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Abstract 

 Molecular orbitals (MOs) are one of the most useful tools available for explaining and 

describing the electronic structure of a chemical system. These MOs are obtainable through 

different means, which falls under two approaches; the conceptual and computational 

approach. The conceptual approach is mostly limited to symmetric systems but provides a 

qualitative and interpretable result, this is obtainable through methods like Symmetry Adapted 

Linear Combinations (SALCs) of atomic orbitals. While the computational approach applies 

to any system, irrespective of the symmetry and provides quantitative results but is limited by 

the interpretability. 

 In this study, a Fragment, Atomic, Localized, Delocalized, Interatomic (FALDI) 

electron density decomposition scheme-based approach is investigated that aims to bridge the 

conceptual and computational approach of MOs. Multiple distinct theoretical chemistry 

techniques have been used to produce a consistent and accurate model which labels MOs in 

asymmetric octahedral metal complexes. These techniques include the Quantum Theory of 

Atoms in Molecules (QTAIM) to obtain the atomic overlap matrix (AOM) which is used in 

FALDI to obtain electron density (ED). FALDI recovers the localized ED (loc-ED) and the 

delocalized ED (deloc-ED) which is needed for the FALDI MO analysis and FALDI fragments. 

The work illustrates how an asymmetric complex is manipulated into a symmetric function, 

which is used to obtain the symmetry terms. The symmetric functions are known as Natural 

Density Functions (NDFs) and is derived using the loc-ED of the metal centre. The relationship 

between the loc-ED and the deloc-ED can be correlated to recover the delocalized indices (DI) 

between two atoms interacting whilst assigning symmetry labels. The development of the 

model was tried and tested on a symmetric model system and a simple octahedral metal centred 

asymmetric system (Fischer carbene) to ensure consistency and validity. 

This study then took the FALDI MO analysis further and considered fragments. 

Fragments are a summation of diatomic interactions which allow multiple atoms interacting 

with each other to be considered. Linking the symmetry terms to the metal centre provides the 

delocalized interactions of the fragments, resulting in a quantitative tool that is also 

interpretable at a classical level. The result is a method that allows for bonding modes such as 

- and -character to be recovered while assigning contributions which can be traced back to 

each molecular orbital origin. The FALDI fragments were applied to multiple asymmetric 
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Fischer carbene systems to not only further verify the robustness of the method but also to test 

the limits. 

Finally, experimental (with available data) Fischer carbene systems were considered 

for which novel interpretations and approaches were suggested, which promises a potential 

future in tuning Fischer carbene systems to achieve the desired chemical traits using the FALDI 

MO analysis technique. 

 

 

Keywords: Theoretical Chemistry, Computational Chemistry, FADLI, MOs, QTAIM, 

SALCs, symmetry, Fischer carbenes 
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Introduction 

 

Observable physical and chemical properties – or descriptive chemistry – can often be 

adequately explained through various chemical theories – or fundamental chemistry. In 

particular, electronic structure underpins a complete description of quantum chemistry1, 2 

which is relatable to general conceptual chemistry through the molecular structure hypothesis. 

At the heart of this hypothesis is the concept of a chemical bond – the collection of forces 

acting on atoms to form molecules. Chemical bonds are ubiquitous with chemistry and 

therefore critically important to understand many chemical applications, from engineering to 

biology. Chemical bonds are, however, noumena, and no chemical bond operator exists in 

quantum mechanics. Accurately describing chemical bonds and atomic interactions therefore 

remains a challenge that has conceived an entire chemical language to describe and classify. 

One of these linguistic tools is that of molecular orbitals (MOs). While MOs were originally a 

mathematical construct to allow systematic variation of a molecular wavefunction, MO theory 

(MOT) has since become one of the conceptual languages chemists use to describe electronic 

structure. MOs provide a molecular-wide, holistic description of a molecule’s chemical 

structure. Chemists, on the other hand, utilize an atomistic, reductionist description of a 

molecule. Herein lies one of the paradoxical dichotomies of MOT – an attempt to accurately 

and precisely describe molecular electronic structure in a manner that recovers the molecular-

wide wavefunction but can be interpreted in terms of atoms, functional groups and chemical 

bonds. That said, MOT has evolved to be one of the most useful theories to conceptually 

describe the electronic structure of molecules. 

The emergence of computational chemistry as a subdiscipline of theoretical chemistry 

in the last few decades has significantly altered the manner through which we describe 

electronic structures. The quantum mechanics behind the scenes is often elegant and rather 

beautiful for the appreciative audience, but to some experimental chemists meaningless without 

interpretation and thus easily ignored. This is where computational and theoretical chemistry 

have been bridging the gap over the years – by systematically allowing previously conceptual 

approaches to be exactly calculated and quantified. Furthermore, advances in theory together 

with technological advances have made delving into computational modelling increasingly 

simpler. Density Functional Theory (DFT) is an excellent example of this being developed in 

the 1960s1, 2 but only becoming relevant and widely used and accepted in the 1990s. 
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At the forefront of this work is the electronic structure, and how we as chemists can 

describe it. In particular, we investigate the electronic structure of Fischer carbene complexes, 

primarily due to the excellent canvas that these complexes’ electronic structures represent. In 

the remainder of this chapter I first present background information on a number of relevant 

topics, followed by a statement of the research problem we aim to solve. Finally, a short 

overview of our approach is provided, in terms of a description of each chapter of this work. 

Background information 

Applications of electronic structures 

Models of electronic structure are important to the study of chemistry in general, and is a cross-

cutting component of almost all fields of chemistry. However, there are a number of 

applications within chemistry for which an exact understanding of electronic structure is 

critical. Below, we discuss examples of these applications. 

Humanity have many made significant scientific and technological leaps in the last 100 

years, but with solving one problem, we often create a new one. The energy crisis is a prime 

example of this unfortunate tendency – access to electricity vastly improves livelihoods but 

comes at the cost of our planet’s natural resources. In order to meet rising electricity demands 

whilst preserving natural resources, alternative and renewable methods of electricity generation 

– such as solar cells – are critically important. Solar cells have been around for 181 years, since 

Alexandre Edmond Becquerel observed the first photovoltaic effect in a conductive solution 

exposed to light in 1839.3, 4 One of the central research questions in the field of solar cells 

revolves around the molecular mechanism of converting solar energy into electrical energy. 

Inorganic semiconductor materials have been the best for this conversion and have provided 

good efficiency but are relatively expensive and difficult to manufacture. An emerging 

alternative is organic-based photovoltaic systems, which are attractive since organic materials 

are cheap, abundant and renewable. The primary problems with these systems, however, are 

their light-harvesting efficiencies and stabilities in the presence of oxygen and water. The 

bandgap is the primary reason for the efficiency difference between organic and inorganic 

semiconductors, where the former have a much smaller bandgap compared to the sizeable gap 

in the latter.5 The bandgap is predominantly determined by the holistic electronic structure of 

a semiconductor. Therefore, exact understanding of electronic structures will allow for the 

efficient rational design of novel light-harvesting materials through bandgap engineering. 
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Another prime example that vitally requires an understanding of the electronic structure 

is catalysis. Many industrial processes use specific catalysts to increase yield, lower 

temperatures of reactions and even drive the selective formation of specific processes.6-10 We 

also often associate electroneutral reactions with heterogeneous catalysis, where complete or 

partial charge transfers occur between the solid catalyst and the reactant. Work already done in 

1969 by Gerischer illustrates the connection between charge transfer and catalysis and some of 

the molecular mechanisms of charge transfer.11 The mechanisms of many catalysts are 

therefore highly dependent on their electronic structure. Again, holistic understanding of the 

electronic structure can lead to the better rational design of catalysts and optimization of 

chemical properties with specific chemical characteristics.   

Electronic structure models of transition metal complexes 

While electronic structures are important in the understanding of all chemistries, they are at 

centre stage in the study of transition metal complexes. One of the popular electronic structure 

models is the electrostatic model of bonding, also known as crystal-field theory, and its 

quantum chemical cousin, ligand-field theory.12 One of the central findings of both crystal- and 

ligand-field theories is the splitting of d atomic orbitals that occur when a metal is complexed. 

These split orbitals have different energy levels, which are then used to explain magnetic 

properties, thermodynamics and optical spectra.12 An important consideration of both theories 

is, however, molecular symmetry. d-level splitting, as well as the landscape of bonding within 

ligand field theory, can only be described adequately and accurately in a molecule with a high 

order of symmetry. This includes symmetrical octahedral, tetrahedral and square-planar 

geometries. In this work, we will primarily focus on octahedral complexes. 

Symmetrical octahedral complexes have two sets of energy levels describing the d 

orbitals: the lower energy and triply degenerate set of t2g orbitals and the doubly degenerate set 

of higher energy eg orbitals, separated by an energy gap or bandgap.12 The bandgap also goes 

by a few other names such as the octahedral splitting parameter or ligand field splitting 

parameter, ∆O. ∆O carries tremendous utility, and can be used to predict a large-range of 

chemical phenomena.12 In addition, correspondence of predicted ∆O with experimental results 

provides evidence for some of ligand-field theory’s other predictions – such as the manner 

through which MOs are formed from symmetry-adapted atomic and ligand orbitals. 

Unfortunately, these tremendous insights only applies to highly symmetrical molecules, as the 

fundamentals of ligand-field theory depend on the symmetry operations allowed by point-



5 
 
 

group symmetries. MO-based perturbation theory13 allows for extension into complexes with 

a lower degree of symmetry, but the complexity of perturbation theory quickly outstrips its 

usefulness. 

Ligand-field theory’s utility and predictive power primarily relies on MOs. The 

construction of MOs are been defined in most cases by group theory14 which not only allows 

derivation of MOs for symmetrical molecules but also affords a chemically-intuitive 

interpretation. Therefore, MOs in symmetrical molecules can be used to understand a wide 

range of chemical and physical phenomena, including reactivity, photophysical properties and 

stability.13 Developments in computational methods have allowed for the variational quantum 

mechanical determination of MOs, thereby removing the requirement of symmetry. 

Unfortunately, with the exception of frontier MOs (highest occupied and lowest unoccupied 

MOs), exact and accurate interpretation of MOs still require some degree of symmetry to be 

present.  

MOT forms a large part of many undergraduate curricula, and in particular, the MOs of 

diatomic molecules. Simple molecules like carbon monoxide (CO), molecular oxygen (O2) and 

dinitrogen (N2) are often used to teach Mos and provide an essential foundation to 

understanding MOs. Due to the complexity of MOs as a result of asymmetry, MOT is often 

not taught past the diatomic level. If the course is advanced, it includes triatomic molecules 

and maybe even inorganic molecules that are admittedly complex, but the example often stops 

at the symmetric Cr(CO)6 as the example.15, 16 In polyatomic molecules, conceptual (i.e. non-

variational) MOs are determined through a methodology called symmetry-adapted-linear 

combinations (SALCs) of atomic orbitals (AO). The SALC-AO approach is fully based on 

group theory, but describes each MO in terms of chemically-relevant constituents. For instance, 

in Cr(CO)6, a specific MO with t2g symmetry must form of Cr atoms’ AOs with t2g symmetry 

(e.g. 3dxy) and CO SALCs with t2g symmetry (e.g. *C–O). Therefore, a t2g MO can be described 

as -backbonding between a metal dxy orbital and -antibonding orbitals on the ligands. 

Unfortunately, the extreme interpretive power that the SALC-AO approach affords 

chemists are lost the moment a single degree of symmetry is broken. For instance, when a 

single CO ligand in Cr(CO)6 is replaced by a similar CN– ligand, all MOs consist of only the 

lowest symmetry term a.14 No inferences can be made with regards to ligand SALCs or metal 

AOs in terms of MO formation. While extrapolations can be made from systems with higher 

symmetry,17 these often require complex perturbative approaches13 to be accurate and are still 
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limited to the extent to which symmetries can change. However, when an asymmetric system 

lies before the most chemists with an abstracted appearing mixed computer-generated orbital 

picture, not much interpretation and chemically-useful information can be extracted.  

Therefore, the electronic structures of asymmetrical transition metal complexes are extremely 

difficult to discern, especially in terms of MOs.  

Density-based methods 

As discussed above, MOs provide a predictive and chemically intuitive interpretation of 

electronic structure, but their easy interpretation is limited to highly symmetrical systems. 

Computational (variational) MOs provide the means to calculate MOs for asymmetric systems, 

but are nearly impossible to interpret due to their holistic, delocalized natures. Electron density-

based approaches, on the other hand, such as the Quantum Theory of Atoms in Molecules 

(QTAIM)18 and Quantum Chemical Topology (QCT)19 methods in general, provide an entirely 

different approach. Specifically, QCT methods allow for a highly atomistic description of 

molecules, and are therefore relatively easy to interpret by chemists. Unfortunately, while QCT 

methods include holistic elements, to fully recover molecular-wide properties usually require 

consideration of multiple variables over multiple atoms, making interpretation possible but 

overly complex. 

QTAIMs’ delocalization and localization indices (DIs and LIs respectively) provide an 

approach that can bridge the holistic MOT with atomistic QCT.20, 21 As a result, LIs and DIs 

have become popular in molecular structures and models of bonding.22 Unfortunately, 

QTAIM’s LIs and DIs are still somewhat difficult to interpret, especially for larger molecules. 

In addition, while the link between MOT and LIs and DIs were shown, the two approaches are 

still worlds apart – to the point that some theoreticians fully restrict their analyses to either 

orbital- or density-based approaches. This lead to the eventual yet recent development of the 

Fragment, Atom, Localized, Delocalized, and Interatomic (FALDI) Charge Density 

Decomposition Scheme,23 based on concepts of Domain Averaged Fermi Holes (DAFH).24-26 

FALDI fully recovers the holistic nature of the wavefunction whilst providing chemically-

intuitive, atomistic interpretations. With a new powerful technique in hand, tackling an old 

problem such as interpreting molecular orbitals seemed inviting.  

Model organometallic compounds 
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We can approach the development of any new process or method from many angles and 

perspectives. Introducing a ‘gold-standard’ is however one of the best ways to develop 

something that improves on the previously existing methods/models and ideas whilst keeping 

the authenticity of an effective method that will be more easily accepted. To tackle the ‘golden-

standard’ approach in this work, well-studied systems that are accepted in the chemical 

community are needed and at the core of this work, symmetry is a vital component. As a 

symmetrical model compound, we have selected the familiar Cr(CO)6 complex. A comparable, 

yet asymmetric model of Cr(CO)5{C(OEt)(Me)} is selected as an asymmetric model 

compound. These two systems provide the baseline for any theoretical developments made in 

this study. These complexes are well-known and easily synthesised, with Cr(CO)6 even 

available in a bottle for purchase, making them real and suitable for experimental comparison 

if desired. A short description and background of each is given below. 

Chromium hexacarbonyl, Cr(CO)6, is a common chemical used for many chemical 

applications; ranging from organometallic synthesis and catalysis to thin film deposition of 

metals, surface chemistry, photophysics and photochemical dissociation of metal-ligand 

bonds27-30 to name a few. Theoretically, it has also become a well-studied molecule premiering 

in energetic studies,31 DFT studies regarding vibrational spectra32 and semiempirical MO 

models.15 Prominent in inorganic textbooks,12, 16 the molecule is often used in advanced MOT 

courses,17 with some postgraduate courses even using it as the basis for inorganic octahedral 

complexes.33 Chromium hexacarbonyl has an octahedral geometry in which when optimized, 

the carbonyls are evenly distanced apart, hence the molecule is fully symmetric. Classically the 

MOs are determined from SALCs. Starting from the carbon’s AOs and the oxygen’s AOs 

yields MOs of the CO ligand. These MOs are then combined to form SALCs, based on the 

octahedral symmetry point-group of the Cr(CO)6 molecule. SALCs are then matched with the 

Chromium’s AOs to yield the Cr(CO)6 MOs seen in many articles and textbooks.15, 16, 30, 34 

With Chromium hexacarbonyl being such a popular choice in the explanation and teaching of 

molecular orbitals, it makes it an ideal case study for the development of a framework for this 

works’ MO deconstruction. The validity of the framework will depend on the comparison of 

the method to the classical approach of fully interpreting the Cr(CO)6 molecular orbital 

diagram. In this complex, the electron density increases on the metal because of the σ-donor 

interaction, while the ligand density decreases. The electron density on the metal decreases and 

increases on the ligand because of the π-accepting nature of the carbonyl ligand.  
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Scheme 1. 1. Charge transfer depictions for the -donor and -acceptor capacity of the 

carbonyl ligand metal relationship. 

We often refer to the carbonyl metal interaction as synergic bonding, because of the overall 

stabilizing interaction that results. Therefore, as it is apparent, this molecule can be and has 

been fully described classically. Most of the Fischer carbene complexes comprise a metal 

centre surrounded by carbonyls, like Cr(CO)5. Keeping most of this backbone makes Fischer 

carbenes ideal case studies for the framework in studying asymmetric compounds.  

Metal-Carbene complexes typically have octahedral symmetry with a metal centre and 

one of the ligands is a carbon which is doubly bonded. Metal-Carbene complexes are divided 

into two major categories, namely Fischer and Schrock carbenes, as well as a third category 

focused around n-heterocyclic carbenes. Fischer carbenes are electrophilic and π-donating35 

while Schrock carbenes are nucleophilic and π-neutral. The factors that determines whether a 

Fischer or Schrock carbene is present highly depends on the substituents, with the metal also 

playing a role. Fischer Carbenes were first characterized in 1964,36 with the synthesis of this 

specific carbene (Cr(CO)5{C(OEt)(Me)}) only a few years later in 1968.37 The research 

emphasis of most Fischer carbene syntheses is on developing a reliable and efficient method 

of forming carbon–carbon bonds38 to synthesize the carbene. A typical synthetic process uses 

Schlenk techniques at inert and low temperatures, where the first lithiation occurs on the group 

being attached followed by the addition of the metal and finally quenching with an alkoxy or 

amine salt which is then filtered to remove the lithium to minimize decomposition. However, 

each individual carbene will have its own synthesis. The application of Fischer carbenes are 

few, but common in synthetic studies. Fischer carbenes are used in the synthesis of diaryl 

ethers,39 in catalysis and have proven electrochemical properties.40     

 The reason why the Cr(CO)5{C(OEt)(Me)} Fischer carbene complex is ideal as a model 

-donor -acceptor 

2 
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compound is because of its simplicity and the available experimental data37 which can 

contribute to the overall foundation of the framework. The carbene keeps its pentacarbonyl 

backbone similar to that of the Cr(CO)6  complex, and by only changing one ligand, this allows 

it to break symmetry and keep some original symmetry components. The M—Ccarbene bond 

forces new orbital combinations, making it an ideal candidate to base the framework model on, 

however, any carbene could have been chosen as long as it is rudimentary and followed the 

same rational reasoning for its structure.  

 

Problem statement and aims 

The classical interpretation of MOs is an extremely useful and insightful technique to explain 

chemical phenomena. Unfortunately, interpretation of MOs highly depend on a high degree of 

symmetry within a molecule, and lower degrees of molecular symmetry and no symmetry leads 

to generally uninterpretable Mos that will be illustrated later in this work. While some useful 

information can be gained by focussing on frontier orbitals – the Highest Occupied Molecular 

Orbitals (HOMO) or the Lowest Unoccupied Molecular Orbitals (LUMO) – disregarding the 

vast majority of an electronic structure can lead to misinterpretations and inaccurate 

predictions. Therefore, the restriction of symmetry as required for MO interpretation is a 

theoretical problem that, if solved, could provide tremendous fundamental understanding of 

electronic structures.  

Density-based methods, such as the general QCT collection of models, provide accurate 

interpretation of electronic structures regardless of molecular symmetry. However, density-

based methods are difficult to use to fully describe and recover molecular-wide properties. In 

addition, QCT approaches are less chemically intuitive, and does not utilize the same general 

chemical language developed through MOT.  

The recently developed FALDI density decomposition technique provides a bridge 

between MOT and QCT. FALDI provides atom-based information that is intuitively 

recognizable by chemists, yet FALDI still recovers the holistic quantum-mechanical 

wavefunction. As a result, FALDI is an ideal model to provide the utility of MOT without the 

restriction of symmetry. In particular, preliminary results before the commencement of this 

project has shown that FALDI’s description of atom-localized density contains high degrees of 

symmetry, even in asymmetrical molecules.  
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The aim of this work is to further explore the link between FALDI’s description of atom-

localized and atom-pair delocalized density and MOs. In particular, we aim to investigate the 

symmetry of FALDI’s localized density distributions associated with a central metal within a 

transition metal complex. We aim to decompose these localized density distributions in terms 

of MOs which, in turn, should provide symmetry components to the underlying MOs.  

We will restrict ourselves to octahedral complexes, and relatively simple Fischer carbene 

complexes in general. We therefore aim to provide symmetry labels (e.g. a1g, t1u, t2g and eg 

characters) to all MOs in these complexes, regardless of the symmetry of a complex. From 

these assignments, we hope to ultimately obtain - and π-information relating to the overlap in 

terms of bonding, that can describe the whole electronic structure in terms of chemical bonding 

parameters. Having achieved this level of electronic structure information, theoretically, an 

asymmetric molecule can then be understood using the same MO-based arguments as for 

symmetric systems. This allows for a degree of tunability, enabling rational design when 

changing parameters to achieve specific characteristics.  

 

Outline of this dissertation 

This dissertation presents an extension to both the FALDI scheme as well as molecular orbital 

theory in general. Accordingly, only theoretical results are produced within this work. A short 

overview is given below for each of the chapters. 

Chapter 2 provides a theoretical background to this work. Quantum chemical topics – such as 

wavefunction mechanics, density functional theory, basis sets as well as QCT techniques such 

as QTAIM and FALDI are described. In addition, Chapter 2 contains a full overview of the 

novel theoretical developments discovered in this work. While this section of the chapter is 

somewhat repetitive of elements from following chapters, we expect a centralized and 

accumulated description of novel theoretical developments to be useful to readers. 

Chapter 3 establishes the theoretical framework of the extensions made to FALDI. The novel 

method are thoroughly applied to two model systems – the symmetrical Cr(CO)6 and the 

asymmetrical and elementary Fischer carbene complex, Cr(CO)5{C(OEt)Me}. Cr(CO)6 is used 

as validation for the novel FALDI-MO method, which is then tested on the Fischer carbene 

complex. As a result, the delocalization of electrons between Cr and selected carbon atoms is 
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fully investigated and interpreted in terms of the full symmetry of the metal  – a feat that has, 

to our knowledge, never been accomplished before. 

Chapter 4 extends the FALDI-MO method to the topic of structure-property relationships. In 

particular, the choice of X-group in Fischer carbene complexes of the general structure 

Cr(CO)5{C(X)(R)} is particularly important. The X-group provides an important functionality 

in material design to tweak electronic properties of the complex.41-43 Two of the most popular 

X-groups found on Fischer carbenes is dimethylamine (NMe2) and ethoxy groups (OEt). 

Elementary Fischer carbene complexes with these two X-groups as well as a wide range of R-

groups (R= -H, -CHCH2, -CHCHPh, -CCH) are explored using the FALDI-MO method 

developed in Chapter 3. These varied structures are analyzed in terms of MOs using the 

FALDI-MO method, and despite the lack of symmetry in their structures. These structures 

show how FALDI-MO can provide novel insights into the rational design of materials. 

Chapter 5 is the final results chapter, which then takes the application a little further by looking 

at three different X-groups, namely ethoxy (OEt), dihydrogen amine (NH2) and dimethylamine 

(NMe2) all with a 2-(N-Methyl)pyrrolyl R-group. This chapter aims at incorporating 

experimental results to the newly developed theoretical method. The synthesis of the 

compounds in Chapter 5 has been performed previously and experimental data such as crystal 

structures of those carbenes structures are available and are included in the results and 

discussion. This chapter illustrates how minor changes vastly affect each system, yet appear so 

insignificant. The work focus’ on rotating the R-group to determine the geometric or electronic 

effects. The chapter illustrates the effect of geometry but also the effect that the X-group plays 

in the - and -character, illustrating the importance of the coexisting relationship between the 

X- and R-group. This theoretical method hopes to predict the electronic system so that before 

an experiment is performed the electronic structure is fully grasped so that smart synthesis can 

take place to achieve the desired characteristics. This chapter therefore serves as a final case-

study to show the predictive power and general utility of the FALDI-MO approach. 

Chapter 6 provides summaries of the major research outcomes of all the chapters, as well as 

concluding remarks. This chapter includes a discussion of the future work planned, theoretical 

developments and experimental verifications from this work. 

 

 



12 
 
 

Table 1.1. A list of all the complexes investigated in this work 

Chapter 3 

Cr(CO)6 

Cr(CO)5{C(OEt)(Me)} 

Chapter 4 

Cr(CO)5{C(OEt)(H)} 

Cr(CO)5{C(OEt)(CHCH2)} 

Cr(CO)5{C(OEt)(CHCHPh)} 

Cr(CO)5{C(OEt)(CCH)} 

Cr(CO)5{C(NMe2)(H)} 

Cr(CO)5{C(NMe2)(CHCH2)} 

Cr(CO)5{C(NMe2)(CHCHPh)} 

Cr(CO)5{C(NMe2)(CCH)} 

Chapter 5 

Cr(CO)5{C(OEt)(2-N-methyl)pyrrolyl} 

Cr(CO)5{C(NH2)(2-N-methyl)pyrrolyl} 

Cr(CO)5{C(NMe2)(2-N-methyl)pyrrolyl} 

 

A note on the structure of results chapters in this dissertation 

Chapters 3, 4 and 5 are written as publications, and we plan to submit each of these chapters 

for publication in theoretical and inorganic chemistry journals. As such, each chapter contains 

an introduction and theoretical background section, which redundantly overlaps quite a bit with 

each other as well as the information contained in Chapter 2. In addition, at the time of writing, 

Chapter 3 has already been submitted to the Journal of Chemical Theory and Computation, and 

the chapter is included in its submitted form (i.e. double-columned format). 
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Introduction 

 

Over the years molecular orbital (MO) theory (MOT) has proved to be extremely useful 

in characterizing the ground and excited states for small molecules.1,2 In any molecular study, 

the principles governing the chemistry is aimed to be understood, the understanding stems from 

physical and chemical laws, from which MOT developed. While MOT is applicable to any 

molecular system, interpretation of MOs generally become more difficult with increasing size 

and complexity of a system. While precise application of group theory can assist in the 

complete classification of a molecular system’s electronic structure in terms of MOs,3 it 

generally requires two conditions to be satisfied: (i) the molecule must be small and (ii) the 

molecule must have a high degree of symmetry. Since the majority of molecules studied in 

applied chemical fields are often asymmetric, the latter condition is a major focal point of this 

work.  

MOT goes hand in hand with group theory3 however, its principles can be understood 

and taught without it (albeit in limited sets of molecular systems4). In addition, generation of 

canonical MOs can be performed using variational computational approaches, regardless of the 

degree of symmetry present in a molecular system. However, in-depth interpretation of 

computationally-generated MOs can still be extremely difficult without rigorous application 

and knowledge of group-theory. This work seeks to use the Fragment, Atomic Localized, 

Delocalized, Interatomic (FALDI) density decomposition scheme approach5, 6 to elaborate on 

the interpretation of computationally-generated MOs – regardless of the degree of symmetry 

present. The FALDI approach allows a bridging of classical concepts that arise from the 

application of group theory to MOT – such as symmetry adapted linear combinations (SALCs)7 

of atomic orbitals – to the wide variety of MOs that can be generated using modern 

computational codes.  

This chapter serves as a review of computationally-generated MOs (as produced by 

electronic structure methods), as well as topological techniques used to analyze the resultant 

density. In terms of computationally-generated MOs, there are essentially two approaches: the 

empirical considerations stemmed from Hückels’8 work which was also extended on9 and a 

mathematical formalism approach,10 also known as the approximate self-consistent field (SCF) 

theory. The contents of this chapter will focus on the latter, including canonical MOs generated 
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by Hartree-Fock theory as well as Kohn-Sham orbitals generated by Density Functional 

Theory. 

This chapter is organized in two sections: i) a review of electronic structure methods 

and subsequent generation of molecular orbitals, and ii) a review of the FALDI scheme and its 

use in interpreting MOs. The latter section contains all of the theoretical developments 

introduced in subsequent chapters. 

 

Canonical Molecular Orbitals 

 

Hartree-Fock Theory  

 

Hartree-Fock (HF) theory 11, 12 is typically considered to be the cornerstone of 

computational chemistry, and one of the simplest ways to understand the electronic structure 

of a system. It has been made famous for its strategy for solving the Schrödinger equation for 

many-electron systems by reducing it to the approach of a set of single-electron problems. The 

primary approximation HF makes is to allow electrons within a nuclei field to experience other 

electrons and their effects in an averaged manner, which assumes paired electrons with the 

same spin contribution from up and down. Regardless, this allowed chemists to begin 

modelling and still provides an excellent basis for understanding electronic structures, 

specifically from teaching introductory courses to computational chemistry.  

At the center of HF is the molecular electronic wavefunction, (x1, x2,…, xN) where x1, 

x2,…, xN are electronic (spatial and spin, xi = rii) coordinates. (x1, x2,…, xN) must satisfy 

certain conditions for it to be valid: it must be single-valued, continuous as well as be 

differentiable at all points in spin and real-space. While (x1, x2,…, xN) can be complex, its 

product with itself must be real. In the HF approximation, the wavefunction is composed of a 

set of 1-electron functions known as MOs, each dependent on a single spatial orbital and spin 

function: (x1, x2,…, xN)  1(x1), 2(x2),…, N(xN), with i(xi)=(i)(ri). 

The spin functions, as either (i) or (i) are normalized to unity: 

 〈𝛼|𝛼〉 ൌ ׬ 𝛼ሺ𝜔ଵሻ𝛼ሺ𝜔ଶሻ𝑑𝜔ଵ𝑑𝜔ଶ ൌ 1 (1) 
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where the same applies to 〈𝛽|𝛽〉. However, different spin functions are orthogonal:  

 〈𝛼|𝛽〉 ൌ ׬ 𝛼ሺ𝜔ଵሻ𝛽ሺ𝜔ଶሻ𝑑𝜔ଵ𝑑𝜔ଶ ൌ 0 (2) 

 

leading to the orthonormality condition of spin functions, and by extension, MOs: 

 〈௜|௝〉 ൌ ׬ ௜ሺ𝑥ଵሻ௝ሺ𝑥ଶሻ𝑑𝑥ଵ𝑑𝑥ଶ ൌ ௜,௝ (3) 

where 𝑖,𝑗 is the Kronecker delta expressed as: 

 ௜,௝ ൌ  ൜
1 𝑓𝑜𝑟 𝑖 ൌ 𝑗
0 𝑓𝑜𝑟 𝑖 ് 𝑗 

(4) 

with the integral Eq. (4) equalling zero for 𝑖 ് 𝑗 and one for 𝑖 ൌ 𝑗. For computational 

convenience the spatial orbitals are often also set to be orthonormal, therefore:   

 〈௜|௝〉 ൌ ׬ ௜ሺ𝑟ଵሻ௝ሺ𝑟ଶሻ 𝑑𝑟ଵ𝑑𝑟ଶ ൌ ௜,௝ (5) 

 

Hartree Product wavefunction 

 

The discussion in the previous section has touched on the central HF approximation, 

but not on how an electronic wavefunction is constructed from MOs. One such way is a Hartree 

Product. The Hartree Product is an eigenfunction of the Schrödinger equation (𝐻෡ ൌ 𝐸.) for 

independent electrons and is represented by the product of spin orbitals: 

 ு௉ ൌ ଵሺ𝑥ଵሻଶሺ𝑥ଶሻ…ேሺ𝑥ேሻ (6) 

Introducing the one-electron Hamiltonian operator:  

 
𝐻෡ ൌ෍ℎ෠ ൌ

ே

௜

෍െ
1
2
∇௜
ଶ െ෍

𝑍௞
𝑟௜௞

ெ

௞

ே

௜

 
(7) 

which contains kinetic energy and nuclear-electron attraction. Since the one-electron 

Hamiltonian operator acts on each spin orbital this applies to the one-electron Schrödinger 

equation where there is a spin orbital eigenfunction and energy eigenvalue:  

 ℎప෡௜ ൌ 𝜀௜௜ (8) 

Therefore, the one-electron Hamiltonian operator can act on the molecular orbital, ௜,  to give 

the orbital energy, 𝜀௜. When a Hartree Product is substituted into the many-electron 

Schrödinger equation, 
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 𝐻෡ு௉ ൌ 𝐻෡ଵଶ …ே 

ൌ෍ℎ෠ଵଶ …ே

ே

௜

 

 ൌ ሺ෍𝜀௜ሻ

ே

௜

ு௉ 

(9) 

the molecular energy, E, is obtained as a sum of orbital energies.  

 

Electron-electron repulsion 

 

Since the one-electron Hamiltonian operator, ℎ෠, only acts on one electron, it cannot 

account for electron repulsion (Vee) which is dependent on the spin-spatial coordinates of two 

electrons. This is where the one-electron Fock operator comes into play: 

 
𝑓ప෡ ൌ െ

1
2
∇௜
ଶ െ෍

𝑍௞
𝑟௜௞

൅ 𝑉ுிሺ𝑖ሻ

ெ

௞

 
(10) 

with the last term accounting for the Hartree Fock potential, 𝑉ுிሺ𝑖ሻ: 

 
𝑉ுிሺ𝑖ሻ ൌ෍න

𝑝௝ሺ𝑟ሻ
𝑟௜௝

𝑑𝑟

ே

௝ஷ௜

 
(11) 

and 𝑝௝ሺ𝑟ሻ ൌ |௝ሺ𝑟ሻ|
ଶ. The function considers repulsion of i to all other electrons j and because 

the electrons are treated like waves, it can be integrated over all space to obtain the average 

electron-electron repulsion. Through the use of VHF, the independent electron approximation 

of HF theory can be mitigated by treating electron repulsion in an average (as opposed to 

dynamic) manner.  

Since the spin orbitals are needed to determine the wavefunction, yet are used in Eqs. 

10 and 11 to determine the structure of the wavefunction itself, the process has to be performed 

iteratively. This process of iteratively solving the wavefunction is known as the Self-Consistent 

Field (SCF) procedure. The process starts with MO coefficients that provide densities and the 

wavefunction. Molecular orbital energy is then solved for by the secular determinant 

(shorthand for the Hamiltonian integrals which is overlap integrals) to find the roots of the 

energy and then these energies are used to get new MO coefficients to repeat the process until 

the coefficients and energies start remaining constant and hence are known to converge. 
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The antisymmetry of the wavefunction  

 

Since electrons have spin they have been labelled as fermions with a spin of  
ଵ

ଶ
ሺ𝛼ሻ or 

െଵ

ଶ
ሺ𝛽ሻ. The concept of spin is a purely quantum construct with no counterpart in classical 

physics. The effect of spin can be accounted for by ensuring that the wavefunction is 

antisymmetric:  

 ൫𝑥ଵ,𝑥ଶ ⋯𝑥௜ ,𝑥௝ ⋯𝑥ே൯ ൌ  െ൫𝑥ଵ,𝑥ଶ ⋯𝑥௝ , 𝑥௜ ⋯𝑥ே൯ (12) 

where 𝑥𝑖,𝑥𝑗 represent coordinates that can be interchanged and by this fact, any electrons that 

are swapped will inverse the sign in front of the wavefunction. The Eq. 12 leads to the Pauli 

Exclusion Principle, for which no two electrons may have the same principal quantum 

numbers. Thus, as a result, only opposite spin electrons may occupy a single orbital.  

Slater determinants  

 

Unfortunately, the Hartree Product wavefunction (Eq. 6) is not antisymmetric since 

swapping any two electrons does not change the wavefunction sign and therefore cannot be 

used as a quantum mechanics tool. The Hartree Product functions on electrons being 

indistinguishable. A modification to the wavefunction which resolves these issues is the 

introduction of the Slater Determinant, which will result in the wavefunction always being 

antisymmetric:  

 

ௌ஽ ൌ
1

√𝑁!
ቮ
ଵሺ𝑥ଵሻ ⋯ ேሺ𝑥ଵሻ
⋮ ⋱ ⋮

ଵሺ𝑥ேሻ ⋯ ேሺ𝑥ேሻ
ቮ 

(13) 

since swapping any two rows or columns of the determinant will change the sign. Satisfying 

the anti-symmetry requirements. Expanding the Slater determinant for a two-electron 

wavefunction yields: 

 
ௌ஽ ൌ

1

√2
ሾ௔ሺ𝑟ଵሻ𝛼ሺ𝜔ଵሻ௕ሺ𝑟ଶሻ𝛽ሺ𝜔ଶሻ െ ௔ሺ𝑟ଶሻ𝛼ሺ𝜔ଶሻ௕ሺ𝑟ଵሻ𝛽ሺ𝜔ଵሻ 

(14) 

which clearly illustrates that swapping two electrons will yield െௌ஽. 

Applying the electron-electron repulsion operator (𝑉௘௘෢ሻ to the Slater determinant yields 

two integrals. These terms are the Coulomb integral, Jab, and the Exchange integral, Kab. The 
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Coulomb integral represents classic electrostatic repulsions, whereas the exchange term (which 

will always be negative in the HF approximation) reduces the total electrostatic repulsion due 

to the antisymmetry of the wavefunction.  

The Roothaan equations 

The spin-spatial MOs (௝ሻ worked with thus far can be linearly expanded into a set of basis 

functions, 𝜑௜:  

 

௝ ൌ෍𝑎௜௝𝜑௜

ே

௜ୀଵ

 

(15) 

Eq. 15 can be used, together with a Slater determinant and the one-electron Fock operator (Eq. 

10) to iteratively solve the Schrödinger equation through the secular determinant:  

 

อ
𝐹ଵଵ െ 𝐸𝑆ଵଵ ⋯ 𝐹ଵே െ 𝐸𝑆ଵே

⋮ ⋱ ⋮
𝐹ேଵ െ 𝐸𝑆ேଵ ⋯ 𝐹ேே െ 𝐸𝑆ேே

อ ൌ 0 

(16) 

where Fij are Fock matrix elements and Sij are overlap integrals between the ith and jth basis 

functions. The Fock matrix elements are given by:  

 
𝐹ఓ௩ ൌ 〈𝜇| െ

1
2
∇ଶ|𝜇〉 െ෍𝑍௞

ெ

௞

〈𝜇 ฬ
1
𝑟௞
ฬ 𝜇〉 ൅෍𝑃ఒ ൤ሺ𝜇𝑣|𝜆ሻ െ

1
2
ሺ𝜇𝑣|𝑣ሻ൨

ఒ

 
(17) 

where, for readability, lowercase Greek letters (, λ, μ, v) are used as indices for basis functions 

and lowercase Roman letters (i,j,k) are used for MOs.  The first two terms of Eq. 17 are related 

to 1-electron operators (kinetic energy and electron-nuclear attraction), where the last term is 

related to the Hartree-Fock potential. Describing elements of the Roothaan equations which are 

simply put HF equations in the AO basis. The whole term is weighted by the density matrix, 

Pλ, which considers all the molecular orbital coefficients:  

 
𝑃ఒ ൌ 2 ෍ 𝑎ఓ௜𝑎௩௜

ை௖௖௨௣௜௘ௗ

௜

 
(18) 

and these elements have i running over all the occupied molecular orbitals. The contribution 

that each basis function makes to the density is determined by the diagonal elements of the 

density matrix, indicating either constructive or destructive density interactions. Summing the 

entire density matrix, therefore, gives the total number of electrons in the system.  

In summary, the Hartree Fock procedure starts with selecting a basis set, followed by 

guessing a density matrix P. Then the F and S elements of the matrix are calculated which 
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allows for the secular equation to be solved resulting in MO energy values and the molecular 

energy value. In turn, new MO coefficients are available which are used for a new density 

matrix P’ and the secular equation gets solved iteratively using the new P’ until convergence 

is reached.  

The Achilles heel of HF theory is the fact that while same spin electrons are allowed to 

move in a correlated fashion (due to the antisymmetry of the wavefunction), opposite spin 

electrons are entirely uncorrelated. HF theory therefore accounts for Fermi correlation, but not 

Coulomb correlation. For the latter, either perturbative methods (such as Moller-Plesset 

perturbation theory) or multiple Slater determinants can be employed to approximate general 

electron-electron dynamics. However, these corrections fall outside of the scope of this chapter. 

 

Basis sets  

 

Commonly basis sets are used to describe ab initio calculations that solve the 

Schrödinger equation without focusing on fitting experimental data parameters.13, 14 While any 

set of real-space functions can be used as a basis set, functions resembling Atomic Orbitals 

(AO) are often computationally efficient. Typical basis functions that are used in modern 

computational codes are Slater-Type Orbitals (STOs) and Gaussian-Type Orbitals (GTOs). 

STOs better resemble AOs, but are more expensive to compute than GTOs.14 However, 

multiple GTOs can be combined (“contracted”) in order to resemble a single AO, in multiple 

different strategies, often indicated using specific notations. 

Small basis sets, such as 3-21G, provide accurate results only for very simple systems. 

The basis set can, however, be expanded by the introduction of various additional basis 

functions, including polarization and diffuse functions. Polarization functions typically 

introduces a set of p functions to each set of s functions, d functions to each set of p functions, 

f functions for each d function, etc. The added higher angular momentum functions permit the 

electron distribution to be polarized in various directions, depending on the weight 

(coefficients) of each added polarizing set. Usually, polarization functions are indicated 

through the use of stars (*) or as added bracketed letters, e.g. 3-21G(d,p), note this is the People-

style. Diffuse functions, on the other hand, are normally used to simulate the behaviour of 

“expanded” electron clouds for molecules, like anions, electronically excited species, or even 
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heavier heteroatoms. Finally, the number of basis functions describing each electron can be 

increased for (generally) increased accuracy, usually referred to as ‘zeta’. For instance, 3-21G 

is a split-valence basis set – 3 contracted GTOs describe each core electron (single zeta), 

whereas two sets of basis functions describe each valence electron (double zeta). 

Whilst the number of basis functions generally increase the accuracy of a quantum 

chemical calculation to a limit (HF limit for single determinant methods) dependent on the 

system size and theory used, it does so at an scaling at N4 increasing computational cost. For 

heavier atoms – such as transition metals used in this work – the sheer number of electrons can 

result in very long calculation times even with small basis sets. However, core electrons of 

heavier atoms can be excluded from the basis set and rather modelled as static potentials, which 

are known as effective core potentials (ECPs), thereby reducing computational times at a 

negligible reduction in accuracy.  

This work used the Ahlrichs14 (also known as Karlsruhe basis sets) def2-sv(p) as the 

basis set of choice (the keyword in Gaussian 0915 is, curiously, “def2svpp”). This basis set is 

Split Valence Polarized (SVP) which is a [3s2p] contraction of a (7s4p) set of primitive 

functions.  The “p” is used to indicate polarization functions and is for the diffuse orbitals. 

Essentially what this translates to is that all atoms in the def2-svp basis set have polarization 

functions on all electrons, def2-sv does not have these additional functions, while def2-sv(p) 

does not have polarization functions on the hydrogen atoms since hydrogen atoms have low 

polarizability. For our systems this makes sense but a large organic molecule with many 

hydrogens this basis set is not a good choice. Polarization functions have become almost 

essential for DFT calculations to be considered accurate. The diffuse functions (which is why 

def2-sv(p) was chosen even though the name does not imply this) are necessary for looking at 

weaker interactions like hydrogen bonds which is why they are included in this study as X and 

R groups interacting on a Fischer carbene are later investigated. Both HF and DFT have used 

the Karlsruhe basis sets extensively and work well since they are available for much of the 

periodic table but are also computationally rather efficient. 
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Molecular Orbital Theory 

 

The electronic structure in ab initio models, at their core, is determined from Hartree-

Fock theory. Then stemmed MOT describing an electrons motion as an orbital16 which can be 

described by a wavefunction. The wavefunction for an atom with a single electron (i.e. the 

hydrogenic atom) can, however, be solved analytically, and provides a platform for 

understanding and interpreting MOs from which more complexes systems (multi-electron) can 

now be modelled. 

Atomic orbitals 

 

Molecular orbitals are commonly approximated by the linear combination of atomic 

orbitals (LCAO) also known as symmetry-adapted linear combinations (SALCs): 

 𝜒௡ ൌ෍𝑐௡௜௜ ൌ
௜

𝑐௡ଵଵ ൅ 𝑐௡ଶଶ ൅⋯ (19) 

where  are the valence AOs of each atom in a molecule and c the weighting coefficient of the 

contribution of each AO to the MO. The coefficients will be nonzero if a specific AO interacts 

with other AOs to form an MO, and are subject to certain qualitative conditions. Firstly, the 

AOs must have a similar energy, second, they must have the same symmetry and thirdly must 

have spatial overlap. To describe the atomic orbitals of the electrons, the spherically symmetric 

field needs to be considered and is best approached using the polar-coordinates. To have a 

convenient analytical form of the AO for each type of atom, the one-electron Schrödinger 

solution equation can be written as:17   

 ሺ𝑟, , ሻ ൌ 𝑅௡௟ሺ𝑟ሻ𝑌௟௠ሺ, ሻ (20) 

with radius r and two angles , . 𝑌𝑙𝑚ሺ,ሻ describes the spherical harmonics, which depend 

on the angular-momentum quantum numbers m and l. The quantum number m ranges from –l 

to +l; this is the magnetic quantum number which determines the orbital angular-momentum 

vectors’ orientation. The azimuthal quantum number l is the total orbital angular momentum. 

Finally, 𝑅𝑛𝑙ሺ𝑟ሻ is the radial part of the atomic function, which accounts for the radial distance 

r multiplied by a decaying exponential called the orbital exponent which includes nuclear 

charge and principal quantum number. It is also common to see the equation in the simplified 

form: 
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 ሺ𝑟, , ሻ ൌ 𝑅ሺ𝑟ሻ𝑌ሺ, ሻ (21) 

where R(r) only depends on the electron distance from the nucleus and the angular information 

for the wavefunction is described in Y(,)18. 

  

 

Table 2. 1. Angular variables without the radial component r, and  related to the real angular parts of s, p 

and d atomic orbitals 

s functions  l = 0 
𝑠: ሺ

1
4
ሻ
ଵ
ଶ 

 

p functions  l = 1 
𝑝௫: ሺ

3
4
ሻ
ଵ
ଶ𝑐𝑜𝑠 

 

  
𝑝௬: ሺ

3
4
ሻ
ଵ
ଶ𝑠𝑖𝑛𝑐𝑜𝑠 

 

  
𝑝௭: ሺ

3
4
ሻ
ଵ
ଶ𝑠𝑖𝑛𝑠𝑖𝑛 

 

d functions  l = 2 
𝑑௭మ: ሺ

5
16

ሻ
ଵ
ଶሺ3𝑐𝑜𝑠ଶെ 1ሻ 

 

  
𝑑௫௭: ሺ

15
4
ሻ
ଵ
ଶ𝑠𝑖𝑛𝑐𝑜𝑠𝑐𝑜𝑠 

 

  
𝑑௬௭: ሺ

1
4
ሻ
ଵ
ଶ𝑠𝑖𝑛𝑐𝑜𝑠𝑠𝑖𝑛 

 

  
𝑑௫మି௬మ: ሺ

1
4
ሻ
ଵ
ଶ𝑠𝑖𝑛ଶ𝑐𝑜𝑠2 

 

  
𝑑௫௬: ሺ

1
4
ሻ
ଵ
ଶ𝑠𝑖𝑛ଶ𝑠𝑖𝑛2 
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Figure 2. 1. Cartesian layout for spherical polar coordinates  

The cartesian layout (Figure 2.1) for the spherical polar coordinates are describe by: 

 𝑥 ൌ 𝑟𝑠𝑖𝑛 cos 

𝑦 ൌ 𝑟𝑠𝑖𝑛 sin  

𝑧 ൌ 𝑟𝑐𝑜𝑠 

(22) 

with 𝑑𝜏 ൌ 𝑑𝑥𝑑𝑦𝑑𝑥 containing the coordinates translates as:  

 𝑑𝜏 ൌ 𝑟ଶ𝑑𝑟𝑠𝑖𝑛𝑑𝑑 (23) 

The atomic orbitals are labeled according to their azimuthal quantum number l; s, p, d when l 

= 0, 1, 2, respectively. Visually these atomic orbitals are well recognised and can be seen in 

Figure 2.2 described by the coordinate system of Eq. (22). 
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s functions  l = 0 
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p functions  l = 1 
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Figure 2. 2. A graphic representation of the spherical coordinates of the atomic orbitals. 

This 𝑅𝑛𝑙ሺ𝑟ሻ function is often known as the STOs, which is its most popular analytical form for 

high accuracy atomic or diatomic systems, but not the default of most computational software. 

This popular function of choice, which is easier to compute, that is normally considered is the 

GTOs which is similar to the STOs however, the decaying exponential depends on r2 and not 

just r. Therefore, the integration is much easier with the gaussian functions, and for this reason, 

they are normally used in the polyatomic molecules molecular orbital calculations as already 

mentioned. Another, yet uncommon function option is the lobe-function which combines 

spherical and elliptical functions to produce the conventional orbital shapes but this will not be 

discussed.  

Molecular Orbitals 

 

Molecular orbitals simply approximate the electronic structure of a molecule by 

considering the wavefunction delocalized across all atoms, which when combined in various 

sequences of combinations produces the molecular orbitals.1 These molecular orbitals are used 

as good approximates of the molecular Schrödinger equation.19 As already stated, the 

molecular orbitals in a molecule are usually approximated with LCAO/SALCs, written slightly 

different as:  
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 ௜ ൌ 𝑐ଵ௜ଵ ൅ 𝑐௜ଶଶ ൅ ⋯൅ 𝑐௠௜௠ ൌ෍𝑐ఓ௜ఓ
ఓ

 (24) 

with i=1,2,3,…,m where the sum of the Eq. (24) runs over all the atoms.   

 The energy of the orbital i is specified by the nature of the molecular orbital 

coefficients (cμi ) the energy is obtained by solving for the eigenvalue using the effective one-

electron Hamiltonian associated with the molecular orbital: 

 𝐻௘௙௙௜ ൌ 𝑒௜௜ (25) 

 

The expectation value of Heff is the molecular orbital energy which is: 

   

 
𝑒௜ ൌ

௜𝐻׬
௘௙௙௜𝑑𝜏

௜׬
ଶ𝑑𝜏

ൌ
〈௜|𝐻

௘௙௙|௜〉

〈௜|௜〉
 

 

(26) 

𝑒௜ ൌ 〈௜|𝐻
௘௙௙|௜〉

 

 

If the overlap integral Sμ  describes two atomic orbitals centred on a different atom μ  and  

then:  

 𝑆ఓ ൌ 〈ఓ|〉 (27) 

and when two orbitals have the same sign for the internuclear region there is positive overlap 

and negative when the signs are opposite for the lobes of the orbital. 

 𝑆ఓ ൌ 〈െఓ| െ 〉 ൌ 〈ఓ|〉 (28) 

and 

 െ𝑆ఓ ൌ 〈െఓ|〉 ൌ 〈ఓ| െ 〉 (29) 

 

The interaction between orbitals is determined by the extent of this overlap. More intricately 

the symmetry also plays a role whether this overlap can occur or not, labelled as sigma () pi 

() and delta () the orbital overlap integral varies, generally but not always in the order of 

>>. Whether an orbital can overlap with another is due to the angular dependence of the 

overlap integral (symmetry). The overlap integral can be written as:  
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 𝑆ఓ ൌ 𝑆ఓሺ, 𝑟ሻ𝑓ሺ𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦ሻ (30) 

 

The orbital overlap is very sensitive to the internuclear distance between two atoms. This 

angular geometry dependent term is only dependent on the orbital description (s,p or d) which 

is dependent on the identity of the atom.20  For MOs to be formed, the AOs need to fit 

mathematical conditions for them to combine. Firstly, the orbitals must be in proximity to 

interact, since the degree to which they combine is inversely proportional to the distance 

between the atoms. Second, there must be mutual symmetry along and axis, the cosine angle 

between orbitals is directly proportional to the orbital combination magnitude. Finally, orbitals 

need to be of similar size and energy, then there can be an orbital combination to produce MOs.  

Summary of the Orbital model  

 

For identical fermions, the wavefunction needs to be antisymmetric regarding the 

exchange of spin-spatial coordinates,21 since the same spin-spatial coordinate cannot be 

occupied by two electrons at the same time. Electrons with the same spin coordinate, therefore, 

avoid each other based on the exchange (Fermi) hole since the wavefunction is continuous – a 

display of the Pauli Exclusion Principle. When electrons have opposite spin the exchange hole 

is zero throughout all molecular space as the Pauli Exclusion Principle does not apply. 

Regardless, due to Coulombic forces, electrons’ charge will cause repulsion at any finite 

distance, and a Coulomb hole will form in order to minimize electrostatic repulsion. However, 

it has been established that the Fermi hole generally plays a larger determining role in chemical 

bonding than the Coulomb hole.22 For a wavefunction that accurately models reality, both the 

Coulomb and Fermi holes will be reflected. 

Hartree-Fock theory fails to capture any details regarding the Coulomb hole (i.e. 

electrons are uncorrelated due to their charge and irrespective of spin), but models the Fermi 

hole exactly due to the requirement that the wavefunction be antisymmetric. As a result, the 

Pauli Exclusion Principle is fully met in Hartree-Fock theory, and consequently spin-orbitals 

are limited to occupations of two electrons. Spin-orbitals will therefore have known integer 

occupations. In addition, as long as the Koopmans theorem is kept (all orbitals remain the same 

when removing an electron23) then the energy needed to remove an electron (ionization) in an 

orbital is the orbital energy. 
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If the excitation of electrons is considered it is identified as a state with a change in 

electron occupancy relative to the ground state. Linear mixing of excited and ground states 

leads to an overall lowering of total molecular electronic energy and is a method for 

incorporating Coulomb correlation.  

The orbital diagram can be conceptually linked to molecular perturbations. For 

instance, the start of the final molecular diagram describes a chemical reaction. This is where 

chemical reactions24, 25 and optical excitations26 became dependent on symmetry selection 

rules.  

Density Functional Theory  

 

Density Functional Theory (DFT) follows a very similar conceptual core to Hartree-

Fock. While Hartree-Fock theory accounts for Fermi correlation exactly but entirely disregards 

Coulomb correlation, DFT allows for an approximation of both. Accordingly, many DFT 

models allow for more accurate electronic structure calculations than Hartree-Fock theory, and 

often with improved computational times as well. However, unlike Hartree-Fock theory, DFT 

is not an ab initio approach, and care must be taken in the generalized application of DFT 

results.  

Essentially the DFT electronic ground state structure is based on the electron density, 

(r), distribution.21 The theory was developed relatively early on in the 20th century, but only 

started becoming popular in the 1990s due to better implementations27 and the development of 

gradient-corrected functionals.28 The first effort to define electronic structure based primarily 

on (r) was performed by calculating the energy without reference to a wavefunction by the 

Thomas-Fermi equations, and assumed variational principle applies.29 The improved 

scalability of DFT versus the wavefunction based approaches made it popular in the solid-state 

physics community where modelling massive periodic systems is common; however, early 

DFT models observed large errors in molecular calculations which did not make it particularly 

viable in chemistry.29 However, in 1964 Hohenberg and Kohn proved two crucial theorems: 

the Existence Theorem and the Variational Theorem. The density and ground state energy 

could be determined exactly by a unique functional and they demonstrated the independence 

of the functional to any particular system, that exact energy is a functional of density E() and 

the minimum energy is at the exact density.30  
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The Existence Theorem of Hohenberg-Kohn 

 

In DFT, electrons are allowed to interact with each other as well as with an ‘external 

potential’. This external potential is a positive charge uniformly distributed in the uniform 

electron gas concept that is attracted to the nuclei. The ground-state density is used to determine 

the Hamiltonian operator from density and the number of electrons can be calculated from the 

integration of density. Therefore, to fully define the operator only the determination of the 

external potential is needed. The variational theorem states that the expectation value of a over 

b’s wavefunction as the expectation value must be higher than a’s ground state energy.  

 𝐸଴,௔ ൏  〈଴,௕|𝐻௔|଴,௕〉 (31) 

Assume that there are two different external potentials, va and vb, both which are non-

degenerate with ground-state density 0 and with Hamiltonian operators Ha and Hb
 . The 

individual Hamiltonian operators can be combined linearly to form the ground state 

Hamiltonian operator H0, associated with the ground-state wavefunction, 0, and its eigenvalue 

E0. Then Eq. 31 can be written as:  

 𝐸଴,௔ ൏  〈଴,௕|𝐻௔ ൅ 𝐻௕ െ 𝐻௕|଴,௕〉 (32) 

Simplifying Eq 32, 

 𝐸଴,௔ ൏  〈଴,௕|𝐻௕|଴,௕〉 ൅ 〈଴,௕|𝐻௔ െ 𝐻௕|଴,௕〉 

𝐸଴,௔ ൏  𝐸଴,௕ ൅ 〈଴,௕|𝑣௔ െ 𝑣௕|଴,௕〉 

(33) 

and combining with ground-state density because of the one-electron operators, v: 

 𝐸଴,௔ ൏  නሾ𝑣௔ሺ𝒓ሻ െ 𝑣௕ሺ𝒓ሻሿ଴ሺ𝒓ሻ𝑑𝒓 ൅  𝐸଴,௕ 
(34) 

Just as simply a and b can be interchanged for each other as no distinctions have been made 

for them. Thus, adding both options (after interchanging) the result is:  

 𝐸଴,௔ ൅ 𝐸଴,௕ ൏  නሾ𝑣௔ሺ𝒓ሻ െ 𝑣௕ሺ𝒓ሻሿ଴ሺ𝒓ሻ𝑑𝒓 ൅  𝐸଴,௕ ൅ නሾ𝑣௕ሺ𝒓ሻ െ 𝑣௔ሺ𝒓ሻሿ଴ሺ𝒓ሻ𝑑𝒓 ൅  𝐸଴,௔ 
(35) 

Simplifying the equation leaves: 

 𝐸଴,௔ ൅ 𝐸଴,௕ ൏  𝐸଴,௔ ൅ 𝐸଴,௕  (36) 

However, the summation of two energies cannot be less than itself otherwise there is an 

impossibility so the assumption was incorrect, and the external potential must be exactly 

determined by the non-degenerate ground-state density and the Hamiltonian and ultimately the 
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wavefunction. However, the Hamiltonian also applies to the excited state and therefore density 

is condensed with many scientific insights embedded in it. 

 

The Variational Theorem of Hohenberg-Kohn 

In their second theorem, Hohenberg and Kohn showed that a density-based approach, like 

MOT, follows the variational principle.22 To postulate: for several electrons, N, the existence 

theorem says the density determines a Hamiltonian and candidate wavefunction which then 

allows expectation energy to be analyzed: 

 〈௖௔௡ௗ௜ௗ௔௧௘|𝐻௖௔௡ௗ௜ௗ௔௧௘|௖௔௡ௗ௜ௗ௔௧௘〉 ൌ 𝐸௖௔௡ௗ௜ௗ௔௧௘ ൒ 𝐸଴  (37) 

Hence, the densities are varied to lower the energy. The challenge, however, lies in the selection 

of the candidate densities chosen to lower the energies. This is because of the unknown nature 

of the functional, as a result, nothing has been suggested in terms of a generic characteristic for 

the variational equation. 

 

The Ground State Origin  

The variation principle allows for the determination of a minimized energy associated with 

normalized electronic wavefunctions, ψ,  with 𝑇෠  and 𝑉෠  being the kinetic and potential energy 

operators respectively: 

   𝐸ሺ𝜓ሻ ൌ  න𝑑𝜏𝜓𝐻෡𝜓 ൌ  න𝑑𝜏𝜓𝑇෠𝜓 ൅න𝑑𝜏𝜓𝑉෠𝜓 ൌ 𝑇ሺ𝜓ሻ ൅ 𝑉ሺ𝜓ሻ    (38) 

The ground state, ψg, is obtained when the lowest value for E is reached. Minimizing 𝑇ሺ𝜓ሻ ൅

𝑉ሺ𝜓ሻ therefore determines the shape of ψg. 

Contracting ψ closer to the nuclei intuitively lowers the negative potential energy 

integral V. The kinetic energy integral T can be written as:  

 
𝑇 ൌ   න𝑑𝜏𝜓𝑇෠𝜓 ൌ  െ

1
2

 ෍න𝑑𝜏𝜓ሺ∇௞ሻଶ𝜓 ൌ ൅
1
2

௞

෍න𝑑𝜏ሺ∇௞𝜓ሻଶ

௞

 
(39) 

with all electrons k being considered in the sum Σk (the kinetic energy can be written in atomic 

units). Expressing ψ as natural orbitals ψn with fractional occupation numbers Nn  allows Eq. 

39 to be rewritten as:  



35 
 
 

  𝑇 ൌ  െ
1
2

 ෍𝑁௡න𝑑𝜏ሺ𝜓∇ଶ௡ሻ ൌ
1
2

௡

෍𝑁௡ න𝑑𝜏ሺ∇௡ሻ
ଶ

௡

 
(40) 

Subsequent analyses and derivations are unbiased as to the gradient form of T or the Laplacian 

being used since the interferences only involve the invariant integrated expectation values. 

However, due to didactic reasons, the gradient form is preferred for appearing as positive 

kinetic energy in the formulas. The gradient expression in Eq. 40 relates kinetic energy 

integrals to properties of the wavefunction because each electron k positively contributes to 

each volume element, d. Therefore, each volume element has a positive contribution from 

every orbital. The gradient form, following the fundamental kinetic energy property, can be 

deduced. If  represents a single electron wavefunction, then the kinetic energy is simply and 

uniquely, 

 
𝑇 ൌ  

1
2
න𝑑𝜏ሺ∇ሻଶ ൌ

1
2
න𝑑𝑥න𝑑𝑦න𝑑𝑧 ൤ሺ

𝑑
𝑑𝑥
ሻଶ ൅ ሺ

𝑑
𝑑𝑦
ሻଶ൅ሺ

𝑑
𝑑𝑧
ሻଶ൨  

(41) 

Evident from this expression is that contracting the space of  will increase T due to an increase 

in curvature. So, T can be increased by localizing , which will increase the molecular energy 

E. Electrons, therefore, have tendencies to delocalize due to the nature of the variation 

principle. 

From the statements discussed above regarding V and T, it is evident that the 

wavefunction is required to meet opposing demands in lowering both potential and kinetic 

energy in order to minimize the total energy. Concentrating the wavefunction on the nuclear 

centers would minimize potential energy while dispersing the wavefunction would minimize 

kinetic energy. Thus, compromising between potential and kinetic energy will allow the 

minimum energy wavefunction ψg to be achieved, through variational competition of the 

delocalization dilution pressure from the kinetic energy and contraction to localize electrons to 

the nuclei for the electrostatic potential energy. Summarizing this variational process, the 

wavefunction of the ground state is determined by how close the nuclei can electrostatically 

attract electrons based on the resistance received from the kinetic energy. A caveat, however, 

is that the wavefunction must be antisymmetric when many electrons are considered to account 

for electron exchange, introducing new restriction parameters. The exclusion principle forces 

localized electrons to avoid sharing the same space.31   



36 
 
 

Self-consistent Field of Kohn-Sham 

An investigation into the process of a DFT calculation starts by examining the 

Hamiltonian of the non-interacting reference density.32 This Hamiltonian is, in principle, a set 

of one-electron operators acting on non-interacting electrons and results in one-electron 

eigenvalues. Accordingly, a set of one-electron eigenfunctions can be defined and, by analogy 

to  HF theory, is called Kohn-Sham orbitals. This concept of a non-interacting reference system 

structured from the cornerstone of one-electron functions  provides decent accuracy for kinetic 

energy calculations.28 Additionally, non-classical contributions are considered to include the 

unknown contribution electron-electron repulsion due to electron exchange and missing 

electron correlation. This allows for a great approximate functional that only excludes a small 

part of the total energy. It is then vital for the initial point of the fictitious (i.e. imaginary) 

system of non-interacting electrons to have the same density as a real system which contains 

interacting electrons (i.e. overall ground state-density). This is then followed by dissecting the 

energy functional into specific components: 

 𝐸ሾሺ𝒓ሻሿ ൌ ∆𝑇ሾሺ𝒓ሻሿ ൅ ∆𝑉௘௘ሾሺ𝒓ሻሿ ൅ 𝑇௡௜ሾሺ𝒓ሻሿ ൅ 𝑉௡௘ሾሺ𝒓ሻሿ ൅ 𝑉௘௘ሾሺ𝒓ሻሿ (42) 

These components are the kinetic energy correction based on interacting electrons, the electron-

electron repulsion energy correction (all non-classical), kinetic energy of the non-interacting, 

nuclear-electron interaction and electron-electron repulsion (classical). Since the system has 

non-interacting electrons the individual kinetic energies give the total kinetic energy. 

Considering the orbital expression for density the, Eq.  (42) can be rewritten as:  

 
𝐸ሾሺ𝒓ሻሿ ൌ෍ቌ〈௜| െ

1
2
∇௜
ଶ|௜〉 െ 〈௜| ෍

𝑍௞
|𝒓௜ െ 𝒓௞|

௡௨௖௟௘௜

௞

|௜〉ቍ
ே

௜

൅෍〈௜|
1
2
න

𝑝ሺ𝒓ᇱሻ
|𝒓௜ െ 𝒓′|

𝑑𝒓′ |௜〉 ൅  𝐸௫௖ሾ𝑝ሺ𝒓ሻሿ

ே

௜

 

(43) 

with N the number of the electrons and since the density comes from the precise eigenfunction 

describing the non-interacting system (Slater-determinantal wavefunction) producing: 

 
 ൌ෍〈௜|௜〉

ே

௜ୀଵ

 
(44) 

The Exc term describes the exchange-correlation energy which encapsulates the ∆𝑇  and ∆𝑉𝑒𝑒  

terms. Included in this term are electron correlation and the difference in kinetic energy of the 

real system and the non-interacting fictitious system. 



37 
 
 

Introducing a classical orbital, , approach into the Kohn-Sham (KS) methodology, 

eigenvalues can be obtained when minimizing the energy E: 

 ℎ௜
௄ௌ௜ ൌ ௜௜ (45) 

A new term is then needed, Vxc, which is the functional derivative that describes the one-

electron operator giving the expectation value for Exc  

 
𝑉௫௖ ൌ

𝛿𝐸௫௖
𝛿

 
(46) 

Then including this term in the KS one-electron operator: 

 
ℎ௜
௄ௌ ൌ  𝑉௫௖ ൅ න

𝑝ሺ𝒓ᇱሻ
|𝒓௜ െ 𝒓′|

𝑑𝒓′ െ
1
2
∇௜
ଶ െ ෍

𝑍௞
|𝒓௜ െ 𝒓௞|

௡௨௖௟௘௜

௞

 
(47) 

the exact E is being minimized and the exact density must be given because of the orbitals, . 

Additionally, the sum of the Kohn-Sham operators (Slater-determinantal eigenfunction for the 

non-interacting Hamiltonian ) are form these orbitals:  

 
෍ℎ௜

௄ௌ|ଵଶଷ ⋯ேൿ ൌ෍ ௜|ଵଶଷ ⋯ேൿ
ே

௜ୀଵ

ே

௜ୀଵ

 
(48) 

which provides the Kohn-Sham approach with internal consistency for a non-interacting 

system which has the density of a real system. 

To determine the KS orbitals, they are set within a basis set of functions33 followed by 

calculating the coefficients with the slight changes in the secular equations from Hartree Fock 

such that 𝐾ఓ௩ replaces 𝐹ఓ௩ which can be written as:  

 
𝐾ఓ௩ ൌ 〈|ఓ|𝑉௫௖ ൅ න

𝑝ሺ𝒓ᇱሻ
|𝒓௜ െ 𝒓′|

𝑑𝒓′ െ
1
2
∇௜
ଶ െ ෍

𝑍௞
|𝒓௜ െ 𝒓௞|

௡௨௖௟௘௜

௞

|ఓ〉 
(49) 

in so much that nuclear attraction and kinetic energy components of K are the same as F. Since  

the density comes from the solution of the secular equation, it must be an iterative SCF process 

for the Kohn-Sham methodology. The difference between DFT and HF are that DFT is exact 

and all that is needed is Exc as a function of the density, the problem is that the form of this 

functional is unknown.27 As a result, several expressions to approximate Exc have been 

produced from the immense research efforts thus far. In essence, DFT is exact but needs to be 

solved approximately due to this unknown operator.  
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Functionals for the Exchange-correlation 

The exchange-correlation potential, Exc, is typically referred to as the ‘junk-yard’ term which 

includes all the unknowns, including T. This is the term that makes DFT imperfect.14 Much 

research has gone into determining this unknown term, as an approximate solution many 

different functionals have been developed to calculate this electron correlation. These 

functionals normally are designed for a specific purpose and describe certain molecules better 

than others.  

Each functional uses different functional form to describe the exchange-correlation 

potential. A few of these popular functionals are: (i) GGA, (ii) PBEPBE and (iii) B3LYP. 

Typically, the name of the functional describes the origin. The examples: (i) generalized 

gradient approximation, (ii) Perdew, Burke and Ernzerhof’s exchange and correlation 

functionals (PBE) and (iii) Becke’s 3-parameter exchange and Lee, Young and Parr’s 

correlation.27. As example is the energy density, xc, which is dependent on the electron density 

expressing the exchange-correlation, Exc: 

 𝐸௫௖ሾሺ𝒓ሻሿ ൌ නሺ𝒓ሻ𝑿𝑪ሾሺ𝒓ሻሿ𝑑𝒓 
(50) 

Additionally, the nomenclature does not express clearly that there are two different types of 

densities involved. The two types are per unit volume density and a per particle density.  

Modelling spin unrestricted systems with respect to DFT has also not yet been 

discussed; however, it can easily be incorporated – all that is needed is to introduce functionals 

of the 𝛼 and 𝛽 densities. The notation typically reserved for the spin is termed  (normalized 

spin polarization) but it is more than a notation, it is a variable in the functional form: 

 
ሺ𝒓ሻ ൌ  

ఈሺ𝒓ሻ െ ఉሺ𝒓ሻ
ሺ𝒓ሻ

 
(51) 

Where half of the product for the total density is described by the 𝛼 spin density and (+1) 

while the total density and difference of that value describe the 𝛽 spin densities.  

The hybrid functional B3LYP – Becke’s 3-parameter exchange functional coupled with 

Lee, Young and Parr’s correlation functional – was chosen for all electronic structure 

calculations in this work, due to the massive body of evidence that shows the generalized 

applicability of B3LYP to molecular systems. B3LYP is termed a hybrid functional because it 

linearly combines Hartree-Fock’s exact, calculated as a sum over all the HF exchange integrals, 

with the B88 exchange functional. 
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An overview of DFT 

The above sections described generalized DFT approaches in considerable detail; below, a 

shortened overview using an alternative exposition is given. 

The primary strength of DFT for molecular modelling is that only the total electron 

density needs to be considered. DFT postulates that determining the probability distribution 

(total electron density, ሺ𝑟̅ሻ) will allow the energy and associated properties to be calculated.27 

This is proposed using: 

 
൫𝑟̅௚൯ ൌ ෍ 𝜙௜

ଶ൫𝑟̅௚൯

௢௖௖௨௣௜௘ௗ

௜

 
(52) 

The orbitals represented by i which is constructed from a linear basis set, and the coordinates 

in space– which normally uses spherical coordinates. Based on the Hohenberg-Kohn theorems, 

the molecular energy and its constituents are functionals of the electron density: 

 𝐸஽ி்൫ሺ𝑟̅ሻ൯ ൌ 𝑇ሾሺ𝑟̅ሻሿ ൅ 𝑉ோ ൅ 𝐽ሾሺ𝑟̅ሻሿ ൅ 𝐸௑஼ሾሺ𝑟̅ሻሿ (53) 

The only term that is absent is the Hartree-Fock exchange (K), this, however, is dependent on 

the DFT functionals as it is excluded in pure functionals while partially included in hybrid 

functionals. Hybrid functionals have Hartree-Fock exchange and exchange-correlation 

functionals normally in some fixed percentages, such as B3LYP.     

  A modified Fock matrix can then be introduced from Eq. (53) which was 

proposed by Kohn and Sham in 1965: 

 𝐹ఓ௩஽ி் ൌ 𝐻ఓ௩௖௢௥௘ ൅ 𝐽ఓ௩ሺ𝑃ሻ ൅෍𝑤௚𝐹ఓ௩஽ி்ሺ
௚

൫𝑟̅௚൯ሻ 
(54) 

where the kinetic and nuclear attraction is encapsulated in the one-electron integral giving, 

Hcore, then the classical electron-repulsion is described by, 𝐽ఓ௩, depending on the density matrix, 

𝑃, giving the molecular orbitals. Lastly, the electron correlation is introduced (correlation 

and exchange) which is multiplied by a weighting factor, 𝑤𝑔, evaluated as the summation over 

a grid. This, in turn, allows DFT to analysze many-electron (larger) systems.  

 One of the most popular methods in DFT and our method of choice uses the hybrid 

functional approach of B3LYP, where fixed percentages are always used: 

 𝐸௑஼
௛௬௕௥௜ௗ൫ሺ𝑟̅ሻ൯ ൌ 𝑐஽ி்𝐸௑஼

௣௨௥௘ሺሺ𝑟̅ሻሻ ൅ 𝑐ுி𝐾 (55) 
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where c, is a constant of the specific percentages. This, however, is a generalization and 

Becke’s formulation is much more precise, where there are parts that are calculated using the 

local value of the density and a LDA functional.  

 𝐸௑஼൫ሺ𝑟̅ሻ൯ ൌ 𝑐ଵ𝐸௑
ுி ൅ 𝑐ଶ𝐸௑

௟௢௖௔௟ ൅ 𝑐ଷ𝐸௑
௡௢௡ି௟௢௖௔௟ ൅ 𝑐ସ𝐸௑

௟௢௖௔௟ ൅ 𝑐ହ𝐸௑
௡௢௡ି௟௢௖௔௟ (56) 

The 𝐸௑
௖௢௠௣௢௡௘௡௧ in 𝐸𝑋𝐶൫ሺ𝑟̅ሻ൯ has three major components (i) local exchange (ii) non-local 

exchange and (iii) local and non-local correlation. Each can be described differently for the 

DFT method chosen; for the original B3LYP the components can be broken down into (i) 

LDA34 (ii) B8835 and (iii) PW9136-38 or more accurately depicted with the constants as: 

 𝐸௑஼
஻ଷ௅௒௉ ൌ ሺ1 െ 𝑎ሻ𝐸௑

௅ௌ஽஺ ൅ 𝑎𝐸௑ுி ൅ 𝑏∆𝐸௑
஻଼଼ ൅ ሺ1 െ 𝑐ሻ𝐸஼

௅ௌ஽஺ ൅ 𝑐𝐸௖௅௒௉ (57) 

which is experimental data was used to fit the parameters a, b and c with a= 0.20, b=0.72 and 

c= 0.81 for B3LYP respectively.14 The coefficients are optimized for each functional and hence 

cannot be used with different functionals. This is just one of the functionals applied to DFT but 

the benefit of integrating the Hartree Fock exchange energy gives this method an advantage 

over other functionals and the accounting for electron correlation makes DFT more applicable 

to real-world systems that have more that one electron. While DFT is computationally more 

expensive than HF it is worth the computational effort and has some comparability to 

experimental data which this project may find useful.13 

 

Wavefunction Analysis 

While electronic structure methods such as HF theory or DFT allow for accurate modelling of 

a molecular geometry and electronic wavefunction, their results are often quite difficult to 

interpret – especially in conceptual chemical terms. Various approaches, tools and theories 

have been developed to analyse and deconstruct molecular electronic wavefunctions in more 

chemically relevant terms. Below, the Quantum Theory of Atoms in Molecules as well as the 

Fragment, Atomic, Localized, Delocalized and Interatomic density decomposition scheme are 

discussed in-depth. The latter approach is the key and central analyses applied in this work, 

and has been expanded in this work as well. 

QTAIM 

Richard Bader and co-workers’ Quantum Theory of Atoms in Molecules (QTAIM) is a 

comprehensive, ab initio theory and definition of open quantum subsystems (i.e. atoms) within 

a generally closed quantum system (i.e. molecules).39-43 An atom in a molecule is defined as a 
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bound atom, which allows the average properties to be obtained. Due to physical continuity, 

this average corresponds to the isolated atom from quantum mechanics. Therefore, the atomic 

values must consider the entire molecule for a molecule average to be given for a property. 

 The virial theorem is important in molecular mechanisms governing the kinetic and 

potential energies of a molecule. This has been transformed, by Bader, from a global statement 

(over the molecule as a whole) to a local statement in real-space.44 In essence, the local 

distributions for kinetic energy density and kinetic energy density as a function of electron 

density.42, 44 The term “atomic virial theorem” then gave rise to the ability to obtain “atomic 

energy”. Additionally, Bader’s work on molecular electron density distributions coincided with 

the DFT work that came about in 1964-1965. 

The applicability of QTAIM has now become extremely versatile and is routine practice 

in many computations, giving rise to useful information following from the interpretation of 

the topology of the electron density. The application of QTAIM has become particularly useful 

to crystallographers by bridging the gap between crystallography and chemical theory.45-48 The 

popularity of QTAIM originates from the physical insight it provides to chemistry making it 

an extremely powerful technique.  

 

Electron density topology  

The electron density (ED) topology is determined by attractive forces from the nuclei, which 

is a local maximum at the nucleus. As a result, electron density distribution is determined by 

the forces which neighbouring nuclei exert until the forces are balanced out in a region of space. 

Atoms in molecules are defined in QTAIM by this ED topology.    

 A term strongly related to QTAIM is a critical point (CP) which is when first derivative 

of the density is zero. A CP at a coordinate rc ,where this first derivative has vanished, is either 

a local minimum, maximum or saddle point.   
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(58) 

where each term in the  gradient operator,∇, is zero, as indicated by the zero vector, not the 

sum. The maximum at the nucleus is a critical point called the nuclear critical point (NCP). 

Atomic nuclei size (finite) is neglected, which causes cusps in electron density and potential at 

the nucleus. At the nucleus, the electron density derivative is not defined (not truly a critical 

point).             

 The partial second derivative differentiates between the saddle point, local minimum or 
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local maximum. The Hessian matrix is comprised of the nine of these partial second derivatives 

for (r) and is written at a CP located at rc: 

 

𝐴ሺ𝑟௖ሻ ൌ

⎝

⎜
⎜
⎜
⎛
𝜕ଶ
𝜕𝑥ଶ
𝜕ଶ
𝜕𝑦𝜕𝑥
𝜕ଶ
𝜕𝑧𝜕𝑥

 

 
𝜕ଶ 
𝜕𝑥𝜕𝑦

 
𝜕ଶ
𝜕𝑦ଶ

𝜕ଶ
𝜕𝑧𝜕𝑦 

 

𝜕ଶ
𝜕𝑥𝜕𝑧
𝜕ଶ
𝜕𝑦𝑑𝑧
𝜕ଶ
𝜕𝑧ଶ ⎠

⎟
⎟
⎟
⎞

௥ୀ௥೎

 

(59) 

and because the Hessian matrix is symmetric and real, it can be diagonalized. Rotation of the 

coordinate system is the same as diagonalization which superimposes the rotated axes with the 

critical points principal curvature axes. So, a unitary transformation (coordinate system 

rotation) r’=rU and U the unitary matrix yields three eigenvalue equations Aui=iui with i=1,2 

and 3 where ui is an eigenvector in U. Simple linear algebra allows the diagonal form U-1AU= 𝛬 

to be achieved 

 

𝐴ሺ𝑟௖ሻ ൌ

⎝

⎜
⎛
𝜕ଶ
𝜕𝑥ᇱଶ

0
0

 

 0

 
𝜕ଶ
𝜕𝑦ᇱଶ

0

 
0
0
𝜕ଶ
𝜕𝑧ᇱଶ⎠

⎟
⎞

௥ᇱୀ௥೎

ൌ ቌ
𝜆ଵ
0
0

 

 0
 𝜆ଶ
0

 
0
0
𝜆ଷ

ቍ ′ 

(60) 

where the eigenvalues, , represent the curvatures of the density with regards to the rotated 

axes x’,y’,z’. The eigenvector is the algebraic sum of the signs that indicate if the electron 

density is a local minimum, maximum or saddle point. Respectively a positive and negative 

eigenvalue corresponds to a local maximum and minimum. A key feature, however, is that the 

trace is invariant to coordinate rotations. The Laplacian of the density is the trace of the Hessian 

ሾ∇ଶሺ𝑟ሻሿ so x=x’ and when forth, note the primes have now been dropped:  

 

∇ଶሺ𝑟ሻ ൌ ∇.∇ଶሺ𝑟ሻ ൌ

𝜕ଶሺ𝑟ሻ
𝜕𝑥ଶ

 ൅ 
ൌ
𝜆ଵ

𝜕ଶሺ𝑟ሻ
𝜕𝑦ଶ

 ൅ 

ൌ
𝜆ଶ

𝜕ଶሺ𝑟ሻ
𝜕𝑧ଶ
ൌ
𝜆ଷ

 

(61) 

The CPs have a rank () which is the number of curvatures of the density at the CP and a 

signature () which is the algebraic sum of signs of the curvatures, so the CPs can be 

characterized as (, ). A change in the topology of density occurs in the molecular structure 

when the rank is less than three. Due to these parameters, there are four CPs that are stable with 

three non-zero eigenvalues. These stable points are (3, +3)  a local minimum, (3, +1)  a 

minimum in the plane and a maximum on the perpendicular third axes, (3, -3) where  is a 

local maximum, (3, -1)  a maximum in the plane and a minimum along the perpendicular third 
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axis. Elements of the chemical structure are linked to these CP’s: (3, +3) is a cage critical point 

(CCP), (3, +1) ring critical point (RCP), (3, -3) nuclear critical point (NCP) and (3, -1) bond 

critical point (BCP). The CP type and number can coexist abiding by the topological 

relationship:  

 𝑛ோ஼௉ െ 𝑛஼஼௉ ൅ 𝑛ே஼௉ െ 𝑛஻஼௉ ൌ ൜
 1 ሺ𝑃𝑜𝑖𝑛𝑐𝑎𝑟𝑒 െ 𝐻𝑜𝑝𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝ሻ

0                              𝑀𝑜𝑟𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛    
(62) 

with the number of the CPs as n. In the case of the Poincare-Hopf relationship,43 it applies to 

isolated molecules while the Morse equation45 applies to infinite crystals. A “characteristic set” 

is the term used to describe the left-hand side. If Eq. 62 is violated, then a CP has been excluded, 

but the opposite may also not be used to indicate the completeness.  

CPs at nuclear positions (3, -3) and CCPs, RCPs and BCPs at several internuclear 

separations result in space being naturally partitioned into subspaces, , which are labelled an 

atomic basin for which only a single nucleus is contained in the basin. The gradient vector field 

of the ED describes the surfaces separating the atomic basins.  

 ∇ሺ𝑟ሻ ∙ 𝑛ሺ𝑟ሻ ൌ 0 (63) 

the points on the surface are described by Eq. 63 resulting in a surface S() with the above 

condition, with r on this surface and n(r) a unit vector which is normal to S().  

 

Atomic Overlap Matrix  

Topological analysis of either experimental or theoretical electron densities forms the basis of 

QTAIM.46, 49, 50 Accordingly, functions other than the electron density can be integrated over 

QTAIM-defined atomic volumes in order to obtain useful quantitative information. In 

particular, and especially important for this work, is the localization indices [LI, (A)] and 

delocalization indices [DI, (A, B)] that can be obtained for atoms and atom pairs showing 

electrons localized to a given atom or delocalized over an atom-pair.51,52, 53 

Cioslowki and Mixon used54 QTAIM atomic volumes to derive a model for bond 

orders. They used the atomic overlap matrix (AOM) to relate useful information contained in 

orbitals across the entire molecule to atom-centric quantities. Likewise, AOMs play a central 

role in FALDI analysis and accordingly is quite important to this work, particularly with respect 

to interpreting and deconstructing LIs and DIs.  

One approach to determine the AOMs is to use Mulliken population analysis, as 

proposed by Pipek and Mezey55 but this achieves arbitrary partitioning of the AOMs in terms 
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of basis functions. Other approaches also exist such as generalized atomic polar tensor (GAPT) 

population analysis56, 57 but the most elegant definition of the AOMs comes from Bader’s 

definition.58 The definition is independent of the basis set used, so true molecular properties 

are reflected in the AOMs.  This means numerical integration can be used to calculate atomic 

contributions for arbitrary properties. Specifically, an element of the AOM associated with 

atom A, usually given the symbol SA: 

 〈𝑖|𝑗〉஺ ൌ 𝑆௜௝
஺ ൌ  න ඥ𝑣௜𝑣௝𝜒௜

∗

௢௩௘௥ ௕௔௦௜௡ ௢௙ ஺

ሺ𝑟ሻ𝜒௝ ሺ𝑟ሻ𝑑𝑟 
(64) 

where 𝜒 is an natural orbital with occupation 𝑣. 〈𝑖|𝑗〉஺ therefore gives the overlap of the ith and 

jth MOs over the QTAIM-defined atomic basin of atom A, (A). The diagonal terms of an 

AOM (when i=j) relates the contribution of each MO to an atom’s electron population, N(A), 

or the number of electrons found, on average, in (A), 

 
𝑁ሺ𝐴ሻ ൌ ෍〈𝑖|𝑖〉஺

ேಾೀ

௜

ൌ න𝜌ሺ𝑟ሻ𝑑𝑟
஺

 
(65) 

which is equivalent to integrating the total electron density over the same volume.  

 Once atomic overlap matrices (AOM) elements have been calculated, multiple other 

QTAIM and FALDI-based indices can be derived relatively simply. In addition, the accuracy 

of these indices rely inherently on the numerical accuracy of the integration in Eq. 64 as well 

as the accuracy of the MOs, as based on the underlying electronic structure model. The 

computational process that were used in this work therefore starts with an ab initio calculation 

to obtain the wavefunction which is needed for the AOM, the AOM can then be decomposed 

to obtain the LIs and DIs illustrated in Scheme 2.1 which has been adapted from Wang and 

Werstuik.51 
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Scheme 2. 1. The process of obtaining localized and delocalized indices. 

In the atomic basin, the degree of localization or delocalization of electrons can be 

found using the AOMs off-diagonal elements which describe the second-order density 

distribution across the atom.59 This describes how the MOs interact with each other in the basin. 

To start, consider, how electrons are localized to a single basin: 

 ሺ𝐴ሻ ൌ෍න𝑑𝑟ଵ
஺

න 𝑑𝑟ଶඥ𝑣௜𝑣௝ሼ௜
∗ሺ𝑟ଵሻ௝ሺ𝑟ଵሻ௝

∗ሺ𝑟ଶሻ௜ሺ𝑟ଶሻሽ
஺௜௝

  (66) 

or in terms of AOM elements:  

 ሺ𝐴ሻ ൌ෍ඥ𝑣௜𝑣௝
௜௝

𝑆௜௝
஺𝑆௜௝

஺  (67) 

This is for the atomic basin (A) where (A) is the LI for atom A.60, 61 The degree of 

localization or delocalization can be calculated by simultaneously integrating across two 

domains the pair density for electrons in each basin. The total electron delocalization is 

calculated similarly: 

 ሺ𝐴,𝐵ሻ ൌ 2෍න𝑑𝑟ଵ
஺

න 𝑑𝑟ଶඥ𝑣௜𝑣௝ሼ௜
∗ሺ𝑟ଵሻ௝ሺ𝑟ଵሻ௝

∗ሺ𝑟ଶሻ௜ሺ𝑟ଶሻሽ
஻௜௝

  (68) 

or in terms of AOMs:  

ab initio 
calculations 

HF
(molecular 
orbitals)

DFT
(Kohn‐Sham 
molecular 
orbitals)

Post HF
(natural 
molecular 
orbitals)

The 
wavefunction

AIM 
calculations

Atomic overlap matrix 
(AOM)

Traditional
LIs and DIs

FALDI FALDI
LIs and DIs



46 
 
 

 ሺ𝐴,𝐵ሻ ൌ 2෍ඥ𝑣௜𝑣௝
௜௝

𝑆௜௝
஺𝑆௜௝

஻  (69) 

The well-known DI is the (A, B) term60, 61 for atom pair A and B. The factor 2 in Eq. 69 is 

introduced for if the integrations are swapped, which will result in the same number of electrons 

found on (A) which are delocalized to (B) and vice versa.  

Both the LIs and DIs give indications of where the electrons are, either localized to a 

specific basin or shared across two atomic basins through delocalization. Having both the LI 

and DI the total atomic electron population can be determined through:  

 
𝑁ሺ𝐴ሻ ൌ ሺ𝐴ሻ ൅ ෍ 0.5ሺ𝐴,𝐵ሻ

ெିଵ

஺ஷ஻

  
(70) 

where the number of atomic basins for the molecule indicated by M. The first term in the 

equation indicates the electrons localized to the basin and the second term (now halved) the 

delocalized electrons and when summed together produce the average number of electrons in 

the atomic basin (A). Both these LI and DI terms carry significant weight in this project as 

they form part of the basis of the symmetry classification method of the MOs and the 

quantification where the DI traditionally relates to the bond order.  

 

Domain averaged Fermi Holes  

Ponec and co-workers developed the Domain Averaged Fermi Hole (DAFH)62, 63 approach 

which allows for a visualization and molecular-wide distribution of an atom’s electron 

population, N(A) (Eq. 65). The concept revolves around taking a specific domain in real space 

and averaging one of the coordinates (spinless XC (exchange-correlation)-hole definition). 

Any domain can be chosen but meaningful results are obtained using QTAIM based atomic 

domains64 and everything subsequent refers to this QTAIM domain. For a chosen atomic basin, 

the central quantity gA(r):   

 𝑔஺ሺ𝑟ଵሻ ൌ න𝜌ሺ𝑟ଶሻ𝜌ு௢௟௘ሺ𝑟ଵ; 𝑟ଶሻ𝑑𝑟ଶ
஺

  (71) 

where the electron-hole is averaged (integrated) over the spatial coordinates.  Due to the XC 

effects for the average electrons in (A), the electrons excluded at r is the gA(r) value. At r the 

full decomposition of electron density can therefore be obtained in terms of atomic 

contributions: 
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ሺ𝑟ሻ ൌ෍𝑔஺ሺ𝑟ሻ

ெ

஺

 
(72) 

where M is the number of atoms.  There are many useful and interesting relationships65 which 

DAFHs gA(r) and QTAIM populations have, but are outside the scope of this work. 

Unfortunately, the calculation of gA(r) is computationally extremely costly due to a second-

order density matrix. gA(r) can, however, be calculated (exactly for HF and DFT 

wavefunctions, but approximately for higher order wavefunctions) through the use of AOM 

elements:  

 𝑔஺ሺrሻ  ൌ෍ඥ𝑣௜
௜௝

ඥ𝑣௝௜
∗ሺ𝑟ሻ௝ሺ𝑟ሻ𝑆௝௜

஺  (73) 

In this form, it is also quite clear gA(r) can be written as a matrix, GA, which itself can be further 

manipulated using linear algebra techniques. For instance, GA can be diagonalized, resulting 

in one electron domain natural functions with the atomic basin’s respective occupations. Other 

modifications are available such as those which Cioslowski introduced like isopycnic 

transformations54 which Ponec, Kohout and Cooper66 used, but this work focuses on the general 

DAFH function and not the modifications, except in the light of FALDI.   

 

FALDI Density Decomposition scheme 

The Fragment, Atomic, Localized, Delocalized and Interatomic (FALDI) density 

decomposition scheme is a relatively new approach that calculates real-space distributions of 

atom-centric, (de)localized electron densities. In this manner FALDI provides chemical insight 

that fully recovers the holistic, molecular-wide nature of the wavefunction and its MOs whilst 

adhering to the chemically intuitive atomistic molecular structure hypothesis. A method of 

exhaustive molecular ED decomposition was presented as the FALDI density decomposition 

scheme, which isolates any coordinate r in real space about all domains of M.5 The molecular 

systems are defined by QTAIM to describe these domains with atomic basins.64  FALDI allows 

for the calculation of any domain-specific electron population in terms of real-space 

distributions. In the case of the total electron population the count of electrons found, on 

average, in atomic basin A: 

 𝑁ሺ𝐴ሻ ൌ නሺ𝑟ሻd𝑟
ಲ

 
(74) 
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           ൌ න𝑔஺ሺ𝑟ሻ d𝑟
ஶ

 

N(A) can be obtained by integrating the spin-independent electron density over an 

atomic domain, or it can be obtained by integrating an atom–ED distribution (𝑔஺ሺ𝑟ሻ) over the 

entire molecular space. The atom–ED distribution is therefore a real-space distribution of N(A), 

taking into account how the delocalization averaged over all electrons in A is delocalized 

across the molecule. 𝑔஺ሺ𝑟ሻ is borrowed from DAFH analysis, although further decomposed in 

FALDI. 𝑔஺ሺ𝑟ሻ is commonly calculated by approximating Eq. 71 by applying a one-electron 

approximation to simplify finding ௫௖ሺ𝐫ଵ; 𝐫ଶሻ in terms of AOMs:  

 𝑔୅ሺ𝐫ሻ ൌ෍ඥ𝜈௜𝜈௝𝜒௜ሺ𝐫ሻ𝜒௝ሺ𝐫ሻ
௜௝

𝑆௝௜
୅ 

ൌ෍𝐺௝௜
୅

௜௝

𝑆௝௜
୅ 

(75) 

so that 𝑆௜௝ ൌ ∑ ධ 𝜒௜
∗ሺ𝑟ሻ𝜒௝ሺ𝑟ሻ d𝑟

஺௜௝  (Eq. 64) and 𝑁ሺ𝐴ሻ ൌ 𝑡𝑟ሺ𝑆஺ሻ (Eq. 65). Notably, in Hartree-

Fock and DFT wavefunctions, the matrix GA is equivalent to an AOM weighted by MO 

populations. 

FALDI also calculates real-space distributions of atom-localized electrons and 

electrons delocalized over atom-pairs. The latter is known as loc–ED distributions: 

 ℒ୅ሺ𝐫ሻ ൌ෍𝜒௜ሺ𝐫ሻ𝜒௝ሺ𝐫ሻሺ𝐆୅𝐒୅ሻ௝௜
௜௝

 (76) 

where the matrix product 𝐆୅𝐒୅ is a localized overlap matrix (LMAT), and quantifies how MOs 

and MO-interference leads to a localization of electrons to an atom. Integrating ℒ୅ሺ𝐫ሻ over all 

molecular space yields the QTAIM-defined LI (localization index), 𝐿𝐼 ൌ 𝜆ሺAሻ ൌ ׬ ℒ୅ሺrሻ𝑑r
ஶ

. 

Therefore, ℒ୅ሺ𝐫ሻ is a real-space distribution of LI and can be used to visualize and quantify 

electrons localized to a specific atom. 

A deloc–ED distribution can be similarly defined,   

 D୅,୆ሺ𝐫ሻ ൌ෍𝝌𝒊ሺ𝐫ሻ𝝌𝒋ሺ𝐫ሻሺ𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀ሻ𝒋𝒊
𝒊𝒋

 (77) 

where the sum 𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀 ensures a symmetric delocalized overlap matrix (DMAT), and 

quantifies how MOs and MO-interference leads to a delocalization of electrons across two 

atomic basins. D୅,୆ሺ𝐫ሻ calculates the contribution that electrons shared by two atoms make to 

the total electron density at r. The QTAIM-defined DI can also be recovered by integration 
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over molecular space for any deloc–ED distribution. 𝐷𝐼 ൌ 𝛿ሺA, Bሻ ൌ ׬ D୅,୆ሺrሻ𝑑r
ஶ

. D୅,୆ሺ𝐫ሻ 

are extremely useful distributions which can illustrate how any two atoms of a molecule – 

regardless of whether they are bonded, or the distance between them – shares electrons 

throughout all molecular space. 

 Note that, for simplicity, the matrix product 𝐆୅𝐒୅ will henceforth be referred to as GAA, 

indicating the localized overlap matrix of atom A. Similarly, the sum 𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀 will be 

referred to as GAB, or the delocalized overlap matrix of atom-pair A and B. Doing so allows 

for simpler matrix manipulations, described below. 

 

Natural Density functions 

The matrices GA, GAA and GAB, associated with atom–, loc– and deloc–ED 

distributions, respectively, can be manipulated using linear algebra in order to reveal additional 

chemical insight. Natural density functions (NDFs) are sets of orthogonal functions which can 

be generated from diagonalizing these matrices. The procedure for producing NDFs are 

generally the same, irrespective of which matrix was used; as an example, the LMAT GAA will 

be used. 

 GAA contains MO contributions to LI(A) (diagonal elements) as well as MO-

interferences in real-space with respect to electron localization. While MOs are (usually) 

orthogonal, they often exhibit non-zero overlap in a specific domain – such as an atomic basin 

A – making local MO-based analysis quite difficult. However, orthogonal, MO-based 

distributions of atom-localized density can be generated by diagonalizing GAA: 

 𝐆୅୅𝐔୅୅ ൌ 𝛌୅୅𝐔୅୅ (78) 

where 𝐔୅୅
 is a unitary transformation matrix. This procedure results in a set of eigenvalues 

(contained in diagonal matrix 𝛌୅୅) and eigenvectors (column vectors of UAA), and with 

LIሺAሻ ൌ ∑𝜆௜
୅୅. The resulting Eq. producing eigenvalues which sum up to the LI, LIሺAሻ ൌ

∑𝜆௜
୅୅ . The occupation for the eigenvalues ௜

஺஺ can be calculated by:  

 
௜
஺஺ ൌ ෍ 𝑈௝௜

஺஺

ேಾೀ

௜

𝐺௞௝
஺஺𝑈௞௜

஺஺ 
(79) 

Finally, the original loc–ED distribution can then be written in terms of its eigenvalues: 
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ℒ஺ሺ𝑟ሻ ൌ ෍ ௜

஺஺ሾ௜
஺஺ሺ𝑟ሻሿଶ

ேಾೀ

௜

 
(80) 

where ௜
஺஺ሺ𝑟ሻ is known as a loc–NDF and is defined in terms of MOs and the eigenvectors of 

GAA,  

 
௜
஺஺ሺ𝑟ሻ ൌ ෍ ௝ሺ𝑟ሻ𝑈௝௜

஺஺

ேಾೀ

௝

 
(81) 

Similarly, by diagonalizing GAB, a set of deloc–NDFs with occupations δ௜
஺஻ can be constructed:  

 
D஺,஻ሺ𝑟ሻ ൌ ෍ δ௜

஺஻ሾ௜
஺஻ሺ𝑟ሻሿଶ

ேಾೀ

௜

 
(82) 

where 

 
௜
஺஻ሺ𝑟ሻ ൌ ෍ ௝ሺ𝑟ሻ𝑈௝௜

஺஻

ேಾೀ

௝

 
(83) 

 

NDFs are quite interesting in that they represent orthogonal functions of atom-centric 

(de)localized density. Due to the Pauli Exclusion Principle, NDFs are never occupied by more 

than 2 electrons (even though the condition is never enforced throughout the FALDI 

procedures), and often reveal the underlying electronic structure in a considerably more 

localized and atomistic form than MOs. For instance, loc–NDFs commonly take forms similar 

to atomic orbitals, e.g. 1s, 2s, 3sp2… whereas deloc–NDFs commonly take diatomic 

symmetries such as -, - and -modes of bonding. NDFs and their analysis play a central role 

in this work, and examples of NDFs are given throughout. 

Determination of approximated molecular symmetries through NDF-analysis 

The next section represents original contributions to FALDI, and is primarily explored in 

Chapter 3 in this thesis. 

The loc–NDFs of a metal centre often carefully resemble its atomic orbitals, regardless 

of whether the metal is in a bound or unbound state, and regardless of the total point-group 

symmetry of the molecule it forms a part of. In addition, since loc–NDFs are constructed from 

MO distributions (Eq 81), each MO can be fully decomposed into loc–NDFs and their 

occupations. Therefore, loc–NDFs can be used to assign partial symmetry terms to electronic 

structure components, such as MOs, of an asymmetrical complex. 



51 
 
 

To do so, the eigenvalue equation diagonalizing GAA is first manipulated by isolating 

the eigenvalues: 

 ሺ𝐔஺஺ሻற𝐆஺஺𝐔஺஺ ൌ ஺஺𝐔஺஺ሺ𝐔஺஺ሻற (84) 

then  

 ஺஺ ൌ ሺ𝐔஺஺ሻற𝐆஺஺𝐔஺஺ (85) 

where ቀ𝐔𝐴𝐴ቁ
†
 is the conjugate transpose of 𝐔஺஺ and a unitary matrix is by definition positive 

definite.  

The eigenvectors (column vectors of 𝐔஺஺) themselves are square normalizable to unity. 

In addition, these eigenvectors are in a basis of MOs. Therefore, each element ൣ𝑈௜௝
஺஺൧

ଶ
 provides 

the relative, fractional contribution of the ith MO to the jth loc–NDF associated with atom A. 

Alternatively, each MO can be fully decomposed into all NDFs of the molecule. Since the 

symmetry of each loc–NDF can usually be determined through visual inspection, that means 

an approximated symmetry can be assigned to any given MO based on the square-normalized 

eigenvectors, ൣ𝑈௜௝
௑௑൧

ଶ
. 

Alternatively, a specific NDF can be decomposed in terms of its constituent MOs. As 

mentioned above and explored in Chapter 3, loc–NDFs of a metal centre correspond to all of 

its occupied atomic orbitals. For instance, a chromium metal centre in a prototypical complex 

such as Cr(CO)6 is expected to have 14 significantly occupied loc–NDFs. Of these, 9 should 

be fully occupied and correspond to the electron configuration of [Ar]=1s22s22p63s23p6 and the 

remaining 5 should correspond to various 3d orbitals in an octahedral ligand field, i.e. 3 t2g and 

2 eg orbitals. with occupations significantly less than 2. Amazingly, loc–NDFs tend to be very 

similar in distribution regardless of environment, and only their occupations significantly 

differ. In other words, the set of loc–NDFs is expected to be qualitatively the same for Cr(CO)6 

(a symmetrical complex with well-defined MO symmetries) as for Cr(CO)5CH2 (an 

asymmetrical complex with MOs of pure identity symmetries). The fractional contributions of 

ൣ𝑈௜௝
௑௑൧

ଶ
 and symmetries of loc–NDFs of a metal centre allows for effective determination of 

approximate MO symmetries in asymmetrical metal complexes. Specifically, a particular MO 

i can be classified in terms of symmetry-labelled loc–NDFs associated with the central metal 

atom. This is done by evaluating ൣ 𝑈௜௝
௑௑൧

ଶ
 after the jth loc–NDF has been labelled as ∑ ቂ𝑈𝑖𝑗

𝑋𝑋
ቃ
2

𝑗 ൌ

1. jn is used to indicate the weight of the jth loc–NDF to the ith MO:  
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෍ 𝑛௜

ெ௝

ேಾೀ

௝

ൌ 1 (86) 

where M is used to indicate the metal-centre. Since multiple loc–NDFs can have the same 

symmetry, 𝑛௜
ெ௝  contributions can be grouped by symmetry label. This procedure is 

explained in detail below for octahedral metal complexes. 

Octahedral (Oh) metal complexes are the primary focus, as proof of concept of this 

work. MOs in complexes with Oh symmetry can consist of a1g, t1u, eg and t2g symmetries. A 

specific MO can be classified based on the symmetries of the loc–NDF associated with the 

metal centre of an Oh complex, as the grouped version of Eq. 86: 

 𝑛௜
୑ ൅௔ଵ௚ 𝑛௜

୑ ൅ 𝑛௜
୑ ൅ 𝑛௜

୑௘௚௧ଶ௚௧ଵ௨ ൅ 𝑛௜
୑ே௅ ൌ 1 (87) 

The final term 𝑛௜
୅ே௅  refers to non-localized symmetry concerning the metal and encapsulates 

ligand-centred orbitals such as t2u and t1g which are not directly related to the metal. Each loc–

NDF is therefore classified in terms of symmetry, and its MO constituents gain a degree of 

symmetry character through the classification process. 

Just as each loc–NDF can be classified in terms of symmetry, so can each deloc–NDF 

be decomposed in terms of symmetry-labelled MOs. The limitation on this being linked to the 

symmetry terms defined by the eigenvalue. Not every MO symmetry term can be defined by 

looking at one atoms symmetry (in this work the metal centre) and hence unknown symmetries 

arise such as the NL terms. The NL terms are present as a result of the ligands and need to be 

separately classified, which is left for future work. 

MO contributions to a deloc–NDF can be obtained as the total number of electrons 

delocalized between the metal and any other atom B, DI(M, B) through the diagonal values of 

the associated DMAT, 𝐺௜௜
ெ஻, with DIሺM, Bሻ ൌ ∑𝐺௜௜

୑୆. Based on the loc–NDFs classifications 

(Eq. 87) the MO contributions can be filtered and corresponded such that:  

 
DIሺM, Bሻ ൌ ෍ 𝐺௜௜

ெ஻ൣ 𝑛௜
୑ ൅௔ଵ௚ 𝑛௜

୑ ൅ 𝑛௜
୑ ൅ 𝑛௜

୑௘௚௧ଶ௚௧ଵ௨ ൅ 𝑛௜
୑ே௅ ൧

ேಾೀ

௜

 (88) 

so that the symmetries can be weighted using their DI(M, B) contribution. Clarity of the method 

shines in the examples discussed in the coming Chapters and supplementary information that 

depict how the mathematical terms are linked pictorially for a better grasp of the concept. The 

result of using the LMAT as the symmetry labelling process allows us to classify MOs and 

then quantify them due to the DMAT that corresponds to the now labelled MOs.  
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FALDI Fragments  

 

All the FALDI interactions discussed so far are based on either atomic or diatomic interactions. 

This is a limiting factor when molecular wide interactions are considered like MOs, for this 

reason, fragments are introduced. FALDI fragments group atom and atom-pair components of 

FALDI together, to result in a collective distribution that when integrated can be interpreted. 

To describe the operation of FALDI fragments; take two fragments, F1 and F2 for example, 

and by summing the FALDI atom-ED distributions for a fragment, the total density 

contribution for any coordinate r can be obtained: 

 

𝑔F1
௧௢௧௔௟ሺ𝐫ሻ ൌ ෍𝑔୅ሺ𝐫ሻ

ெF1

୅

 

(89) 

For fragment, F1, 𝑀F1 represents the number of atoms. The total fragment electronic 

population, Ntotal(F1), can then be obtained by integrating Eq. 96 over all molecular space. The 

total electronic contribution of F1 to the molecule can also be visualized by considering the 

3D-isosurface of 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ. This 𝑔F1

௧௢௧௔௟ሺ𝐫ሻ term is a compounded term that includes localized 

electrons to each fragment and the delocalized electrons between the other atoms/fragments 

and F1.           

 For each fragment the atom-localized electronic contribution is obtained by:  

 

LF1ሺ𝐫ሻ ൌ ෍L୅ሺ𝐫ሻ

ெF1

୅

 

(90) 

where for each atom of the fragment the electrons are localized to the contribution at r. For 

each atom in the fragment, the term includes the core and non-bonded electrons. This term on 

its own does not describe the full picture and therefore the intra-fragment delocalized electronic 

contribution is introduced: 

 

DF1
௜௡௧௥௔ሺ𝐫ሻ ൌ ෍ ෍ DA, Bሺ𝐫ሻ

ெF1

୆ୀ୅ାଵ

ெF1ିଵ

୅

 

(91) 

which describes the delocalization of electrons between atoms within the same fragment at r. 

This describes strongly delocalized (covalent) and weakly delocalized electrons. The total 

intra-fragment electron distribution can then be obtained by the summation of Eq. 90 and 91 to 

give: 
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 𝑔F1
௜௡௧௥௔ሺ𝐫ሻ ൌ LF1ሺ𝐫ሻ ൅DF1

௜௡௧௥௔ሺ𝐫ሻ (92) 

therefore, both atom-localized and intra-atomic delocalized electrons between diatomic 

interactions of the fragment are described by electrons localized to F1 by the contribution at r. 

The sum of the LIs and DIs for atoms in the fragment can then be obtained by integrating over 

all molecular space, which is defined as the total intra-fragment population, 𝑁௜௡௧௥௔ሺF1ሻ ൌ

𝑔F1׬
௜௡௧௥௔ሺ𝐫ሻ𝑑𝐫 ൌ ∑ LIሺAሻ ൅ ∑ DIሺA, Bሻ୅,   ୆୅ , where A, B  F1. 

 For two different fragments, the deloc-ED distribution can be determined to give the 

inter-fragment delocalization:   

 

DF1,F2
௜௡௧௘௥ ሺ𝐫ሻ ൌ ෍෍DA, Bሺ𝐫ሻ

ெF2

୆

ெF1

୅

 

(93) 

where the delocalized distribution of electrons between the two fragments are described by 

DF1,F2
௜௡௧௘௥ ሺ𝐫ሻ. Integrating over all molecular space thus produces the inter-fragment 

delocalization index DIሺF1,F2ሻ ൌ DF1,F2׬
௜௡௧௘௥ ሺ𝐫ሻ 𝑑𝐫 ൌ ∑ DIሺA, Bሻ୅,୆ , where AF1 and BF2.

 Coming back to Eq. 96 the 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ can be fully described by the summation of Eq. 

92 and 93 to give: 

 
𝑔F1
௧௢௧௔௟ሺ𝐫ሻ ൌ 𝑔F1

௜௡௧௥௔ሺ𝐫ሻ ൅෍
1
2

DF1,Fଡ଼
௜௡௧௘௥ ሺ𝐫ሻ

M

ଡ଼

 
(94) 

Thus, the fragments are defined with the total number of fragments represented as M and based 

on the atomic basin overlap approach which is known to be orthodox (QTAIM), everything in 

this work is performed under orthodox conditions in FALDI terms.    

 Lastly, the FALDI fragments need to be linked to the FALDI MO analysis. The FALDI 

MO analysis has described the origin of the symmetry terms, resulting from the loc-NDFs of 

the metal centre. The fragments are defined based on the atoms of interest and their respective 

LIs and DIs can be calculated and visualized using a 3D-isosurface. The DI of fragments can 

therefore be correlated and weighted by the loc-NDFs of the metal as was done for an atomic 

or diatomic DI. This yields an equation similar to Eq. 88: 

 
DIሺF1, F2ሻ ൌ ෍ 𝑑௜

F1, F2 ቂ 𝑛௜
୑ ൅

௔భ೒ 𝑛௜
୑ ൅ 𝑛௜

୑ ൅ 𝑛௜
୑௘೒௧మ೒௧భೠ ൅ 𝑛௜

୑ே௅ ቃ

ேಾೀ

௜

 
(95) 
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which describes the DI between fragments, providing the MO contributions with symmetry 

classifications based on the metal loc-NDFs. This method has been used extensively in Chapter 

4 and 5 to classify and quantify symmetry in multiple fragment interactions. 

 

Perspectives  

 

Computational chemistry is a fast-growing research field that requires constant review 

and updates. Describing electronic structure, shape, charge distribution and interpreting 

synthetic processes are just some of the tasks of this field and the computational method should 

look at the molecule in a multiscale, multiperspective way. Avoiding case-by-case scenarios is 

where the true power of the computational field lies by zooming out and identifying the 

electronic reasons for the chemistry. The field is finally at a place where the hardware can 

handle most of the theory, which is thanks to Moore’s Law67 stating processing power virtually 

doubles every two years, which has led progress to leaps and bounds being achieved in recent 

years, making computations that would take decades in the past run in minutes. With 

computational hardware advancements making studies like this possible. Some of the topics 

discussed above just brush the surfaces of quantum mechanics and acts as a preview into the 

world of computational chemistry. One of the important aspects that can be concluded thus far 

is that the toolset varies. The tasks differ for each level of theory or basis set which it can handle 

and will most likely depend on the system with which one works. It has become the norm that 

DFT is typically the go-to level of theory for most chemists and rightly so since it is a very 

well-rounded theory. Still, the downfalls and strengths of each theory need to be considered 

before blindly applying the method. Likewise, Molecular Orbital theory in all its glory is an 

excellent and powerful theory but like everything is not perfect and hence this work tries to 

build on the powerful MOT in the coming chapters by providing a new approach at interpreting 

MOs. The FALDI work aims to contribute to how the symmetry terms, specifically for 

asymmetric molecules, can be classified. The work also intends to add quantification to justify 

scientific conclusions. Thankfully there is an excellent starting foundation to build from and 

improvements just need to be discovered. 
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Development of a theoretical FALDI-based 
framework for the symmetry classifications of 

Molecular Orbitals in asymmetric Fischer 
Carbenes. 
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 A novel approach to define symmetry terms in octahedral inorganic molecules is discussed. While the concept of group theory stands 
strong, only symmetric molecules are well accounted for. Classically the Molecular Orbitals (MOs) define symmetry through SALC’s 
while this work introduces a DFT study with a Fragment, Atomic, Localised, Delocalized and Interatomic (FALDI) electron density 
decomposition approach that isolates an atom in terms of its orthodox localized electron density (loc-ED) and presents its Natural 
Density Functions (NDF’s) to recovers classical symmetry terms with 3D representation. This classical symmetry defined through 
the NDF is linked to the corresponding MO’s to fully recover the symmetry, stemmed from Molecular Orbital Theory with the 
addition of quantification allowing the determination of symmetry contributions. Verification was performed using the case study of 
(i) Cr(CO)6 as the symmetric baseline and then expanded to the asymmetric Fischer Carbene of (ii) Cr(CO)5C(OEt)(Me). The 
framework recovers a holistic symmetry definition for both cases, providing comprehensive an electronic definition for asymmetric 
molecules. 

 

Introduction 
The relationship between the electronic structure and nuclear 
geometry of a molecule is an interesting and highly correlated 
one, even within the confines of the Born-Oppenheimer 
approximation: The nuclear geometry give rise to a potential 
field which lends structure to an otherwise uniform electron gas, 
but the distribution of electrons determines the degree to which 
nuclear-nuclear repulsion is shielded by nuclear-electron 
attraction.1 This relationship between electronic and nuclear 
distributions can be very difficult to study, beyond obvious 
patterns of critical points in the topology of electron density. 
However, and perhaps luckily, the presence of molecular 
symmetry simplifies this relationship tremendously – group 
symmetry provides a description of both electronic and nuclear 
structure. In fact, the identification of symmetry in the nuclear 
geometries of molecules opened up the study of electronic 
structure within the approximation of the many-electron 
wavefunction into one-electron functions (orbitals).2 For 
instance, in crystal field theory, identification of the point group 
symmetry of a transition metal complex often allows a 
surprisingly accurate description of the allowable electronic 
states of a molecule, which is easily extrapolated to orbital 
noumena.3,4 The study of molecular symmetry, together with 
early pioneering in quantum chemistry, led to the development 
of one of the most useful interpretive theories in all of chemistry 

– Molecular Orbital Theory (MOT).5 Many new developments 
have been made since in the field of MOT6-9, whether 
experimental, theoretical or even pedagogical. In particular, 
with the advent of computational chemistry as a means to 
solving the Schrödinger equation variationally, molecular 
orbitals (MOs) can be fully determined for symmetrical as well 
as asymmetrical systems. Calculation does not necessarily 
mean comprehension, however, and the interpretation of MOs 
is still highly dependent on symmetry. 

MOT is taught as par of the course in most undergraduate 
chemistry degrees,10 in addition to (and often as the 
fundamentals of) many other advanced chemical concepts – 
such as Fischer Carbene complexes.11 However, MOT in 
undergraduate courses are often restricted to simple and highly 
symmetrical systems. This stems from the complexity, as 
complex asymmetrical systems exponentially increase the 
complexity of MOs. In the classroom, MOT is usually 
introduced through the concept of Symmetry Adapted Linear 
Combinations of Atomic Orbitals (SALC-AOs) or, more 
simply, as Linear Combinations of Atomic Orbitals (LCAO).10 
SALCs link hydrogenic atomic orbitals (AO) to molecular-wide 
MOs, through the application of molecular symmetry. The 
underlying principle of LCAO is that atomic orbitals of a 
particular symmetry will have constructive overlap with other 
AOs of the same symmetry. The resultant MOs are therefore 
fully interpretable, as they stem from chemically-intuitive 
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atoms, functional groups and AOs. The MOs can then be used 
to interpret and explain many fundamental experimental results, 
such as UV spectra, reactivity and magnetism. The fundamental 
reliance of SALC-MOs on symmetry makes it a perfect model 
of electronic structure for chemistry students as well as 
experimental research chemists, as no advanced knowledge of 
quantum mechanics is required.  

What then, of asymmetrical systems, such as the 
aforementioned Fischer carbene complexes? If SALC-MOs are 
fully determined by molecular symmetry, then the extreme 
interpretive and predictive power of MOT must be limited to 
only molecules with a significant degree of symmetry. Luckily, 
advances in quantum chemistry have allowed for the calculation 
of MOs variationally, usually through a self-consistent field 
(SCF). SCF-MOs can be generated for any molecular structure, 
regardless of symmetry. However, unlike SALC-MOs, SCF-
MOs cannot be directly decomposed to atoms, functional 
groups and AOs. While many techniques exist which can aid 
the interpretation of SCF-MOs (including decomposing MOs 
into their underlying basis function contributions), none of 
these have the same transparency and ease of interpretation as 
SALC-MOs. Accordingly, experimentalists utilizing SCF-MOs 
often roughly classify MOs via visual inspection and attempt to 
apply the same principles of SALC-MOs for interpretation. 
This approach can be very misleading, as will be shown 
successively throughout this work. 

SCF-MOs would reach the same level of utility as SALC-
MOs if they could be classified in the same manner. In this 
proof-of-concept work, we introduce a novel method to classify 
SCF-MOs of transition metal complexes to allow them the same 
interpretation as for SALC-MOs. By doing so, the predictive 
power and ease-of-use of SALC-MOs are extended to 
computationally generated SCF-MOs, but without the massive 
limitation of symmetry. Our quantum chemical approach, based 
on the recently developed Fragment, Atomic, Localized, 
Delocalized and Interatomic (FALDI) electron density 
decomposition scheme,12,13 are tested on two transition metal 
complexes – a well-studied symmetrical octahedral complex as 
well as an asymmetrical Fischer carbene complex.  

 

Computational Details 
All structures were optimized using restricted B3LYP, with 
def2svp(p) basis set in Gaussian 09.24 Atomic overlap matrices 
and Atomic populations were computed using AIMAll v. 
17.01.25.25 FALDI distributions were calculated using in-house 
software with the orthodox overlap algorithm. Isosurface 
visualization was performed with VMD 1.9.3.26  

 

Theoretical Background and Development 
 

The FALDI density decomposition scheme.  

The FALDI scheme12, 13 provides an exhaustive electron density 
(ED) decomposition at any coordinate r into chemically 
relevant, atomistic components. Using concepts explored 
during the development of Domain Averaged Fermi Holes 
(DAFH)REF, FALDI quantifies pseudo-second-order electronic 
contributions that allows for insights into molecular-wide 
electron (de)localization patterns. FALDI is inherently 
dependent on a definition of an atomic basin, and, as for DAFH, 

QTAIM’s atomic basins provides physically and chemically 
intuitive atomistic descriptions14. A brief discussion of the 
FALDI terms follows. 

The exchange-correlation hole associated with an atomic 
basin A can be found by integrating the well-defined electron 
hole over an atomic volume: 

𝑔୅ሺ𝐫ଵ, 𝐫ᇱଵሻ ൌ න ௫௖ሺ𝐫ଵ, 𝐫ᇱଵ; 𝐫ଶ, 𝐫ᇱଶሻ 𝑑𝐫𝟐
ஐఽ

𝐫మୀ𝐫ᇱమ

 
(1) 

For simplicity, we will henceforth assume that 𝐫௜ ൌ 𝐫′௜, and 
we will drop the accented coordinates. The DAFH, 𝑔୅ሺ𝐫ሻ, 
provides a molecular-wide distribution of the electrons 
localized to (when 𝐫  A) or delocalized with (when 𝐫  A) 
the domain of atom A. 𝑔୅ሺ𝐫ሻ is borrowed from DAFH-analysis, 
and is known as an atom–ED distribution in FALDI. Integration 
of 𝑔୅ሺ𝐫ሻ over all molecular space provides a count of the total 
number of electrons found on average in A – the atomic 
electron population N(A): 

 

𝑁ሺAሻ ൌ න ሺ𝐫ሻ 𝑑𝐫
ஐఽ

 

ൌ න𝑔୅ሺ𝐫ሻ 𝑑𝐫
ஶ

 

(2) 

 

Considering the difficulty in finding ௫௖ሺ𝐫ଵ; 𝐫ଶሻ for larger 
molecular systems and wavefunctions, a convenient one-
electron approximation27 can be utilized, 

𝑔୅ሺ𝐫ሻ ൌ෍ඥ𝜈௜𝜈௝𝜒௜ሺ𝐫ሻ𝜒௝ሺ𝐫ሻ
௜௝

𝑆௝௜
୅ 

ൌ෍𝐺௝௜
୅

௜௝

𝑆௝௜
୅ 

(3) 

where (r) is a natural orbital with occupation . 𝑆௝௜
୅ is an 

element of the atomic overlap matrix (AOM) associated with 
A: 

𝑆௝௜
୅ ൌ෍ න𝜒௜

∗ሺ𝐫ሻ𝜒௝ሺ𝐫ሻd𝒓
ஐఽ௜௝

 
(4) 

which satisfies 𝑁ሺAሻ ൌ 𝑡𝑟ሺ𝐒୅ሻ.The one-electron 
approximation is exact in closed-shell restricted Hartree-Fock 
wavefunctions (with  = 2), and has been recently28 shown to 
be fairly accurate in correlated wavefunctions as well.  

Localization and delocalization indices (LI and DI, 
respectively) are QTAIM-defined quantities28 that provide 
useful insights into atomic and molecular electronic structures. 
In the same fashion that atom–ED distributions provide real-
space representations of N(A), so does FALDI also provide 
real-space distributions of LIs and DIs. Specifically, and still 
within the one-electron approximation in terms of AOMs, a 
loc–ED distribution, 

ℒ୅ሺ𝐫ሻ ൌ෍𝜒௜ሺ𝐫ሻ𝜒௝ሺ𝐫ሻሺ𝐆୅𝐒୅ሻ௝௜
௜௝

 (5) 

quantifies the contribution to the total ED at r due to 
electrons localized to A. Integration of any loc–ED 
distribution over all molecular space recovers the LI, 
׬ ℒ୅ሺ𝐫ሻ𝑑𝐫ஶ

ൌ 𝜆ሺAሻ.  
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Similarly, a deloc–ED distribution can be defined as 

D୅,୆ሺ𝐫ሻ ൌ෍𝝌𝒊ሺ𝐫ሻ𝝌𝒋ሺ𝐫ሻሺ𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀ሻ𝒋𝒊
𝒊𝒋

 (6) 

D୅,୆ሺ𝐫ሻ provides the contribution to the total ED at r due 
to electrons delocalized between basins A and B. Integration 
of any deloc–ED distribution over all molecular space recovers 
the DI, ׬ D୅,୆ሺ𝐫ሻ𝑑𝐫ஶ

ൌ 𝛿ሺA, Bሻ. 

Natural Density Functions 

Sets of orthogonal functions known as natural density functions 
(NDFs) can be generated by diagonalizing matrix products 
(𝐒୅𝐒୅) and (𝐒𝐀𝐒𝐁 ൅ 𝐒𝐁𝐒𝐀). These matrix products are known 
as localized and delocalized matrices (LMAT and DMAT, 
respectively). The procedure described below illustrates the 
generation of NDFs for decomposing a loc–ED distribution, but 
the procedure is identical for decomposing deloc–ED 
distributions as well. Solving the eigenvalue problem for one of 
these matrix products, 

𝐆୅𝐒୅𝐔୅୅ ൌ 𝛌୅୅𝐔୅୅ (7) 

yields a set of eigenvalues that sum up to LI, LIሺAሻ ൌ ∑𝜆௜
୅୅ 

and a collection of eigenvectors, UAA. The loc–ED distribution 
for atom A can then be decomposed, 

ℒ୅ሺ𝐫ሻ ൌ ෍ ௜
஺஺ሾ௜

஺஺ሺ𝐫ሻሿଶ
ேಾೀ

௜

 
(8) 

where ௜
஺஺ሺ𝐫ሻ is known as an NDF: 

௜
஺஺ሺ𝒓ሻ ൌ ෍ ௝ሺ𝒓ሻ𝑈௝௜

୅୅

ேಾೀ

௝

 
(9) 

NDFs generated from an LMAT gives a set of NMO localized 
functions (loc–NDFs) with occupation numbers ௜

஺஺. The loc–
NDFs with large occupation numbers (typically close to 2) 
closely resemble localized atomic orbitals, e.g. 1s, 2pz 
functions. Similarly, NDFs generated from a DMAT gives a set 
of NMO delocalized functions (deloc–NDFs) with occupation 
numbers δ௜

஺஻, with the largest occupied functions resembling 
typical bonding and antibonding MOs e.g.  and  bonds. 

 

MO classification 

The shapes and occupation numbers of NDFs can provide very 
useful insights into the localization and delocalization patterns 
within in a molecule, while remaining strictly atomistic in their 
interpretation. However, in this work, we are particularly 
interested in further analyzing the eigenvector matrices, 𝐔୅ଡ଼. 
Specifically, the eigenvectors of each LMAT or DMAT 
represents an MO basis through which the NDFs are expressed. 
Since NDFs provide highly localized functions that can 
describe chemical concepts such as atomic orbitals or bonding 
patterns, investigation of each NDF’s MO composition 
provides insight into the nature of a specific MO. 

The sum of squares of each column and row of 𝐔୅ଡ଼ is equal 
to unity. Therefore, the relative contributions of each MO to the 

ith loc–NDF of atom A can be found by investigation of ൣ 𝑈௝௜
஺஺൧

ଶ
. 

Conversely, the manner of how the ith MO is distributed over 
all loc–NDFs of atom A can be found by investigation of 

ൣ𝑈௜௝
஺஺൧

ଶ
. The same approach can be performed for the 

eigenvectors of a given DMAT as well. 

The focus of this work revolves around classification of 
MOs in symmetric and asymmetric hexacoordinate metal 
complexes. Our general approach to do so follows. The loc–
NDFs of a metal describes electrons found in typical atomic 
orbitals, and can be easily classified, through visual inspection 
of isosurfaces, in terms of electronic shells and subshells or Oh 
point-group symmetry classes. The loc–NDFs with occupation 
numbers close to 2 describe core electrons, whereas loc–NDFs 
with intermediate quantum numbers (between 0.5 and 1.5) 
describe valence electrons, which are only partially localized to 
the metal center. Once the loc–NDFs of the metal atom have 

been classified, ൣ𝑈௝௜
஺஺൧

ଶ
 elements can be used to assign a weight 

to each MO relative to each NDF classification. Therefore, each 
MO can be fully classified in terms of how it contributes to 
electrons localized in various metallic atomic orbitals or Oh 
symmetry classes. In this work we are primarily focused on 
classifications based on Oh symmetry species, i.e. a1g, t1u, eg and 
t2g: 

𝑛௜
୑ ൅௔ଵ௚ 𝑛௜

୑ ൅ 𝑛௜
୑ ൅ 𝑛௜

୑௘௚௧ଶ௚௧ଵ௨ ൅ 𝑛௜
୑ே௅ ൌ 1 (10) 

where 𝑛௜
୅ே௅  captures the weights of MOs that does not 

localize electrons to atom A – loc–NDFs with negligible 
occupation numbers – and the superscript ‘M’ specifically 
refers to the metal atom.  

The above approach can then be further extrapolated to 
diatomic delocalized ED. The total number of electrons 
delocalized between the metal atom and any other atom, 
DI(M,B), can be easily decomposed in terms of various MO 
contributions through the DMAT,  

𝑑௜
୑,୆ ൌ ෍ሺ𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀ሻ௜௝

ேಾೀ

௝

 
(11) 

with DIሺM, Bሻ ൌ ∑𝑑௜
୑,୆. Each MO contribution can then be 

effectively filtered through the classification scheme based on 
the metal’s loc–NDFs, 

DIሺM, Bሻ

ൌ ෍ 𝑑௜
஺,஻ൣ 𝑛௜

୑ ൅௔ଵ௚ 𝑛௜
୑ ൅ 𝑛௜

୑ ൅ 𝑛௜
୑௘௚௧ଶ௚௧ଵ௨

ேಾೀ

௜

൅ 𝑛௜
୑ே௅ ൧ 

(12) 

providing the contributions of each symmetry class to 
DI(M,B).  

 

 
Results and Discussion  
 

Symmetrical – Cr(CO)6  

Cr(CO)6  is a model compound for the study of electronic 
structure, which makes it an ideal case study for the 
development of a framework for MO deconstruction. Cr(CO)6  
has 54 canonical MOs (many of which are fully delocalized 
across the all atomic basins) and no unpaired electrons. MOs 
can be classified using Symmetry Adapted Linear 
Combinations (SALCs) of atomic and ligand orbitals, and based 
on the Oh symmetry15 in Cr(CO)6. The six CO ligands’ valence 
orbitals form sets of SALCs with a1g, t1u and eg symmetries and 
their unoccupied orbitals form SALCs with t2g symmetries. The 
metal ion’s occupied valence AOs have eg and t2g symmetries, 
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while the lowest unoccupied AOs are a1g and t1u orbitals – in 
line with classical interpretations.16-18  

The completed conceptual MO diagram (MOD) of Cr(CO)6 
is shown in Figure 1, together with isosurfaces of SCF-MOs as 
3D representations. Ligand SALCs and Cr AOs that share a 
symmetry species couple to form bonding and antibonding MO-
pairs. In general, ligand SALCs with a1g and eg are lower in 
energy than the corresponding Cr 4s and 3d (eg) AOs, and the 
resulting MOs are therefore ligand-centred with -characters 
(i.e. -donating orbitals). On the other hand, 3d (t2g) orbitals on 
the metal overlap with unoccupied * ligand SALCs, resulting 
in metal-centred MOs with -characters (i.e. -accepting 

orbitals).17 Finally, unoccupied 4p Cr AOs can form - and -
MOs with t1u ligand orbitals. Lower energy orbitals (i.e. core 
orbitals) are usually assumed to be non-bonding in the SALC 
model, as are t1g and t2u ligand orbitals for which no 
corresponding Cr AOs are present.  

The symmetry present in the complex therefore allows for a 
full characterization of the canonical MOs and allows for strong 
insights into the complex’s electronic structure, stability, 
photophysical behavior and reactivity. Each MO can be clearly 
labelled, and the associated bonding mode (e.g.  or ) can be 
easily recovered. The computationally-generated SCF-MOs are 
also exactly equivalent to group-theory-generated SALC-MOs. 
We will now apply the method discussed in the Theoretical 
Background and Development on the symmetrical Cr(CO)6 
complex. A set of FALDI-defined, loc–NDFs associated with 
the Cr atom can be generated through diagonalization of Cr’s 
LMAT and is illustrated in Figure 2. Due to the loc–NDF’s 
orthogonality, each loc–NDF is associated with a metal AO and 
can be characterized based on its symmetry in an Oh field. 
Therefore, the same symmetry terms as found in the conceptual 
AOs of Cr (Figure 1) apply to the loc–NDFs, but without the 
need to fragment the complex and consider the metal as a free 
atom. In addition, and as we shall show later, the loc–NDFs 
retain their symmetries even in asymmetrical complexes. The 
occupation value of each loc–NDF (as shown on Figure 2, i) 

indicates the contribution to density localized to the metal, with 
the sum giving a total of (Cr) = 19.96 e– localized. An 
occupation value close to 2.00 indicates the density is fully 
localized on the metal while a value close to 0.00 means the 
associated AO is mostly accepting. An occupation value 
between 0.00 and 2.00 therefore indicates a significant degree 
of delocalization (i.e. covalency). For instance, the first 9 loc–
NDFs have occupation values close to 2.00 and corresponds to 
core AOs (1sCr until 3pCr) – a total of 18 e– and equal to the 
electron configuration of [Ar]. loc–NDFs 10 to 14 correspond 
to 3dCr AOs and low occupation values (0.60 for t2g and 0.11 for 
eg symmetries) indicate that the associated AOs are 

predominantly involved in bonding. Finally, loc–NDFs 15 to 18 
correspond to 4sCr and 4pCr AOs, and their almost 0.0 
occupation values correspond with the accepting nature of these 
orbitals.  

The NDF’s are related to MOs through Eq. 9. The MO 
constituents of a single loc–NDF can be calculated, and an 
example is shown in Figure 3: loc–NDF 10 of the Cr atom, of 
t2g symmetry, is primarily composed of 53, also of t2g symmetry 
(as classified by the SALC approach). Another example is given 
in Figure 4, where loc–NDF 15 (associated with the 4sCr AO) is 
composed of almost two equal a1g MOs. Conversely, the 
contributions of a single MO to all FALDI distributions (loc– 
and deloc–EDs, as well as their NDFs) can also be calculated. 
In this manner, each MO in a metal complex can be classified 
based on its contributions to the loc–NDFs of the metal, even in 
asymmetric complexes. Doing so for Cr(CO)6 exactly recovers 
the MOD given in Figure 1. 

Furthermore, a classification of MOs can then be used to 
investigate and characterize the MOs that contribute to 
electrons involved in a specific chemical bond or diatomic 
interaction. We will now demonstrate this approach on a Cr–C 
bond in Cr(CO)6. 

 

 

Figure 1. Reduced Molecular Orbital Diagram of Cr(CO)6, illustrating the MOs arising from the SALCs. 
Selected MO isosurfaces are shown at isovalues of 0.001 au.  
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Table 1. The total FALDI-classified symmetry 
composition of the Cr1–C2 bond in Cr(CO)6 

 

 

 

 

 

 

 

 

In order to classify the electrons associated with the 
Cr–C bond, we proceeded with the following 
procedure: First, we classified each canonical MO 
based on its contributions to Cr’s loc–NDFs, as 
discussed above and illustrated in Figures 3 and 4. 
Then, the contributions of each MO to the 
delocalization index of a Cr–C bond was calculated, as 
DIሺCr, Cሻ ൌ ∑𝑑௜

େ୰,େ (Eqn. 11). Finally, the 
contributions to DI(Cr1,C2) was grouped into FALDI-
classified symmetry groups, based on the loc–NDF 
classifications (Eqn. 12); the results are shown in Table 
1. The total DI(Cr1,C2) is 0.822, indicating a covalent 
bond order of slightly less than a single bond and 
excluding the electronic contributions from dative-
covalent electrons. Of the total number of electrons 
shared, the majority (39.2%) is shared through MOs 
classified as t2g character, which corresponds to -
backbonding. MOs with eg, a1g and t1u character make 
up -bonds, contributing small amounts individually 
but summed to a total of 39.0% of the shared electrons. 
Therefore, in the well-studied Cr(CO)6 molecule, our 
results correspond perfectly with previously reported 
valence-bond results21 that suggest equal - and -

FALDI-classified 
Symmetrya 

Contribution 
to DI(Cr,C) 

Relative MO 
contribution 
to DI(Cr1,C2) 

a1g 0.041 5.0% 

t1u 0.090 11.0% 

t2g 0.322 39.2% 

eg 0.189 23.0% 

NL 0.180 21.9% 

Total 0.822 
 

Figure 3. The Natural Density Functions corresponding to their respective Molecular Orbitals with their contributions.
Illustrating the tenth NDF which represents t2g symmetry on the Cr linked to the contributing occupied MOs. 

Figure 4. The Natural Density Functions corresponding to their respective Molecular Orbitals with their contributions. 
Illustrating the fifteenth NDF which represents a1g symmetry on the Cr linked to the contributing occupied MOs.  
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characters. Furthermore, the remaining 21.9% of the 
total number of electrons shared are classified as ‘NL’ 
or MOs ‘non-localized’ to the metal. These MOs 
typically are fully delocalized across the ligand system, 
and their substantial contribution to DI(Cr,C) suggests 
multi-centric effects. 

The fact that our method exactly recovered the 
SALC-defined MOD, with identical classification, as 
well as contemporary experiments related to the Cr–C 
bond shows that the FALDI classification is fully 
corroborating of the symmetry-based model. Next, we 
investigate and interpret what SALC-MOs cannot do – 
an asymmetrical metal complex. 

 

Asymmetrical – Cr(CO)5C(OEt)(Me) 

Replacing one of the carbonyl ligands in Cr(CO)6 with 
a alkoxycarbene group (:C(OR)R) yields a very simple 
Fischer carbene complex. We consider here the 

structure with R=OEt and R=Me. Many of the SALCs 
of the Fischer carbene remain qualitatively comparable 
to the SALCs of Cr(CO)6 due to the pentacarbonyl 
metal cluster. However, unlike Cr(CO)6, 
Cr(CO)5C(OEt)(Me) only has C1 symmetry – no 
symmetry operations beyond the identy operation. 
Therefore, none of the SALCs can be accurately 
classified in terms of an octahedral field – rather, 
formal group theory classifies every MO simply as a. 
While symmetry for some of the MOs can be assumed,1 
doing so removes any accurate or quantitative insight 
regarding the physical and chemical properties of the 
molecule.  

The conceptual MOD of Cr(CO)5C(OEt)(Me), with 
isosurfaces of selected SCF-MOs included, is shown in 
Figure 5. Figure 5 is bland in comparison to Figure 1 
and much less information can be retrieved, and no 
direct link to Cr AOs or ligand SALCs can be made. 
The best attempt at symmetry labels is a “shotgun” 

Figure 6. The Natural Density Functions corresponding to their respective Molecular Orbitals with their contributions.
Illustrating the thirteenth NDF which represents Eg symmetry on the Cr linked to the contributing occupied MO’s. 

Figure 5. The Molecular Orbital Diagram of Cr(CO)5C(OEt)(Me), illustrating the Molecular orbitals arising from the SALCs. 
A single Molecular Orbital (59, 61 and 65) are illustrated to show mixed and non-degenerate orbitals are present. 
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approach of guessing the symmetry and then linking 
the SALCs to the MOs. For instance, consider the 
isosurface of 59 in Figure 5. This MO looks to involve 
the 3𝑑௭మ AO on Cr, which would give it eg character. 
However, it is easy to argue that the same MO contains 
significant t1u character as well. With no known method 
to accurately quantify the MOs, interpreting MOs 
based on their visual character remains a very 
inaccurate guessing game. We attempt to remove the 
need for guesses next, using our FALDI approach to 
classify MOs in the Fischer carbene complex. 

Classified loc–NDFs of Cr in Cr(CO)5(OEt)(Me) 
are shown in Figure S2 of the SI, as the analogy of 
Figure 2 for Cr(CO)6. Importantly, while individual 
loc–NDFs occupation values as well as ordering might 
differ between the two molecules, the general 
symmetry and shapes of the NDFs remain identical. 
Therefore, the same underlying AOs for the Cr atom 
are recovered by FALDI’s loc–NDFs for both 
symmetrical and asymmetrical complexes. 

Figures 6 and 7 illustrate the decomposition of two 
classified loc–NDFs into sets of MOs. Due to the 
asymmetry in the molecule, same MOs are now 
contributing to multiple NDFs. For instance, 59 
(blocked in Figures 6 and 7) contributes to both NDF 
13 (50.64%) and 16 (22.36%), and the remaining 
27.00% is distributed over a variety of other MOs. 
Therefore, it is fitting to say approximately half of 59 
is made up of contributions with eg symmetry and a 
quarter is t1u – accurately answering the question stated 
above regarding the nature of this MO. The 
decomposition of all MOs is significantly more 
complex for the asymmetric system and must be 
performed algorithmically; however, this valuable 
information allows for a much deeper conceptual 
understanding of the electronic structure of the 
molecule. MOs can be classified based on dominant 
contributions, or the partial symmetry of each MO can 
be retained during further analysis. After classification 
MOs can be interpreted in the same manner in an 
asymmetrical complex as for a symmetrical complex.  

As illustration, we again decompose the Cr–CCO 
bond, as well as the Cr=Ccarbene bond in terms of 
classified MO symmetries. Specifically, 
decomposition of the DMAT allows for MO 
contributions to the DI(Cr,C) or count of covalently 
shared electrons. Table 2 captures the decomposition of 
DI(Cr1,C2) – the Cr–CCO bond trans to the carbene 
fragment. A total of 0.817 e– are shared between Cr and 
the trans CO’s carbon atom – of which 42.3% is 
contributed by MOs classified by our approach as t2g 
symmetry (-backbonding). MOs classified asa1g, t1u 
and eg contribute a total of 29% to DI(Cr1,C2). 
Therefore, the trans Cr–CCO bond in the Fischer 
carbene complex, while associated with a similar total 
number of electrons shared as a Cr–CCO bond in 
Cr(CO)6, show quite a significantly different MO 
decomposition. Specifically, in the Fischer carbene 
complex, the Cr–CCO bond has a much larger t2g 
character but smaller -character (a1g, t1u and eg). These 
associations can be directly traced to the underlying 
classified MOs for further, in-depth analysis, especially 
with similarly classified MOs in Cr(CO)6. It also 
illustrates the trans-effect, showing the larger degree of 
-bonding in the ligand trans to the carbene carbon. 

Table 3, on the other hand, shows the 
decomposition of DI(Cr1,C12) – the electrons 
delocalized across the Cr–Ccarbene bond. A slightly 
smaller (relative to the Cr–CCO bond) total number of 
electrons are shared (0.705 e–), with a considerably 
smaller -character (t2g-classified MOs only contribute 
26.9%) but much larger -character (eg, a1g and t1u-
classified MOs contribute a sum of 41.1%). 
Furthermore, the non-localized contributions 
contribute a considerable 32.0% to DI(Cr1,C12), 
indicating a significant multi-centric character to the 
Cr–Ccarbene bond. While other quantum chemical 
approaches arrived2 to much the same conclusion 
regarding the nature of the Cr–Ccarbene bond, our 
approach is – to our knowledge – the first to do so from 
a fully MO point of view.  

Figure 7. The Natural Density Functions corresponding to their respective Molecular Orbitals with their contributions.
Illustrating the sixteenth NDF which represents T1u symmetry on the Cr linked to the contributing occupied MO’s. 
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Table 2. The total FALDI-classified symmetry 
composition of the Cr1–CCO bond in 
Cr(CO)5C(OEt)(Me) 

 

Table 3. The total FALDI-classified symmetry 
composition of the Cr1–Ccarbene bond in 
Cr(CO)5C(OEt)(Me) 

 

Conclusion  
Molecular Orbital Theory provides a fantastic insight 
into the electronic structure of transition metal 
complexes, and is fully derivable from both first-
principled quantum mechanics or conceptual group 
theory. While MOs can be generated computationally 
for any metal complex, exact interpretation of MOs are 
generally restricted to symmetrical systems.  

The FALDI-based framework developed in this 
work fully recovers MO symmetries (a1g, t1u, eg and t2g) 
in symmetrical, octahedral metal complexes. Each MO 
is classified based on its contribution to the central 
metal ion’s atomic electronic structure, determined 
through first-principle quantum mechanics in the form 
of FALDI’s loc–NDFs. However, our approach was 
also applied to an asymmetrical structure – that of a 
simple Fischer carbene complex. Still, our approach 
could classify as well as quantify the relative symmetry 
contribution of each MO, thereby allowing full 
interpretation of the electronic structure in terms of 
MOs.  

As proof of concept, we illustrated how the density 
delocalized among the Cr atom and its neighbouring 
carbon atoms can be decomposed into symmetry-
classified MO groups. In this regard, we fully 
recovered existing models describing Cr–CCO or Cr–
Ccarbene, but without the need for unphysical 
fragmentation or appeal to classical chemical theory. 
Rather, our approach is (to our knowledge) the first to 
fully describe the underlying electronic structure of any 

given diatomic interaction in terms of fully 
interpretable MOs, regardless of the nuclear geometry.  

While our approach is currently implemented and 
developed for mono-metallic transition metal 
complexes, we do not foresee any reason why the 
approach cannot be extrapolated to any chemical 
compound. The development of such an approach 
could provide a universal MOT that is fully 
interpretable, quantifiable, chemically intuitive and 
without any restrictions imposed by symmetry. 
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Chapter 4.           

FALDI Molecular Orbital Fragment 

Analysis to identify bonding modes in 

various Fischer carbene complexes.
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Abstract 

The Fragment, Atomic, Localized, Delocalized and Interatomic (FALDI) electron density 

decomposition scheme coupled with molecular orbital (MO) analysis is used to investigate eight 

Fischer carbene complexes. The FALDI-MO approach is further expanded to provide MO 

characterization of the interactions of molecular fragments. The approach is illustrated on various 

Fischer carbene complexes with a Cr(CO)5{C(X)(R)} skeleton where the X-group is X=OEt or 

NMe2 and the R-groups are R= -H, -CCH, -CHCH2, -CHCHPh. We investigated the effects of 

various geometric and electronic variables with rigorous decomposition focusing on the bonding 

and interactions in terms of MOs. Our approach recovers inter-fragment bonding modes such as 

- and -character, accounting for the electronic effects that are caused by changing the X- or R-

group in the complex. Changing the X- or R-group clearly affects the electronic structure, and we 

identify the exact MO effect using the FALDI MO analysis. 

 

Introduction 

One of the primary applications of Fischer carbene complexes is catalyzing organic 

transformations under mild reaction conditions.1 However, their applications have been expanding 

recently to fields such as bioorganometallics,2 material chemistry3 and sugar-derived gelators,4 and 

one of the unique uses of Fischer carbenes is that they can undergo almost any kind of 

cycloaddition.5-8 The electronic structure of Fischer carbene complexes are also quite unique, and 

can offer fundamental insights to conceptual chemical models. As such, Fischer carbenes are often 

studied theoretically using quantum chemical methods. The focus of most theoretical studies on 

Fischer carbene complexes to date has been on the metal–carbene double bond, mostly due to the 

fact that many Fischer carbene reactions typically depend on breaking the M⋯Ccarbene bond. 

However, Fischer carbene complexes exhibit very interesting electronic structures, and their 

chemical and physical properties highly depend on the nature of the ligands bonded to the metal.  

Pentacarbonyl(metal) carbene complexes have become well known for their electron-

withdrawing ability – causing the Lewis acid complexed character which is common in push-pull 

systems –9 which can display non-linear optical (NLO) properties.10 These electronic properties of 

carbenes are the determining factors used to label the carbene in terms of electrophilicity. There 

are many factors which affect this electrophilic property of the carbene, but this sensitive parameter 
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also provides the opportunity to tune the carbene to achieve the desired characteristics. In a typical 

pentacarbonyl(metal) carbene complex [CO)5M=C(X)(R)], the nature of X and R functional 

groups (attached to the carbene carbon) primarily determines the electronic properties of the 

complex for a given metal. Choice of X- and R-groups allows for a wide-range of tunability in 

regard to the complex’s electronic structure and therefore desired physical properties and chemical 

reactivity.11, 12  

The effect of changing the X- and R-groups is seen primarily in the electron density 

distribution affecting the M⋯Ccarbene bond. Usually, the electron density is discussed in terms of 

the MO composition of the complex and, in particular, with regard to the p orbitals of the Ccarbene.  

The polarization of -electrons associated with the bond between Ccarbene and the donor fragment 

(typically the X-group) results from the electron-accepting nature of the (CO)5M=C fragment and 

makes NLO studies popular.13 Conclusions have been drawn that the X-group has a dominant 

electronic effect over the electronic effect that is introduced by changing the R-group in the 

electronic structure, with experimental data proving the electrophilic nature14-16 of the C atoms of 

the carbene ligand. However, the underlying electronic mechanism behind these conclusions 

remains a mystery. 

We can gain some insight into the electronic structure of Fischer carbene complexes 

through the investigation of electronic transitions, thermodynamics and kinetics. The ligand-field 

(LF) bands experience strong redshifts with -donor groups while the opposite is seen with -

acceptor groups, but this was not seen for the metal-ligand charge transfer (MLCT) band.10 In 

addition, work by Berasconi and co-workers found that when the carbene has weaker -donor 

groups an increase in the thermodynamic acidity is seen, there has also been work showing the 

kinetics of the reaction is affected.16 There are many studies showing how the substituents attached 

to the carbene affect the molecule kinetically and thermodynamically in reactions.15-18 These types 

of studies illustrate the importance of understanding the electronic structure of Fischer carbenes. 

A popular model (taught in university) to explain the metal-carbene bond is known as -back-

bonding and illustrated in Scheme 4. 1. 
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Scheme 4. 1. Back-bonding in a Fischer carbene 

The metal-carbene bond has π-bond character and has been postulated as a 3-centre 4-electron 

bond (3c-4e).19, 20 For this reason, due to the π-bond character it is believed that the X-group affects 

the metal–carbene bond the most, which will be on elaborated shortly. Typically, the metal–

carbene bond is described by the Dewar-Chatt-Duncanson (DCD) model21 as a synergistic -

donation into the empty metal d() orbital from the carbon’s lone pair with -back-donation 

coming from the metal d() orbital which donates electrons to an empty carbene p() orbital22 

(Scheme 4.1) and seems to be rather sensitive to the X-substituents.23 The effect of different X- 

and R-groups on the degrees of -donation and the π-back-donation has been of much interest.22, 

24-27 Typically, the -donating X-group has an electronic stabilization effect on the electron-

deficient carbene carbon (likely due to the π-donating/accepting character) while the low valent 

metal is stabilized by -accepting groups like carbon monoxide.22 

The work of Poater and co-workers28 found that out of the Fischer carbenes they tested, 

varying the X- and R-group influenced the bonding in the molecule, especially in the M⋯Ccarbene 

bond. The X-substituent is of particular interest because of the effect it has on the metal–carbene 

bond, or as other work has showed also metal–cumulene bonds.23 Poater et al. noted the -back-

donation between the Cr(CO)5 fragment and the carbene fragment is generally weaker than the 

carbene fragment -donation to the Cr(CO)5 fragment.28 They also noted that more -back-

donation was seen when the X-group had a smaller π-donor character. Therefore, an X-group with 

more π-donor character caused more electrons to be shared between the Ccarbene and X fragment, 

but fewer electrons shared between the Cr and Ccarbene.      

 Fischer carbenes similar to this work can be found in Montserrat et al. ,which used Kohn-

Sham (KS) orbitals on the carbenes with a Cr(CO)5 fragment22 and some other ligands similar to 

 

 
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the ones in this work. They discussed three topics; first, the Fischer carbene geometries and the 

bond dissociation energies, followed by the metal–carbene bond through a decomposition analysis 

of charge and energy, and finally they discussed electrophilicity. We will highlight the first two 

points of their discussion; namely molecular geometries and the charge decomposition analysis 

(CDA). First, they found that certain geometries increased steric repulsion while others reduce it; 

they found that when a certain conformation is adopted by the carbene ligand, steric repulsion is 

reduced, which affects the Cr(CO)5 HOMO overlap with the carbene’s LUMO.22 The 

conformation is, however, a balance between both the steric repulsion and orbital interaction.24 

Considering the second point; in the CDA, they found that the carbene’s donation to the metal (i.e. 

-donation) was mostly twice as large as the -back-donation (metal donating to the carbene). 

However, when R= -CCH they found it to be -withdrawing.22, 29 They also found that decreasing 

the -donor X-group caused -back-donation in the R-group to increase. The unexpected result of 

their publication was when the R-group consisted of an alkyne group (R= -CCH) the -accepting 

nature increased and -donation was reduced, showing that this system hinders the back-donation 

mechanism. Moving on to the energy decomposition analysis they found that for a given R-group 

the decomposition energy increased with decreasing -donor character of the X-group such that H 

> OR’> NHR’.  

This work focuses on the in-depth investigation of various interactions within Fischer 

carbene complexes, such as the metal interacting with the carbene carbon or the metal interacting 

with the R-group. We hope to shed new light onto the interpretability and quantification of 3c-4e 

interactions in Cr-containing Fischer carbene complexes. In order to do so, we utilize the recently 

developed Fragment, Atomic, Localized, Delocalized and Interatomic (FALDI) density 

decomposition scheme, 30, 31 coupled with molecular orbital analysis (henceforth referred to as the 

FALDI-MO approach). The FALDI-MO analysis allows for a holistic description of bonding (as 

for traditional investigation of MOs) yet is able to capture details in atomistic resolution (as for 

atoms-in-molecules approaches). In addition, the FALDI-MO approach is able to characterize 

MOs in terms of symmetry, even in asymmetrical complexes, without requiring rigorous and 

successive perturbations32 or fragmentation of the molecule into unchemical fragments.33, 34  

The question of the effects that the X- and R-groups have on the electronic structure of 

Fischer carbene complexes is revisited in this work, from the perspective of the novel FALDI-MO 
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approach. A set of small, asymmetric Fischer carbene complexes was selected as model 

compounds in order to show the level of insight and quantification that the FALDI-MO approach 

can offer. Notably, whereas Chapter 3 established the FALDI-MO approach, here we expand the 

approach with the inclusion of chemical fragments.  

Theoretical Background and Development  

The FALDI density decomposition scheme30,31 provides an exhaustive electron density 

(ED) decomposition for any coordinate r. The premise of FALDI is based on the definition of the 

atomic basin, for which QTAIM-based atomic definitions are used. This definition enables FALDI 

to describe the electron density of not only a single atom or diatomic interactions but collections 

of atoms, which have been appropriately labelled as fragments (F).     

The recently developed FALDI-MO analysis method (Chapter 3) illustrates how classical 

symmetry terms can be assigned to asymmetric MOs from a metal’s perspective, and is briefly 

reviewed below. In addition, in this chapter we expand the FALDI-MO method to include 

chemical fragments, which aids interpretation tremendously through reduction of variables. The 

FALDI-MO method decomposes an MO’s contribution to the density at a coordinate r in terms of 

atom-localized ED (loc-ED) and atom-pair-delocalized ED (deloc-ED). For the former: 

 ℒ୅ሺ𝐫ሻ ൌ෍𝜒௜ሺ𝐫ሻ𝜒௝ሺ𝐫ሻሺ𝐆୅𝐒୅ሻ௝௜
௜௝

 (1) 

where 𝐆୅𝐒୅ is a localized overlap matrix (LMAT), of which the diagonal elements 

ሺ𝐆୅𝐒୅ሻ௜௜ provide the contribution of the ith MO to the atom-localized ED at r. ℒ୅ሺ𝐫ሻ recovers 

Localized indices (LIs) after being integrated of all molecular space. The LI is used to obtain the 

metal centres localized Natural Density Functions (NDFs) known as  ௜
஺஺ሺ𝐫ሻ: 

 
௜
஺஺ሺ𝒓ሻ ൌ ෍ ௝ሺ𝒓ሻ𝑈௝௜

୅୅

ேಾೀ

௝

 
(2) 

where 𝑈௝௜
୅୅ is an element of the eigenvector matrix of  𝐆୅𝐒୅. These loc-NDFs of the metal centre 

translate extremely well into classical symmetry terms like a1g, t1u, t2g and eg (in an octahedral 

field), with non-localized (NL) describing the unclassified symmetries not described by the metal.  

The delocalized indices (DI) can be similarly obtained from the deloc-ED distribution: 
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 D୅,୆ሺ𝐫ሻ ൌ෍𝝌𝒊ሺ𝐫ሻ𝝌𝒋ሺ𝐫ሻሺ𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀ሻ𝒋𝒊
𝒊𝒋

 (3) 

where the matrix-product sum 𝐆𝐀𝐒𝐁 ൅ 𝐒𝐁𝐆𝐀 describes a delocalized overlap matrix (DMAT). 

D୅,୆ሺ𝐫ሻ calculates the contribution to the ED at r that arises from electrons delocalized (shared) 

between atomic basins A and B. Integrating the deloc-ED distribution over all molecular space 

results in the QTAIM-defined DI. 

Loc- and deloc-ED distributions are defined for individual atoms, and can be summed with 

respect to a single atom to provide an atom-ED distribution, 𝑔୅ሺ𝐫ሻ. However, multiple atomic basins 

can be combined in a superatom, or, in chemical terms, a fragment (F): 

𝑔F1
௧௢௧௔௟ሺ𝐫ሻ ൌ෍𝑔୅ሺ𝐫ሻ

ெF1

୅

 

(4) 

where 𝑀F1 is the total number of atoms in fragment F1. 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ, when integrated over all molecular 

space, yields the total average electron count associated with the fragment, Ntotal(F1). The 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ 

term encapsulates electrons delocalized between all fragments and F1  as well as electrons 

localized to each fragment are included in this term.   

The contribution to the ED at r due to electrons localized to each atom of the fragment can 

be described, in analogy to Eq. 4, by summing the individual loc–ED distributions: 

LF1ሺ𝐫ሻ ൌ෍L୅ሺ𝐫ሻ

ெF1

୅

 

(5) 

This term includes the non-bonded and core electrons within the fragment for each atom. The 

electrons delocalized between atoms within the fragment can also be obtained, as a contribution to 

the ED at r, by 

DF1
௜௡௧௥௔ሺ𝐫ሻ ൌ ෍ ෍ DA, Bሺ𝐫ሻ

ெF1

୆ୀ୅ାଵ

ெF1ିଵ

୅

 

(6) 

and is known as intra-fragment delocalized electrons. Considering both the localized and 

delocalized electrons in Eqs. 5 and 6 yields the total intra-fragment electron distribution: 

𝑔F1
௜௡௧௥௔ሺ𝐫ሻ ൌ LF1ሺ𝐫ሻ ൅DF1

௜௡௧௥௔ሺ𝐫ሻ (7) 
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Both the inter-atomic delocalized and atom-localized electrons between atom-pairs of the fragment 

are included in the 𝑔F1
௜௡௧௥௔ሺ𝐫ሻ term at r for electrons localized to F1. The total intra-fragment 

electron population can also be obtained by simply integrating 𝑔F1
௜௡௧௥௔ሺ𝐫ሻ over all molecular space, 

which is the sum of the LIs and DIs of the fragments. 

𝑁௜௡௧௥௔ሺF1ሻ ൌ න𝑔F1
௜௡௧௥௔ሺ𝐫ሻ𝑑𝐫 ൌ෍ LIሺAሻ ൅෍ DIሺA, Bሻ

୅,୆୅
 

(8) 

where A, B  F1. Looking at the deloc-ED distribution between two fragments, F1 and F2, 

allows the inter-fragment delocalization to be obtained: 

DF1,F2
௜௡௧௘௥ ሺ𝐫ሻ ൌ෍෍DA, Bሺ𝐫ሻ

ெF2

୆

ெF1

୅

 

(9) 

which describes the distribution of the delocalized electrons across the two fragments. The inter-

fragment DI can then be obtained by integrating over all space: 

DIሺF1, F2ሻ ൌ නDF1,F2
௜௡௧௘௥ ሺ𝐫ሻ 𝑑𝐫 

ൌ෍ DIሺA, Bሻ
୅,୆

 

(10) 

with AF1 and BF2. Then summing Eq. 7 and 9 yields the total of 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ (Eq 4). 

𝑔F1
௧௢௧௔௟ሺ𝐫ሻ ൌ 𝑔F1

௜௡௧௥௔ሺ𝐫ሻ ൅෍
1
2

DF1,Fଡ଼
௜௡௧௘௥ ሺ𝐫ሻ

M

ଡ଼

 
(11) 

Lastly, the metal-based classification scheme, loc-NDFs,31 can be linked to the inter-fragment 

delocalized electrons contributions to obtain:  
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௜

 
(6) 

providing the MO contributions in fragments for the DI (F1, F2) with symmetry classifications 

based on the metal loc-NDFs. 

Computational Details  

All structures were optimized using DFT in Gaussian 0935 with B3LYP as exchange-

correlation functional and a basis set of def2-SV(P) in implicit n-hexane solvent model. The spin 

state was kept as a singlet, as is expected of Fischer carbenes. All ground state single-point 

calculations were performed using the optimized structure but using CAM-B3LYP in order to 
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more accurately model long-range interactions. QTAIM analyses, using AIMALL 17.01.2536, was 

the result of single-point calculations to generate atomic overlap matrices necessary for FALDI  

analysis. FALDI was performed with orthodox (de)localization, using in-house codes. The NDFs 

generated were then used to visualize the symmetry classification in VMD 1.9.3.37  

Structures  

We used the following Fischer carbene structures in the FALDI MO decomposition 

analysis: 

 

 

Figure 4. 1. The skeleton structure of all the Fischer carbenes.  

 

Table 4. 1. The combinations of Ccarbene substituents (X- and R-groups) on Fischer carbenes 
complexes. 

X-Group 

R-Group 

R=H R=CHCH2 R=CHCHPh R=CCH 

X=OEt 4a 4b 4c 4d 

X=NMe2 4e 4f 4g 4h 

 

We supply the Cartesian coordinates of each structure in Table B 1. 1. to B 1. 8. in Appendix B, 

respectively accompanied by the optimized molecules’ electronic energies. 

Fragments 

We allocated several fragments to every molecule considered in order to look at specific 

bonds and interactions. Notably, molecular structures were kept intact – no bonds were dissociated 

in order to perform FALDI-MO analysis. The FALDI-MO analysis assigns symmetry labels 
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determined by the metal centre which can be used to describe different interactions. The 

interactions are found in the selected fragments ([M]⋯Ccarbene, [M]⋯ሾX], [M]⋯ሾR], [X]⋯ሾR] and 

the [M]⋯ሾL] where L is the entire carbene ligand) which are used for the comparison when 

changing either the X-group or R-group on the various Fischer carbene structures illustrated in 

Figure 4. 2. 

 

 

 

 

Figure 4. 2. Generalized fragments used for FALDI Fragments MO analysis. The fragments are 

[M]⋯Ccarbene, [M]⋯[X], [M]⋯[R], [X]⋯[R] and [M]⋯[L], where [M]⋯[L] interaction refers to 

the metal cluster ([M], metal and pentacarbonyl) interacting with the entire carbene ligand ([L] 

which is the Ccarbene, X-group and R-group).  

 

Figure 4. 2. illustrates the general fragmentation as a pictorial example. The metal cluster 

[M] is defined as the metal and the five carbonyls, in blue, the carbene carbon as yellow, the R-

group as orange and the X-group as green. These are the fragments used in the comparisons and 

classifications for the specific bonds or interactions investigated. Through the FALDI-MO 

analysis, we can assign any MO symmetry labels, and the bonding character (- and -character) 

to the fragment. However, because of the nature of the symmetry assignment, the method is limited 

to using metal-based fragments as the metal provides the symmetry term used in the comparison. 
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For this reason, the [X]⋯ሾR] fragment interaction can provide delocalized electron data but cannot 

be assigned symmetry terms like the metal counterparts.  

Results and Discussion  

 

In this study, the electronic structures of various X- and R-group combinations in a general 

Fischer carbene complex skeleton, Cr(CO)5{C(X)(R)}, are investigated using the FALDI-MO 

approach. When comparing the various Fischer carbene structures, a few variables need to be noted 

that may affect the physical and chemical properties of the complexes. Changing X- and R-groups 

result in both electronic and geometric changes within a complex; the latter can introduce 

additional electronic structure rearrangements, especially through steric considerations. For 

instance, and as illustrated in Figure 4. 3., when X=OEt (4c), R- and X-groups are perfectly planar 

relative to each other in the optimized structure, which is not the case when X=NMe2 (4g). In 

attempt to isolate the electronic effect that the choice of X-group imposes, we have also selected 

structures with R= -CCH – as illustrated in Figure 4. 4.  

 

 

 

 

 

Figure 4. 3. The geometric effects of changing the X-group whilst the R-group stays the same, 

using 4c and 4g to show the planarity disruption between the X- and R-group. 

 

 

 

 

 

4d 4h 

4c 4g 
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Figure 4. 4. The geometric effects of changing the X-group when the R= -CCH forcing planarity 

between the X- and R-group illustrated by 4d and 4h. 

With these guidelines set in place, the molecules can be fragmented, and the geometric and 

electronic effects compared and related to each other based on the varying X- and R-groups. 

Inter-fragment electron delocalization 

The diatomic interaction of the metal and carbene carbon (M–Ccarbene) is often classically regarded 

as a double bond, and was briefly explored in Chapter 3. A diatomic interaction is, however, an 

extremely narrow description of the interaction between a metal, its ligands and an entire carbene 

ligand. Here, using our novel fragment FALDI-MO approach, we can study the full interaction 

between the metal cluster ([M], defined as the pentacarbonyl metal fragment, Cr(CO)5) and 

sections of the carbene ligand (carbene carbon, Ccarbene, as well as entire R- and X-groups, [R] and 

[X], respectively) – as shown in Figure 4.2. FALDI-based interfragment DIs describe the total 

number of electrons shared – whether through-space or through-bond – between any two 

fragments, and are summarized in Table 4.2. The sections below will discuss selected 

interfragment interactions – namely [M]⋯Ccarbene, [M][X], [M][R] and [X][R] – in detail, as 

using the FALDI-MO approach. 

Table 4. 2. Inter-fragment Delocalization comparison of X=OEt and NMe2. 

 Delocalized electrons 
Interaction R=H R=CHCH2 R=CHCHPh R=CCH 

X=OEt X=NMe2 X=OEt X=NMe2 X=OEt X=NMe2 X=OEt X=NMe2 
[M]⋯Ccarbene  1.3367 1.1048 1.1463 0.9326 1.1082 0.9273 1.2059 0.9427 
[M]⋯[X] 0.2440 0.2866 0.3190 0.2949 0.3085 0.2938 0.2403 0.2959 
[M]⋯[R] 0.0601 0.0546 0.2182 0.2200 0.2318 0.2286 0.2441 0.2328 
[M]⋯[L] 1.6408 1.4460 1.6835 1.4475 1.6484 1.4497 1.6903 1.4713 
[X]⋯[R] 0.1362 0.1455 0.2548 0.3133 0.2759 0.3340 0.2977 0.3453 

 

Analysis of the Metal–Carbene ([M]⋯Ccarbene) interaction 

Table 4. 3. describes the number of electrons shared between the metal cluster fragment ([M]) and 

the carbene carbon (Ccarbene). 4a (X=OEt, R=H) can be considered a ‘baseline’ case for a 

description of the electronic structure: The total number of electrons shared (total DI([M], Ccarbene)) 

is equal to 1.336 e–, suggesting a bond-order slightly greater than 1. Fully understanding the nature 
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of the shared electrons can be somewhat difficult, in particular due to the lack of symmetry within 

the complex: a high order of symmetry would have allowed MOs and atomic orbitals that are fully 

classifiable by group theory, and therefore easily interpretable. Fortunately, our FALDI-MO 

approach allows the characterization of MOs even in asymmetrical complexes, and the grouped 

contribution of classified MOs to the delocalized electrons of [M]Ccarbene are also shown in Table 

4.3. For 4a, we note that shared electrons are predominantly distributed among t2g orbitals (0.424 

e–, -bonding) and non-localized orbitals (0.480 e–) – i.e. MOs that do not involve the metal’s 

atomic orbitals. However, the t1u (0.226 e–) and eg (0.167 e–) orbitals also contribute significantly, 

and together with a1g MOs, form the -bond of the interaction.  Accordingly, the total - and -

contributions are almost equal – 0.4317 and 0.4244 e–, respectively. Our results therefore suggest, 

for an unmodified alkoxycarbene complex, that -donation and -backbonding are mostly equal, 

and that the largest amount of electrons shared are within t2g orbitals (i.e. involving Cr’s 3dxy, 3dxz 

and 3dyz atomic orbitals). Furthermore, the large ‘NL’ contribution indicates a significant degree 

of multi-centric character associated with the [M]Ccarbene interaction and resulting from MOs 

localized to the ligands. To our knowledge, this is the first fully quantified MO-based description 

of a Fischer carbene complex. 

Table 4. 3. Symmetry decomposition for [M]⋯Ccarbene with X=OEt and NMe2. 

 MO DI Contributions 
X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯Ccarbene 
R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g 0.0379 0.0413 0.0332 0.0306 0.0440 0.0224 0.0174 0.0202 
t1u 0.2265 0.1929 0.1938 0.1514 0.2886 0.1524 0.1298 0.1802 
t2g 0.4244 0.3257 0.2502 0.3657 0.2497 0.2021 0.1891 0.2190 
eg 0.1673 0.1365 0.1369 0.1046 0.1475 0.0686 0.0614 0.0679 
NL 0.4805 0.4499 0.4941 0.5536 0.3750 0.4870 0.5296 0.4554 
         
Total 1.3367 1.1463 1.1082 1.2059 1.1048 0.9326 0.9273 0.9427 
 0.4317 0.3707 0.3638 0.2866 0.4801 0.2434 0.2086 0.2683 
π 0.4244 0.3257 0.2502 0.3657 0.2497 0.2021 0.1891 0.2190 
NL 0.4805 0.4499 0.4941 0.5536 0.3750 0.4870 0.5296 0.4554 

 

When X- and R-groups change, however, we expect to see dramatic changes in the 

electronic structure (both directly and indirectly as a result of geometrical changes). When 
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X=NMe2 (but keeping R=H), the total DI([M], Ccarbene) decreases significantly by 0.22 e– relative 

to X=OEt, suggesting a weaker metal–carbene bond. We generally observe this trend for all R-

groups when comparing X=NMe2 to X=OEt. Interestingly, t2g contributions (and therefore -

character) is reduced when X=NMe2 relative to X=OEt, regardless of the choice of R-group, and 

is the primary reason for the observed reduced total number of electrons shared. Since nitrogen is 

less electronegative (implying it is a stronger donor), X=NMe2 will presumably share more 

electrons with the carbene carbon and hence fewer electrons are available for the [M]⋯Ccarbene 

interaction, which the data affirms. Therefore, the [M]⋯Ccarbene bond is always stronger with 

X=OEt for all R-groups.  

When the R-group is changed, the [M]⋯Ccarbene trends follow classical reasoning. When 

X=OEt, the highest DI for the [M]⋯Ccarbene interaction is when R= -H, and results in the following 

ranking CHCHPh<CHCH2<CCH<H for the sharing of metal–carbene electrons. The styryl group, 

which has the most conjugation and most -acceptance, will share the most electrons with the 

carbene carbon, reducing the ability of the metal to share electrons with the carbene carbon. This 

is followed by the vinyl group and then the alkyne group, which does not have additional orbitals 

to accept much more electron density. When X=NMe2 the same trend is observed with 

CHCHPh<CHCH2<CCH<H and the same reasoning can be followed.  

Tracking back to the surface level analysis, classically it was stated that the more 

conjugated the R-group was, the more it would interact (electron donation would increase the 

electron sharing, whereas acceptance/withdrawal would decrease electron sharing) with the 

carbene carbon. Accordingly, fewer electrons are available to be shared with the metal, from either 

Ccarbene or through long-range interactions by [R]. The -contributions (arising from MOs with t2g 

character) follow classical expectations perfectly, with the same trend as above: 

CHCHPh<CHCH2<CCH<H for both X-groups. However, a missing piece of the puzzle lies within 

the classical explanation of the -character. When X=OEt the order of -character in the 

[M]⋯Ccarbene interaction is ranked as followes: CCH<CHCHPh<CHCH2<H while for X=NMe2 it 

is CHCHPh<CHCH2<CCH<H. Clearly, the -character of the [M]⋯Ccarbene interaction, and 

therefore involvement of a1g, t1u and eg orbitals, is considerably more variable than the -character 

and highly correlated with the choice of both X- and R-groups. For both the X=OEt and X=NMe2 

the most eg character is seen for R= -H and X=NMe2 the most a1g character, indicating 
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geometrically this alignment (visually in 3D space on the same plane) strengthens the interaction. 

As pointed out in the work of Montserrat22 for this metal–carbene bond, the -donation was twice 

the -back-donation, these results in Table 4. 3. are very similar. The -character is stronger than 

the -character for every R- and X-group combination. The exception to this observation is for the 

R= -CCH: when X=OEt, showing the -withdrawing behaviour identified in previous work,22, 29 

this was not the case for the X=NMe2, however, it was not specified in the list used by Montserrat.  

 

 

Figure 4. 5. The molecular orbitals of Cr(CO)5{C(NMe2)(CCH)} displaying the [M]⋯Ccarbene 

interaction for (i)  and (ii)  with an isovalue of 0.02 a.u. 

In order to eliminate, as much as possible, the influence of geometry on the electronic 

structure, we now turn to an in-depth analysis of the structures where R= -CCH. Table 4. 3. shows 

that the total number of electrons shared, and in particular the -contributions, is considerably 

greater with X=OEt relative to X=NMe2. This shows that the R-group when X=NMe2 is not 

necessarily optimally aligned with the metal orbitals, as the -character (t2g) is weaker than the -

character which is not expected from the less electronegative nitrogen with a high degree of 

MO 64 MO 66 

MO 68 MO 69 

(i) 

(ii) 
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conjugation in the R-group. It does, however, show that the nitrogen is more of an inductive X-

group since the -character is strengthened mainly through t1u which correlates to the 3p atomic 

orbitals on the metal. We can explain these results in terms of MOs, as the FALDI-MO approach 

allows for a decomposition of any DI value in terms of the entire list of MOs. Almost 70% of the 

DI([M], Ccarbene) in R=CCH and X=NMe2 consists of only four MOs which are MO 64, 66, 68 and 

69 with contributions of 20.61%, 24.49%, 15.65% and 7.18% respectively, and shown in Figure 

4. 5. The biggest contributing MOs are 64 and 66, which are both made up of NL and t1u character 

meaning 45.10% of the [M]⋯Ccarbene bond is a combination of - and NL character. On the other 

hand, we classify MOs 68 and 69 as t2g, which makes up only 22.83% -character described by 

these four MOs. This result clarifies that the MOs contributing to the [M]⋯Ccarbene are stronger in 

-nature and hence the -character is weaker. If we consider all MOs in the system, the percentage 

of -character is 28.46% (0.2683) and 23.23% for the -character (0.2190) with the remaining 

made up of NL character. This result is quite interesting, as more -character is typically expected 

in the [M]⋯Ccarbene bond. From Figure 4. 5. it can be seen that (i) the -orbitals (e.g. MO66) fully 

overlap between the metal and carbene carbon, while (ii) the -orbitals (e.g. MO 69) does not 

overlap fully with the metal and carbene carbon. There is one metal orbital just touching the 

carbene carbon (poor overlap) which is hindering the synergistic mechanism of back-donation as 

discussed.22 Since the p-orbital on the carbon atom has a nodal plane through the atom, we do not 

expect overlap more than what we see. This visual representation backs the numerical data 

showing that the -interaction is stronger for the [M]⋯Ccarbene than the -interaction, when 

X=NMe2. 

Classifications of the symmetries are relative to their DI contribution and symmetry 

decomposition in terms of energy  results are shown in Table B 5. 2. in Appendix B. The energy 

contributions of MOs to the [M]⋯Ccarbene interaction generally follows the same trends as DI 

values; however, if a specific MO (or set of MOs) are lower in energy relative to its contribution 

to the DI, the trends do shift somewhat. In particular, the data in Table B 5. 2. show how NL 

classified orbitals can influence the energetics of the system. For relating the X=OEt relative to 

X=NMe2 with the same R-groups, the energetic trend matches the DI trend: MOs describing the 

[M]⋯Ccarbene interaction generally shares more electrons and is lower in energy when X=OEt than 

X=NMe2, and therefore corresponds to a generally stronger metal–carbene bond. The energy 
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profile also fits in nicely with the length of the R-group. In this work longer side chains require 

less molecular energy and this is seen with the R= -CHCHPh group requiring least energy and R= 

-H the most energy for both X=OEt and X=NMe2. The work of Monserrat22 showed the molecular 

energy increases when the X-group decreases in -donor ability and the X=NMe2 being a stronger 

donor is lower in energy (stabilized) relative to the X=OEt except when R= -H and R= -CCH. This 

difference is likely due to the calculation of the energy, as the work of Monserrat is based on the 

binding energy, where the energy in this study is based on the molecular energy (weighted based 

on the orbitals and their DI contribution), and warrants further investigation.  

In summary, we note that the MOs contributing to the electrons shared between the metal 

fragment and the carbene carbon are highly correlated with the choice of both X- and R-groups. 

While MOs with -character contribute to delocalized electrons in an intuitive fashion, MOs with 

-character are considerably more volatile and highly dependent on the nature of both X- and R-

groups simultaneously. In general, however, we have observed that the [M]⋯Ccarbene interaction is 

significantly stronger when X=OEt and with smaller R-groups (e.g. R= -H, R= -CCH), due 

primarily to greater -contributions from MOs. 
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Metal X-group ([M]⋯ሾX]) 

The long-range interaction between the metal cluster and the X-group is interesting, and often not 

considered due to the assumption that the X-group does not directly significant share electrons 

with the metal. FALDI, however, allows for the calculation of delocalized electrons between any 

atoms or fragments – whether considered bonded or not. 

Table 4. 4. Symmetry decomposition for [M]⋯[X] interaction with X=OEt and NMe2. 

 MO DI Contributions 
X=OEt X=NMe2 

[M]⋯ሾX] [M]⋯ሾX] 
R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g 0.0001 0.00498 0.0037 0.0004 0.0030 0.00368 0.0026 0.0033 
t1u 0.0257 0.05314 0.0527 0.0187 0.0359 0.02900 0.0263 0.0255 
t2g 0.1561 0.10738 0.0722 0.1328 0.1404 0.10608 0.0928 0.1244 
eg 0.0201 0.02256 0.0231 0.0125 0.0217 0.01681 0.0142 0.0154 
NL 0.0420 0.13099 0.1567 0.0758 0.0856 0.13934 0.1578 0.1272 
         
Total 0.2440 0.31904 0.3085 0.2403 0.2866 0.29490 0.2938 0.2959 
 0.0459 0.0807 0.0796 0.0316 0.0606 0.0495 0.0432 0.0442 
 0.1561 0.1074 0.0722 0.1328 0.1404 0.1061 0.0928 0.1244 
NL 0.0420 0.1310 0.1567 0.0758 0.0856 0.1393 0.1578 0.1272 

 

Whereas multiple clear trends were observed for the [M]⋯Ccarbene interaction, [M][X] 

interaction shows fewer direct trends – Table 4. 4. As a baseline, consider X=OEt and R= -H: 

DI([M], [X]) is equal to 0.244 e–, indicating a surprisingly large number of shared electrons despite 

the absence of a formal covalent bond. The interaction forms primarily as a result of MOs with t2g 

character (-character, 0.156 e–), although with a small but significant contribution from -MOs 

as well (0.045 e–). 

The variation of the [M][X] interaction when changing X- or R-groups is quite 

interesting. When R= -H and -CCH, fewer electrons are shared amongst the [M][X] interaction 

when X=OEt relative to X=NMe2; however, the opposite is true when R= -CHCH2 and -CHCHPh. 

This observation suggests that for planar geometries (R= -H and -CCH), the X=NMe2 group 

interacts more strongly with the metal cluster than the X=OEt group. When the geometry is 

distorted from planarity (i.e. when R= -CHCH2 and -CHCHPh in the presence of X=NMe2), the 
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[M][X] interaction weakens. Stated differently, even though the [M][X] interaction is favoured 

electronically when X=NMe2, the geometric distortion imposed by X=NMe2 with bulkier R-

groups leads to a stronger [M][X] interaction in the presence of X=OEt. This result indicates that 

the geometric effect outweighs the electronic effect. In planar geometries (R= -H and -CCH), MO 

contributions to DI([M], [X]) with -characters as well as NL characters increases significantly 

when X=NMe2 relative to X=OEt whereas -contributions decrease, indicating that the electronic 

influence on the [M][X] interaction imposed by X=NMe2 is mostly  in nature. When the 

planarity is distorted in R= -CHCHPh and -CHCH2 in the presence of X=NMe2 the electronic 

contribution of MOs with -character is lost.  

If the X-group is kept constant, then when X=OEt DI([M], [OEt]) increases with the R-

groups as CCH<H<CHCHPh<CHCH2. This result is quite unintuitive, as all the substituents have 

the same planar geometry and therefore suggests a predominantly electronic effect that influences 

DI([M], [X]). Interestingly, MOs with -contributions to DI([M], [X=OEt]) were observed to 

contribute more when R= -CHCHPh or -CHCH2, whereas dominant -characters were observed 

when R= -H or -CCH. We also observed MOs with NL characters to contribute much more to 

DI([M], [OEt]) when R= -CHCHPh or -CHCH2 than when R= -H or -CCH. When X=NMe2, 

DI([M], [NMe2]) displayed much less variability, and slightly increases with the conjugation of R-

groups as H<CHCHPh<CHCH2<CCH. Interestingly, the -contributions to DI([M], [NMe2]) is 

smallest with R= -CHCHPh and -CHCH2, whereas the NL contributions are greatest with these R-

groups. This observation suggests that the nature of the [X]⋯[R] interaction might be the key to 

explaining the [M]⋯[X] interaction, and will be investigated in a following section.  
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Figure 4. 6. The most -contributing molecular orbitals for [M]⋯ሾX] of 

Cr(CO)5{C(X)(CHCHPh)} with (i) X=OEt and (ii) X=NMe2 with an isovalue of 0.02 a.u. 

The styryl group represents an interesting anomaly. When R= -CHCHPh, the -character 

of the [M][X] interaction is much larger when X=OEt than X=NMe2 and it involves all the 

symmetry classifications of a1g, t1u and eg. The anomaly comes in with the -character which is 

expected to be higher when X=OEt (as was observed for all other R-groups) but is, in fact, weaker 

(Table 4. 4.). This is likely due to the geometry, as the styryl–carbene ligand is planar only when 

X=OEt. For the [M]⋯[X] interaction in R= -CHCHPh with X=OEt, two MOs contribute 

significantly to t2g, namely MO89 and MO 90 (Figure 4. 6.), with 6.84% and 13.42% contributions 

to DI([M], [X]). In comparison, when R= -CHCHPh and X=NMe2 there are three MOs which 

contribute the bulk of the interaction; MO87, 89 and 90 with DI contributions of 8.61%, 22.85% 

and 5.30% respectively. The reason for the π-character difference between the X-groups is likely 

because of two MOs namely MO89 and MO90. 

MO89 

MO89 MO90 

MO90 

(i) 

(ii) 
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From Figure 4. 6. and the noted percentages, the main orbital contributing to the -

component of the [M][X] interaction for X=OEt is MO90 whilst for X=NMe2 it is MO89. When 

X=OEt, this orbital (MO90) is significantly delocalized over the metal cluster and the R-group, 

with a small contribution to the X-group. On the other hand, when X=NMe2, the equivalent orbital 

(MO89) is not significantly delocalized over the R-group, and is primarily overlapping the metal 

cluster and X-group. Therefore, from this simple investigation, it can be seen that [M]⋯ሾX] is 

stronger in -character when X=NMe2 because of better t2g overlap.  

 

 

Figure 4. 7. The -contributing molecular orbitals for [M]⋯ሾX] of Cr(CO)5{C(X)(CHCHPh)} 

with (i) X=OEt and (ii) X=NMe2 with an isovalue of 0.02 a.u. 

For the -contribution to the [M][X] interaction, X=OEt is favoured over X=NMe2. For 

X=OEt, MO85 is the primary -orbital (Figure 4. 7.), contributing 22.59% to the total DI([M], 

[X]) and mainly consisting of t1u and eg characters, while for the X=NMe2 the main orbital 

contributing is also MO85, but only contributes 10.95% and consists of NL interactions and t1u 

character. It is clear from Figure 4. 7. that the planar geometry observed when X=OEt results in a 

-orbital that is much more concentrated on the metal cluster and X-group than the perpendicular 

geometry observed when X=NMe2, where the -orbital is delocalized across the entire carbene 

ligand. This planar geometry leads to more direct overlap and hence and increase in the sigma 

interaction when X=OEt. 

MO85 MO85 

(ii) (i) 
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The energetics of the [M]⋯ሾX] interaction for X=OEt relative to NMe2 (presented in Table 

B 5. 2. of Appendix B) display roughly the same trend as the DI([M], [X]) values, for all R-groups. 

The DI([M], [X]) increases with R-groups as CCH<H<CHCHPh<CHCH2 for X=OEt and 

H<CHCHPh<CHCH2<CCH for X=NMe2, whereas the energetic order for X=OEt is 

H>CCH>CHCHPh>CHCH2 (with -CHCH2 the most stabilized) while for X=NMe2 it is 

H>CCH>CHCH2>CHCHPh (with -CHCHPh the most stabilized). For the X=OEt DI relative to 

the energetics, there is a swap between R= -CCH and -H, likely because of -CCH having more NL 

character interacting with the metal increasing the average energy, while more conjugation lowers 

the energy for X=NMe2 because of the involvement of the NL orbitals. In X=NMe2 the 

restructuring of the order is because of the NL in R= -CHCH2 and -CHCHPh becomes larger 

(which is expected as the R-group gets larger, with less of the R-group being classified by the 

metal) even though the -H and -CCH have lower t2g energies. 

In summary, the interaction between the metal cluster and the X-group adds a significant 

number of shared electrons to the entire metal–carbene bond. While the interaction is mostly 

stabilized by MOs with -characters for most of the X- and R-group combinations investigated, 

significant stabilization through - and NL MOs was also observed. When R= -H or -CCH, the 

[M]⋯[X] interaction is greater when X=NMe2 than X=OEt due primarily to stronger overlap of 

-MOs. However, the opposite was observed when R= -CHCH2 or -CHCHPh, which was shown 

to be a result of the non-planar geometry observed with X=NMe2.  

Metal R-group ([M]⋯ሾR]) 

The interaction between the metal cluster and R-group follows a more familiar trend similar to that 

of the [M]⋯Ccarbene bond – [M]⋯[R] is stronger when X=OEt than X=NMe2 for most R-groups 

considered, Table 4. 5. Similarly, DI([M], [R]) increases with respect to R-groups as 

H<CHCH2<CHCHPh<CCH, regardless of choice of X-group. This is expected for the metal’s 

long-range interaction with the R-group – we see more electrons are shared as the R-group’s 

conjugation increases.  
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Table 4. 5. Symmetry decomposition for the [M]⋯ሾR] interaction with X=OEt and X=NMe2. 

 MO DI Contributions 
X=OEt X=NMe2 

[M]⋯ሾR] [M]⋯ሾR] 
R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g 0.0014 0.00236 0.0025 0.0028 0.0004 0.00263 0.0014 0.0028 
t1u 0.0169 0.02660 0.0253 0.0219 0.0160 0.02756 0.0202 0.0252 
t2g 0.0240 0.09914 0.1321 0.1327 0.0204 0.05971 0.0770 0.0765 
eg 0.0104 0.01469 0.0131 0.0144 0.0077 0.01209 0.0074 0.0118 
NL 0.0074 0.07542 0.0588 0.0722 0.0102 0.11800 0.1225 0.1164 
         
Total 0.0601 0.21821 0.2318 0.2441 0.0546 0.21998 0.2286 0.2328 
 0.0288 0.0437 0.0409 0.0392 0.0240 0.0423 0.0291 0.0398 
π 0.0240 0.0991 0.1321 0.1327 0.0204 0.0597 0.0770 0.0765 
NL 0.0074 0.0754 0.0588 0.0722 0.0102 0.1180 0.1225 0.1164 

 

The [M]⋯[R] interaction, in terms of MO-characters, is quite easy to interpret. When R= 

-H, MOs with t1u, eg and t2g characters contribute predominantly to DI([M], [R]) and results in an 

interaction of mostly equal - and -characters. When the conjugation of the R-group increases, 

contributions from MOs with t2g character (and therefore -character) as well as NL character 

increase accordingly and as classically expected. Generally stronger - and -contributions are 

observed when X=OEt than X=NMe2, although weaker NL contributions are observed. The 

resulting [M]⋯[R] interaction, as mentioned above, is strongest when X=OEt and R= -CCH. 

Looking at the energies of [M]⋯ሾR] in Table B 5. 3. it is seen that the energetics don’t 

correlate well with the DI values. The energy is always lower for all R-groups in X=NMe2 even if 

the [M]⋯ሾR] interaction is not always stronger. Looking at the X=OEt relative to X=NMe2, only 

the R= -CHCH2 has a weaker DI contribution, while all the other R-groups (-H, -CHCHPh and -

CCH) have more DI interaction between the [M]⋯ሾR]. This is because of NL contribution, looking 

at the NL contribution in either Table 4. 5. or Table B 5. 3. both show that there is more NL 

contribution with X=NMe2 and sometimes even up to double, relative to the X=OEt, such as when 

R= -CHCHPh. Showing how some R-groups are not interacting with the metal, which overall 

influences the DI weighted energy. 
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Table 4. 6. Symmetry decomposition of [M]⋯ሾL] interaction with X=OEt and NMe2. 

 MO DI Contributions 
X=OEt X=NMe2 

[M]⋯ሾL] [M]⋯ሾL] 
R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g 0.0395 0.0486 0.0394 0.0338 0.0474 0.0287 0.0214 0.0263 
t1u 0.2691 0.2726 0.2718 0.1921 0.3405 0.2090 0.1764 0.2310 
t2g 0.6045 0.5322 0.4546 0.6313 0.4105 0.3679 0.3589 0.4199 
eg 0.1978 0.1738 0.1731 0.1315 0.1768 0.0975 0.0830 0.0950 
NL 0.5299 0.6563 0.7096 0.7016 0.4708 0.7444 0.8100 0.6991 
         
Total 1.6408 1.6835 1.6484 1.6903 1.4460 1.4475 1.4497 1.4713 
 0.5064 0.4950 0.4843 0.3574 0.5647 0.3352 0.2808 0.3523 
π 0.6045 0.5322 0.4546 0.6313 0.4105 0.3679 0.3589 0.4199 
NL 0.5299 0.6563 0.7096 0.7016 0.4708 0.7444 0.8100 0.6991 

 

Interaction between Ccarbene, X- and R-groups 

In the preceding sections, [M]⋯Ccarbene, [M]⋯[X] and [M]⋯[R] interactions all revealed large 

changes with respect to the choice of both X- and R-groups. In particular, the [M]⋯[X] interaction 

is strongly influenced by the choice of R-group whereas the [M]⋯[R] interaction is influenced by 

the choice of X-group. The observations made in the preceding sections therefore suggest that the 

X- and R-groups have a strongly correlated and non-linear effect on the electronic structure. In 

this section, Ccarbene⋯[X], Ccarbene⋯[R] and [X]⋯[R] interactions and their influences on the 

interactions involving the metal cluster will be briefly investigated. Since no classification of the 

MOs in terms of symmetry-characters can be made (as the FALDI-MO methodology is specific to 

NDFs centered on the metal ion), we will investigate only the total DI values. 

Table 4. 7. The total DI of interactions not localized to the metal. 

Interaction 
Total inter-fragment DI 

R=H R=CHCH2 R=CHCHPh R=CCH 
X=OEt X=NMe2 X=OEt X=NMe2 X=OEt X=NMe2 X=OEt X=NMe2 

Ccarbene⋯[X] 1.1655 1.4429 1.1101 1.4109 1.0963 1.3981 1.0957 1.3781 
Ccarbene⋯[R] 0.8946 0.8978 1.1978 1.1754 1.2637 1.2062 1.2265 1.2194 

[X]⋯[R] 0.1362 0.1455 0.2548 0.3133 0.2759 0.3340 0.2977 0.3453 
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The carbene carbon shares ~1.1 e– with the X-group, when X=OEt. However, the 

interaction is consistently stronger when X=NMe2, and DI(Ccarbene, [X]) ~ 1.4 e–. This observation 

is in-line with classical thinking in that the X=NMe2 group is a stronger electron donor than 

X=OEt. In addition, this observation explains, in part, the results in the preceding sections that 

DI([M], Ccarbene) is decreased when X=NMe2 relative to X=OEt: a stronger Ccarbene⋯[X] bond 

results in fewer electrons available for the [M]⋯Ccarbene bond. Similarly, the carbene carbon shares 

~1.2 e– with the R-groups (with the exception of R= -H). On average, DI(Ccarbene, [R]) is greater 

when X=OEt than X=NMe2. In addition, DI(Ccarbene, [X]) decreases as the degree of conjugation 

in the R-group increases. Therefore, the interplay between Ccarbene⋯[X] and Ccarbene⋯[R] bonds is 

clear: as the one interaction strengthens, fewer electrons are available for the other.  

The X- and R-groups also interact surprisingly strongly – a significant number of electrons 

are shared between these groups (up to a maximum of 0.3453 e– when X=NMe2 and R= -CCH, 

Table 4. 7.). When X=NMe2, the [X]⋯[R] interaction is consistently stronger than for X=OEt, for 

all R-groups considered. This observation provides an intuitive and strong hypothesis for the 

generally weaker [M]⋯[X] and [M]⋯[R] interactions observed when X=NMe2 relative to X=OEt: 

as more electrons are shared between X- and R-groups, fewer electrons are available to be shared 

with the metal cluster. In addition, DI([X], [R]) increases with increasing conjugation, in the order 

H<CHCH2<CHCHPh<CCH, for both X-groups considered. Therefore, increasing the conjugation 

of the R-group does not result in a linear increase in DI([M], [R]), as noted in the previous section. 

Rather, increased conjugation in the R-group results in a general increase in electrons shared 

between the R-group and all other fragments of the molecule. 

 

Summary: an overview of the Metal–Ligand ([M]⋯ሾL]) interaction 

The metal–ligand interaction considers the metal cluster and the ligand group each as a whole. The 

metal has been consistent throughout the above discussions but here the ligand encapsulates each 

component that has been discussed into a single fragment namely; the carbene carbon, R-group 

and X-group to see the overall effect. The preceding sections discussed electron delocalization of 

each individual interfragment interaction; however,  the total delocalization between the metal 

cluster and the entire carbene ligand ([L]) is additive, DI([M], [L]) = DI([M], Ccarbene) + DI([M], 
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[X]) + DI([M, [R]). DI([M],[L]) values are tabulated in Table 4.2, and provide a concise overview 

of the electronic structure of the molecule. 

As an example, consider first 4a, with X=OEt and R= -H. The total number of electrons 

shared between the metal cluster and the carbene ligand is DI([M], [L]) = 1.6408 e–, and therefore 

displays an overall bond order between a single and double bond. Of these electrons: i) 81% is 

shared between the metal cluster and carbene carbon (DI([M], Ccarbene) = 1.3367 e–) involving MOs 

with relatively equal -, - and NL characters; ii) 15% is shared between the metal cluster and X-

group (DI[M], [X]) = 0.244 e–) involving MOs with predominantly -characters; and iii) 4% is 

shared between the metal cluster and R-group (DI[M],[R]) = 0.0601 e–), involving MOs with 

relatively equal - and -characters. Overall and in chemical terms, the bond between the metal 

cluster and carbene ligand for 4a can therefore be described as primarily a metal–carbene carbon 

bond with equal - and -character, with minor stabilization through the -orbitals involving the 

X-group. 

When the R-group is replaced by R= -CHCH2 (4b), a relatively small increase in the total 

number of electrons shared is seen, relative to R=–H (DI([M], [L]) = +0.0427 e–). However, this 

change is a result of three competing effects: i) a large increase in the number of electrons shared 

between the metal cluster and R-group (DI([M], [R] = +0.1581 e–), ii) a large decrease in the 

number of electrons shared between the metal cluster and the carbene carbon (DI([M], Ccarbene) 

= –0.1904 e–) and iii) a small but significant increase in the number of electrons shared between 

the metal cluster and the X-group (DI([M], [X]) = +0.0750 e–). Therefore, even though 

introducing a conjugated R-group has the expected effect of strengthening the [M]⋯[R] 

interaction, various correlated changes occurred simultaneously and result in a much smaller 

strengthening of the [M]⋯[L] interaction than would otherwise be anticipated. As discussed in the 

previous section, these correlated changes are a result of an interplay between Ccarbene⋯[R] and 

[X]⋯[R] interactions. Note that while the changes in the above-mentioned interactions primarily 

involved MOs with -characters, contributions from MOs with - and NL characters were also 

significantly altered. Further increasing the conjugation of the R-group (R= -CHCHPh and -CCH, 

4c and 4d, respectively) results in an expected linear increase in DI([M], [R]) but variable changes 

in DI([M], [L]) because of a different interplay of the DI values mentioned above. Finally, the 
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same general changes were observed when X=NMe2, although with some variation due to non-

planar geometries. 

On the other hand, if the R-group is kept constant (R= -H, 4a) but the X-group is changed 

to X=NMe2 (4e), a relatively large decrease is observed in the total number of electrons shared 

(DI([M], [L]) = –0.1948 e–). This result is predominantly due to a reduction in the electrons 

shared between the metal cluster and the carbene carbon (DI([M], Ccarbene) = –0.2319 e–) as a 

result of reduced contributions from MOs with - and NL characters. Considerably smaller 

changes seen in the interactions of the metal cluster with X- or R-groups (DI([M], [X] = +0.0426 

e– and DI([M],[R]) = –0.0055 e–). Interestingly, the change in DI([M], [X]) was not consistent 

with X=NMe2 compared to X=OEt, and we observed significant variance with respect to the choice 

of R-group. When the carbene ligand is planar (R= -H or -CCH), DI([M], [X]) increased relative 

to X=OEt. This increase was noted to be predominantly as a result of increased contributions of 

MOs with - and NL characters, and suggests that X=NMe2 imposes a stronger -donation effect 

on the metal–ligand bond. On the other hand, when the carbene ligand is non-planar (R= -CHCH2 

or -CHCHPh), DI([M], [X]) decreased relative to X=OEt. This decrease was a result of decreased 

contributions of MOs with -character. In general chemical terms, these observations result in an 

interesting hypothesis: NMe2 as an X-group generally reduces the -character of the metal–

carbene bond; however, it can either increase or decrease the total -bonding character of the 

metal–carbene carbon bond depending on the nature and geometry of the R-group. 

 

Conclusions 

Changing the X- and R-groups on a molecule is a common practice in tuning the physical and 

chemical properties of Fischer carbene complexes. At a conceptual level, a number of assumptions 

and simplifications lead to a few highly generalized predictions regarding the electronic structure 

of the complex. We have shown, however, that the electronic structures of Fischer carbene 

complexes is a result of a highly correlated interplay between the interactions of various fragments. 

That said, the recently developed FALDI density decomposition scheme coupled with the novel 

FALDI-MO approach can reliably provide accurate and quantified (albeit complex) insights into 

the electronic mechanisms at play. 
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 The tool most preferred by experimental and theoretical chemists to evaluate electronic 

structures remains molecular orbitals. However, the lack of symmetry in Fischer carbene 

complexes means that MOs cannot be interpreted or quantified to the same level as for symmetrical 

coordination structures. We have developed and expanded the FALDI-MO scheme to allow for 

symmetry classification of MOs even in asymmetrical metal complexes. In addition, we illustrated 

that the FALDI-MO method can fully decompose interfragment electron delocalization in terms 

of chemically-interpretable classified MOs. This approach was then used to interpret the electronic 

structures of a series of Fischer carbene complexes, and, for the first time, bonding between the 

metal cluster and carbene fragments were fully elucidated in terms of MOs. We showed that the 

metal–ligand bond is primarily constructed from a metal–carbon bond with equal contributions of 

MOs with both - (a1g, eg and t1u) and -characters (t2g). In addition, the metal–ligand bond is 

further stabilized by a long-range interaction between the metal cluster and the X-group composed 

of MOs with primarily -character.  

We further considered the modification of Fischer carbenes through two different 

variables: i) the choice of electron-donating X-group, and ii) the choice of a conjugated R-group. 

We have shown that a stronger X-group electron donor (i.e. X=NMe2 as opposed to X=OEt) results 

in a stronger bond between the carbene carbon and the X-group, and consequently, a weaker bond 

between the metal and the carbene ligand. However, the degree to which the metal–ligand bond 

weakened was noted to be highly correlated with the choice of R-group. The exact electronic 

mechanism through which these changes occurred was elucidated, and involves the interplay 

between delocalized electron density amongst [M]⋯Ccarbene, [M]⋯[X], Ccarbene⋯[X] and [X]⋯[R] 

interactions. Furthermore, increasing the conjugation of the R-group was shown to have a 

surprisingly small increase on the strength of the metal–ligand bond. However, we found that that 

this observation was the result of the cancellation of shared electron increases in long-range 

[M]⋯[R] interactions by decreases in the [M]⋯Ccarbene interaction. Again, however, we note that 

the extent of the effect imposed by choice of R-group was highly dependent on the choice of X-

group. We have also shown how the MO-characters change when either the X- or R-groups are 

modified. For instance, X=NMe2 provides considerably more -character to the metal–ligand bond 

(relative to X=OEt) when the ligand is fully planar, yet provides less -character when the ligand 

is non-planar.  
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We have shown that the FALDI-MO approach can provide immense and quantifiable 

insights to the interpretation of electronic structures in Fischer carbene complexes. Our approach 

provides a holistic representation of the electronic structure (involving all atoms and the full 

electron density distribution) yet does so in a chemically intuitive and atomistic manner. In 

addition, the FALDI-MO approach not only provides insights with regards to the inter-fragment 

electron delocalization patterns, but does so in a manner that is fully recoverable in terms of 

molecular orbital theory. This study shows how decomposing the Fischer carbene with the FALDI 

MO analysis recovers symmetry labels and in particular - and -character which is extremely 

useful in classical chemistry and fundamental for fully describing a complex. We expect the 

FALDI-MO approach to find a valuable spot in the computational chemists’ toolbox, whether to 

provide information on a case-by-case basis or for use in expanding general conceptual chemistry. 
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Carbenes with X=OEt, NH2 and NMe2 and 

R= 2-(N-Methyl)pyrrolyl 
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Abstract 

 

The choice of substituents in Fischer carbene complexes provides a large range of chemical 

functionality through electronic and geometrical effects. In particular, amino X-groups are thought 

to stabilize Fischer carbene complexes relative to ethoxy X-groups. The origin of amino groups’ 

stabilizing effect is intuitively ascribed to their strong -donating characters. However, the 

electronic structures of Fischer carbene complexes are notoriously difficult to elucidate, due to 

asymmetric molecular orbitals (MOs), correlated geometrical features and multi-centre bonding. 

The recently-developed Fragment, Atomic, Localized, Delocalized, Interatomic (FALDI) MO 

analysis allows for a classification of MOs based on a central metal’s localized electron population. 

Such a classification can then be further used for decomposition of delocalized electrons for the 

quantification of MO contributions and recovery of - and -characters. This work shows a case-

study of the FALDI-MO approach on a small subset of Fischer carbene complexes commonly 

encountered in research laboratories. Our approach provides an in-depth interpretation of the 

electronic structure, as well as decouples electronic and geometric effects of various substituents.  

 

Introduction  

The preceding chapters 3 and 4 have revolved around obtaining molecular orbital (MO) symmetry 

terms from asymmetric systems such as Fischer-type carbenes and then quantifying and recovering 

useful parameters such as - and -character. The structures investigated, however, were 

predominantly chosen for their simplicity, rather than chemical applicability in an experimental 

laboratory. The current chapter aims to investigate the electronic structure, through the FALDI-

MO approach of real, synthesized Fischer carbene complexes and compare with existing 

experimental results.1  

Although many experimental and theoretical studies1-5 of Fisher-type monocarbenes, 

bimetallic and even multi-metal carbenes complexes have been performed, in-depth theoretical 

investigations of their electronic structures are scarce. The dominant conceptual theory describing 

bonding in Fischer carbene complexes is the Dewar-Chatt-Duncanson (DCD) donor-acceptor 

model.6 Unfortunately, DCD depends on atomic orbital (AO) and MO symmetries for exact 
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interpretation and quantification7 – which, in turn, is only well-defined in a molecule with a high 

degree of symmetry. For the precise, rational design of novel materials, exact and quantifiable 

metrics are required, which necessitates a very comprehensive and ab initio understanding of 

electronic structures. This is particularly true if specific molecular properties – such as catalytic 

activity – are to be tuned through step-wise modification of molecular moieties – such as the choice 

of R- or X-groups in a Fischer carbene complex. 

Computational studies on Fischer carbene complexes have mainly focussed on the steric 

and electronic effects within the framework of DCD – such as the degree to which the 

donor/acceptor atoms are affected.8  A significant amount of experimental and computational 

work has been done on these heteroatom-stabilized Fischer carbene complexes.1, 9, 10 11 The 

majority of these works focus on alkoxy and amino substituents paired with group (VI) metals.12 

The alkoxy and amino groups (OR and NR2) substituents are found in most Fischer carbenes 

because of their stabilizing -donor ability when paired with a low oxidation state metal like 

chromium.13 While synthetic studies12 and characterization methods14 have taken forefront, little 

has been published regarding the 3D conformations1 or their fundamental electronic structures.15  

Since the 1970s heteroaromatic substituents have been studied in mononuclear Fischer 

carbenes of the form Cr(CO)5{C(X)(R)} where the heteroatomic substituents form the X-group 

(ethoxy, amino) and the heteroaromatic (R-group) substituent are 2-(N-methyl)pyrrolyl) and (2-

furyl,2-thienyl). Fischer carbene complex studies typically focus on the synthesis, spectroscopic 

and electronic properties of the complex, with the focus being the diatomic M–Ccarbene bond.16-18 

The M–Ccarbene  interaction shows large variances in bond-length and ascribed - and -bonding 

characters. Results that have stemmed from these studies have led to conclusions that if the R-

group stays the same in the system Cr(CO)5{C(X)(R)} then typically the Cr⋯Ccarbene bond length 

is longer when the X-group is a stronger -electron donor substituents.9 As such, amino 

substituents are often better at stabilizing the carbene bond than ethoxy substituents.5 Considering 

the X-group and the -donor strength, it has been found that the alkoxy groups are softer donor 

groups than the amino groups.15 This result is often reflected in the bond lengths, where alkoxy 

carbene complexes display larger bond lengths between the X-group and the carbene carbon than 

amino counterparts.1, 19-22 Conversely, an amino group as X-substituent causes the Cr–Ccarbene bond 

to lengthen and the Ccarbene–X bond to shorten. This is because the X-group is a strong electron 
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donor which, supposedly, causes the metal to donate less electron density back to the carbene 

carbon through -backbonding. In turn, the metal’s back donation to the CO groups increases so 

the Cr–COtrans bond is expected to shorten – as observed in crystal structures.19, 20, 23 The electronic 

effects of the X-group therefore clearly affect bond length which relates to -, -character making 

the electronic structure crucial to understand. The X-group may also change the molecular 

geometry because of hybridization of the heteroatom, which has 3D implications on the system 

because of steric effects even though the electronic structure may be the same.  

Spectroscopic studies16, 17 are typically used to investigate the electronic properties of the 

various substituents and their effects by using techniques such as NMR, UV-visible and IR spectral 

studies to observe effects of electron density delocalized from the X- and R-group into the carbene 

carbon’s empty p orbital. The work of Connor16 concluded that the heteroaromatic substituent 

causes stabilization by releasing conjugated electrons. The carbene carbon’s electronic character 

was found, by NMR studies,17 to be the most influenced by the X-group over either the R-group 

or the metal. The same conclusion was obtained by Montserrat and co-workers9 – that the Cr–

Ccarbene bond is more affected by the X-group than the R-group. While it was orginally expected 

that there would be specific   p donation (i.e. from the X-group to Ccarbene), evidence pointed 

instead towards the R-group delocalizing electrons through conjugation.1 This is an interesting 

result with electrons being shared throughout the system in a multi-centric fashion, rather than 

through specific electron delocalization. However, electron (de)localization is a notoriously 

difficult concept to study due to the correlated nature of electrons, and further proof for these 

conjectures have not been found yet. 

The chemical reactivity of Fischer carbene complexes is also mostly influenced by 

electrophilicity of the ligands, which is determined and controlled by the X- and R-substituents on 

the carbene.9 As a result, many coordination chemists look at tuning and controlling the specific 

reactivity of a system through careful modification. For instance, there are Fischer carbenes with 

2-thienyl groups which show potential in organic synthesis reactions24-26 while other R-groups still 

need investigation.1 A plethora of photochemical and thermal reactions are typically also 

associated with chromium carbene complexes and they have proven to be useful in organic 

chemistry as synthons27, 28 but their overall uses in material chemistry are rather limited. 

Systematically testing each chemical modification is a time-consuming process and such ‘bulk 
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screening’ approaches to material design are highly inefficient – unless accelerated by predictive 

computational models. Unfortunately, such models do not exist yet, and requires more 

fundamental understanding of the electronic structure to be effective. 

A potential avenue of relating the computational results and the experimental systems is to 

look at the electrochemistry. Many Fischer carbene complexes have been electrochemically 

studied in order to investigate the electronic effects caused by various ligands. 1, 29 It was observed 

that the -acceptor/-donor ratio of ligands reflected trends for the half-wave potential (E1/2) of 

oxidation. Much older work, however, showed that although the -acceptor/-donor ratio closely 

followed the molecular orbital calculations, the carbene substituents’ (X- and R-groups) influence 

on the redox orbitals are indirect.29 Regardless, other studies have revealed that the electrochemical 

properties of N-methylpyrrol derivatives differ slightly from other heterocycles in Fischer systems 

because of the methyl substituents’ steric influence which can affect orbital overlap.30 

Clearly, the bridging of experimental results and fundamental electronic structure theories 

is a challenging yet very important task. In this work we provide novel insights into this task, using 

the recently-developed Fragment, Atomic, Localized, Delocalized and Interatomic (FALDI) 

density decomposition scheme. In particular, we utilize the FALDI-MO scheme, which allows for 

an in-depth and symmetry-based interpretation of MOs with respect to interacting fragments of a 

molecule. The conceptual component of this chapter is an excellent example of how FALDI 

simplifies the bonding into visual components. Specifically, we will analyze experimental trends 

of the selected Fischer carbene complexes and attempt to correlate these patterns with FALDI-

based insights of the electronic structure. 

Theoretical Background and Development  

The FALDI density decomposition scheme31, 32 provides an exhaustive electron density 

(ED) decomposition for atomic and diatomic interactions for any coordinate r. The postulate of 

FALDI is defined by the atomic basin from QTAIM. This is the orthodox definition of FALDI. 

We have further expanded FALDI through the FALDI-MO method (Chapters 3 and 4), which 

recovers classical symmetry terms from octahedral asymmetric metal centred systems. MOs are 

decomposed into their distributions in terms of localized electron density (loc-ED): 
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 ℒ஺ሺ𝒓ሻ ൌ෍𝜒௜ሺ𝒓ሻ𝜒௝ሺ𝒓ሻሺ𝑮஺𝑺஺ሻ௝௜
௜௝

 (1) 

The loc-ED is specifically focused on the metal centre and localized indices (LIs) can be recovered 

after integrating Eq. 1 over all molecular space. The LI is used to obtain the metal centres Natural 

Density Functions (NDFs) which when visualized as 3D-isosurfaces represents the classical 

symmetry terms such as a1g, t1u, t2g and eg. Mathematically the NDFs are known as  ௜
஺஺ሺ𝐫ሻ: 

 
௜
஺஺ሺ𝒓ሻ ൌ ෍ ௝ሺ𝒓ሻ𝑈௝௜

஺஺

ேಾೀ

௝

 
(2) 

the classical symmetry terms described by the loc-NDFs of the metal are mostly recovered except 

for the non-localized (NL) term which is used to label symmetries that are not defined by the metal.

           

 Similarly, the delocalized indices (DI) can be described by deloc-ED distribution: 

 D஺,஻ሺ𝒓ሻ ൌ෍𝝌𝒊ሺ𝒓ሻ𝝌𝒋ሺ𝒓ሻሺ𝑮𝑨𝑺𝑩 ൅ 𝑺𝑩𝑮𝑨ሻ𝒋𝒊
𝒊𝒋

 (3) 

with D୅,୆ሺ𝐫ሻ providing the contribution at r and describing the total ED between atomic basin A 

and B. Integrating the deloc-ED then yields the DI, which describes electrons delocalized 

diatomically between atoms.          

 Atomic and diatomic interactions however do not describe the entire molecule. This work 

focuses on MOs, which are molecular wide and therefore multiple diatomic interactions occurring 

molecular wide need to be considered. For this reason, FALDI fragments are introduced which is 

essentially a summation of diatomic interactions, these fragments are labelled (F).  

 To accommodate the fragments (multiple diatomic interactions) the deloc-ED distribution 

can be adapted. If two fragments are considered, F1 and F2, with the sum of the FALDI atom-ED 

distributions, then the total density contribution of a fragment contributing at any coordinate r can 

be found: 

 

𝑔F1
௧௢௧௔௟ሺ𝒓ሻ ൌ ෍𝑔஺ሺ𝒓ሻ

ெF1

஺

 

(4) 
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where 𝑀F1 represents the number of atoms within the fragment F1. The total electronic 

population, Ntotal(F1), of the fragment can then be obtained by integrating 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ over all 

molecular space. 

The electrons localized for each fragment and the delocalized electrons between fragments are 

found in the 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ term.          

 The contribution of the localized electrons to each fragment at r is described by: 

 

LF1ሺ𝒓ሻ ൌ ෍L஺ሺ𝒓ሻ

ெF1

஺

 

(5) 

and each atom in the fragment contains core and non-bonded electrons which are described by this 

term. Similarly, the electrons which are delocalized between fragments (intra-delocalization) can 

be determined at the coordinate r,  

 

DF1
௜௡௧௥௔ሺ𝒓ሻ ൌ ෍ ෍ DA, Bሺ𝒓ሻ

ெF1

஻ୀ஺ାଵ

ெF1ିଵ

஺

 

(6) 

The localized and delocalized electrons in Eq. 5 and 6 can then be combined to produce the total 

intra-fragment electron distribution:  

 𝑔F1
௜௡௧௥௔ሺ𝒓ሻ ൌ LF1ሺ𝒓ሻ ൅DF1

௜௡௧௥௔ሺ𝒓ሻ (7) 

The 𝑔F1
௜௡௧௥௔ሺ𝐫ሻ term includes both atom-localized and intra-atomic delocalized electrons localized 

to F1 at coordinate r. Integrating 𝑔F1
௜௡௧௥௔ሺ𝐫ሻ over all molecular space produces the total intra-

fragment electron population, which is equivalent to the sum of the LIs and DIs for the fragments, 

 𝑁௜௡௧௥௔ሺF1ሻ ൌ න𝑔F1
௜௡௧௥௔ሺ𝒓ሻ𝑑𝒓 ൌ෍ 𝐿𝐼ሺ𝐴ሻ ൅෍ 𝐷𝐼ሺ𝐴,𝐵ሻ

஺,஻஺
 

(8) 

 

for which A, B  F1. The inter-fragment delocalization can be obtained by considering the deloc-

ED distribution between fragments F1 and F2, 

 

DF1,F2
௜௡௧௘௥ ሺ𝒓ሻ ൌ ෍෍DA, Bሺ𝒓ሻ

ெF2

஻

ெF1

஺

 

(9) 
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describing the delocalized electron distribution for the two fragments. Integrating the inter-

fragment delocalization over all molecular space yields the inter-fragment DI,  

 
DIሺF1, F2ሻ ൌ නDF1,F2

୧୬୲ୣ୰ ሺ𝐫ሻd𝐫 
(10) 

where AF1 and BF2. Coming back to Eq. 4 the total of 𝑔F1
௧௢௧௔௟ሺ𝐫ሻ can be obtained by the 

summation of Eq. 7 and 9. 

 
𝑔F1
௧௢௧௔௟ሺ𝒓ሻ ൌ 𝑔F1

௜௡௧௥௔ሺ𝒓ሻ ൅෍
1
2

DF1,F௑
௜௡௧௘௥ ሺ𝒓ሻ

M

௑

 
(11) 

Finally, linking the FALDI MO analysis to the fragments for quantification is rather 

straightforward. Just as the FALDI MO analysis would be linked to the atomic or diatomic DI the 

same can be done with the inter-atomic DI. The metal-based classification scheme depends on the 

loc-NDFs of the metal for the symmetry term, which is then weighted by the inter-fragment 

delocalized electrons: 

 
𝐷𝐼ሺF1, F2ሻ ൌ ෍ 𝑑௜

F1, F2 ቂ 𝑛௜
ெ ൅

௔భ೒ 𝑛௜
ெ ൅ 𝑛௜

ெ ൅ 𝑛௜
ெ௘೒௧మ೒௧భೠ ൅ 𝑛௜

ெே௅ ቃ

ேಾೀ

௜

 
(12) 

The result is quantified MO contributions of the defined fragment with symmetry classifications 

determined by the loc-NDFs of the metal. These symmetry classifications allow the recovery of 

bonding modes such as  (a1g, t1u and eg) and  (t2g) which can be quantified allowing for more 

holistic interpretations of the electronic structure. 

 

Computational Details  

 

Crystal structures of the three Fischer carbenes 5a-c (Figure 5. 1.) were obtained from a colleague, 

and single complexes were isolated as input structures. A series of structures were generated for 

each of 5a-c by varying the Cr-Ccarbene-Cpyrrole-Npyrrole dihedral angle of the R-group in ten-degrees 

increments between 90° and 180° whilst keeping the remainder of the molecule frozen. All the 

structures were then optimized (subject to the above-mentioned constraint) using DFT in Gaussian 

0933 with B3LYP7 and a basis set of def2-SV(P) in an implicit solvent model of n-hexane. The 

spin state was kept as a singlet, as is expected of Fischer Carbenes. The optimized structures were 
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used, and ground state single-point calculations were performed using these structures and the 

perpendicular and planar frozen dihedrals (90° and 180°) optimized structure with CAM-B3LYP, 

nosymm (no symmetry) in a solvent of n-hexane. The wavefunctions used in AIMAll v. 17.01.25.34 

were generated from the single point calculations using Gaussian 09. FALDI were performed using 

the QTAIM data calculated with orthodox overlap matrices. The NDFs generated in FALDI was 

visualized in VMD 1.9.335 in order to confirm symmetry assignments. In-house software was used 

to calculate the LMAT, label symmetries and the FALDI fragments which were used for the 

quantification cross-linked to the symmetries and shared electrons analysis. 

Structures  

 

The following structures were used in the FALDI MO decomposition and fragment 

analysis: 

 

Figure 5. 1. The Fischer Carbene labelling, with the X-group representing the electron-donating 

group. Where M=Cr, 5a  is X=OEt and R= 2-(N-Methyl)pyrrolyl, 5b is X=NH2 and R= 2-(N-

Methyl)pyrrolyl and 5c is X=NMe2 and R= 2-(N-Methyl)pyrrolyl 

 We supply the Cartesian coordinates of the crystal input structures in Table C 1. 1. to C 1. 

12. of Appendix C, accompanied by the molecules’ molecular energies. 

 

(i) (ii) (iii) 
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Figure 5. 2. The dihedral angles of the three Fischer carbenes selected for constrained 

optimizations. The red lines show the dihedral angle (Cr-Ccarbene-Cpyrrole-Npyrrole) that were frozen 

for the R-group in (i) while the blue lines represent the X-groups dihedral angle (Cr-Ccarbene-O/N-

H/C) that were set to zero at the start of each optimization calculation for the three different X-

groups (ii) and (iii).  

We optimized each of the three structures nine times, changing the Cr-Ccarbene-Cpyrrole-

Npyrrole dihedral from 180° to 90° (in ten-degree increments). The X-group Cr-Ccarbene-X-C/H 

dihedral (in blue for Figure 5. 2. (ii) and (iii)) were set to 0 degrees at the start of each optimization 

and left unfrozen.  

 

Fragmentations 

 

For the purposes of fragment-based FALDI-MO analyses, chemical fragments need to be defined. 

The fragmentation scheme used is displayed in Figure 5.3, and contains the metal and 

pentacarbonyl ligands, [M], carbene carbon atom, Ccarbene, and R- and X-groups, [R] and [X], 

respectively. The carbene ligand as a whole was also considered, with [L] = Ccarbene + [R] + [X]. 

Various interfragment interactions will be considered and discussed throughout this manuscript, 

i.e. the notation [M][R] implies the long-range interaction between the metal fragment and the 

R-group. 
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Figure 5. 3. Generalized fragments used for FALDI Fragments Molecular Orbital Analysis. 

Blue: Metal and pentacarbonyl ligands, [M]. Yellow: Ccarbene; Orange: R-group, [R]; and Green: 

X-group, [X]. The carbene ligand as a whole, [L] = Ccarbene + [R] + [X]. 

Figure 5. 3. illustrates the general fragmentation of the molecule in a pictorial format, the 

X-group was the only parameter changed. The metal cluster, [M], is defined as the metal and the 

five carbonyls, indicated in blue, the carbene carbon as yellow, the R-group as orange and the X-

group as green. These are the fragments used in the comparisons and classifications for the specific 

bonds or interactions investigated. Through FALDI, any fragment can be assigned and analysed.   

 

Results and Discussion 

Investigation of structural parameters 

All structures were optimized by constraining the dihedral angle of Cr, Ccarbene, Cpyrrole, and Npyrrole, 

henceforth referred to as DA(Cr,C,C,N). The dihedral angles were scanned in steps of 10, and the 

lowest energy structures for 5a, 5b and 5c corresponded to DA(Cr,C,C,N) of 170, 150 and 110, 

respectively.  

Selected computational structural parameters are compared to those from crystallographic 

data in Table 5. 1. Absolute comparisons of bond lengths and dihedral angles is irrelevant in this 

study due to very different environmental factors (i.e. crystal-packing and solvation factors). 

Important, however, is that our computational modelling predicts the same trends with respect to 

5a, 5b and 5c as is observed in the crystal structures. Indeed, lowest-energy structures predict the 

same trends in dihedral and torsional angles, as well as MX1 and MR1 distances (X1 and R1 

being the first atom of the fragment). The M⋯Ccarbene bond length trend, however, is not 

reproduced by B3LYP, nor by B3LYP with Grimme’s empirical dispersion or even MP2 

optimization (Table 5. 2.) with a def2-SV(P) basis set. However, the variation of the experimental 

M⋯Ccarbene bond length is extremely small (2.108 and 2.103 in 5a and 5b, respectively) and is 

possibly due to crystal packing and/or solvation factors. 

Table 5. 1. Comparison of the crystal structures to lowest energy-optimized structures, where the 

dihedral (Npyrrole-Cpyrrole-Ccarbene-X) and torsion angle (R-Ccarbene-X) represent the angle between 

the X- and R-groups. 



114 
 

  

Frozen 

Dihedral 

Angle (°) 

Structure 
Dihedral 

Angle (°) 

Torsion 

Angle (°) 

Bond Length (Å) 

M⋯Ccarbene M⋯X M⋯R 

Experimental 

none 5a 0.000 107.657 2.108 3.104 3.152 

none 5b 29.307 114.458 2.103 2.990 3.164 

none 5c 80.252 112.004 2.104 3.127 3.086 

B3LYP 

170 5a -7.465 108.244 2.137 3.119 3.192 

150 5b -27.093 114.697 2.131 3.021 3.203 

110 5c -68.176 113.156 2.139 3.165 3.104 

 

The X-group can drastically affect the character of the Fischer carbene complex, and 

specifically so the Cr⋯Ccarbene, Ccarbene⋯X and Cr⋯COtrans bondlengths.19, 20, 23 Based on the π-

donating ability of the X-group, these bond lengths are predicted to change. The expected -

donating ability36 for the X-groups in this study is OEt<NH2<NMe2 or 5a<5b<5c. Conceptually 

weaker donors should cause longer Ccarbene⋯X bonds but this, in turn, should cause the Cr⋯Ccarbene 

bond to shorten due to increased -back-bonding from the metal. Consequentially, the Cr⋯COtrans 

bond should then lengthen because of the trans-effect.19, 20 The trans effect is however difficult to 

see in carbonyl complexes, as the minor changes in bond length are often lost in their standard 

deviation.19  
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Table 5. 2. The crystal structures bond lengths when the X-group changesa 

 
 

Bond lengths (Å) 

  Structure Cr⋯Ccarbene Ccarbene⋯X Ccarbene⋯R Cr⋯COtrans 

Experimental 

5a 2.108 1.330 1.433 1.874 

5b 2.103 1.313 1.448 1.871 

5c 2.104 1.314 1.496 1.865 

B3LYP 

5a 2.137 1.328 1.447 1.881 

5b 2.131 1.334 1.452 1.880 

5c 2.139 1.330 1.487 1.881 

B3LYP with 

D3 

Grimme’s 

5a 2.137 1.328 1.447 1.881 

5b 2.131 1.334 1.452 1.880 

5c 2.139 1.330 1.487 1.881 

MP2 

5a 2.029 1.323 1.444 1.828 

5b 2.026 1.329 1.449 1.824 

5c 2.032 1.323 1.477 1.825 

aThe computational structures are the lowest energy structures 

 

The conceptual model described above seems to predict experimental and computational 

bond lengths fairly well: the Ccarbene⋯X bond is shortest in the amines (stronger -donating ability). 

These effects are however of an electronic origin. In addition, we also expect several geometric or 

steric effects, such as Coulombic attraction or steric repulsion between various functional groups 

within the complex. For instance, when X=NH2 (5b) is replaced by X=NMe2 (5c), we expect the 

bulkier methyl groups to influence the position and orientation of the pyrrole R-group. 

Of particular importance is then the DA(Cr,C,C,N), Figure 5.2(i). When X=OEt, 

DA(Cr,C,C,N) = 170 (computational) and 0 (experimental), and the entire carbene ligand is 

therefore expected to be close to planar. On the other hand, when X=NMe2, DA(Cr,C,C,N) = 110 

(computational) and 99.748 (experimental), and the pyrrole ligand is therefore expected to be 

almost perpendicular with respect to the carbene ligand. While it is tempting to ascribe the 
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observed DA(Cr,C,C,N) values to steric effects, it is unclear how much of an effect the electronic 

influence of the X-group has on DA(Cr,C,C,N).  

It is clear from the above discussion that the choice of X-group imposes both a steric 

(geometric) and an electronic effect. The structure that is observed (whether experimentally or 

computationally) is the net result of both geometric and electronic effects. In order to gauge the 

extent to which both these effects influence the final structure, we will now conduct further 

analysis using two different approaches: (i) the geometric effect will be investigated by keeping 

the X-group constant and systematically changing the DA(Cr,C,C,N), and (ii) the electronic effect 

will be investigated by changing the X-group for a constant (Cr,Ccarbene,Cpyrrole,Npyrrole) dihedral 

angle. We will analyze these effects using both the FALDI-MO analysis (as discussed in Chapters 

3 and 4) approach and a full FALDI fragment population analysis. For FALDI-MO analyses, we 

will primarily focus on the MO classification and decomposition of the electrons shared across the 

entirety of the metal cluster’s interaction with the ligand, [M][L] and its associated delocalization 

index, DI([M],[L]). This index measures the total number of electrons delocalized (shared) 

between all atoms, including the electrons shared by Cr and Ccarbene as well as between COtrans and 

the R- and X-groups. 

 

The geometric effect imposed by choice of X-group 
 
We investigated all structures 5a–5c at three different dihedral angles: DA(Cr,C,C,N) equal to 

180, 90 and the DA corresponding to the optimized geometry (170, 150 and 110 for 5a, 5b 

and 5c, respectively). To ease discussion, we will primarily focus on the changes occurring within 

5a, and will only discuss the changes occurring within 5b and 5c in a comparative fashion. 

MOs are often used to interpret and understand electronic and steric effects within a metal 

complex. The MOs in 5a remain qualitatively similar when the DA(Cr,C,C,N) is changed, 

however. Given the large number of occupied MOs present in the structure, correlating near 

imperceptible MO changes with a change in DA(Cr,C,C,N) is therefore impossible when visually 

inspecting MO isosurfaces. In addition, the lack of symmetry in the molecule excludes exact 

quantification and interpretation using group theory. The FALDI-MO method, however, provides 

concise answers regarding specific metal–ligand interactions while taking into account the full list 
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of occupied MOs. MOs describing the entire metal–ligand interaction 5a in (X=OEt) were first 

classified in terms of symmetry labels (i.e. t2g and eg) and then grouped accordingly as - and -

contributions. This procedure was discussed briefly in the Theoretical Background, as well as 

extensively in previous chapters.  

Table 5. 3. shows the FALDI-MO results for the [M][L] interaction – the interaction 

between the full metal–carbonyl cluster and the entire carbene ligand – in 5a. At DA(Cr,C,C,N) = 

180, the total number of electrons shared between [M] and [L] fragments is DI([M], [L]) = 1.5733 

e–. Of these electrons, -MOs contribute 0.4810 e- (30.57%) whereas -MOs contribute 0.3720 e– 

(23.64%). The remaining 45.78% arises from non-localized (NL) MOs that do not involve metal-

centered atomic orbitals (AOs) directly, but contribute to shared density through polarization, 

inductive or multicentric effects. As the DA(Cr,C,C,N) is changed to 90, the total number of 

shared electrons increases to 1.7953 e–. Of these electrons, the -MOs’ contributions decrease (to 

24.46%) whereas the -MOs’ contributions increase (to 30.80%). We observe similar trends in 5b 

and 5c (Tables C 3. 2. and C 3. 3. in Appendix C).  

Table 5. 3. The FALDI MO analysis of X=OEt (5a) for various dihedrals DA(Cr,C,C,N) 

considering the [M]⋯[L] interaction. 

Frozen 

Dihedral 

Angle (°) 

180  170  90  

 
Contribution % Contribution % Contribution % 

 0.4810 30.57 0.4788 30.41 0.4032 22.46 

π 0.3720 23.64 0.3798 24.12 0.5530 30.80 

NL 0.7203 45.78 0.7162 45.48 0.8391 46.74 

       
 & π 0.8530 54.22 0.8586 54.52 0.9562 53.26 

 Total 1.5733  1.5748  1.7953   

 

These trends are quite surprising and unintuitive – a decrease in both total number of 

electrons shared as well as -MOs’ contributions might have been expected because of the break 
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in planarity when DA(Cr,C,C,N) = 90 relative to 180, yet an increase is observed. Furthermore, 

minor change would be expected for the -MOs’ contributions because of the symmetry of the -

MOs, yet a large change was observed. From a synthetic design perspective, these trends illustrate 

that a geometrical change alone has a significant impact on the distribution of both - and -

delocalized electrons.  

Table 5. 4. The FALDI fragment population for X=OEt, 5a. 

  Total Electron Population, N([A])  
Total intra-fragment population 

Nintra([A]) 

Structure 

Frozen 

Dihedral 

Angle (°) 

[M] Ccarbene [X] [R]  Metal Ccarbene [X] [R] 

5a 90 94.03 5.52 25.50 42.95  92.27 3.79 24.66 42.14 

5a 170 94.14 5.53 25.53 42.81  92.43 3.81 24.65 41.80 

5a 180 94.14 5.53 25.53 42.81  92.43 3.81 24.64 41.80 

  

To provide some additional insight to these trends, a FALDI fragment-based population 

analysis was performed using the fragmentation scheme shown in Figure 5. 3. Table 5. 4. contains 

the fragment electronic populations for 5a for the three selected values of DA(Cr,C,C,N) whereas 

Table 5. 5. shows the changes in inter-fragment electron delocalization counts. Most notably, the 

total number of electrons found, on average, in the metal cluster is given by N([M]) in Table 5. 4. 

and is referred to as the total electron population. N([M]) decreases significantly (by ~0.11 e–) 

when DA(Cr,C,C,N) = 90 relative to 180, whereas the electron population of the pyrrole group, 

N([R]), increases significantly (by ~0.14 e–). While N([M]) includes all electrons within the metal 

cluster (including electrons delocalized between fragments), the total intra-fragment population 

(Nintra([M]), Table 5. 4.) counts electrons that are only localized to the metal cluster itself. 

Nintra([M]) also decreases whereas Nintra([R]) also increases as the DA(Cr,C,C,N) changes from 

180 to 90. The observed changes in N and Nintra therefore indicate a transfer of charge from the 

metal cluster to the pyrrole group in the perpendicular relative to planar structure. Comparatively 

minor changes are observed for the carbene carbon and X-group electron populations. 
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Table 5. 5. The FALDI inter-fragment electron delocalization for X=OEt, 5a. 

  Electrons shared DI([A], [B]) 

Structure 
Frozen 

Dihedral 
Angle (°) 

[M]Ccarbene [M][X] [M][R] Ccarbene[X] Ccarbene[R] [R][X] 

5a 90 1.1855 0.3280 0.2818 1.1390 1.1312 0.2209 
5a 170 0.9927 0.3062 0.2758 1.0785 1.3685 0.3720 
5a 180 0.9874 0.3068 0.2791 1.0785 1.3711 0.3760 
 

Charge-transfer, however, does not explain the trends observed for - and -MOs’ 

contributions to shared density (Table 5. 3.). The inter-fragment delocalization index {DI([M], 

[Ccarbene])}, Table 5. 5., counts the number of electrons shared between the metal cluster and the 

carbene carbon. When DA(Cr,C,C,N) = 180, 0.9874 electrons are shared between the [M] and 

Ccarbene fragments. As DA(Cr,C,C,N) changes to 90, DI([M], Ccarbene) increases to 1.1855 e– 

(+0.1981 e–), indicating that the metal–carbene bond (and carbonyl⋯carbene interactions) 

strengthened significantly in the perpendicular structure. The other notable trends as 

DA(Cr,C,C,N) changes from 180 to 90 are: i) a significant decrease of the electrons shared 

between Ccarbene and the pyrrole [R] fragment (–0.2399 e–), ii) a significant increase in the electrons 

shared between pyrrole [R] and ethoxy [X] fragments (+0.1551 e–) and, to a lesser extent, iii) an 

increase in the electrons shared between Ccarbene and the ethoxy [X] fragment (+0.0605 e–).  

Each of the terms in Table 5. 4. and Table 5. 5. can also be visualized. Selected FALDI 

isosurfaces, are shown in Figure 5. 4. The manner through which electrons are shared between 

Ccarbene and the [R] fragment, as well as between [X] and [R] fragments, is considerably different 

(and more) when DA(Cr,C,C,N) = 180 than 90. For instance, the [X]⋯[R] interaction involves 

the methyl group on the pyrrole at 180 but not at 90. While the [M]⋯Ccarbene and [M]⋯[X] 

interactions seem to involve more -character when DA(Cr,C,C,N) = 90 than 180. Interestingly, 

inspection of FALDI isosurfaces also revealed a different manner of electron sharing between the 

[R] fragment and the carbonyl groups in the metal cluster, with respect to the DA. This is just an 

observation and for this reason these results are shown, and discussed, in Section 4 and Section 5 

of Appendix C under Table C 4. 1. to Table C 4. 3. and Table C 5. 1. to Table C 5. 3. illustrating 

greater -character at 90 than at 180 for [M]⋯Ccarbene and [M]⋯[X] respectively. 
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Figure 5. 4. The interfragment interaction where the X=OEt (5a) is compared at dihedral angle, 

DA(Cr,C,C,N), of 180°(a) and 90° (a’). The electrons are shared between fragments (a) 

[M]⋯Ccarbene, (b) [M]⋯ሾX] (c) [X]⋯[R]. All the isovalues are shown at 0.001 a.u. 

In summary, regarding the geometric effect in 5a: changing DA(Cr,C,C,N) from 180 

(planar) to 90 (perpendicular) results in a considerable increase in contributions from -MOs and 

a decrease in contributions from -MOs. At DA(Cr,C,C,N) = 90, both the carbene carbon and 

ethoxy X-group shares considerably fewer electrons with the pyrrole R-group. Correspondingly, 

more electrons are localized on the R-group and an overall increase in electronic population is 

observed. On the other hand, the carbene carbon shares more electrons with both the ethoxy X-

group and the metal cluster as a whole at 90 than at 180. Correspondingly, fewer electrons are 

localized in the metal cluster and we observe an overall decrease in electronic population. Overall, 

as the DA(Cr,C,C,N) is changed from 180 to 90, the manner through which the [R] fragment 

shares electrons with the rest of the molecule becomes noticeably different and significantly less. 

Our results suggest that the weaker [R]⋯Ccarbene and [R]⋯[X] interactions lead to stronger 
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[M]⋯Ccarbene and [M]⋯[X] interactions with greater -characters, and an overall increase in the 

number of electrons shared between the metal cluster and the carbene ligand as a whole. 

Very similar trends are obtained when the DA(Cr,C,C,N) is varied for structures 5b and 

5c; FALDI-MO and FALDI population analyses are provided for these structures in Section 7 of 

Appendix C. We can therefore conclude that the geometric effect of changing the DA(Cr,C,C,N) 

is similar, regardless of the nature of the X-group. In all three structures, the largest number of 

electrons shared between [M] and the entire carbene ligand [L] was consistently noted when 

DA(Cr,C,C,N) = 90. Our model, however, only regards the (de)localization of electrons, and does 

not take Coulombic attraction or steric repulsion into account. The preferred DA(Cr,C,C,N) of 

each structure is therefore a balance between stabilizing electron (de)localization patterns and 

steric effects. It is important to note again that 5a, 5b and 5c display different values of 

DA(Cr,C,C,N) in their respective crystal structures or when optimized to their lowest energy 

conformers. When X=OEt (5a), the optimized optimal DA(Cr,C,C,N)  170 which indicates that 

the steric effects are more influential than the (de)localization patterns in controlling the optimized 

structure. On the other hand, when X=NMe2 (5c), the optimized DA(Cr,C,C,N) 110 and the 

opposite seems to be the case – a greater influence from the (de)localization patterns than steric 

effects.  

In the next section, the X-group will be varied whilst keeping DA(Cr,C,C,N) constant in 

order to investigate the electronic effect that the X-group exerts and provides additional insight on 

the structural trends of 5a, 5b and 5c observed above. 

The electronic effect imposed by varying the X-group  

In the preceding section, focus was placed on the rotation of the R-group for a given X-group. 

Here, we analyze the transpose effect – for a given constant geometry, how does the nature of the 

X-group affect the electronic structure of the molecule? Specifically, we focus on varying the X-

group between X=OEt, NH2 and NMe2 at a constant DA(Cr,C,C,N) to investigate the electronic 

effect. Comparing the different X-groups at fixed dihedral angles of the R-group minimizes the 

geometric effect so that mostly the electronic effects are highlighted. When we varied the 

DA(Cr,C,C,N) in the geometric analysis we considered the total population of the fragments, in 

this electronic analysis the total population is not as significant because of the different X-groups 

with different populations. The electron populations can therefore be found tabulated in the 
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Appendix C under Section 8 in Tables C 8. 1., C 8. 2. and C 8. 3. Instead, the electrons shared 

amongst the various fragments are much more significant and can be compared relative to each 

other in Table 5. 8. 

Table 5. 6. The electrons shared between fragments for the various dihedrals DA(Cr,C,C,N). 

 
Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] Ccarbene⋯ [X] Ccarbene⋯ [R] [X]⋯[R] 

5a 90 1.1855 0.3280 0.2818 1.1390 1.1312 0.2209 

5b 90 1.0647 0.2226 0.2305 1.3070 1.1426 0.2406 

5c 90 0.9518 0.3052 0.2804 1.4197 1.1466 0.3446 

        

 
Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] Ccarbene⋯ [X] Ccarbene⋯ [R] [X]⋯[R] 

5a 170 0.9927 0.3062 0.2758 1.0785 1.3685 0.3720 

5b 150 0.9675 0.2093 0.2247 1.2516 1.3057 0.3311 

5c 110 0.9662 0.3056 0.2594 1.3979 1.1660 0.3843 

        

 
Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] Ccarbene⋯ [X] Ccarbene⋯ [R] [X]⋯[R] 

5a 180 0.9874 0.3068 0.2791 1.0785 1.3711 0.3760 

5b 180 0.9029 0.2117 0.2452 1.2511 1.3498 0.3502 

5c 180 0.8472 0.3061 0.2722 1.3265 1.3374 0.4824 
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As in the preceding geometric effect analysis, the inter-fragment delocalization index 

{DI([M], [Ccarbene])}, Table 5. 8., counts the number of electrons shared between the metal cluster 

and the carbene carbon. When DA(Cr,C,C,N) = 90°, 1.1855 e– are shared between [M] and Ccarbene 

fragments for 5a followed by 1.0647 e– for 5b and 0.9518 e– for 5c. At the DA(Cr,C,C,N) = 180°, 

the DI([M],Ccarbene) follows the same trend where 5a shares 0.9874 e– with 5b and 5c sharing 

0.9029 e– and 0.8472 e– respectively. We also see this trend at the approximate lowest energy 

conformers. Clearly, the metal–carbene bond (and associated [CO]Ccarbene interactions) weakens 

considerably in the series X=OEt > NH2 > NMe2, regardless of the geometry of the R-group. 

Interestingly, the trend regarding electrons shared between Ccarbene and [X] is the inverse 

of the [M]Ccarbene interaction, at all dihedrals DA(Cr,C,C,N): DI(Ccarbene,[X]) increases in the 

order X=OEt < NH2 < NMe2. Since this trend is observed at all geometries investigated, it is clear 

that it is electronic rather than geometric in nature. Furthermore, this trend confirms the electronic 

role that the X-group plays in the stability of carbene complexes: As the carbene carbon’s bond 

with the X-group strengthens, its bond with the metal cluster weakens. 

We found that the [M]⋯ሾX] and [M]⋯[R] interactions also follow a constant trend 

throughout all the dihedral angles investigated. Consider the [M][X] interaction when 

DA(Cr,C,C,N) = 90°: we see that 5a shares the most electrons (0.3062 e–) which is followed by 

5c (0.3056 e–) and then 5b (0.2226 e–). The [M]⋯[X] interaction for ethoxy and dimethylamine X 

fragments are very similar (0.0228 e– maximum difference) while the dihydrogen amine differs by 

a magnitude of ~0.1 e– for all dihedrals. The difference between the ethoxy (5a) X fragment and 

dimethylamine (5c) is therefore minuscule compared to the dihydrogen amine (5b) and this trend 

with similar ratios are carried throughout all the dihedrals DA(Cr,C,C,N). More interestingly, 

perhaps, is how the [M][R] interaction is affected by choice of X-group. DI([M],[R]) follows the 

same general pattern as DI([M],[X]) – comparable values for X=OEt and X=NMe2, and 

considerably smaller for X=NH2 – for all dihedral angles. This is a remarkable result since the R-

group does not change, and indicates the remarkable electronic effect that choice of X-group has 

on the entire molecule. 

Considering the [X] and [R] group interaction, there is no visible trend across all the 

dihedrals DA(Cr,C,C,N). The number of electrons shared between the [X] and [R] fragments is 

also considerably different at the different dihedrals. For all X-groups, electrons shared between 
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[X] and [R] are greatest when DA(Cr,C,C,N) = 180° but least when DA(Cr,C,C,N) = 90°, which 

suggests conjugative interactions when the R-group is planar. It is therefore likely that the [X][R] 

interaction plays an electronically stabilizing role that favours the planar structure, but is balanced 

against steric factors. The FALDI isosurfaces for electrons shared in the [X]⋯[R] interaction at 

DA(Cr,C,C,N) = 180° to 90° visually describing the manner in which the electrons are shared can 

be found in Figure C 9. 2., Figure C 10. 1. and Figure C 10. 2. of Appendix C. 

The last parameter that we looked at was the - and -character from the FALDI-MO 

analysis. Table 5. 10. shows the FALDI-MO results for the [M][L] interaction – the interaction 

between the full metal carbonyl cluster and the entire carbene ligand – for each of the X-groups at 

the lowest energy DA(Cr,C,C,N).  

Table 5. 7. FALDI-MO analysis of the [M][L] interaction for various X-groups at the lowest 

energy DA(Cr,C,C,N). 

Structure 5a 5b 5c 

Frozen Dihedral 

Angle (°) 
170 150 110 

 
Contribution % Contribution % Contribution % 

DI([M], [L]) 1.5747  1.4015  1.5313  

 0.4788 30.41 0.4936 35.22 0.3755 24.52 

 0.3798 24.12 0.3420 24.41 0.4008 26.17 

NL 0.7162 45.48 0.5659 40.38 0.7550 49.31 

 
      

 &  0.8586 54.52 0.8356 59.62 0.7763 50.69 

 

At the beginning of this chapter, it was stated that we expect the dimethylamine (5c) to be 

the best electron donor followed by the dihydrogen amine (5b) and finally the ethoxy (5a) X-

group. At the lowest energy dihedrals (DA(Cr,C,C,N) = 170°, 150° and 110° for 5a, 5b, and 5c, 

respectively) we observe that the total number of electrons shared between the [M] and [L] 

fragments is DI([M], [L]) = 1.5747 e–, 1.4015 e– and 1.5313 e– for 5a, 5b, and 5c respectively. 

MOs with -symmetry contributes 30.41%, 35.22% and 24.52% of the total DI([M],[L]), whereas 
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MOs with -symmetry contributes 24.12%, 24.41% and 26.17% for 5a, 5b, and 5c, respectively. 

The remaining 45.48%, 40.38% and 49.31% (of 5a, 5b, and 5c respectively) stems from the NL 

MOs that contribute to shared density through polarization and multicentric effects. This result 

recovers classically what we expect with regard to the -character: -MOs contribute the most to 

the [M][L] interaction in 5c, but the least in 5a. The -contribution is more difficult to interpret, 

as the chapter has already shown how the geometry affects the orbitals aligning and, specifically, 

the [X]⋯ሾR] interaction. Clearly, and perhaps surprisingly, changing the X-group has a significant 

effect on how electrons are shared in -bonds. The -contribution is often overlooked and the 

trend not as straightforward as the -character. There is a ~5% difference in the -contribution 

when varying the X-group, with dihydrogen amine (5b) contributing the most -character and 

dimethylamine (5c) the least. This is an interesting result in that the only difference between them 

is two hydrogens are exchanged for two methyl groups, yet there is ~10% change in the -

contribution. In addition, while the presence of methyl groups could suggest inductive effects, the 

overall -contribution from MOs to [M][L] is greater for X=NH2 than for X=NMe2. Using CDA, 

Cases et al. found(Table 3) that the -donation in C (X=NHCH3, R=H) is 0.511, compared to D 

(X=NH2, R=H) where it is 0.501. However, for H (X=NHCH3, R=CH3) it is 0.524 whereas for  I 

(X=NH2, R=CH3) it is 0.527 hence literature supports the trend we see. However, it is clear that 

additional investigation is necessary in order to elucidate this phenomenon 

Finally, we are interested in exploring the diatomic Cr–Ccarbene bond (i.e. without carbonyl 

ligands, R- and X-groups) from a FALDI-MO point of view as well. Table 5.11 lists the 

DI(Cr,Ccarbene) decomposed in symmetry-grouped MOs, for the lowest energy structures of 5a–5c. 

The fragmentation for this separation can be found in Figure C 9. 1. of Appendix C. 
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Table 5. 8. The - and -contribution of the different X groups for Cr⋯Ccarbene bond 

Structure 5a 5b 5c 

Frozen Dihedral 

Angle (°) 
170 150 110 

 
Contribution % Contribution % Contribution % 

DI([Cr], [Ccarbene]) 0.5934  0.5692  0.5768  

 0.2318 38.99 0.2540 44.52 0.1874 32.47 

 0.1162 19.54 0.1147 20.09 0.1325 22.96 

NL 0.2454 41.47 0.2005 35.40 0.2569 44.57 

 
      

 &  0.3480 58.53 0.3686 64.60 0.3199 55.43 

 
 

We see the same trend is followed with respect to - and - contribution for the diatomic 

Cr–Ccarbene bond (Table 5. 11.) as was found for the total [M][L] interaction (Table 5. 10). The 

computational bond lengths for the Cr⋯Ccarbene bond is 2.137 Å, 2.131 Å, 2.139 Å for 5a, 5b, and 

5c respectively (X= OEt, NH2 and NMe2). Typically, the stronger the bond the shorter the bond 

length, what this then translates to is that shorter bonds are expected to have more - and -

character than longer bonds. We see this classical interpretation in the FALDI MO results of Table 

5. 11. Considering 5b we see it has the most - and -character, sitting at total of 64.60%, matching 

the shortest bond length of 2.131 Å, structure 5a follows with 58.53% and the second shortest 

bond length of 2.137 Å and finally we have 5c with the least - and -character of 55.43% and the 

longest bond length of 2.139 Å. This result is significant as it is not reflected in the -donation of 

the X-group, which we expect to be NMe2>NH2>OEt and is matched by the -contribution in 

Table 5. 11. Rather, the result shows how the -contribution is often underappreciated and shows 

the significant contribution it can make, especially when combined with the -contribution to 

explain experimental results like the bond length. 

In summary, the section above described evidence for the nature of the X-group’s 

electronic influence on the electronic structure of the molecule, which we reported by keeping the 



127 
 

DA(Cr,C,C,N) constant but varying the X-groups. Notably, from dihydrogen amine to ethoxy and 

dimethylamine (5b, 5a and 5c) there is a decrease in -MOs for the lowest energy structures (150°, 

170° and 110° respectively). On the other hand, for 5a, 5b and 5c the -MOs were seen to increase 

at a constant DA(Cr,C,C,N) for the lowest energy structures (170°, 150° and 110° respectively). 

Correspondingly, the -MO result affirms the classical expectation that dimethylamine will donate 

the most -electrons and ethoxy the least. The -MOs are however far more complicated, and the 

trend is unintuitive with dihydrogen amine sharing the most electrons and dimethylamine the least. 

Combining the - and -MOs yielded an overview perspective that correlated to the computational 

bond lengths between chromium and the carbene carbon, the result being that dimethyl amine had 

the shortest bond and dimethylamine the longest. Combining the - and - character therefore 

provides a much more holistic view of the bonding situation between atoms and helps explain 

uncommon trends in bond lengths. Our results suggest that the increasing electrons shared for the 

Ccarbene[X] interaction from 5a, 5b to 5c for each dihedrals leads to decreasing the [M]Ccarbene 

interaction with decreasing -character from 5a, 5b to 5c. This trend was observed for all dihedral 

angles considered, except for 5c at DA(Cr,C,C,N) = 110° – which suggests that geometric in 

addition to electronic features play an important role in determining the lowest energy structure of 

5c.  

 

Binding energies  

Finally, one of the most useful experimental and theoretical measures of bond strength is the 

binding energy. The binding energy of a specific bond within a molecule is calculated by taking 

the molecular energy and subtracting the fragments of interest. For instance, the binding energy 

between the metal cluster {[M]=M(CO)5} and the carbene ligand {[L]=:C(R)(X)} can be 

calculated as ∆𝐸௕௜௡ௗ௜௡௚ ൌ 𝐸୑ሺେ୓ሻఱ୐ െ 𝐸ሾ୑ሿ െ 𝐸ሾ୐ሿ, where 𝐸୑ሺେ୓ሻఱ୐ is the molecular electronic 

energy of the molecule, and 𝐸ሾ୑ሿ and 𝐸ሾ୐ሿ energies of isolated fragments. The binding energy 

therefore represents the energy required to separate two fragments ( the fragments frozen as in the 

complex) into separate species. The interaction energy between [M] and [L] is represented by 

∆𝐸௕௜௡ௗ௜௡௚, and it is therefore tempting to directly compare ∆𝐸௕௜௡ௗ௜௡௚ to the FALDI-based count 

of delocalized electrons, DI([M],[L]). However, ∆𝐸௕௜௡ௗ௜௡௚ includes energetic stabilization due to 
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electron delocalization and electrostatics, as well as includes electronic reorganization, 

polarization and dispersion. On the other hand, DI([M],[L]) only includes a count of electron 

delocalization. That said, comparison of the two indices – as shown in  Table 5.12 for 5a – 5c and 

over three different dihedral angles – can provide some interesting insights. 

Table 5. 9. The binding energy of the different X-groups calculated using single point calculations 

at B3LYP. 

  
Frozen 

Dihedral 
Angle () 

DI([M],[L]) 
Binding 
energy 

Structure 5a (e–) (kcal/mol) 
 90 1.7953 -332.72 

 170 1.5747 -329.41 
  180 1.5733 -329.36 

Average  1.6478 -330.50 

Structure 5b   

 90 1.5178 -301.30 
 150 1.4015 -301.18 

  180 1.3598 -299.47 

Average  1.4264 -300.65 

Structure 5c   

 90 1.5374 -328.54 
 110 1.5313 -329.38 

  180 1.4255 -324.85 

Average  1.4981 -327.59 
 

It is clear from Table 5.9. that the average number of electrons shared between [M] and 

[L] increases in the order of 5b < 5c < 5a. In addition, the difference is quite significant: an average 

of DI([M],[L]) = 1.648 e– for 5a as opposed to 1.426 e– for 5b. The same trend is observed for the 

average binding energy which decreases (i.e. more stabilizing) in the order of 5b < 5c < 5a, with 

∆𝐸௕௜௡ௗ௜௡௚ stronger by –29.85 kcalmol–1 in 5a relative to 5b. Clearly, the choice of X-group rather 

than geometry is a deciding factor on the stability and strength of the bond between the metal 

cluster and carbene ligand. In addition, this result suggests that our FALDI-MO decomposition of 
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the electronic structure, as discussed in detail throughout this chapter, provides valid results that 

correspond to the well-known binding energy and can also be found in the work of Outeiral et al.37 

No other significant and consistent trends are observed in the data in Table 5.9. For 

instance, neither DI([M],[L]) nor ∆𝐸௕௜௡ௗ௜௡௚ are maximized/minimized for the lowest energy 

conformers of each structure (i.e. DA(Cr,C,C,N) = 170, 150 and 110 for 5a, 5b and 5c, 

respectively). It is clear that the electronic structure – which determines the molecular energy and 

geometry – cannot be sufficiently described by a single bonding metric such as ∆𝐸௕௜௡ௗ௜௡௚. Rather, 

our systematic exploration of various interacting elements of the molecule (such as investigation 

of [M][X], [M][R] and [R][X]) allows for a piecewise and comprehensive description of the 

electronic structure, especially when decomposed with the FALDI-MO approach.  

 

Conclusions  

 

Fischer carbene complexes, and especially the structures investigated in this work, are relatively 

small molecules in a science accustomed to bio- and nanostructures. However, by systematically 

changing only two variables in a Fischer carbene complex  – that of the choice of X-group and the 

rotation of the R-group – we observed an immense variation in the electronic structure.  

The case-study investigated within this chapter stands as a fully formed proof-of-concept of 

the FALDI-MO approach, developed and discussed in the preceding chapters. With this approach 

we were able to perform an extremely in-depth and detailed analysis of the electronic structures of 

all complexes considered. Accordingly, a number of important observations were made with 

respect to the geometrical or electronic effects on the molecular electronic structure. 

We investigated the geometric effect by keeping the X-group constant, but systematically 

rotating the pyrrolic R-group. Rotating the R-group from a planar to a perpendicular structure 

resulted in weaker intra-ligand interactions – [R]Ccarbene and [R][X]. However, we found that 

weaker intra-ligand interactions then lead to stronger metal-ligand interactions, [M]Ccarbene and 

[M][X]. In particular, our MO decomposition revealed that the changes in these interactions were 

driven primarily by changing -characters, as would be intuitively expected. 
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On the other hand, we investigated the electronic effect imposed by the X-group by varying it 

while keeping the geometry of the remainder of the molecule constant. We showed that the effect 

of changing the X-groups is mostly electronic, as the trends remained constant across all dihedral 

angles. We found in the optimized structure the [X]⋯ሾR] interaction plays an important role and 

that there is an inverse relationship between the strength of [M]⋯Ccarbene and the Ccarbene⋯[X] 

interactions. The FALDI MO analysis revealed that the -contributions matched the classical 

expectation based on the strength of the -donor X-group. Our result also shows how significant 

the -contribution can be when considering bond length, which is often overlooked. Combining 

the - and -character provides a much more holistic view of the bonding situation between atoms 

and helps explain trends in bond lengths. 

The interplay of these two variables – choice of X-group and rotation of the R-group – showed 

a significant effect on how MOs were distributed across the molecule. In particular, we note that 

the - and - characters of the [M]Ccarbene interaction is quite dependent on both variables. 

Clearly, the choice of X- and R-groups, as well as incorporation of steric factors affecting 

geometry, is a choice that cannot be made independently of one another. Rather, the degree to 

which these variables were correlated and their effects on the electronic structure are quite 

remarkable. 

Finally, it is evident that our FALDI-MO approach can produce clear insights into difficult 

electronic structure problems, whilst recovering classical and intuitive notions. The results 

obtained in this chapter illustrate the proof of concept and the potential of this method to obtain 

the information needed to tune Fischer carbenes to display certain characteristics (like optimizing 

molecular structure for maximized -character). The conceptual component of this FALDI 

analysis is probably the most powerful, whereby the gap between computational/theoretical 

chemistry and classical chemistry could be bridged by relaying the results visually and making it 

appealing to the experimental chemist. 

While this chapter is a testament to the complexity of chemistry, we hope that our FALDI-

MO approach introduces a kernel of order. Through confirmation, repetition and perturbation, 

fundamentals of electronic structure can be elucidated. Afterall, a set of observations in this chapter 

can form part of a trend in future work, trends become a hypothesis, hypotheses become theories 

and eventually contribute to our general and conceptual chemical intuition. 
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Chapter 6.              

Summary and conclusions 
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Summary 

 

The major contribution of this work revolves around implementing the Fragment, Atomic, 

Localized, Delocalized and Interatomic (FALDI) electron density decomposition scheme for 

decomposing and analysing Molecular Orbital (MO) distributions in Fischer carbene complexes. 

The resultant FALDI-MO method uses the atom-centric and density-based backbone of FALDI to 

apply octahedral symmetry labels to any MO based on the symmetry of electrons localized to the 

metal. The method provides point group symmetry labels to both symmetric and asymmetric 

systems and allows for quantification of interatomic delocalized density in terms of chemically 

intuitive labels.  

Embedded in the electronic structure (usually described as a MO diagram) are all the 

electronic and chemical properties of a molecular system. However, MOs in polyatomic molecules 

can be quite difficult to interpret, and borders on impossible in asymmetric complexes. The aim of 

this project revolved around improving our fundamental knowledge of the electronic structure of 

a molecular system. We achieved this aim by extending the FALDI density decomposition scheme 

based with an MO analysis and decomposition technique that takes a classical approach of 

understanding MOs (i.e. symmetry terms) and extends it to asymmetric systems. The classical 

symmetry terms (such as a1g, t1u, eg and t2g in symmetric octahedral complexes) have been 

expanded from being limited to symmetrical systems, to a technique that applies these labels to 

asymmetric Fischer carbene systems. For symmetric molecules, we can take a first principles 

approach to derive the symmetry adapted linear combinations (SALCs) of atomic orbitals and 

construct the MOs from scratch. SALCs allow an exact interpretation of MOs, and links MO 

symmetries and energy levels to parameters like the stabilizing or destabilizing effects of t2g or eg 

orbitals and even ranking ligands on a spectrochemical series from the octahedral splitting 

parameter to be determined. Such an exact interpretation significantly opens up the rational design 

of novel materials. For instance, a symmetric molecular system can be tuned for more -acceptor 

or -donating ability, based on the desired needs. This has not been possible for asymmetric 

systems but, theoretically, our FALDI-MO method brings a similar level of first principle 

chemistry to the asymmetric systems.  
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Three different topics were covered in this manuscript using the FALDI-MO analysis 

technique. First, in Chapter 3 the foundation of the method was established and carefully illustrated 

from where the metal symmetry terms are obtained and how this translates into useable 

information. The mathematical relationship of how FALDI’s localized distributions’ eigenvalues 

can be linked to the MOs was derived. The localization indices (LIs)1, 2, which can be obtained 

from the Quantum Theory of Atoms in Molecules (QTAIM)3, have previously been proven to be 

problematic in their chemical interpretations.4 This is where FALDI has provided an alternative 

and more effective approach. Since FALDI allows the visualization of localized electron density 

(loc-ED) it was shown that, to an extent, there are delocalized electrons in QTAIM-defined LIs 

which is problematic. Therefore, FALDI-defined LIs have been used to obtain the true localization 

about the metal centre and then through visualization, the classical symmetry terms were labelled. 

The symmetry term is determined from FALDI’s localized overlap matrices (LMATs) after being 

square normalized – a process which has been automated to provide reliable results. The symmetry 

labelling process is manual and based on visualizing the symmetry terms and assigning them. In 

Appendix A the details of the symmetry labelling process are provided alongside the method in 

Chapter 2 and 3. This analysis is purely based on the metal centre providing clean visual images 

which can easily be classified as typical symmetry terms. 

The labelling process relies on visual inspection mainly because of technical parameters, 

which could be automated in future work. Second, the MO overlap was quantified based on the 

delocalized indeces (DIs) which were recovered from FALDI. This was done using FALDI’s 

unique approach of exclusively calculating the delocalized electrons which can be linked to the 

localized electron labelling process in the first part. From this, an atom-centric and a density-based 

set of information can be recovered. We can focus the method on one or multiple atoms that can 

also be visualized to obtain - and -distributions between not only two atoms but entire fragments 

within the molecule (i.e. multiple diatomic interactions). Finally, the combination of symmetry 

labels and the analytical quantification was applied to real-world experimental systems for which 

experimental crystal data is available. This showed the importance of the X- and R-groups 

interactions in Fischer carbenes and the level at which they interact, highly depending on the 

geometry of the molecule which affects the overall stabilization of the system. Classical electron 

counts are recovered from FALDI in which the core, non-bonded and valence electrons can be 

found to help explain these trends and phenomena in simple terms. We can correlate this type of 
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classification to conceptual molecular orbital theory and the quantum chemical topology (QCT).5 

The FALDI MO analysis therefore allows for a better understanding of diatomic interactions 

involving the metal on the electronic level by relating to classical symmetry terms. 

 Chapter 4 is a bridging chapter between pure theory and application. This chapter explores 

how the information generated by the FALDI-MO method can be used to answer questions related 

to chemical modifications. To do so, we introduced chemical fragments to the FALDI-MO 

method. Fragments reduce the number of variables that need to be analyzed without losing any 

information, thereby greatly increasing the utility of the FALDI-MO approach. Information such 

as the - and -characters of density delocalized between different fragments of the molecule, 

based on FALDI-classified symmetries of MOs, can be obtained through this method. This 

information can be localized about any bond and even more so used to look at molecular fragments 

and fragments interacting with each other for a more holistic approach. Chapter 5 followed a 

similar approach, with the difference being that the systems analyzed have been synthesized and 

crystal structure data is available for comparison. We performed a geometric study on the Fischer 

carbenes where the R-group’s dihedral angle was rotated in ten-degree increments from 180° to 

90°, thereby studying the effects of a planar or perpendicular conjugated R-group have on the 

electronic structure of the complex. The relative lowest energy structures of the rotations were 

compared with different X-groups and compared at 90° and 180°. This study revealed the 

importance of the choice of the X- and R-groups within Fischer carbenes and how small changes 

in geometry affects energy and bond strength. From the FALDI MO analysis, in Appendix C we 

found an interesting (but relatively weak interaction when compared to [M]⋯Ccarbene ) interaction 

between the carbonyls on the metal and the R-group, mainly interacting through -interactions, 

which highly depended on the conformation (DA(Cr,C,C,N)). Equally, the interaction between the 

X- and R-group depended on the conformation of the R-group, there was often significant 

interaction between these two groups at the lowest energy structures.  

These interactions are difficult to study with existing methods, and FALDI provides 

quantifiable and visual results that are insightful for interpreting these long-range interactions. 

From this, we expect the tunability of Fischer carbene complexes to increase by homing in on the 

intramolecular interactions that can be manipulated to produce the desired characteristics in almost 

any octahedral inorganic complex.   
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Chapter Breakdown 

 

There are three experimental chapters in this manuscript Chapters 3, 4 and 5. Chapter 3 focused 

on the method development of the FALDI-MO analysis technique by explaining the mathematical 

manipulation taking place and where this picks up from and builds on  FALDI.4, 6 Two systems 

are taken as case studies: i) a symmetric system as the ‘baseline’ or ‘golden standard’ which can 

be fully explained in terms of MOs conceptually and ii) an asymmetric system, namely a Fischer 

carbene that keeps the pentacarbonyl skeleton and only one branch of the octahedral symmetry is 

broken. Breaking symmetry drastically alters the MO composition and muddles their 

interpretations. The symmetric model system was chosen as Cr(CO)6 which has been well 

documented and researched over the years and forms part of teaching MOs in advanced MO 

theory.7, 8 This system is ideal because of its ‘simplicity’ and can be described from the ground up 

using SALCs. Once this symmetric baseline was fully explained and recovered using the FALDI 

based method, we applied the same method to the asymmetric system. The asymmetric system 

was a classic Fischer carbene Cr(CO)5{C(OEt)(OMe)} that only slightly changed the symmetric 

system, keeping most of the symmetric backbone. The FALDI-MO method was able to fully 

recover classic MO theory in the symmetric system, and provide the same information in the 

asymmetric system. In addition, the method could provide additional quantification regarding MOs 

and their -, -characteristics for both symmetric and asymmetric systems. This chapter formed 

the cornerstone for the rest of this manuscript and laid the groundwork regarding the method. 

Chapter 4 expanded this ideology of labelling asymmetric systems with classical 

symmetry terms by looking at multiple asymmetric molecules. There are eight structures which 

we looked at, consisting of two different X-groups (ethoxy, X=OEt and dimethylamine, X=NMe2) 

and the four R-groups which varied in the level of conjugation (hydrogen, R= -H, vinyl, -CHCH2, 

styryl, -CHCHPh and an alkyne, -CCH group). These eight structures made a decent test pool for 

FALDI-MO analysis to test certain parameters and the robustness of the method. This pool of 

structures presented challenges and complications concerning interpreting the MOs because of the 

distinction between geometric and electronic effects, this led to the development of a quantification 

method which recovers - and -character of bonds. As such, quantification developed past just 

the diatomic level which is in Chapter 3 and multiple diatomic interactions were considered, giving 
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us the ability to consider fragment interactions. We considered fragments such as the whole X-

group and whole R-group and how they interact with the metal cluster (chromium pentacarbonyl). 

This provided an interesting case study that encouraged an application chapter (Chapter 5) beyond 

the purely theoretical study that has taken place in Chapter 4. The different R-groups that we tested 

in Chapter 4 had a variety of effects on geometry from -H and -CCH having planarity between the 

X- and R-groups whilst the vinyl and styryl group broke planarity (i.e. non-planar). We found that 

a significant number of electrons is shared in the metal–carbene bond as a result of the metal cluster 

and X-group. The metal–carbene bond is typically considered to be -stabilized (which our results 

found) but there is also considerable stabilization from the - and non-localized MOs. The X-

group also particularly influenced the different R-groups and the [M]⋯[X] interaction. When R= 

-H or -CCH, the [M]⋯[X] interaction is favoured when X=NMe2 over X=OEt due primarily to 

better overlap of -MOs. However, the opposite was observed when R= -CHCH2 or -CHCHPh, 

showing the effect that the X-groups’ conformation plays. The results in Chapter 4 confirmed a 

QTAIM-based study performed by Poater and co-workers showing that when the X-group 

contributes more to -donation, then the metal and carbene carbon shares less electrons.9 This 

result showed promising possibilities for this analytical technique. The study also revealed that we 

often overlook the geometric effect, yet it has a significant impact on the system and causes trends 

or classical expectations to change. The results showed that the metal–carbene carbon bond could 

be described primarily with equal - and -character, where the X-group added minor stabilization 

through the -orbitals, specifically for X=OEt. For X=NMe2 the metal–carbene carbon bond had 

less -character and the -character depended on the R-group overall geometry. Finally, a stronger 

electron donating X-group (i.e. X=NMe2 as opposed to X=OEt) was correlated to a weaker bond 

between the metal and the carbene ligand. However, the degree to which the metal–ligand bond 

weakened was noted to be highly correlated with the choice of R-group. Chapter 4 therefore paved 

the way for the technique as an example of holistically recovering the electronic structure (for all 

atoms and with a full electron density distribution) but in a chemically intuitive manner. 

 In the final experimental chapter (Chapter 5), the analytical possibilities of the FALDI-

MO approach were explored, and the geometric effect was further investigated. Three Fischer 

carbene complexes – for which crystal structures are available – were analyzed at different 

geometries. These synthesized Fischer carbenes retained similarity in having a 2-(N-
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Methyl)pyrrolyl R-group and the X-group which varied between ethoxy (OEt), dihydrogen amine 

(NH2) and dimethylamine (NMe2). The study started with freezing and manipulating the dihedral 

angle DA(Cr,Ccarbene,Cpyrrole,Npyrrole) to determine the lowest energy of the theoretical structures 

and correlate the results with the crystal data. The R-group’s dihedral angle (DA(Cr,C,C,N)) was 

the only angle which was frozen and rotated, while the X-group started at the same position for 

each optimization. We froze the dihedral DA(Cr,C,C,N) in ten-degree increments from 180° to 

90° and optimized each structure subject to this constraint. The experimental data aligned with the 

computational results having the dihedral within ten degrees variance. The bond lengths however 

varied between experiment and computation because of possible environmental factors such as 

crystal packing, however, the small basis set may also be at play. 

An interesting yet unexpected result was that the lowest energy structure did not necessarily 

have the shortest (strongest) Chromium–carbene carbon bond, hence the geometric investigation. 

Taking this study deeper and applying the FALDI MO analysis, we looked at the results from two 

perspectives, first where the X-group is kept constant at the different dihedrals DA(Cr,C,C,N) and 

secondly looking at where the X-group changed and the same dihedrals DA(Cr,C,C,N) were 

compared. The constant X-group analysis revealed that the -contribution decreased and the -

contribution increased when changing the dihedral from 180° to 90° when looking at the 

[M]⋯Ccarbene bond and the [M]⋯ሾL] interaction. Our results suggest that the weaker [R]Ccarbene 

and [R][X] interactions lead to stronger [M]Ccarbene and [M][X] interactions with greater -

characters, and an overall increase in the number of electrons shared between the metal cluster and 

the carbene ligand as a whole. In Appendix C we also made a hypothesis; that the rotation of the 

R-group caused the carbonyls of the metal to interact with the R-group due to orbitals obtaining 

the correct symmetry (this interaction is however weak compared to the [M]⋯Ccarbene or other 

interactions discussed in Chapter 5). By separating the metal cluster (Cr(CO)5) into chromium and 

pentacarbonyl the hypothesis was found to be indeed correct, as there were long-range interactions 

between the fragments that could be visualized and quantified. The geometric investigation 

illustrated that there is likely an energetic competition between the X- and R-group interacting and 

the carbonyl and R-group interaction. This is due to their inverse relationship, as the [X]⋯ሾR] 

interaction increased the [CO]⋯ሾR] interaction decreased but the lowest energy structures 

favoured the [X]⋯ሾR] interaction. The varied X-group analysis revealed that the FALDI MO 
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analysis matches the classical expectation of the -donor X-group based on the calculated - and 

-contributions. Combining the - and -MOs yielded an overview perspective that correlated to 

the computational bond lengths between chromium and the carbene carbon, the result being that 

dihydrogen amine X-group had the shortest [M]⋯Ccarbene  bond and dimethylamine X-group the 

longest. Significant emphasis was also put on the contribution that the -character makes to meet 

the classical expectation, since excluding the -character meant the classical interpretation of how 

shared electrons influence bond length could not be used. This result shows how significant the -

contribution can be in influencing the bond length, where the -MOs are often overlooked. 

The geometric effect also remained mostly constant throughout the different dihedrals 

DA(Cr,C,C,N) which showed that the effect seen in our results was therefore mainly electronic 

because of changing the X-group. Lastly, the binding energies were looked at. The binding 

energies matched the crystal data for the Cr⋯Ccarbene bond. The electrons shared calculated with 

FALDI matched the binding energies extremely well as did the -, - and NL contributions. For 

the lowest energy structure we combined the -, - and NL contributions ( i.e. total DI, 1.5747e– 

> 1.5313e– > 1.4015e–) and found that it matched the binding energy trend (-329.408 kcal/mol>-

329.382 kcal/mol>-301.183 kcal/mol) for OEt>NMe2>NH2 (or 5a, 5c, 5b) respectively. With these 

small experimentally consistent trends, we gained confidence in the FALDI MO method and we 

are excited to see how much it could still relate to other experimental results. 

 

Future Studies 

Currently, this new FALDI MO analysis method is limited to the metal centre being the source of 

the symmetry classification. Ideally, this method should be expanded to any atom, so that any atom 

in the system could be labelled, enabling organic systems to be investigated. This would better 

define and open alternative possibilities and avenues for describing the NL term, which has been 

used to describe orbitals that are not defined by the metal.  The NL term carries a lot of information 

and is significant when considering the contribution it makes in some fragments. Better 

characterized and interpreted data like the NL term could shed light into some unanswered trends 

which may be observed in chemical systems.  
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Chapter 4 focused on the ground state MO analysis of Fischer carbenes, but future work 

may include looking at the excited states of these complexes, thereby extending the FALDI-MO 

method into analysis of excited states and time-dependent electronic structure analysis. It is 

common knowledge that the X=OEt complexes typically have a redshift relative to X=NMe2 ,10 

but we do not see the strong redshifts as prominent for the MLCT band. This work may provide 

the toolset needed to investigate this result. It is also worth noting that chromium(0) and 

tungsten(0) have remarkably different positions for the MLCT band, which is because of the 

tungsten(0) pentacarbonyl having a lower acceptor capacity.10 This observation indicates that the 

chromium(0) pentacarbonyl is more accepting and has a lower -backdonation ability. 

Carbonyls are also unique and display some interesting properties, and as such some metal 

carbonyl complexes are often dubbed “nonclassical carbonyls”.11, 12 Typically, free carbonyls have 

a stretching frequency of 2143cm-1 but these non-classical carbonyls have C–O modes smaller 

than the free carbonyls. This phenomena is usually explained by -backdonation from the metal 

to the CO into the * -bonding orbital of CO weakening the C–O bond. Strangely, this changes 

with Os(CO)6
2+ and Ir(CO)6

3+ where  (C–O) >2143cm-1 and these complexes break the trend.13  

This has been investigated before using CDA analysis, where C–O bond length change is explained 

by the M→CO π-back-donation and M↔CO repulsive polarization using a CDA analysis.14 For 

Ir(CO)6
3+ the repulsive polarization seems to be more important than the π-back-donation. The 

application of the FALDI MO analysis presented in this work may shed light on these types of 

burning questions, providing a heuristic way of understanding and interpreting the complexes on 

the electronic level.  

Having a method to label symmetry for the non-metal atoms would allow characterizing 

the very interesting X- and R-group interactions that have become so prominent, in Chapter 5 and 

any other atom. So far FALDI recovers the nature of the X- and R-group interaction but not how 

they interact. The data from changing the dihedral angles (DA(Cr,C,C,N)) suggests X- and R-

group interact in a -fashion and the visualization seems to confirm this. However, the result would 

be much more impactful if the symmetry was recovered by the MOs of these interacting groups. 

More information about these fragments is still locked within the deeper electronic structure. 

Ideally, the FALDI method will expand to any atom or interaction.  
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Chapter 5 correlated extremely well with classical reasoning, but the crystal data results 

did not correlate in a quantifiable manner. The bond lengths of the chromium carbene carbon bond 

came close to the crystal data, but not acceptable for high accuracy. The level of theory may be to 

blame for this, but is likely also because of only optimizing to the lowest energy within the ten 

degree increments of the dihedral. Unfortunately, the MP2 calculations were also unsatisfactory, 

tilting the result only to the other side of the spectrum relative to B3LYP. Ideally, this study would 

be repeated but with different electronic structure models in order to generate geometries with 

more similarity to the crystal data. Suggested levels of theory that could obtain this level of 

similarity include PM3 as has been used in other Fischer carbene studies15, however PM3 is not 

recommended when good quality hybrid DFT or double hybrid DFT methods exist. Fortunately, 

the FALDI MO analysis results are independent to the level of theory. This indicates that the 

analysis should be able to just be repeated and the interpretation should be similar. A full energy 

decomposition analysis of the structures is recommended to test the [X]⋯ሾR] interaction relative 

to the [CO]⋯ሾR] interaction and how their relationship affects the energetics of the system, which 

can confirm/reject the speculation that the [X]⋯ሾR] interaction stabilizes the system. 

The current MO labelling and quantification process within the FALDI-MO method is a 

very manual and tedious process. Ideally, the process will become automated using software so 

that an interpretable result can be obtained much faster and more reliably, not prone to human 

error.  

Finally, while working on this project, considerations were made. If there is an R-group 

which is to be used for subsequent electron transfer reactions by exciting a molecule to transfer 

electrons from the metal into the R-group and then once the electrons are in the R-group transfer 

the electrons are transferred again to a different group. This a process used in solar cells and begs 

the thought of possible tuning or optimization opportunities. It then raises a few questions around 

this topic. If the [M]⋯ሾR] interaction is maximised does excitation of electrons occur more easily 

or when the electrons are transferred, are they still more delocalized? Will this information then 

help tune a molecule to achieve the desired characteristics? Can a rational design process be used? 

For example, using the amine or ethoxy to force a specific geometry that maximizes the interaction 

between the Metal and R-group. Does this maximize electron transfer? Organic solar cells have 

become a new high-interest research field because of how expensive metals are, but they are so far 
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relatively inefficient16 and a tuning method like this would greatly influence the progress of this 

field. These are a few of the interests that have arisen whilst developing this work and the potential 

applications that may arise.  

 

The main and future focus of this work is how to apply the information obtained through 

these FALDI methods and optimize the process so that the tunability of a system can be obtained 

accurately and within a reasonable time frame. We hope this tool will develop further beyond this 

study, becoming more detailed, visually orientated and even commercially viable so that molecular 

systems can become holistically understood at the electronic level.  
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Section 1: Cartesian Coordinates and Energy of All Molecules Studied. 

 

Table S1. Cartesian coordinates of Cr(CO)6 at B3LYP/dev2svp(p) level.  

Atom X Y Z 

Cr1 0.000000 0.000000 0.000000 

C2 0.000000 0.000000 1.917895 

O3 0.000000 0.000000 3.062340 

C4 0.000000 1.917895 0.000000 

O5 0.000000 3.062340 0.000000 

C6 0.000000 0.000000 -1.917895 

O7 0.000000 0.000000 -3.062340 

C8 0.000000 -1.917895 0.000000 

O9 0.000000 -3.062340 0.000000 

C10 -1.917895 0.000000 0.000000 

O11 -3.062340 0.000000 0.000000 

C12 1.917895 0.000000 0.000000 

O13 3.062340 0.000000 0.000000 

  

Molecular Energy of Cr(CO)6:  -1723.92369060 a.u. 
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Table S2. Cartesian coordinates of Cr(CO)5[C(OEt)Me)] at B3LYP/dev2svp(p) level.  

Atom X Y Z 

Cr1 0.785497 -0.091149 -0.000009 

C2 2.509582 -0.909647 0.000227 

O3 3.547014 -1.404139 0.000326 

C4 1.346721 1.130202 -1.348567 

O5 1.682678 1.870564 -2.161682 

C6 0.160865 -1.308585 -1.331607 

O7 -0.232785 -2.037547 -2.126077 

C8 0.160392 -1.308283 1.331640 

O9 -0.233530 -2.036955 2.126265 

C10 1.346246 1.130238 1.348722 

O11 1.681896 1.870586 2.161970 

C12 -1.037487 0.777613 -0.000279 

C13 -1.320440 2.259359 -0.000340 

H14 -1.915756 2.547693 -0.889395 

H15 -1.915452 2.547773 0.888886 

H16 -0.394206 2.848418 -0.000525 

O17 -2.111839 0.011873 -0.000260 

C18 -3.483988 0.478246 -0.000278 

H19 -3.652327 1.101532 -0.895497 

H20 -3.652236 1.101929 0.894676 

C21 -4.377024 -0.746706 0.000043 

H22 -4.190618 -1.364842 0.894594 

H23 -5.437295 -0.439356 0.000025 

H24 -4.190710 -1.365254 -0.894241 

 

Molecular energy of Cr(CO)5C(OEt)(Me):  -1842.89166103 a.u 
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Section 2: Localized Matrix of Cr1 of All Molecules Studied Corresponding the Eigenvalues to Molecular Orbitals. 

 

Table S3. Sorted and Square normalized Localized Matrix of Cr1 for Cr(CO)6.  

Molecular 
Orbitals 

Square normalized Localized Density of Cr1 

MO1 0.91       0.09                             

MO2 0.09    0.91               
MO3  0.47 0.07 0.46                
MO4  0.04 0.93 0.03                
MO5  0.49  0.51                
MO6                    
MO7                    
MO8                    
MO9  

MO10 

MO11                    
MO12                    
MO13                    
MO14                    
MO15                    
MO16                    
MO17                    
MO18      1.00              
MO19       0.68 0.20 0.11           
MO20       0.27 0.14 0.58           
MO21       0.04 0.65 0.30           
MO22                    
MO23                    
MO24                    
MO25                    
MO26                   
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Table S3. continued 
MO27                   
MO28               0.58     
MO29                0.10 0.03   
MO30                0.03 0.10   
MO31                  0.14  

MO32             0.03 0.06      
MO33             0.06 0.03      
MO34               0.42     
MO35          0.04         0.85 

MO36            0.04        
MO37           0.04        0.10 

MO38                0.05 0.15   
MO39                  0.20  

MO40                0.15 0.05   
MO41                    
MO42 

MO43  

MO44                    
MO45                    
MO46                    
MO47             0.63 0.28      
MO48             0.28 0.63      
MO49                0.50 0.16   
MO50                  0.65  

MO51                0.16 0.50   
MO52           0.06 0.90        
MO53          0.87 0.06 0.02       0.04 

MO54                   0.08 0.84 0.04               

                    

Cr1 EV54 EV50 EV51 EV52 EV53 EV49 EV46 EV47 EV48 EV45 EV44 EV43 EV42 EV41 EV40 EV39 EV38 EV37 EV36 

Eigenvalues 2.00 2.00 2.00 2.00 2.00 1.99 1.96 1.96 1.96 0.60 0.60 0.60 0.11 0.11 0.03 0.01 0.01 0.01 0.00 

  NDF1 NDF2 NDF3 NDF4 NDF5 NDF6 NDF7 NDF8 NDF9 NDF10 NDF11 NDF12 NDF13 NDF14 NDF15 NDF16 NDF17 NDF18 NDF19 
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Table S4. Sorted and Square normalized Localized Matrix of Cr1 for Cr(CO)5[C(OEt)(Me)].  

Molecular  
Orbitals 

Square normalized Localized Density of Cr1 

MO1 0.91    0.09               
MO2 0.09   0.03 0.87               
MO3   1.00                 
MO4  0.41  0.58                
MO5  0.58  0.38 0.04               
MO6                    
MO7                    
MO8                    
MO9                    
MO10                    
MO11                    
MO12  

MO13 

MO14                    
MO15                    
MO16                    
MO17                    
MO18                    
MO19                    
MO20                    
MO21      0.99              
MO22        0.99            
MO23         0.99           
MO24       0.98             
MO25                    
MO26                    
MO27                    
MO28                   
MO29                    
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Table S4. continued 
MO30                  0.01 

MO31                    
MO32                   0.10 

MO33               0.01    0.03 

MO34               0.03     
MO35               0.46 0.02    
MO36                 0.07 0.06  

MO37                 0.06 0.07  

MO38              0.08      
MO39             0.04   0.07    
MO40                    
MO41               0.01 0.01   0.35 

MO42               0.14 0.03    
MO43             0.02  0.26 0.09   0.03 

MO44           0.04        0.02 

MO45 0.03 

MO46  0.02  0.06 0.05 0.22 

MO47                 0.07 0.09  

MO48                 0.03 0.02 0.16 

MO49             0.07  0.04 0.03    
MO50                    
MO51                    
MO52                    
MO53                    
MO54                    
MO55                   0.01 

MO56              0.86      
MO57             0.04       
MO58              0.05    0.01  

MO59             0.51   0.22    
MO60                0.26 0.31  

MO61                 0.34 0.28  
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Table S4. continued 
MO62               0.08 0.03 0.02  

MO63                 0.04 0.05  

MO64             0.28  0.04 0.39   0.01 

MO65           0.96         
MO66            0.96        
MO67          0.96         0.03 

                    

Cr1 EV67 EV63 EV64 EV65 EV66 EV62 EV61 EV60 EV59 EV58 EV57 EV56 EV55 EV54 EV53 EV52 EV51 EV50 EV49 

Eigenvalues 2.00 2.00 2.00 2.00 2.00 1.99 1.97 1.96 1.96 0.67 0.56 0.49 0.13 0.11 0.03 0.01 0.01 0.01 0.00 

 NDF1 NDF2 NDF3 NDF4 NDF5 NDF6 NDF7 NDF8 NDF9 NDF10 NDF11 NDF12 NDF13 NDF14 NDF15 NDF16 NDF17 NDF18 NDF19 

 
 
 
 
The data in Tables S3 and S4 allow for the allocation of Molecular orbitals to specific eigenvalues, which relates to a Natural Density function that 
can be visualized to assign the symmetry term. Each column and row add to a value of 1.00, the rows however will not total as not all the columns 
are illustrated in these tables.  
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Section 3: Delocalization Matrix Summary for All Molecules Studied Corresponding the 
Symmetry Terms of Molecular Orbitals Obtained in the Localized Matrix. 

 

Table S5. Sorted Summary of the Delocalized Matrix for Cr1-C2 of Cr(CO)6 where NL depicts 
symmetry not defined by the Cr1 Localized Matrix.  

Molecular Orbitals Delocalized Contribution Percentage (%) Rolling Symmetry 
MO48 0.19 23% 22.59% eg 
MO53 0.16 19% 41.62% t2g 
MO52 0.16 19% 60.64% t2g 
MO51 0.08 9% 69.88% t1u 
MO28 0.04 5% 75.32% a1g 
MO35 0.03 4% 79.02% t2g 
MO36 0.03 4% 82.71% t2g 
MO32 0.03 4% 86.32% eg 
MO34 0.03 3% 89.47% a1g 
MO30 0.02 2% 91.89% t1u 
MO38 0.02 2% 93.88% t1u 
MO21 0.02 2% 95.80% t1u 
MO54 0.01 1% 97.04% t2g 
MO47 0.00 1% 97.59% eg 
MO39 0.00 0% 98.01% t1u 
MO40 0.00 0% 98.42% t1u 
MO18 0.00 0% 98.74% a1g 
MO19 0.00 0% 98.93% t1u 
MO20 0.00 0% 99.12% t1u 
MO50 0.00 0% 99.22% t1u 
MO49 0.00 0% 99.33% t1u 
MO37 0.00 0% 99.44% t2g 
MO31 0.00 0% 99.54% t1u 
MO29 0.00 0% 99.65% t1u 
MO33 0.00 0% 99.74% eg 
MO25 0.00 0% 99.83% NL 
MO22 0.00 0% 99.90% NL 
MO26 0.00 0% 99.93% NL 
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Table S6. Sorted Summary of the Delocalized Matrix for Cr1-C12 (Cr-Carbene) of 
Cr(CO)5[C(OEt)(Me)] where NL depicts symmetry not defined by the Cr1 Localized Matrix.  

 

Molecular  
Orbitals 

Delocalized 
Contribution 

Percentage 
(%) 

Rolling 
Symmetry 

Sum a1g t1u t2g eg 

MO64 0.27 36% 35.56% 0.04 0.39  0.28 0.71 

MO66 0.19 25% 60.53%   0.96  0.96 

MO67 0.05 6% 67.00% 0.96    0.96 

MO42 0.04 5% 72.24% 0.14 0.03   0.16 

MO59 0.03 4% 76.73%  0.22  0.51 0.73 

MO62 0.03 3% 80.15%  0.13381   0.13 

MO45 0.02 3% 83.21%   0.03  0.03 

MO41 0.02 3% 86.09% 0.01 0.01   0.03 

MO24 0.01 2% 87.68%  0.98   0.98 

MO33 0.01 1% 89.01% 0.01    0.01 

MO34 0.01 1% 90.20% 0.03    0.03 

MO65 0.01 1% 91.33%   0.96  0.96 

MO35 0.01 1% 92.27% 0.46 0.02   0.47 

MO57 0.01 1% 93.17%    0.04 0.04 

MO31 0.01 1% 94.07% NL 0.00 

MO49 0.01 1% 94.91% 0.04 0.03 0.07 0.14 

MO60 0.01 1% 95.68% 0.571069 0.57 

MO63 0.01 1% 96.44%  0.085412   0.09 

MO43 0.01 1% 97.11% 0.26 0.09  0.02 0.37 

MO40 0.00 1% 97.72% NL    0.00 

MO32 0.00 1% 98.31% NL    0.00 

 
The data in Table S6 can only provide total symmetry information for symmetries obtained 
from the Cr1 analysis therefore this data need to be normalized to obtain a summary as 
presented in the article. 
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Table S7. Sorted Summary of the Delocalized Matrix for Cr1-C2 (Cr-Trans to the Carbene) of 
Cr(CO)5[C(OEt)(Me)] where NL depicts symmetry not defined by the Cr1 Localized Matrix.  

 

Molecular 
Orbitals 

Delocalized 
Contribution 

Percentage  
(%) 

Rolling 
Symmetry 

Sum a1g t1u t2g eg 
MO59 0.28 32% 32.06%  0.22  0.51 0.73 
MO67 0.20 24% 55.83%   0.96  0.96 
MO66 0.14 17% 72.63%   0.96  0.96 
MO39 0.06 7% 79.32%  0.07  0.04 0.11 
MO35 0.03 3% 82.74% 0.46 0.02   0.47 
MO46 0.03 3% 86.12%  0.10 0.02  0.12 
MO43 0.02 2% 88.19% 0.26 0.09  0.02 0.37 
MO49 0.02 2% 90.14% 0.04 0.03  0.07 0.14 
MO24 0.02 2% 92.00%  0.98   0.98 
MO57 0.01 2% 93.55%    0.04 0.04 
MO47 0.01 1% 94.99%  0.16   0.16 
MO45 0.01 1% 96.40%   0.03  0.03 
MO65 0.01 1% 97.56%   0.96  0.96 
MO53 0.01 1% 98.16% NL    0.00 
MO48 0.00 0% 98.60%  0.05   0.05 
MO50 0.00 0% 99.03% NL    0.00 

 
The data in Table S7 can only provide total symmetry information for symmetries obtained 
from the Cr1 analysis therefore this data need to be normalized to obtain a summary as 
presented in the article. 
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Section 4: Cr(CO)6 Natural Density Functions corresponded to the Molecular Orbitals 
   

This supporting information is mainly comprised of the full decomposition of the Molecular 
orbitals derived from the determined eigen values and assigned via the natural density function 
describe in the article. The Molecular orbitals have been assigned with 99% accuracy from the 
eigenvalues. The larger the  value the more metal centred the delocalization while the lower 
values are ligand centred. All Molecular orbitals are not classified with this approach as only 
the metal is used to define the orbitals, for a symmetry definition of every orbital ligands will 
also need to be considered. 
 

E54 EV50 EV51 EV52 EV53 EV49 
      

loc–NDF1a (1s) 
1(Cr1) = 2.00 

loc–NDF2a (2s) 
2(Cr1) = 2.00 

loc–NDF3a (2p) 
3(Cr1) = 2.00 

loc–NDF4a (2p) 
3(Cr1) = 2.00 

loc–NDF5a (2p) 
5(Cr1) = 2.00 

loc–NDF6b (3s) 
6(Cr1) = 1.99 

MO1 MO3 MO3 MO3 MO1 MO18 

      
 
     

0.91 0.47 0.07 0.46 0.09 1.00 

 MO4 MO4 MO4 MO2 

          
0.04 0.93 0.03 0.91 

 MO5  MO5  

       
 0.49  0.51   

Figure S1-1: The full compilation of Molecular orbitals through the NDF analysis for Cr(CO)6  

with isovalues of a=0.0001au and b=0.001au and EV=Eigenvalue 
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EV46 EV47 EV48 EV45 EV44 EV43 
      

loc–NDF7b (4p) 
7(Cr1) = 1.96 

loc–NDF8b (4p) 
8(Cr1) = 1.96 

loc–NDF9b (4p) 
9(Cr1) = 1.96 

loc–NDF10b (t2g) 
10(Cr1) = 0.60 

loc–NDF11b (t2g) 
11(Cr1) = 0.60 

loc–NDF12b (t2g) 
12(Cr1) = 0.60 

MO19 MO19 MO19 MO35 MO37 MO36 

        
 

  

0.68 0.20 0.11 0.04 0.04 0.04 

MO20 MO20 MO20 MO53 MO52 MO52 

        
 

  

0.27 0.14 0.58 0.87 0.06 0.90 

MO21 MO21 MO21 MO54 MO53 MO53 

        

 

  

0.04 0.65 0.30 0.08 0.06 0.02 

    MO54 MO54 

    

 

  

    0.84 0.04 

Figure S1-2: The full compilation of Molecular orbitals through the NDF analysis for Cr(CO)6  

with isovalues of a=0.0001au and b=0.001au and EV=Eigenvalue 
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EV42 EV41 EV40 EV39 EV38 EV37 
0.11 0.11 0.03 0.01 0.01 0.01 

      

loc–NDF13b (eg) 
13(Cr1) = 0.11 

loc–NDF14b (eg) 
14(Cr1) = 0.11 

loc–NDF15b (a1g) 
15(Cr1) = 0.03 

loc–NDF16b (t1u) 
16(Cr1) = 0.01 

loc–NDF17b (t1u) 

17(Cr1) = 0.01 
loc–NDF18b (t1u) 
18(Cr1) = 0.01 

MO32 MO32 MO28 MO29 MO29 MO31 

      

  
    

0.03 0.06 0.58 0.10 0.03 0.14 
MO33 MO33 MO34 MO30 MO30 MO39 

  
    

    

  

0.06 0.03 0.42 0.03 0.10 0.20 
MO47 MO47  MO38 MO38 MO50 

    

 

  

    

0.63 0.28  0.05 0.15 0.65 
MO48 MO48  MO40 MO40  

    

 

    

 
0.28 0.63  0.15 0.05  

   MO49 MO49  

   

  

   
   0.50 0.16  
   MO51 MO51  

        
   0.16 0.50  

Figure S1-3: The full compilation of Molecular orbitals through the NDF analysis for Cr(CO)6  

with isovalues of a=0.0001au and b=0.001au and EV=Eigenvalue 
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Figure S1-4: The Natural Density Functions corresponding to their respective Molecular Orbitals with

their contributions. Illustrating the fifteenth NDF which represents A1g symmetry on the Cr linked to the

contributing occupied MO’s. 
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Section 5: Cr(CO)5[C(OEt)(Me)] Natural Density Functions 

 
    

loc-NDF1a(1s) 
orthodox(Cr1) = 2.00 

 

loc-NDF2a(2s) 
orthodox(Cr1) = 2.00 

 

loc-NDF3a(2p) 
orthodox(Cr1) = 2.00 

 

loc-NDF4a(2p) 
orthodox(Cr1) = 2.00 

 
    

loc-NDF5a(2p) 
orthodox(Cr1) = 2.00 

 

loc-NDF6b(3s)  
orthodox(Cr1) = 1.99 

 

loc-NDF7b(3p) 

orthodox(Cr1) = 1.97 
  

loc-NDF8b(3p)  
orthodox(Cr1) = 1.96 

 
    

loc-NDF9b(3p)  
orthodox(Cr1) = 1.96 

 

loc-NDF10b(t2g)  
orthodox(Cr1) = 0.67 

 

loc-NDF11b(t2g) 

orthodox(Cr1) = 0.56  
 

loc-NDF12b (t2g) 
orthodox(Cr1) = 0.49 

 
    

loc-NDF13b(eg) 
 orthodox(Cr1) = 0.13 

 

loc-NDF14b(eg)   
orthodox(Cr1) = 0.11 

 

loc-NDF15a(a1g)   
orthodox(Cr1) = 0.03 

 

loc-NDF16a(t1u)   
orthodox(Cr1) = 0.01 

 
 

  

 

 loc-NDF17a(t1u)   

orthodox(Cr1) = 0.01  
loc-NDF18a(t1u)    

orthodox(Cr1) = 0.01 
 

 

Figure S2: The Localized (loc) Natural Density Functions (NDF's) of Cr(CO)5[C(OEt)(Me)] 
centered on the Chromium atom. The Isovalues are indicated as a = 0.0001 au and b = 0.001 
au while λnumber refers to the eigenvalue retrieved from the Orthodox Localised Matrix. 
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Section 6: Cr(CO)5[C(OEt)(Me)] Natural Density Functions corresponded to the Molecular 
Orbitals  

 

EV67 EV63 EV64 EV65 EV66 EV62 
      

loc-NDF1a(1s) 
orthodox(Cr1)= 2.00 

 

loc-NDF2a(2s) 
orthodox(Cr1)= 2.00 

 

loc-NDF3a(2p) 
orthodox(Cr1)= 2.00 

 

loc-NDF4a(2p) 
orthodox(Cr1)= 2.00 

 

loc-NDF1a(1s) 
orthodox(Cr1)= 2.00 

 

loc-NDF6b(3s) 
orthodox(Cr1) = 1.99 

 

MO1 MO4 MO3 MO2 MO1 MO21 

          
 

0.91 0.41 1.00 0.03 0.09 0.99 

MO2 MO5  MO4 MO2  

     

  
  

 

0.09 0.58  0.58 0.87  

   MO5 MO5 
 

       

 

   0.38 0.04 
 

Figure S3-1: The full compilation of Molecular orbitals through the NDF analysis for 
Cr(CO)5[C(OEt)(Me)]  with isovalues of a=0.0001au and b=0.001au and EV=Eigenvalue 
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EV61 EV60 EV59 EV58 EV57 EV56 
      

loc-NDF7b(3p) 

orthodox(Cr1) = 1.97 
 

loc-NDF8b(3p) 
orthodox(Cr1) = 1.96 

 

loc-NDF9b(3p) 
orthodox(Cr1)=1.96 

 

loc-NDF10b(t2g) 
orthodox(Cr1)=0.67 

 

loc-NDF11b(t2g) 

orthodox(Cr1)=0.56 
 

loc-NDF12b (t2g) 
orthodox(Cr1)= 0.49 

 

MO24 MO22 MO23 MO46 MO44 MO45 
 

  

 

  

 

 

 

 

0.98 0.99 0.99 0.02 0.04 0.03 

   MO67 MO65 MO66 

   

 

   

   0.96 0.96 0.96 

Figure S3-2: The full compilation of Molecular orbitals through the NDF analysis for 
Cr(CO)5[C(OEt)(Me)]  with isovalues of a=0.0001au and b=0.001au and EV=Eigenvalue 
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EV55 EV54 EV53 EV52 EV51 EV50 
      

loc-NDF13b(eg)  
orthodox(Cr1) = 0.13 

 

loc-NDF14b(eg) 
orthodox(Cr1) = 0.11 

 

loc-NDF15a(a1g) 
orthodox(Cr1) = 0.03 

 

loc-NDF16a(t1u) 
orthodox(Cr1) = 0.01 

 

loc-NDF17a(t1u) 

orthodox(Cr1) = 0.01 
loc-NDF18a(t1u)   

orthodox(Cr1) = 0.01 
 

MO39 MO38 MO33 MO35 MO36 MO36 

 

 

 

 

 

 

0.04 0.08 0.01 0.02 0.07 0.06 

MO43 MO56 MO34 MO39 MO37 MO37 

 

 

 

 

 

 

0.02 0.86 0.03 0.07 0.06 0.07 

MO49 MO58 MO35 MO41 MO46 MO46 

 

 

 

 

 

 

0.07 0.05 0.46 0.01 0.06 0.05 

MO57  MO41 MO42 MO47 MO47 

 

 

 

  

 

0.04  0.01 0.03 0.07 0.09 

MO59  MO42 MO43 MO48 MO48 

 

 

 

 

 

 

0.51  0.14 0.09 0.03 0.02 

 



166 
 

MO64  MO43 MO49 MO60 MO58 
 

 

 

 

 

 

0.28  0.26 0.03 0.26 0.01 

  MO49 MO59 MO61 MO60 

  

 

 
 

 

  0.04 0.22 0.34 0.31 

  MO64 MO62 MO62 MO61 

  

 

 

 

 

   0.08 0.03 0.28 

   MO63 MO62 MO64 

   

 

 

 

   0.04 0.02 0.39 

     
MO63 

 

     
 

     
0.05 

 

Figure S3-3: The full compilation of Molecular orbitals through the NDF analysis for 
Cr(CO)5[C(OEt)(Me)]  with isovalues of a=0.0001au and b=0.001au and EV=Eigenvalue 
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Table S8: The full list of Molecular Orbitals for Cr(CO)6 

Molecular Orbital Energy Isosurface Symmetry Label 

 

1 ‐215.808 0.0002 s or a1g 

 

2 ‐24.789 0.002 s or a1g 

 

3 ‐21.0874 0.002 p or t1u 

 

4 ‐21.0874 0.002 p or t1u 

 

5 ‐21.0874 0.002 p or t1u 

 

6 ‐19.2342 0.002 b1g 

 

7 ‐19.2342 0.002 a1g 
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8 ‐19.2342 0.002 eu 

 

9 ‐19.2342 0.002 eu 

 

10 ‐19.2342 0.002 eu 

 

11 ‐19.234 0.002 a1g 

 

12 ‐10.3196 0.002 eu 

 

13 ‐10.3196 0.002 eu 

 

14 ‐10.3196 0.002 eu 

 

15 ‐10.3196 0.002 a1g 
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16 ‐10.3195 0.002 t1u 

 

17 ‐10.3195 0.002 a1g 

 

18 ‐2.9052 0.002 s or a1g 

 

19 ‐1.85187 0.02 p or t1u 

 

20 ‐1.85187 0.02 p or t1u 

 

21 ‐1.85187 0.02 p or t1u 

 

22 ‐1.14387 0.02 a1g 

 

23 ‐1.14283 0.02 t1u 
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24 ‐1.14283 0.02 t1u 

 

25 ‐1.14283 0.02 t1u 

 

26 ‐1.14247 0.02 t1u 

 

27 ‐1.14247 0.02 a1g 

 

28 ‐0.61256 0.02 a1g 

 

29 ‐0.57053 0.02 eu 

 

30 ‐0.57053 0.02 eu 

 

31 ‐0.57053 0.02 eu 
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32 ‐0.56719 0.02 b1g 

 

33 ‐0.56719 0.02 a1g 

 

34 ‐0.51146 0.02 a1g 

 

35 ‐0.49002 0.02 t1g 

 

36 ‐0.49002 0.02 t1g 

 

37 ‐0.49002 0.02 t1g 

 

38 ‐0.48644 0.02 t2u 

 

39 ‐0.48644 0.02 t2u 
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40 ‐0.48644 0.02 t2u 

 

41 ‐0.47187 0.02 t2u 

 

42 ‐0.47187 0.02 t2u 

 

43 ‐0.47187 0.02 t2u 

 

44 ‐0.46527 0.02 t1g 

 

45 ‐0.46527 0.02 t1g 

 

46 ‐0.46527 0.02 t1g 

 

47 ‐0.45164 0.02 eg 
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48 ‐0.45164 0.02 eg 

 

49 ‐0.41885 0.02 t1u 

 

50 ‐0.41885 0.02 t1u 

 

51 ‐0.41885 0.02 t1u 

 

52 ‐0.25553 0.02 t2g 

 

53 ‐0.25553 0.02 t2g 

 

54 ‐0.25553 0.02 t2g 
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Appendix B  
 

Supplementary Information for Chapter 4  
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Section 1: Cartesian Coordinates and Energies of All Molecules Studied. 

 

Table B 1. 1. Cartesian coordinates of Cr(CO)5{C(OEt)((H)} single point calculation at 

CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr 0.0003 0.0000 -0.0367 

C 0.0000 0.0000 -0.0014 

O 0.0000 0.0000 0.0001 

C 0.0001 0.0000 0.0025 

O 0.0000 0.0000 0.0000 

C 0.0000 0.0000 0.0001 

O 0.0000 0.0000 0.0000 

C 0.0000 0.0001 -0.0015 

O 0.0000 0.0001 0.0001 

C 0.0000 0.0000 -0.0050 

O 0.0000 0.0000 0.0022 

C -0.0003 0.0021 0.3377 

O 0.0017 0.0005 -0.0421 

C -0.0184 -0.0186 -0.0159 

H -0.0078 0.0063 0.0003 

H 0.0067 -0.0084 0.0182 

C 0.3791 0.3778 -0.0013 

H -0.0167 -0.0179 0.0000 

H 0.5493 -0.0241 0.0002 

H -0.0241 0.5631 0.0003 
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H 0.0002 0.0003 0.6376 

  

Molecular Energy of Cr(CO)5{C(OEt)((H)}:  -1803.30058518 a.u. 

 

 

 

Table B 1. 2. Cartesian coordinates of Cr(CO)5{C(OEt)(CCH)} single point calculation at 

CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr -0.64426 0.0088 0.07138 

C -0.94801 -1.86568 0.32859 

O -1.11273 -2.98938 0.4902 

C -0.0348 -0.33919 -1.70901 

O 0.29502 -0.54257 -2.78825 

C -2.42129 0.24964 -0.59251 

O -3.4865 0.39322 -0.99694 

C -0.26001 1.87046 -0.15998 

O -0.01191 2.98315 -0.29064 

C -1.28105 0.35715 1.83426 

O -1.70388 0.57209 2.87995 

C 1.24177 -0.24962 0.72218 

O 2.21642 -0.57231 -0.10971 

C 3.60286 -0.73692 0.28298 

H 3.98517 -1.50987 -0.40147 

H 3.64449 -1.11853 1.31587 
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C 4.3653 0.56802 0.12723 

H 5.43437 0.40279 0.35098 

H 4.28207 0.94919 -0.905 

H 3.98438 1.33844 0.81944 

C 1.60088 -0.09601 2.09771 

C 1.79755 0.06246 3.29026 

H 1.95495 0.20614 4.34478 

  

Molecular Energy of Cr(CO)5{C(OEt)(CCH)}: -1879.34725695 a.u. 
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Table B 1. 3. Cartesian coordinates of Cr(CO)5{C(OEt)(CHCH2)} single point calculation at 

CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr 0.78239 -0.10041 -0.00318 

C 1.28446 1.19428 -1.3145 

O 1.61618 1.9557 -2.1078 

C 0.32891 -1.30483 -1.40846 

O 0.10761 -2.03601 -2.2686 

C 2.56092 -0.76456 -0.03181 

O 3.63942 -1.16451 -0.04814 

C 0.35119 -1.42245 1.29882 

O 0.15706 -2.2322 2.09265 

C 1.27762 1.09805 1.39907 

O 1.59544 1.80829 2.24377 

C -1.09636 0.75494 0.0397 

O -2.29365 0.21414 0.07715 

C -2.56694 -1.19843 0.11173 

H -2.24232 -1.5865 1.08975 

H -1.98475 -1.69657 -0.67658 

C -4.05803 -1.38859 -0.09094 

H -4.30032 -2.46483 -0.05468 

H -4.63417 -0.87717 0.69932 

H -4.37796 -0.99427 -1.07086 

C -1.25566 2.23131 0.02938 

H -0.33033 2.81246 0.04164 
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C -2.43184 2.88676 -0.0038 

H -3.38718 2.35201 -0.02229 

H -2.46243 3.98237 -0.01715 

  

Molecular Energy of Cr(CO)5{C(OEt)(CHCH2)}: -1880.59449520 a.u. 

Table B 1. 4. Cartesian coordinates of Cr(CO)5{C(OEt)(CHCHPh)} single point calculation 

at CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr 1.94168 -0.51579 0.00117 

C 1.09657 -1.62512 1.30284 

O 0.61641 -2.31163 2.08951 

C 2.72963 0.4861 1.41654 

O 3.23529 1.04817 2.2842 

C 3.42923 -1.68794 0.01851 

O 4.33154 -2.40302 0.0278 

C 2.84739 0.5458 -1.29493 

O 3.44134 1.13381 -2.08616 

C 1.16404 -1.5428 -1.40689 

O 0.71145 -2.17297 -2.25438 

C 0.22103 0.65533 -0.02854 

O 0.07602 1.96685 -0.05708 

C 1.15037 2.91943 -0.10548 

H 1.6341 2.84509 -1.09207 

H 1.8902 2.67113 0.66901 

C 0.55988 4.29971 0.11409 
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H 1.36313 5.05558 0.07095 

H -0.18461 4.54146 -0.66406 

H 0.07177 4.36886 1.10159 

C -1.10721 0.02965 -0.01881 

H -1.1169 -1.06156 -0.0071 

C -2.28716 0.70847 -0.02276 

H -2.23664 1.80237 -0.03601 

C -3.63587 0.14849 -0.01017 

C -3.90235 -1.2394 0.01658 

C -4.73356 1.0367 -0.02513 

C -5.2125 -1.71235 0.02693 

H -3.07688 -1.95566 0.03065 

C -6.04603 0.56249 -0.01499 

H -4.54522 2.11488 -0.04523 

C -6.28973 -0.81462 0.01099 

H -5.3993 -2.79024 0.04803 

H -6.88152 1.26888 -0.02716 

H -7.31717 -1.19118 0.01931 

  

Molecular Energy of Cr(CO)5{C(OEt)(CHCHPh)}:  -2111.35055333 a.u. 
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Table B 1. 5. Cartesian coordinates of Cr(CO)5{C(NMe2)(H)} single point calculation at 

CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr 0.58736 0.01555 0.00008 

C 0.97327 1.30757 -1.34744 

O 1.21332 2.08592 -2.15928 

C 0.17423 -1.25466 -1.35229 

O -0.06304 -2.0234 -2.17578 

C 2.39255 -0.53756 0.00008 

O 3.49395 -0.87738 -0.0001 

C 0.17382 -1.25464 1.35226 

O -0.06371 -2.02339 2.17568 

C 0.97311 1.30743 1.3477 

O 1.21314 2.08564 2.15968 

C -1.34138 0.77024 -0.00021 

H -1.40789 1.87281 -0.00047 

N -2.56893 0.29252 -0.0002 

C -2.89611 -1.13367 0.00002 

H -3.49467 -1.37735 0.89562 

H -3.49275 -1.37812 -0.89667 

H -1.98033 -1.73265 0.00124 

C -3.76201 1.1491 -0.00026 

H -4.37489 0.94217 -0.89561 

H -4.37428 0.94311 0.89572 

H -3.4634 2.20712 -0.00092 
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Molecular Energy of Cr(CO)5{C(NMe2)(H)}: -1783.46135026 a.u. 
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Table B 1. 6. Cartesian coordinates of Cr(CO)5{C(NMe2)(CCH)} single point calculation at 

CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr 0.55005 0.07546 0.00044 

C 1.03431 1.34508 -1.3465 

O 1.35942 2.09715 -2.15038 

C 0.11231 -1.16738 -1.37189 

O -0.12314 -1.91811 -2.21178 

C 2.31996 -0.57701 0.00074 

O 3.39758 -0.98273 0.00102 

C 0.11216 -1.16662 1.37341 

O -0.12332 -1.91691 2.21369 

C 1.03401 1.34584 1.34676 

O 1.35898 2.09836 2.15028 

C -1.42285 0.88098 -0.00011 

N -2.6285 0.31 -0.00051 

C -2.83723 -1.13505 -0.00042 

H -3.41596 -1.42629 0.89478 

H -3.41251 -1.42701 -0.89762 

H -1.88162 -1.66396 0.00163 

C -3.90107 1.04245 -0.00128 

H -4.48686 0.76696 -0.89673 

H -4.48715 0.76844 0.89445 

H -3.72331 2.12497 -0.00214 

C -1.43586 2.30876 -0.00026 
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C -1.34731 3.52415 -0.00034 

H -1.24423 4.59447 -0.00045 

  

Molecular Energy of Cr(CO)5{C(NMe2)(CCH)}:  -1859.50508810 a.u. 

 

Table B 1. 7. Cartesian coordinates of Cr(CO)5{C(NMe2)(CHCH2)} single point calculation 

at CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr 0.77475 -0.01979 0.00153 

C 0.89722 1.71866 -0.78016 

O 1.02505 2.75607 -1.25767 

C 0.61938 -0.74839 -1.74864 

O 0.54624 -1.17672 -2.81487 

C 2.6468 -0.14849 -0.08857 

O 3.79584 -0.23366 -0.1443 

C 0.75026 -1.74274 0.80294 

O 0.79428 -2.77873 1.30443 

C 0.90295 0.74242 1.73902 

O 0.99728 1.2042 2.78921 

C -1.36196 0.19334 0.15135 

C -1.79091 1.58234 0.44178 

H -1.3783 2.02224 1.35894 

C -2.49029 2.36929 -0.39259 

H -2.87901 2.00133 -1.35066 

H -2.6528 3.4285 -0.16325 



185 
 

N -2.33034 -0.70225 0.04504 

C -3.7516 -0.47144 0.37018 

H -4.35638 -0.42965 -0.55275 

H -4.10916 -1.31652 0.98279 

H -3.8787 0.4642 0.92595 

C -2.10658 -2.09408 -0.35835 

H -2.11314 -2.75424 0.52673 

H -2.92233 -2.40352 -1.03331 

H -1.15288 -2.19651 -0.88242 

 

 Molecular Energy of Cr(CO)5{C(NMe2)(CHCH2)}: -1860.74376978 a.u. 

 

Table B 1. 8. Cartesian coordinates of Cr(CO)5{C(NMe2)(CHCHPh)} single point 

calculation at CAM-B3LYP/dev2svp(p) level in n-hexane.  

Atom X Y Z 

Cr -1.84291 -0.50768 -0.06475 

C -0.48661 -1.58558 -0.87209 

O 0.28812 -2.27336 -1.36938 

C -2.25105 0.19096 -1.78644 

O -2.50097 0.59042 -2.83706 

C -3.05718 -1.91716 -0.32242 

O -3.80781 -2.77892 -0.48038 

C -3.24895 0.47676 0.75033 

O -4.13174 1.01795 1.25498 

C -1.38681 -1.19602 1.64684 
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O -1.1155 -1.62571 2.68003 

C -0.4024 1.05935 0.28167 

C 0.95341 0.54968 0.56098 

H 1.01774 -0.22572 1.33187 

C 2.0461 0.8299 -0.18828 

H 1.94691 1.57244 -0.9908 

N -0.54946 2.37746 0.28476 

C 0.44725 3.34951 0.77359 

H 0.90487 3.89787 -0.06854 

H -0.06975 4.07839 1.42108 

H 1.23422 2.84655 1.34727 

C -1.78109 3.05609 -0.1286 

H -2.36994 3.35736 0.75567 

H -1.51336 3.9633 -0.69641 

H -2.38653 2.40584 -0.7654 

C 3.37588 0.21456 -0.08969 

C 3.68757 -0.82239 0.81603 

C 4.40341 0.68408 -0.93413 

C 4.97412 -1.3558 0.87757 

H 2.91436 -1.22497 1.47611 

C 5.69256 0.15021 -0.87286 

H 4.18213 1.48295 -1.64975 

C 5.98434 -0.87247 0.0348 

H 5.1915 -2.16127 1.58591 

H 6.47172 0.53273 -1.5395 
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H 6.99197 -1.2964 0.08396 

  

Molecular Energy of Cr(CO)5{C(NMe2)(CHCHPh)}: -2091.49689229 a.u. 

 

Section 2: Inter-fragment delocalization of all the molecules in their respective 

fragments. 

 

Table B 2. 1. Inter-fragment Delocalization when X=OEt. 

Fragment A Fragment B 
Delocalized electrons 

R=H R=CHCH2 R=CHCHPh R=CCH 

[M] Ccarbene 1.3367 1.1463 1.1082 1.2059 

[M] [X] 0.2440 0.3190 0.3085 0.2403 

[M] [R] 0.0601 0.2182 0.2318 0.2441 

[M] [L] 1.6408 1.6835 1.6484 1.6903 

[X] [R] 0.1362 0.2548 0.2759 0.2977 

 

Several key features stand out. The [M]⋯Ccarbene decreases with more conjugation when 

X=OEt except when R= -CHCHPh. For the [M]⋯[X] adding the Phenyl (Ph) group decreases 

this interaction, suggesting the Ph absorbs electron density from the X=OEt. The [M]⋯[R] 

increases perfectly with more conjugation as the R-group becomes richer in electron density 

the [M]⋯[R] interaction strengthens. With the [M]⋯[L] interaction the Ph takes away density 

suggesting the Ph is likely acting as a π-accepting group. Finally, the [X]⋯[R] group follows 

the trend of the [M]⋯[R] group increasing with more conjugation, so the more conjugation that 

is added the more the X- and R-group interact. 

Table B 2. 2. Inter-fragment Delocalization when X=NMe2. 

Fragment A Fragment B 
Delocalized electrons 

R=H R=CHCH2 R=CHCHPh R=CCH 

[M] Ccarbene 1.1048 0.9326 0.9273 0.9427 

[M] [X] 0.2866 0.2949 0.2938 0.2959 

[M] [R] 0.0546 0.2200 0.2286 0.2328 
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[M] [L] 1.4460 1.4475 1.4497 1.4713 

[X] [R] 0.1455 0.3133 0.3340 0.3453 

 

Similar to X=OEt the [M]⋯Ccarbene decreases with more conjunction when X=NMe2 except 

when R= -CCH. For the [M]⋯[X] adding the phenyl (Ph) decreases this interaction suggesting 

the Ph absorbs electron density from the X=NMe2. Then [M]⋯[R] increases perfectly with 

more conjugation as the R-group becomes richer in electron density the [M]⋯[R] interaction 

strengthens. The [M]⋯[L] increases with more conjugation and finally the [X]⋯[R] group 

follows the trend of the [M]⋯[R] group increasing with conjugation, so the more conjugation 

that is added the more the X- and R-group interact. 

Section 3: Method of assigning symmetry labels (LMAT) and correlating to the DI 

contribution (DMAT) on a Molecular orbital level.   

 

This section shows how the results that follow were obtained in terms of achieving the 

symmetry classifications linked to the DI values of the complexes. All the molecules 

followed the same procedure:  

1. FALDI was run to obtain the LMAT of the metal centre (Cr) from which the loc-NDFs 

can be obtained in the investigation of ሾ𝑈௜௝
஺஺ሿଶ and symmetry labels assigned through 

visual analysis of the loc-NDF. 

2. FALDI was run to obtain the DMAT and designated into Fragments. The fragments 

decomposed into the DI contribution of each MO. This was run twice, once for all the 

fragments and a second time for the [M]⋯[L] fragment (illustrated below). 

3. The DMAT MOs were then correlated to the LMAT assigned symmetry of the MOs 

and their percentage contributions were weighted with respect to the DI value and the 

weighted molecular energy of the orbital was calculated with its DI contribution. 

4. For illustration purposes we demonstrate the process using Cr(CO)5{C(OEt)(H)} 

providing the full data set. 

 

All Tables below (B 3.) have been simplified by inserting blank spaces where the cell value 

is less than 0.01, in the energetics (Table B 3. 7.) the blank inserts were for cell values above 

-0.001 (since all orbitals considered had negative energies). 
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Table B 3. 1. The LMAT for Cr and visual assignment symmetry labels to the loc-NDFs followed by the MOs for Cr(CO)5{C(OEt)(H)}. 

 
a1g a1g t1u t1u t1u a1g t1u t1u t1u t2g t2g t2g eg eg a1g t1u t1u t1u NL  MO Classifications 

   

Evec 

Matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19   a1g t1u t2g eg NL 
 

Ratio 

Character 

1 

Character 

2 

MO1 0.91 0.09 
                 

  1.00 
     

1.00 a1g 
 

MO2 0.09 0.88 
 

0.03 
               

  0.97 0.03 
    

0.97 a1g 
 

MO3 
    

1.00 
              

  
 

1.00 
    

1.00 t1u 
 

MO4 
 

0.02 0.33 0.65 
               

  0.02 0.98 
    

0.98 t1u 
 

MO5 
 

0.01 0.67 0.32 
               

  0.01 0.99 
    

0.99 t1u 
 

MO6 
                   

  
    

1.00 
 

1.00 NL 
 

MO7 
                   

  
    

1.00 
 

1.00 NL 
 

MO8 
                   

  
    

1.00 
 

1.00 NL 
 

MO9 
                   

  
    

1.00 
 

1.00 NL 
 

MO10   1.00 1.00 NL 

MO11   1.00 1.00 NL 

MO12 
                   

  
    

1.00 
 

1.00 NL 
 

MO13 
                   

  
    

1.00 
 

1.00 NL 
 

MO14 
                   

  
    

1.00 
 

1.00 NL 
 

MO15 
                   

  
    

1.00 
 

1.00 NL 
 

MO16 
                   

  
    

1.00 
 

1.00 NL 
 

MO17 
                   

  
    

1.00 
 

1.00 NL 
 

MO18 
                   

  
    

1.00 
 

1.00 NL 
 

MO19 
                   

  
    

1.00 
 

1.00 NL 
 

MO20 
     

1.00 
             

  1.00 
     

1.00 a1g 
 

MO21 
        

0.99 
          

  
 

1.00 
    

1.00 t1u 
 

MO22 
      

0.05 0.94 
           

  
 

1.00 
    

1.00 t1u 
 

MO23 
      

0.94 0.05 
           

  
 

1.00 
    

1.00 t1u 
 

MO24 
                   

  
    

1.00 
 

1.00 NL 
 

MO25 
                   

  
    

1.00 
 

1.00 NL 
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MO26 
                   

  
    

1.00 
 

1.00 NL 
 

MO27 
                   

  
    

1.00 
 

1.00 NL 
 

MO28 
                   

  
    

1.00 
 

1.00 NL 
 

MO29 
                   

  
    

1.00 
 

1.00 NL 
 

MO30 
                   

  
    

0.99 
 

1.00 NL 
 

MO31 
              

0.02 
    

  0.02 
   

0.96 
 

0.98 NL 
 

MO32 
              

0.04 
   

0.12   0.04 0.01 
  

0.94 
 

0.95 NL 
 

MO33 
              

0.46 0.02 
   

  0.46 0.02 
  

0.52 
 

0.11 NL a1g 

MO34 
                

0.01 0.12 
 

  
 

0.13 
  

0.87 
 

0.85 NL t1u 

MO35 
                

0.11 0.01 0.02   
 

0.13 
  

0.87 
 

0.85 NL t1u 

MO36 
             

0.07 
     

  
   

0.08 0.92 
 

0.91 NL 
 

MO37 
            

0.03 
  

0.07 
   

  
 

0.07 
 

0.04 0.89 
 

0.92 NL 
 

MO38 
                  

0.25   
    

1.00 
 

1.00 NL 
 

MO39 
            

0.01 
 

0.08 0.02 
  

0.10   0.08 0.02 
 

0.01 0.88 
 

0.91 NL 
 

MO40 0.26 0.03   0.26 0.01 0.73 0.65 NL a1g 

MO41 
            

0.01 
 

0.07 0.07 
   

  0.07 0.08 
 

0.01 0.82 
 

0.90 NL t1u 

MO42 
          

0.04 
        

  
  

0.04 
 

0.95 
 

0.95 NL 
 

MO43 
           

0.02 
     

0.08 
 

  
 

0.08 0.03 
 

0.89 
 

0.91 NL 
 

MO44 
         

0.02 
      

0.11 
 

0.20   
 

0.11 0.02 
 

0.87 
 

0.87 NL t1u 

MO45 
               

0.05 
 

0.06 
 

  
 

0.11 
  

0.87 
 

0.87 NL t1u 

MO46 
                

0.03 
 

0.13   
 

0.03 0.01 
 

0.96 
 

0.97 NL 
 

MO47 
            

0.02 
  

0.01 
 

0.04 
 

  
 

0.05 
 

0.02 0.92 
 

0.95 NL 
 

MO48 
                   

  
    

1.00 
 

1.00 NL 
 

MO49 
                   

  
    

0.99 
 

0.99 NL 
 

MO50 
                   

  
    

1.00 
 

1.00 NL 
 

MO51 
                   

  
    

0.99 
 

0.99 NL 
 

MO52 
            

0.10 0.68 
     

  
   

0.78 0.22 
 

0.72 eg NL 

MO53 
            

0.25 0.23 
 

0.02 
  

0.02   
 

0.02 
 

0.48 0.49 
 

0.03 NL eg 

MO54 
            

0.05 
  

0.02 0.01 0.01 0.01   
 

0.04 
 

0.05 0.91 
 

0.95 NL 
 

MO55 
            

0.20 
  

0.26 
 

0.03 
 

  
 

0.29 
 

0.20 0.51 
 

0.42 NL t1u 
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MO56 
               

0.01 0.01 0.51 
 

  
 

0.54 
  

0.46 
 

0.15 t1u NL 

MO57 
                

0.66 0.01 
 

  
 

0.68 
  

0.32 
 

0.54 t1u NL 

MO58 
               

0.01 
 

0.07 
 

  
 

0.09 
  

0.90 
 

0.90 NL 
 

MO59 
               

0.01 
 

0.03 
 

  
 

0.04 
  

0.95 
 

0.96 NL 
 

MO60 
            

0.30 
 

0.03 0.37 
  

0.03   0.03 0.38 
 

0.30 0.29 
 

0.21 t1u eg 

MO61 
          

0.85 0.11 
       

  
  

0.95 
 

0.05 
 

0.95 t2g 
 

MO62 
          

0.11 0.85 
       

  
  

0.95 
 

0.05 
 

0.95 t2g 
 

MO63 
         

0.96 
        

0.03   
  

0.96 
 

0.04 
 

0.96 t2g 
 

                    
  

         
Cr1_EVals NDF1 NDF2 NDF3 NDF4 NDF5 NDF6 NDF7 NDF8 NDF9 NDF10 NDF11 NDF12 NDF13 NDF14 NDF15 NDF16 NDF17 NDF18 NDF19   

         

 
2.00 2.00 2.00 2.00 2.00 1.99 1.97 1.96 1.96 0.71 0.60 0.51 0.12 0.09 0.03 0.01 0.01 0.01 0.00   

         

 
a1g a1g t1u t1u t1u a1g t1u t1u t1u t2g t2g t2g eg eg a1g t1u t1u t1u NL   

         

 

                   

       

loc-NDF1a(1s) 

orthodox(Cr1) = 2.00 

 

loc-NDF2a(2s) 

orthodox(Cr1) = 2.00 

 

loc-NDF3a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF4a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF5a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF6b(3s)  

orthodox(Cr1) = 1.99 

 

loc-NDF7b(3p) 

orthodox(Cr1) = 1.97 
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loc-NDF8b(3p)  

orthodox(Cr1) = 1.96 

 

loc-NDF9b(3p) 

orthodox(Cr1) = 1.96 

 

loc-NDF10b(t2g) 

orthodox(Cr1) = 0.71 

 

loc-NDF11b(t2g) 

orthodox(Cr1) = 0.60 

 

loc-NDF12b (t2g) 

orthodox(Cr1) = 0.51 

 

loc-NDF13b(eg) 

orthodox(Cr1) = 0.12 

 

loc-NDF14b(eg)   

orthodox(Cr1) = 0.09 

 

 

     

 

 loc-NDF15a(a1g)   

orthodox(Cr1) = 0.03 

 

loc-NDF16a(t1u)   

orthodox(Cr1) = 0.01 

 

loc-NDF17a(t1u)   

orthodox(Cr1) = 0.01 

 

loc-NDF18a(t1u)   

orthodox(Cr1) = 0.01 

 

loc-NDF19a(NL)   

orthodox(Cr1) = 0.00 
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Figure B 3. 1. The Localized (loc) Natural Density Functions (NDF’s) of Cr(CO)5{C(OEt)(H)} centered on the Chromium atom. The Isovalues 

are indicated as a = 0.0001 a.u. and b = 0.001 a.u. while λnumber refers to the eigenvalue retrieved from the Orthodox Localised Matrix. 
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Table B 3. 2. The DMATs MO contributions to inter-fragment population ([M]⋯[L] DI-value) for Cr(CO)5{C(OEt)(H)}. 

Fragment 

A 

Fragment 

B 
MO1 MO2 MO3 MO4 MO5 MO6 MO7 MO8 MO9 MO10 MO11 MO12 MO13 MO14 MO15 MO16 MO17 MO18 

[M] [L] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

MO19 MO20 MO21 MO22 MO23 MO24 MO25 MO26 MO27 MO28 MO29 MO30 MO31 MO32 MO33 MO34 MO35 MO36 MO37 

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.01 0.01 0.00 0.00 

 

MO38 MO39 MO40 MO41 MO42 MO43 MO44 MO45 MO46 MO47 MO48 MO49 MO50 MO51 MO52 MO53 MO54 MO55 MO56 

0.01 0.06 0.02 0.02 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.06 0.01 0.01 0.05 

 

MO57 MO58 MO59 MO60 MO61 MO62 MO63 

0.03 0.02 0.02 0.49 0.04 0.46 0.13 
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Table B 3. 3. The DMATs DI values correlated to the MO symmetry labels of the Cr LMAT for the [M] ⋯[L] of Cr(CO)5{C(OEt)(H)}. 

 

DI 

Contribution a1g t1u t2g eg NL 
 

 Ratio 

Character 

1 

Character 

2 

MO60 0.49 
 

0.03 0.38 
 

0.30 0.29 
 

0.21 t1u eg 

MO62 0.46 
   

0.95 
 

0.05 
 

0.95 t2g  

MO63 0.13 
   

0.96 
 

0.04 
 

0.96 t2g  

MO53 0.06 
  

0.02 
 

0.48 0.49 
 

0.03 NL eg 

MO39 0.06 
 

0.08 0.02 
 

0.01 0.88 
 

0.91 NL  

MO56 0.05 
  

0.54 
  

0.46 
 

0.15 t1u NL 

MO61 0.04 
   

0.95 
 

0.05 
 

0.95 t2g  

MO57 0.03 
  

0.68 
  

0.32 
 

0.54 t1u NL 

MO32 0.03 0.04 0.01 0.94 0.95 NL  

MO45 0.02 0.11 0.87 0.87 NL t1u 

MO40 0.02 
 

0.26 0.01 
  

0.73 
 

0.65 NL a1g 

MO58 0.02 
  

0.09 
  

0.90 
 

0.90 NL  

MO41 0.02 
 

0.07 0.08 
 

0.01 0.82 
 

0.90 NL t1u 

MO52 0.02 
    

0.78 0.22 
 

0.72 eg NL 

MO31 0.02 
 

0.02 
   

0.96 
 

0.98 NL  

MO59 0.02 
  

0.04 
  

0.95 
 

0.96 NL  

MO33 0.02 
 

0.46 0.02 
  

0.52 
 

0.11 NL a1g 

MO47 0.01 
  

0.05 
 

0.02 0.92 
 

0.95 NL  

MO23 0.01 
  

1.00 
    

1.00 t1u  

MO46 0.01 
  

0.03 0.01 
 

0.96 
 

0.97 NL  

MO38 0.01 
     

1.00 
 

1.00 NL  

MO55 0.01 
  

0.29 
 

0.20 0.51 
 

0.42 NL t1u 
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MO34 
   

0.13 
  

0.87 
 

0.85 NL t1u 

MO35 
   

0.13 
  

0.87 
 

0.85 NL t1u 

MO48 
      

1.00 
 

1.00 NL  

MO54 
   

0.04 
 

0.05 0.91 
 

0.95 NL  

MO51 
      

0.99 
 

0.99 NL  

MO30 
      

0.99 
 

1.00 NL  

MO42 
    

0.04 
 

0.95 
 

0.95 NL  

MO43 
   

0.08 0.03 
 

0.89 
 

0.91 NL  

MO49 
      

0.99 
 

0.99 NL  

MO29 
      

1.00 
 

1.00 NL  

MO36 
     

0.08 0.92 
 

0.91 NL  

MO20 
  

1.00 
     

1.00 a1g  

MO22 1.00 1.00 t1u  

MO21 1.00 1.00 t1u  

MO37 
   

0.07 
 

0.04 0.89 
 

0.92 NL  

MO44 
   

0.11 0.02 
 

0.87 
 

0.87 NL t1u 

MO27 
      

1.00 
 

1.00 NL  

MO50 
      

1.00 
 

1.00 NL  

MO24 
      

1.00 
 

1.00 NL  

MO26 
      

1.00 
 

1.00 NL  

MO25 
      

1.00 
 

1.00 NL  

MO17 
      

1.00 
 

1.00 NL  

MO28 
      

1.00 
 

1.00 NL  

MO15 
      

1.00 
 

1.00 NL  

MO13 
      

1.00 
 

1.00 NL  

MO14 
      

1.00 
 

1.00 NL  
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MO12 
      

1.00 
 

1.00 NL  

MO4 
  

0.02 0.98 
    

0.98 t1u  

MO6 
      

1.00 
 

1.00 NL  

MO16 
      

1.00 
 

1.00 NL  

MO3 
   

1.00 
    

1.00 t1u  

MO2 
  

0.97 0.03 
    

0.97 a1g  

MO5 
  

0.01 0.99 
    

0.99 t1u  

MO10 
      

1.00 
 

1.00 NL  

MO9 
      

1.00 
 

1.00 NL  

MO18 
      

1.00 
 

1.00 NL  

MO8 
      

1.00 
 

1.00 NL  

MO7 
      

1.00 
 

1.00 NL  

MO19 1.00 1.00 NL  

MO11 1.00 1.00 NL  

MO1 
  

1.00 
     

1.00 a1g  

           
 

Sum 1.64 
         

 

Absolute 

Sum 1.64 
         

 

 

Table B 3. 4. The MO DI Contributions of Cr(CO)5{C(OEt)(H)} for [M]⋯[L]. 

 
a1g t1u t2g eg NL 

 
Sum 

MO60 0.02 0.19 
 

0.15 0.14 
 

0.49 

MO62 
  

0.44 
 

0.02 
 

0.46 
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MO63 
  

0.13 
   

0.13 

MO53 
   

0.03 0.03 
 

0.06 

MO39 
    

0.05 
 

0.06 

MO56 
 

0.02 
  

0.02 
 

0.05 

MO61 
  

0.04 
   

0.04 

MO57 
 

0.02 
  

0.01 
 

0.03 

MO32 
    

0.02 
 

0.03 

MO45 
    

0.02 
 

0.02 

MO40 
    

0.02 
 

0.02 

MO58 
    

0.02 
 

0.02 

MO41 
    

0.02 
 

0.02 

MO52 0.02 0.02 

MO31 
    

0.02 
 

0.02 

MO59 
    

0.02 
 

0.02 

MO33 
      

0.02 

MO47 
    

0.01 
 

0.01 

MO23 
 

0.01 
    

0.01 

MO46 
    

0.01 
 

0.01 

MO38 
    

0.01 
 

0.01 

MO55 
      

0.01 

 

Table B 3. 5. A summary of the DI values in the assigned symmetry labels for Cr(CO)5{C(OEt)(H)} for the [M]⋯[L] interaction and the MOs 

which contribute most to the interaction. 
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Summary 
     

Sigma/Pi 

 

DI 

Contribution 

Absolute 

Contribution % 
 

Metal 

% 
 

Contribution % 

a1g 0.0395 0.0395 2.40 
 

3.55  0.5064 30.86 

t1u 0.2691 0.2691 16.40 
 

24.23  0.6045 36.84 

t2g 0.6045 0.6045 36.84 
 

54.42 NL 0.5299 32.30 

eg 0.1978 0.1978 12.05 
 

17.80 
   

NL 0.5299 0.5299 32.30 
     

         
Total 1.6408 1.6408 

      

Significant MOs 
       

         

 

DI 

Contribution Ratio 

Character 

1 

Character 

2 
 

% Running 
 

MO60 0.49 0.212567912 t1u eg 
 

30.04 30.04 
 

MO62 0.46 0.948687499 t2g 
  

28.27 58.31 
 

MO63 0.13 0.95899982 t2g 
  

7.98 66.30 
 

MO53 0.06 0.031975242 NL eg 
 

3.91 70.21 
 

MO39 0.06 0.910341955 NL 
  

3.46 73.66 
 

MO56 0.05 0.147637959 t1u NL 
 

2.82 76.48 
 

MO61 0.04 0.952197392 t2g 
  

2.25 78.73 
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MO57 0.03 0.536998562 t1u NL 
 

1.94 80.67 
 

 

Table B 3. 6. The DMATs DI values correlated energies of the MOs with symmetry labels of the LMAT for Cr(CO)5{C(OEt)(H)} for the 

[M]⋯[L] interaction. 

    
MO Classifications 

MO 

DI 

contribution MO Energy (a.u.) a1g t1u t2g eg NL 
 

Ratio Character 1 Character 2 

MO1 0.000 -215.840 
 

0.997 0.003 
    

0.997 a1g 
 

MO2 0.000 -24.820 
 

0.971 0.029 
    

0.970 a1g 
 

MO3 0.000 -21.123 1.000 1.000 t1u 

MO4 0.000 -21.120 0.019 0.981 0.981 t1u 

MO5 0.000 -21.119 
 

0.014 0.986 
    

0.986 t1u 
 

MO6 0.000 -19.293 
     

1.000 
 

1.000 NL 
 

MO7 0.000 -19.285 
     

1.000 
 

1.000 NL 
 

MO8 0.000 -19.285 
     

1.000 
 

1.000 NL 
 

MO9 0.000 -19.284 
     

1.000 
 

1.000 NL 
 

MO10 0.000 -19.282 
     

1.000 
 

1.000 NL 
 

MO11 0.000 -19.278 
     

1.000 
 

1.000 NL 
 

MO12 0.000 -10.376 
     

1.000 
 

1.000 NL 
 

MO13 0.000 -10.376 
     

1.000 
 

1.000 NL 
 

MO14 0.000 -10.370 
     

1.000 
 

1.000 NL 
 

MO15 0.000 -10.370 
     

1.000 
 

1.000 NL 
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MO16 0.000 -10.369 
     

1.000 
 

1.000 NL 
 

MO17 0.000 -10.355 
     

1.000 
 

1.000 NL 
 

MO18 0.000 -10.340 
     

1.000 
 

1.000 NL 
 

MO19 0.000 -10.272 
     

1.000 
 

1.000 NL 
 

MO20 0.002 -2.945 
 

0.998 0.002 
    

0.998 a1g 
 

MO21 0.002 -1.896 
  

1.000 
    

1.000 t1u 
 

MO22 0.002 -1.890 
  

1.000 
    

1.000 t1u 
 

MO23 0.014 -1.887 
 

0.002 0.998 
    

0.998 t1u 
 

MO24 0.000 -1.200 
 

0.002 
   

0.998 
 

0.998 NL 
 

MO25 0.000 -1.199 
  

0.002 
  

0.998 
 

0.998 NL 
 

MO26 0.000 -1.197 
     

0.999 
 

0.999 NL 
 

MO27 0.001 -1.197 0.001 0.998 0.999 NL 

MO28 0.000 -1.192 
  

0.001 
  

0.999 
 

0.999 NL 
 

MO29 0.003 -1.188 
  

0.001 
  

0.998 
 

0.999 NL 
 

MO30 0.005 -0.878 
 

0.003 0.003 
 

0.001 0.992 
 

0.997 NL 
 

MO31 0.020 -0.763 
 

0.022 0.009 
 

0.006 0.963 
 

0.977 NL 
 

MO32 0.025 -0.696 
 

0.045 0.011 
 

0.004 0.940 
 

0.952 NL 
 

MO33 0.018 -0.656 
 

0.458 0.022 
 

0.003 0.516 
 

0.112 NL a1g 

MO34 0.008 -0.623 
  

0.132 
  

0.868 
 

0.848 NL t1u 

MO35 0.008 -0.622 
  

0.130 
 

0.001 0.868 
 

0.850 NL t1u 

MO36 0.003 -0.618 
  

0.004 
 

0.078 0.917 
 

0.914 NL 
 

MO37 0.002 -0.615 
  

0.068 
 

0.039 0.893 
 

0.924 NL 
 

MO38 0.011 -0.606 
   

0.004 
 

0.995 
 

0.996 NL 
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MO39 0.057 -0.576 
 

0.079 0.024 0.002 0.012 0.883 
 

0.910 NL 
 

MO40 0.021 -0.557 
 

0.258 0.011 0.003 0.001 0.727 
 

0.645 NL a1g 

MO41 0.021 -0.544 
 

0.073 0.085 0.007 0.014 0.822 
 

0.897 NL t1u 

MO42 0.005 -0.538 
  

0.002 0.045 
 

0.953 
 

0.953 NL 
 

MO43 0.004 -0.533 
  

0.082 0.025 
 

0.893 
 

0.908 NL 
 

MO44 0.001 -0.533 
  

0.110 0.018 
 

0.872 
 

0.873 NL t1u 

MO45 0.022 -0.528 
 

0.008 0.114 0.003 0.008 0.867 
 

0.869 NL t1u 

MO46 0.013 -0.524 
  

0.032 0.010 
 

0.958 
 

0.967 NL 
 

MO47 0.014 -0.524 
 

0.010 0.048 0.004 0.016 0.922 
 

0.947 NL 
 

MO48 0.007 -0.517 
  

0.001 
  

0.998 
 

0.999 NL 
 

MO49 0.003 -0.511 
  

0.008 
  

0.991 
 

0.992 NL 
 

MO50 0.001 -0.510 1.000 1.000 NL 

MO51 0.006 -0.510 
  

0.009 
 

0.002 0.989 
 

0.991 NL 
 

MO52 0.020 -0.493 
 

0.003 0.004 
 

0.777 0.216 
 

0.722 eg NL 

MO53 0.064 -0.485 
 

0.005 0.021 
 

0.479 0.495 
 

0.032 NL eg 

MO54 0.006 -0.478 
  

0.044 
 

0.046 0.909 
 

0.950 NL 
 

MO55 0.010 -0.473 
  

0.294 
 

0.197 0.508 
 

0.420 NL t1u 

MO56 0.046 -0.466 
  

0.538 0.002 
 

0.459 
 

0.148 t1u NL 

MO57 0.032 -0.456 
  

0.682 
 

0.002 0.316 
 

0.537 t1u NL 

MO58 0.021 -0.440 
  

0.087 0.003 0.006 0.904 
 

0.904 NL 
 

MO59 0.018 -0.432 
  

0.041 0.003 0.006 0.950 
 

0.957 NL 
 

MO60 0.493 -0.359 
 

0.031 0.378 0.002 0.298 0.291 
 

0.213 t1u eg 

MO61 0.037 -0.277 
   

0.954 
 

0.046 
 

0.952 t2g 
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MO62 0.464 -0.273 
   

0.951 
 

0.049 
 

0.949 t2g 
 

MO63 0.131 -0.267 
   

0.960 
 

0.039 
 

0.959 t2g 
 

             
Sum 1.641 -536.229 

          
Abs 

Sum 1.641 536.229 
          

 

Table B 3. 7. The MO DI valued weighted energetic contributions for Cr(CO)5{C(OEt)(H)} for the [M]⋯[L] interaction. 

MO a1g t1u t2g eg NL 
 

Sum 
 

Summary 
 

MO1 0.000 

Energy 

(a.u.) 

MO2 
      

0.000 
 

a1g -0.023 

MO3 
      

0.000 
 

t1u -0.125 

MO4 
      

0.000 
 

t2g -0.164 

MO5 
      

0.000 
 

eg -0.075 

MO6 
      

0.000 
 

NL -0.257 

MO7 
      

0.000 
   

MO8 
      

0.000 
 

Total -0.645 

MO9 
      

0.000 
   

MO10 
      

0.000 
   

MO11 
      

0.000 
   

MO12 
      

0.000 
   



204 
 

MO13 
      

0.000 
   

MO14 
      

0.000 
   

MO15 
      

0.000 
   

MO16 
      

0.000 
   

MO17 
      

0.000 
   

MO18 
      

0.000 
   

MO19 
      

0.000 
   

MO20 -0.007 
     

-0.007 
   

MO21 
 

-0.004 
    

-0.004 
   

MO22 
 

-0.004 
    

-0.004 
   

MO23 
 

-0.027 
    

-0.027 
   

MO24 0.000 

MO25 
      

0.000 
   

MO26 
      

0.000 
   

MO27 
      

0.000 
   

MO28 
      

0.000 
   

MO29 
    

-0.003 
 

-0.003 
   

MO30 
    

-0.005 
 

-0.005 
   

MO31 
    

-0.014 
 

-0.014 
   

MO32 
    

-0.016 
 

-0.016 
   

MO33 -0.005 
   

-0.006 
 

-0.011 
   

MO34 
    

-0.005 
 

-0.005 
   

MO35 
    

-0.004 
 

-0.004 
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MO36 
    

-0.001 
 

-0.001 
   

MO37 
    

-0.001 
 

-0.001 
   

MO38 
    

-0.007 
 

-0.007 
   

MO39 -0.003 
   

-0.029 
 

-0.031 
   

MO40 -0.003 
   

-0.009 
 

-0.012 
   

MO41 
    

-0.009 
 

-0.009 
   

MO42 
    

-0.002 
 

-0.002 
   

MO43 
    

-0.002 
 

-0.002 
   

MO44 
      

0.000 
   

MO45 
 

-0.001 
  

-0.010 
 

-0.011 
   

MO46 
    

-0.006 
 

-0.006 
   

MO47 -0.007 -0.007 

MO48 
    

-0.004 
 

-0.004 
   

MO49 
    

-0.002 
 

-0.002 
   

MO50 
      

0.000 
   

MO51 
    

-0.003 
 

-0.003 
   

MO52 
   

-0.008 -0.002 
 

-0.010 
   

MO53 
   

-0.015 -0.015 
 

-0.030 
   

MO54 
    

-0.003 
 

-0.003 
   

MO55 
 

-0.001 
  

-0.003 
 

-0.004 
   

MO56 
 

-0.012 
  

-0.010 
 

-0.021 
   

MO57 
 

-0.010 
  

-0.005 
 

-0.014 
   

MO58 
    

-0.008 
 

-0.008 
   



206 
 

MO59 
    

-0.007 
 

-0.007 
   

MO60 -0.005 -0.067 
 

-0.053 -0.052 
 

-0.177 
   

MO61 
  

-0.010 
   

-0.010 
   

MO62 
  

-0.120 
 

-0.006 
 

-0.126 
   

MO63 
  

-0.034 
 

-0.001 
 

-0.035 
   

           
Sum -0.023 -0.125 -0.164 -0.075 -0.257 

 
-0.645 
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Section 4: Symmetry decomposition with Inter-fragment delocalization of each R-group for 

all molecules. 

Table B 4. 1. Symmetry decomposition for R= -H from DI. 

 MO DI Contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g 0.0379 0.0001 0.0014 0.0395 0.0440 0.0030 0.0004 0.0474 

t1u 0.2265 0.0257 0.0169 0.2691 0.2886 0.0359 0.0160 0.3405 

t2g 0.4244 0.1561 0.0240 0.6045 0.2497 0.1404 0.0204 0.4105 

eg 0.1673 0.0201 0.0104 0.1978 0.1475 0.0217 0.0077 0.1768 

NL 0.4805 0.0420 0.0074 0.5299 0.3750 0.0856 0.0102 0.4708 

         

Total 1.3367 0.2440 0.0601 1.6408 1.1048 0.2866 0.0546 1.4460 

 0.4317 0.0459 0.0288 0.5064 0.4801 0.0606 0.0240 0.5647 

π 0.4244 0.1561 0.0240 0.6045 0.2497 0.1404 0.0204 0.4105 

NL 0.4805 0.0420 0.0074 0.5299 0.3750 0.0856 0.0102 0.4708 

 

Table B 4. 2. Symmetry decomposition for R= -CHCH2 from DI. 

 MO DI Contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g 0.0413 0.00498 0.00236 0.0486 0.0224 0.00368 0.00263 0.0287 

t1u 0.1929 0.05314 0.02660 0.2726 0.1524 0.02900 0.02756 0.2090 

t2g 0.3257 0.10738 0.09914 0.5322 0.2021 0.10608 0.05971 0.3679 

eg 0.1365 0.02256 0.01469 0.1738 0.0686 0.01681 0.01209 0.0975 

NL 0.4499 0.13099 0.07542 0.6563 0.4870 0.13934 0.11800 0.7444 

         

Total 1.1463 0.31904 0.21821 1.6835 0.9326 0.29490 0.21998 1.4475 

 0.3707 0.0807 0.0437 0.4950 0.2434 0.0495 0.0423 0.3352 

π 0.3257 0.1074 0.0991 0.5322 0.2021 0.1061 0.0597 0.3679 

NL 0.4499 0.1310 0.0754 0.6563 0.4870 0.1393 0.1180 0.7444 
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Table B 4. 3. Symmetry decomposition for R= -CHCHPh from DI. 

 MO DI Contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g 0.0332 0.0037 0.0025 0.0394 0.0174 0.0026 0.0014 0.0214 

t1u 0.1938 0.0527 0.0253 0.2718 0.1298 0.0263 0.0202 0.1764 

t2g 0.2502 0.0722 0.1321 0.4546 0.1891 0.0928 0.0770 0.3589 

eg 0.1369 0.0231 0.0131 0.1731 0.0614 0.0142 0.0074 0.0830 

NL 0.4941 0.1567 0.0588 0.7096 0.5296 0.1578 0.1225 0.8100 

         

Total 1.1082 0.3085 0.2318 1.6484 0.9273 0.2938 0.2286 1.4497 

 0.3638 0.0796 0.0409 0.4843 0.2086 0.0432 0.0291 0.2808 

π 0.2502 0.0722 0.1321 0.4546 0.1891 0.0928 0.0770 0.3589 

NL 0.4941 0.1567 0.0588 0.7096 0.5296 0.1578 0.1225 0.8100 

 

Table B 4. 4. Symmetry decomposition for R= -CCH from DI. 

 MO DI Contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g 0.0306 0.0004 0.0028 0.0338 0.0202 0.0033 0.0028 0.0263 

t1u 0.1514 0.0187 0.0219 0.1921 0.1802 0.0255 0.0252 0.2310 

t2g 0.3657 0.1328 0.1327 0.6313 0.2190 0.1244 0.0765 0.4199 

eg 0.1046 0.0125 0.0144 0.1315 0.0679 0.0154 0.0118 0.0950 

NL 0.5536 0.0758 0.0722 0.7016 0.4554 0.1272 0.1164 0.6991 

         

Total 1.2059 0.2403 0.2441 1.6903 0.9427 0.2959 0.2328 1.4713 

 0.2866 0.0316 0.0392 0.3574 0.2683 0.0442 0.0398 0.3523 

π 0.3657 0.1328 0.1327 0.6313 0.2190 0.1244 0.0765 0.4199 

NL 0.5536 0.0758 0.0722 0.7016 0.4554 0.1272 0.1164 0.6991 
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Section 5: Symmetry decomposition in terms of energy for each fragment. 

 

Table B 5. 1. Symmetry decomposition in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯Ccarbene 

R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g -0.0251 -0.0252 -0.0202 -0.0214 -0.0271 -0.0148 -0.0123 -0.0139 

t1u -0.1167 -0.0932 -0.0906 -0.0861 -0.1305 -0.0743 -0.0653 -0.0888 

t2g -0.1157 -0.0885 -0.0666 -0.0987 -0.0654 -0.0530 -0.0494 -0.0575 

eg -0.0666 -0.0503 -0.0497 -0.0426 -0.0547 -0.0254 -0.0230 -0.0260 

NL -0.2465 -0.2263 -0.2370 -0.2689 -0.1903 -0.2204 -0.2347 -0.2129 

         

Total -0.5707 -0.4835 -0.4640 -0.5177 -0.4679 -0.3880 -0.3847 -0.3990 

 

Table B 5. 2. Symmetry decomposition in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯[X] [M]⋯[X] 

R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g 0.0002 -0.0024 -0.0016 -0.0001 -0.0014 -0.0019 -0.0013 -0.0017 

t1u -0.0094 -0.0213 -0.0207 -0.0072 -0.0134 -0.0116 -0.0107 -0.0102 

t2g -0.0425 -0.0292 -0.0194 -0.0357 -0.0367 -0.0278 -0.0243 -0.0327 

eg -0.0075 -0.0077 -0.0078 -0.0049 -0.0082 -0.0069 -0.0058 -0.0064 

NL -0.0140 -0.0627 -0.0707 -0.0292 -0.0407 -0.0668 -0.0731 -0.0614 

         

Total -0.0732 -0.1233 -0.1202 -0.0771 -0.1004 -0.1152 -0.1153 -0.1125 

 

Table B 5. 3. Symmetry decomposition in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 
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X=OEt X=NMe2 

[M]⋯[R] [M]⋯[R] 

R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g -0.0006 -0.0011 -0.0011 -0.0013 0.0000 -0.0013 -0.0007 -0.0013 

t1u -0.0063 -0.0107 -0.0100 -0.0082 -0.0061 -0.0105 -0.0082 -0.0095 

t2g -0.0065 -0.0269 -0.0349 -0.0357 -0.0053 -0.0156 -0.0199 -0.0201 

eg -0.0036 -0.0056 -0.0047 -0.0053 -0.0028 -0.0044 -0.0029 -0.0044 

NL -0.0003 -0.0366 -0.0322 -0.0291 -0.0037 -0.0545 -0.0572 -0.0508 

         

Total -0.0173 -0.0809 -0.0830 -0.0796 -0.0180 -0.0863 -0.0888 -0.0861 

 

Table B 5. 4. Symmetry decomposition in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯[L] [M]⋯[L] 

R=H R=CHCH2 R=CHCHPh R=CCH R=H R=CHCH2 R=CHCHPh R=CCH 

a1g -0.0255 -0.0287 -0.0229 -0.0228 -0.0285 -0.0180 -0.0144 -0.0169 

t1u -0.1324 -0.1252 -0.1212 -0.1015 -0.1500 -0.0965 -0.0842 -0.1085 

t2g -0.1646 -0.1446 -0.1209 -0.1701 -0.1074 -0.0965 -0.0936 -0.1103 

eg -0.0777 -0.0636 -0.0623 -0.0527 -0.0657 -0.0367 -0.0316 -0.0368 

NL -0.2608 -0.3256 -0.3400 -0.3272 -0.2347 -0.3418 -0.3650 -0.3250 

         

Total -0.6611 -0.6877 -0.6672 -0.6744 -0.5863 -0.5895 -0.5888 -0.5976 

 

The [M]⋯[L] does an excellent job at summarizing the interaction of the ligands with the metal, 

likewise, the energetics data is very complimentary and insightful, illustrated in Table B 5. 4. The 

energetics correlate rather well with the DI values (some discrepancies) where X=OEt relative to 

X=NMe2 and a constant R-group is always lower in energy (stabilized). The energetic order for 

X=OEt is CHCH2<CCH<CHCHPh<H (with CHCH2 most stabilized) and a DI order of CCH 

<CHCH2<CHCHPh<H the discrepancy coming from the NL term contribution. For X=NMe2 this 

energetic order is CCH<CHCH2<CHCHPh<H and the DI order is H<CHCH2<CHCHPh<CCH, 
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there is a discrepancy in the R-groups, with the styryl and vinyl, they virtually comparable with 

energy values of -0.5888a.u. for the styryl and -0.5895a.u. for the vinyl. This difference comes in 

from the -orbitals being lower in energy for the vinyl group but the NL of the styryl closing the 

gap.  Since X=NMe2 is rich in -type interactions, adding a phenyl group to the vinyl will cause 

delocalization towards the metal. The phenyl mostly contributes conjugation in terms of -

character, therefore the distribution of electrons is more delocalized throughout and not as 

localized in the styryl compared to the vinyl which then affects the energetics.  This effect causes 

the average energy in the styryl to be higher than vinyl, even if this effect is only marginal. 

However, it is to be noted that the DI relating to weighted energetics trend discrepancies is mainly 

as a result of the NL term affecting the weighed energetics. 

 

Section 6: Symmetry decomposition in terms of energy for each R-group. 

 

Table B 6. 1. Symmetry decomposition for R= -H in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g -0.0251 0.0002 -0.0006 -0.0255 -0.0271 -0.0014 0.0000 -0.0285 

t1u -0.1167 -0.0094 -0.0063 -0.1324 -0.1305 -0.0134 -0.0061 -0.1500 

t2g -0.1157 -0.0425 -0.0065 -0.1646 -0.0654 -0.0367 -0.0053 -0.1074 

eg -0.0666 -0.0075 -0.0036 -0.0777 -0.0547 -0.0082 -0.0028 -0.0657 

NL -0.2465 -0.0140 -0.0003 -0.2608 -0.1903 -0.0407 -0.0037 -0.2347 

         

Total -0.5707 -0.0732 -0.0173 -0.6611 -0.4679 -0.1004 -0.0180 -0.5863 

 

Table B 6. 2. Symmetry decomposition for R= -CHCH2 in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 
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a1g -0.0252 -0.0024 -0.0011 -0.0287 -0.0148 -0.0019 -0.0013 -0.0180 

t1u -0.0932 -0.0213 -0.0107 -0.1252 -0.0743 -0.0116 -0.0105 -0.0965 

t2g -0.0885 -0.0292 -0.0269 -0.1446 -0.0530 -0.0278 -0.0156 -0.0965 

eg -0.0503 -0.0077 -0.0056 -0.0636 -0.0254 -0.0069 -0.0044 -0.0367 

NL -0.2263 -0.0627 -0.0366 -0.3256 -0.2204 -0.0668 -0.0545 -0.3418 

         

Total -0.4835 -0.1233 -0.0809 -0.6877 -0.3880 -0.1152 -0.0863 -0.5895 

 

Table B 6. 3. Symmetry decomposition for R= -CHCHPh in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g -0.0202 -0.0016 -0.0011 -0.0229 -0.0123 -0.0013 -0.0007 -0.0144 

t1u -0.0906 -0.0207 -0.0100 -0.1212 -0.0653 -0.0107 -0.0082 -0.0842 

t2g -0.0666 -0.0194 -0.0349 -0.1209 -0.0494 -0.0243 -0.0199 -0.0936 

eg -0.0497 -0.0078 -0.0047 -0.0623 -0.0230 -0.0058 -0.0029 -0.0316 

NL -0.2370 -0.0707 -0.0322 -0.3400 -0.2347 -0.0731 -0.0572 -0.3650 

         

Total -0.4640 -0.1202 -0.0830 -0.6672 -0.3847 -0.1153 -0.0888 -0.5888 

 

Table B 6. 4. Symmetry decomposition for R= -CCH in terms of energy (a.u.). 

 MO-DI weighted energetic contributions 

X=OEt X=NMe2 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] [M]⋯Ccarbene [M]⋯[X] [M]⋯[R] [M]⋯[L] 

a1g -0.0214 -0.0001 -0.0013 -0.0228 -0.0139 -0.0017 -0.0013 -0.0169 

t1u -0.0861 -0.0072 -0.0082 -0.1015 -0.0888 -0.0102 -0.0095 -0.1085 

t2g -0.0987 -0.0357 -0.0357 -0.1701 -0.0575 -0.0327 -0.0201 -0.1103 

eg -0.0426 -0.0049 -0.0053 -0.0527 -0.0260 -0.0064 -0.0044 -0.0368 

NL -0.2689 -0.0292 -0.0291 -0.3272 -0.2129 -0.0614 -0.0508 -0.3250 

         

Total  ‐0.5177  ‐0.0771  ‐0.0796  ‐0.6744  ‐0.3990  ‐0.1125  ‐0.0861  ‐0.5976 
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Section 7: MOs contributing majority of the DI in specific interactions for the [M]⋯ሾL] 

interaction. 

 

Table B 7. 1. Significant MOs in the [M]⋯[L] interaction for Cr(CO)5{C(OEt)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 

 
% Running 

MO60 0.49 0.212568 t1u eg 
 

30.04 30.04 

MO62 0.46 0.948687 t2g 
  

28.27 58.31 

MO63 0.13 0.959000 t2g 
  

7.98 66.30 

MO53 0.06 0.031975 NL eg 
 

3.91 70.21 

MO39 0.06 0.910342 NL 
  

3.46 73.66 

MO56 0.05 0.147638 t1u NL 
 

2.82 76.48 

MO61 0.04 0.952197 t2g 
  

2.25 78.73 

MO57 0.03 0.536999 t1u NL 
 

1.94 80.67 

MO32 0.03 0.952312 NL 1.53 82.21 

MO45 0.02 0.868565 NL t1u 1.32 83.53 

 

Table B 7. 2. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(OEt)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO67 0.51 0.230677 t1u eg 
 

30.28 30.28 

MO69 0.41 0.945383 t2g 
  

24.43 54.71 

MO70 0.12 0.960760 t2g 
  

7.33 62.04 

MO44 0.05 0.625302 NL a1g 
 

3.00 65.04 

MO35 0.04 0.901014 NL 
  

2.55 67.59 

MO63 0.04 0.878838 NL t1u 
 

2.30 69.90 

MO61 0.04 0.337538 t1u NL 
 

2.25 72.15 

MO49 0.03 0.912481 NL 
  

1.84 73.99 

MO51 0.03 0.883683 NL eg 
 

1.80 75.79 

MO62 0.03 0.380420 t1u NL 
 

1.72 77.51 
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Table B 7. 3. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(OEt)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO85 0.51 0.257377 t1u eg 
 

31.20 31.20 

MO90 0.36 0.864974 t2g NL 
 

21.55 52.75 

MO89 0.12 0.959893 t2g 
  

7.31 60.06 

MO87 0.04 0.920062 NL 
  

2.50 62.56 

MO56 0.04 0.708396 NL a1g 
 

2.41 64.98 

MO77 0.04 0.299520 t1u NL 
 

2.22 67.19 

MO66 0.03 0.895519 NL eg 
 

1.97 69.17 

MO80 0.03 0.864690 NL t1u 
 

1.80 70.96 

MO46 0.03 0.836390 NL a1g 
 

1.75 72.71 

MO78 0.03 0.290305 t1u NL 
 

1.60 74.32 

 

Table B 7. 4. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(OEt)(CCH)}. 

DI Contribution Ratio Character 1 Character 2 % Running 

MO68 0.50 0.946044 t2g 29.38 29.38 

MO66 0.36 0.427218 NL t1u 
 

21.12 50.50 

MO69 0.14 0.956923 t2g 
  

8.53 59.03 

MO64 0.14 0.828001 NL t1u 
 

8.49 67.52 

MO43 0.06 0.952202 NL 
  

3.26 70.78 

MO63 0.04 0.952202 NL 
  

2.57 73.34 

MO57 0.04 0.025617 NL eg 
 

2.53 75.87 

MO60 0.04 0.235186 NL t1u 
 

2.17 78.04 

MO61 0.03 0.484534 t1u NL 
 

1.80 79.84 

MO56 0.02 0.390055 eg NL 
 

1.47 81.31 

 

Table B 7. 5. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(NMe2)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO60 0.5390 0.409167 t1u eg 
 

37.28 37.28 

MO62 0.2994 0.936890 t2g 
  

20.70 57.98 

MO63 0.1120 0.958012 t2g 
  

7.75 65.73 
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MO40 0.0642 0.697952 NL a1g 
 

4.44 70.17 

MO32 0.0440 0.741716 NL a1g 
 

3.04 73.21 

MO57 0.0430 0.460378 t1u NL 
 

2.98 76.19 

MO58 0.0325 0.505165 t1u NL 
 

2.25 78.44 

MO55 0.0256 0.993317 NL 
  

1.77 80.21 

MO45 0.0217 0.926113 NL 
  

1.50 81.71 

MO46 0.0204 0.914588 NL 
  

1.41 83.12 

 

Table B 7. 6. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(NMe2)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO67 0.30 0.502136 NL t1u 
 

20.75 20.75 

MO66 0.25 0.633664 NL t1u 
 

17.15 37.90 

MO69 0.23 0.945738 t2g 
  

15.56 53.46 

MO70 0.13 0.946106 t2g 
  

9.16 62.62 

MO44 0.04 0.832609 NL a1g 
 

2.85 65.47 

MO63 0.03 0.434546 t1u NL 2.38 67.85 

MO62 0.03 0.166282 t1u NL 
 

2.27 70.11 

MO64 0.03 0.800626 NL t1u 
 

2.10 72.22 

MO35 0.03 0.947741 NL 
  

1.82 74.04 

MO60 0.02 0.963434 NL 
  

1.67 75.71 

 

Table B 7. 7. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(NMe2)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO85 0.31 0.423742 NL t1u 
 

21.22 21.22 

MO89 0.21 0.947507 t2g 
  

14.39 35.62 

MO90 0.14 0.863675 t2g NL 
 

9.86 45.48 

MO84 0.12 0.863473 NL t1u 
 

8.20 53.68 

MO87 0.11 0.866602 NL t2g 
 

7.80 61.48 

MO56 0.04 0.902338 NL 
  

2.51 63.99 

MO83 0.03 0.976444 NL 
  

2.25 66.24 

MO80 0.03 0.344134 t1u NL 
 

2.24 68.48 
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MO77 0.02 0.383850 NL t1u 
 

1.71 70.20 

MO88 0.02 0.940472 t2g 
  

1.69 71.88 

 

Table B 7. 8. Significant MOs in the [M]⋯[L] interaction of Cr(CO)5{C(NMe2)(CCH)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO66 0.31 0.405610 NL t1u 
 

21.15 21.15 

MO68 0.29 0.945193 t2g 
  

19.77 40.92 

MO64 0.24 0.567818 NL t1u 
 

16.63 57.55 

MO69 0.12 0.951625 t2g 
  

8.20 65.75 

MO44 0.05 0.926552 NL 
  

3.32 69.08 

MO61 0.04 0.248862 t1u NL 
 

2.51 71.59 

MO62 0.03 0.445926 t1u NL 
 

2.29 73.88 

MO59 0.02 0.954989 NL 
  

1.69 75.57 

MO67 0.02 0.951520 t2g 
  

1.67 77.23 

MO35 0.02 0.950815 NL 
  

1.67 78.90 

 

 

Section 8: MOs contributing majority of the DI in specific interactions for the [M]⋯Ccarbene 

bond. 

 

Table B 8. 1. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(OEt)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO60 0.40 0.212568 t1u eg 
 

29.61 29.61 

MO62 0.32 0.948687 t2g 
  

24.00 53.61 

MO63 0.09 0.959000 t2g 
  

6.81 60.42 

MO39 0.06 0.910342 NL 
  

4.62 65.04 

MO53 0.06 0.031975 NL eg 
 

4.50 69.54 

MO56 0.05 0.147638 t1u NL 
 

4.02 73.56 

MO41 0.03 0.896856 NL t1u 
 

2.45 76.01 

MO61 0.03 0.952197 t2g 
  

2.36 78.37 
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MO32 0.03 0.952312 NL 
  

2.07 80.44 

MO31 0.03 0.977458 NL 
  

2.04 82.47 

 

Table B 8. 2. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(OEt)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO67 0.39 0.230677 t1u eg 
 

34.14 34.14 

MO69 0.25 0.945383 t2g 
  

21.49 55.62 

MO70 0.08 0.960760 t2g 
  

7.08 62.71 

MO44 0.05 0.625302 NL a1g 
 

4.52 67.23 

MO35 0.03 0.901014 NL 
  

3.03 70.26 

MO58 0.03 0.940850 NL 
  

2.35 72.61 

MO45 0.03 0.831485 NL t1u 
 

2.23 74.84 

MO51 0.02 0.883683 NL eg 
 

2.06 76.89 

MO63 0.02 0.878838 NL t1u 
 

1.93 78.82 

MO50 0.02 0.925050 NL 
  

1.61 80.43 

 

Table B 8. 3. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(OEt)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO85 0.40 0.257377 t1u eg 
 

35.70 35.70 

MO90 0.18 0.864974 t2g NL 
 

16.12 51.83 

MO89 0.08 0.959893 t2g 
  

7.14 58.96 

MO87 0.05 0.920062 NL 
  

4.34 63.30 

MO56 0.04 0.708396 NL a1g 
 

3.63 66.93 

MO66 0.04 0.895519 NL eg 
 

3.40 70.33 

MO46 0.03 0.836390 NL a1g 
 

2.51 72.84 

MO73 0.02 0.935671 NL 
  

2.18 75.02 

MO80 0.02 0.864690 NL t1u 
 

1.71 76.74 

MO88 0.01 0.951938 t2g 
  

1.20 77.94 

 

Table B 8. 4. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(OEt)(CCH)}. 
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DI Contribution Ratio Character 1 Character 2 % Running 

MO68 0.28 0.946044 t2g 
  

23.26 23.26 

MO66 0.26 0.427218 NL t1u 
 

21.79 45.05 

MO64 0.10 0.828001 NL t1u 
 

8.51 53.56 

MO69 0.09 0.956923 t2g 
  

7.13 60.69 

MO43 0.05 0.952202 NL 
  

4.46 65.16 

MO60 0.05 0.235186 NL t1u 
 

3.88 69.04 

MO45 0.04 0.937024 NL 
  

2.98 72.02 

MO57 0.04 0.025617 NL eg 
 

2.90 74.92 

MO63 0.03 0.952202 NL 
  

2.82 77.74 

MO58 0.02 0.364386 NL eg 
 

1.96 79.70 

 

Table B 8. 5. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(NMe2)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO60 0.45 0.409167 t1u eg 40.79 40.79 

MO62 0.17 0.936890 t2g 15.57 56.37 

MO63 0.08 0.958012 t2g 
  

6.82 63.19 

MO40 0.07 0.697952 NL a1g 
 

6.08 69.27 

MO57 0.05 0.460378 t1u NL 
 

4.52 73.78 

MO32 0.04 0.741716 NL a1g 
 

3.78 77.57 

MO59 0.03 0.976703 NL 
  

2.77 80.34 

MO46 0.02 0.914588 NL 
  

1.76 82.10 

MO41 0.02 0.732798 NL a1g 
 

1.46 83.56 

MO58 0.02 0.505165 t1u NL 
 

1.42 84.98 

 

Table B 8. 6. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(NMe2)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO67 0.22 0.502136 NL t1u 
 

23.41 23.41 

MO66 0.20 0.633664 NL t1u 
 

20.96 44.37 

MO69 0.13 0.945738 t2g 
  

13.77 58.13 

MO70 0.07 0.946106 t2g 
  

7.41 65.55 
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MO44 0.04 0.832609 NL a1g 
 

4.48 70.02 

MO62 0.03 0.166282 t1u NL 
 

3.57 73.60 

MO65 0.03 0.984653 NL 
  

2.70 76.29 

MO35 0.02 0.947741 NL 
  

2.31 78.61 

MO64 0.02 0.800626 NL t1u 
 

1.74 80.35 

MO43 0.01 0.990413 NL 
  

1.52 81.87 

 

Table B 8. 7. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(NMe2)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO85 0.25 0.423742 NL t1u 
 

26.84 26.84 

MO89 0.12 0.947507 t2g 
  

12.87 39.70 

MO84 0.10 0.863473 NL t1u 
 

10.71 50.42 

MO87 0.08 0.866602 NL t2g 
 

8.46 58.88 

MO90 0.06 0.863675 t2g NL 
 

6.90 65.78 

MO56 0.04 0.902338 NL 
  

4.09 69.87 

MO77 0.03 0.383850 NL t1u 2.79 72.66 

MO83 0.03 0.976444 NL 
  

2.73 75.39 

MO46 0.02 0.765965 NL a1g 
 

1.99 77.39 

MO55 0.01 0.991210 NL 
  

1.45 78.83 

 

Table B 8. 8. Significant MOs in the [M]⋯Ccarbene bond of Cr(CO)5{C(NMe2)(CCH)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO66 0.23 0.405610 NL t1u 
 

24.49 24.49 

MO64 0.19 0.567818 NL t1u 
 

20.61 45.10 

MO68 0.15 0.945193 t2g 
  

15.65 60.76 

MO69 0.07 0.951625 t2g 
  

7.18 67.93 

MO44 0.05 0.926552 NL 
  

5.43 73.36 

MO61 0.05 0.248862 t1u NL 
 

5.26 78.62 

MO35 0.02 0.950815 NL 
  

2.25 80.87 

MO50 0.02 0.918964 NL 
  

1.67 82.55 

MO62 0.01 0.445926 t1u NL 
 

1.43 83.98 
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MO60 0.01 0.573473 eg NL 
 

1.29 85.27 

 

Section 9: MOs contributing majority of the DI in specific interactions for the [M]⋯ሾX] 

interaction. 

 

Table B 9. 1. Significant MOs in the [M]⋯ [X] interaction of Cr(CO)5{C(OEt)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO62 0.14 0.948687 t2g 
  

41.37 41.37 

MO60 0.06 0.212568 t1u eg 
 

17.70 59.08 

MO63 0.02 0.959000 t2g 
  

6.74 65.82 

MO58 0.01 0.904065 NL 
  

3.94 69.76 

MO57 0.01 0.536999 t1u NL 
 

3.37 73.13 

MO47 0.01 0.947394 NL 
  

2.45 75.58 

MO53 0.01 0.031975 NL eg 
 

2.00 77.57 

MO59 0.01 0.957016 NL 1.93 79.50 

MO46 0.01 0.967047 NL 1.59 81.09 

MO61 0.00 0.952197 t2g 
  

1.34 82.43 

 

Table B 9. 2. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(OEt)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO69 0.08 0.945383 t2g 
  

22.93 22.93 

MO67 0.08 0.230677 t1u eg 
 

21.91 44.84 

MO70 0.02 0.960760 t2g 
  

6.83 51.68 

MO61 0.02 0.337538 t1u NL 
 

6.15 57.83 

MO49 0.02 0.912481 NL 
  

5.95 63.78 

MO66 0.01 0.995171 NL 
  

3.57 67.35 

MO65 0.01 0.990401 NL 
  

3.51 70.86 

MO63 0.01 0.878838 NL t1u 
 

2.70 73.57 

MO52 0.01 0.999765 NL 
  

2.46 76.03 

MO62 0.01 0.380420 t1u NL 
 

2.33 78.35 
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Table B 9. 3. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(OEt)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO85 0.08 0.257377 t1u eg 
 

22.59 22.59 

MO90 0.05 0.864974 t2g NL 
 

13.42 36.01 

MO87 0.03 0.920062 NL 
  

9.55 45.56 

MO89 0.02 0.959893 t2g 
  

6.84 52.40 

MO77 0.02 0.299520 t1u NL 
 

5.87 58.27 

MO82 0.01 0.991119 NL 
  

3.51 61.78 

MO62 0.01 0.936520 NL 
  

3.19 64.96 

MO78 0.01 0.290305 t1u NL 
 

2.65 67.61 

MO65 0.01 0.999181 NL 
  

2.51 70.13 

MO63 0.01 0.931517 NL 
  

2.38 72.50 

 

Table B 9. 4. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(OEt)(CCH)}. 

DI Contribution Ratio Character 1 Character 2 % Running 

MO68 0.12 0.946044 t2g 36.38 36.38 

MO66 0.04 0.427218 NL t1u 
 

11.41 47.80 

MO64 0.02 0.828001 NL t1u 
 

7.20 55.00 

MO69 0.02 0.956923 t2g 
  

6.14 61.14 

MO62 0.01 0.802545 NL t1u 
 

3.58 64.72 

MO61 0.01 0.484534 t1u NL 
 

2.73 67.45 

MO51 0.01 0.921984 NL 
  

2.71 70.16 

MO63 0.01 0.952202 NL 
  

2.55 72.72 

MO57 0.01 0.025617 NL eg 
 

2.40 75.11 

MO65 0.01 0.997843 NL 
  

2.37 77.48 

 

Table B 9. 5. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(NMe2)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO62 0.12 0.93689 t2g 
  

35.40 35.40 

MO60 0.06 0.40917 t1u eg 
 

18.16 53.56 

MO55 0.03 0.99332 NL 
  

7.49 61.05 
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MO63 0.02 0.95801 t2g 
  

5.85 66.90 

MO45 0.01 0.92611 NL 
  

3.99 70.89 

MO58 0.01 0.50516 t1u NL 
 

3.52 74.41 

MO52 0.01 0.96673 NL 
  

2.47 76.88 

MO42 0.01 0.95463 NL 
  

1.89 78.77 

MO47 0.00 0.97549 NL 
  

1.43 80.20 

MO61 0.00 0.95171 t2g 
  

1.38 81.58 

 

Table B 9. 6. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(NMe2)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO69 0.08 0.945738 t2g 
  

25.31 25.31 

MO67 0.03 0.502136 NL t1u 
 

10.72 36.03 

MO66 0.03 0.633664 NL t1u 
 

8.81 44.84 

MO60 0.02 0.963434 NL 
  

6.79 51.63 

MO70 0.02 0.946106 t2g 
  

6.67 58.30 

MO50 0.02 0.922588 NL 4.70 63.00 

MO63 0.01 0.434546 t1u NL 
 

4.11 67.11 

MO68 0.01 0.950709 t2g 
  

2.17 69.28 

MO58 0.01 0.900126 NL 
  

2.06 71.35 

MO57 0.01 0.985433 NL 
  

2.03 73.38 

 

Table B 9. 7. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(NMe2)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO89 0.07 0.947507 t2g 
  

22.85 22.85 

MO85 0.03 0.423742 NL t1u 
 

10.95 33.80 

MO87 0.03 0.866602 NL t2g 
 

8.61 42.40 

MO75 0.02 0.959903 NL 
  

6.91 49.31 

MO90 0.02 0.863675 t2g NL 
 

5.30 54.61 

MO80 0.01 0.344134 t1u NL 
 

4.23 58.84 

MO63 0.01 0.899364 NL t1u 
 

4.06 62.90 

MO88 0.01 0.940472 t2g 
  

2.60 65.50 
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MO59 0.01 0.978955 NL 
  

2.58 68.08 

MO84 0.01 0.863473 NL t1u 
 

2.43 70.51 

 

Table B 9. 8. Significant MOs in the [M]⋯[X] interaction of Cr(CO)5{C(NMe2)(CCH)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO68 0.11 0.945193 t2g 
  

30.33 30.33 

MO66 0.03 0.405610 NL t1u 
 

9.42 39.75 

MO64 0.03 0.567818 NL t1u 
 

7.94 47.70 

MO59 0.02 0.954989 NL 
  

6.50 54.20 

MO69 0.02 0.951625 t2g 
  

4.70 58.91 

MO62 0.01 0.445926 t1u NL 
 

4.30 63.20 

MO49 0.01 0.928032 NL 
  

4.14 67.34 

MO46 0.01 0.957265 NL 
  

3.79 71.13 

MO56 0.01 0.994540 NL 
  

2.43 73.57 

MO67 0.01 0.951520 t2g 
  

2.42 75.99 

 

 

 

 

 

 

 

 

Section 10: MOs contributing majority of the DI in specific interactions for the [M]⋯ሾR] 

interaction. 

 

Table B 10. 1. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(OEt)(H)}. 
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DI Contribution Ratio Character 1 Character 2 % Running 

MO60 0.04 0.212568 t1u eg 
 

40.26 40.26 

MO63 0.02 0.959000 t2g 
  

18.52 58.78 

MO62 0.01 0.948687 t2g 
  

6.55 65.32 

MO57 0.00 0.536999 t1u NL 
 

4.21 69.53 

MO46 0.00 0.967047 NL 
  

2.24 71.77 

MO48 0.00 0.998774 NL 
  

1.50 73.27 

MO40 0.00 0.645490 NL a1g 
 

1.31 74.58 

MO61 0.00 0.952197 t2g 
  

1.10 75.68 

MO33 0.00 0.111642 NL a1g 
 

0.97 76.65 

MO51 0.00 0.991311 NL 
  

0.91 77.56 

 

Table B 10. 2. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(OEt)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO69 0.08 0.945383 t2g 35.35 35.35 

MO67 0.04 0.230677 t1u eg 16.85 52.20 

MO70 0.02 0.960760 t2g 
  

7.52 59.72 

MO62 0.01 0.380420 t1u NL 
 

4.91 64.64 

MO64 0.01 0.967867 NL 
  

3.71 68.35 

MO51 0.01 0.883683 NL eg 
 

3.54 71.88 

MO63 0.01 0.878838 NL t1u 
 

2.97 74.85 

MO56 0.01 0.990957 NL 
  

2.31 77.16 

MO68 0.00 0.952122 t2g 
  

2.01 79.17 

MO52 0.00 0.999765 NL 
  

1.90 81.08 

 

Table B 10. 3. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(OEt)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO90 0.13 0.864974 t2g NL 
 

38.66 38.66 

MO85 0.04 0.257377 t1u eg 
 

11.62 50.28 

MO89 0.02 0.959893 t2g 
  

5.16 55.44 

MO64 0.01 0.949998 NL 
  

3.57 59.01 
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MO79 0.01 0.950240 NL 
  

3.24 62.26 

MO78 0.01 0.290305 t1u NL 
 

2.62 64.88 

MO88 0.00 0.951938 t2g 
  

1.42 66.30 

MO65 0.00 0.999181 NL 
  

1.36 67.65 

MO84 0.00 0.998201 NL 
  

1.34 69.00 

MO48 0.00 0.967318 NL 
  

1.22 70.22 

 

Table B 10. 4. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(OEt)(CCH)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO68 0.10 0.946044 t2g 
  

35.94 35.94 

MO66 0.06 0.427218 NL t1u 
 

20.81 56.76 

MO69 0.04 0.956923 t2g 
  

13.98 70.74 

MO64 0.02 0.828001 NL t1u 
 

6.36 77.11 

MO62 0.01 0.802545 NL t1u 
 

2.46 79.56 

MO61 0.01 0.484534 t1u NL 
 

2.18 81.75 

MO49 0.00 0.880699 NL t1u 1.73 83.47 

MO50 0.00 0.945860 NL 
  

1.57 85.05 

MO52 0.00 0.998047 NL 
  

1.47 86.51 

MO54 0.00 0.989777 NL 
  

1.26 87.77 

 

Table B 10. 5. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(NMe2)(H)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO60 0.02 0.409167 t1u eg 
 

35.38 35.38 

MO63 0.02 0.958012 t2g 
  

23.22 58.60 

MO58 0.00 0.505165 t1u NL 
 

6.54 65.14 

MO62 0.00 0.936890 t2g 
  

5.65 70.79 

MO47 0.00 0.975486 NL 
  

3.04 73.83 

MO42 0.00 0.954627 NL 
  

2.45 76.28 

MO57 0.00 0.460378 t1u NL 
 

1.66 77.94 

MO61 0.00 0.951714 t2g 
  

1.43 79.37 

MO48 0.00 0.999851 NL 
  

1.35 80.72 
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MO59 0.00 0.976703 NL 
  

1.21 81.92 

 

Table B 10. 6. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(NMe2)(CHCH2)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO67 0.05 0.502136 NL t1u 
 

21.25 21.25 

MO70 0.04 0.946106 t2g 
  

18.76 40.01 

MO66 0.02 0.633664 NL t1u 
 

10.84 50.86 

MO69 0.01 0.945738 t2g 
  

6.55 57.40 

MO52 0.01 0.981734 NL 
  

4.82 62.22 

MO63 0.01 0.434546 t1u NL 
 

3.69 65.91 

MO64 0.01 0.800626 NL t1u 
 

3.56 69.47 

MO65 0.01 0.984653 NL 
  

3.39 72.87 

MO53 0.01 0.997226 NL 
  

3.10 75.97 

MO46 0.01 0.961504 NL 
  

2.58 78.55 

 

Table B 10. 7. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(NMe2)(CHCHPh)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 

MO90 0.06 0.863675 t2g NL 
 

26.98 26.98 

MO85 0.02 0.423742 NL t1u 
 

10.67 37.65 

MO89 0.02 0.947507 t2g 
  

7.82 45.47 

MO65 0.01 0.948265 NL 
  

6.22 51.70 

MO84 0.01 0.863473 NL t1u 
 

5.18 56.88 

MO79 0.01 0.651550 NL t1u 
 

4.85 61.73 

MO83 0.01 0.976444 NL 
  

4.80 66.52 

MO80 0.01 0.344134 t1u NL 
 

3.42 69.94 

MO87 0.01 0.866602 NL t2g 
 

3.35 73.29 

MO66 0.01 0.998278 NL 
  

2.45 75.75 

 

Table B 10. 8. Significant MOs in the [M]⋯[R] interaction of Cr(CO)5{C(NMe2)(CCH)}. 

 
DI Contribution Ratio Character 1 Character 2 % Running 
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MO66 0.05 0.405610 NL t1u 
 

19.70 19.70 

MO68 0.04 0.945193 t2g 
  

15.77 35.47 

MO69 0.04 0.951625 t2g 
  

15.18 50.65 

MO65 0.02 0.997357 NL 
  

9.69 60.34 

MO64 0.02 0.567818 NL t1u 
 

9.48 69.82 

MO51 0.01 0.948165 NL 
  

5.51 75.33 

MO63 0.01 0.897301 NL t1u 
 

4.74 80.07 

MO62 0.01 0.445926 t1u NL 
 

2.18 82.25 

MO67 0.00 0.951520 t2g 
  

1.89 84.14 

MO52 0.00 0.999691 NL 
  

1.72 85.87 
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Appendix C  
 

Supplementary Information for Chapter 5 
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Section 1: Cartesian Coordinates of and Energies of All Molecules Studied. 

 

Table C 1. 1. Cartesian coordinates of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)} in the 

crystal structure. 

Atom X Y Z 

Cr 1.6734 1.9624 1.8963 

C 0.4147 1.9624 0.5080 

O -0.3463 1.9624 -0.3469 

C 0.6714 0.5793 2.7449 

O 0.0668 -0.2637 3.2088 

C 2.6162 0.6240 0.9479 

O 3.1224 -0.1845 0.3201 

C 3.0087 1.9624 3.5270 

O 4.3383 1.9624 3.4877 

C 2.6147 1.9624 4.9043 

C 1.3235 1.9624 5.4477 

H 0.5331 1.9624 4.9579 

C 1.4087 1.9624 6.8278 

H 0.6990 1.9624 7.4287 

C 2.7390 1.9624 7.1364 

H 3.0846 1.9624 8.0000 

N 3.4743 1.9624 6.0170 

C 4.9529 1.9624 6.0448 

H 5.2564 1.9624 6.9553 

C 5.1306 1.9624 2.2926 

C 6.5559 1.9624 2.6788 

H 7.1024 1.9624 1.8891 

H 5.2819 1.1782 5.5982 

H 4.9306 1.1759 1.7616 

H 6.7468 2.7466 3.2002 

C 0.6714 3.3455 2.7449 

O 0.0668 4.1885 3.2088 

C 2.6162 3.3008 0.9479 

O 3.1224 4.1093 0.3201 

H 5.2819 2.7466 5.5982 
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H 4.9306 2.7489 1.7616 

H 6.7468 1.1782 3.2002 

  

 

 

Figure C 1. 1. Crystal structure of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)} in Mercury with 

bond lengths. 
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Table C 1. 2. Cartesian coordinates of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)} with the R-

group frozen to a dihedral DA(Cr,C,C,N) of 180° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 1.6530 1.9624 1.8662 

C 0.3933 1.9624 0.4697 

O -0.3827 1.9624 -0.3833 

C 0.6540 0.5823 2.7188 

O 0.0361 -0.2667 3.1867 

C 2.6015 0.5994 0.9415 

O 3.1064 -0.2393 0.3336 

C 3.0098 1.9624 3.5214 

O 4.3360 1.9624 3.4646 

C 2.6158 1.9624 4.9137 

C 1.3079 1.9622 5.4485 

H 0.3911 1.9622 4.8688 

C 1.3851 1.9622 6.8444 

H 0.5582 1.9621 7.5532 

C 2.7415 1.9623 7.1621 

H 3.2255 1.9623 8.1392 

N 3.4852 1.9624 6.0301 

C 4.9431 1.9624 6.0744 

H 5.2472 1.9624 7.1326 

C 5.1313 1.9625 2.2680 

C 6.5946 1.9625 2.6725 

H 7.2227 1.9626 1.7648 

H 5.3554 1.0695 5.5822 

H 4.8872 1.0685 1.6763 

H 6.8477 2.8594 3.2641 

C 0.6543 3.3428 2.7186 

O 0.0365 4.1921 3.1862 

C 2.6017 3.3251 0.9413 

O 3.1068 4.1636 0.3333 

H 5.3553 2.8554 5.5823 

H 4.8871 2.8565 1.6764 
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H 6.8477 1.0656 3.2640 

  

Molecular Energy of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)}: -2051.71850815 a.u. 

 

Table C 1. 3. Cartesian coordinates of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)} with the R-

group frozen to a dihedral DA(Cr,C,C,N) of 170° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 1.6589 1.9597 1.8703 

C 0.4154 1.8851 0.4606 

O -0.3498 1.8401 -0.4008 

C 0.5967 0.6729 2.7897 

O -0.0684 -0.1221 3.2867 

C 2.6097 0.5099 1.0902 

O 3.1407 -0.3819 0.5904 

C 3.0051 2.0100 3.5288 

O 4.3309 2.0546 3.4770 

C 2.6083 1.9383 4.9182 

C 1.3095 2.0639 5.4591 

H 0.4013 2.2214 4.8866 

C 1.3869 1.9804 6.8532 

H 0.5667 2.0455 7.5667 

C 2.7322 1.7900 7.1610 

H 3.2106 1.6566 8.1318 

N 3.4711 1.7704 6.0255 

C 4.9126 1.5501 6.0517 

H 5.2023 1.3364 7.0922 

C 5.1237 2.1927 2.2873 

C 6.5699 1.8961 2.6402 

H 7.1962 2.0156 1.7392 

H 5.1920 0.6939 5.4206 

H 4.7534 1.5037 1.5167 

H 6.9460 2.5888 3.4130 

C 0.7055 3.4207 2.6341 
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O 0.1226 4.3139 3.0636 

C 2.6369 3.2241 0.8406 

O 3.1532 3.9946 0.1571 

H 5.4589 2.4378 5.6999 

H 5.0107 3.2247 1.9199 

H 6.6879 0.8611 3.0054 

 

 Molecular Energy of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)}: -2051.71856549 a.u. 

 

Table C 1. 4. Cartesian coordinates of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)} with the R-

group frozen to a dihedral DA(Cr,C,C,N) of 90° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 1.6398 2.0070 1.9493 

C 0.2861 1.9122 0.6155 

O -0.5272 1.8569 -0.1953 

C 0.4654 0.9993 3.0786 

O -0.2826 0.3932 3.7029 

C 2.4180 0.4046 1.2858 

O 2.8773 -0.5728 0.8873 

C 3.0040 2.0673 3.4728 

O 4.3167 2.0601 3.4833 

C 2.5672 1.9907 4.9030 

C 2.1036 3.0041 5.7309 

H 2.0419 4.0596 5.4688 

C 1.7102 2.4000 6.9596 

H 1.2982 2.9059 7.8328 

C 1.9279 1.0427 6.8325 

H 1.7592 0.2236 7.5309 

N 2.4403 0.7921 5.5788 

C 2.9252 -0.5000 5.1283 

H 2.4512 -1.2899 5.7310 

C 5.1504 2.1185 2.3025 

C 6.5807 1.8622 2.7349 
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H 7.2470 1.9213 1.8569 

H 2.6610 -0.6682 4.0720 

H 4.7975 1.3678 1.5800 

H 6.9102 2.6127 3.4734 

C 0.8874 3.6271 2.6412 

O 0.4367 4.6042 3.0386 

C 2.6661 3.0397 0.7235 

O 3.2118 3.6675 -0.0716 

H 4.0223 -0.5805 5.2339 

H 5.0339 3.1199 1.8609 

H 6.6860 0.8593 3.1834 

 

Molecular Energy of Cr(CO)5{C(OEt)(2-(N-Methyl)pyrrolyl)}: -2051.70269228 a.u. 

Table C 1. 5. Cartesian coordinates of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)} in the 

crystal structure. 

Atom X Y Z 

Cr 3.3968 6.4864 2.5787 

C 4.5019 7.9167 2.0948 

O 5.166 8.7917 1.783 

C 4.6737 5.7192 3.7283 

O 5.4371 5.2332 4.4134 

C 2.8048 7.5189 4.0383 

O 2.516 8.1744 4.9307 

C 1.9713 7.1177 1.4629 

O 1.1123 7.4832 0.8319 

C 4.2085 5.5329 1.1419 

O 4.797 5.0097 0.3238 

C 2.0759 4.9136 3.0313 

N 1.2275 2.6324 2.3177 

C 2.2492 3.5377 2.613 

C 3.4386 2.8417 2.4727 

H 4.2909 3.1917 2.6011 

C 3.1443 1.5301 2.1077 

H 3.7573 0.8455 1.9664 
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C 1.7949 1.4402 1.9967 

H 1.3289 0.6787 1.739 

C -0.1847 2.9113 2.0847 

H -0.2781 3.782 1.6904 

H -0.6578 2.8863 2.9194 

H -0.5478 2.2502 1.4913 

N 0.9674 5.1471 3.6944 

H 0.7942 5.898 3.953 

H 0.5064 4.554 3.9347 
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Figure C 1. 2. Crystal structure of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)} in Mercury with 

bond lengths. 

 

 

 

 



237 
 

Table C 1. 6. Cartesian coordinates of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)} with the R-

group frozen to a dihedral DA(Cr,C,C,N) of 180° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 3.6347 6.4203 2.9648 

C 4.9641 7.7386 3.0568 

O 5.7822 8.5514 3.1142 

C 4.6541 5.3104 4.1285 

O 5.2872 4.6725 4.8469 

C 2.7880 7.1629 4.4924 

O 2.2842 7.6300 5.4176 

C 2.6041 7.5277 1.8186 

O 1.9883 8.2133 1.1267 

C 4.4717 5.6863 1.4204 

O 4.9934 5.2797 0.4790 

C 2.0625 4.9280 2.8665 

N 1.2377 2.4964 2.5835 

C 2.2310 3.5055 2.6548 

C 3.4572 2.8372 2.4776 

H 4.4298 3.3179 2.4776 

C 3.2198 1.4661 2.3039 

H 3.9574 0.6810 2.1445 

C 1.8437 1.2965 2.3752 

H 1.2474 0.3875 2.2896 

C -0.2085 2.6049 2.6941 

H -0.6312 3.2391 1.8946 

H -0.5131 2.9893 3.6837 

H -0.6442 1.6009 2.5826 

N 0.8172 5.3845 3.0197 

H 0.6625 6.3759 3.1694 

H -0.0247 4.8170 3.0006 

 

Molecular Energy of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)}: -1953.31949327 a.u. 
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Table C 1. 7. Cartesian coordinates of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)} with the R-

group frozen to a dihedral DA(Cr,C,C,N) of 150° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 3.6142 6.3910 2.9359 

C 4.9341 7.7062 3.1883 

O 5.7416 8.5152 3.3447 

C 4.7620 5.1396 3.8071 

O 5.4867 4.4309 4.3488 

C 2.8081 6.7933 4.6088 

O 2.3055 7.0310 5.6171 

C 2.5266 7.6870 2.0861 

O 1.8811 8.4979 1.5796 

C 4.3270 5.9206 1.2356 

O 4.7590 5.6476 0.2045 

C 2.1059 4.9029 2.7053 

N 1.4257 2.4780 3.1060 

C 2.3291 3.4688 2.6753 

C 3.4193 2.7922 2.1095 

H 4.2824 3.2721 1.6550 

C 3.1717 1.4074 2.1759 

H 3.8133 0.6050 1.8140 

C 1.9513 1.2521 2.8180 

H 1.4332 0.3441 3.1277 

C 0.2373 2.6410 3.9350 

H -0.6809 2.7611 3.3298 

H 0.3477 3.5104 4.6001 

H 0.1137 1.7438 4.5612 

N 0.8251 5.2693 2.6346 

H 0.5684 6.2517 2.6614 

H 0.0608 4.6214 2.4457 

 

Molecular Energy of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)}: -1953.32123683 a.u. 



239 
 

Table C 1. 8. Cartesian coordinates of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)} with the R-

group frozen to a dihedral DA(Cr,C,C,N) of 90° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 3.5722 6.3420 3.1730 

C 4.9432 7.6336 3.0032 

O 5.7754 8.4238 2.9054 

C 4.0424 5.9534 4.9750 

O 4.3037 5.7013 6.0671 

C 2.4077 7.7036 3.7837 

O 1.7177 8.5474 4.1605 

C 2.9860 6.6368 1.3823 

O 2.6187 6.8064 0.3066 

C 4.8089 5.0216 2.5543 

O 5.5905 4.2629 2.1892 

C 2.0621 4.9153 3.2769 

N 2.6650 2.4614 3.1950 

C 2.1353 3.5900 2.6002 

C 1.6809 3.2397 1.3342 

H 1.2112 3.9169 0.6213 

C 1.9701 1.8568 1.1504 

H 1.7531 1.2567 0.2668 

C 2.5734 1.4101 2.3091 

H 2.9424 0.4233 2.5865 

C 3.3053 2.3957 4.4974 

H 2.7460 2.9935 5.2349 

H 4.3447 2.7666 4.4586 

H 3.3177 1.3487 4.8379 

N 0.8724 5.1133 3.8151 

H 0.6373 5.9914 4.2766 

H 0.1294 4.4113 3.7599 

 

Molecular Energy of Cr(CO)5{C(NH2)(2-(N-Methyl)pyrrolyl)}: -1953.31517477 a.u. 
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Table C 1. 9. Cartesian coordinates of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)} in the 

crystal structure. 

Atom X Y Z 

Cr 0.5781 13.0125 6.7608 

C -0.8223 12.5235 5.5820 

O -1.7250 12.2646 4.9263 

C 1.2472 14.4134 5.3407 

N 2.4614 14.7952 5.0128 

C 3.6821 14.2733 5.6511 

C 2.7930 15.7939 3.9918 

C 0.2027 15.1020 4.5210 

N -0.0944 14.6802 3.2553 

C -1.0430 15.5221 2.7161 

C -1.3482 16.4715 3.6423 

C -0.5717 16.1977 4.7940 

C 0.5177 13.5547 2.5622 

C -0.6722 14.2448 7.4352 

O -1.4785 14.9559 7.8463 

C -0.0245 11.7377 7.9819 

O -0.3727 10.9310 8.7325 

C 1.7356 11.6785 6.0064 

O 2.3750 10.8503 5.5562 

C 1.8124 13.6237 8.0685 

O 2.4770 14.0023 8.9272 

H 4.4352 14.2846 5.0436 

H 3.9091 14.8178 6.4083 

H 3.5293 13.3740 5.9581 

H 3.3977 16.4537 4.3455 

H 1.9979 16.2300 3.6989 

H 3.2114 15.3352 3.2495 

H -1.4047 15.4572 1.8515 

H -1.9488 17.1722 3.5483 

H -0.5822 16.6683 5.5945 

H -0.0977 13.2113 1.9148 

H 1.3167 13.8688 2.1203 



241 
 

H 0.7380 12.8588 3.1929 
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Figure C 1. 3. Crystal structure of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)} in Mercury 

with bond lengths. 

Table C 1. 10. Cartesian coordinates of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)} with the 

R-group frozen to a dihedral DA(Cr,C,C,N) of 180° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 0.6011 12.8849 6.6607 

C -0.8612 12.3300 5.5681 

O -1.7442 11.9258 4.9520 

C 1.2198 14.3747 5.1234 

N 2.4716 14.8910 5.1440 

C 3.6546 14.1037 5.4868 

C 2.8077 16.3240 5.1216 

C 0.2410 15.1150 4.3407 

N 0.5259 16.0822 3.3409 

C -0.6232 16.7322 3.0064 

C -1.6695 16.2643 3.7869 

C -1.1374 15.2499 4.6019 

C 1.6377 16.0299 2.3903 

C -0.3663 14.3051 7.4716 

O -0.9370 15.1422 8.0191 

C -0.0382 11.7208 7.9752 

O -0.4410 10.9927 8.7764 

C 1.6273 11.4926 5.8646 

O 2.2381 10.6335 5.4005 

C 2.0135 13.2984 7.8565 

O 2.8133 13.4910 8.6653 

H 4.4519 14.3474 4.7605 

H 4.0302 14.3460 6.4960 

H 3.4397 13.0336 5.4203 

H 3.3065 16.5631 6.0792 

H 1.9076 16.9421 5.0344 

H 3.5110 16.5730 4.3086 

H -0.6282 17.4490 2.1841 

H -2.6996 16.6181 3.7666 
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H -1.6902 14.7112 5.3631 

H 1.2651 15.7643 1.3863 

H 2.1493 17.0051 2.3331 

H 2.3575 15.2632 2.7015 

 

Molecular Energy of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)}: -2031.84597457 a.u. 

Table C 1. 11. Cartesian coordinates of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)} with the 

R-group frozen to a dihedral DA(Cr,C,C,N) of 110° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 0.5519 12.9689 6.7206 

C -0.4435 12.0897 5.3533 

O -1.0429 11.5175 4.5556 

C 1.2174 14.3956 5.2724 

N 2.4496 14.7214 4.8920 

C 3.6635 14.1677 5.4986 

C 2.7742 15.6135 3.7624 

C 0.1651 15.1981 4.5951 

N 0.0012 16.5569 4.8373 

C -1.0317 17.0270 4.0576 

C -1.5125 15.9892 3.2841 

C -0.7692 14.8272 3.6338 

C 0.5952 17.3135 5.9268 

C -0.9361 14.1108 7.0882 

O -1.8409 14.7692 7.3507 

C -0.1218 11.7564 7.9907 

O -0.5286 11.0129 8.7733 

C 1.9689 11.7513 6.3774 

O 2.7886 10.9617 6.1983 

C 1.5428 13.8499 8.0799 

O 2.1306 14.3859 8.9137 

H 4.0532 13.3358 4.8860 

H 4.4312 14.9583 5.5448 

H 3.4611 13.8099 6.5116 
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H 3.1338 16.5920 4.1287 

H 1.8965 15.7595 3.1208 

H 3.5813 15.1478 3.1721 

H -1.3584 18.0630 4.1423 

H -2.3141 16.0538 2.5485 

H -0.8765 13.8325 3.2057 

H 0.5864 18.3844 5.6690 

H 0.0353 17.1704 6.8689 

H 1.6381 17.0043 6.0925 

 

Molecular Energy of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)}: -2031.86213489 a.u. 

Table C 1. 12. Cartesian coordinates of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)} with the 

R-group frozen to a dihedral DA(Cr,C,C,N) of 90° at CAM-B3LYP/dev2svp(p) level in n-

hexane.  

Atom X Y Z 

Cr 0.5570 12.9354 6.7023 

C -0.4022 12.1095 5.2721 

O -0.9788 11.5788 4.4318 

C 1.2187 14.4108 5.2963 

N 2.4440 14.7681 4.9384 

C 3.6597 14.1930 5.5234 

C 2.7692 15.7617 3.8969 

C 0.1451 15.1821 4.5993 

N -0.3591 16.3642 5.1110 

C -1.3875 16.8004 4.3027 

C -1.5536 15.8952 3.2746 

C -0.5881 14.8632 3.4629 

C 0.1782 17.1157 6.2306 

C -0.9828 13.9920 7.1048 

O -1.9327 14.5712 7.3940 

C -0.1017 11.6538 7.9108 

O -0.4966 10.8664 8.6555 

C 1.9950 11.7456 6.3460 

O 2.8231 10.9665 6.1604 
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C 1.5126 13.7938 8.0992 

O 2.0789 14.3211 8.9536 

H 4.0452 13.3818 4.8816 

H 4.4285 14.9798 5.5950 

H 3.4568 13.8004 6.5237 

H 3.2024 16.6641 4.3640 

H 1.8722 16.0305 3.3263 

H 3.5197 15.3288 3.2135 

H -1.9198 17.7213 4.5378 

H -2.2996 15.9527 2.4820 

H -0.4535 13.9721 2.8513 

H 0.9798 17.8089 5.9121 

H -0.6294 17.7034 6.6949 

H 0.5860 16.4310 6.9897 

 

Molecular Energy of Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)}: -2031.86124045 a.u. 

Section 2: Assigning symmetry labels (LMAT) to each of the lowest energy structures.  

 

Assigning the symmetry labels at any dihedral (DA(Cr,C,C,N)) will give the same result 

(pattern remains the same) the only difference being the contribution each symmetry makes. 

The lowest energy structures have been used to show the symmetry labels as an example.  

    

loc-NDF1a(1s) 

orthodox(Cr1) = 2.00 

 

loc-NDF2a(2s) 

orthodox(Cr1) = 2.00 

 

loc-NDF3a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF4a(2p) 

orthodox(Cr1) = 2.00 

 

    

loc-NDF5a(2p) 

orthodox(Cr1) = 2.00 

loc-NDF6b(3s)  

orthodox(Cr1) = 1.99 

loc-NDF7b(3p) 

orthodox(Cr1) = 1.97 

loc-NDF8b(3p)  

orthodox(Cr1) = 1.96 
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loc-NDF9b(3p) 

orthodox(Cr1) = 1.96 

 

loc-NDF10b(t2g) 

orthodox(Cr1) = 0.69 

 

loc-NDF11b(t2g) 

orthodox(Cr1) = 0.58  

 

loc-NDF12b (t2g) 

orthodox(Cr1) = 0.58 

 

    

loc-NDF13b(eg) 

orthodox(Cr1) = 0.11 

 

loc-NDF14b(eg)   

orthodox(Cr1) = 0.10 

 

loc-NDF15a(a1g)   

orthodox(Cr1) = 0.03 

 

loc-NDF16a(t1u)   

orthodox(Cr1) = 0.01 

 

 

  

 

 loc-NDF17a(t1u)   

orthodox(Cr1) = 0.01  

loc-NDF18a(t1u)   

orthodox(Cr1) = 0.01 

 

Figure C 2. 1. The Localized (loc) Natural Density Functions (NDF’s) of Cr(CO)5{C(OEt)(2-

(N-Methyl)pyrrolyl)} centred on the Chromium atom for the lowest energy structure (dihedral 

DA(Cr,C,C,N) frozen to 170°). The Isovalues are indicated as a = 0.0001 a.u. and b = 0.001 

a.u. while λnumber refers to the eigenvalue retrieved from the Orthodox Localised Matrix. 
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loc-NDF1a(1s) 

orthodox(Cr1) = 2.00 

 

loc-NDF2a(2s) 

orthodox(Cr1) = 2.00 

 

loc-NDF3a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF4a(2p) 

orthodox(Cr1) = 2.00 

 

    

loc-NDF5a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF6b(3s)  

orthodox(Cr1) = 1.99 

 

loc-NDF7b(3p) 

orthodox(Cr1) = 1.97 

  

loc-NDF8b(3p)  

orthodox(Cr1) = 1.96 

 

    

loc-NDF9b(3p) orthodox(Cr1) 

= 1.96 

 

loc-NDF10b(t2g) 

orthodox(Cr1) = 0.68 

 

loc-NDF11b(t2g) 

orthodox(Cr1) = 0.61  

 

loc-NDF12b (t2g) 

orthodox(Cr1) = 0.56 

 

    

loc-NDF13b(eg) 

orthodox(Cr1) = 0.10 

 

loc-NDF14b(eg)   

orthodox(Cr1) = 0.10 

 

loc-NDF15a(a1g)   

orthodox(Cr1) = 0.03 

 

loc-NDF16a(t1u)   

orthodox(Cr1) = 0.01 

 

 

  

 

 loc-NDF17a(t1u)   

orthodox(Cr1) = 0.01  

loc-NDF18a(t1u)   

orthodox(Cr1) = 0.01 

 

 

Figure C 2. 2. The Localized (loc) Natural Density Functions (NDF’s) of Cr(CO)5{C(NH2)(2-

(N-Methyl)pyrrolyl)} centred on the Chromium atom for the lowest energy structure (dihedral 
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DA(Cr,C,C,N) frozen to 150°). The Isovalues are indicated as a = 0.0001 a.u. and b = 0.001 

a.u. while λnumber refers to the eigenvalue retrieved from the Orthodox Localised Matrix. 

  

 

 

    

loc-NDF1a(1s) 

orthodox(Cr1) = 2.00 

 

loc-NDF2a(2s) 

orthodox(Cr1) = 2.00 

 

loc-NDF3a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF4a(2p) 

orthodox(Cr1) = 2.00 

 

    

loc-NDF5a(2p) 

orthodox(Cr1) = 2.00 

 

loc-NDF6b(3s)  

orthodox(Cr1) = 1.99 

 

loc-NDF7b(3p) 

orthodox(Cr1) = 1.97 

  

loc-NDF8b(3p)  

orthodox(Cr1) = 1.96 

 

    

loc-NDF9b(3p) 

orthodox(Cr1) = 1.96 

 

loc-NDF10b(t2g) 

orthodox(Cr1) = 0.70 

 

loc-NDF11b(t2g) 

orthodox(Cr1) = 0.59  

 

loc-NDF12b (t2g) 

orthodox(Cr1) = 0.57 

 

    

loc-NDF13b(eg) 

orthodox(Cr1) = 0.10 

 

loc-NDF14b(eg)   

orthodox(Cr1) = 0.09 

 

loc-NDF15a(a1g)   

orthodox(Cr1) = 0.03 

 

loc-NDF16a(t1u)   

orthodox(Cr1) = 0.01 
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 loc-NDF17a(t1u)   

orthodox(Cr1) = 0.01  

loc-NDF18a(t1u)   

orthodox(Cr1) = 0.01 

 

 

Figure C 2. 3. The Localized (loc) Natural Density Functions (NDF’s) of 

Cr(CO)5{C(NMe2)(2-(N-Methyl)pyrrolyl)} centred on the Chromium atom for the lowest 

energy structure (dihedral DA(Cr,C,C,N) frozen to 110°). The Isovalues are indicated as a = 

0.0001 a.u. and b = 0.001 a.u. while λnumber refers to the eigenvalue retrieved from the Orthodox 

Localised Matrix.
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Section 3: The metal cluster interacting with the all ligands [M]⋯ሾL] for all frozen dihedrals.  

 

Table C 3. 1. The [M]⋯[L] interaction of structure 5a (OEt) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0410 0.0410 2.60 
 

4.80  0.4810 30.57 
 

a1g -0.0237 

t1u 0.2897 0.2897 18.41 
 

33.96 π 0.3720 23.64 
 

t1u -0.1244 

t2g 0.3720 0.3720 23.64 43.61 NL 0.7203 45.78 t2g -0.0977 

eg 0.1503 0.1503 9.56 17.63 eg -0.0541 

NL 0.7203 0.7203 45.78 
  

 + π 0.8530 54.22 
 

NL -0.3449 

            
Total 1.5733 1.5733               Total -0.6449 

                        

Frozen Dihedral Angle (°) 170 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0401 0.0401 2.55 
 

4.67  0.4788 30.41 
 

a1g -0.0235 

t1u 0.2874 0.2874 18.25 
 

33.48 π 0.3798 24.12 
 

t1u -0.1239 

t2g 0.3798 0.3798 24.12 
 

44.23 NL 0.7162 45.48 
 

t2g -0.0997 
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eg 0.1513 0.1513 9.61 
 

17.62 
    

eg -0.0546 

NL 0.7162 0.7162 45.48 
  

 + π 0.8586 54.52 
 

NL -0.3437 

            
Total 1.5747 1.5747               Total -0.6454 

                        

Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0451 0.0451 2.51 
 

4.71  0.4032 22.46 
 

a1g -0.0288 

t1u 0.2206 0.2206 12.29 23.07 π 0.5530 30.80 t1u -0.1093 

t2g 0.5530 0.5530 30.80 57.83 NL 0.8391 46.74 t2g -0.1530 

eg 0.1375 0.1375 7.66 
 

14.38 
    

eg -0.0523 

NL 0.8391 0.8391 46.74 
  

 + π 0.9562 53.26 
 

NL -0.3982 

            
Total 1.7953 1.7953               Total -0.7416 

 

Table C 3. 2. The [M]⋯[L] interaction of structure 5b (NH2) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 
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a1g 0.0325 0.0325 2.39 
 

3.72  0.5700 41.92 
 

a1g -0.0184 

t1u 0.3699 0.3699 27.20 
 

42.26 π 0.3053 22.45 
 

t1u -0.1512 

t2g 0.3053 0.3053 22.45 
 

34.88 NL 0.4846 35.64 
 

t2g -0.0785 

eg 0.1676 0.1676 12.32 
 

19.14 
    

eg -0.0609 

NL 0.4846 0.4846 35.64 
  

 + π 0.8753 64.36 
 

NL -0.2433 

            
Total 1.3599 1.3599               Total -0.5522 

                        

Frozen Dihedral Angle (°) 150 

Summary 
      

/ π 
  

Summary 
 

DI 

Contribution Absolute Contribution % Metal % Contribution % Energy (a.u.) 

a1g 0.0300 0.0300 2.14 
 

3.59  0.4936 35.2 
 

a1g -0.0185 

t1u 0.3143 0.3143 22.43 
 

37.61 π 0.3420 24.4 
 

t1u -0.1367 

t2g 0.3420 0.3420 24.41 
 

40.93 NL 0.5659 40.4 
 

t2g -0.0887 

eg 0.1493 0.1493 10.65 
 

17.86 
    

eg -0.0559 

NL 0.5659 0.5659 40.38 
  

 + π 0.8356 59.6244 
 

NL -0.2690 

            
Total 1.4015 1.4015               Total -0.5688 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
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DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0351 0.0351 2.32 
 

4.05  0.4333 28.55 
 

a1g -0.0232 

t1u 0.2600 0.2600 17.13 
 

29.93 π 0.4354 28.69 
 

t1u -0.1227 

t2g 0.4354 0.4354 28.69 
 

50.12 NL 0.6490 42.76 
 

t2g -0.1163 

eg 0.1382 0.1382 9.11 
 

15.91 
    

eg -0.0540 

NL 0.6490 0.6490 42.76 
  

 + π 0.8687 57.24 
 

NL -0.3088 

            
Total 1.5177 1.5177               Total -0.6250 

 

Table C 3. 3. The [M]⋯[L] interaction of structure 5c (NMe2) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0211 0.0211 1.48 
 

3.56  0.2875 20.17 
 

a1g -0.0135 

t1u 0.1881 0.1881 13.19 
 

31.69 π 0.3060 21.46 
 

t1u -0.0839 

t2g 0.3060 0.3060 21.46 
 

51.56 NL 0.8321 58.37 
 

t2g -0.0792 

eg 0.0783 0.0783 5.49 
 

13.20 
    

eg -0.0293 

NL 0.8321 0.8321 58.37 
  

 + π 0.5935 41.63 
 

NL -0.3722 

            
Total 1.4255 1.4255               Total -0.5781 
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Frozen Dihedral Angle (°) 110 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0245 0.0245 1.60 
 

3.15  0.3755 24.52 
 

a1g -0.0157 

t1u 0.2344 0.2344 15.30 
 

30.19 π 0.4008 26.17 
 

t1u -0.1068 

t2g 0.4008 0.4008 26.17 
 

51.63 NL 0.7550 49.31 
 

t2g -0.1049 

eg 0.1167 0.1167 7.62 
 

15.03 
    

eg -0.0445 

NL 0.7550 0.7550 49.31 
  

 + π 0.7763 50.69 
 

NL -0.3527 

Total 1.5313 1.5313               Total -0.6245 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0253 0.0253 1.65 
 

3.23  0.3776 24.56 
 

a1g -0.0162 

t1u 0.2376 0.2376 15.46 
 

30.34 π 0.4057 26.39 
 

t1u -0.1083 

t2g 0.4057 0.4057 26.39 
 

51.79 NL 0.7541 49.05 
 

t2g -0.1065 

eg 0.1147 0.1147 7.46 
 

14.64 
    

eg -0.0439 

NL 0.7541 0.7541 49.05 
  

+ π 0.7833 50.95 
 

NL -0.3551 
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Total 1.5374 1.5374               Total -0.6299 

 

 

 

Section 4: The fragment analysis of the metal cluster interacting with the carbene carbon [M]⋯Ccarbene at the frozen dihedrals. 

 

Table C 4. 1. The [M]⋯Ccarbene interaction of structure 5a (OEt) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary / π Summary 

 
DI Contribution Absolute Contribution % 

 
Metal % 

 
Contribution % 

  
Energy (a.u.) 

a1g 0.0338 0.0338 3.41 
 

6.1  0.3576 36.16 
 

a1g -0.0203 

t1u 0.2080 0.2081 21.04 
 

37.8 π 0.1931 19.52 
 

t1u -0.0927 

t2g 0.1931 0.1931 19.52 
 

35.1 NL 0.4368 44.32 
 

t2g -0.0508 

eg 0.1158 0.1158 11.71 
 

21.0 
    

eg -0.0418 

NL 0.4368 0.4383 44.32 
  

 + π 0.55 55.68 
 

NL -0.2041 

            
Total 0.9874 0.9891 

       
Total -0.4097 

                        

Frozen Dihedral Angle (°) 170 

Summary 
      

/ π 
  

Summary 
 



256 
 

 
DI Contribution Absolute Contribution % 

 
Metal % 

 
Contribution % 

  
Energy (a.u.) 

a1g 0.0331 0.0331 3.33 
 

6.00  0.3549 35.74 
 

a1g -0.0201 

t1u 0.2061 0.2061 20.75 
 

37.40 π 0.1960 19.74 
 

t1u -0.0922 

t2g 0.1960 0.1960 19.74 
 

35.58 NL 0.4418 44.51 
 

t2g -0.0515 

eg 0.1158 0.1158 11.66 
 

21.01 
    

eg -0.0418 

NL 0.4418 0.4419 44.51 
  

 + π 0.55 55.49 
 

NL -0.2069 

            
Total 0.9927 0.9929 

       
Total -0.4126 

                        

Frozen Dihedral Angle (°) 90 

Summary / π Summary 

DI Contribution Absolute Contribution % Metal % Contribution % Energy (a.u.) 

a1g 0.0364 0.0364 3.07 
 

5.61  0.2919 24.62 
 

a1g -0.0242 

t1u 0.1532 0.1532 12.92 
 

23.60 π 0.3573 30.14 
 

t1u -0.0817 

t2g 0.3573 0.3573 30.14 
 

55.04 NL 0.5363 45.24 
 

t2g -0.0991 

eg 0.1023 0.1023 8.63 
 

15.75 
    

eg -0.0388 

NL 0.5363 0.5363 45.24 
  

 + π 0.65 54.76 
 

NL -0.2595 

            
Total 1.1855 1.1855               Total -0.5033 

 

Table C 4. 2. The [M]⋯Ccarbene interaction of structure 5b (NH2) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 
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Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0254 0.0254 2.79 
 

4.07  0.4538 49.99 
 

a1g -0.0148 

t1u 0.2957 0.2971 32.63 
 

47.57 π 0.1693 18.59 
 

t1u -0.1229 

t2g 0.1693 0.1693 18.59 
 

27.11 NL 0.2798 31.42 
 

t2g -0.0435 

eg 0.1327 0.1327 14.57 
 

21.25 
    

eg -0.0476 

NL 0.2798 0.2861 31.42 
  

 + π 0.62 68.58 
 

NL -0.1431 

            
Total 0.9029 0.9107 

       
Total -0.3718 

                        

Frozen Dihedral Angle (°) 150 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0245 0.0245 2.52 
 

4.13  0.4020 41.41 
 

a1g -0.0156 

t1u 0.2543 0.2551 26.23 
 

42.92 π 0.1915 19.69 
 

t1u -0.1132 

t2g 0.1915 0.1915 19.69 
 

32.23 NL 0.3741 38.90 
 

t2g -0.0497 

eg 0.1231 0.1231 12.66 
 

20.72 
    

eg -0.0460 

NL 0.3741 0.3783 38.90 
  

 + π 0.59 61.10 
 

NL -0.1799 

            
Total 0.9675 0.9726               Total -0.4044 
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Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0277 0.0277 2.60 
 

4.52  0.3528 33.09 
 

a1g -0.0191 

t1u 0.2108 0.2110 19.78 
 

34.36 π 0.2611 24.48 
 

t1u -0.1029 

t2g 0.2611 0.2611 24.48 
 

42.52 NL 0.4508 42.43 
 

t2g -0.0699 

eg 0.1143 0.1143 10.71 
 

18.61 
    

eg -0.0447 

NL 0.4508 0.4526 42.43 
  

 + π 0.61 57.57 
 

NL -0.2183 

            
Total 1.0647 1.0667               Total -0.4550 

 

Table C 4. 3. The [M]⋯Ccarbene interaction of structure 5c (NMe2) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0156 0.0156 1.84 
 

4.3  0.2075 24.50 
 

a1g -0.0104 

t1u 0.1366 0.1366 16.12 
 

37.5 π 0.1565 18.47 
 

t1u -0.0626 

t2g 0.1565 0.1565 18.47 
 

43.0 NL 0.4832 57.03 
 

t2g -0.0405 

eg 0.0554 0.0554 6.54 
 

15.2 
    

eg -0.0199 

NL 0.4832 0.4832 57.03 
  

 + π 0.36 42.97 
 

NL -0.2067 
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Total 0.8472 0.8472 

       
Total -0.3402 

                        

Frozen Dihedral Angle (°) 110 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0186 0.0186 1.92 
 

3.64  0.2925 30.27 
 

a1g -0.0127 

t1u 0.1830 0.1830 18.94 
 

35.92 π 0.2171 22.47 
 

t1u -0.0862 

t2g 0.2171 0.2171 22.47 
 

42.60 NL 0.4566 47.26 
 

t2g -0.0569 

eg 0.0909 0.0909 9.41 17.84 eg -0.0342 

NL 0.4566 0.4566 47.26  + π 0.51 52.74 NL  -0.2103 

            
Total 0.9662 0.9662               Total -0.4003 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0185 0.0185 1.95 
 

3.60  0.2920 30.680 
 

a1g -0.0127 

t1u 0.1861 0.1861 19.55 
 

36.20 π 0.2221 23.335 
 

t1u -0.0876 

t2g 0.2221 0.2221 23.34 
 

43.20 NL 0.4377 45.985 
 

t2g -0.0584 

eg 0.0874 0.0874 9.18 
 

17.00 
    

eg -0.0329 
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NL 0.4377 0.4377 45.99 
  

 + π 0.51 54.01 
 

NL -0.2037 

            
Total 0.9518 0.9518               Total -0.3954 

 

From the above results it is clear that the -contribution is favoured when DA(Cr,C,C,N) = 90° for each X-group. The result being that the -

character increases from 180° to 90°. 

 

Section 5: The fragment analysis of the metal cluster interacting with the X-group [M]⋯ሾX] at the frozen dihedrals. 

 

 

 

Table C 5. 1. The [M]⋯ሾX] interaction of structure 5a (OEt) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0045 0.0055 1.68 
 

4.24  0.0762 23.85 
 

a1g -0.0021 

t1u 0.0497 0.0501 15.21 
 

38.39 π 0.0519 15.78 
 

t1u -0.0189 

t2g 0.0519 0.0520 15.78 
 

39.81 NL 0.1787 60.37 
 

t2g -0.0138 
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eg 0.0221 0.0229 6.96 
 

17.56 
    

eg -0.0078 

NL 0.1787 0.1989 60.37 
  

 + π 0.1281 39.63 
 

NL -0.0834 

            
Total 0.3068 0.3294 

       
Total -0.1262 

                        

Frozen Dihedral Angle (°) 170 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0046 0.0056 1.71 
 

4.24  0.0773 24.21 
 

a1g -0.0023 

t1u 0.0498 0.0502 15.32 37.89 π 0.0531 16.23 t1u -0.0190 

t2g 0.0531 0.0532 16.23 40.14 NL 0.1758 59.56 t2g -0.0141 

eg 0.0229 0.0235 7.17 
 

17.73 
    

eg -0.0082 

NL 0.1758 0.1951 59.56 
  

 + π 0.1305 40.44 
 

NL -0.0820 

            
Total 0.3062 0.3276 

       
Total -0.1256 

                        

Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0044 0.0066 1.71 
 

3.11  0.0712 19.84 
 

a1g -0.0024 

t1u 0.0448 0.0471 12.23 
 

22.23 π 0.1351 35.15 
 

t1u -0.0182 



262 
 

t2g 0.1351 0.1353 35.15 
 

63.92 NL 0.1216 45.01 
 

t2g -0.0376 

eg 0.0220 0.0227 5.90 
 

10.74 
    

eg -0.0082 

NL 0.1216 0.1732 45.01 
  

 + π 0.2064 54.99 
 

NL -0.0565 

            
Total 0.3280 0.3849               Total -0.1229 

 

 

Table C 5. 2. The [M]⋯ሾX] interaction of structure 5b (NH2) at the various frozen dihedrals DA(Cr,C,C,N).    

Frozen Dihedral Angle (°) 180 

Summary / π Summary 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0037 0.0038 1.53 
 

3.06  0.0546 26.21 
 

a1g -0.0019 

t1u 0.0347 0.0452 18.12 
 

36.33 π 0.0589 23.67 
 

t1u -0.0127 

t2g 0.0589 0.0590 23.67 
 

47.45 NL 0.0982 50.12 
 

t2g -0.0152 

eg 0.0161 0.0164 6.56 
 

13.16 
    

eg -0.0059 

NL 0.0982 0.1250 50.12 
  

 + π 0.1135 49.88 
 

NL -0.0460 

            
Total 0.2117 0.2494 

       
Total -0.0817 

                        

Frozen Dihedral Angle (°) 150 
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Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0032 0.0033 1.32 
 

2.71  0.0487 23.11 
 

a1g -0.0016 

t1u 0.0306 0.0390 15.62 
 

32.22 π 0.0632 25.38 
 

t1u -0.0115 

t2g 0.0632 0.0633 25.38 
 

52.34 NL 0.0974 51.51 
 

t2g -0.0164 

eg 0.0149 0.0154 6.17 
 

12.73 
    

eg -0.0055 

NL 0.0974 0.1285 51.51 
  

 + π 0.1119 48.49 
 

NL -0.0427 

            
Total 0.2093 0.2494               Total -0.0777 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0032 0.0034 1.15 
 

2.06  0.0412 17.94 
 

a1g -0.0018 

t1u 0.0255 0.0341 11.70 
 

20.96 π 0.1101 37.89 
 

t1u -0.0098 

t2g 0.1101 0.1105 37.89 
 

67.87 NL 0.0713 44.17 
 

t2g -0.0294 

eg 0.0124 0.0148 5.09 
 

9.11 
    

eg -0.0047 

NL 0.0713 0.1289 44.17 
  

 + π 0.1513 55.83 
 

NL -0.0305 

            
Total 0.2226 0.2918               Total -0.0761 
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Table C 5. 3. The [M]⋯ሾX] interaction of structure 5c (NMe2) at the various frozen dihedrals DA(Cr,C,C,N).   

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0032 0.0033 1.05 
 

2.66  0.0462 14.94 
 

a1g -0.0017 

t1u 0.0292 0.0293 9.44 
 

23.92 π 0.0760 24.53 
 

t1u -0.0118 

t2g 0.0760 0.0760 24.53 
 

62.14 NL 0.1839 60.53 
 

t2g -0.0197 

eg 0.0138 0.0138 4.45 
 

11.28 
    

eg -0.0056 

NL 0.1839 0.1876 60.53 
  

 + π 0.1222 39.47 
 

NL -0.0883 

Total 0.3061 0.3099 Total -0.1271 

                        

Frozen Dihedral Angle (°) 110 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0031 0.0036 1.02 
 

2.10  0.0485 15.07 
 

a1g -0.0016 

t1u 0.0282 0.0315 9.01 
 

18.48 π 0.1174 33.66 
 

t1u -0.0110 

t2g 0.1174 0.1178 33.66 
 

69.07 NL 0.1398 51.26 
 

t2g -0.0309 

eg 0.0171 0.0177 5.05 
 

10.36 
    

eg -0.0069 

NL 0.1398 0.1793 51.26 
  

 + π 0.1658 48.74 
 

NL -0.0670 
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Total 0.3056 0.3498               Total -0.1174 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0030 0.0035 0.98 
 

1.95  0.0470 15.11 
 

a1g -0.0016 

t1u 0.0270 0.0327 9.25 
 

18.42 π 0.1236 35.07 
 

t1u -0.0105 

t2g 0.1236 0.1239 35.07 
 

69.89 NL 0.1347 49.82 
 

t2g -0.0326 

eg 0.0170 0.0173 4.89 
 

9.74 
    

eg -0.0069 

NL 0.1347 0.1760 49.82  + π 0.1705 50.18 NL -0.0654 

Total 0.3052 0.3534               Total -0.1169 

 

 From the above results it is clear that the -contribution is favoured when DA(Cr,C,C,N) = 90° for each X-group. The result being that 

the -character decreases from 180° to 90°. 

 

Section 6: The fragment analysis of the metal cluster interacting with the R-group [M]⋯ሾR] at the frozen dihedrals. 

 

Table C 6. 1. The [M]⋯ሾR] interaction of structure 5a (OEt) at the various frozen dihedrals DA(Cr,C,C,N). 
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Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 
DI Contribution Absolute Contribution % 

 
Metal % 

 
Contribution % 

  
Energy (a.u.) 

a1g 0.0027 0.0032 0.82 
 

1.75  0.0472 12.40 
 

a1g -0.0013 

t1u 0.0321 0.0323 8.32 
 

17.65 π 0.1270 34.71 
 

t1u -0.0128 

t2g 0.1270 0.1346 34.71 
 

73.67 NL 0.1049 52.89 
 

t2g -0.0331 

eg 0.0124 0.0127 3.26 
 

6.92 
    

eg -0.0045 

NL 0.1049 0.2051 52.89 
  

 + π 0.1742 47.11 
 

NL -0.0574 

            
Total 0.2791 0.3878 

       
Total -0.1091 

                        

Frozen Dihedral Angle (°) 170 

Summary 
      

/ π 
  

Summary 
 

 
DI Contribution Absolute Contribution % 

 
Metal % 

 
Contribution % 

  
Energy (a.u.) 

a1g 0.0024 0.0030 0.78 
 

1.60  0.0466 12.52 
 

a1g -0.0011 

t1u 0.0316 0.0320 8.37 
 

17.18 π 0.1306 36.18 
 

t1u -0.0126 

t2g 0.1306 0.1382 36.18 
 

74.30 NL 0.0986 51.31 
 

t2g -0.0340 

eg 0.0126 0.0129 3.37 
 

6.92 
    

eg -0.0046 

NL 0.0986 0.1960 51.31 
  

 + π 0.1772 48.69 
 

NL -0.0548 

            
Total 0.2758 0.3820 

       
Total -0.1072 

                        

Frozen Dihedral Angle (°) 90 
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Summary 
      

/ π 
  

Summary 
 

 
DI Contribution Absolute Contribution % 

 
Metal % 

 
Contribution % 

  
Energy (a.u.) 

a1g 0.0042 0.0048 1.67 
 

4.72  0.0401 14.19 
 

a1g -0.0022 

t1u 0.0226 0.0226 7.89 
 

22.36 π 0.0605 21.11 
 

t1u -0.0094 

t2g 0.0605 0.0606 21.11 
 

59.81 NL 0.1812 64.70 
 

t2g -0.0163 

eg 0.0133 0.0133 4.63 
 

13.11 
    

eg -0.0053 

NL 0.1812 0.1857 64.70 
  

 + π 0.1006 35.30 
 

NL -0.0823 

            
Total 0.2818 0.2870               Total -0.1154 

 

Table C 6. 2. The [M]⋯ሾR] interaction of structure 5b (NH2) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0033 0.0035 1.27 
 

2.48  0.0616 22.84 
 

a1g -0.0017 

t1u 0.0395 0.0398 14.64 
 

28.51 π 0.0770 28.49 
 

t1u -0.0155 

t2g 0.0770 0.0774 28.49 
 

55.50 NL 0.1065 48.66 
 

t2g -0.0198 

eg 0.0188 0.0188 6.94 
 

13.51 
    

eg -0.0074 

NL 0.1065 0.1322 48.66 
  

 + π 0.1387 51.34 
 

NL -0.0542 

            
Total 0.2452 0.2717 

       
Total -0.0987 
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Frozen Dihedral Angle (°) 150 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0023 0.0025 0.97 
 

1.86  0.0429 17.60 
 

a1g -0.0012 

t1u 0.0294 0.0306 11.99 
 

22.99 π 0.0873 34.57 
 

t1u -0.0120 

t2g 0.0873 0.0881 34.57 
 

66.26 NL 0.0944 47.83 
 

t2g -0.0226 

eg 0.0113 0.0118 4.63 
 

8.88 
    

eg -0.0044 

NL 0.0944 0.1220 47.83 
  

 + π 0.1303 52.17 
 

NL -0.0464 

Total 0.2247 0.2549               Total -0.0867 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0042 0.0043 1.78 
 

4.13  0.0393 16.55 
 

a1g -0.0023 

t1u 0.0237 0.0242 10.00 
 

23.21 π 0.0642 26.52 
 

t1u -0.0099 

t2g 0.0642 0.0642 26.52 
 

61.57 NL 0.1270 56.92 
 

t2g -0.0170 

eg 0.0114 0.0116 4.78 
 

11.09 
    

eg -0.0047 

NL 0.1270 0.1378 56.92 
  

 + π 0.1035 43.08 
 

NL -0.0600 
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Total 0.2305 0.2421               Total -0.0939 

 

Table C 6. 3. The [M]⋯ሾR] interaction of structure 5c (NMe2) at the various frozen dihedrals DA(Cr,C,C,N). 

Frozen Dihedral Angle (°) 180 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0023 0.0027 0.95 
 

2.47  0.0337 12.27 
 

a1g -0.0013 

t1u 0.0223 0.0226 8.01 
 

20.90 π 0.0735 26.07 
 

t1u -0.0094 

t2g 0.0735 0.0735 26.07 68.00 NL 0.1650 61.66 t2g -0.0191 

eg 0.0091 0.0093 3.31 8.63 eg -0.0038 

NL 0.1650 0.1739 61.66 
  

 + π 0.1072 38.34 
 

NL -0.0772 

            
Total 0.2722 0.2820 

       
Total -0.1107 

                        

Frozen Dihedral Angle (°) 110 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0028 0.0030 1.13 
 

2.95  0.0345 13.48 
 

a1g -0.0014 

t1u 0.0231 0.0242 9.06 
 

23.64 π 0.0663 24.87 
 

t1u -0.0095 

t2g 0.0663 0.0663 24.87 
 

64.85 NL 0.1586 61.65 
 

t2g -0.0170 
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eg 0.0086 0.0087 3.28 
 

8.56 
    

eg -0.0034 

NL 0.1586 0.1643 61.65 
  

 + π 0.1008 38.35 
 

NL -0.0754 

            
Total 0.2594 0.2665               Total -0.1068 

            
Frozen Dihedral Angle (°) 90 

Summary 
      

/ π 
  

Summary 
 

 

DI 

Contribution Absolute Contribution % 
 

Metal % 
 

Contribution % 
  

Energy (a.u.) 

a1g 0.0038 0.0040 1.40 
 

4.01  0.0386 13.71 
 

a1g -0.0020 

t1u 0.0245 0.0245 8.66 
 

24.82 π 0.0600 21.16 
 

t1u -0.0101 

t2g 0.0600 0.0600 21.16 60.69 NL 0.1817 65.13 t2g -0.0155 

eg 0.0104 0.0104 3.65 
 

10.48 
    

eg -0.0041 

NL 0.1817 0.1847 65.13 
  

 + π 0.0987 34.87 
 

NL -0.0860 

            
Total 0.2804 0.2836               Total -0.1176 

 

Section 7: Inter-fragment delocalization of all the molecules in their respective fragments for the geometric analysis. 

Table C 7. 1. The electrons population in the Fischer Carbenes for X=OEt. 

     Total Electron Population, N([A])   
Total intra-fragment population 

Nintra([A]) 
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Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M] Ccarbene [X] [R]  [M] Ccarbene [X] [R] 

5a 

90 94.03 5.52 25.50 42.95  92.27 3.79 24.66 42.14 

170 94.14 5.53 25.53 42.81  92.43 3.81 24.65 41.80 

180 94.14 5.53 25.53 42.81   92.43 3.81 24.64 41.80 

 

 

Table C 7. 2. The electrons population in the Fischer Carbenes for X=OEt. 

 Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] 

5a 

90 1.1855 0.3280 0.2818 1.1390 1.1312 0.2209 

170 0.9927 0.3062 0.2758 1.0785 1.3685 0.3720 

180 0.9874 0.3068 0.2791 1.0785 1.3711 0.3760 

 

Table C 7. 3. The electrons population in the Fischer Carbenes for X=NH2. 
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      Total Electron Population, N([A])   
Total intra-fragment population Nintra 

([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M] Ccarbene [X] [R]  [M] Ccarbene [X] [R] 

5b 

90 94.12 5.51 9.40 42.97  92.45 3.76 8.51 42.16 

150 94.17 5.53 9.42 42.88  92.53 3.77 8.52 41.95 

180 94.19 5.53 9.43 42.85   92.56 3.78 8.53 41.88 

 

Table C 7. 4. The electrons population in the Fischer Carbenes for X=NH2. 

 Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] 

5b 

90 1.0647 0.2226 0.2305 1.3070 1.1426 0.2406 

150 0.9675 0.2093 0.2247 1.2516 1.3057 0.3311 

180 0.9029 0.2117 0.2452 1.2511 1.3498 0.3502 
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Table C 7. 5. The electrons population in the Fischer Carbenes for X=NMe2. 

     Total Electron Population, N([A])   
Total intra-fragment population Nintra 

([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M] Ccarbene [X] [R]  [M] Ccarbene [X] [R] 

5c 

90 94.14 5.55 25.32 42.99  92.56 3.79 24.28 42.10 

110 94.15 5.56 25.32 42.97  92.55 3.79 24.28 42.07 

180 94.19 5.59 25.34 42.88   92.65 3.83 24.28 41.84 

 

Table C 7. 6. The electrons shared in the Fischer Carbenes for X=NMe2.  

 Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M]⋯Ccarbene [M]⋯[X] [M]⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] 

5c 

90 0.9518 0.3052 0.2804 1.4197 1.1466 0.3446 

110 0.9662 0.3056 0.2594 1.3979 1.1660 0.3843 

180 0.8472 0.3061 0.2722 1.3265 1.3374 0.4824 
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Section 8: Inter-fragment delocalization of all the molecules in their respective fragments for the electronic analysis. 

 

Table C 8. 1. The electrons population in the Fischer Carbenes for all X’s frozen to DA(Cr,C,C,N) = 90°. 

     Total Electron Population, N([A])   
Total intra-fragment population Nintra 

([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M] Ccarbene [X] [R]  [M] Ccarbene [X] [R] 

5a 90 94.03 5.52 25.50 42.95  92.27 3.79 24.66 42.14 

5b 90 94.12 5.51 9.40 42.97  92.45 3.76 8.51 42.16 

5c 90 94.14 5.55 25.32 42.99   92.56 3.79 24.28 42.10 

 

  

Table C 8. 2. The electrons population in the Fischer Carbenes for all X’s frozen DA(Cr,C,C,N) to the lowest energy structure. 

     Total Electron Population, N([A])   Total intra-fragment population Nintra ([A]) 

Structure 
Frozen 

Dihedral 
[M] Ccarbene [X] [R]  [M] Ccarbene [X] [R] 
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Angle 

(°) 

5a 170 94.14 5.53 25.53 42.81  92.43 3.81 24.65 41.80 

5b 150 94.17 5.53 9.42 42.88  92.53 3.77 8.52 41.95 

5c 110 94.15 5.56 25.32 42.97   92.55 3.79 24.28 42.07 

 

Table C 8. 3. The electrons population in the Fischer Carbenes for all X’s frozen to DA(Cr,C,C,N) = 180°.  

     Total Electron Population, N([A])   
Total intra-fragment population Nintra 

([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

[M] Ccarbene [X] [R]  [M] Ccarbene [X] [R] 

5a 180 94.14 5.53 25.53 42.81  92.43 3.81 24.64 41.80 

5b 180 94.19 5.53 9.43 42.85  92.56 3.78 8.53 41.88 

5c 180 94.19 5.59 25.34 42.88   92.65 3.83 24.28 41.84 
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Section 9: Hypothesis testing of the carbonyls interacting with [X] and [R] fragments. 

 

Figure C 9. 1. The fragmentation of the Fischer carbene used in the FALDI Fragments Molecular Orbital Analysis to investigate chromium 
interacting with the various fragments. 

 

Figure C 9. 1. illustrates the general fragmentation of the molecule in a pictorial format, the X-group was the only parameter changed. The 
metal cluster [M] is defined as the metal and the five carbonyls, indicated in blue, the carbene carbon as yellow, the R-group as orange and the X-
group as green. Finally, M or Cr which is in purple, represents only the metal (Chromium) and the carbonyls are then separately represented by 
the blue. From the above results we developed a hypothesis to describe some of the interactions with the carbonyls and substituents on the carbene, 
it is however important to note these interactions are weak relative to the [M]⋯Ccarbene interaction. The hypothesis was that the R-group interacts 
more with carbonyls, which is why we separated the metal cluster into Cr and the five carbonyls ([CO]) in Figure C 9. 1. This fragmenting pattern 
allowed for isolating whether the R-group was interacting with the carbonyls only, metal only or both collectively as the metal cluster. 
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Table C 9. 1. The electrons shared in the Fischer Carbene when X=OEt with Cr as an independent fragment. 

 
  Total Electron Population, N([A])   Total intra-fragment population Nintra([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) 

Cr Ccarbene [X] [R] [CO]  Cr Ccarbene [X] [R] [CO] 

5a 90 22.89 5.52 25.50 42.95 71.14 
 

19.99 3.79 24.66 42.14 68.25 

5a 170 22.89 5.53 25.53 42.81 71.24 
 

20.00 3.81 24.65 41.80 68.31 

5a 180 22.90 5.53 25.53 42.81 71.25 
 

20.00 3.81 24.64 41.80 68.31 

 

By separating the metal cluster into the carbonyls ([CO]) and metal only (Cr), the metal population remained the same at dihedral 

DA(Cr,C,C,N) = 90°, 170° and approximately the same at 180° which is expected from the hypothesis, indicating the change in electron population 

stems from the carbonyls. This illustrates that the hypothesis is correct and that electrons are being shared between the carbonyls and R-group 

depending on the dihedral angle. The low energy structure at DA(Cr,C,C,N) = 170° and 180° has more electrons on the carbonyls than at 90°, 

while 90° has more electrons on the R-group. Showing that the R-group is taking electron density from the carbonyls at DA(Cr,C,C,N) = 90°. 

While the carbonyls are richer in electrons when the dihedral is set to DA(Cr,C,C,N)  = 170° and 180°. These electron populations provide a 

glimpse of what is expected when the electrons are shared between the fragments, which can be found in Table C 9. 2.  
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Table C 9. 2. The electrons shared in the Fischer Carbene when X=OEt with Cr as an independent fragment. 

 
Electrons shared DI([A], [B]) 

Structure 
Frozen Dihedral 

Angle (°) Cr⋯Ccarbene Cr⋯[X] Cr⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] Ccarbene⋯[CO] [X]⋯[CO] [R]⋯[CO] 

5a 90 0.7256 0.1127 0.0684 1.1390 1.1312 0.2209 0.4599 0.2152 0.2134 

5a 170 0.5934 0.0830 0.0736 1.0785 1.3685 0.3720 0.3994 0.2232 0.2022 

5a 180 0.5911 0.0808 0.0740 1.0785 1.3711 0.3760 0.3963 0.2260 0.2051 

  

The results of separating Cr from the metal cluster show that the carbonyls are interacting with the R-group. The most electrons are shared 

when the R-group is at DA(Cr,C,C,N) = 90° to the carbonyls. This fragment analysis does not show how the electrons are shared but only how 

many electrons are shared, this is where the FALDI MO analysis comes into play. The FALDI MO analysis revealed that there is a strange trend 

that occurs when the dihedral of the R-group is rotated from DA(Cr,C,C,N) = 180° to 90° in that the π-character increased. Therefore, the result 

of the FALDI fragment analysis and the FALDI MO analysis suggests that the increase in π-character from DA(Cr,C,C,N) = 180° to 90° results 

from the R-group interacting with the carbonyls, so their orbital alignment is optimal to allow a π-transfer of electrons when at DA(Cr,C,C,N) = 

90°. The flip side of the trend showed that the -relationship increased from DA(Cr,C,C,N) = 90° to 180° and this can mostly be found in the 

[X]⋯[R] interaction as the electrons shared increases from DA(Cr,C,C,N) = 90° to 180°. Showing that the -character increase is likely from 

through bond electrons sharing in a -fashion.             

 The extent to which the fragments interact is best illustrated by visualizing the interaction, which can be found below in Figure C 9. 2. 

From Table C 9. 2.  It is seen that there is a mostly inverse relationship between the [X]⋯[R] group interaction and the R-group interacting with 

the carbonyls. Speculating then that the DA(Cr,C,C,N) = 90° dihedral most likely pays the energy penalty because of the R-groups geometry even 
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though the R-group interaction with the carbonyls is at its highest, sharing the most electrons, while the [X]⋯[R] interaction decreased and fewer 

electrons were shared. 

 

 

 

Figure C 9. 2. The Fragment interaction where the OEt (5a) is compared at dihedrals of DA(Cr,C,C,N) = 90°(a) and DA(Cr,C,C,N) =180° (a’). 
The electrons are shared between fragments (1a) Carbonyls and R-group, (2a) the Carbonyls and X-group and (3a) the X- and R-group 
interaction.a                  

 aAll the isovalues were at 0.001 a.u. 

1a 2a 3a 

1a’ 2a’ 3a’ 
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The visualization of electrons shared between fragments provides a much better grasp of what is happening in the system when the R-

group is rotated. From 1a and 1a’ it can be seen that the R-group better overlaps with the carbonyls when at DA(Cr,C,C,N) = 90°, such that the 

NMe on the R-group is involved in this interaction with the carbonyls. The carbonyls interacting with the X-group does not provide such a striking 

argument as the [CO]⋯[R] interaction, and there is only slightly better overlap, which is visible when the molecule is freely rotated. How the 

carbonyls interact with the X-group is less obvious and more visible when the isovalues are changed, however, at an isovalue of 0.001 a.u. the 

overlap and interaction seem to be better at DA(Cr,C,C,N) =180° as illustrated in 2a’, matching the results of Table C 9. 2. The opposite is seen 

for the [X]⋯[R] interaction in 3a and 3a’ which shows at DA(Cr,C,C,N) = 90° the methylamine of the R-group is not involved in the interaction. 

Moving over to DA(Cr,C,C,N)  = 180° the inverse is seen, where the [X]⋯[R] interaction has maximum overlap and the methylamine of R-group 

is involved in the interaction with the X-group. The same analysis has been performed for structure 5b and 5c and these figures and tables are 

available in under Section 10 in Figure C 10. 1. and C 10. 2. and Tables C 10. 1. to C 10. 4. The same general trends and results are seen with 

the prominent visuals being the [CO]⋯[R] and the [X]⋯[R] interaction. 

Section 10. The fragment analysis of the metal and carbonyls separated interacting with the different fragments at the frozen dihedrals 

as a geometric analysis.  

Table C 10. 1. The electrons population in the Fischer Carbene when X=NH2 with Cr as an independent fragment. 

 
  Total Electron Population, N([A])   Total intra-fragment population Nintra([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr Ccarbene [X] [R] [CO] 
 

Cr Ccarbene [X] [R] [CO] 

5b 90 22.89 5.51 9.40 42.97 71.23 
 

19.99 3.76 8.51 42.16 68.36 

5b 150 22.89 5.53 9.42 42.88 71.27 
 

20.00 3.77 8.52 41.95 68.39 
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5b 180 22.90 5.53 9.43 42.85 71.30   20.01 3.78 8.53 41.88 68.40 

 

Table C 10. 2. The electrons shared in the Fischer Carbene when X=NH2 with Cr as an independent fragment. 

 
  Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr⋯Ccarbene Cr⋯[X] Cr⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] Ccarbene⋯[CO] [X]⋯[CO] [R]⋯[CO] 

5b 90 0.6319 0.0962 0.0569 1.3070 1.1426 0.2406 0.4328 0.1263 0.1736 

5b 150 0.5692 0.0806 0.0593 1.2516 1.3057 0.3311 0.3984 0.1287 0.1654 

5b 180 0.5316 0.0773 0.0585 1.2511 1.3498 0.3502 0.3714 0.1345 0.1866 
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Figure C 10. 1. The Fragment interaction where the NH2 (5b) is compared at dihedrals of DA(Cr,C,C,N) = 90°(b) and DA(Cr,C,C,N) =180° 
(b’). The electrons are shared between fragments (1b) Carbonyls and R-group, (2b) the Carbonyls and X-group and (3b) the X- and R-group 
interaction.a 

aAll the isovalues were at 0.001 a.u. 

1b 2b 3b 

1b’ 2b’ 3b’ 
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Table C 10. 3. The electrons population in the Fischer Carbene when X=NMe2 with Cr as an independent fragment. 

 
  Total Electron Population, N([A])   Total intra-fragment population Nintra([A]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr Ccarbene [X] [R] [CO] 
 

Cr Ccarbene [X] [R] [CO] 

5c 90 22.89 5.55 25.32 42.99 71.25 
 

20.01 3.79 24.28 42.10 68.33 

5c 110 22.89 5.56 25.32 42.97 71.25 
 

20.00 3.79 24.28 42.07 68.33 

5c 180 22.90 5.59 25.34 42.88 71.29   20.02 3.83 24.28 41.84 68.34 

 

Table C 10. 4. The electrons shared in the Fischer Carbene when X=NMe2 with Cr as an independent fragment. 

 
  Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr⋯Ccarbene Cr⋯[X] Cr⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] Ccarbene⋯[CO] [X]⋯[CO] [R]⋯[CO] 

5b 90 0.5709 0.0996 0.0608 1.4197 1.1466 0.3446 0.3809 0.2056 0.2196 

5b 110 0.5768 0.0986 0.0572 1.3979 1.1660 0.3843 0.3894 0.2071 0.2022 

5b 180 0.4986 0.0809 0.0642 1.3265 1.3374 0.4824 0.3486 0.2252 0.2080 
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Figure C 10. 2. The Fragment interaction where the NMe2 (5c) is compared at dihedrals of DA(Cr,C,C,N) = 90°(c) and DA(Cr,C,C,N) =180° 
(c’). The electrons are shared between fragments (1c) Carbonyls and R-group, (2c) the Carbonyls and X-group and (3c) the X- and R-group 
interaction.a 

1c 2c 3c 

1c’ 2c’ 3c’ 
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aAll the isovalues were at 0.001 a.u. 

 

Looking deeper into the interactions as with the geometric effect analysis with a constant X-group, but where the carbonyls are separated 

from the metal produces Table C 10. 5. 

 

Table C 10. 5. The electrons shared between fragments for different X-groups with Cr as an independent fragment. 

 
Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr⋯Ccarbene Cr⋯[X] Cr⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] Ccarbene⋯[CO] [X]⋯[CO] [R]⋯[CO] 

5a  90 0.7256 0.1127 0.0684 1.1390 1.1312 0.2209 0.4599 0.2152 0.2134 

5b 90 0.6319 0.0962 0.0569 1.3070 1.1426 0.2406 0.4328 0.1263 0.1736 

5c 90 0.5709 0.0996 0.0608 1.4197 1.1466 0.3446 0.3809 0.2056 0.2196 

           

 
Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr⋯Ccarbene Cr⋯[X] Cr⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] Ccarbene⋯[CO] [X]⋯[CO] [R]⋯[CO] 
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5a  170 0.5934 0.0830 0.0736 1.0785 1.3685 0.3720 0.3994 0.2232 0.2022 

5b 150 0.5692 0.0806 0.0593 1.2516 1.3057 0.3311 0.3984 0.1287 0.1654 

5c 110 0.5768 0.0986 0.0572 1.3979 1.1660 0.3843 0.3894 0.2071 0.2022 

           

 
Electrons shared DI([A], [B]) 

Structure 

Frozen 

Dihedral 

Angle 

(°) Cr⋯Ccarbene Cr⋯[X] Cr⋯[R] Ccarbene⋯[X] Ccarbene⋯[R] [X]⋯[R] Ccarbene⋯[CO] [X]⋯[CO] [R]⋯[CO] 

5a  180 0.5911 0.0808 0.0740 1.0785 1.3711 0.3760 0.3963 0.2260 0.2051 

5b 180 0.5316 0.0773 0.0585 1.2511 1.3498 0.3502 0.3714 0.1345 0.1866 

5c 180 0.4986 0.0809 0.0642 1.3265 1.3374 0.4824 0.3486 0.2252 0.2080 
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Throughout X=OEt has the most DI between the Cr⋯Ccarbene bond for all dihedrals DA(Cr,C,C,N) in Table C 10. 5. The trend at the dihedral of 

DA(Cr,C,C,N) = 90° and 180° shows the electrons shared rank as OEt>NH2>NMe2. While for the lowest energy structures, the electrons shared 

changes to OEt>NMe2>NH2. Indicating Cr interacts best with the Ccarbene when the X-group is ethoxy. The next interesting interaction is in the 

[CO]⋯[X] interaction for which all dihedrals DA(Cr,C,C,N) follow the same trend, with the most electrons shared in ethoxy but the least with 

dihydrogen amine (OEt>NMe2>NH2) indicating the effect is electronic and not geometric. The [CO]⋯[R] interaction also has a constant trend for 

all dihedrals with the most electrons shared in the dimethylamine and the least in dihydrogen amine (NMe2>OEt>NH2) indicting the effect is also 

electronic. Relating this information to classical interpretation is challenging in the sense that these long-range interactions where the carbonyls 

interact with the R- and X-group are not common thinking in Fischer carbene chemistry and bond lengths are rather looked at but this type of 

interaction is through space and bond lengths are redundant.           
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