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Abstract. We provide two new characterizations of bounded orthogonally additive poly-

nomials from a uniformly complete vector lattice into a convex bornological space using

separately two polynomial identities of Kusraeva involving the root mean power and the

geometric mean. Furthermore, it is shown that a polynomial on a vector lattice is or-

thogonally additive whenever it is orthogonally additive on the positive cone. These

results improve recent characterizations of bounded orthogonally additive polynomials by

G. Buskes and the author.

1. Introduction

The nth root mean power Sn and the nth geometric mean Gn are defined as

Sn(x1, . . . , xr) = n

√√√√ r∑
k=1

xnk (x1, . . . , xr ∈ R)

and

Gn(x1, . . . , xn) = n

√√√√ n∏
k=1

|xk| (x1, . . . , xn ∈ R),

respectively. In [6], Kusraeva uses the Archimedean vector lattice functional calculus, as

developed in [2], to define Sn and Gn in uniformly complete vector lattices. It is proven

in [6] that if (i) E is a uniformly complete vector lattice, (ii) Y is a convex bornological

space, and (iii) P : E → Y is a bounded orthogonally additive n-homogeneous polynomial

with unique corresponding symmetric n-linear map P̌ , then the following hold:

P (Sn(f1, . . . , fr)) =
r∑

k=1

P (fk) (f1, . . . , fr ∈ E+, r ∈ N \ {1}) (1)

and

P (Gn(f1, . . . , fn)) = P̌ (f1, . . . , fn) (f1, . . . , fn ∈ E+). (2)
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The story continues in [4, Theorems 2.3&2.4], where it is shown that the attainment of

both (1) and (2) above provides a single characterization of bounded orthogonally additive

polynomials P : E → Y . The purpose of this paper is to illustrate that attainment of either

(1) or (2) alone characterizes bounded orthogonally additive polynomials P : E → Y . This

in turn proves that (1) and (2) are actually equivalent in this setting and considerably

improves the aforementioned [4, Theorems 2.3&2.4].

The novel approach in this paper is that we express Sn and Gn (for n > 1) in terms

of convenient explicit formulas rather than relying solely on functional calculus. This is

possible using [3, Theorem 3.7], as Sn is convex on the positive cone, while Gn is concave

on the positive cone. Indeed, for a uniformly complete vector lattice E and n, r ∈ N \ {1},
we show in the proof of Theorem 2.2 that

Sn(f1, . . . , fr) = sup

{
r∑

k=1

akfk : a1, . . . , ar ∈ [0, 1],

r∑
k=1

amk = 1

}

holds for all f1, . . . , fr ∈ E+, where m is the Hölder conjugate of n, and Sn(f1, . . . , fr) is

defined via functional calculus. Furthermore, it was proven in [3, Corollary 3.9] that

Gn(f1, . . . , fn) =
1

n
inf

{
n∑

k=1

θkfk : θ1, ..., θn ∈ (0,∞),
n∏

i=1

θi = 1

}

holds for all f1, . . . , fn ∈ E+, where again functional calculus is used to define Gn(f1, . . . , fn).

These explicit formulas greatly aid the obtainment of our results presented in this paper.

We as usual denote the set of strictly positive integers by N and the ordered field of real

numbers by R. All vector spaces in this manuscript are real, and all vector lattices are

Archimedean. For any unexplained terminology, notation, or basic theory regarding vector

lattices, we refer the reader to the standard texts [1, 7, 8].

Let E be a uniformly complete vector lattice, let V be a vector space, and put n ∈ N.

Recall that a map P : E → V is called an n-homogeneous polynomial if there exists a

(unique) symmetric n-linear map P̌ : En → V such that P (f) = P̌ (f, . . . , f) (f ∈ E).

(We denote the symmetric n-linear map associated with an n-homogeneous polynomial P

by P̌ throughout.) Given an n-homogeneous polynomial P : E → V , r ∈ N with r ≤ n,

f1, . . . , fr ∈ E, and k1, . . . , kr ∈ {0, . . . , n} satisfying
∑r

i=1 ki = n we will write

P̌ (fk11 fk22 · · · f
kr
r ) := P̌ (f1, . . . , f1︸ ︷︷ ︸

k1 copies

, f2, . . . , f2︸ ︷︷ ︸
k2 copies

, . . . , fr, . . . , fr︸ ︷︷ ︸
kr copies

)
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and will use similar notation with Sn and Gn as well. Finally, recall that an n-homogeneous

polynomial P : E → V is said to be orthogonally additive if

P (f + g) = P (f) + P (g)

holds whenever f, g ∈ E are disjoint. We will also say that P is positively orthogonally

additive if P (f + g) = P (f) + P (g) holds whenever f, g ∈ E+ are disjoint.

2. Main Results

The following lemma is needed in order to obtain the main results in this section.

Lemma 2.1. Let n ∈ N\{1}, let E be a vector lattice, and suppose that V is a vector space.

Assume P : E → V is an n-homogeneous polynomial. Then P is orthogonally additive if

and only if P is positively orthogonally additive.

Proof. We need to prove only the nontrivial implication. For this task, assume P is posi-

tively orthogonally additive. From the binomial theorem we have

P (f + λg) = P (f) + P (λg) +
n−1∑
k=1

(
n

k

)
λkP̌ (fn−kgk) (f, g ∈ E, λ ∈ R).

Since P is positively orthogonally additive, it follows that

n−1∑
k=1

(
n

k

)
λkP̌ (fn−kgk) = 0

for all f, g ∈ E+ disjoint and all λ ∈ R+. From [4, Lemma 2.1] we obtain

P̌ (fn−kgk) = 0 (f, g ∈ E+ with f ⊥ g, k ∈ {1, . . . , n− 1}). (3)

Using (3), we show that

P (f) = P (f+) + P (−f−)

holds for every f ∈ E. To this end, let f ∈ E. Using again the binomial theorem as well as

(3) above, we get

P (f) = P (f+ − f−)

=

n∑
k=0

(
n

k

)
P̌
(

(f+)n−k(−f−)k
)

=
n∑

k=0

(
n

k

)
(−1)kP̌

(
(f+)n−k(f−)k

)
= P (f+) + (−1)nP (f−).
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Furthermore, if n is even, then P is even, and so

P (f+) + (−1)nP (f−) = P (f+) + P (f−) = P (f+) + P (−f−).

On the other hand, if n is odd, then P is odd, and thus

P (f+) + (−1)nP (f−) = P (f+)− P (f−) = P (f+) + P (−f−).

Thus P (f) = P (f+) + P (−f−) holds for all f ∈ E, as claimed. Exploiting this fact, we

prove that P is orthogonally additive. To this end, let f, g ∈ E be disjoint. If n is even, we

have

P (f + g) = P
(

(f + g)+
)

+ P
(
−(f + g)−

)
= P

(
(f + g)+

)
+ P

(
(f + g)−

)
= P (f+ + g+) + P (f− + g−)

= P (f+) + P (f−) + P (g+) + P (g−)

= P (f+) + P (−f−) + P (g+) + P (−g−)

= P (f) + P (g).

A similar argument handles the case that n is odd. Therefore, P is orthogonally additive.

�

We proceed to our main results.

Theorem 2.2. Let n, r ∈ N \ {1}. Suppose E is a uniformly complete vector lattice, V is

a vector space, and P : E → V is an n-homogeneous polynomial.

(i) If P (Sn(f1, . . . , fr)) =
∑r

k=1 P (fk) holds for every f1, . . . , fr ∈ E+, then P is

orthogonally additive.

(ii) If P (Gn(f1, . . . , fn)) = P̌ (f1, . . . , fn), holds for all f1, . . . , fn ∈ E+, then P is or-

thogonally additive.

Proof. We claim that

Sn(f1, . . . , fr) = sup

{
r∑

k=1

akfk : 0 ≤ a1, . . . , ar ≤ 1,
r∑

k=1

amk = 1

}

holds for all f1, . . . , fr ∈ E+, where m is the Hölder conjugate of n; i.e. m−1 +n−1 = 1. To

this end, let f1, . . . , fr ∈ E+. Below Sn(f1, . . . , fr) is defined via the Archimedean vector
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lattice functional calculus. However, for c1, . . . , cr ∈ R, the nth root mean power is defined

classically:

Sn(c1, . . . , cr) = n

√√√√ r∑
k=1

cnk .

(This type of notation is standard when using the Archimedean vector lattice functional

calculus.) It follows from [3, Theorem 3.7(1)] that

Sn(f1, . . . , fr) = sup

{
r∑

k=1

∂Sn

∂xk
(c1, . . . , cr)fk : c1, . . . , cr ∈ R+,

r∑
k=1

c2k = 1

}

= sup

{
r∑

k=1

cn−1
k

(
∑r

i=1 c
n
i )1/m

fk : c1, . . . , cr ∈ R+,
r∑

k=1

c2k = 1

}

= sup

{
r∑

k=1

akfk : a1, . . . , ar ∈ [0, 1],

r∑
k=1

amk = 1

}
.

Next let f, g ∈ E+ with f and g disjoint. We illustrate that

f + g = Sn(fg0r−2).

Indeed, using that f and g are disjoint and positive, we have

f + g = f ∨ g

≤ sup {a1f + a2g : a1, a2 ∈ [0, 1], am1 + am2 = 1}

≤ f + g.

However,

Sn(fg0r−2) = sup {a1f + a2g : a1, a2 ∈ [0, 1], am1 + am2 = 1}

holds from the explicit formula for Sn given above. Thus f + g = Sn(fg0r−2), as claimed.

Next let P : E → V be an n-homogeneous polynomial satisfying

P (Sn(f1, . . . , fr)) =

r∑
k=1

P (fk) (f1, . . . , fr ∈ E+).

It follows from our argument above that

P (f + g) = P (Sn(fg0r−2)) = P (f) + P (g).

Hence P is positively orthogonally additive. By Lemma 2.1, we have that P is orthogonally

additive. This completes the proof of (i).
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To prove (ii), let f, g ∈ E+ be disjoint, and put k ∈ {1, . . . , n− 1}. By [3, Corollary 3.9],

we have

Gn(fn−kgk) =
1

n
inf

{
n−k∑
i=1

θif +

n∑
i=n−k+1

θig : θ1, . . . , θn ∈ (0,∞),

n∏
i=1

θi = 1

}
.

Clearly, Gn(fn−kgk) ≥ 0. Suppose that

l ≤
n−k∑
i=1

θif +
n∑

i=n−k+1

θig

holds for all θ1, . . . , θn ∈ (0,∞) for which
∏n

i=1 θi = 1. Then l = l1 + l2 ∈ If ⊕ Ig, where If

and Ig are the principal ideals generated by f and g, respectively. Then

l1 ≤
n−k∑
i=1

θif and l2 ≤
n∑

i=n−k+1

θig

both hold for all θ1, . . . , θn ∈ (0,∞) such that
∏n

i=1 θi = 1. We conclude that l ≤ 0 and thus

Gn(fn−kgk) = 0 holds for all k ∈ {1, . . . , n− 1}. Next let P : E → V be an n-homogeneous

polynomial satisfying

P (Gn(f1, . . . , fn)) = P̌ (f1, . . . , fn) (f1, . . . , fn ∈ E+).

Utilizing the fact that Gn(fn−kgk) = 0 for each k ∈ {1, . . . , n− 1}, we have

P (f + g) = P (f) + P (g) +
n−1∑
k=1

(
n

k

)
P̌ (fn−kgk)

= P (f) + P (g) +
n−1∑
k=1

(
n

k

)
P
(
Gn(fn−kgk)

)
= P (f) + P (g).

Thus P is positively orthogonally additive. The orthogonal additivity of P now follows

from Lemma 2.1. The proof is now complete. �

Given n ∈ N \ {1}, a vector lattice E, and a vector space V , we remind the reader

that an n-linear map T : En → V is termed orthosymmetric if T (f1, . . . , fn) = 0 whenever

f1, . . . , fn ∈ E and there exist i, j ∈ {1, . . . , n} such that fi ⊥ fj . A straightforward ap-

plication of the binomial theorem shows that every n-homogeneous polynomial P : E → V

with P̌ orthosymmetric is orthogonally additive. Thus combining Lemma 2.1 and Theo-

rem 2.2 above with the main result of [6], [5, Lemma 4], and [4, Theorems 2.3 and 2.4], we

obtain the following characterizations of bounded orthogonally additive polynomials from
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a uniformly complete vector lattice to a convex bornological space. Theorem 2.3 below

improves [4, Theorems 2.3 and 2.4] considerably. For more information on complex vector

lattices and the complexification of symmetric multilinear maps, we refer the reader to [4,

Section 1].

Theorem 2.3. Let E be a uniformly complete vector lattice, let Y be a convex bornological

space, put n, r ∈ N \ {1}, and let P : E → Y be a bounded n-homogeneous polynomial. The

following are equivalent.

(i) P is orthogonally additive.

(ii) P is positively orthogonally additive.

(iii) P̌ is orthosymmetric.

(iv) P̌ (fn−kgk) = 0 for every k ∈ {1, . . . , n− 1} whenever f ⊥ g.
(v) P

(
Sn(f1, . . . , fr)

)
=
∑r

k=1 P (fk) holds for all f1, . . . , fr ∈ E+.

(vi) P
(
Gn(f1, . . . , fn)

)
= P̌ (f1, . . . , fn) holds for all f1, . . . , fn ∈ E+.

(vii) P (|z|) = P̌C(z
n
2 (z̄)

n
2 ) holds for all z ∈ EC if n is even, while if n is odd, then

P (|z|) = P̌C(z
n−1
2 (z̄)

n−1
2 |z|) holds for every z ∈ EC.
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