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Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate

change. Although the production of phenolic compounds (PCs) has been shown to

be modulated by biotic and abiotic stresses, the genetic basis underlying the variation

in their constitutive production level remains poorly documented in conifers. We used

QTL mapping and RNA-Seq to explore the complex polygenic network underlying the

constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years.

QTL detection was performed for nine PCs and differentially expressed genes (DEGs)

were identified between individuals with high and low PC contents for five PCs exhibiting

stable QTLs across time. A total of 17 QTLs were detected for eight metabolites, including

one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq

analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key

transcription factors, and a subset of 137 genes showing opposite expression patterns

in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A

total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward

resolving the genomic architecture of PC production in spruce and facilitate the functional

characterization of genes and transcriptional networks responsible for differences in

constitutive production of PCs in conifers.

Keywords: conifers, phenolic compounds, Picea glauca, metabolites, QTL, RNA-Seq, co-regulation

INTRODUCTION

Empirical evidence indicates that global warming will increase pressure on conifer forests via
the intensification of drought events and the introduction of new insects and pathogens (Dale
et al., 2001; Sturrock et al., 2011). As long-lived species, trees largely depend on their mechanical
and chemical defenses to survive and reproduce (Davis and Shaw, 2001). Trees can protect
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themselves by producing secondary metabolites such as terpenes
and phenolic compounds including flavonoids, monolignols,
phenolic acids, stilbenes, and coumarins (Berini et al., 2018). The
constitutive production of phenolic compounds (PCs) is usually
thought to confer broad resistance to pathogens and abiotic
factors in trees (Francheschi et al., 2005; Kessler, 2015). In spruces
(Picea spp.), PCs are frequently associated with defense responses
against pathogenic fungi (Brignolas et al., 1995; Hammerbacher
et al., 2011, 2013, 2014) or pest insects (Brignolas et al., 1998;
Faccoli and Schlyter, 2007; Delvas et al., 2011; Schiebe et al., 2012;
Warren et al., 2015), and a recent study also highlighted their
involvement in drought resistance in Picea abies (Schiop et al.,
2017). Hence, PCs likely play amajor role in climate adaptation in
conifers. However, the genetic basis underlying their quantitative
variation remains poorly understood (Ralph et al., 2006a;Warren
et al., 2015), mainly due to the occurrence of large and complex
gene families in conifers, combined with a limited knowledge of
their functions (Hamberger and Bohlmann, 2006; Prunier et al.,
2016).

The regulatory mechanism of phenylpropanoid biosynthesis
is complex and involves several families of transcription factors
(TFs) that regulate the expression of downstream genes (Yang
et al., 2012). Recent advances showed that the PCs pathway in
plants is also controlled at different branches by R2R3-MYB
repressors (Cavallini et al., 2015; Ma and Constabel, 2019). The
regulation of late biosynthetic anthocyanin and proanthocyanin
genes is orchestrated by the ternary MBW complex, involving
transcription factors from the R2R3-MYB, basic helix–loop–
helix (bHLH) and WD40 classes (Xu et al., 2015; Ma et al.,
2018). Although the MBW network is evolutionary conserved in
plants (Ramsay and Glover, 2005), the considerable expansion
of TF families in plant lineages (Feller et al., 2011) could
lead to functionally divergent genes between angiosperms
and gymnosperms. The complex regulatory system of PCs
metabolism, i.e., genes and their networks of interactions,
remains largely undeciphered in conifer species. Recent work
evidenced protein-protein interactions among different MYB,
bHLH and WDR (Nemesio-Gorriz et al., 2017) and NAC gene
family (Dalman et al., 2017) in Norway spruce, while other
studies identified a variety of gene families (Hamberger and
Bohlmann, 2006; Ralph et al., 2006a; Warren et al., 2015), genes
(Celedon et al., 2017) and transcription factors (Bomal et al.,
2008; Bedon et al., 2010; Deng and Lu, 2017) playing a role in
the regulation of PC pathway.

The majority of PC traits are known to be predominantly
polygenic (Külheim et al., 2011; Francisco et al., 2016; Ganthaler
et al., 2017), hence the need to deploy genome-wide approaches
to study their synthesis. Quantitative trait loci (QTL) mapping
was used successfully to uncover the genetic architecture of
PCs production in crops (Li et al., 2016; Czyczyło-Mysza et al.,
2019) and tree species (Verdu et al., 2014; Caseys et al.,
2015). QTL analyses have also been successfully conducted in

Abbreviations: DEG, differentially expressed gene; DW, dry weight; Log2fc, log2
fold change; PCs, phenolic compounds; PVE, phenotypic variance explained; QTL,
quantitative trait loci; sp. (spp.), Species.

the Pinaceae, using traits relative to growth and phenology
(Pelgas et al., 2011; Prunier et al., 2013) and biotic stress
resistance (Porth et al., 2012; Lind et al., 2014). However,
these analyses suffer from low resolution in conifers because
of the low density of genetic linkage maps currently available
and because of the considerable time and resources needed
to grow, phenotype and genotype progenies. Recently, several
studies in angiosperms showed that combining QTL mapping
and transcriptome profiling is a robust approach to identify
candidate genes underlying complex traits (Xu et al., 2015; Ye
et al., 2017; Zhang et al., 2017; Jian et al., 2019). Transcriptome
profiling can be used in combination with genetic mapping
to narrow down the number of candidate genes identified by
QTL and pointing out key genes involved in the mechanisms
of interest. Hence, we used a similar approach to identify
key genes involved in the PC pathway in white spruce [Picea
glauca (Moench) Voss], a conifer species with high genome
complexity and for which considerable genomic resources such
as a draft genome sequences (Birol et al., 2013; Warren et al.,
2015), an annotated expressed gene catalog (Rigault et al.,
2011), high-throughput genotyping arrays (Pavy et al., 2013),
and a high-density genetic linkage map (Pavy et al., 2017) are
currently available.

In this study, we first conducted QTL mapping to assess
the genomic architecture of the constitutive production of nine
candidate PCs in a white spruce full-sib family. Three flavonoids,
one neolignan and one stilbenoid, for which we identified QTLs
stable across 2 years of measurement, were further analyzed with
RNA-Seq in order to identify key genes involved in the regulatory
network of PC metabolism. Differentially expressed genes
(DEGs) among individuals displaying contrasting phenotypes
(high vs. low metabolite content) were identified and compared
with genes located in QTLs.

MATERIALS AND METHODS

Workflow
In this study, QTL and RNA-Seq approaches were used
to identify genes involved in the metabolism of nine PCs
in a random subset of 1,976 siblings previously used to
produce a high-resolution genetic map for white spruce (Pavy
et al., 2017). The nine PCs, all related to various biotic
and abiotic stress responses in spruce species as well as
in other plants (Table 1), were quantified for 164 and 202
siblings in two different years (Figure 1). QTL analyses were
conducted with phenotypes obtained for the same progeny
used for genetic mapping. From there, five metabolites showed
a significant underlying genetic component for both years of
assessment and were deemed of prime interest to be further
investigated at the transcriptomic level using an RNA-Seq
approach. For each of these metabolites, at least 20 siblings
presenting contrasting phenotypes (i.e., highest and lowest
metabolite content) were selected for individual transcriptome
profiling and analyzed to highlight sets of differentially
expressed genes.
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TABLE 1 | Bark phenolic compounds analyzed in a white spruce full-sib family.

Metabolite Molecule skeleton Class MW (g mol−1)a Formula Biotic stressb Abiotic stressc

Astringin Stilbenoid 406.1 C20H22O9 Fungus Hammerbacher et al. (2011) Not studied

Catechin Flavonoid 290.3 C15H14O6 Fungus Bahnweg et al. (2000) Chobot et al. (2009)

Gallocatechin Flavonoid 306.3 C15H14O7 Fungus Hammerbacher et al. (2018) Wang et al. (2016)

Isorhapontin Stilbenoid 420.4 C21H24O9 Fungus Hammerbacher et al. (2011) Not studied

Neolignan-2 Lignan 400.5 C23H28O6 Insect Schiebe et al. (2012) Moura et al. (2010)

Piceid Stilbenoid 390.4 C20H22O8 Insect and fungus Brignolas et al. (1998) Villangó et al.

(2016)

Procyanidin B1 Flavonoid 578.5 C30H26O12 Insect Rohde et al. (1996) Varela et al. (2016)

Taxifolin Flavonoid 304.2 C15H12O7 Fungus Evensen et al. (2000) Not studied

Taxifolin

glucoside

Flavonoid 466.4 C21H22O12 Insect and fungus Brignolas et al. (1995) Not studied

aMolecular weight of the phenolic compound (g mol−1) and chemical formula are indicated.
bStudies demonstrating the role of the phenolics tested in tree response to biotic stresses (insect and pathogens) in Picea sp. are reported.
cStudies demonstrating the role of the phenolics tested in tree response to abiotic stresses (drought) in plant species are reported.

Plant Material and Phenotypic Data
Measurements
Twigs were collected on 164 and 202 full-sib siblings in August
2014 (age 15) and August 2017 (age 18), respectively, from

a QTL mapping population previously used in several studies
(cross C94-1-2516 between ♀77111 × ♂2388; Figure 1; see
Pelgas et al., 2011; Pavy et al., 2012, 2017) and raised in a
common garden located in Saint-Antonin, Québec (47◦45N;
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FIGURE 1 | Schematic representation of experimental design. Bark samples were collected from 164 to 202 white spruce siblings in 2014 and 2017, respectively.

QTL analyses were performed on nine phenolic compounds for both years. For five metabolites, RNA sequencing was conducted on a subset of individuals displaying

high vs. low metabolite contents in 2017. For each of the five metabolites, differentially expressed genes (DEGs) among groups of individuals displaying contrasting

phenotypes were identified.

69◦28W). Seventy-nine siblings were common to both sampling
years. Twigs (3-4 copies each) corresponding to the two
parents originally crossed were also sampled in August 2015,
2016, and 2017 at the Cap-Tourmente Arboretum of Natural

Resources Canada, Québec (47◦05N; −70◦47W). All sampled
trees were originally produced from grafted material with a
normal growth. For each tree, current-year twigs (18 cm long)
were collected at breast height on the same side. Each sample
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was cut longitudinally with a razor blade to separate the
woody inner stem tissues, the pith, from the bark tissues.
Each sample was then cut into two parts, immediately frozen
in liquid nitrogen, and stored at−80◦C until further use:
one part for metabolite quantification and the other one for
transcriptomic analyses.

Metabolite Quantification: Extraction of
Phenolic Compounds
Extraction of PCs, namely astringin, catechin, gallocatechin,
isorhapontin, 4-[1,3-dihydroxy-2-[2-hydroxy-4-(3-hydroxy
propyl)phenoxy]propyl]-β-D-xylopyranoside (neolignan-2;
Supplementary Figure 1), piceid, procyanidin B1, taxifolin and
taxifolin glucoside, was performed at the Max Planck Institute in
Germany. Briefly, PCs were extracted from ground bark samples
and quantified by LC-tandem mass spectrometry on an Agilent
1200 HPLC system (Agilent, Santa Clara, CA, United States)
coupled to an API 3200 mass analyzer (Sciex, Darmstadt,
Germany). Analyst v1.5 software (Applied Biosystems) was
used for data acquisition and processing. Linearity of metabolite
detection for quantification was verified by external calibration
curves for catechin, taxifolin, astringin and procyanidin B1.
Other metabolite concentrations were determined relative to
the calibration curve of the metabolite most closely resembling
it. Detailed procedures are given in Supplementary Methods
1 in Supplementary Material. Descriptive statistics and
phenotypic distributions of metabolites are reported in
Supplementary Table 1 and Supplementary Figure 2. Pairwise
correlations between metabolite concentrations measured in
2014 and 2017 were calculated with the software R 3.5 (R Core
Team, 2013) using the rcor function in the Hmisc R package
(Harrell, 2014).

QTL Analyses
QTL analyses were conducted in order to identify genomic
regions accounting for variation in metabolite concentrations
among siblings and underlying candidate genes putatively
carrying causal variants. QTLs detection was performed for the
nine PCs investigated (Table 1). Data were analyzed on a yearly
basis using the two parental linkage maps consisting in 2,774
(female) and 2,308 (male) high-quality SNPs mapping in as many
separated genetic bins (see details in Pavy et al., 2017), resulting
in four distinct QTL analyses per metabolite. All individuals
included herein were part of the progeny originally used to
generate the consensus linkage map consisting of 8,793 distinct
gene loci (Pavy et al., 2017). QTL analyses were conducted
with the software MapQTL v6.0 (van Ooijen and Kyazma,
2009), using interval mapping, which is a robust method against
deviations from normality (van Ooijen and Kyazma, 2009). A
QTL with a LOD score > 3.1 was considered significant (P <

0.05 based on 1,000 genome-wide permutations of the markers).
QTLs detected on each parental map were then positioned on
the consensus map. Genes within 1 LOD of either side of
the QTL peak were considered as candidate genes. Given the
extremely high LOD score associated with neolignan-2 QTL,
the window was expanded to 15 cM, which corresponded to

the average window size of other significant QTLs detected in
this study.

RNA-Seq Experiment
QTL analyses revealed that five metabolites, namely
gallocatechin, neolignan-2, piceid, procyanidin B1 and
taxifolin glucoside, had significant QTLs across both years
surveyed (Figure 1). The expression of genes involved in the
biosynthesis of those five metabolites were further investigated
using RNA-Seq to identify sets of differentially expressed
genes (DEGs) between two groups of individuals that showed
contrasting concentrations of metabolites. Out of the 202 siblings
collected in 2017, we selected 80 individuals showing high or
low concentrations in gallocatechin, piceid, procyanidin B1
and taxifolin glucoside metabolites (Figure 1), some of them
showing extreme phenotypes for more than one metabolite.
The transcriptomic profiles of 20 phenotypically divergent
individuals per PC (10 high-metabolite content vs. 10 low-
metabolite content individuals) were then compared. Since the
neolignan-2 displayed a bimodal distribution of concentrations
(Figure 2), each of the two contrasted groups of individuals
included 35 siblings instead of 10.

RNA Extraction, Libraries Preparation and

Sequencing
For the 80 individuals selected for RNA-Seq, total RNA was
isolated from frozen bark tissues following the method of
Chang et al. (1993), with the protocol modifications described
in Pavy et al. (2008), as detailed in Supplementary Methods 2
in Supplementary Material. For each sibling, a cDNA library
was generated from 1 µg of total RNA using the KAPA
stranded mRNA-Seq Kit (KAPA Biosystems, Roche Sequencing
solutions, Canada). This kit contains all buffers and enzymes
required for the poly(A) mRNA capture and the construction
of stranded mRNA-Seq libraries of 100 ng−4 µg of intact
total RNA. A PCR of 13 cycles was then performed for each
cDNA library having a specific adapter (Illumina TruSeq HT).
The quality of total RNA was assessed using the Agilent
2100 Bioanalyzer with RNA 6000 Nano LabChips (Agilent
Technologies Inc, Santa Clara, CA, USA) and RNA concentration
was determined with a Nanodrop 1000 spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, U.S.A). For all
samples, RNA concentration exceeded 100 ng µl−1 and RNA
Integrity Number (RIN) exceeded 7.8. Libraries were first tagged
individually, and then merged into a single sequencing pool at
equimolar concentrations. The pool was sequenced at McGill
University and Genome Quebec Innovation Center (Montreal,
Quebec, Canada) using two lanes of Illumina NovaSeq 6000
S2 PE100.

Pre-processing and Differential Gene Expression

Analyses
For each of the five metabolites tested, gene expression was
compared between groups of individuals showing high and low
PC contents. Quality of raw sequence data was first checked
using FASTQC v0.11.2 (Andrews et al., 2014) for each sibling
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FIGURE 2 | Metabolite concentrations and QTL mapping for neolignan-2. Concentrations of neolignan-2 obtained (A) from grafted material (3–4 ramets)

corresponding to both parents (♀77111, ♂2388) sampled in August 2015, 2016, and 2017, and (B) from 164 and 202 siblings sampled in August 2014 and 2017,

respectively. (C) Linkage map of the white spruce progeny showing location of the putative QTLs with LOD score for neolignan-2 in 2014 (orange line) and 2017

(green line). The peak LOD score reached 75.87 and 86.29 in 2014 and 2017, respectively. The vertical dotted line indicates the threshold for significant linkages of the

LOD scores (i.e., 3.1). Ticks on the chromosome represent mapped genes according to Pavy et al. (2017). Within the QTL interval, red and black ticks are genes for

which markers were detected for ♂2388 and ♀77111, respectively.

sequenced. Adapter sequences were trimmed using Cutadapt
(Martin, 2011) and checked again with FASTQC v0.11.2 to ensure
proper trimming. For each metabolite, reads of individuals
making up the high and low PC content groups were pooled.
High-quality reads were then aligned against the most recent
version of the white spruce reference transcriptome (Rigault
et al., 2011) using Salmon v0.11.0 with the following options:
–Gcbias, –seqBias, –validatingMappings and minScoreFraction
(0.8) (Patro et al., 2017).

Read counts were further normalized using the DESeq2
Bioconductor package in R (Anders and Huber, 2010; Love

et al., 2014). Differential gene expression analyses were then
carried out using the default pipeline implemented in the
function “DESeq.” The DEGs were then determined using
a threshold of < 0.05 (adjusted p-value after applying the
Benjamini-Hochberg’s multiple-testing correction; Benjamini
and Hochberg, 1995). Expression level of DEGs was further
classified as high (log2fc ≥ 1) or low (log2fc ≤−1) according
to the log2 fold change values (log2fc) obtained when
comparing expression in high vs. low metabolite content
individuals. DEGs with a total read count lower than 10
were discarded. Venn diagrams were plotted to highlight
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unique and shared DEGs among metabolites using a bio-
analytic web tool (http://bioinformatics.psb.ugent.be/webtools/
Venn/).

Functional Characterization and Enrichment Tests of

Differentially Expressed Genes
Using the BLAST2GO PRO suite (Gotz et al., 2008), functional
annotations of the DEGswere retrieved by performing a BLASTX
search against the RefSeq database (RefSeq release 91, using a
cut-off e-value of ≤10−10). Homologous protein domains from
translated sequences were then identified by searching against
the Interpro database. GO annotations (molecular functions
and biological processes) were obtained for each DEG and
slimmed down into the more general GO plant slim terms.
For each metabolite, enrichment tests were performed by
comparing GO associated with DEGs with those associated
with the full set of expressed genes, using Fisher’s exact tests
(P < 0.05) in the BLAST2GO PRO suite. The transcription
factor database PlantRegMap/PlantTFDB v5.0 was used to
identify potential transcription factors among DEGs (TFs; http://
planttfdb.cbi.pku.edu.cn/; Jin et al., 2017; Tian et al., 2020).
Finally, DEG functions were visualized in MapMan v3.5.1
(Thimm et al., 2004) using DEG mapping files generated by
Mercator (v3.6; Lohse et al., 2014). MapMan classifies genes
into various relevant functional categories, also referred as BIN
classes herein.

RESULTS

Variation in Phenolic Compounds and
Correlations
The nine PCs examined in this study belonged to the flavonoid,
the stilbenoid, and the lignan biosynthesis pathways (Table 1).
Astringin and isorhapontin were the most abundant metabolites
(62.35 and 22.20mg g−1 DW, respectively), followed by
taxifolin (12.55mg g−1 DW). The other PCs were relatively
less abundant, with concentrations <3.28mg g−1 DW
(Supplementary Table 1). All metabolites followed a unimodal
and continuous distribution (Supplementary Figure 2), except
for neolignan-2, which displayed a clear bimodal distribution
in parents (Figure 2A) and progeny (Figure 2B), suggesting the
possibility of a major gene effect.

Most metabolite concentrations within individuals were
positively correlated (Figure 3). An exception was found for
gallocatechin and taxifolin glucoside, which appeared negatively
correlated in 2014 (Figure 3). As a general trend, PCs synthesized
from the same biosynthetic pathway were most highly correlated,
as observed for the two stilbenoids astringin and piceid (r = 0.60
in 2014 and r= 0.70 in 2017), and for the flavonoids catechin and
procyanidin B1 (r > 0.73). However, one other exception was the
strong correlation between piceid (a stilbenoid) and catechin (a
flavonoid) (r > 0.78 in 2017). The concentration of neolignan-2
only moderately correlated with other metabolites (0.14 < r <

0.36), but variations in concentration among individuals were
stable across time (r= 0.94, P < 0.05; based on the 79 individuals
measured in both years; data not shown).

QTL Analyses
A total of 17 significant QTLs (LOD score > 3.1) were detected
for eight of the nine metabolites tested (Table 2). Individual
QTLs included between 23 and 160 genes, resulting in a list of
871 unique candidate genes (Supplementary Table 2). QTLs for
astringin, catechin and taxifolin were only detected from 2017
data (Table 2). Significant QTLs for gallocatechin, neolignan-2,
piceid, and procyanidin B1 were observed for both years on at
least one co-localizing region of a unique parent. In addition, two
distinct QTLs were detected for taxifolin glucoside in 2014 and
2017, on different parents and genomic regions. The phenotypic
variance explained (PVE) by single QTLs ranged between
8.0% (which is approximately corresponding to the genome-
wide significance threshold for this experiment) and 91.3%.
Interestingly, very high LOD scores (86.3 and 75.9) and PVE
values (91.3 and 82.4%) were obtained for the only QTL detected
for neolignan-2 in both years (Table 2; Figure 2C). Those
observations highlight the occurrence of a genetic effect with
strong impact on this phenotype on linkage group 4 (Figure 2C).
Overall, QTLs were located on seven out of the 12 linkage groups
(LG), corresponding to the 12 chromosomes of white spruce.
Co-localization of QTLs for both years of measurement was
observed for four PC (gallocatechin on LG8; neolignan-2 and
piceid on LG4; and procyanidin B1 on LG1). This indicates that
genotype-phenotype linkages were robust to inter-annual climate
variations, which strengthen the involvement of these regions in
the control of the studied phenotypes. These compounds were
thus selected for transcriptomic analysis along with taxifolin
glucoside, for which QTLs were detected for both years of
measurement, but on different parents (Table 2; Figure 1).

The functional annotation of genes located within QTL
regions relied on BLAST2GO annotations, GO terms
classification, and protein family signatures. While most
QTL genes had no known direct role in the phenylpropanoid
pathway, we found two genes previously reported as involved in
the PC biosynthesis in Picea abies, namely a leucoanthocyanidin
reductase-like gene (LAR; GQ03701_M12) for procyanidin
B1, and a flavonoid 3′,5′-hydroxylase 2-like gene (F3′5′H;
GQ03712_G11) for taxifolin glucoside (Supplementary Table 2).

Relative Functions of Differentially
Expressed Genes Between Groups of High
and Low PC Content Individuals
The five selected metabolites (gallocatechin, neolignan-2,
piceid, procyanidin B1, and taxifolin glucoside) were further
investigated using RNA-Seq to compare the transcriptomic
profiles of individuals showing contrasting phenotypes (high vs.
lowmetabolite concentrations for each PC). A summary of RNA-
Seq statistics is presented in Supplementary Table 3. A total of
603 unique DEGs were identified at a rate of 3 to 372 DEGs
per metabolite (Figure 4A; Supplementary Table 4). DEGs
overlap among metabolites was very limited to non-existent,
except for gallocatechin and taxifolin glucoside, which shared
137 DEGs (Figure 4B). Except for one gene, these DEGs showed
higher expression in high taxifolin glucoside content individuals
and lower expression in high gallocatechin content individuals
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FIGURE 3 | Pairwise correlations between phenolic compounds contents measured in 2014 (bottom left; 164 siblings) and 2017 (top right; 202 siblings). Metabolites

are classified into three major classes. The scale bar reports positive (red) and negative (blue) correlations. For each phenotypic correlation, the correlation coefficient

and significance level are indicated. Levels of significance are as follows: *P < 0.05, **P < 0.01, and ***P < 0.001.

(Figure 4C). Among the 603 DEGs, 436 were successfully
annotated with a GO term associated to molecular functions
and biological processes (Supplementary Figure 3). The GO
enrichment analyses revealed that DEGs were particularly
overrepresented in monosaccharide metabolic (2.5%), secondary
metabolic (1.9%) and phenylpropanoid metabolic (1.9%)
processes (Supplementary Figure 3). Overrepresented
molecular functions included stress-related functions such
as catalytic (59.2%), oxidoreductase (16.8%), lyase (7.6%),
and transferase (5.7%) activities, and functions related to the
phenylpropanoid pathway such as UDP-glycosyltransferase and
O-methyltransferase activities (Supplementary Figure 3).

MapMan analyses were conducted to classify DEGs
into relevant functional bins (or functional categories;
Supplementary Figure 4; Supplementary Table 5). DEGs were
assigned to 29 functional bins. While an important proportion of
the 603 DEGs were not assigned (37%), a significant proportion
of DEGs was related to secondary metabolism (8.9%), stress
(5.9%) and signaling (5%) (Supplementary Figure 4). The
stress-related genes included 20 unique DEGs involved in
abiotic stress response (Figure 5A). The most relevant functions
associated to the 144 unique DEGs involved in biotic stress
response included pathogenesis-related (PR) proteins, heat
shock proteins, transcription factors as well as various genes
involved in hormone signaling and defense (Figure 5A). The
59 defense-related DEGs identified by MapMan (Figure 5A)
included 11 putative PR-proteins, and 48 genes involved in
secondary metabolism, among which 36 genes were involved in
the shikimate/phenylpropanoid pathway (Figure 5B).

Identification of Candidate Genes
Specifically Associated to the
Phenylpropanoid Pathway
For all metabolites considered, the combination of MapMan
classification and Blast2GO functional annotations allowed for
the identification of 50 DEGs involved in the phenylpropanoid
pathway associated with monophenols, phenylpropanoids,
flavonoids, as well as lignins and lignans metabolism (Table 3;
Figure 5B). From this subset, 31 and 30 DEGs were respectively
associated to gallocatechin and taxifolin glucoside, including
15 genes shared between the two DEG sets. In addition,
four other genes were associated with neolignan-2 and
procyanidin B1. For all metabolites, the most represented
gene families were the putative dirigent proteins (DIR) (9
genes), laccases (7 genes) and plant peroxidases (6 genes)
(Table 3). Among the 50 DEGs identified, 36 DEGs were
differentially expressed between the groups of high and
low PC content individuals. A large proportion of putative
DIR showed higher expression, with three genes associated
with taxifolin glucoside (GQ03808_J11, GQ03806_D05,
GQ03307_E08), two with gallocatechin (GQ036606_J07,
GQ03815_M16), one with neolignan-2 (WS00740_J05)
and one with procyanidin B1 (GQ01301_K10). Two DIR
showing lower expression were detected for gallocatechin
(GQ03806_D05, GQ03803_O03). Most laccases associated
to the phenylpropanoid pathway were also differentially
expressed, with four highly expressed and three lower
expressed genes in individuals with high taxifolin glucoside
and high gallocatechin content, respectively. In addition,
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TABLE 2 | Summary statistics of significant QTLs (LOD score > 3.1) detected for eight phenolic compounds in the C94-1-2516 white spruce full-sib family in 2014 and

2017.

Trait Year Parent Linkage

groupa

QTL

Positionb LOD

score

maxc

PVEd Number of

genes in

the QTLe

Marker with highest LODf

Astringin 2014 No QTL found

2017 77111 2 107.1–124.3 4.33 9.4 101 GQ0201_C16.1:213

Catechin 2014 2388 6 129–137.3 3.31 8.9 74 GQ03417_E16.1:213

GQ03517_A20.1:183

GQ03813_N18.1:900

2017 No QTL found

Gallocatechin 2014 77111 6 102.6–115.2 4.26 11.3 52 GQ04010_D06.1:89 (LOD 4.21)

2388 8 80.5–95.6 8.23 20.8 51 GQ03706_F01.1:209 (LOD 8.16)

PGLM1-0902 (LOD 8.16)

GQ03222_J15.1:397 (LOD 8.16)

2017 77111 4 68.1–103.8 4.15 9.1 160 PGLM2-1250

77111 8 94.1–117.8 3.88 8.5 99 GQ04108_O24.1:246

2388 8 85.8–99.3 6.93 14.7 52 GQ03616_J03.1:82

Neolignan-2g 2014 2388 4 122.3–134.5 86.29 91.3 67 GQ03509_O17.1:634

2017 2388 4 122.3–134.5 75.87 82.4 61 GQ03509_O17.1:634

Piceid 2014 77111 4 150.3–163.5 7.41 19.1 72 GQ0168_L11.2:1112

2017 77111 4 151.3–157.2 4.83 10.5 23 GQ02820_P07.1:861

Procyanidin B1 2014 2388 1 0.5–6.2 3.44 9.4 36 GQ03608_I02.1:558 (LOD 3.24)

GQ03711_A03.1:507 (LOD 3.24)

PGLM2-0208 (LOD 3.24)

2017 2388 1 5.2–27.3 4.97 10.8 100 GQ03222_P17.1:624

GQ03230_C18.1:470

GQ03718_P22.2:170

Taxifolin 2014 No QTL found

2017 77111 10 106.4–124.2 4.22 9.2 60 GQ02811_E24.1:907

GQ03001_G19.1:192

GQ02802_M06.1:581

PGLM1-0106

GQ0024_A06.1:139

6 102.6–111.1 3.66 8.0 35 WS00110_I05.1:387 (LOD 3.63)

Taxifolin glucoside 2014 2388 6 63.5–72.3 4.18 11.7 38 GQ03220_G12.1:1305 (LOD 4.01)

2017 77111 9 0.0–8.9 3.81 8.4 27 PGLM2-0975 (LOD 3.79)

GQ03613_M22.1:156 (LOD 3.79)

PGLM1-1021 (LOD 3.79)

aLinkage group (LG) according to Pavy et al. (2017).
bPosition on the consensus map ± 1 LOD in centimorgan (cM).
cLOD score max: maximum LOD score for mapped markers.
dPVE: phenotypic variance explained, expressed in percentage (%).
eNumber of genes found in the QTL.
fAssociated marker (Pavy et al., 2017) with highest LOD. If no marker was present at the highest LOD score, the marker closest to the LOD score max was indicated and its LOD score

in parenthesis.
gQTL position for neolignan-2 was defined as the average window size of significant QTLs detected in other metabolites (e.g., 15 cM), as only one gene was mapped in the neolignan-2

QTL when using a window of ± 1LOD.

three putative peroxidases (GQ0202_L09, GQ03322_C02,
GQ02016_E21), two O-methyltransferases (WS00740_E09,
GQ03507_F11), one cytochrome P450 (WS00736_D10)
and one NmrA-like (GQ03009_B07) putative protein

showed higher expression in high taxifolin glucoside
content individuals.

In this study, genes known to be involved in the
phenylpropanoid pathway in white spruce or other plant

Frontiers in Plant Science | www.frontiersin.org 9 May 2021 | Volume 12 | Article 675108

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Laoué et al. Genetics of Spruce Phenolics Metabolism

FIGURE 4 | Results of differential expression analyses for five phenolic

compounds. (A) Proportion of differentially expressed genes (DEGs) among

groups of individuals displaying contrasting phenotypes, for each metabolite.

The proportion of DEGs was calculated as the number of DEGs divided by the

total number of genes expressed. The number of DEGs is reported above the

bars. (B) Venn diagrams showing the overlap among the 603 DEGs identified

for all five metabolites. The set of 137 genes shared between gallocatechin

and taxifolin glucoside (surrounded by a blue and red diamond) is further

(Continued)

FIGURE 4 | presented in panel (c). (C) Opposite expression profiles of the 137

genes shared between gallocatechin and taxifolin glucoside. The log fold

changes of DEGs identified for taxifolin glucoside are plotted against log fold

changes of DEGs identified for gallocatechin. The correlation coefficient and

p-values are reported. Log2FC: log2 fold change.

species, and genes that were found differentially expressed were
designated as key genes. Among the 50 DEGs associated to the
phenylpropanoid pathway (Table 3), we identified five key DEGs,
namely the 4-coumarate-CoA ligase (4CL), the phenylalanine
ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR),
p-coumaroyl shikimate/quinate 3′–hydroxylase (C3H) and
caffeic O-methyltransferase (COMT) (Figure 6). Six other key
enzymes were associated specifically to the flavonoid pathway,
and included the flavonol synthase (FLS), the UDP-dependent
glucosyl transferase (UGT), the flavonoid 3′5′-hydroxylase
(F3′5′H - CYP75A), the bifunctional dihydroflavonol 4-
reductase/flavanone 4-reductase (DFR), the leucoanthocyanidin
reductase (LAR) and the anthocyanidin reductase (ANR)
(Figure 6). It should be noted that FLS, UGT and F3H displayed
opposite gene expression patterns in individuals producing
high levels of taxifolin glucoside, compared to those producing
high levels of gallocatechin (see Supplementary Table 4

for details).

Differentially Expressed Transcription
Factors as Potential Regulators of the
Phenylpropanoid Pathway
A total of 41 transcription factors (TFs) were differentially
expressed among the high and low PCs content groups
(Supplementary Table 6). Among those, MYB (10 genes),
WRKY (5 genes), NAC and AP2-EREBP (3 genes) were the most
represented families. No significant TFs were found for piceid,
one for procyanidin B1, while only three TFs were detected
for neolignan-2. The remaining TFs were associated to taxifolin
glucoside and gallocatechin. One bHLH (GQ01301_E17),
one WD40 (GQ03304_I14), one WRKY (GQ03304_E19) and
eight MYBs genes showed high and low expression in
individuals producing high levels of taxifolin glucoside and
gallocatechin, respectively.

Combining QTL and Transcriptomic
Analyses to Identify Candidate Genes for
Phenolic Compound Variation
A total of 19 DEGs that were associated to gallocatechin,
neolignan-2, and taxifolin glucoside, were also located within
QTL regions (Supplementary Table 7). Those genes can be safely
designated as candidate genes for PC variation. They included
five hydrolases, four uncharacterized putative proteins as well as
two genes encoding methylesterases and transferases. None of
them were formally associated to the phenylpropanoid pathway.
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FIGURE 5 | MapMan-based classification of differentially expressed genes (DEGs) involved in stress responses. (A) Expression profiles of DEGs involved in biotic and

abiotic stresses. (B) Expression profiles of DEGs involved in secondary metabolism. The scale bar represents positive (red) and negative (blue) regulation of gene

expression based on log2fc scores. Black squares represent genes that were either high or low expressed depending on the phenolic compound considered.
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TABLE 3 | List of differentially expressed genes (DEGs; adjusted P < 0.05) involved in phenolic compounds metabolism.

Metabolite DEG ID Sequence descriptiona InterPro classificationb Adjusted

p-values

Log2fc Expressionc

Gallocatechin GQ04107_C21 Flavonoid 3′,5′-hydroxylase 2-like Cytochrome P450 E-class group I 4.14E-05 2.30 HIGH

GQ03606_J07 Dirigent protein 11-like Dirigent protein 4.41E-02 2.20 HIGH

GQ04105_L05 Protein DMR6-LIKE OXYGENASE 2 Isopenicillin N synthase-like,

oxoglutarate/iron-dependent dioxygenase

6.39E-03 2.05 HIGH

GQ03815_M16 Dirigent protein 1-like Dirigent protein 1.82E-03 1.76 HIGH

GQ03111_E17 Probable mannitol dehydrogenase Leucine-rich repeat domain superfamily 7.62E-03 −1.17 LOW

GQ03313_A02 Cinnamoyl-coa reductase 1-like NAD-dependent epimerase/dehydratase 2.65E-02 −1.00 LOW

GQ03805_H10 Laccase-3-like isoform X1 Cupredoxin, laccase, multicopper oxidase

type 1

9.81E-03 −1.07 LOW

GQ03806_D05 Dirigent protein 11 Dirigent protein 1.72E-02 −1.08 LOW

GQ02901_F15 Bifunctional pinoresinol-lariciresinol

reductase 2

NmrA-like domain 3.38E-03 −1.10 LOW

GQ03322_C02 Peroxidase 11 Plant peroxidase 3.04E-02 −1.11 LOW

GQ03216_M13 Laccase-5-like Laccase, multicopper oxidase type 1 7.00E-03 −1.15 LOW

GQ03812_J09 Xanthohumol 4’-O-methyltransferase Winged helix-like DNA-binding domain

superfamily, O-methyltransferase domain

4.56E-03 −1.17 LOW

GQ03803_O03 Dirigent protein 22-like Dirigent protein 2.07E-03 −1.20 LOW

GQ0202_L09 Peroxidase 72-like Plant peroxidase 2.45E-03 −1.22 LOW

GQ03009_B07 Isoflavone reductase homolog

PCBER-like

NmrA-like domain 2.61E-04 −1.30 LOW

GQ03807_A11 Omega-hydroxypalmitate O-feruloyl

transferase

Chloramphenicol acetyltransferase-like

domain superfamily

7.05E-03 −1.31 LOW

GQ03214_N14 Laccase-12-like Cupredoxin, multicopper oxidase type 2 4.07E-03 −1.39 LOW

GQ0253_H12 UDP-glycosyltransferase 85A8-like FAD/NAD(P)-binding domain superfamily 1.18E-03 −1.43 LOW

GQ03804_M07 Peroxidase 40 Plant peroxidase 1.44E-02 −1.58 LOW

GQ0082_B18 Flavonol synthase/flavanone

3-hydroxylase-like

Isopenicillin N synthase-like 8.28E-06 −1.74 LOW

GQ03229_E14 UDP-glycosyltransferase 86A1 Alpha/Beta hydrolase fold 6.39E-03 1.00 −

GQ03507_H08 Isoflavone reductase homolog TP7 Concanavalin A-like lectin/glucanase

domain superfamily

3.50E-02 0.94 −

GQ03901_P05 Probable 2-oxoglutarate-dependent

dioxygenase ANS

Isopenicillin N synthase-like 2.39E-02 0.53 −

GQ03810_P08 Isoflavone reductase-like protein NmrA-like domain 3.77E-03 −0.47 −

GQ03312_B13 Phenylalanine ammonia-lyase Phenylalanine ammonia-lyase shielding

domain superfamily

2.11E-02 −0.56 −

GQ0043_N14 Anthranilate N-methyltransferase-like O-methyltransferase domain 1.02E-03 −0.58 −

GQ03207_H04 Isoflavone reductase homolog A622-like NmrA-like domain 2.49E-03 −0.60 −

GQ03712_G11 Flavonoid 3′,5′-hydroxylase 2-like Cytochrome P450 3.24E-02 −0.85 −

WS00736_D10 Cinnamoyl-coa reductase 1-like isoform

X2

Cytochrome P450 superfamily 3.06E-02 −0.86 −

GQ03712_H19 Anthocyanidin reductase

((2S)-flavan-3-ol-forming)

Citrate synthase superfamily 3.50E-04 −0.87 −

GQ04102_M17 Protein DMR6-LIKE OXYGENASE 2-like Oxoglutarate/iron-dependent dioxygenase 4.97E-02 −0.91 −

Neolignan-2 WS00740_J05 Dirigent protein 11-like Dirigent protein 1.01E-05 1.60 HIGH

GQ03232_H18 Protein DMR6-LIKE OXYGENASE 2-like Oxoglutarate/iron-dependent dioxygenase 4.25E-04 1.26 HIGH

GQ02820_P07 Anthranilate N-benzoyltransferase protein

1

Chloramphenicol acetyltransferase-like

domain superfamily

6.28E-12 −0.27 −

Procyanidin

B1

GQ01301_K10 Disease resistance response protein 206

isoform X2

Dirigent protein 2.11E-02 2.45 HIGH

Taxifolin

glucoside

WS00740_E09 Caffeic acid 3-O-methyltransferase O-methyltransferase domain 6.39E-03 2.51 HIGH

GQ0253_H12 UDP-glycosyltransferase 85A8-like FAD/NAD(P)-binding domain superfamily 2.29E-04 1.88 HIGH

GQ03519_N09 Flavonol synthase/flavanone

3-hydroxylase

Protein kinase-like domain superfamily 7.88E-03 1.82 HIGH

(Continued)

Frontiers in Plant Science | www.frontiersin.org 12 May 2021 | Volume 12 | Article 675108

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Laoué et al. Genetics of Spruce Phenolics Metabolism

TABLE 3 | Continued

Metabolite DEG ID Sequence descriptiona InterPro classificationb Adjusted

p-values

Log2fc Expressionc

GQ02016_E21 Peroxidase 72-like isoform X2 Plant peroxidase 1.11E-06 1.74 HIGH

GQ03507_F11 Caffeic acid 3-O-methyltransferase-like O-methyltransferase COMT-type 2.92E-02 1.67 HIGH

GQ0082_B18 Flavonol synthase/flavanone

3-hydroxylase-like

Isopenicillin N synthase-like 1.10E-04 1.59 HIGH

GQ03805_O13 Laccase-3-like Multicopper oxidase type 2 5.88E-04 1.53 HIGH

GQ03807_A11 Omega-hydroxypalmitate O-feruloyl

transferase

Chloramphenicol acetyltransferase-like

domain superfamily

6.55E-08 1.52 HIGH

GQ03808_J11 Dirigent protein 22-like Dirigent protein 8.72E-04 1.41 HIGH

GQ03214_N14 Laccase-12-like Cupredoxin, multicopper oxidase type 2 3.42E-04 1.37 HIGH

GQ03805_H10 Laccase-3-like isoform X1 Cupredoxin, laccase, multicopper oxidase

type 1

4.69E-04 1.31 HIGH

GQ03806_D05 Dirigent protein 11 Dirigent protein 4.17E-04 1.26 HIGH

GQ03216_M13 Laccase-5-like Laccase, multicopper oxidase type 1 9.87E-05 1.23 HIGH

GQ03812_J09 Xanthohumol 4’-O-methyltransferase Winged helix-like DNA-binding domain

superfamily

1.35E-05 1.22 HIGH

GQ03307_E08 Disease resistance response protein 206

precursor

Dirigent protein 3.04E-05 1.22 HIGH

GQ0202_L09 Peroxidase 72-like Plant peroxidase 4.20E-04 1.17 HIGH

WS00736_D10 Cinnamoyl-coa reductase 1-like isoform

X2

Cytochrome P450 superfamily 2.33E-02 1.15 HIGH

GQ03111_E17 Probable mannitol dehydrogenase Leucine-rich repeat domain superfamily 3.26E-03 1.11 HIGH

GQ03009_B07 Isoflavone reductase homolog

PCBER-like

NmrA-like domain 9.14E-04 1.09 HIGH

GQ03322_C02 Peroxidase 11 Plant peroxidase 9.84E-03 1.04 HIGH

GQ03814_I06 Cinnamoyl-coa reductase 1-like NAD-dependent epimerase/dehydratase 3.70E-02 1.03 HIGH

GQ03206_H08 Dihydroflavonol 4-reductase-like NAD-dependent epimerase/dehydratase 1.06E-02 1.03 HIGH

GQ04004_H10 Geraniol 8-hydroxylase-like Cytochrome P450 superfamily 2.93E-02 −1.00 LOW

GQ03712_H19 Anthocyanidin reductase

((2S)-flavan-3-ol-forming)

NAD-dependent epimerase/dehydratase 1.50E-04 1.00 −

GQ0074_I15 Hydroquinone glucosyltransferase-like LysM domain 1.91E-04 0.93 −

GQ03004_G22 Phenylalanine ammonia-lyase Phenylalanine ammonia-lyase shielding

domain superfamily

1.89E-02 0.92 −

WS0322_G20 4-coumarate–coa ligase 2 B-cell receptor-associated protein 29/31 1.70E-03 0.87 −

GQ03321_M15 Cytochrome P450 CYP736A12-like Ribosomal protein S11, cytochrome P450

E-class group I superfamily

2.06E-02 0.83 −

GQ03803_O03 Dirigent protein 22-like Dirigent protein 3.18E-02 0.83 −

GQ03313_I03 Protein SRG1 Isopenicillin N synthase-like, Oxoglutarate 2.57E-02 0.75 −

aSequence description: annotations obtained using BLAST2GO (P < 0.05).
b InterPro classification: most informative InterPro names.
cExpression: DEGs having higher expression (log2 fold change ≥ 1) in trees producing high levels of PCs were labeled as HIGH, while DEGs having lower expression (log2 fold change

≤ −1) in individuals producing high levels of PCs were labeled as LOW. Piceid does not appear in the table as none of the 3 DEGs identified for this metabolite was associated with the

phenylpropanoid pathway.

DISCUSSION

Neolignan: A Likely Rare Case of
Monogenic Trait in Conifers
Two types of phenotypic distributions were observed in the
present study (Figure 2; Supplementary Figure 2). Stilbenoids
and flavonoids displayed a continuous and unimodal distribution
of concentrations typical for quantitative traits controlled by
multiple genes with small effects (Supplementary Figure 2), as
generally observed for Pinaceae taxa (Routaboul et al., 2012;

Wahyuni et al., 2014; Ganthaler et al., 2017). The distribution of
their 15 QTLs across 7 linkage groups (Table 2), the moderate
proportion of variance explained by single QTLs (10.9% ≤ PVE
≤ 13%; Table 2), and the distribution of 197 DEGs across the 12
spruce linkage groups (Supplementary Table 2) further support
the scenario of a polygenic control of stilbenoid and flavonoid
production. In contrast, neolignan-2 displayed a bimodal
distribution of metabolite content (Figure 2). This distribution
suggests a monogenic control of metabolite concentration,
consistent with the identification of a single major QTL on
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FIGURE 6 | Proposed phenolic compound biosynthesis pathway in spruce. The pathway presented here is adapted from Warren et al. (2015). Candidate gene IDs

identified in this study were retrieved from the gene catalog GCAT3.3 (Rigault et al., 2011) and are reported in black and italic. Genes identified in QTLs only are shown

in orange boxes. Lower- or highly-expressed genes are indicated by blue and red boxes, respectively. Remaining DEGs (i.e., excluding high- and low expressed

genes) are shown in white boxes. Genes within the taxifolin glucoside QTL and differentially expressed for gallocatechin are shown in white boxes with bold margins.

The metabolite for which genes are differentially expressed is reported in each box according to the following nomenclature: G, gallocatechin; N, neolignan-2; P,

piceid; PB, procyanidin B1; Tg, taxifolin glucoside. The five metabolites studied are underlined in green. Known key enzymes involved in the phenylpropanoid pathway

are labeled in blue and bold capital letters. Abbreviations are as follow: 4CL, 4-coumarate-CoA ligase; ANR, anthocyanidin reductase; ANS, anthocyanidin synthase;

C3H, p-coumaroyl shikimate/quinate 3′ -hydroxylase; C4H, cinnamate 4-hydroxylase; CAD, cinnamyl-alcohol dehydrogenase; CAD, cinamyl alcohol deshydrogenase;

CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; CHI, chalcone isomerase; CHS, naringenin-chalcone synthase; COMT, caffeic

O-methyltransferase DFR, bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase; DIR, dirigent protein; F3H, flavanone 3-hydroxylase; F3′H, flavonoid

3′-hydroxylase; F3′5′H, flavonoid 3′5′-hydroxylase; FLS, flavonol synthase; HCT, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase; LAC,

laccase; LAR, leucoanthocyanidin reductase; PAL, phenylalanine ammonia-lyase; PER, peroxidase; PLR, pinoresinol lariciresinol reductase; STS, trihydroxystilbene

synthase; UGT, UDP-dependent glucosyl transferase.

LG4 (Figure 2C) explaining up to 91.3% of the phenotypic
variance (Table 2). Until now, studies reporting the occurrence of
neolignans in the Picea genus, and more generally in conifers, are
still scarce [but see Hong et al. (2014); for review see Tanase et al.
(2019)]. The neolignan analyzed in the current study (neolignan-
2) was recently identified in Norway spruce (Nemesio-Gorriz
et al., 2017), and found under the regulation of several MYB
genes. Neolignans have diverse physiological roles in angiosperm
plants, including defense against fungus and insects (Choi et al.,
2009; Saguez et al., 2013), but little is known regarding their
specific role in conifers. Monogenic traits usually represent prime
candidates for marker-assisted selection in breeding programs. In
this sense, further research should focus on the characterization

and physiological role of neolignan-2 in white spruce, and
densifying the QTL involved with more gene markers, given that
less than one third of the transcriptome has beenmapped in white
spruce (Pavy et al., 2017).

Metabolite Data and Expression Profiles
Reveal New Insights Into the
Transcriptional Control of Flavonoids
Transcriptomic data highlighted a set of 137 genes showing
opposite expression patterns between high gallocatechin and
high taxifolin glucoside individuals (r = −0.88, P < 0.001;
Figure 4). While further investigations are needed to determine
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which of these genes play a role in the constitutive production of
these two flavonoids, such a strong negative relationship suggests
that these 137 genes are likely co-regulated, as commonly
observed for genes related to the biosynthesis of flavonoids
(Honda et al., 2002; Tian et al., 2017). This opposite expression
pattern also points to a possible feedback mechanism influencing
the production of these two metabolites. However, the lack
of significant negative correlation between gallocatechin and
taxifolin glucoside concentrations in contrasted phenotypes
(Supplementary Figure 5) indicates that gene expression
and metabolite levels are decoupled. This does not rule
out the possibility of a feedback mechanism, given that
metabolite concentrations can be affected by metabolic network
connectivity, when metabolites are involved in several metabolic
pathways (Wegner and Kummer, 2005; Zelezniak et al., 2014).
Alternatively, the activation of these genes, or a subset of them,
may simply enhance the production of taxifolin glucoside,
without affecting the production of gallocatechin, while their
repression would yield an opposite pattern. Since both pathways
require the same substrate, this scenario would imply that
substrate availability is not a limiting factor for the synthesis of
these two metabolites.

Trancriptomics Highlighted Key Genes
Involved in the Phenylpropanoid Pathway
and Environmental Stress Response
Transcriptomics revealed that members of gene families
generally associated with the phenylpropanoid pathway in
plants (Reinprecht et al., 2017) such as DIR, PER-LAC,
cytochrome P450, NmrA-like and O-methyltransferases were
differentially expressed in white spruce (Table 3; Figure 6). Some
key genes involved in the flavonoid pathway (FLS, UGT and
F3H; Figure 6) displayed opposite gene expression patterns in
individuals producing high levels of taxifolin glucoside and
gallocatechin. This observation indicates that these genes are
important actors of the transcriptional machinery governing the
production of flavonoids. Two genes showing higher expression
in trees producing high taxifolin glucoside and gallocatechin
contents (GQ03519_N09 and GQ0082_B18; Figure 6) encoded
the flavanone 3-hydroxylase (F3H), an enzyme mediating the
production of taxifolin in spruce (Hammerbacher et al., 2019).
A previous study reported a negative feedback regulation of
F3H expression by catechins in Camellia sinensis (Singh et al.,
2008). Similar mechanism may occur in white spruce, since
catechin and taxifolin metabolite levels were strongly positively
correlated in trees producing high or low levels of gallocatechin
and taxifolin glucoside (Supplementary Figure 5). Expression
level of UGT85A8 was higher in individuals producing high
levels of taxifolin glucoside, in line with the commonly
accepted hypothetical biosynthesis pathway in spruce where
UGT facilitated the glucosylation of taxifolin to taxifolin
glucoside (Hammerbacher et al., 2019). One gene encoding
a flavonoid 3′5′-hydroxylase (F3′5′H; GQ04107_C21) had a
higher expression level in high gallocatechin content individuals
(Table 3; Figure 6). F3′5′H is an important branch point enzyme
in flavonoid biosynthesis that catalyzes the conversion of

flavonols into 3′,4′,5′-hydroxylated derivatives and allows the
formation of gallocatechin (Deng and Lu, 2017; Figure 6). In
Norway spruce, the formation of gallocatechin preferentially
leads through catechin rather than dihydromyricetin and
leucodelphinidin, and was induced following bark beetle-fungus
infection (Hammerbacher et al., 2018, 2019). Finally, one gene
located in the procyanidin B1 QTL (GQ03701_M12) encoded the
leucoanthocyanidin reductase (LAR) (Figure 6), a bifunctional
enzyme catalyzing the reduction of leucocyanidin and controlling
the degree of polymerization of proanthocyanidins (Jun et al.,
2018; Yu et al., 2019). In Norway spruce, the homologous gene
of GQ03701_M12 (Hammerbacher et al., 2014) and other LAR
genes (Oliva et al., 2015; Nemesio-Gorriz et al., 2016) were found
to be involved in response to fungus infection. Interestingly, one
dirigent protein (DIR, WS00740_J05) was highly expressed in
individuals with high neolignan-2 content (Table 3; Figure 6).
Dirigent proteins are involved in the stereoselective reaction
forming the lignan pinoresinol from coniferyl alcohol (Davin and
Lewis, 2005), and could also act in the formation of lignin (Burlat
et al., 2001). These proteins are usually induced by wounding
as well as weevil and budworm herbivory attacks (Ralph et al.,
2006b; Lippert et al., 2007).

Phenylpropanoid biosynthesis is a common plant response
to biotic and abiotic stress. In line with this idea, several DEGs
identified herein were previously found involved in climate
adaptation (Supplementary Table 8; Hornoy et al., 2015), cold
hardening and cold acclimation in various spruce species
(Supplementary Table 8; Holliday et al., 2008; Kayal et al., 2011;
Pelgas et al., 2011). We also identified DEGs related to plant
defense pathways other than the phenylpropanoid pathway, such
as the terpenoid pathway (Figure 5B; Supplementary Tables 4,
8), possibly indicating signaling crosstalk between secondary
metabolites production and stress response (Jacobo-Velázquez
et al., 2015; Isah, 2019).

Identification of Transcription Factors
Potentially Involved in the Transcriptional
Control of Flavonoids
We identified 40 differentially expressed TFs from families
(i.e., MYB, bHLH, WD40, WRKY and AP2/EREBP;
Supplementary Table 6) known as involved in spruce PCs
pathway (e.g., Bomal et al., 2008; Bedon et al., 2010; Nemesio-
Gorriz et al., 2017). This is consistent with the fact that in higher
plants, several R2R3-MYB proteins are known to activate the
early steps of flavonoid biosynthesis, whereas late biosynthetic
genes are rather controlled by the MYB-bHLH-WD40 (MBW)
complex (Xu et al., 2015; Ma et al., 2018). In addition, recent
studies reported that the action of the MBW complex can be
modified by WRKY TFs (Lloyd et al., 2017). In this study, we
found two R2R3-MYBs (GQ03719_G10, white spruce homolog
of PaMYB33; and GQ04002_F03, white spruce homolog
of PaMYB31) showing higher expression in high taxifolin
glucoside content individuals (Supplementary Table 6), and
for which protein-protein interactions with bHLH members
were shown to play a role in the regulation of the flavonoid
pathway in Norway spruce (Nemesio-Gorriz et al., 2017).
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Interestingly, the overexpression of PaMYB33 in transgenic
cell lines also activated the expression of genes encoding
PAL, ANR and LAR enzymes (Nemesio-Gorriz et al., 2017),
suggesting that similar mechanisms may govern the late
flavonoid biosynthesis in white spruce. The 12 TFs displaying
opposite expression patterns between gallocatechin and
taxifolin glucoside in our study (Supplementary Table 6)
might be directly involved in the formation of the MBW
complex or might be downstream target genes of the MBW
complex. Given that the regulatory mechanism involving the
MBW complex appears highly conserved in higher plants
(Xu et al., 2015), our findings provide a relevant framework
for studying the complex transcriptional network governing
the biosynthesis of flavonoids, in white spruce and other
conifer species.

Integrating QTL Mapping and
Transcriptomic Approaches: Potential,
Limits and Perspectives
While RNA-Seq provided valuable insights into genes involved
in white spruce phenylpropanoid pathway and their regulation,
the combination of both QTLmapping and RNA-Seq approaches
yielded mixed results. We identified 19 candidate DEGs
colocalizing within QTLs, but none of them were formally
associated with the PC pathway (Supplementary Table 7).
However, considering that the landscape of genes essential
for the regulation of phenylpropanoids in plants is still not
exhaustive (for a review see Biala and Jasiński, 2018), we
should not exclude the possibility that these candidate genes
could be indirectly linked to the phenylpropanoid biosynthesis
pathway. Further, the fact that one third (203) of the 603 DEGs
identified herein have not been positioned yet on the current
white spruce genetic map (Pavy et al., 2017) suggests that some
additional DEGs could have colocalized with the detected QTLs.
Association studies focusing on these DEGs would also help
identify more candidate genes. Transcriptomics alone proved
powerful to investigate the combinatorial gene regulation of
flavonoids in white spruce. It allowed the identification of
137 genes likely co-regulated, along with several candidate
regulators, and 50 genes encoding key enzymes of the white
spruce phenylpropanoid pathway. These results may be further
explored by focusing on the discovery of variable genomic
regions responsible for variations in gene expression (i.e.,
eQTL studies), given that PCs regulatory networks appear
relatively conserved in plants (e.g., MBW complex; see Xu et al.,
2015).
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