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Jost matrices for some analytically solvable potential models
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A family of analytically solvable potential models for the one- and two-channel problems is considered within
the Jost matrix approach. The potentials are chosen to be constant in the interior region and to have different
asymptotic behavior (tails) at large distances. The migration of the S-matrix poles on the Riemann surface of the
energy, caused by variations of the potential strength, is studied. It is demonstrated that the long-range (∼1/r2)
tails and Coulomb potential (∼1/r) cause an unusual behavior of the S-matrix poles. It is found that in the
two-channel problem with the long-range potentials the S-matrix poles may appear at complex energies on the
physical Riemann sheet. The Coulomb tail not only changes the topology of the Riemann surface, but also breaks
down the so-called mirror symmetry of the poles in both the single-channel and the two-channel problems.
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I. INTRODUCTION

Theoretical interpretation of experimentally measured
scattering cross sections often requires considering the
physical system at unphysical complex energies. Such a con-
sideration allows one to reveal the spectral singularities of the
S matrix. If these singularities are close to the real energies,
they can strongly influence the energy dependence of the
observables. In particular, various irregularities (e.g., zigzags)
of the cross-section curves can be understood as the effects of
such S-matrix poles at complex energies.

The S matrix is a multivalued function of the complex
energy-variable E . This means that a single value of E cor-
responds to several (or even infinite in the case of Coulomb
forces) different values of S(E ). As a result, the function S(E )
is defined not on the single E plane, but on a multilayered
Riemann surface where each layer (sheet) is a copy of the E
plane and corresponds to a separate value of S. Each sheet of
the Riemann surface has its own real axis. All of them are
cut along the positive halves of these axes and the edges of
the cuts of different sheets are interconnected in such a way
that going around the threshold energies (which are the branch
points) brings us from one layer to the other in accordance
with the analytic structure of the function S(E ).

The topology of the Riemann surface is simple only in the
single-channel problem with a short-range potential, where
it consists of just two sheets (the physical and nonphysical
ones) with the square-root branch point at E = 0. In this
simple problem the function S(E ) is double-valued because
it actually depends on the momentum k, and when calculating
the square root k ∼ (±√

E ) we can choose either the positive
or negative sign. The physical sheet corresponds to such a
choice of this sign that Im k � 0, and on the nonphysical sheet
Im k < 0.

Even in the single-channel problem, if the particles have
nonzero charges, the point E = 0 becomes the square-root
and the logarithm branch point at the same time, the number
of sheets becomes infinite, and the topology of the surface
becomes spiral (for details see Ref. [1]). When the number of
channels is more than one, the intricate interconnections of the
sheets make its topology very complicated.

The physical scattering energies (E > 0) are on the upper
edge of the cut of the physical sheet, which is connected
to the lower edge of the cut of the nonphysical sheet. Only
those S-matrix poles that are close to these scattering energies
may noticeably influence the observables. This means that
only poles that are slightly below the real axis (i.e., on the
nonphysical sheet) and that are slightly above this axis on the
physical sheet can affect the observables.

Long ago, using the causality principle, it was proved that
on the physical sheet of the Riemann surface the S matrix
can have poles only at bound-state energies, E < 0 [2]. This
means that there are no poles above the scattering energies,
and only those below the real axis, i.e., the resonances, influ-
ence the scattering process. However, the proof in Ref. [2] was
given only for a single-channel problem with a short-range
potential and a generalization to the long-range forces or to
multichannel problems is absent. Despite this, it became a
common belief that there are no poles on the physical sheet no
matter how complicated the problem is. This belief is based
on common sense and intuition, which are not to be always
trusted.

An example of misunderstanding caused by such a belief,
is the confusion around the so-called shadow pole associated
with the two-channel (nα and dt) resonance state 5 He∗(3/2+)
which is formed at ≈50 keV in the dt collision.

Using the R-matrix analysis of experimental data as well
as some approximate calculations, several research groups
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[3–7] came to the conclusion that, in addition to the normal
resonant pole on the nonphysical sheet, it should be another
(shadow) pole without which the data are not fit. The shadow
pole has been placed on one of the remote sheets (different
assignments have been suggested by different authors). It is a
long way around the branch point from this shadow pole to
the scattering energy and an explanation why such a remote
pole influences the observable cross section is needed. The
possibility that the shadow pole could be just above the real
axis on the physical sheet has not been considered.

First of all, note that there is no rigorous definition of the
shadow poles. It is assumed that in some cases the S-matrix
poles located somewhere on the Riemann surface but not on
the same sheet as the resonances can also influence the ob-
servable cross section. If such poles do exist, they are termed
“shadow poles.” The most simple and logical would be to
expect them to be on the physical sheet just above the real
axis. This however “contradicts” the causality principle.

Recently we reanalyzed [1] the data for the nuclear system
5He in the state 3/2+ using the semi-analytic representation
of the multichannel Jost matrix with proper analytic structure
suggested in Ref. [8]. It was found that indeed there is the
shadow pole, but it is on the physical sheet. A similar analysis
[9] of the system 8B(0+) also revealed the shadow pole on the
physical sheet.

These findings made us doubt the validity of the ban on the
existence of the poles on the physical sheet in a multichannel
problem. The only convincing way to disprove the ban is to
find a counterexample where everything can be solved exactly.
This is the main aim of the present paper.

As such an example, we chose the two-channel potentials,
which are of simple square-well shape up to certain distance
R. Beyond R the diagonal potentials have a centrifugal bar-
rier or a repulsive Coulomb tail. For such potentials it is
not difficult to solve the radial Schrödinger equation exactly
and to obtain analytic expressions for the Jost matrices. The
corresponding S matrix is then obtained as the “ratio” of two
Jost matrices. Varying the parameters of the potential, we can
trace the movements of the S-matrix poles and check if any of
them go to the “prohibited” domain.

To be methodical and consistent, we consider (within the
same approach) a sequence of the problems with increasing
complexity. Starting with the simplest single-channel square-
well potential, we add to it the centrifugal tail, then the
Coulomb tail, then make it two-channel with either the cen-
trifugal or with the Coulomb tails. It turned out that the only
problem where the “forbidden” poles on the physical sheet
appear, is the two-channel problem with the centrifugal tail.
This finding is an explicit example where the common belief
in nonexistence of the complex poles on the physical sheet is
disproved.

The paper is organized as follows. In Sec. II we define the
family of one- and two-channel potential models and find an-
alytical expressions for the S matrix and wave functions using
the Jost matrix method. In Sec. III we explore the patterns of
the movement of the S-matrix poles for different models and
discuss their general properties. Appendixes contain supple-
mental material that illuminates some important calculation
details.

II. FORMALISM

Consider a system of two spinless bodies that interact via a
spherically symmetric potential U . If |i〉 describes the internal
states of the bodies and μ is the reduced mass (we assume it to
be the same in all the channels), then introducing the reduced
potential matrix Vi, j ,

2μ

h̄2 〈�r ′, i|U |�r, j〉 = δ(�r ′ − �r )Vi, j (r), (1)

where �r is the relative coordinate, and performing the standard
partial-wave decomposition, we obtain the following system
of Schrödinger equations for the radial components, ui, j (k, r),
of the wave function of the relative motion:

u′′
i, j (k, r) +

[
k2 − εi − �i(�i + 1)

r2

]
ui, j (k, r)

−
∑

n

Vi,n(r)un, j (k, r) = 0. (2)

Here k is the wave number corresponding to the center-
of-mass energy E via the relation k2 = (2μ/h̄2)E , and the
parameters εi are expressed as εi = (2μ/h̄2)Ei in terms of
the threshold energies Ei of the channels i = 1, 2, . . . . The
potential matrix is symmetric, Vi, j = Vj,i.

Our aim is to analytically solve Eqs. (2) for a family of one-
and two-channel potentials, and then to study the properties of
these solutions at complex energies. Although the equations
have a simple linear dependence on E , their solutions, ui, j ,
have a more complicated dependence on this parameter. They
depend on E via the channel momenta,

ki = ±
√

k2 − εi, (3)

and (if the Coulomb forces are present) on their logarithms,

ln (ki ) = ln |ki| + i[arg (ki ) + 2πmi],

mi = 0,±1, . . . . (4)

This is because the solutions are determined not only by
the equations but also by the boundary conditions, which at
infinity involve the ingoing and outgoing spherical waves (see
Eq. (9) further down) or their combinations. These waves
explicitly depend on ki and ln (ki ).

Since for a single value of E there are two possible values
of each ki and infinite number of possible ln (ki ), the solutions
ui, j (as well as all the quantities associated with them) are
multivalued functions of E . In particular, the S matrix is such a
multivalued function of the complex variable E . It is therefore
defined on a multilayered Riemann surface with the square-
root and logarithm branch points at every threshold energy Ei.
On such a surface the S matrix is a single-valued function of
the energy.

We denote the sheets of the Riemann surface by the signs
of Im ki and by the integer numbers mi, i.e., by the logarithmic
indices defined in Eq. (4).

In total, due to the square-root branch points, there are 2N

possible sign combinations of the channel momenta, where
N is the number of channels. If the Coulomb interaction is
present, the number of the Riemann sheets becomes infinite
because the logarithm indices in Eq. (4) may have infinitely
many different values. It is customary to cut the k plane from
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−∞ to zero and define the principal branch of the logarithm
as a part of the function (4) that corresponds to mi = 0 and
−π � arg(ki ) < π . The energy sheet where Im ki > 0 and
mi = 0 is called physical with respect to the channel i. In the
two-channel problem, we simply call the sheet physical if it is
physical with respect to both channels.

A. Analytically solvable models

To make our models analytically solvable, we divide the
configuration space into the internal and external regions
(within and outside a sphere of the radius R) and in these
regions use simple potentials for which the problem can be
easily solved. What then remains is to smoothly match the
internal and external solutions and their derivatives at r = R.

We only consider one- and two-channel models with the
S-wave interactions. In the internal region, r � R, the poten-
tial is taken to be constant, i.e., Vi,i(r) = Vi and V1,2(r) =
V2,1(r) = �, where both the diagonal and off-diagonal ele-
ments, Vi and �, are r independent. In the external region, r >

R, we assume that the coupling potentials among the channels
disappear and the potential matrix becomes diagonal, Vi, j ∼
δi j . The following three different external potentials (tails) are
considered:

(1) zero potential that leads to the free exponential solu-
tions;

(2) “centrifugal barrier” potential, Vi,i(r) = �(� + 1)/r2,
for which the solutions are the Ricatti-Hankel func-
tions of the integer order �;

(3) the Coulomb potential Vi,i(r) ∼ 1/r that gives the
Coulomb wave functions for r > R.

The first choice is the simplest one and is a particular case
of the second with � = 0. For both of them the Riemann
surface has only the square-root branch points at Ei. The
Coulomb tail in the third choice leads to a different topol-
ogy of the Riemann surface due to an additional logarithmic
branch point.

B. Two-channel problem

Each column of the matrix ui, j is a separate solution of
Eq. (2). In general, a system of N second-order differential
equations (2) has 2N linearly independent column-solutions,
but only half of them are regular at r = 0. For N = 2, there
are two linearly independent regular columns. They therefore
form a square matrix

û =
(

u1,1 u1,2

u2,1 u2,2

)
. (5)

These two columns constitute a basis in the space of all possi-
ble solutions that are regular at the origin. In other words, any
physical solution (which is always a single column) is a linear
combination of the two columns of matrix (5). We denote a
single column-solution by the “hat” above the letter with a
single subscript,

ûα (k, r) =
[

u1,α (k, r)

u2,α (k, r)

]
.

The columns differ from one another by the boundary condi-
tions.

In the external region (r > R), the system of equations (2)
decouples,

u′′
i,α (k, r) + [

k2
i − Vi,i(r)

]
ui,α (k, r) = 0. (6)

It is convenient to consider here the so-called Jost solutions
that asymptotically behave as pure spherical waves [10]. At
r > R there is no requirement of regularity. We therefore take
into account all four independent column-solutions, which are
combined in two square matrices (denoted by the superscripts
“+” and “−”),

f̂ (±)(k, r) = [ f̂ (±)
1 (k, r), f̂ (±)

2 (k, r)], (7)

which are diagonal thanks to the decoupling of the differential
equations at r > R,

f̂ (±)(k, r) =
[
χ (±)(k1, r) 0

0 χ (±)(k2, r)

]
, (8)

where

χ (±)(ki, r)
r→∞−→ exp (±ikir)
r→∞−→ exp {±i[kir − ηi ln (2kir)]}. (9)

Here, the second line corresponds to the case when the ith
channel has the Coulomb potential at r > R, and ηi is the
Sommerfeld parameter. The solutions χ (±)(ki, r) satisfy the
following Wronskian relation [W ( f , g) = f g′ − f ′g]:

W [χ (+)(ki, r), χ (−)(ki, r)] = −2iki. (10)

The Jost solutions constitute a complete basis in the external
region. Therefore, in this region any other solution can be
written as their linear combination.

In the internal region the column-solution ûα (k, r) obeys
the system of two coupled radial equations,(

u1,α

u2,α

)′′
+

(
k2 0
0 k2

)(
u1,α

u2,α

)

=
(

ε1 + V1 �

� ε2 + V2

)(
u1,α

u2,α

)
. (11)

The symmetric matrix on the right side of Eq. (11) couples
different channels and can be diagonalized by the orthogonal
matrix Ô,(

ε1 + V1 �

� ε2 + V2

)
= Ô · ŵ · ÔT

=
(

cos θ − sin θ

sin θ cos θ

)(
ω1 0
0 ω2

)

×
(

cos θ sin θ

− sin θ cos θ

)
, (12)

where the diagonal matrix elements ω1 and ω2 as well as the
mixing angle θ are defined by the following expressions:

ω1,2 = 1

2
(ε1 + V1 + ε2 + V2 ± ),

 =
√

(ε1 + V1 − ε2 − V2)2 + 4�2,

sin 2θ = 2�


.
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Multiplying Eq. (11) from the left by ÔT and inserting the
unit matrix I = ÔÔT between the matrices on its right-hand
side, we obtain the uncoupled system of equations for the new
unknown column-solution v̂α = ÔT ûα:[

v1,α (k, r)
v2,α (k, r)

]′′
+

[
λ2

1v1,α (k, r)
λ2

2v2,α (k, r)

]
= 0, (13)

where λ2
i = k2 − wi are the eigenfrequencies. Equations (13)

can be easily solved. There are four independent solutions:

v̂α =
(

e+iλ1r

0

)
,

(
e−iλ1r

0

)
,

(
0

e−iλ2r

)
,

(
0

e+iλ2r

)
.

The original solutions can be found via the inverse transforma-
tion, ûα (k, r) = Ôv̂α (k, r). The four solutions thus obtained
are denoted by different combinations of the signs in the
superscripts (±) and the two values of the subscript α:

û(±)
1 (k, r) =

(
cos θ

sin θ

)
exp (±iλ1r), (14)

û(±)
2 (k, r) =

(− sin θ

cos θ

)
exp (±iλ2r). (15)

It should be noted that the four independent solutions (14) and
(15) constitute a complete basis. Therefore, not only regular,
but any solution in the internal region can be written as a linear
combination of the four columns (14), (15). In particular, the
Jost solutions at r � R can be obtained by smooth match-
ing of the external solutions (7) with such a combination at
r = R. Equalizing the functions and their derivatives at the
boundary between the regions, we find the four combination
coefficients. This gives for r � R the following Jost solutions:

f̂ (±)
1 (k, r) =

(
cos2 θψ

(±)
1,1 + sin2 θψ

(±)
2,1

sin θ cos θ [ψ (±)
1,1 − ψ

(±)
2,1 ]

)
, (16)

f̂ (±)
2 (k, r) =

(
sin θ cos θ [ψ (±)

1,2 − ψ
(±)
2,2 ]

sin2 θψ
(±)
1,2 + cos2 θψ

(±)
2,2

)
, (17)

where the functions ψ
(±)
i, j (r) are given by

ψ
(±)
i, j (r) = cos [λi(R − r)]χ (±)(k j, R)

− 1

λi
sin [λi(R − r)]χ (±)′(k j, R). (18)

The Jost solutions satisfy the following matrix Wronskian re-
lation [W ( f̂ , ĝ) = f̂ T ĝ′ − f̂ T ′

ĝ, superscript “T ” indicates the
transposed matrix]:

W [ f̂ (+)(k, r), f̂ (−)(k, r)] = −2ik̂, (19)

where k̂ is the diagonal matrix with the elements k̂i, j = δi, jk j .
Generally speaking, the Jost solutions are irregular at the ori-
gin, namely, behave as ∼r−�. However, for the case of � = 0
(which we consider) they have finite values at r = 0.

Among all possible regular solutions we, following
Ref. [11], consider the solution ϕ̂(k, r) which is a square
matrix obeying the boundary conditions at the origin, which
do not depend on the energy,

ϕ̂(k, 0) = 0̂, ϕ̂′(k, 0) = 1̂. (20)

Since the Jost solutions constitute a complete basis in the
space of all the solutions, ϕ̂(k, r) can be written as their linear
combination,

ϕ̂(k, r) = f̂ (+)(k, r)ĉ(+) + f̂ (−)(k, r)ĉ(−). (21)

The matrix coefficients ĉ(±) can be found by calculating the
corresponding Wronskians. Indeed, using Eq. (19), we obtain

W [ f̂ (±)(k, r), ϕ̂(k, r)] = ∓2ik̂ĉ(∓). (22)

The Jost matrices can be defined as the above Wronskians
(which are independent of r):

f̂ (±)T (k) = W [ f̂ (±)(k, r), ϕ̂(k, r)]

= f̂ (±)T (k, 0), (23)

where the second equality follows from the boundary con-
ditions (20). The explicit forms of the Jost matrices f̂ (±)(k)
are given by Eqs. (16) and (17) taken at r = 0. Therefore the
coefficients ĉ(±) are

ĉ(±) = ∓ i

2
k̂−1 f̂ (∓)T (k), (24)

and for the regular solution we obtain [r ∈ [0,∞)]:

ϕ̂(k, r) = i

2
[ f̂ (−)(k, r)k̂−1 f̂ (+)T (k)

− f̂ (+)(k, r)k̂−1 f̂ (−)T (k)]. (25)

To find out how the introduced Jost matrices are related to the
S matrix, it is convenient to rewrite this form of ϕ̂(k, r) in such
a way that it explicitly includes the functions Ŵ (in/out)(k, r) =
± f̂ (∓)(k, r)k̂−1/2 that asymptotically behave as the incoming
and outgoing spherical waves, normalized to the unit flux. To
this end we multiply Eq. (25) from the right by the unit matrix

I = [ f̂ (+)T (k)]−1k̂1/2[ f̂ (+)(k)k̂−1/2]T ,

which gives

ϕ̂(k, r) = i

2
{ f̂ (−)(k, r)k̂−1/2 − f̂ (+)(k, r)k̂−1/2

× k̂−1/2 f̂ (−)T (k)[ f̂ (+)T (k)]−1k̂1/2}[ f̂ (+)(k)k̂−1/2]T ,

i.e.,

ϕ̂(k, r) = i

2
[Ŵ (in)(k, r) + Ŵ (out)(k, r)Ŝ(k)]

× [ f̂ (+)(k)k̂−1/2]T ,

where the S matrix whose open channel submatrix is unitary
at real positive energy, is given by

Ŝ(k) = k̂−1/2 f̂ (−)T (k)[ f̂ (+)T (k)]−1k̂1/2. (26)

Since all the matrices in Eq. (26) have the dimensions (2 × 2),
it is not difficult to perform the inversion and all the multipli-
cations explicitly. This gives

Ŝ(k) = 1

det f̂ (+)(k)

(
A B
B C

)
. (27)

Here, the determinant of the Jost matrix, det f̂ (+)(k), is equal
to

det f̂ (+)(k) = cos2 θψ
(+)
1,1 (0)ψ (+)

2,2 (0) + sin2 θψ
(+)
1,2 (0)ψ (+)

2,1 (0).

(28)
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Its zeros correspond to the S-matrix poles. The elements of
the matrix (27) are given by

A = χ (−)(k1R)χ (+)(k2R)D(−,+),

B = 2i
√

k1k2R sin θ cos θ (s1c2 − c1s2), (29)

C = χ (+)(k1R)χ (−)(k2R)D(+,−),

where si = sin(λiR)/(λiR), ci = cos(λiR), and the coeffi-
cients D(±,±) can be found as

D(±,±) = c1c2 + s1s2L(±)
1 L(±)

2 − L(±)
1 (cos2 θs1c2 + sin2 θc1s2)

− L(±)
2 (cos2 θc1s2 + sin2 θs1c2), (30)

with

L(±)
i = Rχ (±)′(kiR)/χ (±)(kiR).

When looking for the S-matrix poles and tracing their mi-
gration on the Riemann surface, we only need to look for
and trace the zeros of the determinant (28). An alternative
expression for this determinant is

det f̂ (+)(k) = χ (+)(k1R)χ (+)(k2R)D(+,+). (31)

The unitarity of the S matrix at the real positive energy can be
checked by straightforward calculations. The partial cross sec-
tions σi→ j for S-wave scattering from the ith to jth channels
are given by the standard expression

σi→ j = π

k2
i

|Si, j − δi, j |2. (32)

C. Single-channel problem

The more simple formulas for the single-channel case are
obtained from the corresponding equations of the preceding
section if in the matrix of the potential we only retain the first
element V1,1(r),

V1,1(r) =

⎧⎪⎪⎨
⎪⎪⎩

V1, r � R
0, r > R (∗)
σ/r2, r > R (∗∗)
2kη/r, r > R (∗ ∗ ∗),

(33)

where V1 is a constant value of the potential in the internal
region, and there are three choices, (∗), (∗∗), and (∗ ∗ ∗), of
the potential tail in the external region. Here σ > 0 is the
strength of the external centrifugal barrier. In the calculations
we chose σ = 6, which corresponds to � = 2 in �(� + 1)/r2,
i.e., to the quadrupole barrier. The Sommerfeld parameter η =
1/(ak) corresponds to the Coulomb interaction between two
particles with charges eZ1 and eZ2, where a = h̄2/(μe2Z1Z2)
is the nuclear Bohr radius. The potential (33) is schematically
depicted in Fig. 1.

The integer value of � in σ = �(� + 1) of the choice (∗∗)
in the potential (33) does not change the topology of the
Riemann surface, i.e., it still has the same square-root branch
point as in the simplest case (∗). In contrast to that, in the
case (∗ ∗ ∗) the Coulomb tail drastically changes the Riemann
surface because the threshold energy, E = 0, becomes not
only the square-root but also the logarithm branch point. As
a result, the Riemann surface becomes spiral with an infinite
number of sheets.

FIG. 1. The potentials used in the model, consist of a constant
(flat) potential at r � R with the variable depth V1 and three differ-
ent tails at r > R: (∗) short-range (identical zero), (∗∗) centrifugal
potential (∼1/r2), (∗ ∗ ∗) Coulomb potential (∼1/r).

In the external region, r > R, the two Jost solutions,
χ (±)(kr), for the three different choices of the tail in (33)
are (∗) the Ricatti-Hankel functions h(±)

0 (kr); (∗∗) the Ricatti-
Hankel functions h(±)

2 (kr); and (∗ ∗ ∗) the Coulomb functions
H(±)

η,0 (kr) of zero order,

χ (±)(z) =

⎧⎪⎨
⎪⎩

h(±)
0 (z) = e±iz (∗)

h(±)
2 (z) = (3/z2 ∓ 3i/z − 1)e±iz (∗∗)

H(±)
η,0 (z) = e∓iση,0 [Gη,0(z) ± iFη,0(z)] (∗ ∗ ∗),

(34)

where z = kr, Fη,0(z), and Gη,0(z) are the standard regular and
irregular Coulomb functions of the zero order. The S-wave
Coulomb phase shift, ση,0, is given by

ση,0 = 1

2i
[ ln (1 + iη) − ln (1 − iη)]. (35)

For the single-channel case the S matrix (26) becomes a sim-
ple ratio of the two Jost functions,

S(k) = f (−)(k)/ f (+)(k),

and its poles are just zeros of f (+)(k). The Jost functions can
be found using Eq. (23), i.e., by taking the Jost solutions (16)
at r = 0. In this column we should only take the top element
with θ = 0. In this way we obtain

f (±)(k) = ψ
(±)
1,1 (0),

where ψ
(±)
1,1 is given by Eq. (18). Therefore,

f (±)(k) = χ (±)(kR) − sin (λR)

λ
χ (±)′(kR), (36)

with λ2 = k2 − V1. The Jost solutions and their derivatives at
r = R that are needed in Eq. (36) can be found using one of
the three choices given in Eq. (34).

From the explicit expressions (36) for the Jost functions we
can establish the symmetry relations for them with respect to
changing sign or complex conjugation of the momentum, i.e.,
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the symmetry relations at different points on the complex k
plane. It is clear that in the cases (∗) and (∗∗) we have

h(±)
�

(z) = h(∓)
�

(−z) = [h(∓)
�

(z�)]� = [h(±)
�

(−z�)]�.

Exactly the same relations are valid for

g(±)
�

(z) = z
d

dz
h(±)

�
(z),

i.e.,

g(±)
�

(z) = g(∓)
�

(−z) = [g(∓)
�

(z�)]� = [g(±)
�

(−z�)]�.

At the same time the values of cos(λR) and sin(λR)/λ do not
change under these transformations. Using all these relations,
we find that

f (±)(k) = f (∓)(−k) = [ f (∓)(k�)]� = [ f (±)(−k�)]�,

and

S(k) = 1

S(−k)
= 1

[S(k�)]�
= [S(−k�)]�. (37)

The transformation k → −k� is the reflection relative to the
imaginary k axis and is known as the mirror symmetry.

In the case (∗ ∗ ∗), i.e., when the tail of the potential is
∼1/r, the analysis of the symmetry properties is a more com-
plicated. In such a case the Jost functions are written as

f (±)(k) = cos (λR)H(±)
η,0 (kR) − sin (λR)

λ
H(±)′

η,0 (kR), (38)

where the Coulomb functions H(±)
η,0 (kR) and their derivatives

are not single-valued functions of the energy. They can be
presented as the sums of the other functions which involve
the multivalued and single-valued factors (see Appendix A).
The symmetry properties can be established by analyzing
how these factors change under the sign change and complex
conjugation of the momentum.

For � = 0 the Coulomb functions can be written in the
following factorized form:

H(±)
η,0 (z) = exp (πη/2)

(1 ± iη)
[h(±)

η,0 �η,1(z) + �η,1(z)],

d

dz
H(±)

η,0 (z) = η exp (πη/2)

(1 ± iη)
[h(±)

η,0 �̃η(z) + �̃η(z)],

where for z = kR the functions �η,1(z), �η,1(z), �̃η(z), and
�̃η(z) are single-valued functions of k2 (i.e., of the energy).
The multivaluedness of the Coulomb functions and therefore
of the Jost functions (38) stems from the other factors. Since
the Sommerfeld parameter depends on the first power of the
momentum, there is the square-root branch point of the Rie-
mann surface at E = 0. An additional trouble is caused by the
functions

h(±)
η,0 = 1

2
[ψ (iη) + ψ (−iη)] − ln η ± iπ

exp (2πη) − 1
,

making E = 0 also the logarithm branch point.
Substituting the factorized representations of the Coulomb

functions in Eq. (38), we obtain

f (±)(k) = exp (πη/2)

(1 ± iη)
[h(±)

η,0 �(k2) + �
(
k2

)
],

where

�(k2) = cos (λR)�η,1(z) −
(

R

a

)
sin (λR)

λR
�̃η(z),

�(k2) = cos (λR)�η,1(z) −
(

R

a

)
sin (λR)

λR
�̃η(z),

are entire (analytic and single-valued) functions of k2. It is
not difficult to see that, in contrast to the cases (∗) and (∗∗),
the transformation k → −k does not lead to a simple relation
between the Jost functions at these two points. Indeed, such
a transformation changes η to −η and thus exp(πη/2) →
exp(−πη/2). Moreover, the functions h(±)

−η,0 and h(±)
η,0 have

different values. This means that the presence of the Coulomb
forces destroys the symmetry between the points k and −k as
well as the mirror symmetry, i.e., the symmetry between k and
−k∗. The only symmetry that remains valid is the symmetry
between the points k and k∗. A detailed discussion of the
symmetry properties of the Jost matrices for multichannel
problems can be found in Ref. [1], where the same results are
obtained within a different (general) approach.

III. MIGRATION OF THE SPECTRAL POINTS

Having obtained the exact analytic expressions for the Jost
matrices, we can locate zeros of det f̂ (+)(k) and study how
they move when the strength of the potential is changing.
These zeros correspond to the poles of the S matrix, i.e., to
the spectral points (bound, virtual, and resonant states) of
the Hamiltonian. The method that we use for locating these
spectral points is described in Appendix B.

In the models that we consider, the positions of the spec-
tral points are determined by the following dimensionless
parameters: kR, R

√|Vi|, and �R2. The idea of tracing the
movement of the spectral points with the change of such
parameters is taken from Ref. [12]. We did all the calculations
with R = 3 fm (which is typical size of the potentials in
nuclear physics). If necessary, all the results can be scaled to
a different R. When varying the strength of the potential, we
only change the flat potential at r < R, while the height of the
external barrier is fixed.

A. Single-channel problem (∗)

To begin with, we consider the simplest case (∗) of the
potential (33). The trajectories of the spectral points for an
attractive well (V1 < 0) are shown in Figs. 2(a) and 2(b), and
for a repulsive barrier (V1 > 0) in Fig. 2(c). These curves
are the paths of the Jost function zeros when the potential
strength, determined by the dimensionless parameter R

√|V1|,
is changed. There are few points shown on each trajectory
with the numbers next to them indicating the corresponding
values of this parameter.

The first obvious feature in these figures is the mirror sym-
metry of the zeros [see Figs. 2(b) and 2(c)]. They appear in
pairs on both sides of the imaginary axis at k and −k∗. There
are infinitely many of them. When V1 = 0, all the zeros are at
infinity in the lower half of the k plane. When the bottom, V1,
of the potential well moves down, the zeros become visible
and migrate towards the point kR = −i. At this point the left
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FIG. 2. Trajectories of the Jost function zeros for the single-
channel square-well potential with variable depth in the internal
region and zero potential outside: (a) migration of the first three
zeros along the imaginary axis kR as a function of the dimension-
less strength parameter R

√|V1|; (b) movement of the zeros on the
complex plane kR. Both cases (a) and (b) are for an attractive well
V1 < 0. (c) The trajectories of the zeros on the complex kR plane
for a repulsive barrier V1 > 0. The numbers show the values of the
parameter R

√|V1| at the corresponding points of the trajectories.

and right symmetric zeros fuse. The fusions of the first two
pairs are marked by the symbols f1 and f2 in Figs. 2(a) and
2(b). After the fusion, they move along the imaginary axis in
the opposite directions. The zero that moves down eventually
disappears. Its partner that moves up becomes a bound state
after crossing the threshold point k = 0. Further deepening of
the potential moves this zero up along the imaginary axis and
a new pair of zeros fuses at kR = −i.

For the attractive well, different symmetric pairs of the
zeros fuse at the same point, kR = −i, but at different depths
of the potential, and repeat the same movement-pattern. There
is, however, one zero that appears alone. It goes all the way
from −i∞ up along the imaginary axis and moves faster than
the other zeros. After crossing the threshold, it becomes the
ground bound state. In Fig. 2(a) its movement is represented
by the leftmost curve. The other two trajectories in this figure
show how the first two fusing pairs move from the points f1

FIG. 3. Trajectories of the Jost function zeros for the attractive
square well potential with the quadrupole centrifugal barrier in the
external region: (a) movement of the poles along the imaginary kR
axis with the change of the dimensionless strength parameter R

√|V1|;
(b) movement on the complex kR plane. Numbers at the points of the
trajectories in panel (b) give the values of the parameter R

√|V1|.

and f2 in the opposite directions after they get to the imaginary
axis [their preceding “history” is shown in Fig. 2(b)].

For a repulsive barrier (V1 > 0), there are no zeros on the
imaginary axis [see Fig. 2(c)]. In this case, symmetric pairs of
the zeros move away from each other.

The pattern of the S-matrix pole migration, shown in Fig. 2,
is typical for the short-range potentials. A similar picture of
the S wave pole movement was reported, for example, for the
Woods-Saxon potential in Ref. [13].

B. Single-channel problem (∗∗)

Figures 3(a) and 3(b) show the movement of the zeros
for the attractive square-well potential (33∗∗) with variable
depth and with fixed quadrupole centrifugal barrier outside.
The notation is similar to Fig. 2.

Since even for |V1| = 0 the fixed centrifugal barrier 6/r2

is present in the external region, the initial positions of the
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spectral points (marked by 0) are not at infinity. They just form
a typical sequence of resonances with the mirror symmetry
relative to the imaginary axis [Fig. 3(b)] and one virtual state
is visible on the imaginary k axis [Fig. 3(a)]. The movement
of the zeros with increasing depth |V1| is also qualitatively
different from the corresponding behavior of the poles in the
case (∗) of a finite-range potential.

There are two different types of trajectories:

(i) The trajectories of the first type exhibit a similar
pattern of movement as in the case (∗), namely, the
symmetric zeros move towards each other and fuse.
The difference is that they fuse not at the point kR =
−i, but at the threshold k = 0. Similar to the case (∗),
zeros at the fusion point (marked as s1, s2, and s3) turn
in 90◦ and start moving along the imaginary axis in
opposite directions.

(ii) The trajectories of the second type are closed ellipses
shown in the central part of Fig. 3(b). Initially, i.e.,
when |V1| = 0, there is nothing there except for one
virtual state. These ellipses are formed with growing
|V1| by those virtual states that move down the imag-
inary axis from the first type of trajectories. These
virtual states collide on the imaginary axis with the
other virtual states that go up, and start moving side-
wise symmetrically in the complex plane along the
closed elliptic paths, repeating the collisions (trajec-
tories that go down from the point f3, overlap with
those starting from the point f2; this is why only the
endpoints of these curves at R

√|V1| = 10 are shown).

Figure 4 shows how the zeros move when in the inter-
nal region, r � R, the square potential is repulsive with the
quadrupole centrifugal tail outside. In the absence of the inter-
nal potential, |V1| = 0, the initial distribution of the spectral
points is, of course, the same as in the previous case (the
points marked by zero in Fig. 4 and one virtual state). With
increasing |V1| the resonances move away from the imaginary
axis. Their trajectories do zigzags when the height of the
internal barrier becomes equal to the height of the external
one. The virtual state moves down the imaginary axis and
collides (at the point f ) with another virtual state which comes
up from afar. After the collision they symmetrically move up
in complex plane along the elliptic trajectories.

C. Single-channel problem (∗ ∗ ∗)

The height of the Coulomb barrier at r = R in the single-
channel potential (33∗ ∗ ∗) is chosen to be equal to the height
of the quadrupole barrier that is used in the previous case,
namely, 6/R2. It fixes the Bohr radius to a = 1 fm. Due to the
presence of the logarithmic branch point, we have here infinite
number of Riemann sheets. Among them, we only consider
the two principal sheets, i.e., with the logarithmic index m = 0
and positive and negative Im k.

Figures 5 and 6 show the movements of the Jost function
zeros with change of the flat potential V1 down or up for
the attractive or repulsive internal potential, respectively. The
most important feature of these curves is that, in contrast
to the previous cases, they are not symmetric relative to the

FIG. 4. Trajectories of the Jost function zeros for the repul-
sive square potential (33∗∗) with variable height and with fixed
quadrupole centrifugal barrier outside. The notation is the same as
for Fig. 2.

imaginary axis. This means that (as seen from the analytic
expressions obtained in Sec. II C) the mirror symmetry is
broken by the presence of the Coulomb forces.

Similarly to the case (∗∗), the resonance poles on the right
of the imaginary axis move towards the threshold, where they
change direction by 90◦ and continue to move up the imag-
inary axis as the bound states. However, in contrast with the
case (∗∗), they do not collide at k = 0 with their partners on
the left of the imaginary axis. These “left-hand” poles move
differently. They approach the real axis from below, move
along it towards the threshold, where they turn down by 90◦,
and continue to move down along the imaginary axis at a small
distance from it. This pole motion is similar to one of the
virtual states but it is not the case since the pole has a small
but finite value of Re k < 0. Thus in this case the virtual states
are absent.

To the right of the imaginary axis there is also a sequence
of resonance poles that never become bound states. As shown
in Fig. 5(b) and magnified in Fig. 5(c), these poles make a kind
of “curls” and practically stay at their original places. These
poles condense near the threshold, similarly to bound states of
a hydrogen-like atom. The distribution pattern of these poles
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FIG. 5. Trajectories of the Jost function zeros for the attractive
square well potential with different depths and the Coulomb barrier
outside: (a) along the imaginary axis k as a function of the dimension-
less strength parameter R

√|V1|; (b) in the complex plane k; (c) the
larger scale fragment for some of the trajectories near the imaginary
axis. The numbers near the symbols on the trajectories show the
dimensionless strength parameter R

√|V1|.

is similar to the pattern of zeros of the function h(+)
η,0 (see, for

example, the phase portrait of h(+)
η,0 in Ref. [14]).

In the case of V1 > 0 (repulsive rectangular potential) the
behavior of the poles is basically the same as for the repulsive
case (∗∗). The main difference is that the Coulomb tail breaks
down the mirror symmetry and generates the sequence of
“curled” resonances condensing at the threshold. One more
unusual feature here is that one of the poles moves up parallel
and very close to the negative imaginary axis (a bit to the
left of it) and almost at the threshold turns to the left. The
motion of this pole is similar to the one discussed above for
the attractive potential but with reverse direction of the move-
ment.

In general, all these results clearly demonstrate a very
strong influence of the potential behavior at large distances on
the pattern of the spectral points and on their movements with
the change of the potential strength. This also emphasizes the
importance of using proper topology of the Riemann surface
when studying the S-matrix singularities.

D. Parameters of the two-channel problem

In the two-channel case the distribution of the poles de-
pends on the two diagonal potentials, on the coupling between

FIG. 6. (a) Trajectories of the Jost function zeros in the complex
k plane for the repulsive rectangular potential with different strengths
and the Coulomb barrier outside. (b) The larger scale fragment for
some of the trajectories near the imaginary axis. The numbers near
the symbols on the trajectories indicate the dimensionless strength
parameter R

√|V1|.

the channels, and on the threshold energy of the second
channel (because E1 = 0). Therefore there are many possi-
ble parameters and their combinations that can be varied in
studying the migration of the poles. To narrow the choices,
we use the same three models, (∗), (∗∗), and (∗ ∗ ∗), for
the diagonal potentials and only vary the coupling between
the channels, which in our calculations is represented by the
dimensionless parameter R

√
�, where � = V1,2(r) = V2,1(r)

is a constant potential term that couples the channels. The
physical meaning of the parameter R

√
� is the same as for the

product kR. Indeed, defined by Eq. (1), the reduced potential
V is measured in the units of inverse square of the length.
Therefore,

√
� is the wave number that corresponds to the

coupling potential.
In all the cases considered below, we choose the dimen-

sionless threshold to be ε2R2 = 4.306 (with R = 3 fm this
corresponds to ε2 = 10 MeV). The heights of the centrifugal
and Coulomb potentials at r = R are chosen to be the same as
in the preceding sections.

The sheets of the Riemann energy surface are marked by
the signs of the imaginary parts of the channel momenta. For
example, the symbol (+,−) labels the sheet with (Im k1 >

0, Im k2 < 0). When the Coulomb tail is present in one of the
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E1 < E < E2

(−, −)

(+, −)

(−, +)

(+, +)
E2 < E < ∞

(−, −)

(+, −)

(−, +)

(+, +)

FIG. 7. Interconnections of the Riemann sheets in the two-
channel problem with a short-range potential.

two channels, the symbol denoting a Riemann sheet, involves
the logarithmic index m, such as, for example, (+,−)m. If the
Coulomb tails are in both channels, the two indexes m1 and
m2 appear.

Each of the Riemann sheets has its own real axis with its
origin at the threshold energy and is cut along it from 0 to
+∞. The edges of the cuts of different sheets are intercon-
nected. In the absence of the Coulomb forces there are just
four sheets. When the potential has a Coulomb tail at least in
one of the channels, the number of the sheets becomes infinite
and their interconnections provide the spiral topology of the
Riemann surface. The interconnections are different in the
interval between the thresholds and from the second threshold
to infinity. Such interconnections are schematically shown in
Fig. 7 for the neutral particles. Figure 8 shows interconnec-
tions for the case where the Coulomb interaction is in the
first channel and absent in the second. These drawings should
be understood as the cross sections of the Riemann surfaces,
perpendicular to the real axes. In the case of the potential with
a Coulomb tail, we are only interested in the principal sheets
(+,+)0, (−,+)0, (+,−)0, and (−,−)0, which are shown
in Fig. 8 by the thick lines. Pseudo three-dimensional (3D)
images of this surface can be found in Refs. [1,9], where it is
explained why the interconnections are done in this way.

E. Two-channel problem (∗)

1. Shallow square wells

Figure 9 shows the trajectories of the S matrix poles on
different sheets of the Riemann surface of the energy [E ∼

E1 < E < E2

(+, −)− 1

(−, −)0

(+, −)0

(−, −)1

(+, +)− 1

(−, +)0

(+, +)0

(−, +)1

E2 < E < ∞

(+, +)− 1

(−, −)0

(−, +)− 1

(+, −)0

(−, +)0

(+, −)1

(+, +)0

(−, −)1

FIG. 8. Interconnections of the Riemann sheets in the two-
channel problem with a short-range plus Coulomb potential. The
principal sheets are shown by the thick lines.

(kR)2] as the functions of the coupling-strength (c = R�1/2)
between the two channels. The diagonal potentials are the
attractive square wells (R

√|V11| = R
√|V22| = 0.5678) of the

same radius R. For r > R the potential is identically zero in
both channels. The diagonal potentials are shallow and do not
support any bound states. With c = 0 there are no poles on the
physical sheet (+,+).

When the coupling between the channels grows, some of
the poles move from the other sheets to the physical one by
crossing the threshold point E = 0. It is the only point through
which the poles appear on the physical sheet. With further
increase of c these poles remain on the negative real axis of
the physical sheet (+,+), where they correspond to the bound
states. No other poles on the physical sheet are found.

As seen in Figs. 9(b)–9(d), there is the mirror symmetry
of the poles on all the nonphysical sheets. On these sheets
they always appear in symmetric pairs. Symmetric pairs can
fuse at one point at negative real energies (points marked
by the symbols f1, f2, and f3 in Fig. 9). With increasing
coupling they split and continue to move along the real axis at
negative energies in different directions: one to −∞ and the
other pole to zero. These movements are shown in Fig. 9(a),
where the negative energy is represented on the vertical axis
by pure imaginary k ∼ √

E . The pole which crosses the zero,
continues to move on another energy sheet along the negative
real axis. Two symmetric poles can also meet each other at the
real positive energies [the points s(±) in Figs. 9(c) and 9(d)],
where the sheet has the cut. Since they come to this point from
different sides of the cut, they cannot fuse. Instead, they transit
via these points to the other unphysical sheets.

Figure 9(a) shows that only those poles that previously
were resonances can become the bound states. Indeed, the
resonance poles are located on the Riemann sheets where
the channel momenta have positive imaginary parts for all
open channels. If two channels are open, then the resonances
are on the sheet (−,−) with the wave functions that have
growing asymptotic behavior in both channels. If one channel
is open, the resonances are on the sheet (−,+) where the
wave function in the closed channel is exponentially vanishing
at large distances. In our case, at low energies (near E = 0)
the second channel is closed and the resonances are on the
sheet (−,+), which is nonphysical with respect to the first
channel and physical with respect to the second one. And we
see that only from the fusion points f1 and f3 [which are on the
sheet (−,+)] do the poles come to the sheet (+,+) and turn
into bound states. At the same time, from point f2, where a
subthreshold resonance fuses with its mirror partner, the pole
moves to the nonphysical sheet (+,−).

2. Deep square wells

The next example that we consider only differs from the
previous one by the depths of the square wells. We chose
them to be R

√|V11| = R
√|V22| = 3. With such a choice there

are two bound states even when there is no coupling between
the channels. This is seen in Fig. 10(a), where there are two
trajectories starting at � = 0 from positive (pure) imaginary
kR ∼ √

E . When the coupling is increasing, one bound state
becomes more strongly bound while the other moves in the
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FIG. 9. Trajectories of the S-matrix poles on different energy sheets (±, ±) for two coupled shallow square wells of the radius R with
zero potential beyond this radius. Without the coupling these square wells do not support any bound states. The curves are presented in the
dimensionless coordinates: momentum kR ∼ √

E , energy (kR)2 ∼ E , and the coupling strength R
√

�. Vertical dashed line at (kR)2 = 4.306
indicates the position of the second threshold.

opposite direction, i.e., becomes less bound. Then, after cross-
ing the zero energy, it moves from the physical sheet to the
sheet (−,+) where it becomes a virtual state.

Despite the seemingly slight difference of this (deep) two-
channel potential from the previous (shallow) one, the pattern
of the pole-trajectories turned out to be significantly different,
as seen in Figs. 10(a)–10(c). However, still there are no com-
plex poles on the physical sheet (+,+) and all trajectories are
mirror symmetric. The only route to the physical sheet is via
the zero energy point and at the positive energies it is possible
to move across the cuts only between the nonphysical sheets
[points s(±) in Figs. 10(c) and 10(d)].

F. Two-channel problem (∗∗)

Now we add the external centrifugal barrier (with � = 2)
to the deep square-well potential of Sec. III E 2. Here we
consider the two cases: when the centrifugal barrier is added
to either the first or to the second channel. The corresponding
pole-trajectories are presented in Figs. 11 and 12, respectively.
The patterns of the pole migration in these cases are rather
different. There is, however, a common and most remarkable
feature in these figures, namely, the appearance of complex
S-matrix poles on the physical sheet (+,+), which in the
two-channel problem is a consequence of the addition of the
long-range tail (∼1/r2) in the external region.

In Figs. 11 and 12 the points where the trajectories reach
the cuts from different sides are denoted by the symbols s(±)

and s(±)
1,2 . Although they are depicted at the same place, the

points s(+) and s(−) do not coincide because the upper and
lower edges of the cut are connected to different Riemann
sheets. The corresponding points on the connected sheets are
those from which the trajectories are continued. As is seen, in
contrast with all the problems that we considered so far, here
the transitions from one sheet to another happens not only via
the thresholds but also by crossing the cuts.

Since in the model (∗∗) there is no Coulomb potential, the
mirror symmetry of the poles is preserved. At some points
marked by the symbols f1, f2, f3, f4 the symmetric pairs of
the poles fuse. After the fusion (with further increase of the
channel coupling) these poles split again and continue to move
either along the negative real energy axis in the opposite di-
rections or symmetrically into the complex domains. A more
detailed picture of their movement along the negative real axes
(on different sheets) is shown in Figs. 13(a) and 13(b) for the
cases when the external ∼r−2 tail is added to the first second
channel, respectively.

G. Two-channel problem (∗∗) + (∗ ∗ ∗)

Finally, we consider the problem where both the centrifu-
gal and Coulomb tails are present. In the internal region
(r � R) the potential is the same as in the previous section,
i.e., the deep square wells (R

√|V11| = R
√|V22| = 3). In the

external region the Coulomb potential is in the first channel
and the centrifugal barrier is in the second channel. Figure 14
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FIG. 10. Trajectories of the S-matrix poles on different energy sheets (±,±) for two coupled deep square wells of the radius R with
zero potential beyond this radius. Even without the coupling these square wells support two bound states. The curves are presented in the
dimensionless coordinates: momentum kR ∼ √

E , energy (kR)2 ∼ E , and the coupling strength R
√

�. Vertical dashed line at (kR)2 = 4.306
indicates the position of the second threshold.

FIG. 11. Trajectories of the S-matrix poles on different energy sheets (±, ±) for two coupled square-wells of the radius R. Beyond this
radius the potential is zero in the first channel and has the centrifugal tail (6/r2) in the second channel. The vertical dashed line at (kR)2 = 4.306
indicates the position of the second threshold.
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FIG. 12. Trajectories of the S-matrix poles on different energy sheets (±, ±) for two coupled square wells of radius R. Beyond this radius
the potential has the centrifugal tail (6/r2) in the first channel and is zero in the second channel. Vertical dashed line at (kR)2 = 4.306 indicates
the position of the second threshold.

shows the migration of the S-matrix poles on the principal
Riemann sheets and in Fig. 15 their movements along the real
negative-energy axes on different sheets are shown. Since it
is not possible to distinguish the trajectories along the same
line, the movements along the real negative-E axes are given
in Fig. 15 in the coordinates kR versus R

√
�, where the pure

imaginary k ∼ √
E represents the corresponding energy.

Looking at Figs. 15(b), 15(d), 15(e), and 15(f), we first of
all see that the mirror symmetry is broken as was expected
from the analysis of the explicit solutions in Sec. II. The
second important feature [the same as in the case (∗∗)] is
that there are poles at complex energies on the physical sheet
(+,+).

The meaning of the symbols used here is the same as in the
previous figures. In particular, f denotes the fusion point, and
s(±), s(±)

1,2 are the points where the poles cross the branch cut
approaching from different sides. Since the Coulomb forces
change the topology of the Riemann surface and destroy mir-
ror symmetry, some trajectories after crossing the cuts leave
the principal sheets with m = 0 and continue to nonprincipal
sheets with m �= 0 or can appear on a principal sheet from the
sheets with m �= 0. When trajectories move to nonprincipal
sheets, we do not trace them beyond these points. Examples
of such trajectories are those whose endpoints are s(−) in
Fig. 15(a) and s(−)

1,2 in Fig. 15(c).

IV. CONCLUSIONS

Using the exactly solvable one- and two-channel models,
it is shown how the S-matrix poles are distributed over the

Riemann surface of the energy and how they migrate when
the parameters of the interaction are changed. The following
two facts that are observed in this study should be noted:

(i) The Coulomb forces break down the mirror symmetry
of the S-matrix poles.

(ii) In the multichannel problems with long-range interac-
tions the S-matrix poles may appear on the physical
sheet of the Riemann surface at complex energies.

In nuclear and atomic physics we mostly deal with charged
particles and therefore the first of these two facts has to be
taken into account not only in a theoretical description of such
physical systems but also in the analysis of experimental data.
This is especially important when constructing certain phe-
nomenological models and developing approximate methods,
where the patterns of the pole-distribution are pre-assumed.

The second fact (i.e., the possibility of the seemingly “for-
bidden” poles appearing on the physical sheet) should be
kept in mind when the channels have different orbital angular
momenta. In such a case the increase of the centrifugal barrier
in one of the channels can be treated as an additional long-
range (∼1/r2) potential that may generate such poles. In other
words, if the channels have different �, then the possibility of
finding such forbidden poles cannot be excluded.

Although the models used in the present study are rather
simple, they more or less correspond to actual interactions
that we usually deal with in nuclear physics. Our main task
was to demonstrate the above two facts in an explicit way.
This is why we only analyzed the states with � = 0, where all
the formulas are transparent and clear. In principle, the same
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FIG. 13. Migration of the S-matrix poles along the real negative-
energy axes on different Riemann sheets. The negative energy is
represented by pure imaginary k ∼ √

E . Panels (a) and (b) corre-
spond to zero external potential in the first and second channels,
respectively. In both cases there is the quadrupole centrifugal poten-
tial in the other channel.

approach based on subdivision of the configuration space in
the internal and external regions and constructing the Jost
matrices can be used for treating some more complicated
problems. One can obtain an exact analytic solution of such a
problem if it is possible to analytically solve it in both regions.

APPENDIX A: COULOMB FUNCTIONS

The properties and analytic structure of the Coulomb wave
functions are very complicated but well studied (see, for
example, Ref. [14] and references therein). The standard reg-
ular and irregular Coulomb functions, Fη,�(z) and Gη,�(z), as
well as their linear combinations H (±)

η,� = Gη,� ± iFη,� (that
describe the Coulomb spherical waves), are multivalued func-
tions of the complex variable z. They are defined on a
Riemann surface with the branch point at z = 0 and a cut
along the negative real axis. In quantum-mechanical problems
these functions are used with z = kr, where k and r are the
wave number and the radial distance.

In the present work we use the Coulomb functions at real
r and complex values of k. Our numerical calculations of
them are based on the approach developed in Ref. [15], the
central part of which is the expansion of the regular Whit-
taker function in the series of the Bessel functions, suggested
in Ref. [16]. After some rearrangement, such series for the

functions H (±)
η,� (kr) can be written as

H (±)
η,�

(z) = (2η)�

Cη,�(2� + 2)
[ωη,�h(±)

η,� �η,�(z) + �η,�(z)],

�η,� = ωη,�[∂ν�η,ν]
ν=�

+ [∂ν�η,ν]
ν=−�

, (A1)

where � = 2� + 1. The functions �η,ν (z) and ∂ν�η,ν (z) are
entire functions of k2. They can be expanded in the absolutely
and uniformly convergent series:

�η,�(kr) =
∞∑

m=0

η−2mI (�)
m (x), (A2)

[∂ν�η,ν (kr)]
ν=�

=
∞∑

m=0

η−2m .
I

(�)
m (x), (A3)

where the functions I (�)
m and

.
I

(�)
m , depending on the real k-

independent variable x = √
8(r/a) [with a = h̄2/(μe2Z1Z2)

being the Bohr radius], for a repulsive Coulomb interaction
are the following finite sums of the modified Bessel functions
Iν (x) and their derivatives ∂νIν with respect to the order ν:

I (�)
m (x) = (−1)m

m∑
j=0

(
x

2

)2m+ j+1

β
(�)
m, j In+ j (x),

.
I

(�)
m (x) = (−1)m

m∑
j=0

(
x

2

)2m+ j+1

× {[
∂νβ

(ν)
m, j

]
ν=�

In+ j (x) + β
(�)
m, j [∂νIν (x)]ν=n+ j

}
,

where n = 2m + � and for the coefficients β
(�)
m, j the following

simple recurrency relations are available [15]:

β
(�)
m, j = β

(�)
m−1, j−1

4(2m + j)
+ (� + 2m + j − 1)

4(2m + j)
β

(�)
m−1, j,

∂νβ
(ν)
m, j = ∂νβ

(ν)
m−1, j−1

4(2m + j)
+ (2m + j − 1)

4(2m + j)
β

(ν)
m−1, j

+ (ν + 2m + j − 1)

4(2m + j)
∂νβ

(ν)
m−1, j,

with the initial conditions ∂νβ
(ν)
0,0 = 0, β

(�)
0,0 = 1, and the def-

inition that β
(�)
m, j as well as the derivative ∂νβ

(ν)
m, j are zero for

j < 0 or j > m.
In the decompositions (A2) and (A3) the functions I (�)

m (x)
and I (�)

m (x) are rapidly decreasing with growth of the order m.
The number of terms in these expansions that are needed for
their numerical convergence depends on the energy.

The other factors in Eq. (A1) can be found as follows:

Cη,� = 2�[(� + 1 + iη)(� + 1 − iη)]1/2

(2� + 2) exp (πη/2)
,

ωη,� = (� + 1 ± iη)

(±i)(2�+1)(−� ± iη)
=

�∏
j=0

(
1 + j2

η2

)
,

h(±)
η,� = 1

2
[ψ (� + 1 ± iη) + ψ (−� ± iη)] − ln (±iη),

ψ (z) = (z)′/(z). (A4)
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FIG. 14. Trajectories of the S-matrix poles on different energy sheets (±, ±) for two coupled square wells of radius R. Beyond this radius
the potential has the Coulomb tail in the first channel and the centrifugal potential (6/r2) in the second channel. Vertical dashed line at
(kR)2 = 4.306 indicates the position of the second threshold.

The multivaluedness and singularities of H (±)
η,� (kr) in the

complex-k plane originate from the factors Cη,� and h(±)
η,� . The

FIG. 15. Migration of the S-matrix poles along the real negative-
energy axes on the two Riemann sheets. The negative energy is
represented by pure imaginary k ∼ √

E . The potential is the same
as for Fig. 14.

functions h(±)
η,� have the Coulomb poles accumulating at the

origin where they also have the logarithmic branch point and
the cut from k = 0 to k = −∞.

For the functions

H(±)
η,�

(z) = exp (∓iση,�)H (±)
η,�

(z),

the common factor in the first of Eqs. (A1) is more simple,

exp (∓iση,�)
(2η)�

Cη,�(2� + 2)
= η� exp (πη/2)

(� + 1 ± iη)
.

As a result, in the coefficients h(±)
η,� the poles of the digamma

function ψ (� + 1 ± iη) at negative integer values of (� + 1 ±
iη) are canceled with the corresponding poles of the function
(� + 1 ± iη) in the denominator, i.e.,

ψ (z)/(z)|z=−n = (−1)n+1n!.

Therefore, in contrast with H (±)
η,� (kr), the Coulomb-distorted

spherical waves H(±)
η,� (kr) are well defined.

In numerical calculations, one has to use a consistent pro-
cedure for determining an appropriate number of 2π i in the
complex logarithm when ln (z) and ψ (z) are evaluated. As
such a procedure, we used the one suggested in Ref. [17]. The
derivatives, H (±)′

η,� (z), of the Coulomb functions can be found
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with the help of the recurrency relations [18]:

H (±)′
η,�

(z) =
(

� + 1

z
+ η

� + 1

)
H (±)

η,�
(z)

−
[

1 + η2

(� + 1)2

]1/2

H (±)
η,�+1(z).

APPENDIX B: LOCATING COMPLEX ZEROS

The S-matrix poles correspond to the zeros of the Jost
matrix determinant. Instead of locating the poles, we therefore
looked for the zeros. In doing this, we used the Cauchy’s
argument principle of complex analysis (see, for example,
Ref. [19]) as well as the iterative Newton method for locating
zeros of a complex function (see Ref. [20]).

For a meromorphic function f (z) the argument principle
relates a closed contour integral to the difference between the

number of zeros and poles of that function enclosed by the
contour,

1

2iπ

∮
C

dz
f ′(z)

f (z)
= N − P,

where N and P are the numbers of the zeros and poles, respec-
tively, with each zero and pole counted as many times as its
multiplicity and order.

In the numerical calculations we used the contour of a
rectangular shape. We knew for sure that our function could
only have zeros. If the number of zeros inside the contour was
greater than one, we subdivided the original contour into two
halves and repeated the procedure until a sufficiently small
domain was found with only one zero. After that we used
Newton’s method to refine the search.
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