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ABSTRACT 

The difficulty of forecasting “normal” climate conditions is demonstrated in the context of 

bivariate normally distributed forecasts and observations. Deterministic and probabilistic skill 

scores for the normal category are less than for the outer category for all-but-perfect models. 

There are two important mathematical properties of the normal category in a three-category 

climatologically equiprobable forecast system that affect the scores for this category. First, the 

normal category can achieve the highest probability less frequently than the outer categories, 

and far less frequently in contexts of weak to moderate skill. Second, there are upper limits to 

the probability the normal category can reach. These mathematical constraints suggest that 

summary measures of skill may underestimate the predictability and forecast-skill of extreme 

events, and that subjective inputs to probabilistic forecasts may need to take greater account of 

limitations to the predictability of normal conditions.  

 

Key Words: seasonal climate forecasting; probabilistic forecasts; deterministic forecasts; 

normal; bivariate normal
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1. Introduction 

The difficulty of forecasting “normal” climate conditions at virtually any temporal or spatial 

scale has been long-recognised (Namias, 1964; Epstein, 1988; Toth, 1989; Livezey, 1990; 

Livezey et al., 1990; van den Dool and Toth, 1991; Mason and Mimmack, 2002; Kharin and 

Zwiers 2003; Landman et al., 2005, 2012; Johansson, 2007; van den Dool 2007; Kleeman, 

2008; Arribas et al., 2011; Manzanas et al., 2014). Much of the difficulty is a result of the 

narrowness and boundedness of the normal category (here “normal” is taken to mean within 

the inter-tercile range in a three-category forecast system) compared to the outer categories 

(except in the case of the below-normal category for precipitation and for other random 

variables with absolute limits), and because skill usually is defined using reference forecast 

strategies that perform best when forecasting near-normal (van den Dool and Toth, 1991; van 

den Dool 2007). 

Despite these difficulties, there may be an understandable tendency to hedge seasonal 

forecasts towards normal in order to avoid possible negative implications of issuing a forecast 

for one extreme when the opposite extreme verifies (Roulston and Smith, 2002; Dahal and 

Hagelmann, 2012). This hedging may be partly a function of the implicit use of inequitable 

verification scores (Mason, 2012), but regardless of the underlying reasons, over-forecasting 

of normal is prevalent in many subjectively based seasonal forecasts. For example, in the 

African Regional Climate Outlook Forum (RCOF) forecasts, 70 to 80% of the forecasts have 

highest probabilities on the normal category, and around 90% of the forecasts have 

probabilities on normal exceeding the climatological probability (Mason and Chidzambwa, 

2008; Walker et al., 2019). In the context of these RCOFs, the observed relative frequencies of 

normal conditions have been notably less than the forecasts have implied, which suggests that 

the methods used for setting probabilities in the RCOF forecasts are sub-optimal. Although 

there is an appropriate lack of sharpness in the probabilities on normal from the RCOFs (the 
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probabilities are almost always between 35% and 45%), consistent with the weak skill for this 

category (Wilks, 2000a; Wilks and Godfrey, 2002), the over-forecasting for this category 

should ideally be addressed. 

Over-forecasting of normal is less of an issue when objective systems are used to make 

real-time forecasts (e.g., the Climate Prediction Center1, the European Centre for Medium 

Range Weather Forecasts2, the International Research Institute for Climate and Society (IRI)3): 

the normal category is seldom indicated as the most likely outcome in such forecasts. 

Nevertheless, these systems experience problems in achieving reliability in probabilistic 

forecasts of normal, and IRI, at least, shows some tendency to over-forecast this category 

(Barnston et al., 2010). 

In this note, we expand on the theory of van den Dool and Toth (1991) and Kharin and 

Zwiers (2003) for explaining the poor predictability of the normal category. We indicate 

mathematically how probabilities for the normal category are constrained by the skill of the 

forecast system and the strength of the forecast signal, and derive mathematical limits for the 

sharpness of probabilistic forecasts of normal. This paper primarily addresses forecasts of the 

“normal” category as widely used in seasonal forecasting (Ogallo et al., 2008; Mason, 2012), 

although the results are applicable to tercile-category forecasts at any timescale. We also derive 

functional relationships between Pearson’s correlation as a measure of deterministic forecast 

skill and many category-based and probabilistic forecast verification scores, under the 

assumption of bivariate-normality. 

                                                            
1 http://www.cpc.ncep.noaa.gov/products/NMME/prob/usPROBprate.html 

2 https://www.ecmwf.int/en/forecasts/charts/catalogue/seasonal_system5_public_standard_rain 

3 https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/  
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2. Idealised Forecasts 

Let Y  be a variable we wish to forecast, and let X  be a forecast of Y . Let  , ~ ,X Y MN μ Σ

, where  ,  X Yμ , 
2

2
X

Y

c

c




 
  
 

Σ , and  cov ,    X Yc Y X  [i.e., X  and Y  are bivariate 

normal with expectation  , X Y , standard deviations  X  and Y , and correlation   (Forbes 

et al., 2010)]. The parameter,  , is used as a measure of skill of the forecasts, but unless 

specified otherwise, it is not assumed that the forecasts are least squares estimates of the 

observations. An example of bivariate normally distributed data is provided in Figure 1, where 

μ 0  and 
1 0.5

0.5 1

 
  
 

Σ . In the idealised case it is assumed that the parameters μ  and Σ  are 

known. 

 

Figure 1. Example of bivariate normally distributed data given 0.5  . The thin lines are ellipses of equal 

density, while the diagonal line is the least squares regression line. Note that the ellipses are oriented at 45° for all 

0.0  , whereas the regression line is oriented at  1 1tan   . 
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2.1 Two-Category Deterministic Forecasts 

In the simplest case, consider a binary deterministic forecast system: “yes / no” forecasts are 

issued to indicate whether or not an event is expected to occur. An event occurs when Y t , 

where t  is a threshold of interest. If forecasts are unbiased, a warning is issued when 

 
 
 

X Y

X Y

X t
 (assuming 0  ). In the special case of  Yt , a warning is issued when 

 XX . Define a hit when &  X YX Y , a correct rejection when &  X YX Y , a 

miss when &  X YX Y , and a false-alarm when &  X YX Y . Since the bivariate 

normality assumption implies that    Pr Pr 0.5    X YX Y , the probability of a hit is 

the same as the probability of a correct-rejection, while the probability of a miss is the same as 

the probability of a false-alarm. Each of these probabilities can be calculated from the 

corresponding tails of the bivariate-normal distribution. The probability of a hit (and of a 

correct rejection), for example, is the right tail area of the distribution and is calculated as: 

 

   

 22

Pr hit Pr &

1
exp

2 12 1 Y X

X Y

X Y

X Y

dX dY
 

 


  

 

  

 
  
   

 
 (1a) 

where 

 
      2 2

2 2
2X Y X Y

X Y X Y

X Y X Y   
 

   
   

   . (1b) 

Eq. (1) simplifies (thankfully) to 

    1sin1 1
Pr &

2 2


 



 
      

 
X YX Y  (2) 

(Kotz et al., 2000). Similarly, the false-alarm rate (and miss rate) simplifies to 
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    1sin1 1
Pr &

2 2


 



 
      

 
X YX Y . (3) 

Given Eqs (2) and (3), the two-category verification scores listed in Table 1 (and selected 

from Table 3.3 of Hogan and Mason (2012)) can be defined purely as a function of   (cf. 

Tippett et al. 2010). The forms of these relationships are illustrated in Figure 2. In all cases the 

scores improve monotonically as the correlation increases (the false-alarm rate is a negatively-

oriented score, while all the others are positively oriented). Some scores (such as hit and false 

alarm rates, percent correct, ROC area, and the critical success index) are most sensitive to 

changes in correlation when the correlation is close to 1, whereas others are most sensitive 

when the correlation is close to zero (such as the odds ratio skill score). However, when 

compared to the Fisher-z transform of the correlation, all the scores are most sensitive when 

the skill is near zero. 

 

Figure 2. Verification scores for equi-probable two-category forecasts and observations as a function of the 

correlation for bivariate normally distributed data. The scores shown are for: the hit rate, percent correct, and ROC 

area (dark solid line marked H); the false alarm rate (dark dashed line marked F); the critical success index (dark 

dash-dotted line marked CSI); the Gilbert skill score (light dash-dotted line marked GSS); the Peirce skill score, 

(light solid line marked PSS); and the odds ratio skill score (light dashed line marked ORSS). 
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Table 1. Values of two-category verification scores as a function of the correlation,  , for cases when the 

probability of a warning and the probability of an event are both 0.5, and the predictand and predictor are bivariate-

normal. Some of the scores are identical because of the constraints imposed by the bivariate normality 

assumptions. 

Score Value 

Hit Rate, H 

Proportion Correct, PC 

ROC area 

 1sin1

2






  

False-Alarm Rate, F 
 1sin1

2







 

Critical Success Index, CSI 
 
 

1

1

2sin

3 2sin

 
 








 

Gilbert Skill Score, GSS 
 
 

1

1

sin

sin


 




 

Heidke Skill Score, HSS 

Peirce Skill Score, PSS 

Clayton Skill Score, CSS 

Doolittle Skill Score, DSS 

 12
sin 




 

Odds Ratio Skill Score, ORSS 
 
  

1

22 1

4 sin

4 sin

 

 




 

 

2.2 Three-Category Deterministic Forecasts 

A corresponding version of Eq. (1) for categories that are not defined by the mean and are not 

necessarily unbounded (as is the case when three equi-probable categories are used, for 

example) does not simplify because the integrals cannot be defined in closed form (Divgi, 

1979). However, polynomial approximations to Eq. (1) allow it to be calculated with a high 

degree of accuracy. For example, the hit rates for three equi-probable categories are shown in 
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Figure 3 as a function of the correlation. The hit rates are the same for the two outer categories, 

but the score for the middle (“normal”) category is lower whenever 0 1  , and remains near 

its minimum except when the correlation is very strong. The effect is that the values of scores 

for the normal category are inevitably weak unless the correlation between the forecasts and 

the observations is very strong. This result provides a mathematical reason for the low skill in 

predicting the normal category (van den Dool and Toth, 1991; Kharin and Zwiers 2003). 

 

Figure 3. Hit rates for unbiased equi-probable three-category forecasts and observations as a function of the 

correlation for bivariate normally distributed data. 

This difference in the scores between outer categories and the normal category is not 

specific to the hit rate. When 0 1  , the value for the normal category is lower than for the 

outer categories for all of the scores in Table 1, except for the false-alarm rate, which is the 

only negatively oriented score listed, i.e., the normal category scores worst on all the scores. 
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2.3 Two-Category Probabilistic Forecasts 

Instead of converting the forecasts to deterministic categorical predictions, probabilistic 

forecasts can be derived from the error variance of least-squares estimates of Y .  Let Ŷ  be a 

least squares estimate of Y : 

  ˆ   


  Y
Y X

X

Y X . (4) 

Forecast probabilities can then be calculated using 

  
 

 
 

2

2 22

ˆ
1

Pr | exp
2 12 1    


         

t t
YY

u Y
P Y t X du  (5) 

(Montgomery et al., 2012). If 0  , then ˆ  YY  regardless of the value of X , and tP  is the 

climatological probability for all X , in which case the forecasts have no resolution, but do 

have perfect reliability (Wilks, 2020). If 1  , Eq. (5) is not strictly defined, but ˆ Y Y  

regardless of the value of X , and 0.0tP  when ˆ Y t , and 1.0tP  when ˆ Y t , so the 

forecasts have maximum resolution and perfect reliability. 

If 0 1  , the distribution of tP  approximates a beta distribution (Richardson, 2001). 

For  Yt , tP  has a symmetric distribution. Some examples of the distribution of tP  given 

different values of   are shown in Figure 4, which indicates how frequently different forecast 

probabilities would be indicated for forecast models with different levels of skill. In the special 

case of 1 2   (horizontal grey line), tP  has a uniform distribution. If 1 2   then the 

distribution of the probabilities is U-shaped, but is unimodal (with mode 0.5) otherwise. If 

0  , the forecast probability is always 0.5. 
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Figure 4. Distributions of forecast probabilities of the above- (or below-) median category. The predictions and 

observations are bivariate normally distributed, with correlation   defining the skill, and hence the variance, of 

the corresponding least-squares deterministic forecasts. The different curves are an indication of the sharpness of 

the forecasts from models with the indicated levels of skill, which indicates how frequently different forecast 

probabilities would be indicated for forecast models with different levels of skill. 

The graph indicates that the sharpness of the forecasts increases as the skill of the forecasts 

improves (as one might expect). If the skill of the forecasts is known and the forecasts are 

properly calibrated, it is possible to determine how frequently certain probability thresholds 

will be exceeded that might be important for triggering action (Carbone and Dow, 2005; 

McInerny and Keller, 2008; Vizard and Anderson, 2009). 

To determine the skill of the probabilistic forecasts, the (half-) Brier score (Broecker, 

2012), S , can be calculated: 

   2

tS P I Y t     . (6) 

In the case of  Yt  and 0  , Eq. (6) simplifies to 
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2
1

2

1 1
tan

1
S


 

 



 (7) 

(Appendix). This relationship between the Brier score and the correlation is shown in Figure 

5. The score decreases monotonically (the score is negatively oriented, and so small scores are 

better than large scores) from a maximum of 0.25 when the correlation is zero, to a minimum 

when the correlation is 1.0. This result is consistent with those for the deterministic verification 

scores that all indicated an improvement in the forecasts as the correlation increases. Like most 

of the deterministic scores shown in Figure 2, the Brier score is most sensitive to changes in 

correlation when the correlation is close to 1. 

 

Figure 5. Brier scores given forecast probabilities for a positive anomaly where the predictor and predictand are 

bivariate normal. The forecast probabilities are derived from least squares predictions given different values of 

the correlation. 
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Figure 6. Brier scores given forecast probabilities for a positive anomaly where the predictor and predictand are 

bivariate normal. The forecast probabilities are derived from least squares predictions given different values of 

the correlation. 

2.4 Three-Category Probabilistic Forecasts 

When there are three equi-probable categories the Brier scores for the outer categories are 

notably less (i.e., better) than the score for the normal category for all positive correlations 

(Figure 6), which provides further evidence for the difficulty of forecasting the normal 

category. The differences in the Brier scores are an effect of substantial differences in the 

frequency distributions of the forecast probabilities (i.e., sharpness) for the outer categories 

compared to the normal category. For the below- and above-normal categories (Figure 7a) the 

mode of the forecast probabilities flattens progressively from 33.3% (the vertical dashed line) 

and the sharpness of the probabilities increases as the skill increases. However, what is most 

striking is the distribution of forecast probabilities for the normal category (Figure 7b): the lack 

of sharpness even for high-skill forecasts, is clearly apparent (Kharin and Zwiers 2003), and, 

perhaps most importantly, there is an upper bound to the forecast probability. This upper bound 

occurs when ˆ  YY , and the probability is constrained by the skill of the forecasts,  . Figure  
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a. 

 

b. 

 

Figure 7. Distributions of forecast probabilities for the (a) outer categories, and (b) the normal category, given 

least squares predictions, where the predictions and observations are bivariate normally distributed, with 

correlation  . (Note that the vertical scaling on the two graphs differs.) The vertical dashed lines indicate the 

climatological probability. 
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8 shows the maximum possible forecast probability as a function of the skill. The maximum 

probability is less than 35% for skill levels up to about 0.47; probabilities of 40% cannot be 

exceeded for skill levels up to about 0.57, while a probability of 45% would require a skill 

above 0.64. However, these upper limits to the normal probability are only reached when the 

mean forecast is very close to the climatological mean. 

Given the lack of sharpness and the upper bound to the normal probability shown in Figure 

8 and 9, under what conditions could the normal category have the highest probability? The 

normal category can only be the most likely outcome when the mean deterministic forecast lies 

well within the range of the normal category. When the mean deterministic forecast 

corresponds exactly with the lower- (or upper-) tercile, the probability for below-normal 

(above-normal) will be 50% exactly, and the remaining probability will be divided between 

normal and the opposite category. But the below-normal category will have the highest 

probability even before its probability reaches 50%. Similarly, the above-normal category will 

have the highest probability when the mean forecast approaches the upper tercile, but is still 

within the normal category. Therefore, the normal category does not necessarily have the 

highest probability even when the mean forecast is within the normal category; the normal 

category will have the highest probability only in the less frequent case of the mean forecast 

being close to average. 
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Figure 8. Maximum possible forecast probability for the normal category as a function of the correlation skill for 

bivariate normally distributed predictions and observations. 

 

Figure 9. Relative frequency with which the normal category has the highest or equal highest probability in an 

equi-probable three category forecast system as a function of the correlation skill, assuming bivariate normally 

distributed predictions and observations, and assuming: no rounding of the forecast probabilities (dark line); 

rounding to the nearest 5% (light line); and rounding to the nearest 5% and resetting to climatological probabilities 

(in which case an equal highest probability is not counted) if the highest rounded probability is only 35% (medium 

line). Relative frequency with which the normal category has a higher probability than both outer categories after 

rounding of the forecast probabilities to the nearest 5% (dashed line). 
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How close to average does the mean forecast need to be for normal to have the highest 

probability? That depends on the skill. Assuming 0 Y , define 0
ˆ Y z  as the point at which 

the normal and the above-normal categories have identical probability; at 0
ˆ  Y z  the normal 

and the below-normal category will have identical probabilities. The normal category will then 

have the highest probability if the absolute value of the mean forecast, Ŷ , is less than 0z . 

Given that the variance of the mean forecast is 2 2
Y  , the frequency with which the mean 

forecast will be within this range can be calculated; the results are shown by the dark line in 

Figure 9. The frequency reaches a maximum of 33.3% when the forecasts are perfect, but is 

otherwise always less than the climatological probability. The implication is that for all 

imperfect forecast models, the normal category has the highest probability less frequently than 

the outer categories, and for models with moderate to weak skill, the normal category has the 

highest probability only infrequently. For example, if the correlation skill is weaker than about 

0.45, the normal category has the highest probability in less than 10% of the forecasts.  

If the normal category is the most likely outcome less frequently than the outer categories 

does that not mean that on average it is less likely to occur? Not at all! Whereas the normal 

category has highest probability only infrequently, whenever skill is positive it can never be 

the least likely category (except in special cases resulting from sampling errors when skill is 

weak, as discussed below); the normal category will always have higher probability than at 

least one of the outer categories. Figure 8 indicates that the normal category not only has high 

probabilities less frequently than the outer categories, but also has low probabilities less 

frequently. The expected probability is 33% for all three categories regardless of the skill, but 

for the normal category the probabilities lack sharpness. 
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2.5 Rounded Three-Category Probabilistic Forecasts 

The results shown by the dark line in Figure 9 are based on the assumption that the forecast 

probability is a continuous value so that the probability for normal is never equal to that of 

either of the outer categories. In practice, forecast probabilities are often rounded (typically to 

the nearest 5% in the case of seasonal forecasts). In that case, the normal category may have 

the highest or equal highest probability more frequently than indicated by the dark line. In fact, 

after rounding4, when the skill is weak the normal category has the highest or equal highest 

probability all the time (light line on Figure 9). However, in many of these cases the forecast 

probabilities for the normal category are tied with one of the outer categories. After rounding 

the probabilities to the nearest 5%, the normal category can never have higher probabilities 

than both outer categories unless 0.426   (dashed line on Figure 9). At higher skill levels, 

because of probability rounding, the normal category does have the highest probability slightly 

more than one third of the time: the maximum relative frequency for normal reaches 36%, and 

occurs at skill levels of about 0.886  . 

The light line on Figure 9 indicates that the normal category can have the highest or equal 

highest probability frequently when skill is low, but the dashed line indicates that these cases 

are virtually always cases of tied equal-highest probability. In fact, most of these cases are 

instances where the normal probability is tied at only 35%, with the other outer category having 

a probability of 30%. There is a widespread practice in seasonal forecasting to leave such a 

small shift in probability as a climatological forecast, and to only indicate a shift if the highest 

probability is at least 40%. In that case the normal category can have the highest or equal 

                                                            
4 When rounding probabilities of three or more categories care has to be taken to ensure that the total probability 
is unchanged. For example, a simple rounding of 43%, 33%, and 24% would round all the values up to the 
nearest 5%, and the total would then be 105%. In this paper, to decide how to round these probabilities, the 
rounded values that lead to the least (i.e., best) expected ignorance score (Broecker, 2012) are selected (in the 
case of the example, 40%, 35%, 25%). Apart from being strictly proper, using the ignorance score prevents any 
probabilities close to zero from being rounded down to zero. 
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highest probability (not counting climatological probabilities as equal highest) only when 

0.426   (medium line on Figure 9). 

3. Sample Forecasts 

In practice, the parameters of the bivariate normal model typically are unknown, and have to 

be estimated from a sample of data, quite possibly of very limited size. In this case, the forecast 

probabilities from Eq. (5) are no longer valid, and instead have to be derived from sample 

estimates of the model parameters, and the Student’s t-distribution in place of the Gaussian 

distribution. The forecast probabilities become 

    
   

 
   

 1 22

2 2

ˆ1 2
Pr | 1

2 12 2 2 




                   



n

t t
Y

u Yn
P Y t X du

n s rn n
 (8) 

where   is the gamma function, n  is the size of the sample, 2
Ys  is the sample variance of the 

observations, and r  is the sample correlation (Montgomery et al., 2012). Eq. (8) indicates the 

probability for exceeding threshold t , so probabilities for the normal category can be obtained 

by setting t  to the lower tercile, and subtracting the probability for the above-normal category. 

The effects of sample size on the maximum forecast probability for the normal category 

are indicated in Figure 10. The effect is small (reducing the maximum probability by less than 

1% for sample sizes larger than 20), and so the effects on other results are not discussed further. 
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Figure 10. Maximum possible forecast probability for the normal category as a function of the correlation skill 

for bivariate normally distributed predictions and observations given different sample sizes, n . 

4. Discussion 

These results indicate that the skill of forecasting the normal category, in the context of 

bivariate normal forecasts and observations, is weaker than that of the outer categories because 

of weaker sharpness in the probabilities for normal. High probabilities for normal can occur 

only if the corresponding deterministic forecast is close to the climatological mean, and if the 

skill is well-above 0.4 (see section 2.4). This skill threshold exceeds estimates of predictability 

for many parts of the world (Rowell, 1998; Doblas-Reyes et al., 2013; Landman et al., 2019), 

and suggests that for at least some forecast systems normal should have the highest probability 

only occasionally. Objective forecast systems appear to reflect at least some of these limitations 

on the probability of normal: they rarely indicate highest probability on normal. The National 

Oceanic and Atmospheric Administration’s (NOAA) seasonal forecasts explicitly limit the 

probabilities on normal in a manner that is essentially consistent with the results in this paper 

(van den Dool, 2007). Other forecast systems that use either some form of model output 

statistics [such as the IRI’s (Barnston et al., 2010)] or a purely empirical approach, will most 
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likely include appropriate mathematical constraints on probabilities implicitly. Similarly, 

dynamical model forecasts that do not involve any calibration beyond a correction for the 

model climatology will partially reflect the limitations on normal if the ensemble distribution 

provides a reasonably reliable indication of the forecast uncertainty. Although there are some 

problems with reliability of dynamical seasonal forecasts for some parts of the world 

(Weisheimer and Palmer 2014), the forecasts from these models are broadly consistent with 

the results of this paper, perhaps partly because of physical reasons for greater predictability of 

the outer categories when boundary forcing is strong (Becker et al 2013). However, there are 

many contexts in which forecast probabilities are issued subjectively, and where these 

mathematical limits apparently are not respected. It is worth considering whether, and how, the 

mathematical results presented in this paper might be useful for informing the subjective setting 

of probabilities. 

The primary considerations are that the results in this paper apply strictly only if the 

bivariate normality assumption is valid, and apply only for cases of three climatologically 

equiprobable categories. However, the general conclusions are likely to be relevant for other 

bivariate distributions and other categories bounded on both sides. Climatologically 

equiprobable categories are used widely in seasonal forecasting, and the results are likely to be 

of most relevance in that context. More specifically, empirical or recalibrated dynamical model 

forecasts made using least-squares regression-based procedures (e.g., canonical correlation 

analysis), which are widely used in research and operations, typically assume bivariate 

normality (Friederichs and Hense, 2003). Terciles are also used at timescales from sub-seasonal 

to decadal, but such forecasts and projections are made almost exclusively using dynamical 

models (Hamill et al., 2004; Saha et al., 2014; Vigaud et al., 2017). While forecasts for the 

normal category from well-calibrated dynamical model outputs appear to display similar 

properties to those described in section 2 for a bivariate-normal system, they are not 
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mathematically constrained to do so. Regardless, we might expect similar results if these model 

outputs are recalibrated in similar ways to the seasonal forecasts. 

Strict assumptions of bivariate normality are unlikely to be met in practice, even if the 

forecasts and the observations are both normally distributed. However, although violations of 

the assumptions will change the numerical details, similar restrictions on the sharpness of 

probabilities for the normal category will exist in other distributions simply because of the 

boundedness of the normal category. Therefore, the general conclusions presented here are 

likely to be valid, at least as approximate guidelines, in many practical settings, including for 

some of the inputs used in Regional Climate Outlook Forums. It appears to be appropriate for 

issued forecast probabilities of the normal category to be less sharp than those of the outer 

categories, whether or not the relevant data have an approximately normal distribution.  

The second specified consideration is that the results only apply to tercile-based categories. 

Where forecasts are for three categories that are not equi-probable, the most frequent situation 

is for the middle category to have a climatological probability that is larger than 33%. For 

example, many El Niño – Southern Oscillation (ENSO)-based forecasts have a middle category 

(“neutral” ENSO conditions) that has a climatological probability of about 50% (Barnston et 

al., 2012). In such cases, the general conclusions still apply – the middle category will still 

have an upper-bound that is less than one, and the sharpness of forecasts for this category will 

still be restricted. If the climatological probability of the middle category is increased, it may 

become the category with the highest probability most frequently, but the probabilities for this 

category will exceed its climatological probability less frequently than for the outer categories, 

and only when there is positive skill and the deterministic forecast is near the mean. 
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5. Summary 

Given bivariate normally distributed forecasts and observations, many commonly used skill 

scores based on deterministic and probabilistic forecasts of below- and above-average (two 

equi-probable categories) can be defined as functions of Pearson’s correlation,  , between the 

forecasts and observations. Regardless of the correlation, the expected forecast probability is 

50%, but the sharpness of the forecasts is affected by the correlation: forecast probabilities are 

unimodal if 1 2  , uniformly distributed if 1 2  , and u-shaped for 1 2  . 

Given three equi-probable categories in this bivariate-normal setting, deterministic and 

probabilistic skill scores for the normal category are consistently less than for the outer 

category for all but perfect models. For probabilistic forecasts, the sharpness of the forecasts 

for the normal category is less than for the outer categories for all but perfect models; in fact, 

there is a mathematical upper limit to the probability on the normal category that is a function 

of  . The maximum probability is less than 35% for 0.47  ; probabilities of 40% cannot be 

exceeded if 0.57  ; a probability of 45% would require 0.64  . Not only is there an upper 

limit to the probability on the normal category, but the normal category can have the highest 

probability only rarely: in less than 10% of the forecasts if 0.45  . If probabilities are rounded 

to the nearest 5% the normal category can never have the highest probability if 0.42  . 

Although the upper bound on the outer forecast probability is 100%, and these categories have 

the highest probability most of the time, for 0.3   the forecast probability exceeds 40% only 

about one time in four, and so forecasts will lack sharpness much of the time. 

These mathematical results provide an analytical explanation for the widely observed poor 

skill in forecasting normal, and suggest that verification measures specifically for conditions 

that are not normal may give higher estimates of skill than do summary measures. The results 
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also may be worthy of consideration for subjective forecasting: forecasters should be aware 

of limitations on the sharpness of the probabilities for the normal category when those 

probabilities are derived from a bivariate normal relationship 
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APPENDIX 

Relationship between the Brier score and Pearson’s correlation 

Let  ,X Y  be bivariate normal with expectation  , X Y , standard deviations  X  and Y

, and correlation   (as in the main text). Define the ideal forecast for the event  Y t  to be 

     |Pr |t Y XP Y t X E I Y t    , (A.1) 

where I  is the indicator function. Equation A.1 defines the forecast as not only unbiased, but 

also perfectly reliable; but the resolution of the forecasts, and therefore most measures of skill, 

are not explicitly specified. However, because of the bivariate normality assumption 

    2 2| , 1Y
Y X Y

X
Y X N X    

    
 

, (A.2) 

and so  

 

 
 

2
Pr 1

1

Y
Y X

X
t

Y

t X
P Z a bZ

  

 

    
     

 
 

, (A.3) 

where   is the distribution function of  ~ 0,1Z N , and where 
21

Y

Y

t
a



 





 and 

21
b




 


. Therefore, as in Eq. (5), the forecast probability can be defined partly as a 

function of the skill  . 

The skill of probabilistic forecasts can be measured using the Brier score (Broecker, 2012), 

as defined in Eq. (6). Given a forecast X , the expected value of the Brier score is 



 

26 
 

 

       2

2 2

2

| 2 | |

2

t t

t t t

t t

E S X P PE I Y t X E I Y t X

P P P

P P

    

  

 

. (A.4) 

The expected Brier score is therefore 

      2
t tE S E P E P  . (A.5) 

The expectation of tP , denoted q , is 

        | Pr 1 Y
X Y X Y

Y

t
q E E I Y t E I Y t Y t




           
 

, (A.6) 

and the variance of tP  is  

  
      

 

22

2 2

var t t t

t

P E P E P

E P q

 

 
. (A.7) 

From Eqs (A.5 and A.7): 

     2var tE S q P q   . (A.8) 

For reliable forecasts, therefore, the Brier score is a function of the mean and variance of the 

forecast probabilities. 

Given that    var var 1t tP P  , Eq. (A.7) can be redefined as 

         22
var 1 1t t tP E P E P    , (A.9) 

and since   1 ta bZ P     [as in Eq. (A.3)], Eq. (A.9) becomes 
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       
    

22

2 2

var 1

1

t tP E a bZ E P

E a bZ q

    

    
. (A.10) 

According to Owen (1980) 

       2
2 ,E a bZ t T t       , (A.11) 

where  
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t x
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x

 
 


 

 , (A.14) 

and   is the density function of Z . As a result Eq. (A.10) can be redefined as  

            2
var 2 , 1 1 2 ,tP t T t q q q T t           . (A.15) 

Substituting Eq. (A.15) into Eq. (A.8), the expected Brier score can be expressed as: 
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. (A.16) 

In the special case of Yt  , 0t   [Eq. (A.12)] and   1 2t   , so 

        1

2 20 0

0 1 1 tan
0, 0

1 2 1 2

x
T dx dx

x x
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 


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Combining Eqs (A13), (A16) and (A17): 
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as given in Eq. (7). 
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