orbit of

the dynamical system or of T if it satisfies un+1 = T (un)
for n ∈ Z. There could be another dynamical system (V, S)
whose dynamics is equivalent to that of (U, T ) if there exists

a homeomorphism φ : U → V so that V ◦ φ = φ ◦ T . In this

case, we say that (V, S) is topologically conjugate to (U, T ).
Conjugacy means that there is a one-to-one correspondence

between the two systems, and when φ : U → V is a

continuous map, we say that (V, S) is semi-conjugate to

(U, T ). Semi-conjugacy is a weaker notion since φ could be

a many-to-one mapping in which case the system (V, S) is a

coarse-grain description of (U, T ).

Next consider the sequences in
←−
U given by ÛT :=

{(. . . , u−2, u−1) : T (un) = un+1}. Such a subspace ÛT is re-

ferred to as inverse limit space of (U, T ) in the dynamical sys-

tem literature (e.g. [21]), and is customarily written as a collec-

tion of right-infinite sequences but it is equivalent to ÛT that

we have defined. The map T also induces a self-map T̂ on ÛT

defined by T̂ : (. . . , u−2, u−1) 7→ (. . . , u−2, u−1, T (u−1)).
Hence (ÛT , T̂ ) is a dynamical system in its own right and it

is called the inverse limit system of (U, T ). When g receives

inputs as orbits of (U, T ) then the inverse limit space ÛT is

the domain of learning.

We next identify a subspace XU of X that contains all possible

solutions of the driven system g into which one can possibly

topologically embed ÛT . We recall that a space Z is embedded

in X if there exists Y ⊂ X and a function h so that h : Z → Y
is a homeomorphism. For a driven system g, we define its

reachable set to be the union of all the elements of all the

solutions (entire-solutions), i.e.,

XU :=
{
x ∈ X : {xn} is a solution for some ū &

x = xk for some k ∈ Z

}
.

The above reachable set can be defined regardless of whether

g satisfies the ESP or not. When g has the ESP, since every

bi-infinite sequence ū := {un}n∈Z ⊂ U , and its left-infinite

part ~un := (. . . , un−2, un−1) belongs to
←−
U regardless of

n ∈ Z, the map h defined in Theorem 1 satisfies h(
←−
U ) = XU .

Further when a new input value v appears at time n, i.e.,

~unv := (. . . , un−2, un−1, v) denotes symbolically the input

up to time n, we define the mapping σv : ~un 7→ ~unv.

Thus, without reference to index n, the mapping σv defines

a substitution of an input value v on to the right-end of

every element ~u ∈ ←−U . Theorem 2 shows that when g has

the ESP, the map h establishes a topological semi-conjugacy

between such v-substitution dynamics in the input space and

the corresponding dynamics in the space XU obtained through

g.

Theorem 2. Consider a compactly driven system g. When g

has the ESP then the map h :
←−
U → XU defined by h = i

−1◦E
is such that it is continuous and surjective, and the following

diagram commutes:

←−
U

←−
U

XU XU .

σv

h h

g(v,·) (7)

Further if (U, T ) is a dynamical system and suppose h
embeds the inverse limit space ÛT in XU , then there exists

a continuous map R : h(ÛT ) → h(ÛT ) defined by R :
h( ~un) 7→ h( ~un+1), and the system (h(ÛT ), R) is topologically

conjugate to (ÛT , T̂ ).

Proof. Since h( ~u) = i
−1(E( ~u)). By definition of E , we find

(the required commutativity in the diagram in (7)) through the

deduction:

gv ◦ i−1 ◦ E( ~u) = i
−1 ◦ E( ~uv),

= i
−1 ◦ E(σv( ~u)).

It remains to be shown that h is surjective and continuous. By

definition of XU , it follows that h(
←−
U ) = XU and hence h is

surjective. Also h is continuous by Theorem 1.

When we restrict the input to ÛT , then σv( ~u) =
(. . . , u−2, u−1, T (u−1)), and hence σv( ~u) = T̂ ( ~u). When

h embeds ÛT in XU , then from (7), we have h|ÛT

◦ T̂ =

gT (u
−1) ◦ h|ÛT

, where gT (u
−1)(·) = g(T (u−1), ·). Since

h|ÛT

is a homeomorphism, gT (u
−1) = h|ÛT

◦ T̂ ◦ λ where

λ : h(ÛT ) → ÛT is the inverse of h|ÛT

, i.e., h|ÛT

◦ λ
is the identity map. Since h|ÛT

◦ T̂ ◦ λ is a well-defined

mapping independent of u−1, the map R := gT (u
−1) is

independent of u−1. Also by (7), R : h( ~un) 7→ h( ~un+1). Thus

h|ÛT

◦ T̂ = R ◦ h|ÛT

, and hence (h(ÛT ), R) is topologically

conjugate to (ÛT , T̂ ). �

Remarkably, the result in Theorem 2 theorem can be strength-

ened (see [12]) to “(7) commutes if and only if g has the

ESP”. Suppose U is a manifold of dimension m, then
←−
U is

infinite-dimensional and the universal conjugacy h would not

embed
←−
U in XU since X is a subspace of RN . However, if

the component functions of h are sufficiently independent, it

could embed a finite dimensional subspace of
←−
U in XU , and

in particular if h embeds an inverse limit space of ÛT of a

dynamical system, then the reservoir dynamics determined by

(h(ÛT ), R) has all the information to reconstruct the dynamics

of (ÛT , T̂ ). Although it is not possible to verify if h is an

embedding, we note that by Whitney’s embedding theorem,

a generic map from a sufficiently smooth manifold m to a

manifold of dimension 2m+ 1 is a differentiable embedding

(e.g., [22]). Now, is ÛT also a manifold of dimension of m if

U is a manifold of dimension m? The answer is affirmative

when T is a homeomorphism. A more general question is:

would (ÛT , T̂ ) be topologically conjugate to (U, T ) when T

5
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is a homeomorphism? The answer to this question is also

affirmative and can be explained as follows. By considering

a map Λ : ÛT → U by Λ : (. . . , u−2, u−1) 7→ u−1, we

observe that T ◦Λ = Λ◦ T̂ holds. Hence the dynamical system

(U, T ) is semi-conjugate to (Û , T̂ ), and whenever, T is a

homeomorphism, it follows that (Û , T̂ ) is conjugate to (U, T ),
since the mapping u−1 7→ (. . . , T−2u−1, T

−1u−1, u−1) is

Λ−1 is a homeomorphism. Thus when T is a homeomorphism,

(ÛT , T̂ ) is topologically conjugate to (U, T ). So from a

practical viewpoint when h is an embedding, the reservoir

dynamics does not introduce any new complexity than that

is present in the input system (U, T ) since (h(ÛT ), R) is

conjugate to (ÛT , T̂ ). In the ESN literature, the forecasting

results of invertible maps like the Henon map or that of the the

time-one maps of the flows of ordinary differential equations

are very encouraging. We now give a plausible explanation for

this success. For a homeomorphism T : U → U , every point

u defines its left-infinite orbit and a unique point in ÛT . An

injective map taking values in a compact space is always an

embedding. So if h restricted to ÛT is injective then h embeds

ÛT in XU since XU is compact. Therefore, for h( ~u) 6= h( ~v)
to hold when ~u 6= ~v, all h needs to do is to distinguish u−1 and

v−1, or more formally if there exists a map γ : h(ÛT ) → U
so that γ ◦ h is injective, then h restricted to ÛT is injective.

We now argue that when ÛT has a complicated topological

structure and T is chaotic and noninvertible, the universal

semi-conjugacy h of an ESN may not be able to embed ÛT in

XU . To illustrate our point, we first note that when T is not

invertible, the dynamics of (U, T ) is only topologically semi-

conjugate to (Û , T̂ ), and hence the dynamics in (Û , T̂ ) could

have additional complexity. Next, we consider the topological

structure of inverse limit spaces. The inverse limit spaces tell

a lot about dynamical systems, and an excellent but less-

technical treatment can be found in [23]. The topological

description of the inverse limit system is complicated for a

chaotic system. Here is a discussion on how complicated these

spaces can be. The closed interval X = [0, 1] which we know

is compact and connected, can be written as a union of two

proper closed and connected subsets X = [0, 1/2] ∪ [1/2, 1].
Now, there are spaces that cannot be written as the union

of two proper compact connected subsets. Such spaces are

referred to as an indecomposable continua.

Formally, a continua is a nonempty compact connected metric

space. A nonempty connected closed subset of a continuum

is a continuum as well, and is called a subcontinuum. A

continua is called an indecomposable if it cannot be written

as the union of two proper subcontinua. The indecomposable

continua have an interesting property in that it can be shown

to be an uncountable collection of mutually disjoint connected

sets, each of which is dense in the continuum. Kennedy et al.

in [23] describe that the continuum consists of a collection of

“highways”, each close to any other but always separate. These

highways are mathematically defined through the terminology

of composants [23], but without going into finer mathematical

details, we refer to Fig. 3 where a few such highways are

Fig. 3. Conceptual diagram of inverse-limit spaces: a sketch of some
“highways” that are connected sets without (topological) interiors that make
up an indecomposable continua. By breaking such a structure into two, at
least one of them loses its connectedness property

sketched. Whenever we split the set described into Fig. 3, at

least one of those pieces would not be connected. We refer

the interested reader to [24] for computer generated pictures

of continua that correspond to inverse limit spaces of different

spaces.

There are also different subtypes of indecomposable continua,

and they correspond to chaotic dynamical systems of a specific

subtype as well [23]. In particular, the inverse limit spaces of

interval maps always have a great deal of complexity in their

inverse limit spaces [25]. We believe the ESNs determined in

practice do not always produce a universal conjugacy h that

embeds the inverse-limit spaces of chaotic interval maps (that

are always noninvertible) in XU since h may not distinguish

two left-infinite sequences if only their tails are different. As

numerical evidence, we have illustrated the inability of the

ESN to forecast the logistic map T1(x) = 4x(1− x) on [0, 1]
in Section I. During the course of the review of this paper,

an anonymous referee suggested investigation into the role

of the possible stochastic dynamics with regard to the poor

performance of the ESNs for the logistic map. We address

that next.

Complexity of deterministic systems can also be described

macroscopically by describing how the density of an ensem-

ble of initial conditions evolves upon iterating the map. An

operator called the Perron Frobenius operator determines the

6
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evolution of an initial density [26]. A core concept in studying

such stochastic dynamics, is the notion of an invariant density

p that is a fixed point of the Perron Frobenius operator that

also can determine the visitation frequency of typical orbits in

a subspace. We refer the reader to [26] for more details. The

invariant density of the full logistic map T1(x) = 4x(1 − x)
is found to be 1

π
√

x(1−x)
, and one may suspect that since

the invariant density explodes at the end points of [0, 1], it

could lead to an ESN performing poorly while forecasting.

To illustrate that the invariant density of the logistic map

is not influencing the ESN performance, we consider two

other symmetric interval maps T2 :=
√
1− |2x− 1| and

T3 (defined in (8)) defined on U = [0, 1] for our study on

determining the performance of an ESN for forecasting data

from interval maps.

T3(x) :=





√
2x if 0 ≤ x ≤ 1√

8
,

1−
√

1
2 − 2x2 if 1√

8
< x ≤ 1

2 ,

1−
√

1
2 − 2(1− x)2 if 1

2 < x ≤ 1− 1√
8
,

√
2(1 − x) if 1− 1√

8
< x ≤ 1.

(8)

The invariant densities of maps T2 and T3 are p2(x) = 2x and

p3(x) = 2− |2− 4x| respectively (proof in [27]) do not have

such an explosiion at the end points of [0, 1], and all of these

maps are examples of chaotic maps as well. The graphs and

invariant densities of T1, T2 and T3 are plotted in Fig 4(a) and

(b). We compare the performance of the forecasting for orbits

of these maps with an identical RNN, with 200 neurons in the

reservoir, and training with 2000 samples of the data.

In (c) and (d) of Fig. 4 we plot the phase portrait of the

readout, i.e., y(n + 1) vs. y(n) of the reconstructed orbit of

the logistic map T1 using 100 sample values of y(n) after 100

time-steps (in (c)) and after 200 time-steps (in (d)). We note

that barring for a small epoch where the concerned graph is

indicated in a box the phase portrait did not resemble the graph

of the logistic map. The plots in Fig. (e) and (f) correspond

to similar phase portraits of T2 while that in Fig. (f) and (g)

correspond to T3. As evident, the ESN performance is bad and

T3 performs the worst. The performance can be made only less

worse by choosing different network sizes for the three maps,

and we attribute this for h not being able to embed the inverse

limit spaces of these maps in XU , and hence the ESN in its

autonomous mode operation develops spurious attractors.

Intuitively, regardless of whether T is invertible or not, by

increasing the size of the recurrent network, and also by

choosing a reservoir that is not very strongly connected one

may expect that there are enough component functions of

h that are independent so that it may embed ÛT . However,

there are no theoretical condition to guarantee an ESN has

an h that embeds the inverse limit space of a dynamical

system in XU , and it may require some tuning or adjustments.

One possible way to alter the domain of learning itself. With

feedback connections, for instance in a RNN of the form

x(n+1) = σ(Win u(n)+Wx(n)+ Wfb Wout x(n)), where

Wfb is the feedback matrix and Wout is the output matrix

(e.g., [1], [2]), the domain of learning on which h is defined

would stand altered due to the feedback connections. Studying

any advantage of this change in the domain of learning calls

for further research.

IV. ON THE LINEARITY OF THE RESERVOIR DYNAMICS

We now describe the possibility of approximating the reser-

voir dynamics through a linear map. Recently, application of

Koopman’s theory (e.g., [18], [19], [20]) has shown that by

mapping data arising from a dynamical system into a higher

dimensional space one gains greater forecasting capacities

since some aspect of the dynamics can be approximated

through linear maps. Given a dynamical system (U, T ) and

a vector space V of observables f whose domain is U , the

operator K : V → V so that Kf = f ◦ T holds is called

the Koopman operator. Often V is a Hilbert space containing

complex-valued functions in forecasting applications. In this

case a complex number λ ∈ C and φ ∈ V is called an

eigenvalue and eigenfunction if Kφ = λφ. In this case, the

following diagram commutes [18], [19], [20]:

U U

φ(U) φ(U)

T

φ φ

x 7→λx
. (9)

When, the eigenfunction φ : U → V is continuous then the

dynamical system (φ(U), λ) is topologically semiconjugate to

(U, T ). So every eigenvalue captured gives some additional

coarse-grain description of (U, T ). Since finding non-constant

eigenfunctions even if T is known is difficult, they are

determined through data. Often a collection of observables

f = {f1, . . . , fN} are employed to approximate the Koopman

operator through a linear transformation in CN → CN . If the

collection of observables are chosen such that its linear span

is invariant under the Koopman operator, then one can find

a linear approximation to the Koopman operator through the

transformation determined by a matrix A that is guaranteed to

capture a few eigenvalues and a few eigenvectors of K. The

interesting point in the data-driven theory is that the matrix

A is constructed only through the data from the observables,

i.e., {fi(T k(u))}0≤k≤m,1≤i≤N . Also, to capture a larger set of

eigenvalues one has to use a larger set of observables. We now

consider the component functions of h that a driven system

g with the ESP determines as real-valued observables of the

inverse limit system (ÛT , T̂ ), and then find the matrix A.

With this matrix A, we approximate the dynamical relationship

between h( ~un) and h( ~un+1) regardless of whether there exists

a well-defined reservoir mapping R just as in the Koopman

operator based data-driven theory. The difference in this case

and the Koopman’s theory is that we do not have an analytical

7
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Fig. 4. ESN performance: Graphs of maps T1, T2 and T3 in (a), and their invariant densities in (b) plotted from left to right. Phase portraits of the readouts
after 100 time-steps in (c), (e) and (g), and after 200 time-steps in (d), (f) and (h) using 100 samples: ESN in (3) with 200 neurons, a = 0.2 and spectral
radius of 1.25, and training length of 2000 was used; only a small portion of the phase portrait in (c) falls within the unit square as indicated in a box with
a dotted boundary.

expression for the observables since they are components of

the universal semi-conjugacy h. However, since the driven

dynamical system implements the calculation of h( ~un+1) from

h( ~un) and un through h( ~un+1) = g(un, h( ~un)), we can

compute the data required to find A.

Towards finding A, we consider m + 1 successive states of

the reservoir (xt, xt+1, . . . , xt+m−1, xt+m) and then arrange

them into two data matrices of dimension m × N , where N
is the reservoir size, and each xt+i is treated as a row vector:

D :=




xt

xt+1

...

xt+m−1


 and D# :=




xt+1

xt+2

...

xt+m


.

To obtain a single linear approximation of the col-

lection of mappings from xt 7→ xt+1, xt+1 7→
xt+2, . . . , xt+m−1 7→ xt+m, we consider the operator A that

minimizes ‖DA−D#‖ where ‖ ‖ denotes the Frobenius norm

(‖B‖ =
√

Trace(BBT ). Such an A is given by

A = D+D#, (10)

where D+ is the pseudo-inverse of D. The number of samples

m is chosen so that the columns of the data matrix D are

linearly independent. That is, its rank is N , where N is

the reservoir size. Given a reservoir of size N , this can be

achieved by increasing the number of dat points m, and of

course with m ≥ N . The motivation for this requirement is

the following result. Suppose we have two matrices D and

D# of size m × N , then D# = DA holds if and only

if the nullspace of D# contains the nullspace of D where

A := D+D# (for e.g., [19, Theorem 2] – the data in the

8



SPECIAL ISSUE ON NEW FRONTIERS IN EXTREMELY EFFICIENT RESERVOIR COMPUTING; IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS9

Fig. 5. Logarithm of the average absolute error while predicting the reservoir states using the same ESN network with N nodes: log( 1

N

∑
N

i=1
|xi

n − x̂
i
n|)

plotted against time n where the inputs are generated from (i). Van der Pol Oscillator (ii). Mackey-Glass Oscillator (iii). Lorenz System (iv). Logistic map.
ESN as in (3) with 200 neurons, a = 1 and W with a spectral radius of 1.1 was used; with m = 220, the data matrix D had full rank for all the inputs.

citation is arranged column-wise as against row-wise here).

We also emphasize that the relationship in (10) does not mean

that D# is generated from D through the linear dynamics

determined by the matrix A, but instead the row vector xkA
is intended to approximate the row vector xk+1. We then con-

sider the evolution of the reservoir states (xk, xkA, xkA
2, . . .)

determined by A neglecting the input totally. We remark that

if the data (xt, xt+1, . . .) were considered column vectors

and had been arranged as columns in the two data matrices,

then A = D#D
+, and one would then have to consider the

linear evolution (xk, A
Txk, . . .) determined by the AT . We

obtain the linear evolution determined by A from reservoir

data obtained from different input dynamical systems. If the

actual reservoir state at time k is xk for a particular input,

we plot a distance between xk+n and the linear evolution

x̂k+n := xkA
n against n. To illustrate the effect of the

linearity in the reservoir dynamics on prediction, we consider

inputs originating from an unforced Van der Pol oscillator

(defined by x′′−4(1−x2)x′+x = 0), Mackey-Glass oscillator

(defined by x′(t) = 0.2x(t−τ)
1+x(t−τ)10 − 0.1x(t) with τ = 17), both

of which have been found in the ESN literature of rendering

excellent prediction accuracy. We also consider the Lorenz

system as in [2, Supporting Online Material] (defined with

coefficients σ = 10, ρ = 28 and β = 8/3) for which we

know ESN prediction fails after a few lobe switchings, and

the logistic map where the prediction is actually more worse

as reported earlier. In the plot of Fig. 5, we consider the same

ESN for all the inputs and plot the logarithm of the average

error between xm+n and x̂m+n defined by 1
N

∑N

i=1 |xi
n− x̂i

n|
against n where N is the number of nodes in the ESN. With

m = 220 and N = 200, the data matrix D had full rank for

all the inputs, and n is varied from 600 to 1000 in Fig. 5.

Also, input data between 300 and 520 samples were used in

the computation of A. We observe that the logarithm of the

average error is much small for the Van der Pol oscillator

for 1000 time steps, strongly suggesting that the mapping

h( ~un) 7→ h( ~un+1) is approximated well by a linear map. The

case is similar to the Mackey-Glass attractor, although the

approximation of the reservoir dynamics through the matrix

A is slightly worse. For the Lorenz and the logistic map, the

reservoir dynamics cannot be captured by the linear evolution

determined by A, and for these systems ESN do not have

long-term prediction capabilities.

V. CONCLUSIONS

The current experimental research on designing ESNs focuses

on narrowing the randomness of the choice of a good reservoir

and also offers some analytical measures of the reservoir

that could enhance the performance. In spite of choosing

a reservoir less arbitrarily, not a black art by any means,

the nuance involved in training an echo state network has

remained only a well-practiced craft, and it calls for research

towards making training a science with practical guidelines.

In this paper, we have shown that every echo state network

yields a curve-fitting and the universal semi-conjugacy exists.

Although the universal semi-conjugacy cannot be analytically

expressed, its existence helps us understand the failure of

the ESNs to approximate some chaotic dynamical systems.

A future study should also find theoretical evidence to find

for what class of maps or what class of ESNs, the universal

semi-conjugacy could embed the inverse limit spaces into the

reservoir state space.

When inputs originate from a chaotic dynamical system, the

domain of learning could have a complex topology. Thus this

could be a curse of memory in the network since an ESN fails

to learn a simple polynomial function like the full logistic map.

Feedback connections into the reservoir have shown to indicate

better predictions for certain chaotic dynamical systems. Could

9
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feedback connections change the the domain of learning from

that of an indecomposable continua to a simpler object? Much

more research is needed even to explain how the domain of

learning changes heuristically.

We also observe that when inputs originating from dynamical

systems provide reservoir dynamics that is tractable through

a linear map, then their forecasting performance is known to

be better. Of course, one needs to further understand why the

reservoir dynamics turns linear and how such reservoirs or

even driven system could be designed so that their evolution

could be approximated by linear maps. We hope that the work

in this paper would trigger research in this field. In summary,

we believe that even though a random initialization of the

reservoir could leave a grey area in the performance analysis of

ESNs, other issues could also critically affect the performance

of the network, and such issues deserve attention.
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