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port Development and the Chair in Railway Engineering, loving father and colleague, for
the use of the Road-Rail Vehicle (RRV) in this research.

Special thanks to Prof J.W. (Johan) Joubert at the Center for Transport Development
– a supervisor, mentor, colleague and friend to the author. The expertise he displays in
his field intrigued the author at a campus tour five years before he would complete his
final year project under Joubert’s supervision, leading into the journey to a Masters in
Industrial Engineering. His dedication to his students, passion for his work and love for
his family inspired the author on numerous occasions. Joubert’s active interest, support
and influence propelled the author with great ambition into his future career.

i



Abstract
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Emission reduction interventions assist decision-makers in setting targets for environmen-
tal regulations and policies. These are necessary to address the growing concern of air
pollution. In the UK alone, £800m have been invested in an air quality programme to meet
their net-zero emissions target by 2050 (World Economic Forum, 2020a). We recognise
that informed decision-making is vital for capital investment into transport interventions,
especially in a developing country like South Africa.

We focus on emissions generation in the Gauteng province to understand how the
actual traffic emissions vary from our estimations with the tools at our disposal. The tool
we utilise is the Multi Agent Transport Simulation (MATSim) emissions model based on
the Handbook Emission Factors for Road Transport (HBEFA). MATSim is a powerful
modelling framework that can produce transport simulations of an entire city with a high
level of detail (Fourie, 2009; Van Velden, 2012; Zhuge et al., 2014; Ziemke et al., 2019).

The problem we face is that the European-based emissions model does not account for
the driving conditions and vehicle types affecting real-world driving emissions on South
African road networks. We address the diversity of our local driver population by creating
a synthetic population representing the Gauteng vehicle population. MATSim’s Agent-
Based Model (ABM) enables us to model emission profiles for each vehicle represented
as an agent. In the synthetic population, we include passenger cars and heavy vehicle
types. We estimate the aggregate CO2, CO and NOx emitted on a provincial level and
the individual emissions per vehicle type.

We use PEMS equipment to conduct Real Driving Emissions (RDE) tests with which
we validate our MATSim emissions model for Gauteng. We conduct these tests for both
vehicle types represented in our synthetic population: a passenger car and a heavy vehicle.
By comparing the PEMS data to MATSim’s estimations on a predetermined test route
in Pretoria, we find that the emissions model accounts for ±80% of the CO2 emissions
from these vehicle types. Furthermore, the observed CO emissions are 2.3–2.9 times higher
than the simulation. MATSim also underestimates NOx emissions for the heavy vehicle
type and overestimates these pollutant emissions for the light vehicle.

Our investigation of the emissions on the test route reveals that different road types
and driving conditions factor into the variance we observe in our local emissions model.
MATSim struggles more to estimate the emissions on steep suburban roads than on urban
or freeway sections. Regarding driver behaviour, aggressive drivers might cause more
carbon and NOx emissions than conservative drivers. Weather conditions also influence
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this behaviour, and we heed the notable difference between our warm South African and
wet European weather.

We accomplish our research goals of building a representative Gauteng emissions model
in MATSim, investigating how this model performs “out-of-the-box” and quantifying the
gap between our local simulation and the reality of traffic emissions in South Africa.

Keywords: MATSim, RDE, PEMS, emissions model, traffic emissions, agent-based sim-
ulation
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Chapter 1

Introduction

Air pollution is a growing concern for authorities, administrations, and governments world-
wide. This environmental issue has the whole world up in arms and eager to make changes
and spark innovation, promising a better, greener future.

Criteria pollutants (emissions hazardous to human health) are widely investigated to
develop emission reduction interventions. These assist decision-makers in setting targets
for environmental regulations and policies like the US Clean Air Act (EPA, 2021b) and
the UK’s target to reach net zero emissions by 2050 (World Economic Forum, 2020a).

As part of the UK’s emission reduction target, the Mayor launched the central London
Ultra Low Emission Zone in April 2019 (World Economic Forum, 2020b). The emis-
sion reduction intervention was paid for from £800m invested into London’s air quality
programme since 2016. This figure emphasises the term: a growing concern.

1.1 Simulation for informed decision-making

When policymakers investigate projects involving six figures and above, predicting a high
success rate with certainty becomes crucial. In their Central-European case study, Ježek
et al. (2018) use a verified traffic emissions-dispersion model to evaluate different emission
reduction scenarios. They show that removing 10% of the highest polluting vehicles re-
duces the total black carbon and NOx emissions from traffic by 39% and 33%, respectively.

In his speech on the transport department’s budget vote of 2021/22, South African
transport minister Fikile Mbalula announced the 15.6% increase of the public transport
network grant for 2023/24 amounting to R6.8 billion (Department of Transport, 2022).
Diligent planning for the appropriate applications of these infrastructure and operating
grants are paramount to a third-world country with an underperforming economy (based
on the forecasted 2% slip in GDP for 2022 (Tech, 2022)).

In South Africa we use simulations for transportation planning and in scenarios like
Ježek et al. (2018) to investigate the effect of interventions before implementation. We
show how simulated vehicle emissions compare to emissions under actual driving conditions
in a South African context. Consequently, we portray the variance in our local simulations,
indicating the need for accurate, representative traffic emission models in South Africa.

1.1.1 Research focus

Simulation models provide a means to capture the generation of air pollutants, their at-
mospheric dispersion and their impact on ambient air quality and the environment. These
simulation models are traffic or (road) transport models, emission models, Gaussian or
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chemistry transport models, and air quality models. The simulation framework utilised
for this research, Multi Agent Transport Simulation (MATSim), enables traffic and emis-
sions modelling. Therefore, the research focus is on the generation of traffic pollutants
captured by MATSim’s modelling framework.

Traffic and emission models require emission factors as input parameters to calculate
emissions from particular exhaust chemicals. Country-specific databases contain vehicle
emission factors for different vehicle categories. Like the European-based HBEFA (2019),
these databases incorporate factors for various driving conditions, hot and cold running
and evaporative emissions (Forehead and Huynh, 2018).

Our research has a twofold purpose. Firstly, to investigate and understand the uncer-
tainty and the variance in South Africa’s vehicle emissions. How does our vehicle fleet
compare to its European counterpart, where the emission factors we use in our simulations
originate? Without knowledge of the actual performance of the South African vehicle fleet,
we desperately try to improve the state of transport emissions with no measure of success.
To this end, we aim to quantify the gap between state of the art emission models and
what we experience as “ground truth” in a local context.

Secondly, to provide policymakers with insights that guide decision-making for setting
informed and realistic targets that address (among others) some valid concerns in South
Africa:

� Even though the country supports reducing greenhouse gasses emitted by the trans-
port sector, South Africa’s national Green Transport Strategy has presented no
quantitative targets (Department of Transport, 2018).

� Since 2019, the inclusion of carbon tax in the fuel levy promotes the polluter pays
principle. Getting this pricing wrong would send an incorrect message to vehicle
owners, causing unintended consequences and hurting the South African economy
and its citizens.

� Encouraging a modal shift to hybrid or electric vehicles is only attainable for the
financial elite and not feasible in developing countries. It may potentially worsen
the state of economic inequality.

� If freight vehicles are disproportionately taxed, it forces price increases across entire
supply chains, adversely affecting the consumer buying off the shelf.

We want to contribute to the transport sector in South Africa to avoid ill-informed
policy decisions and unintended consequences on a national level. To set informed and
realistic targets, we need to validate our simulation models by acknowledging our local
conditions. Therefore, we require a baseline to establish what we will use to validate
against – what is our current reality?

1.1.2 Estimating “ground truth”

Modelling and simulation are, in essence, a subjective representation of reality. To guide
decision-making and provide valuable insights from simulation, we require a means to
validate our models. The best available measure we can use is the ground truth, but how
do we estimate this for emission models? What is the “gold standard” against which we
measure our representation of emissions generation?

To validate air quality models, a combination of traffic loop sensors and emission
calculations can estimate the ground truth for multiple sources of air pollution in their

2



vicinity (Ma et al., 2012). For transport emission models, laboratory tests are the industry
standard. However, the Volkswagen “Dieselgate” scandal (Chossière et al., 2017) proved
how unreliable these tests could be. Portable Emissions Measurement System (PEMS)
tests provide a more accurate validation method for Real Driving Emissions (RDE) (Frey
et al., 2003; Hao et al., 2017; Liu et al., 2010; Ropkins et al., 2007). Used alongside RDE
test procedures in Europe, these technologies serve to complement lab tests like the latest
Worldwide harmonised Light vehicle Test Procedure (WLTP) (ACEA, 2021).

We have at our disposal methods of validating simulation models, but what if these
methods are inaccurate? Dey et al. (2019) calculate the variation in damage costs of
emissions and gives an example of the consequence of over- or underestimating emission
inventories on its relevant applications in Ireland. The cost of “getting it slightly wrong”
was e40 million.

With taxpayers’ money on the line, a developing country like South Africa, with the
world’s highest inequality in income distribution, can not afford to “get it slightly wrong”
(Statista, 2021). The rising cost of living and volatile political climate in South Africa
leaves us, the citizens, desperate for the government to make informed and calculated
decisions regarding matters that affect our pockets at month-end.

1.2 Agent-based modelling in South Africa

In a developing country with high economic inequality, extreme socioeconomic and popu-
lation diversity, the ability to account for diversity in our simulations becomes essential,
especially when we want to ask questions like “who gets the benefit from transport in-
frastructure and interventions?” and, equally important, “who pays for those benefits?”
To accommodate the diversity and inequality present in the South African population,
we adopt an agent-based approach for transport emissions modelling. Agent-Based Mod-
els (ABMs) prove beneficial to evaluate the impact of (transport) interventions as they are
adequately expressive to capture the unique attributes of individuals and the environment
(Ziemke et al., 2019).

The MATSim, succeeding TRANSIMS (Barrett et al., 2001), is a powerful activity-
based modelling framework that can produce transport simulations of an entire city with
a high level of detail (Fourie, 2009; Van Velden, 2012; Zhuge et al., 2014; Ziemke et al.,
2019). As we later show, the aggregate effect of individual vehicle emissions can be studied
on a regional scale.

The problem faced in South Africa is that the emission models rely on emission factors
from the Handbook Emission Factors for Road Transport (HBEFA) – the widely accepted
state of knowledge for RDE in Europe (Matthias et al., 2020). These emission factors are
calculated from RDE under specific European conditions.

When we conduct PEMS field tests in the Gauteng province of South Africa, we drive
at an elevation between 1300–1750m above sea level, compared to Germany, Switzerland,
Austria and Sweden, most located well below 1000m (Switzerland being the exception at
1350m). These are the countries where the applicable emission models are mainly used
(ERMES, 2021).

In terms of physical factors, a passenger car in the European Union (EU) ages, on
average, 11.5 years (ACEA, 2019) compared to 9.5 years in South Africa (Venter, 2017).
The average South African passenger car is 5% lighter and has an engine-rated power of
7% more than its European counterpart. The combined effect on emissions generation
would imply that the South African fleet produces around 1–2% more emissions than
the European fleet. Posada (2018) indicates that this is not the case, as the published
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CO2 emissions (in g/km) from the South African fleet is, on average, 22% more than the
European fleet.

Potential reasons for the misalignment of fleet emissions could be vehicle technology
(the European market avails more fuel-efficient technologies for the average new vehicle
than the South African market), elevation, road conditions or driving behaviour. This
begs the question:

can we rely on our (European-based) emission models to produce useful results
when compared to our (South African) PEMS validation tests?

Well, no. Given the multiple factors influencing our vehicle fleet profiles, we (wrongly)
play the simulation game on two completely different fields. Therefore, we expect variance
in our local emission models.

Consequently, from our research focus, we can formulate specific research goals to
address this variance:

1. Build a traffic emissions model for Gauteng in MATSim’s Agent-Based Simulation
(ABS) framework.

2. Investigate how good this European-based model performs “out-of-the-box” in a
local context.

3. Quantify the gap between the Gauteng emissions model and ground truth in South
Africa to use this model effectively.

1.3 Research design

We develop an ABS model in MATSim, reflecting the reality of a vehicle population with
diverse emission profiles. These profiles reflect the latest specifications as contained in
HBEFA version 4.1. We couple the ABS model with the daily activities of the Gauteng
province’s driver population and, using sampled vehicle statistics, produce a representative
estimation of the pollutants generated on a regional scale.

Subsequently, we narrow our focus to the individual vehicle class. We investigate the
variance in the emissions from heavy and light vehicles generated by our ABS compared to
RDE from PEMS trip data. This RDE data serves to validate our agent-based emissions
model of Gauteng.

1.4 Document structure

HBEFA includes emission factors for multiple vehicle categories of all regulated and sig-
nificant non-regulated pollutants (ERMES, 2021). These emission factors are included
in an extension of the MATSim framework – a code contribution that enables emissions
modelling in the agent-based framework (Hülsmann et al., 2011). We discuss the various
approaches for emissions modelling and, to this end, our choice of MATSim’s agent-based
framework in chapter 2.

Chapter 3 sets the stage for agent-based emissions modelling in South Africa. Here
we discuss our research methodology and the steps towards a representative MATSim
emissions model for the Gauteng province, addressing our first research goal.

The data we obtain from our PEMS field tests quantify RDE in South Africa. We
present our findings in chapter 4 and discuss the variance in our ABM compared to the
PEMS test data. This fulfills our second and third research goals.
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We evaluate our research goals in chapter 5 and discuss the topics that present potential
future work for South African emissions modelling in MATSim.
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Chapter 2

Literature review

The many vehicles and traffic situations involved on a road network make real-world emis-
sion measurements impractical (Smit et al., 2010). Measurement is also impossible when
we consider hypothetical scenarios for transport interventions. Traffic emission models
can offer a practical alternative to real-world measurements (Grote et al., 2016).

The need for simulating traffic emissions stems from the environmental and health
impacts of air pollution. Among other use cases for risk assessment (El-Fadel, 2002;
Qiu and Li, 2015; Wismans et al., 2011), emissions modelling is particularly useful for
evaluating emission reduction scenarios like introducing a Low Emission Zone (LEZ).

This intervention aims to reduce vehicle emissions, improving the local air quality in
a given geographical area. Air quality and dispersion models can indicate the associated
health risk and spread of traffic pollution. However, these models require as crucial input
spatially and temporally resolved emissions from the relevant sources (Matthias et al.,
2020).

Therefore, as enabling factors for future air quality estimation, we focus in the sub-
sequent sections on the generation of emissions simulated by traffic and emission models.
We also discuss our modelling framework of choice and means of validation from Real
Driving Emissions (RDE) tests with a Portable Emissions Measurement System (PEMS).

2.1 Elements of road traffic emissions

There are different sources of emissions, grouped in four categories: point (factories and
power plants – stationary), biogenic (livestock), area, and mobile (dynamic) (EPA, 2021a).
We classify traffic emissions as a mobile source of air pollution. Traffic emission models
capture the generation of criteria pollutants that provide emission estimates at high spa-
tial and temporal resolution (Forehead and Huynh, 2018). Additional sources of traffic
emissions like evaporative and non-exhaust vehicle-wear emissions are also included in
updated emission inventories required by emission models (EEA, 2021).

Transport modelling and calculation of the related fuel consumption and emissions
form the basis of quantifying emissions from mobility (Nocera et al., 2018). Nocera et al.
(2017) discuss the main characteristics and link between the two-step process of simulating
emissions: combining the traffic and emissions model. In the following section, we discuss
the different types of traffic and emission models and highlight the reason for our choice
in the South African context, where we apply our case study.

6



2.1.1 Traffic models

Traffic assignment is the first step in transport modelling, enabling the study of various
externalities. Traffic models capture this step that allows researchers and practitioners to
analyse the effects of congestion, traffic safety, global warming, air pollution and noise
pollution (Wismans et al., 2011). We distinguish between static and dynamic traffic
models.

The four-step model

The traditional four-step model (like VISUM, (Fellendorf et al., 2000)) is a static model
that relies on the spatial distribution of a population. It calculates average traffic volumes
in different areas of a network. Contrary to (microscopic) Agent-Based Models (ABMs),
modelling an individual on a network, the unit of measure in four-step models is the
number of trips emanating from particular zones (Rasouli and Timmermans, 2013). The
four-step model comprises (i) trip generation, (ii) trip distribution, (iii) modal split and
(iv) traffic assignment. These models offer a macroscopic traffic description, but the static
description is useful on large spatial scales (Shorshani et al., 2015).

Policy questions often only require aggregate estimates on a system level to understand
the impact of changes and interventions (Linton et al., 2015). This explains why we
see, especially in our local context, the four-step model overused in the industry where
practitioners are slow to adopt state-of-the-art practices and instead opt for the “tried
and tested” methods that (still) fail on multiple fronts.

Rasouli and Timmermans (2013) discuss the initial promises of activity-based models –
an alternative to the traditional four-step model. They summarise the progress made over
two decades and identify unsolved issues requiring further research. A few shortfalls were
identified in the four-step model that fueled the development and use of activity-based
(microscopic) models of travel demand:

(a) a need for consistency among sub-models makes the four-step model lack integrity;

(b) the erroneous assumption that the four steps are independent;

(c) the aggregate nature of the model, both in time and space; and

(d) the lacking behavioural realism evident in agent-based and behavioural models.

Rasouli and Timmermans (2013)’s review provides compelling evidence that suggests
dynamic traffic models better address the issues inherent to the traditional four-step model.
We discuss the underlying principles of these models on different spatial scales.

Dynamic models

Macroscopic dynamic modelling approaches like system dynamics, techno-economic mod-
els and integrated assessment models allow planning on larger spatial and temporal scales
than microscopic approaches. These models use an aggregate representation of vehicles
and assume continuous traffic flow based on homogenous vehicle behaviour, thus limiting
their ability to predict congestion (Shorshani et al., 2015).

Macroscopic models require three main parameters for implementation: the fundamen-
tal traffic flow diagram, OD matrices and traffic control devices. The simulation model
produces as output time-dependent traffic densities for each segment on the road network
and traffic flows on these segments (Shorshani et al., 2015).
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� System dynamics modelling (SDM), positioned between small-scale microsimulations
and large-scale techno-economic models, rely on causal loop diagrams (CLDs) to ex-
plore qualitative relationships between different system aspects. They also include
quantitative techniques and analysis, making them highly versatile tools (Pfaffen-
bichler et al., 2010). An advantage of this approach lies in its ability to capture
multiple stakeholder dynamics and policy outcomes from complex systems (Linton
et al., 2015).

� Techno-economic models use the occurrence of socio-economic changes in a top-down
approach to capture large-scale dynamics of the transport system. These models
estimate travel demand by drawing on socio-economic characteristics and forecast
changes (Linton et al., 2015).

� Integrated assessment models (IAMs) model the interactions between the economy
and environment on a macro scale. It includes a sub-module for transport as a
component of economic activity. Similar to techno-economic models in terms of
scale and scope, IAMs further explore economic-related changes in the environment
(Linton et al., 2015).

Microscopic models take into account the time-space behaviour of individual vehicles,
influenced by interactions with the road network and their proximity to other vehicles.
These models calculate each vehicle’s location, speed, and acceleration on the network at
every time step during the simulation. Microsimulation also allows the analysis of small
changes in the network in terms of their impact on road traffic. This provides a valuable
series of techniques for road transport emissions modelling (Linton et al., 2015).

� Traffic network models (microsimulations) are built on the principles of the four-step
model and car-following and lane-changing rules that determine individual vehicle
interactions (Linton et al., 2015).

� Behavioural models draw on behavioural economics and social psychology disciplines
to provide greater detail on individual travel choices and decision-making. Also re-
ferred to as activity-based models, they view travel as the result of individual activities
and decisions. These activities that necessitate mobility are explored to understand
transport levels and picture individual decision-making (Linton et al., 2015).

� Agent-based modelling has been used in activity-based and microsimulation ap-
proaches (Balmer et al., 2006; Bekhor et al., 2011). The benefit of using ABMs
within the transport sector is that we can model a series of heterogenous agents,
allowing a “bottom-up” approach and detailed insights into system interactions.
We can depict complex systems where agents interact with one another and their
environment to produce “emergent behaviour” (Bernhardt, 2007).

The traffic emission model uses as input the fleet activity (trips) generated by these traffic
models. Together with vehicle emission factors, the emission model generates emissions
data for the network.

2.1.2 Emission models

Smit et al. (2010) validated different types of emission models. Here we present them in
increasing complexity, cost and time resources. (a) – (c) constitutes average speed-based
models, and (d) – (e) instantaneous emission models:
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(a) Average speed models (e.g. COPERT (Ntziachristos et al., 2009), MOBILE (EPA,
1994)), widely used for emission estimation and air quality modelling studies (Shor-
shani et al., 2015). These models implicitly account for some congestion influence
because the driving cycles used to realise the emission model has dynamic speed-time
profiless (Grote et al., 2016);

(b) Traffic-situation models (e.g. HBEFA (2019), ARTEMIS (Boulter and McCrae,
2007), COPERT Street Level (Emisia, 2021)), where discriptions of particular traf-
fic situations like stop-and-go or freeflow driving determine emission factors. These
models explicitly account for congestion influence through the user-defined qualita-
tive description of traffic conditions: each traffic situation (characterised by road
type) in the emission model is referenced to an average emission factor for different
vehicle categories (Grote et al., 2016);

(c) Traffic-variable models (e.g. TEE (Negrenti, 1996), Matzoros model (Matzoros,
1990)), which require traffic flow variables like average speed, traffic density, queue
length and traffic signal settings. These can be sourced from both microscopic and
macroscopic traffic models;

(d) Cycle-variable models (e.g. VERSIT+ (Smit et al., 2007)) require detailed informa-
tion on vehicle movement (speed, acceleration, and road grade), which can only be
obtained from a microscopic traffic model or, for example, Global Positioning Sys-
tem (GPS) equipment. This limits their application to microscopic traffic emission
models (Smit et al., 2010); and

(e) Modal models (e.g. PHEM (Zallinger et al., 2008), CMEM (Scora and Barth, 2006)),
requiring similar input to cycle-variable models. They produce emission factors via
engine or vehicle operating models at the highest resolution.

Instantaneous emission models are useful for small-scale applications because of the inten-
sive input data requirements and high computational burden. These models use any given
vehicle trajectory to estimate second-by-second vehicle emissions and fuel consumption.
Hence, the emission factor unit of measure is given per second, contrary to per vehicle
kilometre in the average speed-based models.

Smit et al. (2010) found that complex models do not necessarily lead to more accurate
estimations. This explains the primary use of average speed and traffic-situation models
across Europe and in the US (ERMES, 2021). Our research utilises the latter of these
models but our local application requires a dedicated approach for the South African
context.

2.2 MATSim and HBEFA

Quite often, a single approach cannot fully capture the dynamics of a complex system,
especially when we are interested in gaining insights from and understanding traffic emis-
sions. Therefore, we prefer a modelling approach that captures the critical elements of the
transport system essential for our purpose of traffic emissions modelling.

Linton et al. (2015) describe Multi Agent Transport Simulation (MATSim) as an agent-
based modelling approach that, through agents in the traffic network, captures the trans-
port system dynamics with a behavioural-oriented approach. In his thesis, Kickhöfer
(2014)’s agent-based approach advocates MATSim for several reasons:
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(a) Firstly, its high degree of modularity and focus on the agent facilitates an individu-
alised behavioural model.

(b) It provides a mesoscopic traffic flow model: on a scale large enough to consider emer-
gent behaviour and small enough to study a single agent. Calculating externalities
like congestion and vehicle-specific emissions requires this type of model.

(c) It can handle large networks with several million agents and enables investigation at
one second time steps. This allows us to observe traffic scenarios at different times
in a day, e.g. peak and off-peak.

(d) Finally, MATSim offers performance functions that capture travel preferences by
assigning weights to agent attributes. With this, we can examine the impact of
externalities like LEZ interventions on individual travel decisions.

These support our inclination toward MATSim for agent-based emissions modelling.
Shorshani et al. (2015) mention that emission models based on microscopic transport
models, like MATSim, perform better than those based on macroscopic models due to
better vehicle dynamics estimation, high temporal resolution and the ability to account
for congestion.

2.2.1 The value of agent-based simulations

Agent-Based Simulation (ABS)’s can provide valuable insights and decision support to
situations that possibly require a counter-intuitive approach (Kickhöfer et al., 2018). This
enforces the concept that ABSs are ideal for studying the unintended consequences of
interventions applied on a large scale. The invaluable characteristic of ABSs lie in the
fact that they show emergent behaviour of complex systems – unplanned for, unrealised,
and sometimes counter-intuitive behaviour (Bernhardt, 2007). Uncertainties arise when
we try to model the real world with (relative) accuracy while accounting for this complex
behaviour between interacting agents. It is when our intuition fails to accurately portray
this uncertainty that we realise the value of ABS.

Macal (2016) defines four agent properties for agent-based modelling and simulation:
individuality, autonomy, interactivity and adaptability. The value of ABS lies in its capa-
bility to capture all four of these properties in a single model.

By individuality, we refer to the diversity of each agent’s attributes that presents it as
a distinct individual. These attributes may include a daily plan with home and work loca-
tions and vehicle type with a particular emissions profile in traffic simulations. Autonomy
implies that each agent can act independently and make its own decisions based on its
individual characteristics. Emphasis on agent individuality and autonomy regularly coin-
cide where interaction is not required, like traffic or taxation models – large in scale and
computationally intensive. Social simulations model the interactivity between agents to
study the emergence of patterns, social structures and institutions. This property implies
that behaviour is independently or interdependently with other agents and the environ-
ment. Adaptive models capture changing behaviour among agents. The adaptability of
agents can represent a learning process by which previous encounters are remembered and
used to guide future decision-making.

Why MATSim?

MATSim allows us to examine the emergent behaviour of agents as a result of their in-
dividuality, autonomy, interactivity and adaptability. These properties are essential to
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a transport simulation with a focus on individual emission profiles: when modelling a
synthetic population with various emission profiles, the modeller depends on the ability
to simulate a distinct individual (by its vehicle type) that can act independently by in-
teracting with other agents on the given road network. If required, these agents should
also react and adapt to external influences of the simulated environment imposed by the
modeller.

MATSim incorporates all of these essential agent properties in its ABM. It models a
population of individuals (agents), each representing a person with unique attributes, as
they execute their daily plans on a transport network. A plan is a sequence of activities
and trips richly described in terms of timing (start time and duration), location (detailed
facilities or coordinates instead of zones) and mode. The agent’s experience is scored using
a generalised cost function that accounts for the (positive) utility of participating in value-
adding activities and the (negative) utility of travelling and incurring cost to overcome the
distance between activities. The experience is based on and influenced by multiple agents
trying to execute their individual plans on the limited infrastructure, causing congestion.
Autonomous decision-making is embedded in the MATSim machinery as interchangeable
and complementary modules like changing the timing of an activity, altering a route, or
changing mode, depending on the supporting data available and the intent of the model
investigation. As agents adapt their daily plans and execute the revised plans iteratively,
they build up a memory of plans, favouring those that promise a higher expected utility.
This co-evolutionary machinery of MATSim allows for a relaxed state to be achieved
over a sufficient number of iterations when no agent can consistently improve its state of
maximising its utility.

2.2.2 Similar work

Work and research done by Kickhöfer and peers set the global stage for emissions modelling
in MATSim. The essence of his work centres around the relationship between emissions,
traffic congestion and emission tolls, applied as transport intervention in most of his stud-
ies. In Hülsmann et al. (2011), they develop the approach to link the agent-based transport
model MATSim with emissions factors and traffic situations in Handbook Emission Fac-
tors for Road Transport (HBEFA). This approach links the traffic flow model in MATSim
with the database of HBEFA. It calculates time-dependent cold and warm emissions spe-
cific to each vehicle type. Its reusability and transferability to other scenarios are among
its main features. The emissions contribution comprises two main steps:

1. Deduction of kinematic characteristics from MATSim simulations: when an agent
enters a link (road segment) on the road network, MATSim saves a timestamp and
compares it to the time at which this agent exits the link, resulting in the free-flow
travel time.

2. Generation of emissions factors identified per (varying) vehicle type, road category
and speed limit. MATSim assigns these factors to each agent and link it traverses.

We use the vehicle-specific emission factors from HBEFA 4.1 to define the unique
attributes assigned to each agent. Only using the vehicle types with their emission factors
relevant to our South African context, we apply the emissions contribution to our small
scale experiment(s).

The results from our study serve to provide a starting point for answering questions
similar to the one from Kickhöfer et al. (2011). They affirm that the inclusion of individual
income in utility calculations do allow a better understanding of public acceptance issues.
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They conclude this by estimating income-dependent utility functions for each individual to
depict human mobility behaviour and testing the implementation in the MATSim frame-
work. By using (updated) emission factors in HBEFA 4.1 to enhance the current emissions
contribution, we gain a better understanding of the relationship between traffic congestion
and emissions in our South African context when applying some travel intervention.

We seek a similar response in agent behaviour as presented by Agarwal and Kickhöfer
(2015). They evaluate the outcome of pricing emissions and congestion, respectively. The
former shows agents preferring shorter distances whereas the latter steers them towards
shorter travel times which could mean longer distances. A travel intervention applied to
a population of agents could produce unintended and unplanned consequences. We aim
to produce simulated behaviour for which we can plan, applying interventions where we
control the consequence.

Kickhöfer et al. (2018) also use the emissions contribution to study air pollutant emis-
sions in the transport sector (likewise in Kickhöfer et al. (2013)). They test optimal emis-
sion pricing strategies that would result in reaching set policy targets regarding greenhouse
gas emissions. The population to which these pricing strategies apply largely influence the
efficacy of such travel interventions. If they failed to represent the agent population ac-
curately, the authors’ study would be flawed in any localised context. To this end, we
seek a representative population of agents in the Gauteng province to which we apply the
emissions contribution.

2.2.3 Uncertainty in emissions models

Shorshani et al. (2015) describe the uncertainties in the internal model parameters that
cause erroneous emission estimates. The most typical among these are: traffic data (flows
and speeds), vehicle fleet composition (e.g heavy, passenger car, bus), and emission factors.

The first among these depends on how we build our simulated road network. The
HBEFA links to the traffic flow model of MATSim to realise an emissions modelling tool
in an agent-based framework. MATSim can assign descriptions to each road segment (link)
in the given network, which correlate with the traffic situations in HBEFA’s database. In
doing so, the uncertainty of traffic data is cleared.

In chapter 3, we address the second uncertainty. We perform data fusion to build a
synthetic vehicle population that captures the diversity and accurately depicts the South
African vehicle fleet composition.

The traffic situations in HBEFA are tailored explicitly to European driving conditions.
However, Sun et al. (2014) found HBEFA to be suitable for the Chinese fleet and roads.
Our model validation in chapter 4 indicates if the emission factors from HBEFA are sound
for estimating emissions in South Africa.

2.3 PEMS in emissions modelling

Multiple studies demonstrate PEMS instrumentation deployed to record the movement,
geographical position and exhaust emissions of a vehicle driven over a real-world test
route. PEMS record these measurements by taking emitted gas samples from the vehicle’s
exhaust on a second-by-second (1Hz) basis (Frey et al., 2003; Hao et al., 2017; Liu et al.,
2010; Ropkins et al., 2007).

Engine output can be computed at each sampling instance using the test vehicle spec-
ifications. This enables the prediction of instantaneous fuel consumption and exhaust
emissions (Wyatt et al., 2014).
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PEMS measurements provide actual emissions in the absence of a standard test cycle,
making it an unrepeatable and time-intensive experiment. However, it includes all sources
of variability absent in most lab tests, e.g. driver behaviour, the impact of environmental
conditions and traffic and variable vehicle operating conditions (López-Mart́ınez et al.,
2017).

The benefit of PEMS tests is that the researcher can study a distribution of emissions
measured across multiple trips, which is more comprehensive than point values from static
measurements. Simulation models can produce similar distributions from ensemble runs,
making PEMS tests the ideal validation method.

Use cases for PEMS

The combination of local PEMS measurements for validation and emission models con-
tributes to producing a validated emissions model in a localised context. However, PEMS
also play an equally important role in generating the results for emission models.

In-laboratory campaigns most often provide emission factors required in emission mod-
els. López-Mart́ınez et al. (2017) remark that PEMS produce measurements from tunnel
studies, remote sensing and on-road or onboard experiments that improve the estimation
of these emission factors.

PEMS tests also provide essential RDE data to verify the adherence to legislative caps
for pollutants like NOx. The conditions for these RDE tests include:

� up and downhill driving;

� driving on urban roads, rural roads and motorways (low, medium and high speeds);

� additional vehicle payloads;

� year-round temperatures; and

� varying elevation.

Europe is the first region globally to introduce on-road RDE testing under these conditions.
These tests complement the Worldwide harmonised Light vehicle Test Procedure (WLTP)
test, introduced in 2017. It replaced the New European Driving Cycle (NEDC) test de-
signed in the 1980s, which relied on outdated technology and driving cycles (Car Emissions
Testing Facts, 2016). This emphasises the (increasing) value and usefulness of PEMS tests
in the environmentally-conscious era in which we find ourselves.

2.4 Summary

Air pollution’s environmental and health impacts drive policymakers towards simulation
for informed decision-making when considering hypothetical scenarios for transport inter-
ventions. We discuss traffic modelling approaches of travel demand on micro and macro
scales. These transport models perform traffic assignment, estimating the fleet activity
(trips) required by emission models. We conclude with Rasouli and Timmermans (2013)
that dynamic models perform better than the traditional four-step model for traffic as-
signment. As a result, we prefer the valuable series of techniques for traffic emissions
modelling offered by micro- and mescopic models.

The MATSim framework captures transport system dynamics with a behavioural-
oriented approach (Linton et al., 2015). The emissions integration in MATSim (Hülsmann
et al., 2011) realises a traffic-situation model with a low level of complexity and lower cost
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and time resources than instantaneous emission models (Grote et al., 2016). MATSim’s
agent-based approach can depict agents with essential properties like individuality, au-
tonomy, interactivity and adaptability, making it the favoured simulation tool for traffic
emissions modelling (Kickhöfer, 2014).

PEMS instrumentation proves helpful for RDE tests in various case studies (Frey
et al., 2003; Hao et al., 2017; Liu et al., 2010; Ropkins et al., 2007). They also provide a
means of validating local emission models. This solidifies our inclination to utilise PEMS
to uncover the variability in our local measurements. In doing so, we address our first
research goal of investigating and understanding the uncertainty and variance in South
Africa’s transport emissions. Consequently, we can compare these measurements to our
ABS model’s estimations. To this end, we get one step closer to validated emission models
in South Africa. This enables us to provide policymakers with insights that guide decision-
making for setting informed and realistic targets, achieving our final research goal.
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Chapter 3

MATSim for emissions modelling

Agent-based modelling has gained more attention increasingly in the field of transport sim-
ulations due to its significant advantage over the well-known four-step sequential model (Shif-
tan and Suhrbier, 2002). The agent-based model provides richer insights into individual
behaviour and decision-making as opposed to the aggregate approach followed by the
four-step model.

In this chapter, we establish a baseline scenario in the Multi Agent Transport Sim-
ulation (MATSim) framework that can be used to evaluate emissions generation on a
regional scale. The scenario covers the multi-metropolitan economic centre of the country,
the province of Gauteng, which is made up of the City of Johannesburg, Tshwane (Pre-
toria) and Ekurhuleni, along with two district municipalities: Sedibeng and West Rand.
We focus on the Gauteng province as it accounts for less than 2% of the country’s land
surface but 25% of the population and more than a third of the country’s gross domestic
product (GDP).

Ideally, we want to use this MATSim model in future policy work. The baseline scenario
developed in this chapter creates a “safe space” to investigate various what-if scenarios to
inform policy decisions.

3.1 Emissions modelling in Gauteng

MATSim models an entire driver population in a large-scale Agent-Based Simulation
(ABS). Its open-source framework allows users to add various extensions (code contri-
butions) for scenario-specific interventions.

The database of the Handbook Emission Factors for Road Transport (HBEFA) links
to the traffic flow model of MATSim to realise an emissions modelling tool in an agent-
based framework. Emission factors from HBEFA provide each agent (driver) with vehicle-
specific, time-dependent characteristics based on its vehicle type.

This HBEFA integration produces the emissions contribution, developed and tested
by Hülsmann et al. (2011), further improved by Kickhöfer et al. (2013) and presented
in Kickhöfer (2016). This extension has been used to perform spatial analysis of air
pollutant emissions (Kickhöfer et al., 2013), calculate local air pollution exposure costs
(Kickhöfer and Kern, 2013) and compare optimal pricing and backcasting approaches and
costs required to reach the EU’s 2020 emission reduction targets (Kickhöfer et al., 2018).

Gräbe and Joubert (2021) utilise the emissions contribution in a small-scale MATSim
model. They demonstrate behavioural sensitivity with a population of agents, each hav-
ing unique emission profiles. Joubert and Gräbe (2021a) build on this work to simulate
emissions for passenger cars on the Gauteng road network. However, this Gauteng model
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does not include heavy vehicles types in its agent population. The functionality tested
by Gräbe and Joubert (2021) and the large-scale model of Joubert and Gräbe (2021a)
lays the foundation for the development of the case study for the Gauteng road network
in section 3.3. We expand Joubert and Gräbe (2021a)’s model to include Heavy Goods
Vehicles (HGVs) in the Gauteng vehicle population.

3.2 Research methodology

The research design, materialising our first research goal, has three components: For the
(1) simulation input, we provide the network and generate initial demand – the synthetic
agent population. Agents receive a daily plan with activities to execute during the simu-
lation period. These activities comprise an agent’s commute from home to work and back
home again. Along with daily plans, we assign a vehicle class to each agent. Additionally
to the work of Joubert and Gräbe (2021a), agents can also be assigned an HGV vehicle
class (as opposed to only passenger car vehicle types). The (2) mobility simulation places
the initial demand on the network and allows agents to execute their daily plans for a sim-
ulation period of 24 hours. The (3) simulation output quantifies the emissions generated
on each link in the road network. We aggregate these results to compute the emissions
generated on a system level from the provincial road network. Then, we consider the
emissions per vehicle class, reporting the pollutants generated from a passenger car and
heavy vehicle type.

3.3 Gauteng allocation

An earlier version of this section was published in Joubert and Gräbe (2021a).

Traditional transport models rely primarily on origin-destination (OD) matrices to de-
scribe the patterns in trip distribution. These OD matrices typically cover only a short
time window like the morning peak traffic. As a result, the majority of trips accounted for
during this window are the routine home-to-work commute. The benefit of activity-based
travel demand is that it typically covers an entire day with richer activity sets. However, to
realise these activity-based models, richer input data is required from detailed trip diaries,
frequently inaccessible (Ilhai et al., 2019; Zhuge et al., 2014).

Consequently, several research contributions show how a trip-based model’s OD ma-
trices can be converted into an activity-based set of travel chains for discrete individuals.
Fourie (2009) and Zhuge et al. (2014) convert EMME/2 data into a MATSim population
of agents. They both confirm that the agent-based equivalent yields more accurate travel
time predictions and richer overall result sets.

This study adopts a similar approach to Fourie (2009) and Zhuge et al. (2014) to
generate synthetic travel demand for Gauteng, South Africa. Joubert and Gräbe (2021a)
describe this process using the Saturn-based transport model of the South African National
Road Agency Limited (SANRAL) for 2016, validated by Robinson and Venter (2019).

The initial demand translates into a MATSim population of agents with daily trips,
called plans. Given these initial plans, containing precise descriptions of the agent’s activ-
ity chain, the activity locations and durations, the trips connecting two activities, including
travel modes and routes, MATSim loads every agent into the mobility simulation (Gao
et al., 2010). The applicable travel modes are private cars (commuters), light vehicles
(business), light-heavy goods vehicles or heavy goods vehicles.
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Table 3.1 distinguishes between two vehicle classes representing these four agent types
included in the MATSim population:

Table 3.1: Vehicle classes representing different agent types

Passenger car Heavy

Private car (commuter) Light-heavy goods vehicle
Light vehicle (business) Heavy goods vehicle

3.3.1 Vehicle population

The next step is to assign a dedicated vehicle to each agent in this population. A vehicle
should have a specific type that accounts for its emissions concept. It should distinguish
on the vehicle class (passenger car or heavy goods vehicle), fuel type (petrol or diesel, in
South Africa) and the Euro concept, for example, Euro 4.

Nevertheless, such a detailed breakdown of the vehicle type is not available in public
data. For example, the electronic National administration Traffic Information System
(eNaTIS) provides a live vehicle population (eNaTIS, 2020). eNaTIS only indicates the
number of registered vehicles in each province and only distinguishes between the classes
shown in Table 3.2. No fuel-related or emissions data is available for any of the vehicle
types. Consequently, this study employs a strategy to infer the emissions concepts using
second-hand vehicle sales data as a proxy for the distribution of vehicle types in the
country. Why this strategy? Unfortunately, we can not obtain detailed vehicle profiles
from eNaTIS. Therefore, second-hand car sales are our best effort because it is the only
proxy to estimate vehicle age at this stage.

Table 3.2: Live eNaTIS vehicle population for the province of Gauteng (July 2020).

Vehicle class
Province
Gauteng

Percentage
of total

Motor cars and station wagons 3 128 479 70.34
Minibuses 130 207 2.93
Buses, bus trains, midibuses 20 460 0.46
Motorcycles, quadrucycles, tricycles 139 445 3.13
LDV’s, panel vans, other light load vehicles, GVM ≤ 3500kg 853 293 19.18
Trucks (heavy load vehicles), GVM > 3500kg 140 033 3.15
Other 36 029 0.81

Even though we ignore light delivery vehicles (LDVs), comprising about 20% of the
vehicle population, this strategy still caters for at least 70% with the passenger vehicle
class (shown in bold in Table 3.2). A possible implication of only modelling 70% of
Gauteng’s vehicle population might be an inaccurate representation of the daily traffic
volumes, especially on busy national and metropolitan freeways.

We sample from over 65 000 listed passenger vehicles from AutoTrader (2020) to obtain
the proportion of fuel types1. For each sampled vehicle we infer its emissions concept from
secondary sources like True Rating (2020) or the Australian Drive (2020) (see Table 3.3).

1We disregard all but the main fuel types (petrol and diesel) in our South African context.
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Table 3.3: Vehicle sampling results for 20 years. Each row contains the Euro emissions
concept % of the vehicles sampled in that year (Joubert and Gräbe, 2021a).

Year
Sample

population
Petrol Euro concept Diesel euro concept

2 3 4 5 6 2 3 4 5 6

2000 0.09 5.3 77.0 — — — 2.7 15.0 — — —
2001 0.14 5.3 77.0 — — — 2.7 15.0 — — —
2002 0.13 5.3 77.0 — — — 2.7 15.0 — — —
2003 0.21 5.3 77.0 — — — 2.7 15.0 — — —
2004 0.32 5.3 77.0 — — — 2.7 15.0 — — —
2005 0.50 — 37.1 46.8 — — — 8.1 8.1 — —
2006 0.67 na na na na na na na na na na
2007 1.03 na na na na na na na na na na
2008 1.14 — 8.5 63.1 — — — 13.1 15.3 — —
2009 1.27 — 6.5 62.0 5.0 — — 4.5 20.5 1.5 —
2010 2.20 — 3.6 57.1 11.4 — — 4.3 18.6 5.0 —
2011 3.11 0.7 — 23.0 46.0 — — 0.7 2.2 27.3 —
2012 4.29 3.0 3.0 18.0 56.0 — — 4.0 4.0 12.0 —
2013 5.39 — — 9.7 53.6 1.9 — — 7.1 27.7 —
2014 7.00 — — 19.5 36.3 10.6 — — 5.3 25.7 2.7
2015 8.50 — 0.7 9.2 29.0 30.9 — 2.0 2.0 18.4 7.2
2016 9.70 — 1.8 10.0 23.8 19.6 — 1.1 4.4 26.5 11.1
2017 9.30 — — 8.7 31.4 30.8 — — 5.4 15.1 8.7
2018 10.10 5.0 4.0 15.0 13.0 44.0 — 1.0 3.0 6.0 9.0
2019 16.41 na na na na na na na na na na
2020 18.50 — — 3.0 24.1 37.6 — 6.8 15.2 12.0

Median 0.86 2.32 13.45 28.15 23.97 0.03 1.28 5.56 16.82 7.11

Note: “na” values indicate years from which sampling is yet to be done.

With the detailed emissions concepts known for each year, we follow a Monte Carlo
sampling approach to estimate the overall likelihood of a specific emissions concept. A
single run will first sample the vehicle’s production year, using the probabilities from the
Sample population column in Table 3.3. Because we sample for ten emission concepts and
from more than 80% of the sample population, the value we lose from incomplete sampled
years is negligible.

Next, we sample the Euro emissions concept conditional on the production year. We
repeat this 10 000 times. One can now, for this run, tally the total number of each of the
ten emission concepts.

We repeat this process for an ensemble of 1 000 runs and report the median values of
the (symmetric) distributions for each emissions concept at the bottom of Table 3.3.

3.3.2 MATSim

With the probabilities for each emissions concept estimated, we recommence assigning a
vehicle type to each agent. We do this in the MATSim scenario by sampling a concept
using a cumulative probability distribution of the median probabilities. At this point, no
additional person attributes are taken into account to discern, for example, that a more
affluent individual is more likely to have a newer and environmentally friendlier (higher
Euro concept) vehicle. This is left for future work as it will require additional proxy
variables like the appraised value of each vehicle.
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Moreover, we do not specify the fuel type (petrol or diesel) and emissions concept for
heavy vehicle classes in the current scenario. This is because there is no reliable way (yet)
to estimate the vehicle sizes and emission concepts for these vehicles. As a result, MATSim
compensates when these parameters are not specified. For every heavy vehicle added to
the Gauteng population, MATSim assigns an “average” emissions concept for lack of the
current ability to specify different emission profiles. This is sufficient for aggregate analyses
but lacks detail when validating these vehicle types on an individual (agent-based) level.
However, we can now do better for the passenger car vehicle type, specifying emission
profiles representative of the Gauteng vehicle population.

HBEFA data

A typical vehicle type in MATSim’s synthetic population can be PC D Euro 4, indicating
a passenger car that runs on diesel with a Euro 4 emissions concept. This attribute
necessitates the connection to the exported emission factors from HBEFA’s database.

HBEFA 4.1 allows users to export emission factors for various vehicle categories, ①,
under multiple traffic scenarios, ②, and ambient conditions, ③. Figure 3.1 shows the
selection of passenger car and HGV vehicle categories for pollutants like CO2 (also selected
are CO, NO, NO2 and NOx), ④. Further shown are the inclusion of hot and cold-start
emission factors, ⑤, ⑥, specified ambient conditions and aggregation level of output, ⑦.

Figure 3.1: HBEFA database configuration for exporting emission factors.

HBEFA 4.1 extracts the emission factors according to the configuration from Fig-
ure 3.1, shown in Figure 3.2
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Figure 3.2: Extracted hot and cold-start emission factors from the HBEFA database.

When MATSim calculates link emissions – pollutants emitted by an agent on a par-
ticular section of the road network – these factors come into play.

In this Gauteng scenario, the HBEFA data includes emission factors for passenger cars
and heavy vehicle types. Before the mobility simulation, MATSim reads the HBEFA data
in csv-format and creates lookup tables for hot and cold-start emission factors. It queries
these tables to calculate link emissions when all agents have completed their daily plans.
Consequently, estimated emissions can be reported on a network level, per agent or vehicle
type by using the emission factors extracted from HBEFA 4.1.

3.3.3 Results

The road network, emission factor data and the initial travel demand of light and heavy
vehicles are loaded into the MATSim scenario and executed. Without optimising the
computational setup, the simulation runs for approximately 208 seconds per iteration for
the 62 990 agents, a 10% sample of Gauteng. We use an HP Elitebook 850 with 4GB of
RAM allocated to the process. Within the MATSim configuration, four threads are made
available for mobility simulation (taking up most of the computational time) and events
processing.

For the size of the network and the number of agents, MATSim generates 26 million
events during the mobility simulation. When the mobility simulation shuts down, the
warm and cold event types are extracted and aggregated per vehicle. A valuable charac-
teristic of a high-resolution, agent-based setup is that one can aggregate to any required
level.

We can introduce both spatial and temporal dimensions to the results because of each
emissions event. We know the detailed link on the network (spatial) and when the vehicle
left the link (temporal). We show the emissions generation on a regional level by aggre-
gating the total CO2 and NOx at specific times in the simulation. Figures 3.3a and 3.3b
respectively show these pollutants on the Gauteng road network. High pollutant concen-
trations (in red) are evident on the major national and metropolitan freeways centred
around and between the two city centres: Pretoria (North) and Johannesburg (South).
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The traffic volumes that cause these emissions are as expected: Pretoria and Johan-
nesburg are among the top five highest populated cities in South Africa (by the number
of inhabitants), attracting the most economic activity, and therefore road traffic, in the
Gauteng province.

(a) Total CO2 produced (b) Total NO2 produced

Figure 3.3: Pollutants generated on the Gauteng road network.

Based on our 10% sample, we estimate that the Gauteng vehicle population emits
±4 500 tonnes of CO2, 19.2 tonnes of CO (carbon monoxide) and 9.1 tonnes of NOx over
a 24-hour period.

Local sources estimate that, without including freight transport (heavy vehicle types),
passenger vehicles in Gauteng emit 15 000–20 000 tonnes of CO2 per day (Moeletsi and
Tongwane, 2020; WWF, 2016).

Per-vehicle emissions show how we arrive at these aggregate estimates on a regional
level. The agent-based simulation models two agent types: a light and heavy vehicle class.
These agent types produce the following distributions (Figure 3.4) that capture individual
CO2 emissions for the entire vehicle population.
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Figure 3.4: Distribution of the total CO2 produced from (daily) home-work-home trips.

Similar distributions for CO and NOx emissions provide the same daily estimates
for the passenger car and heavy vehicle class. Table 3.4 combines the average emission
estimates for these agent types executing their daily plans.

Table 3.4: Average daily pollutant emissions per vehicle class.

Vehicle class
Pollutant (g)

CO2 CO NOx

Passenger car 6 070 29.9 12.6
Heavy Goods Vehicle 38 640 47.3 67.2

We recognise that the initial demand for our Gauteng model, based on SANRAL’s
four-step model, only considers morning and afternoon peaks. This four-step model only
captures peak traffic, accounting for the highest daily traffic volumes. Offpeak emissions
are not included in the regional emission estimates, yet: parents fetching their children
from school, people going shopping during the day and couriers making trips to deliver
online orders. The emissions from these daily activities are unaccounted for in the regional
emissions model. This might paint an inaccurate picture of what truly happens daily
on Gauteng’s road network. However, when comparing simulation to reality, to have a
discrepancy of a factor of three, based on local source estimates, seems unusual. Could
the omission of these offpeak emissions cause such a significant discrepancy? This raises
concern when put in perspective: government entities make multi-billion Rand decisions
on figures that may be largely overestimated – they could be wholly over-taxing or over-
charging based on data that is not the ground truth.

3.3.4 Validation

New cars come labelled in their windscreens with a chart that indicates the vehicle’s emis-
sions and fuel consumption. Figure 3.5 illustrates this data on the windscreen of a common
passenger car at a South African car dealership in Hatfield, Pretoria. In reality, we never
experience these mileages and emission standards. This is because original equipment
manufacturers (OEMs) obtain these values from factory testing under stringent condi-
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Figure 3.5: Fuel consumption and carbon emissions data for a new vehicle from a South
African car dealership.

tions. As commuters, we experience real driving conditions. Our driving behaviour does
not match the conditions set in these rigorous factory tests. Therefore, we can not rely on
OEM data to validate an emissions model applied to a real-world scenario. Fortunately,
there exists equipment that allows us to measure Real Driving Emissions (RDE) in our
local context.

Europe introduced on-road RDE testing under specific conditions that utilises Portable
Emissions Measurement System (PEMS) instrumentation. These units record the move-
ment, geographical position and exhaust emissions of a vehicle driven over a real-world
test route. In chapter 4 we apply PEMS instrumentation to study the variance present in
our Agent-Based Model (ABM) compared to emissions from real driving conditions. If we
can compensate for this variance in future models, we move one step closer to validated
emission models in South Africa.
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Chapter 4

Real driving emissions

The infamous Volkswagen “Dieselgate” scandal (Chossière et al., 2017), amongst others,
sparked an international movement to improve vehicle certification by incorporating Real
Driving Emissions (RDE) testing. This development opened up a new field of research
in the transport sector. Consequently, the Centre for Transport Development at the
University of Pretoria (UP), in the Faculty of Engineering, Built Environment and Infor-
mation Technology (EBIT), acquired a Portable Emissions Measurement System (PEMS)
in 20201.

The PEMS unit allows one to accurately measure a variety of vehicle exhaust emissions
under real-world driving conditions. The unit and the Centre’s capability is the first of
its kind in Africa (Joubert and Gräbe, 2021c). The team at the Centre is building up a
database of emissions and vehicle diagnostics on various road types and vehicle loads in
Gauteng (Joubert, 2021). The current cohort of test vehicles includes the University fleet
of light vehicles and the NRF Road-Rail Vehicle (RRV), a heavy goods vehicle.

This chapter addresses the second and third research goals: investigating how good
our emissions model performs “out-of-the-box” and quantifying the gap between our sim-
ulation and real (local) driving emissions.

4.1 PEMS

In reality, South Africans never experience the mileages and emission standards boldly
advertised on a chart in the windscreens of their new cars. This is because Original Equip-
ment Manufacturers (OEMs) obtain these values from factory testing under stringent con-
ditions. These South African commuters experience real driving conditions. Their driving
behaviour does not match the conditions set in these rigorous factory tests. Therefore,
OEM data is an unreliable source to validate an emissions model applied to a real-world
scenario. Fortunately, PEMS allow the measurement of RDE in a local context.

PEMS instrumentation is utilised to study the variance present in Multi Agent Trans-
port Simulation (MATSim)’s agent-based emissions model of Gauteng compared to emis-
sions from real driving conditions. PEMS driving tests are conducted with a passenger
car and heavy vehicle to estimate the “ground truth” of emissions generation for these
vehicle classes in a South African context. By measuring RDE for the same vehicle classes
represented in MATSim’s emission model, the author justly compares apples with apples.

1We acknowledge the funding contributions for this initiative from UP, the National Research Founda-
tion (NRF) (through the National Equipment Programme), and the Department of Science and Innovation
(through the RDI Waste Roadmap managed by the CSIR)
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4.1.1 Field test setup

The PEMS unit is mounted on two vehicles from the UP’s fleet. The unit measures instan-
taneous emissions for various pollutants at a rate of 1Hz. Summating these measurements
produce the total emissions generated per trip. Multiple trips are conducted with each test
vehicle to account for the variability associated with driver behaviour. Each trip conducted
follows the same predetermined route that starts and ends at the main Hatfield campus
of the University of Pretoria in Gauteng (Figure 4.1). The 61.7km long C-shaped route

Figure 4.1: The C-route starting and ending at the University of Pretoria.

includes different road types: residential, local, secondary, primary and freeway sections.
The test vehicle types are described as follows.

Heavy goods vehicle

The test vehicle we use for the heavy vehicle class is the RRV – a heavy goods research
vehicle based on an Isuzu FTR850 AMT (Figure 4.2). The 7.8-litre, six-cylinder tur-
bocharged, intercooled, common-rail diesel engine has a Euro 3 emissions rating (Isuzu,
2021). The RRV takes approximately 110 minutes to complete one trip along the C-route
in typical urban traffic conditions.

Passenger car

The test vehicle representing the passenger car vehicle class is a 1.5-litre Ford Figo. The
light vehicle has a Euro 5 emissions rating. It takes approximately 90 minutes to complete
one trip along the C-route in typical urban traffic conditions.

4.1.2 Equipment

Spatial data is captured using a Garmin Global Positioning System (GPS) module inte-
grated with the PEMS unit. A weather probe is also integrated into the unit and provides
ambient readings. The PEMS unit has an integrated In-vehicle Control Module (ICM)
that allows the driver to record event markers (flags) during a field test. This is useful
to specify the start and end time of successful field tests or to mark a point when an
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unexpected event occurs during the test, like being forced to take a slight detour. The
ICM also connects to and records the vehicle’s Onboard Diagnostics (OBDII) port while
driving.

Exhaust gasses pass through the 4-inch (±100mm) Exhaust Flow Meter (EFM) tube,
responsible for measuring the raw exhaust mass flows. The EFM operates under Bernoulli’s
principle using averaging pitot tubes and employing five dual-stage, differential pressure
transducers. The gas analyser unit houses the analytical devices for the gaseous measure-
ments of CO, CO2, NO, and NO2.

The SEMTECH DS+ unit is loaded and secured onto the RRV’s deck, close to the
exhaust or on the backseat of the Ford Figo. The layout of the setup on the vehicles are
shown in Figures 4.2 and 4.3. The exhausts, ①, are connected to the EFM flow tube, ②,
using a flexible stainless steel tube with a conic reducer. In the RRV’s setup, the EFM
connects directly to the gaseous analyser, ③. The Ford Figo requires a heated line, ⑦,
to connect the EFM with the gaseous analyser inside of the vehicle. We position the
GPS unit’s antenna, ④, and weather probe, ⑤, close to the centre of the RRV’s deck and
similarly on the Ford Figo’s roof. The ICM connects via an extended cable and is located
inside the RRV’s driver cab or on the passenger seat inside the Ford Figo, ⑥, to connect
to the vehicles’ OBDII ports.

Figure 4.2: UP’s Road Rail vehicle (RRV) fitted with the SEMTECH® DS+ PEMS unit.
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Figure 4.3: The SEMTECH® DS+ PEMS unit fitted to a light vehicle from UP – a
passenger car of the same vehicle class as the Ford Figo (UP, 2020).

For a detailed description of the data and the experimental design, materials and
methods employed for the PEMS field test, the reader is encouraged to read the data
article by Joubert and Gräbe (2021b).

After installation and once calibration is completed, the unit is switched over from
shore power to its dedicated power source: a 13V Lithium Iron Phosphate (LiFePO4)
battery with a 108Ah capacity. The purpose of the power source independent of the
vehicle’s battery is not to place an additional burden on the vehicle’s alternator to charge
and power the DS+, potentially affecting fuel consumption and emissions.

The (co)driver places a data marker in the field test recording, using the ICM unit,
and the driver starts the vehicle.

4.1.3 Trip data

The SEMTECH® DS+ PEMS unit comes with software for postprocessing the recorded
trip data. This data includes the pollutant concentrations of CO, CO2, NO and NO2,
ambient conditions, and vehicle diagnostics collected from different sensors mounted to
the vehicle during the field tests. The postprocessor enables the user to specify settings
that determine the format of the output data file. Among many others, but relevant to
this study, are:

� transport delays for emissions, temperature measurements, vehicle and GPS infor-
mation;

� fuel properties; and

� user-preferred output parameters, like date and time format, imperial/metric units
and the data interval (set to 1Hz).

All of which influence the result of various calculated data fields, i.e. the humidity corrected
NOx measurement. The author refrains from using any “corrected” data fields due to the
vast amount of configuration settings that may (unknowingly) taint our picture of real
driving emissions.

Data analysis is performed on the post-processed data file in the open-source software
environment, R (R Core Team, 2020). From this file, the time, latitude, longitude, RPM,
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vehicle speed, elevation and instantaneous mass emissions are extracred for each 1Hz
measurement. The cleaned datasets containing these measurements for the RRV and
Ford Figo are published in ?. Consequently, the emissions generated by the Ford Figo and
the RRV are compared to their simulated counterparts in MATSim. This serves to validate
the local MATSim emissions model, addressing the second research goal. In addition, it
serves the third (and final) research goal of quantifying the variance in South Africa’s
vehicle emissions – what we estimate and what we measure.

4.1.4 MATSim setup

Joubert and Gräbe (2021a) utilise MATSim’s emissions contribution (Hülsmann et al.,
2011) to develop an emissions model for the Gauteng road network that simulates heavy
vehicles and Euro 1–6 (petrol/diesel) passenger cars. The heavy vehicles types are not
distinguished by a particular Euro emissions concept or fuel type. The author builds on
Joubert and Gräbe (2021a)’s work to model heavy vehicle types with a dedicated Euro
emission concept. This improvement allows the simulation of the RRV and Ford Figo
test vehicles as heavy and passenger car vehicle types, respectively. The RRV’s simulated
counterpart is modelled as an agent with a Heavy Goods Vehicle (HGV) type (diesel) and
a Euro 3 emissions concept. The Ford Figo is modelled as an agent with a passenger car
(petrol) vehicle type and a Euro 5 emissions concept.

MATSim’s agent-based framework models each agent as an individual with unique
daily activities, called a plan. The only activity in the simulated test vehicles’ plan is to
complete a single trip on the 61.7km C-route that starts and ends at the University of
Pretoria. This route is created programmatically in MATSim’s Gauteng road network.

The simulated test vehicle agents are injected into a 10% sample of the Gauteng
vehicle population. The sample population executes their daily home-work-home activities
alongside the newly modelled test vehicles. The number of vehicles on the road network
causes congestion which mimics the urban traffic conditions encountered in the PEMS field
tests. The simulation is set up to perform 30 ensemble runs to account for the inherent
variability in the simulation model.

4.2 Results and discussion

Elevation data from the GPS unit fitted with the PEMS equipment provides additional
insights when plotted together with the cumulative emissions. Figures 4.4 and 4.5 show
the rate at which the cumulative CO2 emissions are generated as the test vehicles and
their simulated counterparts travel along the C-route.

The MATSim model shows negligible variance in the emission results from 30 ensemble
runs. Hence, these cumulative emissions are only plotted as a single (blue) line.
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Figure 4.4: The C-route elevation profile with the light vehicle’s cumulative emissions.
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Figure 4.5: The C-route elevation profile with the heavy vehicle’s cumulative emissions.
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Table 4.1 contains the average pollutant totals obtained from the PEMS trips compared
to MATSim’s estimation. The published OEM data is shown as it compares to the (true)
measured and simulated values. Shaded cells indicate the highest of the compared values.

Table 4.1: C-route emissions comparison between the Ford Figo and RRV’s PEMS trip
data, their simulated counterparts in MATSim and the applicable OEM emissions data as
reference.

Pollutant (g)
Vehicle

CO CO2 NO NO2 NOx

Light vehicle
UP Ford Figo 41.2 10 824 5.77 0.112 5.88
MATSim 18.0 8 578 9.60 2.60 12.2
OEM data* ≤ 61.9 8 171 – – ≤ 3.71

Heavy vehicle
UP RRV 120.8 48 191 403.4 17.6 421.0
MATSim 41.3 38 569 66.2 8.50 74.7
OEM data* ≤ 58.81 18 570 – – ≤ 48.28

* based on the per-km emission rates and Euro emission standards as published by Ford (2020) and Isuzu
(2021). DieselNet (2021) is used as reference for emission standards. The Ford Figo falls under the category M
(passenger car) and the RRV, weighing ±10 740kg (Joubert and Gräbe, 2021b), is classified as an N2 -category
vehicle, having a total mass of between 3.5 and 12 tonnes.

Except for the light vehicle’s NOx emissions, the simulation underestimates all other
pollutant emissions generated on the C-route. The emissions model accounts for ±80% of
the greenhouse gas, CO2, measured by the PEMS test on the 61.7km long C-route. The
observed (true) CO emissions are 2.3–2.9 times higher than the simulation. This raises
concern when considering how much these local estimations of an odourless, colourless and
poisonous gas (CO) might be off on a regional scale. The simulation accounts for merely a
fifth of the NOx emissions of the HGV but estimates more than double the actual amount
for the light vehicle.

Often with simulation we compensate for the worst: results are never taken for granted
because we always expect the reality to be worse. This is because a simulation is only a
representation of reality, but never really reality. This is evident in most of these emission
graphs where we see the simulation not fully capturing the true amount of pollutant
emissions.

With light vehicles comprising 70% of the Gauteng vehicle population (Table 3.2), we
project that MATSim’s emissions model would overestimate NOx’s on a regional scale.
Even though this might be seen as the “safer” estimate (rather than underestimation),
this overestimation causes uncertainty for planners considering the adverse effect of NOx

on the human respiratory system and its contribution to acid deposition in the natural
environment (Bhandarkar, 2013).

In the subsequent sections, we investigate cold-start emission events, road type, driver
behaviour and driving conditions as factors that affect our PEMS measurements.

4.2.1 Cold-start events

Some of the cumulative emission plots show that a single PEMS trip exhibits particularly
low (4.4c, 4.5b and 4.5d) or exceptionally high (4.4b) emissions compared to most other
trips . We identify these outlier trips as “cold-start” events. A cold-start event occurs when
the engine functions below its normal operating temperature. After driving the vehicle for
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some time, the engine coolant temperature increases and stabilises at the normal operating
temperature (usually at or above 70◦C). Consequently, in our PEMS tests, only the first
trip of a given day has a cold-start event.

The current MATSim emissions model of Gauteng does not account for cold-start emis-
sions of HGVs. This causes inaccuracies in the estimated cumulative emissions during the
initial portion (about five minutes) of the C-route trip. The measure of these inaccura-
cies remains unknown while the functionality is not added to the MATSim emissions

contribution2.
Figures 4.6 and 4.7 illustrate the total emissions during the first five minutes of each

PEMS trip. These five minutes capture the cold-start emissions for the applicable trip.
Comparing cold-start and hot-start pollutant emissions, we see, similar to Du et al. (2020),
that CO and NOx (especially NO) cold-start emissions often exceed that of a hot-start
trip.

Cold-start pollutant emissions usually account for a significant proportion of the urban
trip emissions in an RDE test (Du et al., 2020). Therefore, given a cold-start event on
specific trips, one would expect to see these trips’ cumulative emissions totalling more
than hot-start trips. This begs why the outlier trips from 4.4c, 4.5b and 4.5d are lower
than most other trips.

Our research focus is not on the analysis of these cold-start events. However, based on
findings from Du et al. (2020), we speculate that these unexpected trip totals could also
be attributed to external factors like driving behaviour – a noteworthy factor affecting the
inconsistency of cold-start emissions results in RDE tests.
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Figure 4.6: Emissions from the Ford Figo during the first five minutes of each PEMS trip.

2MATSim’s developers incorporated this functionality in August 2021 by adding a lookup table that
adds the necessary reference values for the emissions contribution to include before executing the mobility
simulation. At the time of writing, the authors had not applied the changes to reflect the latest version of
the emissions contribution in their MATSim model for Gauteng. Thus, remaining as future work.
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Figure 4.7: Emissions from the RRV during the first five minutes of each PEMS trip.

4.2.2 Road type comparison

Road grade and traffic conditions affect the engine’s RPM at different speeds and idle and
moving time over various sections along the route. This causes fluctuating demand on the
engine, which results in different instantaneous mass emission rates. Three road sections
on the C-route are used to compare the total emissions generated between different road
types (Figure 4.8): urban, located around the city centre, freeway, with allowed speeds
of 80–120km/h and steep (suburban) sections, with lower speeds in “stop & go” traffic
conditions.

(a) Road sections on map (b) Road section elevation

Figure 4.8: Different road sections used for pollutant comparison per vehicle type, where
A=Urban, B=Freeway and C=Steep (suburban).
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The purpose of this comparison is to show, irrespective of the cumulative emissions
over the entire C-route, how accurately the MATSim model simulates emissions generated
on different road types.

Table 4.2 shows the calculated proportion of pollutant emissions accounted for by
MATSim’s emission model. This emphasises the factor by which the simulation overesti-
mates (shaded cells) or underestimates the actual emissions measured on the specific road
section of the C-route. When MATSim underestimates the light vehicle’s CO2 emissions
on the urban road section, Table 4.2 indicates that the simulation only accounts for 0.78,
or 78% of the observed (true) emissions. Similarly, when MATSim overestimates the light
vehicle’s NOx emissions on the freeway section, the estimated value is indicated as 2.16
times (216%) greater than observed from the PEMS test.

Table 4.2: The proportion of PEMS emissions accounted for by MATSim on different road
sections of the C-route. Overestimations are indicated with shaded cells.

Light vehicle Heavy vehicle

Pollutant Road type PEMS
emissions (g)

MATSim
proportion

PEMS
emissions (g)

MATSim
proportion

Urban 5 500.67 0.78 22 789 0.83
Freeway 2 175.66 0.86 10 393 0.83CO2

Steep 501.29 0.53 3 235 0.36

Urban 18.89 0.71 61.97 0.40
Freeway 10.72 0.24 16.24 0.44CO
Steep 2.79 0.09 9.31 0.12

Urban 2.59 2.39 201.44 0.18
Freeway 1.48 2.16 91.00 0.17NOx

Steep 0.39 0.83 28.43 0.09

Note: a value close to 1.0 is a better estimate.

The most prominent distinction between emissions estimation is that of the NOx pol-
lutants. The simulation comes close to the observed emissions on steep sections for the
light vehicle, but greatly overestimates these emissions for urban and freeway sections.
In stark contrast to the light vehicle, the heavy vehicle’s NOx emissions are severely un-
derestimated. This correlates with the observation that NOx emissions often exceed the
approval test in real-world driving conditions, especially for heavy (diesel) vehicles (RAC,
2020).

“Stop & go” traffic conditions also increase the number of acceleration events, caus-
ing peaks in NOx emissions. These emissions vary non-linearly with speed, making
them hard to capture accurately, especially on these short road sections, with MATSim’s
average speed emissions model based on Handbook Emission Factors for Road Trans-
port (HBEFA). This is in line with Frey et al. (2003), which find emission models are
limited in their ability to predict short-term variation in pollutant emissions.

The absence of road grade in the emissions model, in line with Wyatt et al. (2014),
may further explain the differences found between estimated and real driving emissions.
HBEFA’s extracted emission factors incorporated into MATSim’s emission model does
not (currently) compensate for road grade. This might be causing the inconsistencies in
emissions estimation we see in Table 4.2.

In a section on future work (chapter 5) the author mentions the influence of road grade
as the (possible) underlying factor of these discrepancies. A project topic is discussed to
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address this issue, improving the accuracy of emissions estimation for different road types.

4.2.3 Driver comparison

Accelerating, braking, and a vehicle’s time spent idling effects fuel consumption and,
ultimately, emissions. Indicators like (1) saturation flow, (2) emissions and (3) fuel con-
sumption vary significantly between different drivers. Experienced drivers, for example,
exhibit high saturation flow, meaning their braking and acceleration are gradual without
abrupt stops or jolting pull aways. This has a similar effect on the trailing vehicles, in-
creasing the traffic flow rate. These drivers have lower fuel consumption and emissions
than aggressive drivers. Zheng et al. (2017) find that cautious drivers have the lowest of
the three indicators.

Driving behaviour is considered a cause of variation in this study’s PEMS emission
data. Due to a lack of trip data for the RRV (with one driver), the authors only compare
the drivers of the Ford Figo. Figure 4.9 shows the different pollutant emissions for three
drivers, all having performed ten trips on the C-route (±15 driving hours each).
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Figure 4.9: Total pollutants emitted by the Ford Figo, differentiated between drivers.
Dashed lines indicate averages per driver.

Notice how driver C (yellow) seems to have a “heavy right foot” when comparing CO2,
CO and NOx emissions with the other drivers. By solely examining driver C’s emissions,
he arguably fits the profile of an aggressive driver. Similar reasoning could be made for
driver B (dark brown). Low CO2 and NOx emissions reflect the expectation that this
would be a cautious driver when conducting field tests.

The results from this investigation confirm the findings of Zheng et al. (2017). Driver
behaviour influences vehicle emissions and is, therefore, an essential factor for future PEMS
testing.

A comprehensive analysis including the driving experience, fuel consumption, and
saturation flow as factors would further support these conclusions on driving behaviour
and emissions. This remains as future work.
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4.2.4 Driving conditions

We have not considered different weather conditions as a factor affecting driving conditions
in our simulation of emissions generation. Our European-based emissions model might be
biased toward European weather conditions – much colder and wetter than South Africa.
Wet road conditions change how drivers accelerate and brake, which, as we see from Zheng
et al. (2017), influences our driving behaviour and consequently our emissions.

Ambient temperature influences fuel combustion, which in turn affects emissions.
Bielaczyc et al. (2011) found that significant excess levels of exhaust emissions and fuel
consumption is required to achieve start-up when the oil, coolant and engine block temper-
atures are equal or close to the ambient temperature. These cold-start emissions generally
increase with low ambient (European) temperatures.

4.2.5 Summary

Consequently, we find that various factors like driving experience, driver behaviour, and
driving conditions are crucial in estimating the emissions of a diverse vehicle population.
We recognise that without incorporating these factors into MATSim’s emission model, we
would be incapable of providing reliable estimations for evaluating the generation of traffic
emissions in South Africa.

This study of RDE in Gauteng, South Africa, gives insights into what we set out to
accomplish in our second and third research goals. We provide these former analyses on
the RDE for different road types and drivers to substantiate our assumption that variance
exists in our local emission models. We address our primary research focus in this chapter
of investigating and understanding the current reality of transport emissions in South
Africa:

MATSim’s state of the art emissions modelling framework provides the means
– an enabling tool to implement agent-based emission models for local appli-
cations. The “gap” identified between simulation and reality indicates where
research focus is needed to (accurately) apply this model in a South African
context.
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Chapter 5

Conclusion

In this chapter, we report on how our research addressed the goals we set out to achieve.
We review the simulation results from our Gauteng emissions model, the variance captured
in our local simulations and elaborate on topics or projects for future work arising from
this research.

5.1 Local estimations

We can not rely on our European-based emission models to produce near-perfect results
compared to our South African Real Driving Emissions (RDE) tests. We attribute this
remark to country-specific factors like driving elevation, vehicle age and technology, and
driver behaviour influencing our vehicle fleet profiles. All of these factors contribute to
the variance in our local emission models.

We set out to build an emissions model in Multi Agent Transport Simulation (MATSim)’s
agent-based framework for the first research goal. We accomplished this goal in chapter 3
by creating a synthetic driver population representing the Gauteng province’s vehicle
population in South Africa. The traffic emissions estimated on a regional scale includes
passenger cars and heavy goods vehicles in the synthetic driver population. The inclusion
of these two vehicle types caters for 73.49% of the vehicles on Gauteng’s road network.

We quantified and spatially aggregated the vehicle emissions to a regional level, indi-
cating the unusual discrepancy compared to local sources. They estimate CO2 emissions
on the Gauteng road network three times that of our simulated results.

On an individual level, we depict the distribution of the per-vehicle emissions for the
same period, distinguished between a passenger car and a heavy goods vehicle type. We
found that on average, the simulated passenger car emits 6.07kg of CO2, 29.9g CO and
12.6g NOx per day. Similarly, the heavy vehicle emits 38.64kg of CO2, 47.3g CO and 67.2g
NOx by executing its daily plan.

Based on the emissions per vehicle kilometre travelled, these figures do not even comply
with Euro 4 standards for petrol and diesel vehicles. Compared to international regula-
tions where Low Emission Zones (LEZs) necessitate fines for non-complying drivers with
unacceptable EU-rated vehicles, we (in South Africa) fall short of such standards. This is
to our detriment because these standards have successfully reduced harmful traffic emis-
sions (like CO and NOx) by up to 85% in 25 years, contributing to the betterment of
human health in urban settings (RAC, 2020).
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5.2 Validation

With no means of validating our estimated emissions on a regional level, we turn to
Portable Emissions Measurement System (PEMS) tests to validate RDE on an individual
level, based on vehicle type. In doing so (at this level of detail), we obtain a “gold
standard” of real-world driving conditions in a local context. We weigh our European-
based emission model against this standard to better understand the reality of transport
emissions in South Africa. With this, in chapter 4, we accomplished our second and third
research goals of investigating how MATSim’s emission model performs “out-of-the-box”,
and quantifying the gap between our local emissions model and RDE in South Africa.

Our PEMS tests reveal that MATSim’s emission model underestimates the CO and
CO2 emissions generated on the 61km long test route in Pretoria, Gauteng. MATSim
accounts for an encouraging 80% of the CO2 but only 34% and 44% of the CO emitted by
the heavy and light test vehicle, respectively.

We see contrasting results for NOx emissions between the two vehicle types. While
MATSim hardly accounts for a fifth of the NOx emissions measured from the heavy vehicle,
it estimates more than double the actual amount for the light vehicle.

Therefore, we find that in hindsight, our aggregate emissions estimation of the Gauteng
province in chapter 3 is not that accurate, as we confirm with our PEMS validation tests
in chapter 4. However, we anticipated this in chapter 1, which leads us to future work.

5.3 Future work

We aim to compensate for the variance in our local simulations, leading us yet another
step closer to validated emission models for South Africa. Firstly, we identify areas for
improvement in our current methodology that might help steer us in this direction. Then,
we consider the potential for future projects arising from this research.

(a) We have yet to calibrate our model of daily plans for the synthetic Gauteng pop-
ulation. We mentioned how Robinson and Venter (2019) validated South African
National Road Agency Limited (SANRAL)’s four-step EMME/2 model. In our re-
search methodology, similar to (Fourie, 2009; Zhuge et al., 2014), we convert this
four-step model to a MATSim equivalent without calibrating it. This means that
our simulation of “realistic” traffic conditions for 24 hours might not be valid. Ad-
dressing this would produce a model that captures traffic volumes during morning
and afternoon peak periods and daily working hours. As a result of this, we would
see realistic congestion effects representative of the Gauteng province. Consequently,
we could then find the (new) variance in real-world traffic emissions compared to
our estimates in MATSim, as we did in chapter 4.

(b) For our simulation, we inject the test vehicles into the 10% sample population of
Gauteng. This population executes their home-work-home activities, which create
travel demand during the morning and afternoon peaks. We expect that by simu-
lating the entire Gauteng population, the higher traffic volume during peak periods
will create even more congestion on the road network affecting our test vehicles’
emission data along the C-route.

(c) The cold-start pollutant emissions are crucial for validating emission models when
considering their significant contribution to RDE (Du et al., 2020). MATSim de-
velopers added the functionality to account for cold-start emissions of heavy vehicle
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types. At the time of writing, the author had not included this update to the
MATSim emissions model of Gauteng, remaining as future work.

Now that we know the gap emerging from and quantified by our research goals, how do
we address or fix it? Fortunately, MATSim is modular in its design. The source of emis-
sions estimation in MATSim, Handbook Emission Factors for Road Transport (HBEFA)’s
emission factors, can be adapted to bring our simulations closer to the ground truth. Al-
ternatively, we can study the relationship between simulated emissions and ground truth,
which we capture with PEMS data. This leads to the first project for possible future work:

1. We assume that the variation between our model and reality might be attributed to
some external influence, like road grade. Wyatt et al. (2014) confirm that failing to
account for even a relatively modest road grade in micro-scale emissions modelling
could potentially result in highly inaccurate estimates of real-world emissions. A
parallel Masters study by Hugo (2021) on the accurate estimation of road grade
in MATSim reveals that this attribute is not all that simple to estimate, contrary
to the assumption that it would be straightforward to add elevation to the start
and end of a network link and calculate the trigonometric slope. However, the
emission factors extracted from HBEFA can be configured to compensate for road
grade. Including this attribute in MATSim’s emission model remains future work
to address the discrepancy it might be causing for emissions estimation of different
road types.

2. Our synthetic vehicle population provides detailed emission profiles for passenger
cars only. We determined these profiles from our vehicle sampling strategy in sec-
tion 3.3. The heavy vehicle types in our population are not allocated a specific
fuel type and emissions concept. This is because we do not have a reliable way to
estimate vehicle sizes and emission concepts for these vehicles yet. Performing the
same sampling strategy to infer our local heavy vehicles’ emission profiles will add a
valuable level of detail to our synthetic population. Applying this refinement to the
Gauteng emission model would provide a more accurate estimation of emissions on
a regional scale, fully utilising the advantage of an agent-based simulation.

3. This research successfully identified the gap between our local emission models and
what we measured as ground truth. Now, we seek a function that describes the
relationship or an order ascribed to this discrepancy. Figure 5.1 presents a starting
point. We plot the emission totals estimated for each link on MATSim’s C-route
network with the true, measured PEMS emissions on that road section. We argue
that if one can quantify the relationship between local simulations and reality, we
close the gap by explicitly addressing the variance in South Africa’s traffic emissions.
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Figure 5.1: Individual link emissions estimated by MATSim compared to measured values
from PEMS tests for the Road-Rail Vehicle (RRV).

5.4 Summary

MATSim provides the modeller with a state of the art framework for modelling emissions
on a regional scale but with individual-level detail. Researchers have advocated MATSim
for its agent-based approach to emissions modelling (Kickhöfer, 2014; Shorshani et al.,
2015). Our application of the agent-based framework confirms that MATSim effectively
handles large-scale scenarios and enables detailed investigations on an individual level,
which we utilised to address our research goals (chapter 3).

We also utilised PEMS, giving a better idea about the reality of traffic emissions in
South Africa. We performed multiple PEMS tests to account for the variability associated
with driver behaviour and, in doing so, obtained a “gold standard”, ground truth, which
we used to identify the gap in our local emission models (chapter 4). By quantifying
this gap, we report (with a better understanding) the uncertainty of traffic emissions in
South Africa. Our research output presents a starting point for future studies that can
produce accurate and representative emission models, informing policymakers to guide
decision-making for setting realistic targets to benefit the country and its citizens.
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Hülsmann, F., Gerike, R., Kickhöfer, B., Nagel, K., and Luz, R. (2011). Towards a multi-
agent based modeling approach for air pollutants in urban regions. pages 144–166.
FGSV-Verl. Available at https://depositonce.tu-berlin.de/handle/11303/10353.

Ilhai, A., Balac, M., Li, A., and Axhausen, K. W. (2019). The first agent-based model
of greater Jakarta integrated with a mode-choice model. Procedia Computer Science,
151:272–278.

Isuzu (2021). Heavy Commercial Truck. Available at: https://isuzu.co.za/heavy-
truck. [Accessed: 2021-07-21].
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Smit, R., Smokers, R., and Rabé, E. (2007). A new modelling approach for road traf-
fic emissions: Versit+. Transportation Research Part D: Transport and Environment,
12(6):414–422.

Statista (2021). Gini coefficient in South Africa from 2006 to 2015, by area. Available at:
https://www.statista.com/statistics/1127890/. [Accessed: 2021-04-08].

Sun, S., Long, C., Tao, C., Meng, S., and Deng, B. (2014). Ultrasonic microdialysis
coupled with capillary electrophoresis electrochemiluminescence study the interaction
between trimetazidine dihydrochloride and human serum albumin. Analytica Chimica
Acta, 851:37–42.

Tech, B. (2022). Why 2022 could be a more difficult year for South Africa. Available
at: https://businesstech.co.za/news/banking/548308/why-2022-could-be-a-
more-difficult-year-for-south-africa-economists/#:~:text=The%20group%

20forecasts%20South%20Africa’s,able%20to%20rein%20in%20spending. [Accessed:
2022-02-01].

True Rating (2020). The true rating - the real urban emissions. Available at: https:

//www.trueinitiative.org/true-rating. [Accessed: 2020-09-18].

UP (2020). UP’s Centre for Transport Development acquires Africa’s first portable emis-
sions measurement system. Available at: https://www.up.ac.za/news/post 2939002-

ups-centre-for-transport-development-acquires-africas-first-portable-

emissions-measurement-system. [Accessed: 2021-08-25].

Van Velden, J. (2012). A large-scale multi-modal implementation of MATSim for the
Nelson Mandela Bay Metropole.

Venter, I. (2017). Engineering news: South africans spoilt for choice when buying new vehi-
cles. https://www.engineeringnews.co.za/article/south-africans-spoilt-for-
choice-when-buying-new-vehicles-2017-05-23. [Accessed: 2021-04-28].

Wismans, L., Berkum, E. V., and Bliemer, M. (2011). Modelling externalities using
dynamic traffic assignment models: A review. Transport Reviews, 31(4):521–545.

World Economic Forum (2020a). London’s air quality has dramatically improved since
2016. Here’s how the UK capital did it. Available at: https://www.weforum.org/
videos/.

World Economic Forum (2020b). The Mayor’s Ultra Low Emission Zone for London. Avail-
able at: https://www.weforum.org/videos/20372-london-s-air-quality-has-
dramatically-improved-since-2016-here-s-how-the-uk-capital-did-it. [Ac-
cessed: 2021-04-08].

WWF (2016). Greenhouse gas emissions from passenger transport in Gauteng: An in-
vestigation per income group. Available at: https://www.wwf.org.za/our research/

publications/?25801/Greenhouse-gas-emissions-from-passenger-trans. [Ac-
cessed: 2021-09-30].

Wyatt, D. W., Li, H., and Tate, J. E. (2014). The impact of road grade on carbon dioxide
(CO2) emission of a passenger vehicle in real-world driving. Transportation Research
Part D: Transport and Environment, 32:160–170.

46

https://www.statista.com/statistics/1127890/
https://businesstech.co.za/news/banking/548308/why-2022-could-be-a-more-difficult-year-for-south-africa-economists/#:~:text=The%20group%20forecasts%20South%20Africa's,able%20to%20rein%20in%20spending.
https://businesstech.co.za/news/banking/548308/why-2022-could-be-a-more-difficult-year-for-south-africa-economists/#:~:text=The%20group%20forecasts%20South%20Africa's,able%20to%20rein%20in%20spending.
https://businesstech.co.za/news/banking/548308/why-2022-could-be-a-more-difficult-year-for-south-africa-economists/#:~:text=The%20group%20forecasts%20South%20Africa's,able%20to%20rein%20in%20spending.
https://www.trueinitiative.org/true-rating
https://www.trueinitiative.org/true-rating
https://www.up.ac.za/news/post_2939002-ups-centre-for-transport-development-acquires-africas-first-portable-emissions-measurement-system
https://www.up.ac.za/news/post_2939002-ups-centre-for-transport-development-acquires-africas-first-portable-emissions-measurement-system
https://www.up.ac.za/news/post_2939002-ups-centre-for-transport-development-acquires-africas-first-portable-emissions-measurement-system
https://www.engineeringnews.co.za/article/south-africans-spoilt-for-choice-when-buying-new-vehicles-2017-05-23
https://www.engineeringnews.co.za/article/south-africans-spoilt-for-choice-when-buying-new-vehicles-2017-05-23
https://www.weforum.org/videos/
https://www.weforum.org/videos/
https://www.weforum.org/videos/20372-london-s-air-quality-has-dramatically-improved-since-2016-here-s-how-the-uk-capital-did-it
https://www.weforum.org/videos/20372-london-s-air-quality-has-dramatically-improved-since-2016-here-s-how-the-uk-capital-did-it
https://www.wwf.org.za/our_research/publications/?25801/Greenhouse-gas-emissions-from-passenger-trans
https://www.wwf.org.za/our_research/publications/?25801/Greenhouse-gas-emissions-from-passenger-trans


Zallinger, M., Tate, J., and Hausberger, S. (2008). An instantaneous emission model for the
passenger car fleet. In 16th International Transport and Air Pollution CongressTechnical
University Graz.

Zheng, F., Li, J., van Zuylen, H., and Lu, C. (2017). Influence of driver characteristics on
emissions and fuel consumption. Transportation Research Procedia, 27:624–631.

Zhuge, C., Shao, C., Gao, J., Meng, M., and Xu, W. (2014). An Initial Implementa-
tion of Multiagent Simulation of Travel Behavior for a Medium-Sized City in China.
Mathematical Problems in Engineering, 2014:1–11.

Ziemke, D., Kaddoura, I., and Nagel, K. (2019). The MATSim Open Berlin Scenario:
A multimodal agent-based transport simulation scenario based on synthetic demand
modeling and open data. Procedia computer science, 151:870–877.

47


	Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Simulation for informed decision-making
	Research focus
	Estimating ``ground truth"

	Agent-based modelling in South Africa
	Research design
	Document structure

	Literature review
	Elements of road traffic emissions
	Traffic models
	Emission models

	MATSim and HBEFA
	The value of agent-based simulations
	Similar work
	Uncertainty in emissions models

	PEMS in emissions modelling
	Summary

	MATSim for emissions modelling
	Emissions modelling in Gauteng
	Research methodology
	Gauteng allocation
	Vehicle population
	MATSim
	Results
	Validation


	Real driving emissions
	PEMS
	Field test setup
	Equipment
	Trip data
	MATSim setup

	Results and discussion
	Cold-start events
	Road type comparison
	Driver comparison
	Driving conditions
	Summary


	Conclusion
	Local estimations
	Validation
	Future work
	Summary


