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ABSTRACT The complexity of power systems is increasing as new generating units are added to power
systems in order to supply power to the growing economies. This has resulted in further research into the
generator maintenance scheduling (GMS) problem which seeks to ensure optimal preventive maintenance
scheduling that is effective and reliable. This research is focused on developing a generator maintenance
schedule using a tri-objective model. The GMS tri-objective model is solved using two solution methodolo-
gies. The first is an exact solution method using mathematical modelling software, Advanced Interactive
Multidimensional Modelling System (AIMMS). The second solution method is a recently developed
metaheuristic algorithm called Exchange Market Algorithm (EMA). Results show that the tri-objective
model finds a trade-off solution of the individual solution methods. The metaheuristic algorithm gives a
better solution for larger optimization problems.

INDEX TERMS AIMMS, exchange market algorithm, generator maintenance scheduling, tri-objective.

NOMENCLARURE
i index of generators, i = 1, . . . , I
t index of time periods, t = 1, . . . , T
Gmaxi maximum capacity of generator i
Gmini minimum capacity of generator i
di duration of maintenance of generator i
Dt demand at time period t
St safety margin at time period t
xi,t binary variable that is 1 when generator is

on maintenance
yi,t binary variable that is 1 if maintenance

of generator i starts at time t
cmi maintenance cost of generator i
fi fuel cost function
ai, bi, ci fuel cost coefficients for generator i
λi failure rate of generator i
si cost of starting up generator i
Qt maximum crew available at time period t
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RoFi probability that generator i will fail
before maintenance

RoFmax maximum allowed probability that a
generating unit will fail before maintenance

itermax number of iterations
k iteration number
npop population size
tpop number of the t-th member of

the population
g1min, g1max minimum and maximum risk

co-efficients in non-oscillating mode
g2min, g2max minimum and maximum risk

co-efficients in oscillating mode
r1, r2, rand random numbers between 0 and 1
sk share variation of group 3 members in

non-oscillating mode
1nt1 share increase of group 2 members in

oscillating mode
1nt2 share decrease of group 2 members in

oscillating mode
η1 risk level associated with each member of

the group 2 in oscillating mode
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η2 risk level associated with each member of
the group 3 in oscillating mode

1nt3 share variation of group 3 members in
oscillating mode

I. INTRODUCTION
A. MAINTENANCE SCHEDULING
Due to the growth of economies, the demand for electricity
has subsequently increased. If the increase in demand is not
met with a corresponding increase in generation capacity,
power systems end up with lower reserve margins. When
reserve margins are low, power utilities tend to be reluctant
to put generators offline for maintenance as the generation
capacity will be close to the demand. This leads to an increase
in the failure of generating units due to lack of mainte-
nance [1].

In recent years South Africa has experienced shortage of
generating capacity leading to load shedding. One of the
major reasons that caused the load shedding is poor mainte-
nance leading to boiler tube failures and breakdowns [2]. The
power utility, Eskom, had to implement stage 4 load shedding
because of the severe shortage of capacity. This meant that up
to 4000MW of national load could be shed at a time [3].

The generator maintenance scheduling is a preventive
maintenance plan in which a well-planned schedule is pre-
pared for taking units out of service for maintenance in
order to avert a crisis such as faced by generation compa-
nies. Various constraints are considered and should be satis-
fied by the schedule. An appropriate maintenance schedule
should minimize the operating and maintenance cost of the
power generating system or improve the reliability of the
system [4]. The maintenance scheduling problem is very
important as it affects other decisions regarding the opera-
tion of generating plants such as unit commitment and unit
dispatch.

Historically, maintenance scheduling has been conducted
based on the expertise of maintenance personnel as well
as instructions from generator manufacturers. However, this
kind of approach is not satisfactory as it does not effectively
take into consideration the system constraints and becomes
difficult to apply to a multi-unit system. A well planned,
optimal GMS is crucial for the smooth and efficient operation
of a power plant [5]. Many other short term and long-term
planning activities in a power plant that include unit commit-
ment, generation dispatch, import and export of power and
generation expansion of a power utility are directly affected
by the maintenance schedule [6]. A schedule which warrants
timely maintenance of generating units thereby increasing
lifespan has the effect of postponing the huge capital invest-
ment into new generation facilities [7].

B. EXISTING SOLUTION METHODS
The research into the GMS problem has gained traction
over the years. Several criteria are used when modelling
the GMS problem. The two most common criteria used are

the reliability criteria and economic cost criteria [6], [8].
In some cases, the optimization of the generator maintenance
schedule is done based on just one criterion, which is single
objective optimization, [7], [9], [10]. In other cases, multi-
objective optimization is performed to find a solution that
takes into consideration both reliability and economic cost
criteria [8]. A bi-objective maintenance schedule model is
implemented in [11], [12] for substations in electrical railway
systems and energy hub while in [13], a bi-objective schedul-
ing of a micro-grid consisting of tidal resources and storage
devices is studied. Often when multi-objective optimization
is employed, the solution will be a trade-off of the objectives
under consideration [8], [14].

The GMS model is formulated mathematically as a
highly constrained combinatorial optimization problem. It is
therefore obligatory to implement a suitable optimization
tool to determine the best feasible maintenance schedule.
Various solution methodologies are used for optimization.
These include mathematical methods which are mainly based
on Integer Programming, Dynamic Programming, Benders
Decomposition andBranch andBound techniques [15]. Some
modern exact software suites capable of solving mathemati-
cal programs generally use the branch and bound method [7].
Because of the large combinatorial nature of the GMS prob-
lem, exact solution approaches fall short in terms of reason-
able computational time [9], [16]. Thus, there is growing
attention in the development of approximate solutionmethod-
ologies such as heuristic and meta-heuristic techniques [17].
Unlike mathematical methods, metaheuristics can obtain an
optimal solution to a complex problem fast and are not
subjected to limitations such as linearity, continuity, dif-
ferentiability and convexity that are faced by mathematical
programs [18].

The application of new metaheuristic techniques to solve
the GMS problem is still being investigated. As the num-
ber of generating units increases in power system networks,
the complexity of theGMSproblem grows. It becomes imper-
ative to find solution methods that can solve and give a
feasible maintenance schedule. Traditional methods of main-
tenance scheduling often recommend frequent unnecessary
maintenance routines which are costly otherwise there will
be increased risk of failures [19]. In [20], a discrete integer
cuckoo search optimization algorithm is proposed to solve
the GMS problem. Existing metaheuristic algorithms are
also being modified to improve their solving capabilities.
A Modified Genetic Algorithm is utilized in [21] to solve a
bi-objective optimization problem.

The objective of this research is to develop a robust GMS
model that is formulated using three objectives, namely, reli-
ability, economic cost and risk of expectation (of a generating
unit breaking down before it is put on maintenance). The
research aims to model the GMS problem in a comprehensive
manner where several objectives are optimized concurrently.
Minimizing the three objectives at the same time makes the
solution reliable and robust in that the reliability criteria
ensures that the system as a whole is able to meet load
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requirements by leveling the reserve over the maintenance
horizon, the economic criteria ensures minimum cost in con-
ducting maintenance and power system operation and the risk
of failure objective seeks to ensure that each unit does not
breakdown before its scheduled maintenance slot. It reduces
the risk of having to change the schedule in the case where a
generator fails before it reaches its maintenance time.

The research also explores the use of the mathematical
modeling package, AIMMS (Advanced Interactive Multidi-
mensional Modeling System), in solving the GMS problem
and validates the results with those of a relatively new meta-
heuristic search algorithm, EMA. To the authors’ knowledge,
there is no literature where the tri-objective GMS problem is
solved. In [6] and [22], single objective optimization based on
the economic cost and reliability criterion respectively is used
to solve for an optimal GMS. Bi-objective GMS is imple-
mented in [8] to find a trade-off solution between energy
production cost and levelling the reserve margin (reliability).
The author is also not aware of any record of the GMS
problem being solved using the solution methods employed
in this paper. Reference [4] uses a modified ABC algorithm to
solve the GMS problemwhile in [6] modified Particle Swarm
Optimization is used. In [23], a proposal is put forward to
compute the bi-objective GMS using simulated annealing
(SA). In this study, the tri-objective GMS problem is solved.
This research will contribute to the field of generator main-
tenance scheduling modelling and solution techniques in the
following ways:

1. Modelling and solving a tri-objective GMS problem
resulting in an optimal solution that minimizes disrup-
tions to the maintenance schedule due to breakdowns.

2. Showing the effectiveness of EMA and AIMMS in
solving GMS problems of different complexity.

3. Evaluation of the maintenance schedule obtained by
each optimization criterion independently and the effect
of each individual objective criterion on the value of the
others and on the overall tri-objective function value.

The outline of the rest of this paper is as follows.
Section 2 gives the formulation of the GMS model and
describes the objective functions and constraints. In section
3, the solution techniques used to solve the GMS problem are
detailed. Section 4 discusses the simulation results of EMA
and AIMMS on a common test case found in literature and
the results of the tri-objective model of a real-life case study.
Section 5 is the conclusion.

II. FORMULATION OF THE GMS MODEL
GMS problems typically consider a generator, i, in a power
system with a total of I generating units. The maintenance
must be done within a planning horizon of T periods. The
planning horizon can vary in length. Each period, t , can be an
hour, a day or a week.Maintenance on each generator must be
done for a duration of Ni time periods (maintenance duration
of each generator) without interruption. For each period, t ,
each generator that is not on maintenance must generate

an output power of gi,t , and the total generation for that
period must meet the demand,Dt and a safety margin St . The
generators cannot, however, exceed their generation capacity,
Gmaxi.

A. OBJECTIVE FUNCTIONS
Objective functions are the performance indicators against
which an optimization problem is solved [6]. Depending on
the objective function, the goal can be either to minimize or
maximize it. The most common objective functions consid-
ered in literature are the reliability and economic cost [4]. The
desired outcome is a high system reliability and low operation
and maintenance cost.

1) RELIABILITY
The reliability criterion aims to ensure that the power system
is always able to meet demand regardless of load variations.
In order to achieve this, the utility generally provides a
spinning reserve by generating more power than demanded
which improves system reliability at the expense of operation
cost [24]. The reliability criterion has been defined in a num-
ber of different ways which include loss of load probability
(LOLP) expected energy not supplied (EENS) and sum of
squared reserves (SSR) [9].

The most common reliability criterion used is the sum of
squared reserves [25]. The objective is to level the reserve
over the planning period. The leveling of the reserve power
enhances the reliable operation of the power system over the
planning horizon enabling it to meet unexpected variations
in load [20]. This is achieved by minimizing the sum of
squared reserves. This approach is used in [9], [10], [20]. The
objective function is formulated as follows:

min
xi,t

{∑T

t=1

(∑I

i=1
Gmaxi,t −

∑I

i=1

∑T

t=1
Gmaxi,t

× xi,t − Dt

)2
}

(1)

2) ECONOMIC COST
Economic cost objective is concerned with minimizing the
costs involved in the operation of a power plant. In the model
developed in [6], these costs comprise of cost of maintenance,
start-up and power generation. The cost of generation is
sometimes taken as the fuel cost since fuel is the most signif-
icant cost associated with power generation [8]. As modern
power systems are becoming decentralized, some recent liter-
ature has seen the economic criteria shifting fromminimizing
of operational costs to maximization of profits [26], [27].
In [28], various cost components that affect maintenance
activities in deregulated power markets are modelled. These
include costs due to failures, interruptions of maintenance,
contractual compensation (having to buy power from other
supplies in order to meet contractual obligations), reschedul-
ing of maintenance and market opportunity [28]. The objec-
tive function for minimizing the operational cost, consisting
of maintenance cost, start-up cost and cost of generation, over
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the planning horizon is given by:

min
xi,tyi,t

{∑I

i=1

∑T

t=1
cmi × xi,t

+

∑I

i=1

∑T

t=1

(
s× yi,t + fi

(
Gi,t

))}
(2)

In some literature, the cost is taken as only the fuel cost,
fi(Gi,t ), which is given in (3) [29]. This is because the fuel
cost is the most dominant cost in the operation of a generator.

min
Gi,t

{
fi
(
Gi,t

)}
= min

Gi,t

{∑I

i=1

∑T

t=1
ai + bi × Gi,t + ci × G2

i,t

}
(3)

3) RISK OF FAILURE
As generators are in operation, there is a gradual wear and
tear that occurs. The degree of wear and tear depends on the
age of the generating unit and on the time that has elapsed
since its last refurbishment or repair. The risk of failure
criterion aims to minimize the probability that a generating
unit fails before its scheduled maintenance period. Failure
of generating units can be estimated using methods from the
reliability theory [25]. The objective will be to maximize the
probability that a failure occurs at least t time units from
the present time i.e. maximize the reliability given by:

R (t) = e−λt
′

(4)

To turn it into a minimization problem, the objective func-
tion is changed to:

min
t

{
1− R (t) = 1− e−λt

′
}

(5)

This is to minimize the probability that a unit will fail
before t time units.

4) TRI-OBJECTIVE FUNCTION
The combined objective function is formulated as a sum of
the reliability, cost and risk of failure functions, (1), (2) and
(5). The desired result is a set of solutions close to the true
pareto-optimal front. A challenge is introduced by the fact
that the target space has more than one dimension. This is
addressed by using the weighted sum method which scalar-
izes a set of objectives by pre-multiplying each objective
with a user supplied weight [30]. Since different objective
functions can have different magnitudes, normalization of
the objective functions is required to get a pareto optimal
solution consistent with the assigned weights [31]. This leads
to a multi-objective constrained optimization problem of the
form:

Minimise
∑

i
ui × θi × fi (x)

s.t x ∈ � (6)

where ui is the weight of the i-th objective, θi is the nor-
malization factor, fi is the i-th objective and � is the set of
constraints. The sum of the weighting factors should be 1.

For this study, all the objectives are equally weighted by a
weighting factor of 0.33. Different weighting factors can be
assigned to objective functions in proportion to their relative

importance. The objective function with the highest weight-
ing factor will be minimized more at the expense of the other
objective functions. A normalization factor is applied that
puts all objective functions in the same order of magnitude
to give the following tri-objective function. The objective
function (Equation (7)) is a Mixed Integer Non-Linear Pro-
gramming (MINLP) problem minimized over the planning
period of one year which is discretized into 365 days.

min
xi,t ,yi,t ,Gi,t

{
1
3
× θ1 ×

[∑T

t=1

(∑I

i=1
Gmaxi,t

−

∑I

i=1

∑T

t=1
Gmaxi,t × xi,t − Dt

)2
]}
+

1
3
× θ2

×

[∑I

i=1

∑T

t=1
cmi × xi,t +

∑I

i=1

∑T

t=1

(
s× yi,t

+ fi
(
Gi,t

))]
+

1
3
× θ3 ×

[(
1− e−λt

′
)]

(7)

5) CONSTRAINTS
A GMS that is developed must be able to satisfy specified
constraints. These constraints ensure that the operational
requirements of the power system are met and that it is
feasible to conduct the maintenance of generating units at the
allocated time periods. Several constraints are defined.

Maintenance Window Constraint:∑
w∈Wi

yi,w = 1 : i ∈ I , {w ∈Wi : ei ≤ w ≤ li} (8)

Maintenance duration constraint:∑
t∈T

xi,t = di (9)

and for uninterrupted maintenance:

xi,t − xi,t−1 ≤ yi,t (10)

Load and minimum reserve constraint:∑
i∈I

Gmaxi,t −
∑

i∈I

∑
t∈T

Gmaxi,t × xi,t ≥ Dt + Rt
(11)

Risk of failure constraint:

RoF i < RoFmax (12)

Generator output constraint:

Gmini ≤ Gi,t ≤ Gmax i (13)

Crew constraint:∑
i∈I

qi,t × xi,t ≤ Qt (14)

The maintenance window constraint specifies the time
interval during which the maintenance of a generating unit
should take place. It is defined using the earliest and latest
generator maintenance start times. The maintenance duration
constraint sets the specific amount of time that a generating
unit should be undergoing maintenance. Each maintenance
instance must be carried over a continuous period without
interruption. At any particular time, the available generation
capacity should ensure a secure reserve capacity. This is
enforced by the load andminimum reserve constraint. If there
is a conflict between unit maintenance and minimum reserve,
the system cannot operate in a secure and reliable way
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therefore the schedule will need to be rearranged. The gen-
erator output constraint limits the maximum output of a gen-
erator to its capacity. The crew constraint limits the number
of units that can be put onmaintenance at the same time based
on the maintenance crew requirement of each generating unit.
The maximum probability that a generating unit will fail
beforemaintenance is defined by the risk of failure constraint.
Any probability above the maximum will not be allowed.

III. SOLUTION METHODOLOGY
The GMS problem is solved using the exact solution method,
AIMMS, and the metaheuristic algorithm, EMA.

A. AIMMS IMPLEMENTATION
AIMMS provides modelling and optimization capabilities
across a wide variety of industries. It incorporates top class
solvers for linear, mixed integer and non-linear programming
such as Gurobi, Conopt, Baron, CPLEX, etc. The formula-
tion of optimization problems is done through declaration of
language elements such sets and indices, scalar and multidi-
mensional parameters, variables and constraints which allow
for a concise description of most mathematical optimization
problems [32]. Two major sets are defined in this model,
the set of generators and the set of time periods. There are
also subsets of the generator set which contain generators that
cannot go on maintenance at the same time (exclusion sets).
The generator and demand data are modelled as parameters
and the constraints are defined explicitly in AIMMS. The
objective function is defined as a variable and set as the
Mathematical Program to be optimized. The model is then
executed and gives the results.

B. EMA IMPLEMENTATION
EMA is one of the most recent optimization algorithms [33].
In the same fashion as other metaheuristic algorithms like
PSO [34], ACO [35], FA [36] etc., it is population based.
It is suitable for solving continuous non-linear optimization
problems which are so common. The algorithm is inspired by
the trading of shares on the stock market. In a stock market,
each broker buys and sells shares, taking a certain level of
risk, in order to increase their share portfolio.

In EMA, each individual in the exchange market is a solu-
tion to the problem represented by the variable pop. The indi-
viduals compete to have the best share value and be ranked
at the top. There are two different modes of the EMA which
emulate how certain conditions in real world affect the stock
market. The first mode is the balanced or non-oscillating
mode. In the balanced mode, individuals in the lower ranks
try to use the experience of the high ranked shareholders
in order to improve their share value and be recruited into
the elite class. The second mode is the oscillating mode in
which the market is unstable and individuals tend to take
calculated risks by identifying other shares that can improve
their overall ranking. The algorithm goes through the two
modes during each iteration. Due to the fact that EMA uses
two efficient search and absorbing operators, it can overcome

the limitations that are faced by other algorithms [37]. The
solution in EMA is a vector of maintenance start time periods
for all the generators in the power system. After each itera-
tion, the members are sorted according to fitness. Members
with the best solution are put in first group which consists
of 10%-30% of the population, medium fitness members go
into second group and are 20%-50% of the population and the
third group which is also 20%-50% of the population is made
up of weak fitness members. For each iteration, members of
the first group do not change their shares.

1) NON-OSCILLATING MODE
In the non-oscillating mode, individuals in the second and
third group use the experiences of the individuals in the first
group to enhance their rank standing. This mode seeks to
find better solutions by searching within the proximity of the
existing optimal solutions. The equations that define share
trading of the second and third group members in the non-
oscillating mode are as follows [37]:

Individuals with intermediate fitness:

popgroup(2)i = r × popgroup(1)1,i + (1− r)× popgroup(1)2,i (15)

where popgroup(2)j is the new value of the jth member of the
second group, which in this instance is an array of mainte-
nance start times, r is a random number between 0 and 1,
popgroup(1)1,i and popgroup(1)2,i are members of the first group.

Individuals with weak fitness:

popgroup(3),newk = popgroup(3)k + 0.8× sk (16)

where popgroup(3),newk is the new value of the kth member of
the third group, sk is the share variation given by:

sk = 2× r1 ×
(
popgroup(1)i,1 − popgroup(3)k

)
+ 2× r2

×

(
popgroup(1)i,2 − popgroup(3)k

)
sk = 2× r1

×

(
popgroup(1)i,1 − popgroup(3)k

)
+ 2× r2

×

(
popgroup(1)i,2 − popgroup(3)k

)
(17)

where r1 and r2 are random numbers between 0 and 1.

2) OSCILLATING MODE
After the non-oscillating mode, the individuals are ranked
according to fitness and the market changes to oscillating
mode during each iteration of the algorithm. In oscillating
mode, the individuals of the second and third group perform
risks based on their rank position in order to improve their
fitness. In this mode, the algorithm searches for optimal
solutions in a wider search space. In this way, unknown
points are evaluated thereby minimizing getting stuck in a
local optimum. The individuals in the second and third group
change their shares according to the following equations:

Individuals with intermediate fitness: Initially, shares of
the individuals increase according to the equation:

1nt1 = nt1 − δ + (2× r × µ× η1) (18)

µ =
tpop
npop

(19)
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TABLE 1. EMA parameters.

nt1 =
∑n

y=1

∣∣Sty∣∣ (20)

η1 = nt1 × g1 (21)

gk1 = g1,max ×
g1,max − g1,min

itermax
× k (22)

where 1nt1 is the number of shares to be added, nt1 is total
shares of the tth member before change, Sty is the shares of
the tth member, δ is the market information, r is a random
number between 0 and 1, η1 is risk level associated with each
member of the group 2, tpop is the number of the tth member,
npop is the number of members in the exchange market which
is the population size, µ is a constant co-efficient for each
member, g1 is a common market risk, itermax is the total
number of iterations, k is iteration number, g1,max and g1,min
are the maximum and minimum values of the risk in the
market respectively. Each individual will also have to reduce
their shares by the following value, 1nt2, so that the sum of
shares remains constant:

1nt2 = nt2 − δ (23)

where nt2 is the share amount of the tth member after share
changes. Individuals with weak fitness: Individuals change
share values by adding the following amount:

1nt3 = 4× rs × µ× n2 (24)

rs = 0.5− rand (25)

η2 = nt1 × g2 (26)

gk2 = g2,max ×
g2,max − g2,min

itermax
× k (27)

where1nt3 is the change in shares to be applied to the shares
of each member in the third group, rs is a random number
between −0.5 and 0.5, µ is a constant co-efficient for each
member, η2 is the risk associated with each member of the
group and g2 is the variable risk co-efficient.

All these variables are used in randomly and intelligently
changing the values of the maintenance start times in order
to end up with the best maintenance schedule. The param-
eters for this EMA implementation are given in Table 1.
Figure 1 shows the flow chart for EMA.

3) CONSTRAINT HANDLING
Unlike in AIMMS where the constraints of the optimization
problem are explicitly defined in the modelling language,
metaheuristic methods are generally suited for unconstrained
problems. The most common method of handling constraints
in metaheuristic algorithms is the penalty function [38]. The

FIGURE 1. EMA flow chart.

penalty function is used for handling constraints and only
solutions with no penalty violation are accepted. With the
penalty function added, Equation 6 becomes:

Minimise
∑

i
ui × θi × fi (x)+ Constraint Violation (28)

In EMA. each constraint equation is evaluated to determine
if there is a violation at each iteration. If there is a violation,
the equation gives a non-zero value and that value is ampli-
fied by a large number carefully chosen such that when the
solutions are ranked according to best fit, the solutions with
constraint violation are not selected among the best.

IV. TEST CASE STUDIES AND RESULTS
A. GENERATOR SYSTEM CASE STUDY
The two solutionmethods are first applied on a commonGMS
problem that is used in [22], [39]. This case study consists
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TABLE 2. Start times obtained by different solution methods.

FIGURE 2. Comparison of objective function values.

of 21 Generator systems. The aim in this case study is to
maximize the system reliability by minimizing the sum of
squared reserves as depicted in (1). Table 2 shows the start
times obtained using AIMMS, EMA and results obtained
in [22] using Ant Lion Optimizer (ALO) and [39] using
Modified Discrete Particle Optimization (MDPSO).

The corresponding objective function values which repre-
sent the SSR are given in Figure 2.

Figure 2 shows that EMA and AIMMS give a lower
objective function value than the solutions presented in the
referenced literature. Of the two, AIMMS gives a mini-
mum SSR of 13 286 403 while EMA gives 13 287 043.
AIMMS therefore gives the better maintenance schedule in

FIGURE 3. Convergence curves for MDPSO and MS-MDPSO [39].

FIGURE 4. Convergence curve for EMA.

the least amount of time, <65 seconds, compared to EMA’s
82 seconds. The typical convergence curves of MDPSO and
MS-MDPSO (a variant ofMDPSO) are shown in Figure 3 and
the typical convergence curve of EMA is shown in Fig-
ure 4. These convergence curves are for the same GMS
problem and the number of iterations is 100. The results
show that the objective function converged to 13 863 021 and
13 749 264 for MDPSO and MS-MDPSO respectively and
13 442 439 for EMA. This indicates that EMA converges to
a better solution faster than MDPSO and MS-MDPSO.

There are no constraint violations for the obtained solu-
tions as depicted in the Figures 5 and 6 which show the
available generation capacity and the crew required over the
maintenance window.

B. GENERATOR UNIT ESKOM CASE STUDY
The solution methods, AIMMS and EMA, are then applied
to the Eskom case study given in [40] to solve a tri-objective
GMS model. Eskom is the sole electricity utility in South
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FIGURE 5. Crew required.

FIGURE 6. Available capacity.

FIGURE 7. Comparison of individual criterion objective functions – EMA.

Africa. The system consists of 105 generating units, how-
ever, because some units require more than one maintenance
instances, dummy units are added for the additional mainte-
nance instances. This is because the solution methods require
one maintenance period per generator for easy implementa-
tion. Due to confidentiality concerns, the data used is not the
exact parameters in the field [40].

FIGURE 8. Comparison of individual criterion objective functions –
AIMMS.

TABLE 3. Comparison of EMA result with literature result.

The individual criteria are solved independently at first.
Figures 7 and 8 show the objective function values obtained
when each criterion is optimized on its own. The objective
function is the sum of the weighted objectives, SSR, the total
cost and the probability that a unit will not reach its mainte-
nance period before failure.

As can be seen from the Figures 7 and 8, the reliability
criterion gave the lowest overall objective function, followed
by the cost and lastly the risk of failure. The reliability crite-
rion therefore gives the best maintenance schedule in terms
of minimizing the objective function. The schedule obtained
by the risk of failure objective function puts generating units
off for maintenance at the earliest time possible, regardless of
cost or reliability implications. This result was observedwhen
solving with both EMA and AIMMS which shows solution
consistency. Individual simulations showed that each variable
(SSR, Cost, Risk of Failure) attained its minimum value
when it is being optimized independently. This is because the
solution aims to minimize only the single objective without
considering the impact on the values of the other objectives.
All solutions met the stipulated constraints of the problem.

For the Eskom case study, the running time to reach a
solution was longer for AIMMS than EMA. The Eskom case
study has more generators than the 21-generator unit case
study and the planning horizon is discretized into days rather
than weeks which makes it more complex. Because of the
increase in number of variables, AIMMS takes much longer
to solve the problem, which is a setback of exact solution
methods, compared to EMA. AIMMS took 8028 seconds to
reach best solution while EMA took 1647 seconds at most.

The reliability criterion was solved independently in [40].
The solution obtained using EMA and the solutions in litera-
ture are compared in the Table 3.
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FIGURE 9. EMA comparison.

TABLE 4. Comparison of objective functions using AIMMS and EMA.

The SSR obtained using EMA is lower than the one in
literature which shows the superior solution search qualities
of EMA. There is a 0.4% decrease in the SSR with EMA.

1) TRI-OBJECTIVE GMS IMPLEMENTATION
In the tri-objective model, the three objective functions are
added together to form a combined objective function. Equal
weighting factors of 0.33 are applied to the individual objec-
tive functions. The weighting factors are chosen in proportion
to the relative importance of the objective function. In this
study, the objective functions are considered equally impor-
tant. A constraint violation is added to the equation so that
solutions that do not fall within the system constraints are
discarded. The constraint violation variable has a value of 0
for feasible solutions. The objective function is constructed
in the following way:

Min
{
1
3
× Eq (1)+

1
3
× Eq (3)+

1
3
× Eq (5)

+ Constraint Violations
}

(29)

The constraint violations are only included in the EMA
solution method. Figures 9 and 10 show how the objective
function values, obtained using both AIMMS and EMA,
of the single objective function optimization and tri-objective
optimization compare.

From Figures 9 and 10 and Table 4, the results show that
EMA obtains a lower objective function that AIMMS for the
157-generator unit system.

FIGURE 10. AIMMS comparison.

TABLE 5. Tri-objective solution comparison.

FIGURE 11. Demand, minimum reserve and available capacity – EMA.

The solution obtained using tri-objective optimization is a
trade-off of the single objective optimization solutions. The
tri-objective optimization solution minimizes all three objec-
tives concurrently and therefore finds the lowest objective
function value. In the EMA and AIMMS solution, the objec-
tive function value is the lowest. Although the values are dif-
ferent for the two solution methods, the tri-objective solution
remains the best. This solution ensures system reliability in a
cost-effective manner while also minimizing the probability
of pre-mature failure of units. Table 5 shows the tri-objective
solution obtained using EMA and AIMMS.
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From Table 5, it can be seen that EMA provides a better
solution and in less execution time than AIMMS showing the
superior solving capabilities of EMA for large optimization
problems.

Both solutions satisfied the system constraints. The avail-
able capacity, the demand and minimum reserve during each
period based on the EMA solution are shown in Figure 11.

V. CONCLUSION
This research investigated the development of a tri-objective
GMS model, with the aim of minimizing the Sum of Squared
Reserves, cost and risk of failure concurrently. The GMS
problem has load, maintenance window, maintenance dura-
tion, crew and non-interruption of maintenance constraints.
It also explored the application of two solution methods,
AIMMS and EMA to solve the GMS problem. A comparison
of the performance of the two solution methods, AIMMS,
an exact solution method, and EMA, a metaheuristic solution
algorithm, on two case studies is also done.

The EMA and AIMMS 21-unit test system models are
compared with the solutions obtained in literature for min-
imizing the sum of squared reserves. The objective func-
tion values obtained by EMA and AIMMS are 13 287 043
and 13 286 403 respectively compared to literature values
of 13 685 127 and 13 675 000. AIMMS, however, gives a
better maintenance schedule than EMA for the 21-unit test
system. The tri-objective GMS problem of the Eskom case
study consisting of 105 generating units is also solved using
AIMMS and EMA. The tri-objective solution is a trade-off of
the single objective optimization solutions and ensures high
system reliability at minimized cost and low probability of
generator units failing. The tri-objective solution gives the
lowest objective function value as it minimizes the individual
objective functions simultaneously. The Eskom case study
is more complex than the 21-unit test system and EMA
gave a better result than AIMMS.EMA obtained an objective
function value of 2.152 × 1010 while AIMMS obtained an
objective function value of 2.159× 1010.
This study can be extended in future to include renew-

able energy sources which are fast growing on the national
grid. Further work can involve integrating the Generator
Maintenance Scheduling Model with transmission network
maintenance in order to have a holistic model of the entire
power supply system.
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