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Poor socio-economic and unsanitary conditions are conducive to commensal rodent

infestations, and these conditions are widespread in South Africa. Cestode species of

zoonotic interest are highly prevalent in commensal rodents, such as invasive Rattus

norvegicus, Rattus rattus, Rattus tanezumi, and indigenous Mastomys coucha, and

have been frequently recovered from human stool samples. These cestode species

have similar transmission dynamics to traditional soil-transmitted helminths (STHs), which

ties them to infections associated with poverty and poor sanitation. Univariate analysis

was used in the present study to determine the association between rodent-related

factors and cestode prevalence, while ecological niche modelling was used to infer

the potential distribution of the cestode species in South Africa. Cestode prevalence

was found to be associated with older rodents, but it was not significantly associated

with sex, and ectoparasite presence. The predicted occurrence for rodent-borne

cestodes predominantly coincided with large human settlements, typically associated

with significant anthropogenic changes. In addition, cestode parasite occurrence was

predicted to include areas both inland and along the coast. This is possibly related

to the commensal behaviour of the rodent hosts. The study highlights the rodent-

related factors associated with the prevalence of parasites in the host community,

as well as the environmental variables associated with parasite infective stages that

influence host exposure. The application of geospatial modelling together with univariate

analysis to predict and explain rodent-borne parasite prevalence may be useful to inform

management strategies for targeted interventions.
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INTRODUCTION

In South Africa, many households live in informal settlements
(1) where there is improper housing infrastructure, poor basic
infrastructure such as potable water, sewerage and storm water
drainage, and irregular service delivery such as waste disposal and
high unemployment rates (2). These circumstances ultimately
lead to poor communities living in unsanitary conditions.
Poor socio-economic and environmental conditions favour the
presence of commensal rodents such as the brown rat (Rattus
norvegicus), the black rat (Rattus rattus) and the house mouse
(Mus musculus) (3). In Johannesburg, South Africa, it was
found that commensal rat infestations were highest in low-
income households, low-cost housing suburbs and informal
settlements (4). Commensal rodents have been implicated
in the transmission and spread of several zoonotic diseases
including rat-bite fever, plague, leptospirosis and hantavirus
haemorrhagic fever (5). They transmit these diseases either
directly, through bites and scratches (6), indirectly through
environmental contamination with urine/faeces, or through their
arthropod ectoparasites (7). Studies in several countries around
the world including Qatar, Jamaica, Thailand, Italy, and the
U.K. (8–12) have showed that commensal rodents harbour
gastrointestinal helminths that have zoonotic potential and this
has also been found to be the case in South Africa (13–
15).

Soil-transmitted helminth (STH) or geohelminth
infections are most prevalent in the developing world
(16) and closely correlated with poverty, poor sanitary
conditions and impoverished health services (17). In
addition, high levels of unemployment and low levels of
maternal education are also correlated with human intestinal
infection prevalence (17). STH infections are especially
prominent in children (18) and cases have been documented
across South Africa (19). Although STH infections are not
usually related to mortality, they contribute to significant
morbidity and may impact childhood development and
influence susceptibility to HIV/AIDS and tuberculosis
(20, 21).

The most prominent STHs are nematodes which include
the human whipworm (Trichuris trichiura), giant intestinal
roundworm, (Ascaris lumbricoides) and hookworms (Necator
americanus and Ancylostoma duodenale) (18). The dwarf
tapeworm [Hymenolepis (syn. Rodentolepis) nana] however, is
also considered an STH (21) as it has similar transmission
dynamics involving infective eggs in soil substrate. Hymenolepis
nana is the most common cestode of humans, especially in young
children (22, 23) and it is frequently recovered from human stool
samples in South Africa (17, 21, 24–26). Apart from humans,
the species is also associated with rodent hosts (22) and has

a direct lifecycle—it does not require an intermediate host to

complete its life cycle. Humans become directly infected when
ingesting the eggs through faecal-contaminated food, water or
dust (23) and the species becomes abundant through faecal-
oral transmission (27). The faecal-oral route is significant in the
transmission of STH infections to humans via poor personal

hygiene, faecal contaminated soil and water sources (17) and
through geophagia (28)—the deliberate consumption of soil.
There are also other zoonotic cestodes of concern such as
the rat tapeworms, Hymenolepis diminuta and Inermicapsifer
madagascariensis (24, 27, 29). These cestodes, which cause rare
zoonotic infections, have arthropods as intermediate hosts and
an indirect lifecycle. The arthropod intermediate hosts ingest
the eggs from the faecal-contaminated environment where they
then develop into larvae (cysticercoids) and eventually, infect
final (or definitive) hosts such as rodents (Rattus spp., Mastomys
spp., Arvicanthis niloticus) (23, 30, 31) and humans following
ingestion of infected arthropods, where they develop into the
strobilar or adult stages (27).

Soil-transmitted helminths are primarily associated with low
altitude, coastal areas and tropical and sub-tropical climates (24,
32). In addition, edaphic factors such as pH and soil composition
may influence the occurrence of geohelminths (28). Cestode eggs
can persist for a long time in the soil, sewage sludge and even
treated waste water may be an additional source as standard
treatment methods are ineffective (33), suggesting that cestode
egg occurrence may be widespread.

For many parasite species, their occurrence data may
be spatially biassed or improperly georeferenced because of
opportunistic sampling of few host individuals or the occurrence
data are aggregated resulting in maps with coarse spatial scales
(34). To quantify human risk of infection and highlight priority
areas for intervention, STHs have been geospatially modelled for
many countries including South Africa (35). The focus of these
models however, was primarily on nematodes and did not take
into account the distribution of the potential reservoir hosts. In
addition, these cestodes are not treated through standard human
de-worming programmes which selectively target nematodes
(30, 36), and therefore, their presence may be an indicator of a
poverty-related infection (36). A parallel study (15) confirmed
the prevalence of cestodes of zoonotic interest in invasive,
commensal rodents, Rattus tanezumi, R. norvegicus, R. rattus.,
and the indigenous multimammate mouse (Mastomys coucha) as
reservoir hosts in Gauteng Province, South Africa.

The present study used univariate analysis to determine
the rodent intrinsic factors related to cestode prevalence and
ecological niche modelling (37) to predict underlying factors (i.e.,
climatic, environmental variables) associated with the cestode
infection status of commensal rodents, R. norvegicus, R. rattus,
R. tanezumi, and M. coucha and humans and map these areas
to predict hotspots of occurrence. While cestode infection
prevalence and distribution associated with humans in Gauteng
Province and the rest of South Africa is unknown, this predictive
analysis may allow insights into the spatial dynamics of this
neglected disease risk to humans and highlight priority areas for
intervention. The present study predicted that cestode prevalence
is likely to be influenced by host intrinsic factors that impact host
susceptibility. In addition, rodent-borne cestodoses are likely
to be aggregated throughout the landscape and not uniformly
distributed across South Africa because cestode species infective
stages have different environmental and climatic requirements
that determine their distribution.
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FIGURE 1 | A map of Gauteng Province, South Africa showing sampling localities of commensal, indigenous Mastomys coucha and commensal, invasive Rattus

norvegicus, Rattus rattus, and Rattus tanezumi.

MATERIALS AND METHODS

Study Area
Nearly a quarter of the South African population resides in
Gauteng Province (38). The province is located inland and it is
the smallest of the nine provinces with an area of 18,178 km2

that equates to ∼1.4% of the total surface area of South Africa
(38). This province may therefore be the most densely populated
of the nine provinces in the country. On average, the climate is
considered temperate but some areas are sub-tropical (39). Trap
sites represented urban and peri-urban areas from three of the
metropolitan regions namely, the Johannesburg, Ekurhuleni, and
Tshwane Metropolitan Municipalities (Figure 1). Geographic
coordinates of each trap locality were obtained with a global
positioning system (GPS).

Sample Collection, Rodent, and Cestode
Identification
Commensal, invasive R. norvegicus, R. rattus, R. tanezumi, and
indigenous M. coucha species were sampled between August
2010 and September 2011 and in May 2012 using Sherman

traps (H.B. Sherman Traps Inc. Florida, USA) and snap traps.
Sampling localities were representative of industrial, sub-urban,
formal, and informal residential areas as well as smallholdings
in Pretoria, Hammanskraal, Diepsloot, Tembisa, and Alexandra
(Figure 1). During the 2010–2011 sampling, ∼50 snap traps
and 100 Sherman live traps were baited with a peanut butter,
fish, and oatmeal mixture and placed in and around storage
facilities, office buildings and human dwellings. Traps were
inspected daily for a trapping period of 1 week per month.
In May 2012, R. norvegicus samples were also obtained from
live-trap captures by the Environmental Health Division of
the City of Johannesburg Metropolitan Municipality as part
of routine pest control initiatives. All live-trapped rats were
transported to the laboratory at the Department of Zoology
and Entomology, University of Pretoria, Pretoria while snap-
trapped individuals were individually bagged, and transported at
4◦ C to the same laboratory. All animals sampled in the present
study were collected under permit number CPF6 0032 issued by
the Gauteng Directorate of Nature Conservation and with the
permissions from land owners. Live animals were euthanized by
means of halothane inhalation and all carcasses were stored at
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FIGURE 2 | Relative age classes I–V in R. norvegicus representing relative age classes in invasive and indigenous commensal, murid rodents from Gauteng Province,

South Africa based on the degree of tooth wear of the upper molar tooth row.

−20◦C until necropsy. Standard measurements were recorded
and ectoparasites were collected and stored in absolute ethanol.
All procedures on rodents were as approved by the Animal Ethics
Committee of the University of Pretoria under ethics clearance
number EC025-10.

Rodent identification was based on morphological criteria
and molecular techniques. Adult R. norvegicus specimens, which
have a relatively large body size, were identified based on
morphological features such as the tail length in relation to the
body length, and the size of the ears relative to the size of the head
(40). Adult R. rattus, R. tanezumi,M. coucha, and juveniles of all
species were identified using mitochondrial cytochrome b (cyt
b) primer sets (41) in conventional polymerase chain reaction
(PCR) and genetic sequence analyses following the protocol as
described by Julius (42) and Le Grange (43). Cestodes were
recovered from the gastrointestinal tract (GIT) of the rodents and
stored in glycerol alcohol until identification proceeded based
on morphological and molecular criteria (15). Genetic sequences
were deposited in the NCBI GenBank database under accession
numbers KY462775–9. Morphological identification proceeded
with the aid of published taxonomic keys (44, 45) supplemented
with species descriptions (13, 46). In many instances, only
strobilar fragments without scoleces or strobilar fragments that
were too deteriorated to make a conclusive identification of
the species were recovered, and therefore individual species
abundance could not be calculated. These specimens were subject
to molecular identification by PCR and genetic sequence analyses

using published genus-specific primer sets (47). Despite these

efforts, some specimens could only be identified as cestodes and
not to the species level.

A total of 51 occurrence records were obtained of which 16
were generated in this study and 35 were from the literature.
Occurrence records for unidentified cestodes, H. diminuta, H.

nana, and I. madagascariensis were obtained from infection
status of commensal rodents from Gauteng Province, which was
augmented with georeferenced infection status from rodents and
humans from other areas in Africa (Supplementary Table 1).
These additional georeferenced records were derived from a
literature review (Supplementary Table 1), and where exact
geographic coordinates were not evident from the publications,
these were georeferenced from the study area using Google
Maps (48).

Drivers of Cestode Infection Prevalence
Associated With Rodents
It is generally expected that males are more often infected with
parasites than females as a result of their behaviour and the
negative influence of male testosterone on immune competence
(8, 49). This may, however, only apply to the adult cohort for
which the sex hormone would bemore active (8), and hence there
is a need to correct for age. Rodents were sexed morphologically
and aged by an assessment of the degree of tooth wear on the
upper molar tooth row (50, 51) that led to the assignment of
rodent individuals into five relative age classes (Figure 2) for a
representative molar row tooth wear pattern as exemplified by
R. norvegicus. Generalised linear modelling (GLM) applied to the
five age classes (I-V) were found to be statistically significant (P<

0.05) for nine out of 13 cranial measurements (52). Tukey’s post
hoc analyses indicated some overlap between age classes II & III,
and between age classes III & IV (52) and therefore age classes
IV–V was considered to be the adult cohort, age classes II–III as
the subadult cohort, and age class I as the juvenile cohort. The
subadult and adult cohorts were subsequently tested for potential
gender effects on cestode prevalence. Ectoparasite identification
was beyond the scope of the present study and only the presence
or absence was assessed in relation to their intermediate host

Frontiers in Veterinary Science | www.frontiersin.org 4 June 2021 | Volume 8 | Article 678478

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Julius et al. Geospatial Modelling of Commensal Rodent-Borne Cestodoses

TABLE 1 | A list of environmental variables used to build ecological niche models

of rodent-borne cestodes in Gauteng Province, South Africa.

Clsd1m = Predicted mean clay content at standard soil depth 1 (0–5 cm)

Clsd2m = Predicted mean clay content at standard soil depth 2 (5–15 cm)

Clsd3m = Predicted mean clay content at standard soil depth 3 (15–30 cm)

Sndsd1m = Predicted mean sand content at standard soil depth 1 (0–5 cm)

Sndsd2m = Predicted mean sand content at standard soil depth 2 (5–15 cm)

Sndsd3m = Predicted mean sand content at standard soil depth 3 (15–30 cm)

Sltsd1m = Predicted mean silt content at standard soil depth 1 (0-5 cm)

Sltsd2m = Predicted mean silt content at standard soil depth 2 (5–15 cm)

Sltsd3m = Predicted mean silt content at standard soil depth 3 (15–30 cm)

pHihoxsl1 = Predicted mean pH index (H2O solution) at standard soil depth 1

(0–5 cm)

pHihoxsl2 = Predicted mean pH index (H2O solution) at standard soil depth 2

(5–15 cm)

pHihoxsl3 = Predicted mean pH index (H2O solution) at standard soil depth 3

(15–30 cm)

Orcdrcsl1 = Soil organic carbon at standard soil depth 1 (0–5 cm)

Orcdrcsl2 = Soil organic carbon at standard soil depth 2 (5–15 cm)

Orcdrcsl3 = Soil organic carbon at standard soil depth 3 (15–30 cm)

LST = Land surface temperature

NDVI = Normalised difference vegetation index

DEM = Digital elevation model/altitude [in metres above sea level (a.s.l.)]

GRUMP = Global rural-urban extent

HHI = Human influence index/human footprint

Afripop = African human population size

potential for cestodes that require arthropod intermediate hosts.
The association of infection prevalence and seasonality could not
be assessed due to the opportunistic sampling of rodents. The
chi-square (χ2) test, performed in Minitab R© v.14 (Minitab Inc.,
Pennsylvania, U.S.A.), was used to assess the cestode infection
prevalence against rodent age, sex and ectoparasite presence.

Environmental and Climatic Variables
Influencing the Occurrence of Cestode
Eggs
Environmental variables (Table 1) were selected based on
their influence on the survival and establishment of cestode
eggs as evident from the literature (53, 54) and which
vary within a spatial scale (55). Environmental variables not
exclusively associated with cestodes, but associated with STHs
predominantly including nematodes on the African continent
were also included (28, 56, 57). Soil properties were selected
at soil standard depths of 0-30 cm which corresponds to the
top soil containing most organic activity. Soil content and
property layers were obtained fromWorld Soil Information (58).
Remote-sensed data for land surface temperature (LST) and
normalised difference vegetation index (NDVI) were extracted
from MODIS Terra Satellite (NASA Earth Observing System)
using MODIS Toolbox in ArcMap (ESRI Inc., Redlands CA,
U.S.A.), while elevation data (DEM) were obtained from African
Water Resources Database (AWRD) (59).

TABLE 2 | A list of bioclimatic variables used to build ecological niche models of

rodent-borne cestodes in Gauteng Province, South Africa.

BIO1 = Annual mean temperature

BIO2 = Mean diurnal range [Mean of monthly (max temp–min temp)]

BIO3 = Isothermality (P2/P7) (* 100)

BIO4 = Temperature seasonality (standard deviation *100)

BIO5 = Max temperature of warmest month

BIO6 = Min temperature of coldest month

BIO7 = Temperature annual range (P5–P6)

BIO8 = Mean temperature of wettest quarter

BIO9 = Mean temperature of driest quarter

BIO10 = Mean temperature of warmest quarter

BIO11 = Mean temperature of coldest quarter

BIO12 = Annual precipitation

BIO13 = Precipitation of wettest month

BIO14 = Precipitation of driest month

BIO15 = Precipitation seasonality (coefficient of variation)

BIO16 = Precipitation of wettest quarter

BIO17 = Precipitation of driest quarter

BIO18 = Precipitation of warmest quarter

BIO19 = Precipitation of coldest quarter

The urban extent grid (GRUMP) was obtained from the
Global Rural-Urban Mapping Project [GRUMP v. 1; Center
for International Earth Science Information Network] et al.
(60), the human influence index (HHI) or human footprint
(Last of the Wild Project v. 2) was obtained from the Wildlife
Conservation Society (WCS) and Center for International Earth
Science Information Network (61), and the human population
density for Africa was obtained from Afripop (62). Data related
to temperature and precipitation were extracted fromWorldClim
database (63, 64) (Table 2), and these bioclimatic variables are
widely used in ecological niche modelling of species (63).

Ecological Niche Modelling and
Distribution of Cestode Species in Gauteng
Province, South Africa
Modelling of the distribution of cestode species in Gauteng
Province, South Africa was conducted using the maximum
entropy approach in MaxEnt v.3.4.1 (37) to identify areas which
are potentially suitable for the occurrence of infective stages of
selected cestode species that are responsible for rodent-borne
cestodoses in Gauteng Province, South Africa. For all models, the
algorithm’s parameters were set to a maximum number of 500
iterations, a regularisation multiplier of 1, convergence threshold
of 0.00001, test percentage of 50, and only hinge features
selected (65, 66). In addition, clamping was selected to minimise
predictions to regions of environmental space outside the limits
encountered during training because extrapolation may over-
inflate the degree to which species niches are estimated to overlap
(67–69). The logistic output format was used to indicate the
probability of a species presence at a default prevalence of 0.5
(66, 70). Values range from 0, indicating low probability, to
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1.0, indicating greatest probability of a species presence in a
given area.

The predictive ability of ecological niche models is strongly
influenced by the selection of variables used to train the models.
Various procedures are available to pre-select covariates (71). The
present study utilised the in-built method of regularisation in
MaxEnt that deals with the selection of environmental variables
(regulating some to zero). This approach has been shown to
perform well and is considered to out-perform other pre-
selection procedures (66, 70). The correlations among variables
were tested in the SDM Toolbox [(72); www.sdmtoolbox.org] in
ArcMap 10.4 [Environmental Systems Research Institute (ESRI)
Inc., Redlands CA, U.S.A.], and for correlated variables, only the
more biologically informative variables were retained.

Background Selection
MaxEnt uses presence and pseudo-absences or background
localities to project potential species distribution models (37).
The extent of the background is known to influence model
performance, where a broad background can cause over-
estimates and a constrained background can cause under-
estimates (73, 74). In the present study, the background extent
for each cestode species was limited to areas that had similar
climates to each species’ occurrence records in Africa. This
was achieved by overlaying the recent Köppen-Geiger climate
classification system (75) with the occurrence records for each
species following Thompson et al. (76). The Köppen-Geiger
polygons identify areas with similar climates (climate zones) and
a given climate zone was included as part of the background
if it contained an occurrence record within the respective
range of each cestode species, using ArcGIS R© v. 10.4 (ESRI,
Redlands CA, U.S.A.). By selecting the entire climatic zone,
an intermediate background size was obtained, compensating
for the few occurrence records obtained and capturing the
expected distribution of each cestode species (73, 77). For each
species, models were calibrated with 10,000 pseudo-absence
points drawn at random from the species defined background
(37, 65). Occurrence records were randomly partitioned using
a K-fold approach into equal sets (50%) for calibration and
validation (37). Ten niche models were then constructed for each
cestode species and a consensus map was then created as an
average of the 10 iterations for each species. The predictions for
each species were then projected to South Africa.

Ecological Niche Model Performance
Evaluation
The performance of ecological niche models of each cestode
species were evaluated using the Maximum test Area Under
the Curve (AUC) (78). AUC defines the discrimination ability
(between presence and background) of the models where values
range from 0 (indicating random distribution) to 1.0 (indicating
perfect prediction), with values>0.5 being considered to indicate
that the model discriminates better than random (78). All AUC
model performance measures were calculated in MaxEnt and
predictions with an AUC value were considered to be average if
>0.7, good at >0.8 and excellent at >0.9 (79, 80).

RESULTS

Univariate Analyses of Cestode Prevalence
in the Rodent Community
A total of 395 rodents was examined and comprised M. coucha
(n = 84), R. norvegicus (n = 240), R. rattus (n = 40), and R.
tanezumi (n = 31). Cestode infection prevalence among rodent
species was reported in Julius et al. (15) as 11% inM. coucha, 33%
in R. norvegicus, 43% in R. rattus, and 48% in R. tanezumi.

The analysis for cestode infection prevalence between the
sexes was restricted to the sub-adult (age classes II-III) and adult
cohorts (age classes IV–V; see methods section for justification)
and it showed no statistically significant difference between male
and female rodent hosts (χ2 = 0.60; df = 1; n = 340; P >

0.05). There was a statistically significant difference however, in
infection prevalence between each age cohort of the rodent hosts
(χ2 = 39.36; df= 2; n= 395; P < 0.05) with infection prevalence
increasing from juvenile (age class I; 0.83%, n= 120), to sub adult
(age classes II–III; 29.17%, n = 120) and adult (age classes IV–
V; 70%, n = 120) rodents. Cestode infection prevalence was not
associated with ectoparasite presence (χ2 = 0.056; df = 1; n =

395; P > 0.05).

Potential Distribution of Rodent-Borne
Cestodes
The areas that were predicted as suitable (probability of presence
> 0.5) for unidentified rodent-borne cestode species occurrence
were associated mainly with urban areas in Gauteng Province
(Figure 3). Model performance was good (AUC = 0.81) and
the variable that contributed most to model performance was
the global rural-urban extent (94.9%) areas predicted as highly
suitable for the establishment of cestodes had large urban extent
(range 7,500–8,000 km2, optimum= 8,000 km2).

The areas were predicted to be highly suitable for H.
diminuta occurrence were associated with major urban areas
along the coast and the inland Gauteng Province of South Africa
(Figure 4). These included the metropolitan areas around the
cities of Cape Town, Port Elizabeth and Durban and certain
areas in Gauteng Province. The model performance was good
(AUC = 0.80) and the variables that contributed most to model
performance were global rural-urban extent (65.6%) and altitude
(28.8%). The areas that were predicted as highly suitable were
mainly located in areas which had a large urban extent (range =
2,000–7,837 km2, optimum= 7,837 km2) and low altitude (range
= 0–1,200m a.s.l., optimum= 0 m a.s.l.).

The areas that were predicted as highly suitable for H. nana
occurrence were widespread across South Africa (Figure 5).
These include cities along the coast (Cape Town, Durban, East
London, Port Elizabeth) as well as inlandmetropolitan areas such
as Pietermaritzburg, Bloemfontein, Pretoria and Johannesburg.

The model performance was average (AUC = 0.79) and the
variables that contributed most to model performance were
precipitation of the warmest quarter (29.4%), human footprint
(27.2%), and soil silt fraction at soil depth of 15–30 cm (15.3%).
The areas which were predicted as highly suitable were mainly
associated with areas which received an average precipitation of
50mm (range = 50–100mm) in the warmest quarter, a high
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FIGURE 3 | A map showing predicted occurrence of rodent-borne cestodoses in South Africa based on environmental suitability (shaded areas). White (non-shaded)

areas represent areas where data were unavailable.

relative anthropogenic impact (range = 45–65%, optimum =

65%) and relatively low silt content in the lowest layer of the
topsoil (depth 15–30 cm) (range= 16–18%, optimum= 18%).

The areas that were predicted as suitable for I.
madagascariensis occurrence were associated with major
urban areas in South Africa (Figure 6). These included the
large cities of Cape Town, Durban, Port Elizabeth, Pretoria and
Johannesburg. Model performance was average (AUC = 0.72)
and the variables that contributed most to model performance
were human footprint (37.1%), annual precipitation (28%)
and global rural-urban extent (11.4%). The areas which were
predicted as highly suitable were mainly associated with high
human footprint (range = 42–62%, optimum = 62%), high
annual precipitation (range = 600–800mm, optimum =

800mm) and large urban extent (range = 500–12,593 km2,
optimum= 12,593 km2).

A summarised projection of all cestode taxa was produced
by equally weighting (25%) each of the taxa (Figure 7). The
predicted occurrence of H. diminuta overlapped with areas
of known distribution in the KwaZulu-Natal, Free State, and
Gauteng Provinces but in addition it was predicted to also occur
in the Eastern Cape and Western Cape Provinces. Hymenolepis

nanawas predicted to occur in all the areas of known distribution
which included Limpopo, Gauteng, Free State, Western Cape,
Eastern Cape, and KwaZulu-Natal Provinces but in addition, it
was also predicted to occur in the Northern Cape, North West
andMpumalanga Provinces. Inermicapsifer madagascariensis has
a known distribution in Mpumalanga, Gauteng, North West,
KwaZulu-Natal, and Eastern Cape Provinces which coincided
with its predicted distribution, but in addition, it was also
predicted to occur in the Western Cape and Limpopo Provinces.

DISCUSSION

This study assessed factors that could affect the prevalence of
cestodes in commensal rodents such as R. norvegicus, R. rattus, R.
tanezumi, andM. coucha and applied ecological niche modelling
to identify climatic and environmental variables associated with
cestode infection of the rodents and to predict areas were
the cestodes could occur. Cestode prevalence was found to be
associated with the age of the rodents but other factors such sex,
and presence or absence of ectoparasites were not significant. The
predicted occurrence for all the assessed rodent-borne cestodes
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FIGURE 4 | A map showing predicted occurrence of H. diminuta in South Africa based on environmental suitability (shaded areas). White (non-shaded) areas

represent areas where data were unavailable.

predominantly coincidedwith large human settlements, but there
were some species-specific differences in factors that influenced
potential distribution that could be related to the ecology of
each species.

Rodent-Related Variables and Cestode
Prevalence
Host variability in parasite burden should influence the
establishment and spread of parasites (49). As predicted, cestode
prevalence was shown to be associated with at least one of
the three host intrinsic factors tested namely, sex, age, and
ectoparasite prevalence. The prediction that cestode infection
prevalence should be biassed toward male rodent hosts was
not observed and there was no sex effect observed for cestode
infection in the adult cohort. In addition to age structure
however, seasonality may also influence sex-biassed parasite
prevalence as is the case in certain parasites of voles when the
female cohort survived the overwintering period better than the
male cohort (49) resulting in a seasonal sex bias for that parasite.
Due to the opportunistic sampling of the rodent hosts, this aspect
could not be assessed. Rodent age, however, had a significant
effect on cestode prevalence where older rodents had higher

infection prevalence than younger rodents. This trend is typically
observed when parasite transmission rates in the host population
are low, allowing decreased parasite loads in younger individuals
that result in slow acquired immunity and this in turn leads to the
parasite infection to peak with increased age (49). Transmission
rates may be low because the rodent species are commensal and
may therefore feed more on food items found in and around
human dwellings than on natural food items such arthropods,
which are potential intermediate hosts of cestode species.
The lack of association between ectoparasite prevalence and
cestode infection was somewhat surprising as one would expect
transmission to be enhanced through grooming activities that
led to ingestion of infected arthropods. Hymenolepis diminuta
has a wide range of arthropod intermediate hosts including
fleas, beetles, and moths (49). The ectoparasites observed on
invasive Rattus species primarily included lice while for the
indigenousM. coucha these were rodent-specific mites (R. Julius
pers. obs.). The taxonomic status of the ectoparasites taxa may
therefore not have been the target arthropod taxa involved in
the life cycle of these cestode taxa. Another intrinsic factor that
may influence parasite prevalence which was not assessed in
the present study are co-parasitic interactions (either direct or
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FIGURE 5 | A map showing predicted occurrence of H. nana in South Africa based on environmental suitability (shaded areas). White (non-shaded) areas represent

areas where data were unavailable.

host immune mediated) (49). It is suggested however, that if
intrinsic factors of host sex, age, and reproductive status have
been accounted for, interspecific interactions among parasites
may be negligible (49).

Environmental Variables
The heterogeneous environment influences the host exposure to
infective stages of the parasite (49). It is evident that from the
over 40 environmental variables used in the model, only a select
few contributed to model performance. This suggests that a few
variables may be limiting the potential distribution of the cestode
species. These environmental variables associated with cestode
infective stages were shown to be good predictors of rodent-
borne zoonotic cestodoses and supports the prediction that
rodent-borne cestodoses are not uniformly distributed across the
South African landscape.

The unidentified rodent-borne cestodes are predominantly
associated with the size of the urban settlement reaching an
optimal size at 8,000 km2. The urban extent takes into account the
amount of night-time lights reflected, known urban settlements
and human population size (81). The predicted distribution
is concentrated in Gauteng Province, which contains two of

the largest cities namely Johannesburg and Pretoria, and when
combined, the two cities constitute the most populated urban
area in South Africa (38). Perhaps the human population density,
mobility and rodent-human proximity, facilitate transmission,
and maintain a continued cestode presence.

The predicted distribution of the rat tapeworm, H. diminuta
was mainly associated with urban extent and altitude being
optimal at 7,837 km2 and 0 metres a.s.l., respectively. This
coincides with the major cities and large towns at low altitude
along the coast. Some areas in Gauteng Province are also
included in the predicted distribution but because these areas
are situated inland at high altitude, the governing element here
is likely to be the size of the urban area. Coincidentally, urban
extent, which was also selected to influence the distribution
of the unidentified rodent-borne cestodes, has nearly the same
optimal size of the urban area which is implicated to account
for the extent of occurrence of H. diminuta. Similarly, human
population, human mobility and the close proximity of rodents
may therefore, also facilitate the transmission of this cestode
species. The associated low altitude coastal area has previously
been recognised as a factor that influence the prevalence of
STHs (32, 56) particularly nematodes. The sandy soils associated
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FIGURE 6 | A map showing predicted occurrence of I. madagascariensis in South Africa based on environmental suitability (shaded areas). White (non-shaded) areas

represent areas where data were unavailable.

with coastal areas favour the establishment of the hookworm,
N. americanus and threadworm, Strongyloides stercoralis, as it
allows mobility of the free-living larvae to avoid desiccation or
submergence by rising water levels (28, 82). Similarly, in the case
of H. diminuta, the sandy soils likely favour their distribution
through mobility of cysticercoid infected arthropods. Walker
et al. (32) however, demonstrated that STHs including H. nana
also occurred in high altitude areas such as Gauteng Province and
the current study emphasised this.

Unlike many cestode species, the dwarf tapeworm, H. nana,
does not require an intermediate host to complete its lifecycle
(27) and eggs are passed directly into the environment and
ultimately in soil substrate. It is expected that this may be
reflected in the environmental variables selected to predict its
distribution. The predicted distribution appears to be widespread
across South Africa where human settlements occur and where
the summer rainfall allows precipitation of at least 50mm
with top soil having a silt component close to 20%. For
this cestode species that has adapted to a direct life cycle,
climatic factors may be very important in the survival of
the eggs. Parasite transmission is favoured in the warmest
period of the year and egg survival is associated with moist

environments (49), which may explain why precipitation of
the summer season and soil composition were selected as the
most important variables in model performance. Most areas
in South Africa that were predicted suitable for the cestode
species receive summer rainfall of at least 50mm (83). The
human footprint index quantified the anthropogenic changes
related to the landscape (84). Its selection as one of the
important variables in model selection was expected because
H. nana is associated with commensal, invasive Rattus species
which occupy human settlements where the anthropogenic
changes to the landscape would be expected to be highest.
Anthropogenic changes can result in clumped resources which
may cause aggregation of hosts which in turn influence parasite
transmission (85).

The environmental variables that account for the predicted
occurrence of I. madagascariensis are human footprint, annual
precipitation, and the urban extent which were found to be
optimal at 62%, 800mm and 1,2593 km2, respectively. The
predicted distribution of this cestode species is widespread but
particularly associated with major cities of South Africa which
may be explained by the large urban extent and high human
footprint selected as optimal criteria. In this case, the human
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FIGURE 7 | Map showing the predicted occurrence of rodent-borne cestode taxa (weighted 25%) in South Africa based on environmental suitability (shaded areas)

along with known occurrence records represented by yellow, blue, red, and green circles. White (non-shaded) areas represent areas where data were unavailable.

population, mobility, close human contact with commensal
indigenousM. coucha and associated anthropogenic changesmay
contribute in the survival and transmission of the cestode. Soil-
dwelling oribatid mites are believed to be intermediate hosts of
I. madagascariensis (30) and annual precipitation may influence
the occurrence of mites as they emerge to the soil surface
upon irrigation (86). Annual precipitation at a minimum of
600mm occurs widely in South Africa with the exception of
the Northern Cape Province (87) and is indicated for some
but not all of the areas of predicted distribution for this
species. Annual precipitation is therefore not likely to be a
limiting factor.

Some areas predicted as suitable for rodent-borne cestodes
included areas that had no prior record of occurrence
for the cestode species. This highlights that the species is
likely to be under-sampled. Under-estimation of helminth
infections is common due to challenges associated with occult
infections and lack of mandatory reporting in most countries
(54). The present study therefore, highlights the current and
potential areas at risk of the establishment of rodent-borne
cestodes and identifies the areas that require data collection
through surveys.

CONCLUSION

Rodent age as an intrinsic factor was found to impact on
strobilar cestode prevalence in the rodent hosts and supports

the prediction that cestode prevalence is aggregated among
the rodent community which is biassed to the older rodents
in the present study. Comprehensively sampled data from

surveys that are correctly georeferenced will remain the ideal
method to map species distributions. In disease ecology and
epidemiology, however, this will rarely be the case as the urgency
to allocate resources and implement interventions is of primary
importance following reported cases. Geospatial models are
valuable as they not only identify the areas at risk but also
the factors which may influence the occurrence. In the present
study the modelling approach produced statistically supported
SDMs of cestode species at a coarse resolution and yet it could
be interpreted in context of the niche requirements of the
species. Urban extent and human footprint were implicated
in the predicted distribution of more than one of the cestode
species assessed in this study and favour the commensal nature
of the definitive rodent hosts. In addition, altitude and soil
characteristics that may impact the arthropod intermediate hosts
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were also found as predictors for potential distribution. The
study determined that the ecological niche of the cestode species
were influenced by host intrinsic factors and environmental
factors that impact infective stages not only directly but also
indirectly through the environment of the intermediate and
definitive hosts. Management interventions to combat disease
emergence need to take into account all such factors to
have any chance of success. The combination of geospatial
modelling and univariate analyses could allowmanagement plans
to rapidly identify critical areas and vectors to implement a
targeted response.
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