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1. Introduction

It is widely published that an equal weighted equity portfolio outperforms a market capitalization
weighted equity portfolio (cap weighted) over the long term (Malladi and Fabozzi 2017, Bolognesi
et al. 2013, Plyakha et al. 2012). Furthermore, DeMiguel et al. (2009) have shown that, not only is
the equal weighted portfolio more efficient than the cap weighted portfolio, but that it outperforms
mean-variance based portfolio strategies out of sample. However, while long-term performance is
of course important, in the short-term, the equal weighted portfolio can suffer significant under-
performance relative to the cap weighted portfolio. It may be difficult for investors to hold equal
weighted portfolios during these periods.

There can be various reasons for this short-term underperformance. The act of rebalancing an
equal weighted portfolio essentially involves selling stocks that have outperformed the average stock
and buying those that have underperformed. In the short-term this would require some level of
mean reversion in stocks to outperform the cap weighted portfolio. However, in momentum driven
markets this is unlikely to be the case and, in such instances, the equal weighted portfolio is bound
to underperform the cap weighted portfolio in the short-term.

Another source of underperformance could be the diversification benefits of the equal weighted
portfolio. The act of rebalancing an equal weighted portfolio is also sometimes referred to as
volatility harvesting or volatility return, for example, in Bouchey et al. (2012, 2015), and Hallerbach
(2014), while Booth and Fama (1992) refer to the additional return obtained from rebalancing as
the diversification return. It is possible that the diversification return is too low, either because
individual stock volatilities are low or correlation is high, and does not warrant rebalancing of
the portfolio back to equal weights. This is analysed further in Taljaard and Maré (2019) and
Cuthbertson et al. (2016).

We attempt to understand and improve the performance of an equal weighted portfolio of S&P500
stocks using an approach from stochastic portfolio theory. Stochastic portfolio theory was first
introduced by Robert Fernholz (Fernholz and Shay 1982, Fernholz 1999, Fernholz and Square
1998), which culminated in a book (Fernholz 2002). Our use of stochastic portfolio theory is on
the basis that it requires relatively few assumptions, is based on a widely used model of stocks,
and provides a direct approach to modelling and understanding the drivers of returns of the equal
weighted portfolio relative to the cap weighted portfolio.

Making use of the tools derived in stochastic portfolio theory, we analyse the relative performance
of the equal weighted portfolio, decomposing the relative performance into two main parts, namely
the change in the concentration of the cap weighted portfolio and the excess return generated by
a diversification benefit. We also analyse a third component, called leakage, which measures the
impact of changes in the constituents of an index, or subset of the equity market, on a portfolio.

We focus mainly on the S&P500 in this article given its status as the largest, most liquid equity
market in the world and that much of the commentary on equal weight and market cap in recent
months has been in relation to the US equity markets. However, this approach of analysing the
equal weight and cap weighted portfolios is applicable to other markets and, although the matter
deserves a dedicated consideration, we touch very briefly on a few other equity markets.

As it pertains to the S&P500, although an equal weighted portfolio seems to have outperformed
the cap weighted portfolio since 1995, we show that there have been periods of significant under-
performance over shorter time horizons. These periods have, primarily, either coincided with higher
levels of concentration in the cap weighted portfolio and/or lower benefits of diversification due to
lower average volatilities and higher correlations among stocks. As a trading strategy, we attempt
to dynamically switch from the equal weighted portfolio to the cap weighted portfolio to improve
short-term, relative, risk-adjusted performance.

The article is structured as follows: in Section 2 we derive some key formulae and ideas from
stochastic portfolio theory, in Section 3 we show the long-term and short-term outperformance
of the equal weighted portfolio of S&P500 stocks from 1995 and compare the performance with
the theoretical constructs in Section 2. In Section 4 we attempt to optimise the performance
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of our portfolio by alternating between the cap weighted and equal weighted portfolios using a
rudimentary linear model.

2. Stochastic portfolio theory

In this section we give a brief overview of the necessary expressions from stochastic portfolio theory,
as found in Fernholz (2002). We also suggest Fernholz and Karatzas (2009) and Karatzas (2006) for
a complete overview of stochastic portfolio theory. We cover two main parts of stochastic portfolio
theory in the following subsections, namely the portfolio price process and portfolio generating
functions. Portfolio generating functions allow us to consider the relative performance of the equal
weighted portfolio in relation to the cap weighted portfolio. We leave other topics of stochastic
portfolio theory, such as the capital distribution curve (Fernholz 2001a) and stock selection by
rank (Fernholz 2001b) for further study.

2.1. Portfolio price process

Consider a stock that follows the popular logarithmic model for the continuous-time stock process:

dlogXi(t) = γi(t)dt+

n∑
ν=1

ξiνdWν(t) t ∈ [0,∞), (1)

where ξiν is the sensitivity of stock Xi(t) to the ν-th source of randomness for ν = 1, 2, . . . , n
and dWν(t) represent Brownian motions. γi(t) is the geometric growth rate of stock Xi(t) related
to the arithmetic growth rate, αi(t), by

γi(t) = αi(t)−
1

2

n∑
ν=1

ξ2
iν(t).

If we consider a set of stocks X1, . . . , Xn that each follow the price process as in Equation (1)
and construct a portfolio with weights given by π(t) = (π1(t), . . . , πn(t)), such that

n∑
i=1

πi(t) = 1,

and

πi(t) ≥ 0 ∀i = 1, . . . , n,

then the portfolio price process, Zπ(t), follows:

dlogZπ(t) = γπ(t) +

n∑
i,ν=1

πi(t)ξiνdWν(t), (2)

where

γπ(t) =

n∑
i=1

πi(t)γi(t) +
1

2

 n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

 ,
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and the cross-variance processes for logXi and logXj are given by

σij(t)dt = d 〈logXi, logXj〉t =

n∑
ν=1

ξiν(t)ξjν(t),

with the covariance process of Xi given by

σii(t) = d 〈logXi〉t .

The portfolio’s growth rate, γπ(t), consists of two distinct parts: the weighted growth rates of
the individual stocks and a second term involving the stocks’ weighted volatilities and covariances.
This second term is referred to as the excess growth rate and is given by

γ∗π(t) =
1

2

 n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

 . (3)

We can regard γ∗π(t) as the benefit of diversification. If the correlation between stocks is very
small, then γ∗π(t) would be larger leading to a higher contribution to the overall portfolio growth
rate. In a similar vein, should individual stock volatilities be low, then γ∗π(t) would also be low as
there would be less scope for a reduction in portfolio volatility.

Combining Equations (1), (2), and (3) we obtain

dlogZπ(t) =

n∑
i=1

πi(t)dlogXi(t) + γ∗π(t)dt.

That is, the price process of the portfolio Zπ(t) is a function of two parts: the weighted price
processes of the individual stocks and a term representing the diversification benefit within the
portfolio.

The above formulae are easily extended to include dividends. Given a dividend process for stock
Xi(t), represented as δi(t), then the total return for stock Xi(t) is

X̂i(t) = Xi(t)exp

(∫ t

0
δi(s)ds

)
, t ∈ [0,∞).

Therefore, Equation (1) can be extended for the total return process,

dlogX̂i(t) = dlogXi(t) + δi(t)dt,

and the total return process for the portfolio given by weights π(t) becomes,

dlogẐπ(t) = dlogZπ(t) + δπ(t)dt, (4)

where

δπ(t) =

n∑
i=1

πi(t)δi(t).
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2.2. Portfolio generating functions and relative performance

We are, of course, not necessarily interested in the equal weighted portfolio’s price process on its
own, but rather its price process relative to the cap weighted portfolio.

Consider the cap weighted portfolio price process given by Zµ(t), where the portfolio weight of
stock i at time t, µi(t), is given by

µi(t) =
Xi(t)∑n
i=1Xi(t)

,

where Xi(t) is stock i’s market capitalization at time t. Zµ(t) is just like any other portfolio price
process and, therefore, the expressions in Section 2.1 apply to Zµ(t), with the only difference being
the weights themselves.

To derive expressions for the relative performance of a portfolio, we first need to define portfolio
generating functions. These are functions that generate various portfolio weights using, as an input,
the market capitalization weights, µ(t). They are defined as follows (see Fernholz (2002), Definition
3.1.1, reproduced below for convenience):

Definition 1 Let S be a positive continuous function defined on ∆n (the unit n-simplex) and
let π be a portfolio. Then S generates π if there exists a measurable process of bounded variation
Θ such that

log (Zπ(t)/Zµ(t)) = logS(µ(t)) + Θ(t), t ∈ [0, T ], a.s. (5)

The process Θ is called the drift process corresponding to S.

We can also express Equation (5) in differential form,

dlog (Zπ(t)/Zµ(t)) = dlogS(µ(t)) + dΘ(t), t ∈ [0, T ], a.s. (6)

If we include dividends then, using Equation (4), the total relative return process becomes

dlog
(
Ẑπ(t)/Ẑµ(t)

)
= dlogS(µ(t)) +

∫ t

0
(δπ(s)− δµ(s))ds+ dΘ(t), t ∈ [0, T ], a.s. (7)

In other words, the relative performance of a portfolio with weights π(t) is a function of the
portfolio generating function S, the difference in dividend rates and the drift process.

The expressions for the weights, πi(t), as well as the drift process, Θ(t), can be derived using
Theorem 3.1.5 in Fernholz (2002). We reproduce the relevant theorem below.

Theorem 2.1 Let S be a positive C2 function defined on a neighborhood U of ∆n such that for
all i, xiDilogS(x) is bounded on ∆n. Then S generates the portfolio π with weights

πi(t) =

DilogS(µ(t)) + 1−
n∑
j=1

µj(t)Dj logS(µ(t))

µi(t),

for t ∈ [0, T ] and i = 1, . . . , n and with a drift process Θ such that a.s., for t ∈ [0, T ],

5



February 7, 2021 Quantitative Finance ew˙vs˙mc˙US

dΘ(t) =
−1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt.

The notation Di represents the partial derivative with respect to the ith variable and τij(t)
represents the relative covariance of stock i and j. That is,

τij(t) = 〈log (Xi/Zµ) , log (Xj/Zµ)〉 .

We can show that the function given by

S(µ) =

(
n∏
i=1

µi

) 1

n

, (8)

generates the equal weighted portfolio with a drift process given by

dΘ(t) = γ∗π(t)dt, (9)

where γ∗π(t) is defined as the excess growth rate in Equation (3).
Considering this in the context of Equation (6), the relative performance of the equal weighted

portfolio over some time period is given by the addition of the change in 1
n log (µ1(t) · · · µn(t)) and

γ∗π(t)dt.
We know that γ∗π(t) is always positive, however, the change in logS(µ) is dependent on the change

of the distribution of weights, µi(t) in the cap weighted portfolio. If the concentration increases, the
change in logS(µ) is negative and detracts from the equal weight portfolio’s performance relative
to the cap weighted portfolio and vice versa.

In a scenario where the cap weighted portfolio becomes increasingly concentrated, the change
in logS(µ) becomes a short-term, but consistent, drag on relative performance through Equation
(6). As a result, the excess growth rate will have to offset this term in order for the equal weighted
portfolio to outperform the cap weighted portfolio. Although always positive, it is not a given that
in every period the excess growth rate will be high enough to offset the growing concentration of
market capitalization weights and this can, therefore, lead to short-term underperformance.

2.3. Portfolios on subsets of the whole market

In the previous section, portfolios formed on the entire equity market were considered. However,
in practice, an index formed on the top stocks is used as a benchmark and its constituents are
used to form active portfolios. In our examples we consider the S&P500, which would be a subset
of the entire US equity market. As a result, we are implicitly selecting stocks by rank in both the
cap weighted and equal weighted portfolios. This requires us to modify the drift process, dΘ(t), in
Theorem 2.1 by introducing a new term dLπ(t).

dΘ(t) =
−1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt+ dLπ(t),
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where

dLπ(t) =
1

2

n=1∑
k=1

(
π(k+1)(t)− π(k)(t)

)
dΛlogµ(k)−logµ(k+1)

(t), t ∈ [0, T ]. (10)

The terms π(k)(t) and µ(k)(t) represent the portfolio weight and the market cap weight of the
k-th largest stock, respectively, where the stocks are ranked by market cap weights from largest to
smallest over the entire market.

Λ is the semi-martingale local time process defined as,

ΛX(t) =
1

2

(
|X(t)| − |X(0)| −

∫ t

0
sgn(X(s))dX(s)

)
, t ∈ [0, T ].

We can think of this new term dLπ as the shift in weights within the market, and specifically how
that affects portfolio selection both in terms of the equal weighted portfolio and the benchmark,
which is a subset of the whole market. In our case here, with the S&P500 or any other index,
the changes that would affect portfolio selection occurs at the edges. That is, the 500th stock, for
example, becoming the 501st stock and falling out of the index and therefore out of the individual
portfolios. This term is, therefore, defined as leakage, given that its size is determined by stocks
“leaking” out of the portfolio.

As a result, and in the specific case of the equal weighted portfolio, this leakage term, over small
time periods, usually only involves the last position in the index. That is, in the case of the S&P500,
we are only interested in changes in the 500th position over a small time period. This change (the
last stock being replaced) is likely to affect the equal weighted portfolio much more than a cap
weighted portfolio, given that the final few weights are likely to already be small in the case of
the cap weight. The equal weight on the other hand, typically, has larger weights in those last few
stocks and is, therefore, more affected by exclusions.

The leakage term defined in Equation (10) is of a portfolio relative to the entire market. In
the case of the equal weighted portfolio with weights π(k)(t) relative to the cap weighted portfolio
with weights µ(k)(t), where both portfolios are a subset of the entire market, the leakage term
corresponding to the relative return of the equal weighted against this cap weighted portfolio can
be expressed as

dLπ/µ(t) =
1

2

n=1∑
k=1

(
[µ(k+1)(t)− µ(k)(t)]− [π(k+1)(t)− π(k)(t)]

)
dΛlogµ(k)−logµ(k+1)

(t). (11)

This is the difference in impact of the leakage term on the cap weighted subset portfolio and the
equal weighted portfolio in our case. As explained above, the equal weighted portfolio is likely to
hold more weight in the stocks exiting the index and, therefore, Equation (11) is a negative drag
on the equal weighted portfolio’s performance relative to the cap weighted portfolio in most cases.

Therefore, rewriting Equation (7), the relative return of the equal weighted portfolio (with weights
π) to a cap weighted portfolio (with weights µ) formed on a subset of the market can be given by

dlog
(
Ẑπ(t)/Ẑµ(t)

)
= dlogS(µ(t)) + dΘ(t) +

∫ t

0
(δπ(s)− δµ(s))ds+ dLπ/µ(t), t ∈ [0, T ], a.s.

(12)
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3. Empirical performance of the equal weight portfolio

In this section we compare the performance of monthly rebalanced equal and cap weighted portfolios
of the S&P500 from 1996 to March 2020. We focus on the S&P500, given, its status as the most
liquid equity market in the world and highlight that the S&P500 equal weight index was only
launched in 2003. We use data obtained from Bloomberg, including S&P500 constituents and
daily price and total return data. Portfolios are rebalanced monthly, with dividends and capital
adjustments treated as cash in the portfolio before being reinvested at the next rebalance date. We
do not include transaction costs at this stage.

Figure 1 shows the cumulative return (log scale) since 1996 of both the equal and cap weighted
portfolios with monthly rebalancing. Notwithstanding the underperformance at the beginning of
our sample period, the equal weighted portfolio does indeed outperform the cap weighted portfolio
over the entire period.

Table 1 shows the risk adjusted returns over the entire period and, although the equal weighted
portfolio has a higher volatility, its higher annualised growth rate leads to higher Sharpe and
Sortino ratios than the cap weighted portfolio.
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Figure 1. Log cumulative returns for the equal weight and cap weighted port-
folios with monthly rebalancing.

Table 1. Risk adjusted performance of equal and cap
weighted portfolios, monthly rebalanced.

Portfolio CAGRa Volatility Sharpe ratiob Sortino ratio

Equal weighted 9.6% 20.3% 0.449 0.559
Cap weighted 8.2% 19.4% 0.394 0.500

a Compound annual growth rate.

bOne-month US Treasury bill used as risk free rate for both Sharpe and
Sortino ratios.

In Figure 2 we show the relative cumulative return over time of the equal weighted portfolio,
which visually highlights periods of under- or out-performance over the cap weighted portfolio.
It confirms that the equal weighted portfolio outperformed the cap weighted portfolio between
1996 and 2020. However, the majority of this outperformance is generated during the period 2000
to 2008, with the relative performance being largely sideways from 2008 onwards and somewhat
negative since 2016.

The relative returns of the equal weighted portfolio on a rolling one-year basis (Figure 3) also
confirms that the majority of the outperformance generated by the equal weighted portfolio is due
to the earlier parts of our sample period. Relative returns in the latter part of our sample period
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Figure 2. Equal weighted portfolio cumulative return relative to cap weighted
portfolio with monthly rebalancing.
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Figure 3. Equal weighted portfolio rolling one-year return relative to cap
weighted portfolio with monthly rebalancing.

Table 2. Total return over selected five year periods.

Period Equal Weight Cap Weight Compounded Difference

2000 - 2005 53.4% -10.0% 71.9%
2005 - 2010 13.6% 3.4% 13.3%
2010 - 2015 125.3% 104.9% 11.1%
2015 - 2020 60.7% 74.5% -7.7%

have been rather lacklustre with the equal weighted portfolio underperforming for the most part
since 2016.

Although the equal weighted portfolio appears to outperform the cap weighted portfolio over the
whole period, most of the outperformance has been due to the 2000 to 2012 period. This is also
evident from Table 2, which shows five-year total returns for the equal and cap weighted portfolios
since 2000. Relative returns are the highest in the early 2000s and degrade slightly for later five-
year periods. In particular, the last five years have been especially tough for the equal weighted
portfolio, which has underperformed by 14% from 2015 to 2020.

Following the theoretical results in the previous section, and in particular given Equation (12),
the main components of the relative performance consist of changes in the portfolio generating
function, the equal weighted portfolio’s drift process and the net impact of leakage. The drift
process, in the case of the equal weighted portfolio, is the excess growth rate given by Equation
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Figure 4. Log portfolio generating function for the S&P500 equal weighted
portfolio as per Equation (8).

(3) and is intuitively a measure of the benefits of diversification.
On the other hand, per Equation (12), decreases in the portfolio generating function detracts

from the relative performance of the equal weighted portfolio and vice versa. In the case of the
equal weighted portfolio, the portfolio generating function, Equation (8), is also a measure of
the concentration of the cap weighted portfolio. Therefore, as the cap weighted portfolio becomes
more concentrated, the equal weighted portfolio is bound to underperform unless the drift process,
namely the excess growth rate per Equation (9), can offset this.

Therefore, in order to understand the relative performance of the equal weight portfolio, we
analyse the excess growth rate and portfolio generating function over the period 1996 to 2020.

Figure 4 shows how the log portfolio generating function for the equal weighted portfolio increases
during the period 2000 to 2008, in the same period the equal weighted portfolio generates the
majority of its outperformance, and how, more recently, the portfolio generating function has been
declining. That is, the cap weighted portfolio has increasingly become more concentrated. This
has a negative impact on the equal weighted portfolio that relies in part on some level of mean
reversion.

We show the excess growth rate over the period 1996 to 2020 in Figure 5. We estimate the
covariance matrix required to calculate the excess growth rate using the historical three-month
covariance matrix at each point in time.

Figure 5 highlights another reason for the underperformance in recent years. The excess growth
rate has declined substantially from an average of between 5% and 10% in the first half of our
sample period to between 2% and 3% in recent years. In fact, while the portfolio generating
function has declined substantially since 2014, the excess growth rate has remained low. In terms
of Equation (6), this would lead to underperformance of the equal weighted portfolio relative to
the cap weighted portfolio.

The decline in - and low levels of - the excess growth rate in recent years is also interesting from a
diversification point of view. Given Equation (3), the excess growth rate would be low when either
average stock volatility is low (so that diversification is less beneficial) or correlations are high (so
that there is no way to achieve higher diversification). Figure 6 highlights that average volatilities
have remained reasonably low in recent years, at least compared to the periods 2000 to 2003 and
2008 to 2012. Similarly, average correlations seem to have been higher on average for the period
2009 to 2020 as compared to the earlier part of our sample period (1996 to 2004). The impact of
both of these findings would lead to lower excess growth rates for the equal weighted portfolio.

Finally, as we discussed in Section 2.3, given that we are operating on a subset of the entire US
equity market, we also have to consider the impact of leakage. In other words, the impact of stocks
exiting the S&P500. Figure 7 highlights the cumulative impact of leakage on the equal weighted
portfolio’s relative performance. As expected, this term is a consistent drag on the equal weighted
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Figure 5. Excess growth for the S&P500 equal weighted portfolio as per Equa-
tion (3), which also represents the drift process of the equal weight portfolio
per Equation (9).
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Figure 6. Average volatilities and correlations for the stocks in the S&P500
index. These components make up the excess growth rate in Figure 5 and
Equation (3).

portfolio, of approximately 1.8% per annum since 1996. The size of the impact is proportionate to
the number of changes in constituents, which we depict in Figure 8 on a rolling one-year basis. In
Figure 7, for example, we can see that the impact of leakage on the equal weighted portfolio slowed
between 2003 and 2006, which corresponds to an unusually low number of index changes over the
same period. More recently, the number of index changes has been more consistent, between 25
and 35, on an annual basis.

In Figure 9 we combine all the theoretical components addressed above into a single view of
the decomposition of the rolling one-year relative returns of the equal weighted portfolio. Table 3
highlights the impact of these factors over five-year windows.

Most of the annual variability in returns is attributable to changes in the portfolio generating
function highlighting the importance of monitoring this term to improve short-term performance.
The figures in Table 3 show how the portfolio generating function contributed significantly to
the outperformance of the equal weighted portfolio in the early 2000s but has been a drag on
performance in the recent years.

The leakage impact is also a small drag on performance and oscillates as the number of stocks
entering and exiting the S&P500 changes. It appears from Table 3 that the leakage impact has
grown. However, Figure 8, which shows the changes in the index constituents over a rolling one-year
period, highlights how in 2000 to 2005 the number of changes in the index was relatively low. This
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Figure 7. Cumulative impact of leakage on the equal weight portfolio relative
to the cap weighted portfolio per Equation (11).
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Figure 8. Rolling one year changes in index constituents for the S&P500

Table 3. Decomposition of equal weighted portfolio
relative return over selected periods

Period Excess growth rate Port. gen. function Leakage Dividends Costs Residual Total

2000 - 2005 48.3% 40.2% -2.9% -0.1% -0.3% -16.8% 68.0%
2005 - 2010 36.3% -0.8% -9.5% -0.9% -0.3% -10.3% 8.8%
2010 - 2015 12.9% 9.3% -7.7% -0.8% -0.2% -2.9% 9.8%
2015 - 2020 14.4% -10.4% -11.0% 0.4% -0.2% 0.4% -8.1%

led to a smaller than usual leakage. This is similar to the period 2010 to 2015 where the number
of changes was smaller than that of the period 2015 to 2020. As a result leakage for 2015 to 2020
is higher at -11% in contrast to -7.7% for the period 2010 to 2015.

Both Figure 8 and Table 3 highlight the decline in the contribution of the excess growth rate
from the early 2000s to more recently.

We also note a residual effect when the theoretical decomposition is compared to the empirical
returns. This residual tends to be correlated to the excess growth rate, increasing when the contri-
bution of the excess growth rate is large and vice versa. This leads us to believe that the residual
is a consequence of errors and noise in our covariance matrix estimation. Improving the covariance
matrix estimation will likely lead to an improved estimate of the excess growth rate and a smaller
residual effect.
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Figure 9. Annual decomposition of equal weighted portfolio relative return
including dividends, Equation (12), and transaction cost differentials.

3.1. Impact of technology stocks in the S&P500 and its impact on concentration

In an aside, we take a look at how removing the major technology stocks would impact the portfolio
generating function of the equal weighted portfolio. We focus on the stocks commonly referred to
as the FAANG stocks or more recently expanded version FAAANM: Facebook, Alphabet (Google),
Amazon, Apple, Netflix, and Microsoft.

To gauge the impact on the equal weighted portfolio’s relative return, we remove these stocks and
redistribute their cumulative weight proportionate to the remaining market capitalisation weights.
We then recalculate the portfolio generating function as per Equation (8) and compare this to the
actual portfolio generating function. Any difference in the two would correspond to a difference in
the relative performance of the equal weighted portfolio through Equation (6).

Figure 10 shows the impact of removing these stocks on a rolling five-year basis. The improve-
ment in the portfolio generating function becomes more significant from 2010 onwards, moderating
between 2013 and 2017. More recently, the improvement in the portfolio generating function is
approximately 8% over the past five years. If we compare this to Table 3, we see that this effect has
accounted for a large portion of the negative contribution from the portfolio generating function
over the last five years (-10.4%). To be clear, we are not arguing that technology stocks should be
removed from the index, but rather highlighting an interesting application of stochastic portfolio
theory to understand their impact on the equal weighted portfolio in recent years.

4. Optimising the equal weighted portfolio

As mentioned in Section 2, Equation (8), the portfolio generating function of the equal weighted
portfolio, implies that logS(µ(t)) is bounded, assuming that the stock market does not become
concentrated in a single stock. Furthermore, the drift process of the equal weight portfolio, repre-
sented by the excess growth rate in Equation (9), is always greater than, or equal to, zero. As a
result, Equation (6), the relative return process of the equal weighted portfolio, implies that the
equal weighted portfolio will almost surely outperform the cap weighted portfolio in the long-run.

This does appear to be the case, given our results in Section 3. However, the stock market can, in
theory and practice, continue to become increasingly concentrated over the short-term. In Figure 4,
these periods of increasing concentration seem to span years. As a result, Equation (8) can become
a consistent drag on the relative performance and impact an investor’s ability and willingness to
hold the equal weight portfolio in favour of a cap weighted index.

In this section we look to negate some of these periods of steep drawdowns, relative to the cap
weighted portfolio. Our aim is to create as simple a model as possible and in turn highlight that
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Figure 10. Improvement in the portfolio generating function of the equal
weighted portfolio (over a rolling five year basis) when removing the stocks:
Facebook, Alphabet (Google), Amazon, Apple, Netflix, and Microsoft and re-
distributing their weight proportionately among the remaining stocks.

monitoring the portfolio generating function, as given by Equation (8), the excess growth rate,
and the impact of leakage, Equation (11), are important when improving the short-term perfor-
mance of the equal weighted portfolio relative to a cap weighted index. While this rudimentary
approach appears to perform adequately in reducing relative drawdown, we highlight some areas
of improvement at the end of the section.

4.1. A rudimentary linear regression approach

Our rudimentary approach is to make use of the portfolio generating function, the excess growth
rate and leakage to forecast what the relative performance of the equal weight will be in the following
month and switching between the cap weight and equal weighted portfolios. We do this since, in
the previous sections we showed how, theoretically and empirically, the relative return of an equal
weighted portfolio is a combination of the changes in concentration of the cap weighted portfolio
weights (the portfolio generating function), the excess growth rate (heuristically the benefits of
diversification of the equal weighted portfolio) and the rate of leakage as stocks move out of the
S&P500. Therefore, we focus our attempts here to optimise the equal weighted portfolio on these
three components.

We make use of a rudimentary linear regression model that looks to forecast the next month’s
relative performance using the average monthly change in the log portfolio generating function,
Equation (8), over the past three months, the most recent estimate of the drift process, and the
average of the last three month’s leakage as defined in Equation (11). In this case the drift process is
the excess growth rate of the equal weighted portfolio, Equation (3), where we estimate volatilities
and correlations over the prior three months. We fit this model on the prior three years’ of data
and attempt to forecast the next month’s relative return.

Mathematically this would be expressed as

ŷt+1 = β0 + β1Gt, t = 3, . . . , n

where ŷt+1 is the next month’s relative return of the equal weighted portfolio and Gt is given by

Gt =
1

12
γ∗π(t) +

1

3

t∑
i=t−2

dlogS(µ(i))) +
1

3

t∑
i=t−2

dLπ/µ(i),
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where dlogS(µ(i)) is the one-month change in the log of the portfolio generating function and
dLπ/µ(i) represents the net leakage effect, Equation (11), for the equal weighted portfolio at time
t = i with µ representing the cap weights of the S&P500 constituents.

The intercept β0 and coefficient β1 are fit using an ordinary least squares approach. The model
is fit over the preceding three years’ monthly data at the beginning of each month prior to any
monthly rebalancing in the portfolios.

Since the dynamic portfolio will be shifting between equal and cap weighted, turnover is likely to
increase and we, therefore, include trading costs of 15 basis points in our analysis on all portfolios.
This is roughly in line with analysis done by Frazzini et al. (2018) for stocks over the period 1998
to 2016.

As the analysis in this section includes transaction costs of 15 basis points for all portfolios, we
only switch from equal weights to cap weights (or vice versa) if the relative return is predicted to,
at least, offset these transaction costs.

Practically, to generate the equal and cap weights for the dynamic portfolio, we make use of
the diversity weighted portfolio (see Fernholz 2002). This portfolio has the following generating
function

Dp(µ) =

(
n∑
i=1

µpi

) 1

p

. (13)

This generates weights given by

πi(t) =
µpi (t)∑n
i=1 µ

p
i (t)

. (14)

As p→ 0 the portfolio’s weights tend to the equal weight portfolio and as p→ 1, the portfolio’s
weights tend to the cap weighted portfolio. There have been attempts to directly optimise this
value p (see, for example, Samo and Vervuurt 2016); although, this tends to result in portfolios
with p < 0. This leads to an inverse cap weighted portfolio where smaller stocks have much larger
weights than the largest stocks in the market.

In our analysis we restrict p to either very close to 0, or equal to 1, to select directly between
either the equal weighted or cap weighted portfolios.

4.2. Results

We highlight the main results in Table 4. The optimised portfolio seems to outperform the equal
weighted portfolio by approximately 60 basis points per annum, on average, with lower volatility
and higher Sharpe and Sortino ratios than the equal weighted portfolio. There also appears to be
a marked improvement in the information ratio of 0.517 for the optimal portfolio over the equal
weighted portfolio’s 0.265.

We perform a statistical test for the significance of the difference in the Sharpe ratios of the equal
weighted and optimal portfolios relative to the cap weighted portfolio in Table 4. The method used
is that of Ledoit and Wolf (2008), which makes use of a studentised circular bootstrap approach to
construct a confidence interval at a given significance level. This test can be altered to provide a
p-value for the null hypothesis. The hypothesis test is a two-sided test with the null hypothesis as
H0 : the difference in Sharpe ratios is zero. We perform the same test for the information ratios.

We note that in both cases the p-values are large, however, it is worth bearing in mind that
the optimal portfolio is a combination of the equal weight and cap weighted portfolio. Therefore,
the bootstrapping approach would cover many areas where both the optimal portfolio and cap
weighted portfolio have the same return series. We show the proportion of time spent in each
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Table 4. Risk adjusted performance of optimised,
equal, and cap weighted portfolios, monthly rebalanced

with 15bps of costs.

Portfolio CAGRa Volatility Sharpe ratiob Information ratioc Sortino ratio

Optimised 10.1% 19.8% 0.476 (0.18) 0.517 (0.15) 0.606
Equal weighted 9.5% 20.3% 0.442 (0.89) 0.265 (–) 0.551
Cap weighted 8.2% 19.4% 0.392 (–) – 0.498

a Compound annual growth rate.

bOne-month US Treasury bill used as risk free rate for both Sharpe and Sortino ratios. P-
value for two sided hypothesis test as per Ledoit and Wolf (2008) shown in brackets. The null
hypothesis is that the Sharpe ratio is equal to that of the cap weighted portfolio.

cInformation ratio relative to the cap weighted portfolio. P-value for two sided hypothesis test
as per Ledoit and Wolf (2008) shown in brackets. The null hypothesis is that the IR is equal to
that of the equal weighted portfolio.

specific portfolio weighting scheme in Figure 11. The optimal portfolio spends approximately two-
thirds of the time within an equal weighting and reverts to cap weighting the remainder of the
time. In this context we would argue the p-values are not too extreme considering the proportion
of time the optimal portfolio spends in each weighting methodology.

1996 2000 2004 2008 2012 2016 2020

Equal weight
(61%)

Cap weight
(39%)

Figure 11. Allocation of optimal portfolio between cap weighted and equal
weighted portfolios. Proportion of overall time allocated to a specific portfolio
is shown in brackets.

The overall outperformance of the optimised portfolio is largely as a result of avoiding some of
the steep drawdowns relative to the cap weighted portfolio. In Table 5 we show the maximum
relative return drawdowns of the optimised and equal weighted portfolios (relative to the cap
weighted portfolio). This is reduced from a maximum underperformance of 30.7% for the equal
weighted portfolio to 11.3% for the optimised portfolio. Furthermore, we show the alpha (over the
cap weighted portfolio) per unit of average relative drawdown. The optimised portfolio’s alpha per
unit of drawdown is over two times higher than that of the equal weighted portfolio, given its
higher absolute return and lower relative drawdowns.

This improvement is most evident in a chart of the cumulative returns of the optimised and
equal weighted portfolios (Figure 12). Here we see the optimised portfolio does well to switch into
the cap weighted portfolio during the three main drawdown periods: around the 2000s, post-2008,
and more recently post-2016. We have selected these three periods and shown the improved CAGR
separately in Table 6. These periods appear to include the months just prior to a crisis as well as
the crises themselves.

However, where the model does underperform is each period’s recovery following a large relative
drawdown. For example, the equal weighted portfolio outperforms the cap weighted portfolio sig-
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Table 5. Relative return drawdowns of optimised and
equal weighted portfolios.

Portfolio Maximum relative drawdowna Alpha / Avg DDb

Optimised 11.3% 10.85
Equal weighted 30.7% 5.04

a Maximum relative return drawdown.

bAlpha (relative to cap weighted portfolio) per unit of average relative
return drawdown.
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Figure 12. Optimised and equal weighted portfolio cumulative returns relative
to cap weighted portfolio with monthly rebalancing.

Table 6. CAGR of portfolios over the three main
periods of underperformance.a

Portfolio Jan ’96 - Jan ’01 July ’07 - Jan ’09 May ’05 - March ’20

Optimised 17.8% -33.4% 4.7%
Equal weighted 16.2% -39.3% 1.7%
Cap weighted 18.5% -31.4% 5.6%

a Rebalanced monthly, 15bps in transaction costs

nificantly starting in 2000, but the optimised portfolio only switches to equal weight much later,
thereby missing out on at least a year’s outperformance. That said, given the simplicity of the
model, the optimised portfolio appears to do well to generate a higher return than the equal
weighted portfolio while avoiding large relative drawdowns.

4.3. Other countries

Although beyond the scope of this article, we very briefly touch on performance in some other
countries in Table 7. In all the countries highlighted in Table 7, the equal weighted portfolio
outperforms the cap weighted portfolio. We note that while the equal weighted portfolio seems to
have good performance in most countries, relative drawdowns to the cap weighted portfolio can still
be high even in countries with excellent relative performance overall. In this sense, the optimised
approach does improve the relative drawdown experience but it does so in some cases by giving up
some return relative to the equal weighted portfolio. In the case of Japan, for example, where the
equal weighted portfolio does very well relative to the cap weighted portfolio.

Given the simplicity of the model and different factors influencing various markets, a comprehen-
sive treatment of the differences in the equal weighted and cap weighted portfolios within different
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Table 7. Performance of equal weighted (EW), cap
weighted (MC) and optimal portfolios in other countries

over the last 20 years

CAGR Sharpe Ratio Max. Relative Drawdowns
Country MC EW Optimal MC EW Optimal EW Optimal

UK 3.1% 4.8% 4.4% 0.13 0.22 0.20 -26.7% -17.1%
Germany 1.0% 3.7% 3.6% 0.11 0.22 0.21 -57.8% -23.2%
France 2.6% 3.2% 3.2% 0.18 0.21 0.21 -24.5% -10.9%
Canada 6.6% 7.1% 7.1% 0.35 0.37 0.37 -19.0% -11.6%

Australia 9.1% 9.3% 7.9% 0.38 0.37 0.31 -39.8% -35.0%
Japan 1.1% 7.1% 6.6% 0.16 0.44 0.41 -52.1% -38.2%
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Figure 13. Sharpe ratio for optimal portfolio using different lags for linear
regression and covariance estimate.

countries is likely to add significantly to the literature and we highlight this as one area of further
research.

4.4. Robustness and future areas of improvement

Although the model is reasonably simple, there are a few moving parts. In particular, we are
using historical estimates of the covariance matrix over the past three months and the trend of
the portfolio generating function over the prior three months to estimate the next month’s relative
return. This is done using a linear regression fit over the prior three years’ monthly data.

In Figure 13, we compare the Sharpe ratio of the optimal portfolio across various covariance
estimation windows and various look-back periods on which the linear regression model was fit.
There appears to be a clear trend along the covariance window size axis, with Sharpe ratios declining
as the window size is increased regardless of the regression window size used. The optimal area
appears to be less than 300 trading days of data used.

The results are also fairly consistent along the linear regression look-back periods with 12-, 24-
and 36-month periods producing similar Sharpe ratios regardless of the covariance window size.
Look-back periods of 48 and 60 months perform consistently worse.

A key area of improvement is the estimation of the covariance matrix, which is used in the
estimate of the excess growth rate. In our model we have used a very basic approach and techniques
such as Random Matrix Theory, the shrinkage approach and clustering techniques could improve
the accuracy of the excess growth rate estimate. We point readers to Pantaleo et al. (2011) who
compare the performance of nine covariance estimation techniques and compare them to the sample
covariance matrix (the approach used here).

Secondly, an improved forecast of the portfolio generating function, essentially the level of con-
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centration, would improve the model further. Although likely the more difficult of the two areas of
improvement mentioned here, the level of concentration itself may be predictable (Figure 4) using
various time series approaches or alternatively modelling the distribution of capital in a specific
market using the ranked weights. See, for example, Fernholz (2001b) and Fernholz (2001a).

5. Conclusion

While the equal weighted portfolio appears to outperform the cap weighted portfolio over a long
time horizon, it can suffer from significant periods of underperformance over the short-term. We
have attempted to analyse this behaviour using findings from stochastic portfolio theory. In partic-
ular, we have shown more recently the equal weighted portfolio’s underperformance seems to have
coincided with the cap weighted portfolio’s weights becoming increasingly concentrated, while at
the same time the benefits of diversification from the equal weighted portfolio have been declining.

This concurs with the theoretical constructs of stochastic portfolio theory, specifically the theo-
retical drivers of the return of the equal weighted portfolio relative to the cap weighted portfolio.
We have further attempted to improve the short-term underperformance of the equal weighted
portfolio by using a rudimentary linear regression model with inputs given by the drivers identi-
fied in stochastic portfolio theory; the change in the log portfolio generating function; the excess
growth rate of the equal weighted portfolio; and the impact of leakage as index constituents change.
This rudimentary model appears to have significantly improved the risk return characteristics of
the equal weighted portfolio by avoiding large relative return drawdowns while still maintaining
longer-term relative outperformance over the cap weighted portfolio.

There are a number of possible future research areas. In the short-term, the change in the log
portfolio generating function is likely to drive most of the performance. Forecasting this change
more accurately for use in our rudimentary model or, even, by using either more complicated
features or models to forecast the relative return itself, might be possible. Furthermore, modelling
the capital distribution curve, another topic in stochastic portfolio theory that models the log
weights relative to the log of the positions of stocks, might also be useful in predicting changes
in the log portfolio generating function. Finally, it might be useful to attempt to forecast the
covariance matrix to better estimate the future excess growth rate of the equal weighted portfolio.
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