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Abstract 

One of the most prominent life-history trade-offs involves the cost of reproduction. Oxidative stress has been pro-
posed to be involved in this trade-off and has been associated with reduced life span. There is currently an unclear 
relationship between oxidative cost and the reproduction-longevity trade-off. The current study, using a non-lethal 
and minimally invasive (only a single blood sample and no euthanasia) method, investigated whether an oxidative 
cost (oxidative stress) to reproduction would be apparent in two long-lived eusocial mole-rats, the naked mole-rat 
(NMR), Heterocephalus glaber, and the Damaraland mole-rat (DMR), Fukomys damarensis, where breeding colony 
members live longer than non-breeder conspecifics. We measured the direct redox balance in plasma by measuring 
the oxidative stress index (OSI) based on the ratio of total oxidant status and total antioxidant activity in breeders and 
non-breeders of both sexes, in the two species. NMR had significantly higher OSI between breeders and non-breeders 
of each sex, whereas DMR showed no significant differences except for total antioxidant capacity (TAC). The mode of 
reproductive suppression and the degree of reproductive investment in NMR may explain to some degree the redox 
balance difference between breeders and non-breeders. DMR show minimal physiological changes between breed-
ers and non-breeders except for the mode of reproduction, which may explain some variations in TAC and TOS values, 
but similar OSI between breeders and non-breeders.

Keywords: Oxidative stress, Mole-rat, Redox balance, Total oxidant status, Total antioxidant capacity, Reproduction

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Life history theory addresses the trade-offs that shape 
animal investment patterns between reproduction, 
somatic maintenance and longevity [1–3]. One such life-
history trade-off may be mediated by free radical produc-
tion and oxidative stress [1]. Oxidative stress arises when 
reactive oxygen species (ROS) production, which dam-
ages proteins, lipids, and DNA, exceeds the antioxidants 

capacity and repair mechanisms to prevent or mitigate 
ROS damage [4–6]. Despite the adverse effects associated 
with increased ROS levels, ROS as a biological molecule 
is essential to cellular signalling [7], to inflammation 
response [8], altering glucose uptake and metabolism [9], 
immune response [10], allowing for the preparation to 
deal with hypoxic stress [11] and osmoprotective signal-
ling [12].

Reproduction and the subsequent production and 
development of offspring have been linked to compro-
mised survival, with prolific reproduction associated with 
a significantly shorter life span [13–16]. The physiologi-
cal costs of reproduction can impair the functionality of 
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other physiological processes, with these costs resulting 
from the reduction of resources available for self-mainte-
nance, but there may also be direct effects of the process 
of reproduction itself [17, 18]. In the past, oxidative stress 
was suspected to impart a cost to reproduction [6, 19–
21]. More recent studies on the oxidative cost of repro-
duction have either found no link or weak support for 
this life history trade-off hypothesis [22]. Interestingly, 
evidence suggests that reproducing females have chroni-
cally lower oxidative damage in some species and sub-
sequently lower oxidative stress than non-reproducing 
individuals [3, 23]. This finding has subsequently been 
proposed as the oxidative shielding hypothesis, where 
reproducing females may resort to pre-emptive reduc-
tions in oxidative damage and/or stress during sensitive 
periods of reproduction (e.g. gestation, lactation). Pos-
sible reasons for these varied responses in past studies 
are shortcomings within the experimental setup [22–24]. 
These shortcomings include artificially manipulating 
reproductive effort, where individuals were forced not 
to reproduce or required an extra cost to the reproduc-
tive effort, which may not occur naturally [23]. An exam-
ple includes brood size manipulation, where brood size 
was increased to infer an increased cost to reproductive 
effort relative to controls [25]. Furthermore, individuals 
can set their limits on reproductive effort, with several 
characteristics, such as body condition, hormonal profile, 
behaviour, food availability and glucocorticoid concen-
tration, all of which can influence reproduction [23, 26–
30], which is likely to vary between and within species.

This study proposes that long-lived eusocial mole-rats, 
namely the naked mole-rat (NMR), Heterochepahlus 
glaber, [31, 32] and the Damaraland mole-rat (DMR), 
Fukomys damarensis  [33–35], are perfect model species 
to investigate whether an oxidative cost to reproduction 
is evident, as reproduction is naturally controlled within 
the species, with no experimental manipulation required 
for individuals who do not breed. In species that exhibit 
an eusocial behaviour, a few dominant animals monopo-
lise reproduction, with one breeding female (BF) and one 
to three of the larger males (breeding males-BMs) are 
responsible for reproduction [36]. Apart from reproduc-
tive division of labour, cooperative care of the young and 
overlap of generations, the lifetime reproductive success 
(LRS) among members of both NMR and DMR colonies 
squarely places these two species on the eusocial end of 
the eusociality spectrum (see Sherman et  al. [37]). The 
remaining colony members (non-breeding females—
NBFs and non-breeding males—NBMs) are reproduc-
tively quiescent [36], where both NBFs and NBMs can 
reproduce, but are naturally reproductively suppressed 
through both behavioural and physiological mechanisms 
[36, 38–42]. The consequences of this suppression are 

that reproductive hormones, such as oestrogen, proges-
terone and testosterone, are significantly higher in the 
breeding colony members than those of non-breeding 
colony members [43]. The non-breeding colony mem-
bers’ reproductive hormones and gonad development 
are comparable to juvenile (sexually immature) anovu-
latory colony members [36]. As with eusocial insects, 
female reproducing members in NMRs and DMRs as 
well as Ansells (Fukomys anselli) and Giant (Fukomys 
mechowii) mole-rats colonies are often the longest-lived 
[34, 41, 44–46]. However, to date, due to a lack of empiri-
cal data pertaining to LRS for F. anselli and F. mechowii 
they do not fit the stricter conditions for the claim of 
eusociality according to the definition of Sherman et al. 
[37], which is bimodality, resulting in a high reproductive 
skew among breeding females and/or males where maxi-
mum lifetime fecundity of breeders versus non-breeders 
(helpers) is far greater than that of female breeders versus 
helpers in cooperatively breeding vertebrate societies. In 
this definition the proportion of non-breeding animals 
obtaining reproductive status during their lifetime can 
be used as a stricter measure of eusociality when com-
pared to the classic definition used by Michener back in 
the 1960s [47], which simply having overlapping genera-
tions, cooperative brood care, and reproductive division 
of labor.

The method and the subsequent physiological conse-
quence of reproductive suppression differ between the 
NMR and DMR. Within NMRs, which spontaneously 
ovulate, strong physiological reproductive suppression 
occurs, resulting from neuroendocrine changes that lead 
to halted follicle development, stunted at the primordial 
stage, and anovulation in females and reduced spermato-
genesis in males [35, 48]. Interestingly, hyperprolactine-
mia and raised plasma prolactin concentrations have 
been observed to be the possible neuroendocrine mecha-
nism that causes physiological reproductive suppres-
sion in non-breeding NMR colony members [49, 50]. 
In NMRs, non-breeding colony members were found 
to possess similar plasma prolactin levels compared to 
BFs, even those that were pregnant and lactating [49]. 
Contrastingly, in the same study, over 85% of DMRs 
non-breeding individuals had undetectable prolactin val-
ues, whereas breeders demonstrated expected variance 
in prolactin concentrations due to normal reproduc-
tive function [49]. In DMRs, which are induced ovula-
tors [51], a behavioural mode of suppression is favoured, 
which is brought about by subordinates avoiding breed-
ing with related individuals in a colony (incest avoid-
ance) and/or the non-breeding colony members being 
the object of aggression and having their reproductive 
behaviour interrupted by the breeding individuals [51, 
52]. In addition to the behavioural mode of reproductive 
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suppression, physiological suppression occurs through 
the mechanism of reduced luteinising hormone (LH) and 
a reduced basal level of gonadotropin-releasing hormone, 
with the resulting reduced LH stimulation prevent-
ing ovulation in the presence of the BF [42, 53]. Conse-
quently, follicle development is arrested at the Graafian 
follicle stage in DMR NBFs, but spermatogenesis occurs 
in DMR NBM [35, 48]. The introduction of a unrelated 
male into a queenless colony (reproductively quiescent) 
allowed one NBF to become reproductively active [54]. 
This suggests that both factors: an unrelated BM and the 
absence of the BF are needed to initiate reproduction in a 
DMR NBF [42, 54]. Unlike in NMRs physiological repro-
ductive suppression is not dependent on prolactin in 
DMRs as plasma prolactin levels are undetectable under 
normal, non-lactating conditions in non-breeding colony 
members [49]. It can therefore be hypothesised that non-
breeding DMRs invest more into reproduction than non-
breeding NMRs due to differences in energy investments 
in follicle development and spermatogenesis.

The current study used a non-lethal and minimally 
invasive (only a single blood sample and no euthanasia) 
method to investigate the direct plasma redox balance of 
both eusocial mole-rat species (NMR and DMR) across 
sex and reproductive status (breeding and non-breeding). 
Generally, redox balance studies involve multiple mark-
ers and/or tissue samples resulting in destructive sam-
pling (euthanasia of the animals and tissue harvesting), 
wherein longitudinal studies or studies on rare animals 
are not feasible, and blood sampling is the only option 
[55]. Furthermore, the collection of large plasma volumes 
from small animals are generally unfeasible and unethi-
cal. Previous studies investigating direct redox balance in 
animals measured the ratio between glutathione (GSH) 
and glutathione disulfide (GSSG). This is generally per-
formed in tissues and requires a large volume of sample, 
as GSH measured in plasma is generally below the detec-
tion limit. Furthermore, plasma measurements of GSH/
GSSG have been observed to lead to erroneous and pos-
sibly misleading measurements due to overestimation 
of GSSG [56, 57]. Consequently, the use of the oxidative 
stress index (OSI) from total oxidant status (TOS) and 
total antioxidant status/capacity (TAS/TAC) may be a 
helpful alternative in measuring oxidative stress in small 
animals that cannot be euthanised. The OSI index does 
not require large plasma volumes, ideal for smaller ani-
mals, as well as not resorting to destructive sampling. 
This allows for the direct measurement of redox balance 
in animals in longitudinal and rare animals, like breeding 
mole-rat individuals.

Using the only two eusocial mole-rat species as cur-
rently defined by the low lifetime reproductive success of 
non-breeding subordinates, we will attempt to confirm 

the actual effect of reproduction on fitness on mammals 
through the measurement of oxidative stress. Since both 
mole-rat species in this study are long-lived, subterra-
nean, and are eusocial, we expect them to demonstrate 
similar oxidative stress patterns in reproduction.

Methods
Study species
Thirty-one NMRs of similar age (3–5  years old) (eight 
BFs, seven BMs, seven NBFs, eight NBMs) from 
among six captive colonies and 32 DMRs of similar age 
(3–5 years old) (eight BFs, eight BMs, eight NBFs, eight 
NBMs) from among 12 captive colonies from the Univer-
sity of Pretoria were used. All individuals were considered 
adults for this experiment as each individual, if not repro-
ductively suppressed, would be able to reproduce (N.C. 
Bennett per comm). For both species, BFs were identified 
by the presence of prominent axillary and inguinal teats, 
well-developed external genitalia with a perforate vagina, 
and/or pregnancy-related changes in girth/body size. 
BMs were identified based on observations of copulation 
with the BFs (NMRs), while in DMRs a dark stain around 
the periphery of the mouth and bulging testes which pro-
ject from abdominal pockets discern dominant breeders. 
Long-term observational records were used to confirm 
the identity of the socially dominant males and females. 
All animals have been a part of long-term (+ 20  years) 
monitoring and breeding projects at the University of 
Pretoria. Accurate age data was available (accuracy to 
1  day) for non-breeding NMRs, while less accurate age 
data was available for the breeding NMR colony mem-
bers (accuracy to 1  year). Likewise, only less accurate 
age data was available for the breeding and non-breeding 
DMR colony members (accuracy to 1 year). Breeders are 
generally found to be larger and older individuals [36]. 
Further details are given in the supplementary electronic 
material (Additional file 1: Tables S1 and S2).

Animal housing
NMRs were kept in tunnel systems with several plas-
tic chambers serving as food storage, toilet and sleep-
ing areas and connected by acrylic glass tunnels. 
Nesting material consisted of wood shavings. DMRs 
were housed in their natal colonies in large plastic crates 
(1  m × 0.5  m × 0.5  m), with wood shavings and paper 
towelling provided as nesting material. Housing room 
temperatures ranged between 24.5 and 27 °C (DMRs) and 
29–30 °C (NMRs), with relative humidity around 50–60% 
[58–60]. Animal rooms were maintained on a 12L:12D 
photoperiod. Photoperiod has not been shown to affect 
DMR and NMR behaviour [61]. Animals were fed on a 
variety of chopped vegetables and drank no free water.



Page 4 of 9Jacobs et al. Front Zool           (2021) 18:45 

Blood sampling
For both NMRs and DMRs, blood samples were col-
lected between 08h00 and 13h00 as follows: The animals 
were handheld and venous blood samples collected from 
the hindfoot or tail. Approximately 300–500 µl of blood 
was collected into heparinised micro-haematocrit tubes 
depending on the body mass of the animal. The blood was 
centrifuged at 1300 g and the resulting plasma decanted 
and stored at – 80  °C until further analysis (< 1 month). 
Only 1% of the total body mass of the individual of blood 
was allowed to be collected as defined by the University 
of Pretoria Animal Ethics Committee.

Reagents
Unless otherwise stated, all chemicals and reagents used 
in this study were obtained from Merck (Pty) Ltd (Gaut-
eng, South Africa).

Total oxidant status (TOS) assay
Plasma TOS levels were measured through Erel’s method 
[62]. Briefly, this method is based on the oxidation of fer-
rous ion to ferric ion in the presence of various oxidative 
species. The oxidation reaction is enhanced by glycerol 
molecules, which are abundantly present in the reaction 
medium. The ferric ion makes a coloured complex with 
xylenol orange in an acidic medium. The colour inten-
sity, measured spectrophotometrically, is related to the 
total amount of oxidant molecules that are present in 
the sample. The results are expressed in terms of micro-
mole hydrogen peroxide equivalent per litre (μmol  H2O2 
equivalent/L). Samples were run in duplicate and only 
once per plate with a repeatability of r = 0.95. Intra-assay 
variability (%CV) was 9.8%.

Total antioxidant capacity (TAC) assay
Plasma TAC levels were quantified using a commercially 
available kit (Antioxidant Assay Kit, Cayman Chemi-
cal Co., Ann Arbor, MI, USA) which measures the oxi-
dation of ABTS (2,29-Azino-di- [3-ethybenzthiazoline 
sulphonate]) by metmyoglobin, which is inhibited by 
non-enzymatic antioxidants contained in the sample. 
Oxidised ABTS is measured by spectrophotometry at a 
wavelength of 750 nm. The capacity of antioxidants in the 
sample to inhibit oxidation of ABTS is compared with 
the capacity of known concentrations of Trolox, and the 
results are expressed as micromole Trolox equivalents 
per litre (μmol Trolox equivalents/L). Samples were run 
in duplicate and only once per plate with a repeatability 
of r = 0.99. Intra-assay variability (%CV) was 2.8%.

Oxidative stress index (OSI)
Oxidative stress was determined by the TOS:TAC 
ratio, which represents the oxidative stress index 

(OSI) arbitrary unit, which was calculated as follows: 
OSI = [(TOS, µmol  H2O2 equivalent/L)/(TAC, µmol 
Trolox equivalent/L)] * 100 [63].

Statistical analysis
To determine the sample size and effect size, a power 
analysis with the program G-power, assuming an alpha 
value of 0.05 and a power threshold of 0.8, the analysis 
indicated that the sample size per group (BF, BM, NBM 
and NBF per species) is 12, with an effect size of 0.85. 
However, due to the difficulty of obtaining and breeding 
these animals, we believe the chosen sample size will be 
adequate to access our question and result in valid statis-
tical results.

All statistical analyses were performed in R 3.5.2 [64] (R 
Development Core Team, 2018). Species were analysed 
separately. The normality of the response variables (OSI, 
TAC or TOS) for each species were determined using 
Shapiro Wilk tests (S–W). Homogeneity of all dependent 
variables was confirmed with a Levene’s test. Log-trans-
formation was attempted to normalise all non-normal 
data. Normally distributed dependent variables were ana-
lysed using a linear mixed model (LMM), whereas non-
normally distributed dependent variables were analysed 
by generalised linear mixed models (GLMM) fitted with 
gamma distributions and link-inverse or log function 
using the lme4 package [65]. All models included colony 
as a random factor. Post-hoc comparisons were made 
using Tukey HSD pairwise comparisons. Each model 
contained OSI, TAC or TOS as the response variables 
and sex (male or female) and breeding status (breeding or 
non-breeding) as predictors, with a breeding status*sex 
interaction included. Body mass was included as a covar-
iant in all models for both species. Pearson correlation 
tests between age and OSI, TAC or TOS were run for 
NMR NBM and NBF separately. A Benjamini–Hochberg 
correction was conducted using a False Discovery Rate of 
0.2 (20%). We did not investigate age as an effect on OSI, 
TAC or TOS in DMR or BF and BM NMR due to a lack 
of definitive ages for each individual. Data are presented 
as mean ± standard error (s.e.m).

Results
Damaraland mole‑rats
Both the breeding status (t =  − 1.69, p = 0.10) and sex 
(t =  − 0.50; p = 0.62) did not significantly affect OSI val-
ues in DMRs. Likewise, the two-way interaction between 
breeding status and sex (t = 1.49, p = 0.15, Fig.  1a) and 
body mass (t =  − 0.311, p = 0.76) did not significantly 
affect OSI value in DMRs. Similarly, TOS values pos-
sessed by DMRs were unaffected by breeding status 
(t = 1.72, p = 0.09), sex (t = 0.26, p = 0.80), breeding 
status*sex (t =  − 0.94, p = 0.35, Fig.  1b) and body mass 
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(t = 0.92, p = 0.36). Similarly, breeding status (t = 1.80, 
p = 0.07) and body mass (t =  − 0.96, p = 0.33) did not 
significantly affect TAC values in DMRs. However, sex 
(t = 2.35, p = 0.02) did significantly affect TAC; male 
DMRs (1332.1 ± 89.6  µmol Trolox equivalents/L) pos-
sessed higher levels of TAC in comparison to females 
(1313.0 ± 63.2  µmol Trolox equivalents/L). Although 
breeding status *sex significantly affected TAC in DMRs 

(t =  − 2.88, p = 0.004, Fig. 1c), post-hoc analyses yielded 
no significant differences (p ≥ 0.08).

Naked mole‑rats
Both the breeding status (t = 2.40, p = 0.02) and sex 
(t = 2.10; p = 0.04) did significantly affect OSI values in 
NMRs. Breeding NMRs (0.97 ± 0.1) possessed higher 
OSI values than non-breeding NMRs (0.72 ± 0.07); while 
female NMRs (0.96 ± 0.10) possessed higher OSI val-
ues than males (0.72 ± 0.06). Both body mass (t = 0.114, 
p = 0.91) and breeding status*sex (t =  − 1.51, p = 0.13, 
Fig. 1a) did not affect the OSI values of NMRs. Similarly, 
breeding status did significantly affect TOS (t =  − 2.12, 
p = 0.04), with breeding NMRs (22.1 ± 2.93  µmol  H2O2 
equivalent/L) possessing higher TOS values than non-
breeding NMRs (13.6 ± 1.70  µmol  H2O2 equivalent/L). 
However, sex (t =  − 1.58, p = 0.13), breeding status*sex 
(t = 1.34, p = 0.20, Fig.  1b) and body mass (t = -0.90, 
p = 0.34) did not affect TOS in NMRs. Lastly, NMRs TAC 
values were unaffected by breeding status (t =  − 0.82, 
p = 0.42), sex (t =  − 0.25, p = 0.81), breeding status*sex 
(t = 0.39, p = 0.70, Fig.  1c) and body mass (t =  − 0.57, 
p = 0.57). Age had no significant correlation with OSI, 
TOS or TAC in NBF or NBM NMRs (Correlation coef-
ficient ≤ 0.41, q ≥ 0.07, for all).

Discussion
NMRs and DMRs share many behavioural and physiolog-
ical traits due to their shared subterranean lifestyle; there-
fore, it was expected that they would demonstrate similar 
oxidative stress patterns [35, 66]. Contrasting to expec-
tations, marked differences in oxidative stress patterns 
within each species were observed. The authors want to 
highlight the complication of a two species comparison 
for several reasons such as speciation between species, 
no genetic exchange, different environmental conditions, 
with identical selections pressures to be highly unlikely 
[67]. These factors can all increase the likelihood of a type 
1 error, however, since there are only two mammalian 
species, a multiple species comparison approach cannot 
be used to circumvent this problem and this problem is 
unavoidable [67]. In light of this problem the response of 
each species is discussed and not directly compared. It is, 
however, important to indicate that NMRs demonstrated 
much higher oxidative stress in comparison to DMRs, 
however, this was somewhat expected as NMR have 
inherently high oxidative damage (TOS) for several rea-
sons [44, 68]. In particular, enzymatic antioxidant activ-
ity is accepted to be lower in NMRs, with glutathione 
peroxidase and cytosolic glutathione-S-transferase levels 
being lower compared to other species [44]. Lastly, there 
are female species differences in reproductive output 

Fig. 1 The a oxidative stress index (OSI-%) b total oxidant status 
(TOS-µmol  H2O2 equivalent/L) c total antioxidant capacity (TAC-µmol 
Trolox equivalents/L) in Damaraland mole-rats and Naked mole-rats 
between breeding (BF) and non-breeding (NBF) females, and 
breeding (BM) and non-breeding males (NBM) males. The solid 
squares (■) represent Damaraland mole-rats and the solid circles (●) 
represent the naked mole-rats. Mean ± s.e.m
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(litter size and frequency of reproduction) [42, 60]. NMR 
females produce larger litters and have more litters per 
year which is very likely to contribute to elevated oxida-
tive stress in NMR BFs compared to DMR BFs [35, 69]. 
Consequently, a direct two-species comparison with the 
only two eusocial mole-rat species [37] should be avoided 
due to the factors stated above. Hopefully, as research 
continues on LRS on the less studied species of social 
African mole-rats, such as those of the genus Fukomys 
and Cryptomys, other species may be as accepted into 
the eusocial fold thus allowing for increased cross species 
comparisons.

NMRs demonstrated significant OSI and TOS differ-
ences between breeders and non-breeders, with breeding 
NMR being observed to possess higher TOS and OSI val-
ues than non-breeding colony members. Consequently, 
NMRs follow the classical life-history trade-offs theory, 
which indicates an inherent cost of reproduction [20, 70]. 
Furthermore, females were observed to possess higher 
OSI values than males, however, this is likely driven by 
high OSI levels in BFs.

NMR BFs ovulate and usually produce usually large 
litters of offspring throughout the year, again suggest-
ing that oxidative stress is suspected to impart a cost to 
reproduction [20, 70]. We hypothesise that the mecha-
nism of physiological reproductive suppression, through 
the use of prolactin, may be the cause of the vast differ-
ences between breeders and non-breeders in females and 
to some extent males [49]. The physiological suppression 
in NMRs from elevated plasma prolactin levels [49, 50] 
inherently suppresses reproductive hormones such as 
oestrogen, progesterone and testosterone [71, 72]. BF 
NMRs possesses higher levels of both oestrogen, proges-
terone and testosterone [36, 50]. NMR BMs and BFs pos-
sess increased concentration of testosterone compared 
to their non-breeding counterparts [36, 50]. Oestrogens 
promote antioxidant enzyme functions [73, 74], where 
progesterone may antagonise vasoprotective effects of 
oestrogens [75] and can even amplify oxidative stress 
[76]. Testosterone can increase susceptibility to ROS 
through increased metabolism and other pro-oxidative 
mechanisms contributing to TOS [77]. Furthermore, 
higher prolactin levels, resulting in hyperprolactine-
mia has been demonstrated to increase oxidative dam-
age [78–80]. All these factors are likely to contribute to 
changes in redox balance, however, it should be noted 
that the higher prolactin levels observed in NMRs may 
not necessarily cause hyperprolactinemia in this spe-
cies, and in turn, result in detrimental effects in oxidative 
stress and requires further investigation.

NMR NBFs and NMR NBMs do not show follicle 
development or spermatogenesis respectively, thus indi-
cating almost no resource investment into their own 

reproduction [35, 48]. This physiological difference in 
reproductive investment and its associated physiological 
changes may explain the significant difference observed 
between breeders and non-breeders in addition to the 
act of breeding. High TAC values were observed in all 
NMRs which may suggest that NMRs do not just rely on 
factors that manage post-oxidative damage control such 
as upregulating NRF2 transcription factors for increased 
protection [81, 82], tolerating damage to proteins [83, 84] 
and lipids [85, 86] and upregulated DNA repair pathways 
[87], but higher reliance on non-enzymatic antioxidant 
activity.

It is proposed that NMR follow the oxidative theory 
of ageing and accumulate damage at a very minimal rate 
[88, 89]. Furthermore, an increase in oxidative stress 
from reproduction may be negligible in this species and 
thus may not need to protect themselves pre-emptively 
from reproductive investment. From this standpoint, 
pre-emptive mitigation of increased oxidative stress may 
result in extra resources spent for NMR BFs, and there-
fore they may not follow the oxidative shielding hypoth-
esis. This is supported by NMRs reproducing even when 
they are old, with no signs of menopause and they simply 
deal with the damage [31, 44, 90].

DMRs breeders and non-breeders showed similar OSI 
and TOS levels but different TAC levels between the 
sexes: similar plasma TAC levels have been observed 
in previous studies [33]. Significant increases in TAC 
but not TOS was observed in the BMs as compared to 
NBMs which will still lead to BM’s and NBM’s demon-
strating similar OSI. A similar pattern was observed for 
BF’s where TAC was lower and TOS higher compared 
to NBFs, but not sufficient to result in significant OSI 
changes between breeders and non-breeders. This is 
important as OSI is a measure of redox balance derived 
from the ratio between TAC and TOS.

Damaraland mole-rats employ both physiological and 
behavioural reproductive suppression and do not display 
elevated prolactin levels (apart from normal reproduc-
tive function from breeders) [49]. It is suggested that the 
physiological suppression of reproductive hormones is 
not as strict as seen in NMRs [49], and incest avoidance 
is the primary driver of reproductive suppression [38]. 
Additionally, reproductive hormones have been observed 
to be similar between breeding and non-breeding indi-
viduals at varying times of the year [91], which suggest 
minimal hormonal causes to changes in redox balance 
between breeders and non-breeders.

Damaraland mole-rats, regardless if they are breed-
ers or non-breeders, invest in reproduction as follicle 
development is only arrested at the Graafian follicle 
stage in females and spermatogenesis is not suppressed 
in males, which suggests that only the act of breeding 
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and the carrying of offspring (i.e. being pregnant) and 
their associated physiological changes is what separates 
a breeder and a non-breeder [35, 48, 51]. Previous work 
supports oxidative shielding in DMRs, where BFs have 
lower long-term oxidative damage in the liver [33]. 
The act of breeding results in non-significant redox 
changes between breeders and non-breeders in DMRs. 
To date, including this study, long-term oxidative dam-
age markers have not been investigated in NMR BFs. 
Consequently, there is no clear evidence supporting or 
opposing the oxidative shielding hypothesis in NMR 
BFs and require further investigation in the future.

This study provides the first experimental evidence 
of differences in immediate oxidative stress in two 
eusocial mole-rat species with similar ecological life-
styles, but different physiological mechanisms and 
reproductive strategies. This highlights possible diver-
gent mechanisms in dealing with the oxidative cost of 
reproduction, despite evolving eusociality convergently. 
At present, this study emphasises the importance of 
reproductive investment and reproductive strategies 
to oxidative stress, and future studies should correlate 
immediate oxidative stress to markers of long-term oxi-
dative damage in these species. Our findings promote 
that African mole-rats are an ideal group of animals to 
investigate the reproduction-survival life-history trade-
off further. Redox balance results obtained from OSI 
demonstrated a similar pattern to GSH:GSSG in the 
liver between the species [44], which suggests the cur-
rent study methodology to investigate redox balance is 
not only viable, but may be better suited for research 
to infer whole-body oxidative stress in smaller and rare 
animals involved in longitudinal studies and/or for 
non-destructive sampling.
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