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The scale of impact of the COVID-19 pandemic on society and the economy globally

provides a strong incentive to thoroughly analyze the efficiency of healthcare systems in

dealing with the current pandemic and to obtain lessons to prepare healthcare systems

to be better prepared for future pandemics. In the absence of a proven vaccine or cure,

non-pharmaceutical interventions including social distancing, testing and contact tracing,

isolation, and wearing of masks are essential in the fight against the worldwide COVID-

19 pandemic. We use data envelopment analysis and data compiled fromWorldometers

and The World Bank to analyze how efficient the use of resources were to stabilize the

rate of infections and minimize death rates in the top 36 countries that represented 90%

of global infections and deaths out of 220 countries as of November 11, 2020. This is

the first paper to model the technical efficiency of countries in managing the COVID-

19 pandemic by modeling death rates and infection rates as undesirable outputs using

the approach developed by You and Yan. We find that the average efficiency of global

healthcare systems in managing the pandemic is very low, with only six efficient systems

out of a total of 36 under the variable returns to scale assumption. This finding suggests

that, holding constant the size of their healthcare systems (because countries cannot alter

the size of a healthcare system in the short run), most of the sample countries showed

low levels of efficiency during this time of managing the pandemic; instead it is suspected

that most countries literally “threw” resources at fighting the pandemic, thereby probably

raising inefficiency through wasted resource use.

Keywords: pandemic, COVID-19, death rates, infection rates, recoveries, data envelopment analysis, healthcare

systems efficiency, technical efficiency

INTRODUCTION

Since it first emerged in China in late December 2019, the new coronavirus (COVID-19) spread
to nearly every country of the world (1). Within 7 months, it had spread to 215 countries and
regions. At the time of producing this paper, on November 11, 2020, 52 million people were
known to be infected (2), and∼1.3 million deaths had been recorded since the outbreak. Countries
adopted pandemic spreadmitigating interventions referred to as non-pharmaceutical interventions
(NPIs), such as social distancing, testing and contact tracing, case isolation, and public hygiene at
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an unprecedented scale (3). Without a proven vaccine or cure,
non-pharmaceutical interventions including social distancing,
testing, wearing of masks, and contact tracing are essential to end
the worldwide COVID-19 (4).

Even with these drastic NPI interventions, the spread of
the pandemic exploded, especially with surges in contagion
experienced in countries like Italy, France, the UK, and the USA.
This put immense strain on the availability of especially intensive
care unit facilities, doctors, and nurses, and the efficiency of
healthcare systems was also put under the spotlight. What we
learn from recent experiences in the fight against this deadly
disease from countries like South Korea is that accessibility
to healthcare services can significantly reduce the number of
deaths (5). Moreover, Sarkar et al. (4) used a mathematical
model to demonstrate that the elimination of the ongoing SARS-
CoV-2 pandemic is possible by combining restrictive social
distancing and contact tracing. They concluded that the accurate
course of the epidemic heavily depends on how and when
quarantine, isolation, and precautionary measures are enforced.
This is also supported by Breitenbach et al. (6). According to
Khajanchi and Sarkar (7), in the absence of specific antivirals
or vaccines, mathematical modeling plays an important role
in better understanding the disease dynamics and in designing
strategies to control the rapidly spreading infectious disease.
Samui et al. (8) used a compartmental mathematical model to
predict and control the transmission dynamics of COVID-19
pandemic in India with epidemic data up to April 30, 2020.
They computed a basic reproduction number, R0, of 1.7. This
showed a substantial outbreak of COVID-19 in India. Their
model predicted that, for about 60 days, the peak will be higher
for COVID-19 infections in India and after that the curve will
plateau, but the coronavirus disease will persist for a long time.

It is for this reason and the impact of COVID-19 on
society and the global economy that the efficiency of healthcare
systems needs to be thoroughly examined. This could inform
appropriate policy responses and adequately prepare health
systems to respond better to future pandemics. Our study is
different from typical compartmental models as we address
the issue of macro-efficiency of public healthcare systems by
applying data envelopment analysis (DEA), a non-parametric
and mathematical model adept to estimate the technical
efficiency of public healthcare systems. We also use extensive
data compiled from Worldometers (2) and the World Bank
(9–11). Specifically, we analyze the efficient use of available
resources to stabilize the rate of infections and minimize the case
fatality rates in the top 36 selected countries representing 90%
of global infections and deaths in 220 countries as of November
11, 2020. Our contribution to the literature is 2-fold: first, this
paper is the first to model the technical efficiency of countries
in dealing with the COVID-19 pandemic by modeling death
rates and infection rates as undesirable outputs and, second,
by modeling comparative scenarios to test the accuracy of our
model. Modeling contagion curves and estimating efficiency
rates may contribute to policies and strategies to assist public
healthcare systems in the fight against this pandemic. However,
the role of media is invaluable in educating the population
about the dangers of the pandemic and the importance of

using NPIs. This can potentially change the publics’ behavior
and affect the implementation of individuals’ intervention and
control strategies (12).

LITERATURE REVIEW

DEA has been applied extensively to compare the efficiency
of healthcare facilities within countries and between countries,
and we briefly deal with some of that literature here. We do
not deal with the literature on country studies because our
paper compares efficiency between countries. For literature on
efficiency studies among different healthcare facilities within a
country, see, for example, Ngobeni et al. (13), Campanella et al.
(14), Alhassan et al. (15), Jarjue et al. (16), Chowdhury et al. (17),
Gannon (18), Marschall and Flessa (19), Akazili et al. (20), Masiye
(21), Zere et al. (22), and Kirigia et al. (23, 24).

Although healthcare is one of the most popular areas of
application for DEA (25), DEA studies on healthcare systems
worldwide are still limited. For example, Bhat (26) used DEA to
measure the impact of financial and institutional arrangements
on national healthcare system efficiency in 24 OECD countries.
Lo Storto and Goncharuk (27) applied DEA to measure the
technical efficiency of 32 European (EU) countries. Afonso and St
Aubyn (28) used a two-stage DEA to estimate a semi-parametric
model of the healthcare systems in 30 OECD countries for the
years 1995 and 2003. De Cos and Moral-Benito (29) estimated
alternative measurements of efficiency using DEA and stochastic
frontier analysis between 1997 and 2009 to ascertain the most
important determinants of healthcare efficiency across 29 OECD
countries. Hadad et al. (30) compared the healthcare system
efficiency of 31 OECD countries with two model specifications,
one including inputs under management control and the other
including inputs beyond management control. Kim and Kang
(31) used a bootstrap DEA to estimate the efficiency of healthcare
systems in a sample of 170 countries.

Although the choice of inputs is similar in these studies,
outputs selection depends mostly on the purpose of the research.
For example, Gonzalez et al. (32), in a cross-sectional study,
measured the technical and value efficiency of health systems in
165 countries. They used expenditure on health and education
as inputs and data on healthy life expectancy and disability
adjusted life years as health outcomes. Examining the efficiency in
healthcare services delivery to the population, Bhat (26) uses the
number of populations aged 0–19, 20–64, and 65 years or older as
outputs. Santos et al. (33) examine the efficiency of countries in
preventing the mother-to-child HIV transmission and used the
number of pregnant women tested for HIV and the number of
HIV pregnant women receiving antiretroviral drugs as outputs.

DEA studies for new settings such as the recent COVID-
19 outbreak may however need to introduce new outputs.
Shirouyehzad et al. (34) uses DEA to analyze the efficiency of
contagion of COVID-19 and focus on the number of deaths and
recoveries as outcomes. Breitenbach et al. (6) analyze the 31 most
infected countries during the first 100 days since the outbreak
of the COVID-19 coronavirus for the efficiency in containing
the spread of the virus and focus on flattening the curve as the
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main output. Empirical work pivots mostly on healthcare system
performance based on technical efficiency calculated as a ratio
of some quality-of-life variable as an output and physical health
resources or expenditure on health as inputs. The inputs mostly
used were expenditure, doctors, and nurses, while the outputs
were discharge or recovery, prevalence, and mortality rates. In
this paper, we use tests, doctors, and nurses as physical inputs and
health spending as financial input in managing the COVID-19
pandemic. As outputs, we use case fatality (deaths) and infection
prevalence rates.

METHODOLOGY

In this paper, we use the variable returns to scale (VRS)
approach reported by Gavurova et al. (35) and developed in
1984 by Banker, Charnes, and Cooper (BCC model) to allow
for consideration of scale efficiency analysis. Envelopment in
DEA refers to the ability of the efficiency production frontier
to tightly enclose the production technology (input and output
variables). According to Cooper et al. (36) and McWilliams
et al. (37), DEA was developed in a microeconomic setting
and applied to firms to measure the efficiency of converting
inputs into outputs. In the analysis of public institutions, firms
are replaced by the more encompassing decision-making units
(DMU). DEA is therefore an appropriate method of computing
the efficiency of institutions employing multivariate production
technologies. Aristovnik (38) and Martić et al. (39) distinguish
between input minimization and output maximization DEA
models. The former determines the quantity of inputs that
could be curtailed without reducing the prevailing level of
outputs, and the latter expands the outputs of DMUs to reach
the production possibility frontier while holding the inputs
constant. However, the selection of each orientation is study
specific. In this paper, we select input minimization orientation,
as the objective of the study is to measure the efficiency of
resources used (minimized inputs) at prevailing health output
levels (recovery, death, and infection rates). It is unwise to
select an output maximization dispensation as it would be
tantamount to maximizing death and infection rates as desirable
outputs alongside the recovery rate. When undesirable outputs
are an inevitable by-product in the production process, the input
minimization orientation is selected as the preferred DEA [also
see You and Yan (40)].

According to Taylor and Harris (41), DEA is a comparative
efficiency measurement tool that evaluates the efficiency
of homogeneous DMUs operating in similar environmental
conditions, for example, DMUs dealing with COVID-19 and
where the relationship between inputs and outputs is unknown.
We follow Joumard et al. (42) to treat the whole healthcare
system in a given country as a DMU in order to analyze the
healthcare system at the aggregate level. We also adopt the VRS
methodology in this study because of heterogeneity among the
DMUs in terms of factors like country size and income. In terms
of the DEA methodology, the current study uses the BCC model,
with the ratio of DMUs being four times the combined number of
inputs and outputs to ensure the stability of the efficiency results.

Modeling Undesirable Outputs
DEA models have found increasing use in efficiency analysis
applications where at least one output in the production
process is an undesirable output, e.g., pollution. There is
considerable research published on the undesirable aspects of
production outputs. However, You and Yan (40) have found
that the economic implications and the suitability of DEA
models incorporating the undesirable outputs should be carefully
considered as the results may either under- or overstate efficiency
if modeled incorrectly.

The first way that undesirable outputs are dealt with
in the traditional DEA model is to ignore the undesirable
output (43–46). It is not, however, appropriate to ignore the
reality of, e.g., pollution during production since undesirable
outputs and desirable outputs are generated simultaneously in
the production process. Dyckhoff and Allen (47) dealt with
undesirable outputs by modeling them as inputs. However,
treating undesirable outputs as inputs fails to reflect the true
production process. There is a specific production technology
that links inputs to outputs, and taking an undesirable output
as an input in the production process leads to misspecification
and misinterpretation, for example, when modeling pollution
as an input using an output-oriented measure, ecological
inefficiencies remain undetected. Golany and Roll (48) suggested
a data transformation approach where an undesirable output is
converted into a “normal” output by a monotonic decreasing
function. The undesirable outputs (carbon and nitrogen
emissions) are treated as normal outputs by taking their
reciprocals. Although the pollutant is treated as output, the scale
and intervals of the original data get lost, and the problem with
zero values is that it does not have a reciprocal value. The linear
monotonic decreasing transformation was suggested by Seiford
and Zhu (49). A sufficiently large positive scalar βi is added to
the reciprocal additive transformation of the undesirable output
i so that the final values are positive for each DMUk. This model
is criticized for its invariance to data transformation within the
DEA model (45, 46). Färe et al. (50) treats undesirable factors
in a non-linear DEA model based on the weak disposability of
undesirable outputs (51). Weak disposability assumes that, to
reduce undesirable outputs, it is costly because simultaneously it
increases the inputs or decreases desirable outputs (52). It tends
to increase the desirable and undesirable output concurrently.
Regardless of the form of transformation, as long as the final value
of undesirable output included in the DEA calculation remains
positive, it increases the efficiency of the DMU. An undesirable
output should bring either a negative or positive impact to the
performance of the DMU; therefore, it is not appropriate for the
undesirable output to solely favor the efficiency score.

After comparing the performance of the models discussed
above, You and Yan (40) developed the ratio model, which
outperformed all five of these models developed for dealing with
undesirable outputs. We therefore opted to adopt the ratio model
for the current paper. The ratio model is different from the
previous approaches in that the undesirable output is aggregated
in a ratio form with the desirable output.

From the conventional BCC DEA model and assuming that
there are R DMUr (r = l, 2,. . . , R) that convert m inputs to
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n outputs, DMUk is one of the R DMUs being evaluated. It is
further assumed that DMUk consumesm inputs Xk

t (i= 1, 2, . . . ,

m) to produce n outputs Yk
j (j= 1, 2, . . . , n), and all these outputs

are assumed to be desirable. The measure of efficiency of DMUk

is then obtained by:
min θ subject to

R
∑

r=1

λrX
r
i − θXk

i + s−i = 0 i = 1, 2 , . . . , m (1)

R
∑

r=1

λr Y
r
j − s+j = Yk

j j = 1, 2, . . . , n (2)

R
∑

r=1

λr = 1

λr, s
−

i , s
+

j ≥ 0 r = 1, . . . , R (3)

where DMUr = the rth DMU, r = 1,2, . . . , R; DMUk = the
kth DMU being evaluated; Xr

i , Y
r
j = the inputs and outputs of

every DMUr ; i = 1, 2, . . . , m, j = 1,2, . . . , n; θ = the efficiency
of DMUk; λr = the dual variable corresponding to the other
inequality constraint of the primal;

s−i , s+j = the slack variables that turn the inequality constraint

into an equal form; λ
∗

r, s
−
∗

i , s+
∗

j = the optimal solutions when the

relative efficiency of DMUk is θ
∗

= 1 and s−
∗

i = s+
∗

j = 0.

In the ratio model, the undesirable output and desirable
output are defined as O−

q (q = 1. 2, . . . , n1) and O+
p (p =

1, 2, . . . , n2), respectively (n1 + n2 = n). For DMUk, the
undesirable outputs O−

q (q = 1, 2, . . . , n1) are treated as a
new variable ψk, which is called the penalty parameter and is
written as:

ψk = ρ1O
−

1k
+ . . .+ ρn1O

−

n1k
(4)

where ψk = penalty parameter for DMUk; ρq = the penalty
for individual undesirable output (q = 1, 2, . . . , n1); O

−
q =

the undesirable output (q = 1, 2, . . . , n1). Since ρq is the
penalty charged for producing the outputs, the ψk obtained from
problem (10) gives a measure of the total monetary value of
undesirable outputs. From the definition of ψk, the greater the
amount of undesirable output, the greater is the value of the
penalty parameter. Furthermore, the respective value of ρq is
associated with the individual undesirable output; therefore, ρq
has the same value for every DMU. With this model, desirable
and undesirable outputs can relate to one another, regardless
of a disagreement in units. With the new approach of treating
the undesirable outputs in Equation (10), the desirable output p
(p = 1, 2, . . . , n2) of DMUk in the ratio model is modified as:

Y
′

ρ =
1

ψk
O+

p ,
(

p = 1, 2, . . . , n2
)

(5)

where O+
p = the desirable output

(

p = 1, 2, . . . , n2
)

, and Y
′

ρ =

the modified output
(

p = 1, 2, . . . , n2
)

.
The ratio model computes desirable and undesirable outputs

as fractions, where undesirable output O−
q is the denominator

and desirable output O+
p is the numerator. Here the value of

the output is interpreted as a ratio of desirable to undesirable
output. Using ratios provides a simple and easy way to expose
the impact of undesirable outputs in a DEA. The ratio form of
the DEA model can satisfy the restrictions of the conventional
DEA, which the output variable states must be a positive value.
Moreover, the ratio form provides a more distinct way for the
desirable and undesirable output to describe the presence of an
undesirable output on DMU efficiency.

In order to check the stability of our model results, we ran
three different model specifications and compared the results. In
model I, we use the number of tests and number of doctors and
nurses as physical inputs, health expenditure as financial input,
and the ratio of recoveries to infection rates as output (ratio of
desirable to undesirable output). In model II, we use the number
of tests and number of doctors and nurses as physical inputs,
health expenditure as financial input, and the ratio of recoveries
to death rates as output (ratio of desirable to undesirable output),
and in model III, we use the number of tests and number
of doctors and nurses as physical inputs, health expenditure
as financial input, and the number of recoveries as output. In
model III, we therefore ignore the undesirable outputs (43–46).
Although it is not good to ignore the undesirable outputs of
the rate of new infections and death rates, we do this in order
to compare the difference that the inclusion of the undesirable
outputs in our model has on the efficiency scores.

Data
Our data were gathered from different sources. The COVID-
19-related data (i.e., infected cases, recovered cases, deaths, and
number of tests) were extracted from extensive data compiled
from Worldometers (2). The aggregated data on doctors and
nurses per 100,000 of the population and healthcare expenditure
were obtained from world development indicators provided
by the World Bank (9–11). As reported earlier, we analyze
the efficient use of available resources to stabilize the rate of
infections and minimize the case fatality rates in the top 36
selected countries (see Table A1) representing 90% of global
infections and deaths in 220 countries as of November 11, 2020.

Some descriptive statistics of the variables reported in Table 1

indicate that our sample countries have, on average, resources
of nearly seven doctors and nurses per 1,000 of the population,
a budget of about 8% of gross domestic product (GDP) and
200,850 tests per one million of the population for its healthcare
system. The number of infected cases and deaths from COVID-
19 over the study period averaged more than 1,295,120 and
32,821, respectively, and the mean number of people recovering
from the infection was around 974,487 persons. Assuming that
the whole healthcare system is mobilized to fight the COVID-
19 outbreak, how efficient was the mobilization of resources?
This issue is analyzed with our DEA model, and the results are
reported in the next section.

RESULTS

The results of the three model variants are graphically illustrated
in Figure 1, and the results are presented in Table 1 (Table A1).
As intimated earlier in this paper, it is important to consider
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TABLE 1 | Descriptive statistics and variables used in the model.

Variables No. of observations Unit Mean Standard deviation Minimum Maximum

Physical Inputs

No. of Tests 36 per million of the population 200,849.78 159,220.81 15,033.00 541,193.00

No. of Doctors & Nurses 36 per 1,000 of the population 7.00 5.00 1.00 22.00

Financial Input

Health Expenditure 36 % of GDP 8.00 3.00 3.00 17.00

Desirable output

Recovery Rate 36 No. of People 974,486.67 1,844,065.41 30,504.00 8,023,412.00

Undesirable output

Death Rates 36 No. of People 32,820.67 50,619.93 1,174.00 245,989.00

Infection Rates 36 No. of People 1,295,119.31 2,265,355.91 175,711.00 10,575,373.00

Authors’ calculations based on Worldometers (2) and The World Bank (9–11).

the VRS technical efficiency scores motivated by the differences
in the size of healthcare systems globally, particularly between
large developed economies and small less-developed economies.
The VRSTE scores are almost identical across the three model
variants. This points to two things: first, the inclusion of
undesirable outputs in our model (variants I and II) does not
have any material impact on the mean technical efficiency of
country healthcare systems and, second, it points to the stability
of our results across the three model variants. For the sake
of simplicity, we therefore discuss only the results reflected
in model I, where our physical inputs were the number of
tests/million of the population and number of doctors and
nurses per 100,000 of the population and our financial input
healthcare expenditure as a percentage of GDP and our output
recoveries/infections. Under the CRS assumption, there were
only two efficient healthcare systems in dealing with COVID-
19, viz., Bangladesh and Pakistan. When the VRS assumption is
considered, the figure rises as expected, in this case to six, with
the addition of Brazil, Chile, Indonesia, and Morocco.

These differences, regarding the full sample of 36 countries,
are statistically significant under a Mann–Whitney–Wilcoxon’s
test (Z = 5.271, p= 0.001). It indicates the role of scale efficiency
in our analysis because it is the objective of global healthcare
systems to achieve the optimal technical combination of the
inputs to produce the outputs, but their scales (sizes) are not
optimal yet. Although 21 of the 36 countries in our sample
are operating under increasing returns to scale, the technical
combination of inputs to produce the existing output is still not
optimal. Six of the 36 countries operate under decreasing returns
to scale (see the Table A1), suggesting that they can double
their inputs without doubling their output. These countries
could therefore rationalize their healthcare resources/inputs
by downsizing (using resources/inputs more efficiently) and,
thereby, improving the technical efficiency, while the outputs can
still stay the same. At first glance, it is often difficult to envisage
a country with a large undesirable output to be technically
efficient. Brazil, for example, has a very high number of infections
and deaths, yet our DEA results show that Brazil is technically
efficient and lies on the efficiency frontier. To gain further insight
into this number and the associated DEA efficiency scores, it is

helpful to compare inputs and outputs of a benchmark country
like Brazil relative to that of other countries. We have done
this in Table 2.

For example, in comparison to Brazil, the USA spends 4.25
times more as a percentage of GDP on healthcare, has 3.5 times
more doctors and nurses per 100,000 of the population, and had
471% more COVID-19 tests performed relative to Brazil, yet it
did not succeed to contain its undesirable outputs (infections
are 185% higher and deaths are 151% higher than Brazil) even
though it performed well in the area of the good output—
recoveries. This result clearly explains the relatively low VRS
technical efficiency scores of the USA, France, Germany, and
Belgium in Table 2, which could be linked to the specific policy
responses of the selected countries. For example, evidence now
suggests that the UK failed to fight the COVID-19 outbreak by
following a “herd immunity” approach (53), and the USA was
very slow to act against COVID-19 (54).

CONCLUSIONS

This paper examined the efficiency of 36 healthcare systems
(which represent 90% of cases globally) in managing the
COVID-19 pandemic, given their resource constraints. We
use a novel DEA approach, developed by You and Yan (40),
which accounts for both desirable outputs (recovered cases)
and undesirable outputs (infections and deaths), and our results
indicate that the average efficiency of global healthcare systems
in managing the COVID-19 pandemic is very low, with only six
efficient systems out of a total of 36 under the variable returns
to scale assumption. This finding suggests that, holding constant
the size of their healthcare systems (because countries cannot
alter the size of a healthcare system in the short run), most of
the sample countries could not improve their efficiency during
this time of managing the pandemic; instead it is suspected
that most countries literally “threw” resources at fighting the
pandemic, thereby probably raising inefficiency through wasted
resource use. Inefficient countries could learn best practices of
managing pandemics from the efficient countries in the sample,
most being developing countries. This indicates to the global
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FIGURE 1 | Constant returns to scale and variable returns to scale efficiency scores of global healthcare systems. CRSTE represents technical efficiency under

constant returns to scale assumption, VRSTE represents technical efficiency under variable returns to scale assumption, and SE represents scale efficiency.

TABLE 2 | Inputs and outputs relative to the benchmark country (Brazil).

Country VRSTE Expenditure (% of GDP) Doctors & nurses/100,000 No. of tests Infections Deaths Recoveries

Brazil 1 4 4 102,766 5,701,283 162,842 5,964,344

USA 0.18 17 14 484,227 10,575,373 245,989 6,603,470

France 0.27 11 14 279,353 1,829,659 42,207 131,920

Germany 0.27 11 17 278,886 710,265 11,912 454,800

Belgium 0.27 11 14 458,403 507,475 13,561 30,504

Comparison with Brazil

USA/Brazil 4.25 3.5 471.19% 185.49% 151.06% 110.72%

France/Brazil 2.75 3.5 271.83% 32.09% 25.92% 2.21%

Germany/Brazil 2.75 4.25 271.38% 12.46% 7.32% 7.63%

Belgium/Brazil 2.75 3.5 446.06% 8.90% 8.33% 0.51%

Calculated from Table A1 results.
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health sector that it is less about health resource endowments but
more about the efficiency of using the available resources. The
study also showed that, without pharmaceutical interventions
like vaccines, the prevailing healthcare resources and NPIs used
in combating major pandemics like COVID-19 appear to help
fewer countries. Therefore, the healthcare sector should invest
more in proactive than reactive management of pandemics,
for example, through continuous research and development on
preventative medication. The study is constrained in several
ways. The DEA results are heavily dependent on the selection
of analytical variables. Therefore, a different set of indicators
may lead to a different collection of results. The credibility
and accuracy of statistics used also affect the results of the
models—data of the pandemic is getting more refined over
time. This study adds to the literature on modeling the
efficient use of resources in world healthcare systems with

the inclusion of undesirable outputs. The methodology that
we developed can, at any time, be replicated as new data
becomes available as the pandemic progresses or when new
pandemics develop.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

REFERENCES

1. Newey S, Gulland A. What is Coronavirus, How Did It Start and How

Big Could It Get? The Telegraph (2020). Available online at: https://www.

telegraph.co.uk/news/2020/04/28/what-is-coronavirus-covid-19-virus-

pandemic/ (accessed April 28, 2020).

2. Worldometers. COVID-19 Coronavirus Pandemic. Worldometer (2020).

Available onlnie at: https://www.worldometers.info/coronavirus/ (accessed

August 08, 2020).

3. Correia S, Luck S, Verner E. Pandemics Depress the Economy, Public Health

Interventions Do Not: Evidence from the 1918 Flu. Draft Paper. (2020).

Available online at: https://ssrn.com/abstract=3561560 (accessed July 01,

2020).

4. Sarkar K, Khajanchi S, Nieto JJ. Modeling and forecasting the COVID-

19 pandemic in India. Chaos Solit Fractals. (2020) 139:110049.

doi: 10.1016/j.chaos.2020.110049

5. Tang B, Xia F, Bragazzi NL, McCarthy Z, Wang X, He S. Lessons Drawn from

China and South Korea for Managing COVID-19 Epidemic: Insights from a

Comparative Modelling Study. Bulletin of World Health Organisation (2020).

6. Breitenbach MC, Ngobeni V, Aye G. Efficiency of healthcare systems in the

first wave of COVID-19- a technical efficiency analysis. In: MPRA Paper

No. 101440. (2020). Available online at: https://mpra.ub.uni-muenchen.de/

101440/ (accessed October 15, 2020).

7. Khajanchi S, Sarkar K. Forecasting the daily and cumulative number of

cases for the COVID-19 pandemic in India. Chaos. (2020) 30:071101.

doi: 10.1063/5.0016240

8. Samui P, Mondal J, Khajanchi S. A mathematical model for COVID-19

transmission dynamics with a case study of India. Chaos Solit Fractals. (2020)

140:110173. doi: 10.1016/j.chaos.2020.110173

9. The World Bank. Current Health Expenditure (% of GDP). The World

Bank (2020). Available onlnie at: https://data.worldbank.org/indicator/SH.

XPD.CHEX.GD.ZS (accessed August 08, 2020).

10. The World Bank. Nurses and Midwives per 1 000 Population. The World

Bank (2020). Available onlnie at: https://data.worldbank.org/indicator/SH.

MED.NUMW.P3 (accessed August 08, 2020).

11. The World Bank. Physicians per 1 000 Population. The World Bank (2020).

Available onlnie at: https://data.worldbank.org/indicator/SH.MED.PHYS.ZS

(accessed August 08, 2020).

12. Khajanchi S, Sarkar K, Mondal J, Perc M. Dynamics of the

COVID-19 Pandemic in India. arXiv. (2020) arxiv: 2005.06286.

doi: 10.21203/rs.3.rs-27112/v1

13. Ngobeni V, Breitenbach MC, Aye G. Technical efficiency

of provincial public healthcare in South Africa. Cost

Effect Resour Allocat. (2020) 18:3. doi: 10.1186/s12962-020-

0199-y

14. Campanella P, Azzolini E, Izzi A, Pelone F, De Meo C, La Milia CD, et al.

Hospital efficiency: how to spend less maintaining quality. Ann Ist Super

Sanita. (2017) 53:46–53. doi: 10.4415/ANN_17_01_10

15. Alhassan RK, Nketiah-Amponsah E, Akazili J, Spieker N, Arhinful DK, De

Wit TFR. Efficiency of private and public primary health facilities accredited

by the national health insurance authority in Ghana.Cost Effect Resour Allocat.

(2015) 13:23. doi: 10.1186/s12962-015-0050-z

16. Jarjue G, Nor NM, Ghani JA, Jalil SH. Technical efficiency of secondary health

care service delivery in the Gambia. Int J Econ Manag. (2015) 9:25–43.

17. Chowdhury H, Zelenyuk V, Wodchis W, Laporte A. Efficiency and

Technological Change in Health Care Services in Ontario (No. WP082010).

School of Economics, University of Queensland (2010). Available onlnie at:

https://economics.uq.edu.au/files/5235/WP082010.pdf (accessed January 01,

2019).

18. Gannon B. Testing for variation in technical efficiency of hospitals in Ireland.

Econ Soc Rev. (2005) 36:273–94.

19. Marschall P, Flessa S. Assessing the efficiency of rural health centres in Burkina

Faso: an application of data envelopment analysis. J Public Health. (2009)

17:87. doi: 10.1007/s10389-008-0225-6

20. Akazili J, Adjuik M, Jehu-Appiah C, Zere E. Using data envelopment analysis

to measure the extent of technical efficiency of public health centres in Ghana.

BMC Int Health Hum Rights. (2008) 8:11. doi: 10.1186/1472-698X-8-11

21. Masiye F. Investigating health system performance: an application of data

envelopment analysis to Zambian Hospitals. BMC Health Serv Res. (2007)

7:58. doi: 10.1186/1472-6963-7-58

22. Zere E, Mbeeli T, Shangula K, Mandlhate C, Mutirua K, Tjivambi B,

et al. Technical efficiency of district hospitals: evidence from Namibia

using data envelopment analysis. Cost Effect Resour Allocat. (2006) 4:1.

doi: 10.1186/1478-7547-4-5

23. Kirigia JM, Sambo LG, Scheel H. Technical efficiency of public clinics in

Kwazulu-Natal Province of South Africa. East Afr Med J. (2001) 78:1–14.

doi: 10.4314/eamj.v78i3.9070

24. Kirigia JM, Lambo E, Sambo LG. Are public hospitals in KwaZulu-Natal

Province of South Africa technically efficient? Afr J Health Sci. (2000) 7:25.

25. Liu JS, Lu LYY, Lu WM, Lin BJY. A survey of DEA applications. OMEGA.

(2013) 41:893–902. doi: 10.1016/j.omega.2012.11.004

26. Bhat VN. Institutional arrangements and efficiency of healthcare delivery

systems. Eur J Health Econ. (2005) 50:215–22. doi: 10.1007/s10198-005-

0294-1

27. Lo Storto C, Goncharuk AG. Efficiency vs. effectiveness: a benchmarking

study on european healthcare systems. Econ Sociol. (2017) 10:102–15.

doi: 10.14254/2071-789X.2017/10-3/8

28. Afonso A, St Aubyn M. Relative efficiency of health provision: A DEA

approach with non-discretionary inputs. In: ISEG-UTL Economics Working

Paper (2006).

Frontiers in Public Health | www.frontiersin.org 7 April 2021 | Volume 9 | Article 638481

https://www.telegraph.co.uk/news/2020/04/28/what-is-coronavirus-covid-19-virus-pandemic/
https://www.telegraph.co.uk/news/2020/04/28/what-is-coronavirus-covid-19-virus-pandemic/
https://www.telegraph.co.uk/news/2020/04/28/what-is-coronavirus-covid-19-virus-pandemic/
https://www.worldometers.info/coronavirus/
https://ssrn.com/abstract=3561560
https://doi.org/10.1016/j.chaos.2020.110049
https://mpra.ub.uni-muenchen.de/101440/
https://mpra.ub.uni-muenchen.de/101440/
https://doi.org/10.1063/5.0016240
https://doi.org/10.1016/j.chaos.2020.110173
https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS
https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS
https://data.worldbank.org/indicator/SH.MED.NUMW.P3
https://data.worldbank.org/indicator/SH.MED.NUMW.P3
https://data.worldbank.org/indicator/SH.MED.PHYS.ZS
https://doi.org/10.21203/rs.3.rs-27112/v1
https://doi.org/10.1186/s12962-020-0199-y
https://doi.org/10.4415/ANN_17_01_10
https://doi.org/10.1186/s12962-015-0050-z
https://economics.uq.edu.au/files/5235/WP082010.pdf
https://doi.org/10.1007/s10389-008-0225-6
https://doi.org/10.1186/1472-698X-8-11
https://doi.org/10.1186/1472-6963-7-58
https://doi.org/10.1186/1478-7547-4-5
https://doi.org/10.4314/eamj.v78i3.9070
https://doi.org/10.1016/j.omega.2012.11.004
https://doi.org/10.1007/s10198-005-0294-1
https://doi.org/10.14254/2071-789X.2017/10-3/8
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Breitenbach et al. COVID-19 Global Healthcare Resource Efficiency

29. De Cos PH, Moral-Benito E. Determinants of health-system efficiency:

evidence from OECD countries. Int J Health Care Finance Econ. (2014)

14:69–93. doi: 10.1007/s10754-013-9140-7

30. Hadad S, Hadad Y, Simon-Tuval T. Determinants of healthcare system’s

efficiency in OECD countries. Eur J Health Econ. (2013) 14:253–65.

doi: 10.1007/s10198-011-0366-3

31. Kim Y, Kang M. The Measurement of Health Care System Efficiency: Cross-

country Comparison by Geographical Region. (2014). Available online at:

http://s-space.snu.ac.kr/bitstream/10371/91911/1/02_Younhee_Kim.pdf

(accessed January 01, 2019).

32. González E, Cárcaba A, Ventura J. Value efficiency analysis of health

systems: does public financing play a role? J Public Health. (2010) 18:337–50.

doi: 10.1007/s10389-009-0311-4

33. Santos SP, Amado CAE, Santos MF. Assessing the efficiency of mother-

to-child HIV prevention in low- and middle-income countries using

data envelopment analysis. Health Care Manag Sci. (2012) 15:206–22.

doi: 10.1007/s10729-012-9196-9

34. Shirouyehzad H, Jouzdani J, Khodadadi-Karimvand M. Fight against

COVID-19: a global efficiency evaluation based on contagion control

and medical treatment. J Appl Res Indust Eng. (2020) 7:109–20.

doi: 10.22105/JARIE.2020.225087.1146

35. Gavurova B, Kocisova K, Belas L, Krajcik V. Relative efficiency of

government expenditure on secondary education. J Int Stud. (2017) 10:329–

43. doi: 10.14254/2071-8330.2017/10-2/23

36. Cooper WW, Seiford LM, Tone K. Data Envelopment Analysis: A

Comprehensive Text with Models, Applications, References and DEA-Solver

Software. New York, NY: Springer (2007).

37. McWilliams A, Siegel D, Van Fleet DD. Scholarly journals as producers

of knowledge: theory and empirical evidence based on data envelopment

analysis. Org Res Methods. (2005) 8:185–201. doi: 10.1177/10944281052

75377

38. Aristovnik A. The Impact of ICT on Educational Performance and its Efficiency

in Selected EU and OECD Countries: A Non-Parametric Analysis. Elsevier

(2012).
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APPENDIX

TABLE A1 | Analytical variables and efficiency scores.

Studied

units

Model I Model II Model III

DMU # Country CRS

efficiency

score

VRS

efficiency

score

Scale Type of

scale

CRS

efficiency

score

VRS

efficiency

score

Scale Type of

scale

CRS

efficiency

score

VRS

efficiency

score

Scale Type of

scale

1 USA 0.12 0.18 0.67 IRS 0.07 0.18 0.39 IRS 0.29 0.33 0.89 DRS

2 India 0.33 0.33 1.00 – 0.38 0.39 0.96 DRS 1.00 1.00 1.00 –

3 Brazil 0.83 1.00 0.83 DRS 0.40 0.75 0.54 IRS 1.00 1.00 1.00 –

4 Russia 0.47 0.60 0.78 IRS 0.37 0.60 0.62 IRS 0.18 0.64 0.29 IRS

5 France 0.03 0.27 0.11 IRS 0.01 0.27 0.04 IRS 0.01 0.27 0.03 IRS

6 Spain 0.22 0.33 0.67 IRS 0.11 0.33 0.33 IRS 0.07 0.34 0.19 IRS

7 Argentina 0.33 0.33 1.00 – 0.16 0.33 0.48 IRS 0.16 0.36 0.46 IRS

8 UK 0.20 0.30 0.67 IRS 0.07 0.30 0.22 IRS 0.05 0.31 0.17 IRS

9 Columbia 0.43 0.43 1.00 DRS 0.22 0.43 0.50 IRS 0.16 0.45 0.34 IRS

10 Italy 0.15 0.33 0.44 IRS 0.04 0.33 0.13 IRS 0.03 0.33 0.08 IRS

11 Mexico 0.67 0.77 0.87 IRS 0.11 0.77 0.14 IRS 0.40 0.95 0.42 IRS

12 Peru 0.60 0.60 1.00 – 0.21 0.60 0.35 IRS 0.15 0.62 0.24 IRS

13 South Africa 0.50 0.50 1.00 – 0.30 0.50 0.61 IRS 0.13 0.54 0.24 IRS

14 Iran 0.26 0.33 0.78 IRS 0.07 0.33 0.22 IRS 0.09 0.34 0.27 IRS

15 Germany 0.18 0.27 0.67 IRS 0.15 0.27 0.55 IRS 0.03 0.27 0.10 IRS

16 Poland 0.17 0.38 0.45 IRS 0.15 0.38 0.41 IRS 0.03 0.38 0.07 IRS

17 Chile 0.67 1.00 0.67 DRS 0.30 0.60 0.49 IRS 0.09 0.61 0.15 IRS

18 Iraq 0.60 0.60 1.00 – 0.37 0.60 0.62 IRS 0.09 0.60 0.15 IRS

19 Belgium 0.03 0.27 0.11 IRS 0.01 0.27 0.03 IRS 0.00 0.27 0.01 IRS

20 Ukraine 0.24 0.43 0.55 IRS 0.16 0.43 0.36 IRS 0.03 0.43 0.07 IRS

21 Indonesia 0.95 1.00 0.95 IRS 0.44 1.00 0.44 IRS 0.23 1.00 0.23 IRS

22 Czechia 0.29 0.43 0.67 IRS 0.32 0.43 0.75 IRS 0.03 0.43 0.06 IRS

23 Bangladesh 1.00 1.00 1.00 – 1.00 1.00 1.00 – 0.43 1.00 0.43 IRS

24 Netherlands 0.18 0.27 0.67 IRS 0.13 0.27 0.46 IRS 0.02 0.27 0.07 IRS

25 Philippines 0.60 0.60 1.00 – 0.46 0.60 0.77 IRS 0.08 0.60 0.14 IRS

26 Turkey 0.60 0.60 1.00 – 0.27 0.60 0.45 IRS 0.05 0.60 0.09 IRS

27 Saudi Arabia 0.42 0.70 0.60 DRS 0.33 0.40 0.83 IRS 0.04 0.38 0.10 IRS

28 Pakistan 1.00 1.00 1.00 – 0.82 1.00 0.82 IRS 0.16 1.00 0.16 IRS

29 Romania 0.47 0.60 0.78 IRS 0.23 0.60 0.38 IRS 0.03 0.60 0.05 IRS

30 Israel 0.42 0.50 0.83 DRS 0.63 0.65 0.97 IRS 0.03 0.38 0.07 IRS

31 Canada 0.27 0.30 0.89 IRS 0.09 0.30 0.30 IRS 0.02 0.30 0.05 IRS

32 Morocco 0.89 1.00 0.89 IRS 0.88 1.00 0.88 IRS 0.02 1.00 0.02 IRS

33 Switzerland 0.19 0.33 0.56 IRS 0.19 0.33 0.58 IRS 0.01 0.33 0.03 IRS

34 Nepal 0.44 0.50 0.89 IRS 1.00 1.00 1.00 – 0.03 0.50 0.07 IRS

35 Portugal 0.20 0.30 0.67 IRS 0.16 0.30 0.52 IRS 0.01 0.30 0.02 IRS

36 Ecuador 0.52 0.66 0.79 DRS 0.10 0.46 0.21 IRS 0.05 0.46 0.11 IRS

Mean 0.43 0.53 0.76 0.30 0.52 0.51 0.14 0.53 0.22

# of efficient DMUs 2 6 10 2 5 2 2 6 2

Based on data envelopment analysis efficiency calculated results.
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