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Abstract 

Quantified coat pattern dissimilarity provides a visible surface for individual animal 
traceability to populations. We determined the feasibility in quantifying uniqueness of stripe 
patterns of Cape mountain zebra (CMZ; Equus zebra zebra) using geometric morphometrics. 
We photogrammetrically created dense surface models of CMZ (N =56). Stripe edges were 
landmarked, superimposed and compared for shape variation across replicates and the 
population. Significant allometry in stripe patterns prompted allometric correction to remove 
increased curvature of stripes at the rump, belly and back with larger adult individuals, to 
facilitate equilibrated comparison between individuals. Re-landmarked replicates showed 
lower dissimilarity (Di) than non-replicates (Dp), representing minimal landmarking error. 

Individuals were 78.07±1.79% unique ( ) relative to the study population. Size, 
the number of torso stripes and degree of branching in four rear torso stripes described the 
most shape variation (36.79%) but a significant portion could only be distinguished with 
geometric morphometrics (41.82%). This is the first known use of geometric morphometrics 
to quantify coat pattern uniqueness, using a model species to provide baseline individual 
morphological variation. Measures of coat pattern similarity have a place in phenotypic 
monitoring and identification. 

Keywords: coat patterns; geometric morphometrics; heat maps; morphological variation; 
pattern variation; photogrammetry; shape variation 

 

INTRODUCTION 

Patterns biologically printed across some animal surfaces are frequently used for 
identification (Penzhorn, 1984; Kelly, 2001; Hiby et al., 2009). However, human bias is 
retained in qualitative distinctions. Quantifying coat pattern variation would refine 
identification efficiency and accuracy by addition of ‘how different’ to ‘two individuals are 
different’. Quantified morphological differences sometimes correlate to equally informative 
genetic (Bandeira et al., 2017) or ecological differences (Davis et al., 2016). Sets of external 
morphological traits are characteristic to geographic regions (Bandeira et al., 2017) or 
populations (Vendrami et al., 2017) and help distinguish between species (Purroy et al., 
2016). Refined individual identification and measures of morphological difference are 
necessary for animal tracking and monitoring for disease control (Tharwat et al., 2017), 
population counts, behavioural, demographic and ecological research (Penzhorn, 1984; 
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Penzhorn & Novellie, 1991; Norouzzadeh et al., 2018), systematics, phenotypic monitoring 
and conservation (Wisely et al., 2008). 

Previous efforts to quantify differences in coat pattern (for identification) used 2D images 
overlaid onto generic 3D models (Kelly, 2001; Hiby et al., 2009) and feature extraction (Crall 
et al., 2013; Tharwat et al., 2017). With enough training, machine and deep-learning models 
are also able to identify individuals based on their characteristic coat patterns (Cheema & 
Anand, 2017). Given their broad-scale applicability to images of varying quality from 
voluminous citizen data (Mason, 2016), there is no standardized data collection. These 
methods allowed for individual matching of animals photographed at varying distances, in 
different orientations or postures. However, the size dimensions of the growing animals are 
not known nor treated dynamically. Although these approaches achieve high recognition rates 
for animals at a given life stage, it is uncertain how this is affected over time with growth or 
changes in condition. Other methods included codes for variable characters (Peterson, 1972; 
Miththapala et al., 1989). Resulting dissimilarity indices are precise for recognition but may 
be inaccurate or skewed for morphological variation. 

Three-dimensional photogrammetry and geometric morphometrics can account for different 
positions, sizes, orientations and allometric shape changes (Gower, 1975). Geometric 
characterization of many anatomical components across varying species has provided insight 
into their evolutionary history (Purroy et al., 2016), current diversity (Bignon et al., 2005; 
Vendrami et al., 2016), ecology (Jansky et al., 2013; Schmieder et al., 2015) and 
conservation concerns (Marquez et al., 2010; McGuire, 2011; Luceño et al., 2013). 
Computational complexity hitherto probably limited the use of geometric morphometrics for 
pattern variation, specifically its application to patterns across a 3D surface (McGuire, 2011). 
Furthermore, not associating 3D photogrammetry with geometric morphometric application 
for whole, large, terrestrial mammals, has hampered insights into quantified condition 
(Henneke, 2011), skin cell expansion and cell migration (Yamaguchi et al., 2007). 

Zebra stripes present a useful contrasting striped surface to estimate pattern variation within 
and between populations. Unlike most other striped mammals, zebra stripes are well defined; 
simplifying the geometric morphometric approach. Additionally, zebras are highly 
symmetrical (72% to 83%; Reddy & Aravind, 2012). Mountain zebras (Equus zebra 
Linnaeus, 1758) have intermediately thick and sparse stripes that rarely reach the ventral 
midline, which reduces the coverage required to model the stripe patterns. Uniquely, 
mountain zebras have a grid-iron pattern above the rump (Penzhorn, 1988; Groves & Bell, 
2004). 

Hartmann’s (E. z. hartmannae Matschie, 1898) and Cape (E. z. zebra) mountain zebra (HMZ 
and CMZ, respectively) are qualitatively distinguished by minor differences in stripe pattern. 
CMZ rump stripes are more closely spaced and torso stripes sometimes reach around the 
chest (Novellie et al., 2002; Groves & Bell, 2004). These observations are relative and as 
such there is little confidence attributed to pattern differences between the mountain zebra 
subspecies. Observers often relied on CMZ being smaller than HMZ, with a mane that does 
not extend as far forward (Novellie et al., 2002). HMZ are often translocated into CMZ 
distribution, resulting in their hybridization (Hrabar et al., 2016). Accurate quantitative 
distinction between populations of HMZ and CMZ may prevent their sympatry, help 
determine the origin of the incorrectly translocated individuals and detect hybrids, which are 
difficult to detect qualitatively (Hrabar et al., 2016). Furthermore, individual identification of 
CMZ in long-term behavioural studies relied on qualitative stripe pattern uniqueness 
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(Penzhorn, 1984; Penzhorn & Novellie, 1991). Quantification of pattern variation would 
prove useful but, first, baseline pattern variation needs to be established. 

We hypothesized that 3D modelling and geometric morphometrics can consistently quantify 
pattern variation of individuals. In our effort to assess how unique is unique, our main 
objectives were to: (1) determine the methodology and feasibility in quantifying CMZ stripe 
pattern uniqueness using geometric morphometrics, (2) recognize variable stripe features that 
are useful for identification and (3) develop a baseline for CMZ stripe pattern variation. We 
expect low resampling error, geometrically unique individuals and variable torso stripes 
where branching occurs. 

MATERIAL AND METHODS 

Photogrammetry 

In May 2016, Mountain Zebra National Park (MZNP) management herded CMZ into an 
enclosure prior to translocation. Associated with capture procedures, all individuals were 
chemically immobilized to test for possible hybridization (parallel genetic studies; Dalton et 
al., 2017a). Individuals were sexed and grouped into age classes. While sedated, we 
photographed the sides of zebra bodies with either an array of four calibrated GoPro Hero4 
Silver 3 (see S1) or a calibrated Canon EOS 400D at set focal lengths (3 mm and 18 mm, 
respectively) taking enough overlapping photos (~24) (minimum = 16) of each individual 
from different angles with the zebra filling the field of view to provide sufficient 3D 
coverage. Prior to data capture, we calibrated cameras as set out by Photomodeler Scanner 
guidelines (EOS Systems Inc). 

Calibrations (as above) were assigned to cameras in each photogrammetric scan. A 
SmartPoints (Photomodeler Scanner 2018.0.1.2245) function automatically marked common 
features at the highest point density and oriented the photographs within the 3D space. Dense 
surface modelling with triangulation simulated the photographed surface; environmental 
surface was removed. Models with mismatched textures were realigned in MeshLab (Cignoni 
et al., 2008). Dense surface models of three subadult colts, three subadult fillies, 17 juveniles, 
27 mares and six stallions (N = 56) were retained for further analysis. We measured project 
accuracy by assessing the range of maximum residuals (2.1 to 4.3 pixels) against the 
recommended upper limit of five pixels (see Photomodeler Scanner help file). 

Geometric morphometrics 

We focused on the three rump (R1–3) and rear nine torso stripes (back-to-front) (T1–9) as 
they were homologous among individuals in the study and covered a broad region of the 
body (Fig. 1). Some stripes barely extended half-way down the side, were non-homologous 
and thus excluded from landmarking (half-stripes). The grid-iron pattern was enveloped in 
the uppermost rump stripe. We placed subjective landmarks on each stripe edge for a subset 
of individuals. After removing outliers, we used the upper confidence limits of landmark 
numbers to avoid under-description of stripe shape for each edge (Fig. 2). Within R (R Core 
Team, 2018), we compared landmark numbers between stripe edges using a pairwise t-test 
and assigned mode upper confidence limits to landmark numbers for similar stripe edges 
(Table 1; total landmarks = 209). 
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Table 1. The significance of differences between each stripe edge and following stripe edges (pairwise t-test) 
from back (B) to front (F). Sets of landmarks (mean + 2 SD) were assigned to each stripe with significant 
differences (*; P < 0.05) from all following stripe edges, otherwise the mode mean + 2 SD (a) landmark number 
of following stripes was used for that stripe edge 

 
 

 
 
Figure 1. Image of a Cape mountain zebra, Equus zebra zebra (Perissodactyla: Equidae). Inset: a mean-shaped 
reference model with stripe names. Torso stripes (T1–9) are rooted at the dorsal midline with tips reaching the 
abdomen. Rump stripes (R1–3) have at least one edge that tends towards the rectum; R1 and R2 are tipped at 
their upper end, while R3 envelopes the grid-iron pattern. All lower rump stripe tips occur near the groin. The 
references model had branches and half-stripes removed, and contrast increased. 
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Figure 2. Variation in subjectively placed landmarks to describe the shape of each stripe. The number of 
landmarks for rump stripes (R1–3) are followed by torso stripes (T1–9). Black boxes represent the rear edges, 
and grey boxes represent the front edges. Median (bold horizontal bar), quartiles (thin horizontal bars) and 
extra-quartile values (single vertical bars) of the number of subjectively placed landmarks are represented. 
Outliers (dots) were removed before determining the minimum number of landmarks required to describe stripe 
shapes (mean + 2 SD). 
 

Landmark configurations describing the overall shapes of the rump and rear nine torso stripes 
were digitized from rear to front in Landmark (Wiley et al., 2005) and imported into R as .pts 
files for geometric morphometrics and further statistical analyses. We assigned fixed (roots 
and tips of stripes) or semi-sliding functions (stripe edges) to landmarks using the geomorph 
package (Adams & Otárola-Castillo, 2013). Procrustes relaxation minimized distances 
between corresponding edges across individuals by iteratively fixing semi-sliding landmarks 
and sliding corresponding landmarks along tangent vectors between fixed landmarks (Adams 
& Otárola-Castillo, 2013). 

Using a generalized Procrustes analysis (GPA; converged at six iterations), we only 
considered stripe pattern variation. The GPA calculated centres for landmark configurations  

( , which it translated to the origin (0,0,0) by moving each landmark around the 

origin ( and  (Gower, 1975). The GPA calculated a size 
coefficient or centroid size (s) from the root mean square distance of the landmarks to the 
origin, corrected for the number of landmarks (k) (Gower, 1975): 

 

Landmark configurations were rescaled by their corresponding size coefficients and rotated 
to further minimize the sum of squared distances between corresponding points. 
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In a pairwise manner, we calculated Procrustes distance (d; a measure of dissimilarity) as the 
square-rooted sum of squared distances between corresponding landmarks on each individual 
and replicate (Bookstein, 1996): 

 

Individuals were coordinated within a multidimensional morphospace separated by 
Procrustes distance. Using principal component analysis, we reduced dimensionality of the 
morphospace to 49 principal components (PCs) that described 99% of the shape variation. A 
number appended to PC represented different principal components. 

Conventionally, studies use thin-plate splines to illustrate shape changes along principal 
components (Adams & Otárola-Castillo, 2013). However, bodily stripe patterns are too 
complex to be well represented on thin-plate splines. Instead, we developed a reference 
model by removing branches, overlaying landmarks and warping it to represent the mean 
stripe pattern. The reference model was distorted to represent patterns at minimum and 
maximum values along PCs, which we superimposed to calculate the distances between 
corresponding vertices. RGB values are red, green and blue values (0-255) combined to 
compute colour. Where the top 10%, 5% and 1% of shape variation occurred, we increased 
the red values (100, 200 and 255, respectively) on the reference model. Thus, the readability 
of complex changes in surface patterns was improved (Fig. 3). Colourized models were 
warped 50 times along principal components to animate stripe changes as Graphics 
Interchange Format images (GIFs; see S2). 

 

Figure 3. The progression from conventional geometric morphometric visualizations to heat maps. Stripe 
difference from min (A) to max (B) along PC1, prior to allometric correction, are illustrated as traditional thin-
plate splines (1) and warped models (geomorph) (2). Distances between corresponding vertices on the warped 
models were calculated and colourized on a single model (3). Redness on the model, warped for minimum 
values of the principal component, highlights stripes and stripe components with shape change along the 
principal axis. Thresholds were set to the top 1%, 5% and 10% of vertex movement with geometric changes 
along the principal axes, and colourized as RGB redness (255, 200 and 100, respectively) (4). 
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We recorded the degree of branching for each torso stripe, presence or degree of branching of 
half-stripes, size and the number of torso stripes as variables measurable without geometric 
morphometrics, i.e. non-geometric traits. Contrastingly, geometric traits were only feasibly 
measured with geometric morphometrics, including curvature, branch shape, tip pointedness 
or roundness, etc. The relationship between overall stripe pattern, size and the number of 
torso stripes was determined using allometric and Procrustes regression (999 iterations). 
Additionally, principal components were regressed with non-geometric traits. Regression 
models for each PC began with variables that, when used alone, were significantly related to 
PCs (P > 0.1) (Fisher, 1926). Thereafter, we included or excluded interactions or variables 
from models until reaching the lowest Akaike Information Criterion corrected for small 
sample size (AICc). If the non-geometric variables did not predict shape represented along 
principal components, then random variables (represented by 1) were considered and 
geometric traits better described shape variation along these PCs. If models did not meet the 
assumptions of normality of variance, linearity, homoscedasticity and no kurtosis, tested 
using gvlma package (Peña & Slate, 2006), then these models were ignored as the effects 
were expected to be linear along principal components. In a full model, we included all non-
geometric traits to determine their independent effects on stripe pattern using Procrustes 
regression. Thereafter, allometry was corrected using aligned coordinates residual to the 
allometric relationship. 

We produced a consensus tree (bootstraps = 10000) [agricolae package (de Mendiburu, 
2017)] based on posterior Procrustes distances. Various clustering algorithms (complete, 
single, ward.D, ward.D2, average, mcquitty, median and centroid) were compared to 
determine whether replicates were reassigned to the correct individual based on their PC 
values. 

We developed a uniqueness index, where U	is the uniqueness of individuals; di is the 
Procrustes distance between re-landmarked replicates and dp		is the Procrustes distance 
between individuals in the population: 

 

Markov chain Monte Carlo (MCMC) methods randomly sampled Procrustes distances from 
posterior distributions for each category and produced a distribution of possible uniqueness 
values (confidence interval = 95%). If dissimilarity of the population dp	was high and re-
landmarked replicates di was low, then the uniqueness U tended towards 100%. If 
dissimilarity within the population was low and re-landmarked replicates was high, then the 
uniqueness tended towards 0%; suggesting too many shared geometric traits or high sampling 
error and unreliable identification by the method. We set a cut-off for hypothesis testing 
(UT=50%) and calculated individual uniqueness. 

RESULTS 

Allometry and stripe features 

Torso stripe number varies among individuals, from nine to 12. Shape is weakly related to 
torso stripe number (F1,54 = 3.8; R2 = 0.07; P = 0.001). More torso stripes translate to 
narrower stripes with less branching; more horizontally compact. The seventh to ninth torso 
stripes are rounder, filling the space above the front shoulder in individuals with fewer stripes 
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(Fig. 4). Principal component 1 (F1,54 = 11.9; R2 = 0.18; P = 0.001), PC3 (F1,54 = 7.7; R2 = 
0.12; P = 0.008), PC4 (F1,54 = 5.3; R2 = 0.09; P = 0.026) and PC5 (F1,54 = 8.9; R2 = 0.14; P = 
0.004) are related to the number of torso stripes. 

 

Figure 4. The influence of the number of torso stripes on shape via: PC1, PC3, PC4 and PC5. The most likely 
effect of decreasing stripe number is rounding of the front stripes (T7–9) above the shoulder, and widening of 
the stripes. Illustrated using warped models (geomorph). 
 

Allometry is weakly supported (F1,51 = 7.8; R2 = 0.13; P = 0.001). Larger individuals have 
rounder abdomens, rumps and lower backs that affect stripe patterning (Fig. 5). Principal 
component 1 (F1,54 = 46.6; R2 = 0.46; P < 0.001), PC2 (F1,54 = 12.5; R2 = 0.19; P < 0.001), 
PC3 (F1,54 = 3.3; R2 = 0.06; P = 0.07), PC5 (F1,54 = 2.9; R2 = 0.05; P = 0.09) and PC8 (F1,54 = 
4.8; R2 = 0.08; P = 0.03; Fig. 6) are allometric. 

 

Figure 5. The allometric effect on stripe pattern illustrated using warped models (geomorph). Heat maps are 
plotted on models warped to illustrate minimum size. RGB redness (255, 200, 100) has been constrained to 
regions with the top 1%, 5% and 10% of allometric shape variation, respectively. From smaller (1A) to larger 
individuals (1B), the body tends to fill the ectoderm resulting in a much rounder lateral abdomen, rump and 
lower back (2). 



9 
 

 
 
Figure 6. Significant allometric relationships with PC1, PC2, PC3 and PC8. As expected, juveniles (triangles), 
subadults (crosses) and adults (circles) cluster along the axis of centroid size, with some overlap. 
 

The most parsimonious models from stepwise selection identified significant branching and 
changes in half-stripes along different principal components, while accounting for differences 
in size or number of torso stripes (see Appendix 1). The first torso stripe broadens and 
branches with increased PC1 (see Appendix 2). PC1, PC2 and PC3 explain 18.81%, 15.00% 
and 9.06% of the shape variation, accumulating 42.87% of the shape variation. 

Allometry explains the most pattern variation (12.79%), followed by branching of the first 
three torso stripes and torso stripe number (Table 2). More than half of the shape variation 
(58.18%) is explained outside of the geometric morphometric framework. Importantly, the 
41.82% shape variation explained with the geometric morphometric approach improves 
comparison of individuals, including curvature of stripes, pointedness or roundness of stripe 
tips, branch shape and various aspects of the rump stripes that we could not feasibly measure 
otherwise (Fig. 7). 
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Table 2. Procrustes variation explained by alternatively measurable features. These features include: counted 
number of branches in torso stripes, half-stripes and their degree of branching in front of the grid-iron pattern or 
in front of torso stripes, the number of torso stripes and size (allometry). Landmark coordination is the response 
variable within a Procrustes regression. These variables were placed in a single model and explanatory power 
may depend on information that has already been explained. We calculated a percentage (%) of the total 
variation (Σ) explained by each variable. Residual variation represents shape variation that cannot be explained 
by these features, including: curvature of stripes, pointedness or roundness, various aspects of the rump stripes, 
branch shape, etc. 

 
 

 
 
Figure 7. Heat map showing the accumulated pattern variation for each PC (see Appendix Figure), weighted for 
the importance of each PC. The degree of redness indicates areas of the highest pattern variation. Branching of 
the first four torso stripes and allometric aspects are confirmed to be important (Table 2). 
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Figure 8. Clustering of re-landmarked replicates in a dendrogram (k = 56; bootstrap N = 10000) with the lowest 
Procrustes distances and high bootstrap support (red numbers at nodes) between replicates. 
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Uniqueness 

Cluster analysis of individual replicates has bootstrap support ( ) for replicate clusters with 

ranges 25–100 (  = 66.7) and 0–58 (  = 11.7) for non-replicates (Fig. 8). The best clustering 
algorithm is ward.D2, reassigning replicates to the same individuals with 100% accuracy, 
precision, sensitivity and specificity. However, it reaches 15.91% precision and 10.14% 
sensitivity in reassigning individuals to correct groups; no better than randomly assigned 
groups with 6.82% precision and 6.67% sensitivity. Re-landmarked replicates can be 
considered as similar entities within the morphospace, because 78.07 ± 1.79% (U>UT=50%) 
of pattern features are unique to individuals. 

 

DISCUSSION 

This study represents the first known use of geometric morphometrics to quantify coat pattern 
uniqueness in any animal. Individuals of the selected study model (CMZ) have geometrically 
unique stripe patterns, regardless of resampling error. This suggests that individuals within 
the population have stripe patterns that are dissimilar enough to rarely be confused for the 
same individual. We recognized the branches of the four rear torso stripes as being the most 
geometrically variable components, following allometry and the number of stripes. 
Geometric morphometrics is well suited to quantify coat pattern variation of homologous 
pattern features, best visualized by the novel heat maps based on thin-plate splines developed 
here. This has broad application potential within varied fields of biology, ecology, 
systematics and even forensics. Specifically here, quantified differences in CMZ stripe 
patterns provide a baseline of morphological variation for a population (Mountain Zebra 
National Park; MZNP) for comparison. We recommend a combined approach in which 
computer vision uniformly spaces landmarks along homologous stripe edges for geometric 
morphometrics, while scale-invariant feature transform (SIFT) features are automatically 
identified in variable non-homologous branches and half-stripes. 

Stripe features 

Previous methods to quantify stripe patterns assumed no allometric changes when using a 
generic 3D model (Kelly, 2001; Hiby et al., 2009; Reddy & Aravind, 2012). However, 
disproportionate expansion of animals within their ectoderm with age distorts stripe patterns 
(Murray, 1988). Shown herein, allometry of the stripe patterns is important to consider when 
observing changes in the morphology of an animal over time, due to growth and changes in 
condition. Age-related shape changes occurred in ovenbird (Seiurus aurocapilla Linnaeus, 
1766) feathers (Sheets et al., 2006), rodent skulls (Mastomys natalensis Smith, 1834) (Breno 
et al., 2011) and turkey beaks (Meleagris gallopavo Linnaeus, 1758) (Dalton et al., 2017b), 
to name just a few cases. Furthermore, fat deposition resulted in shape changes in cichlids 
(Cichla temensis Humboldt, 1821) (Reiss & Grothues, 2015). Future long-term studies should 
confirm that size related to growth or condition allometrically distort coat patterns that were 
formed embryonically. Evidence suggested that properties of the coat pattern could indicate 
individual genetic and developmental condition (Pérez-Rodríguez et al., 2017). 

During embryogenesis, natural pattern formation is ineffective at reproducing the number of 
components (Lange et al., 2018). In this case, CMZ torso stripes vary in number between 
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nine and 12. In human development, varied numbers of digits are fairly common, owing to 
changes in distributions of morphogenic activators and inhibitors (Raspopovic et al., 2014). 
The variation in the number of whole stripes is similarly affected. Although torso stripes past 
nine were not included, they are accounted for in the curvature of the seventh to ninth torso 
stripes. Unlike certain fish species, which gained stripes with age and regenerated stripes 
independent of a predefined pattern (Kondo & Asai, 1995; Yamaguchi et al., 2007), stripes of 
mammalian coats are fixed in number. Thus, their geometric influence is a reliable predictor 
of morphological differences between individuals. 

Internal shapes of the branching torso stripes and grid-iron pattern are not accounted for here. 
However, the extent of branching in wing venation of black flies (Diptera: Simulidae) has 
been inferred from landmarking around branching regions (Pepinelli et al., 2013). Similarly, 
the external size and shape of CMZ grid-iron patterns, branches and half-stripes, influence 
the widening and spacing of stripes, shown to be variable in this study. This still provides 
some quantitative value to individual differences. Shape changes in a stripe feature affect 
small compensatory changes across numerous features or a large change in an adjacent stripe. 
The grid-iron extends over both left and right sides of the body and was difficult to scan 
entirely, thus reducing our grid-iron pattern sample size to statistical infeasibility. The grid-
iron pattern may be useful to consider for drone imagery above conscious wild animals. 

Of the total pattern variation, more than half occurs due to differences in torso stripe number, 
branching, incomplete stripes and allometry; measurable without geometric morphometrics. 
Most pattern variation occurs at the branches of the three rear torso stripes and allometric 
shape changes. The remaining variation is due to shape variation only feasibly quantifiable by 
geometric morphometrics. This includes: curvature and roundness, especially at the lowest 
rump stripe; relative width and length of the torso stripes; external branch shape; and other 
aspects that are inherent to shape. Patterns are, therefore, not merely amorphous collections 
of qualitative insights, they also have an indubitable quantitative basis to them. 

Unlike current 2D, deep/machine learning (Tharwat et al., 2017) or feature extraction (Crall 
et al., 2013) methods, our approach provides 3D data that would otherwise be lost around the 
curved edges of the animal in the field of view and to perspective skews (Lahiri et al., 2011). 
Herein, we collect such data through triangulation between multiple angled photographs. We 
do not dissuade the use of deep/machine learning and 2D feature extraction approaches for 
rapid identification but, where available, quantifiable 3D data should not be ignored. This 3D 
data considers the overall dimensions and shape of the animal to provide undistorted coat 
patterns that are not only useful for identification, but also for accurate phenotypic 
monitoring. Furthermore, this approach may be automated through colour-based edge 
detection (Huang, 2019) and landmark placement along edges. The potential application to 
monitor phenotypic variation is especially important for the genetically constrained 
species/subspecies such as CMZ. 

Future studies 

Asymmetry is an intrinsic factor affecting morphological variation derived from one side. 
Reddy & Aravind (2012) quantified asymmetry between left and right sides of plains zebra 
(Equus quagga Boddaert, 1785) using a short-time Fourier transform (STFT) projection 
technique. Plains zebra sides were 17% to 28% unique to one another (Reddy & Aravind, 
2012) compared to 78% uniqueness between individuals, an acceptable degree of asymmetry. 
In this study, only the left or right side of individuals was analysed. However, it is 
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inadvisable to extensively shift zebra once immobilized, to prevent epidermal damage and 
intestinal complications (SANParks standard operating procedure 2015). We also could not 
subset for left and right orientations as statistical power would be impacted. Future studies 
should quantify the extent of these asymmetrical differences using geometric morphometrics. 
Furthermore, quantifying pattern distortion from skin cell expansion and migration over time 
using photogrammetry could provide avenues for cancer research aided by CMZ’s dense 
striping (Marais et al., 2007; Gan et al., 2013). 

We modelled immobilized individuals using a single or small set of cameras. However, 
research is underway to photogrammetrically model moving individuals with ten to 32 
cameras (Postma & De Bruyn, 2015). Cameras are pointed inwards towards a central scene, 
such as a bush path, and triggered simultaneously through motion detection, to essentially 
freeze a moving animal in time and space (Waite et al., 2007; Postma & de Bruyn, 2015). 
This approach applies to volume and curvilinear measurements but could easily be extended 
to surface features, given enough coverage to retain surface colour information (Bot & 
Irschick, 2019). Applying this approach to large, free-ranging, terrestrial animals would solve 
the issue of asymmetry, removes the need for immobilization and thus removes error 
associated with slight movements during immobilization. Furthermore, one could produce a 
3D model using video frames (Burghardt & Campbell, 2007) but ignore variable 3D 
dimensions in the model itself. The automatic and non-invasive nature of such approaches 
allows one to attain larger sample sizes for cross-sectional studies or long-term temporal 
studies of individuals over time, without stress to the animal. In this case, to understand how 
stripe patterns may vary over large spatial (e.g. across isolated populations) or temporal (e.g. 
with growth) scales. 

It is of management and conservation interest how, for example, the stripe patterns of CMZ 
populations vary. Morphological baselines of founder populations need to be established 
before comparisons can be made with derivative populations; where mixing of genes, and 
possibly resultant stripe patterns, occur. The comparison can be extended towards HMZ to 
validate their supposed sparser rump and shorter torso stripes (Novellie et al., 2002; Groves 
& Bell, 2004) using geometric morphometrics. Inter-species (E. quagga and E. grevyi 
Oustalet, 1882) comparisons require a geometric morphometric approach wherein 
homologous stripe components are identified across species and validated before pilot studies 
of landmark placement are undertaken. These methods could be important for traceability to a 
population of origin alongside quantitative genetics by quantifying differences in population 
stripe characteristics and preventing hybridization between species and subspecies. 
Traceability of stripe patterns could allow us to attribute, for example, an incorrectly 
translocated individual to its population of origin. 

Whether this approach can be extended to non-zebra taxa requires evaluation. Finding 
homology between spots or dapples could be difficult, but the placement of these features 
relative to internal anatomy or external curvature guides correspondences. Are spots just 
discontinuous stripes? We do not see spots in zebra due to the saturation of melanistic 
activators, which is often seen on the tapered ends of spotted cat tails (Murray, 1988; Ball, 
2001). Using this knowledge, detailed investigation is required on whether spots line up 
along, what could be, branching ridges of melanistic activation. This could guide future 
geometric morphometrics of homologous lines of spots. 
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CONCLUSION 

Coat similarity is a measure of morphological similarity for use in systematics, forensics, 
identification and phenotypic monitoring. Previous studies have used qualitative and 
quantitative measures of coat similarity for individual identification. However, our study 
provides useful quantification of shape differences and variation that includes not only locally 
distinct points, but also 3D geometric aspects that have previously been ignored. This more 
holistic approach to quantifying pattern differences could provide more accurate measures of 
morphological variation. Additionally, geometric morphometrics of the surface provides the 
potential to study the effect of skin cell migration and expansion, and quantify condition. 
Geometric morphometrics works within a 3D photogrammetric framework, allowing for 
synchronized volume, surface and linear estimates; and now includes relative differences in 
coat geometry along surfaces for a broad range of studies requiring morphological variation. 

SUPPORTING INFORMATION 

S1. We illustrate the camera array used, angles of the outermost cameras on GoPro Hero4 
mounts (dashed lines) from the side (A), the aluminum grid and handle (solid lines) from the 
top (B), and its application (C). The ideal angle for the outermost cameras is ~ 45° but does 
not need to be exact and can be adjusted for the situation. The configuration merely help 
quickly gain coverage of the photographed animals (D) and is not necessary for the approach. 
Black boxes represent the angles that were photographed. 

S2. Full resolution heat map GIFs illustrating regions of shape variation along the first 10 
principal axes (PCs; numbered). Redness (255, 200, 100) of red-green-blue (RGB) values 
was constrained to regions with the top 1%, 5% and 10% of shape variation along the 
principal axes, respectively. 

Appendix 1. The most parsimonious models from stepwise AIC model selection for each 
principal component (PC). The Akaike’s Information Criteria was corrected for small sample 
size (AICc). The variation of each PC explained by the model (R2) and cumulative shape 
variation explained by the PC was reported. Models that violated the linear model 
assumptions of no kurtosis, normally distributed variance or homoscedasticity were ignored 
(*). Negative coefficients for predictors are illustrated with minus superscripts (–). 
Interactions between predictors, simultaneous but non-additive effects on the response, are 
illustrated using a colon (:). Predictor variables include branching of the first to ninth torso 
stripe (B1–9), branching of half stripes in front of the grid-iron pattern (HG) and first to eight 
torso stripes (H1–8), size and the number of torso stripes (Stripes). Model formulae should be 
viewed alongside models warped for shape along principal components. 

Appendix 2. Heat maps illustrating regions of shape variation along principal axes (PCs; 
numbered). Heat maps were plotted on models warped (geomorph package) to illustrate 
minimum values of principal components. RGB redness (255, 200, 100) was constrained to 
regions with the top 1%, 5% and 10% of shape variation along the principal axes, 
respectively. 
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