
Approximation approaches for training neural network problems

with dynamic mini-batch sub-sampled losses

by

Younghwan Chae

This thesis is submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor (Mechanical Engineering)

in the

Faculty of Engineering, the Built Environment and Information Technology

University of Pretoria

Pretoria

South Africa

2021

To the pursuit of progress...

“Life is all about gradient, focus on your growth and learning.” - Daniel N. Wilke

Abstract

Title: Approximation approaches for solving neural network problems
for dynamic mini-batch sub-sampled losses

Author: Younghwan Chae

Supervisor: Daniel N. Wilke

Learning rate schedule parameters is a sensitive and challenging hyperparameter to resolve
in machine learning. It needs to be resolved whenever a model, data, data preprocessing or
data batching changes. Implications of poorly resolving learning rates include poor models, high
computing cost, excessive training time, and excessive carbon footprint. In addition, deep neural
network (DNN) architectures routinely require billions of parameters, with GPT-3 utilizing
175 billion parameters and an estimated 12 million USD to train. Mini-batch sub-sampling
introduces bias and variance that can manifest in several ways. Considering a line-search along
a descent direction, the implications are smooth loss functions with large bias (static) or point-
wise discontinuous loss functions with low bias but high variance in the function response. Two
previous studies demonstrated that line searches have the potential to automate learning rate
selection. In both cases, learning rates are resolved for point-wise discontinuous functions that
include Bayesian regression and direct optimization using a gradient-only line search, GOLS.
This study is an explorative study that investigates the potential of surrogates to resolve learning
rates instead of direct optimization of the loss function. We aim to identify domains that
warrant further investigation, for which purposes we introduced a new robustness measure to
compare algorithms more sensibly. As a result, we start our surrogate investigation at the
fundamental level, considering the most basic form for each approach. This isolates the essence
and rids unnecessary complexity. We do, however, retain selected complexity that is deemed
crucial such as dynamic sub-sampling. Hence, this study is an explorative study and not yet
another study that proposes a state-of-the-art (SOTA) algorithm on a carefully curated dataset
with carefully curated baseline algorithms against which to compare. The three fundamentally
different approaches to resolve learning rates using surrogates are

1. The construction of one-dimensional quadratic surrogates for point-wise discontinuous
functions to resolve learning rates by minimization;

2. The construction of one-dimensional classifiers to resolve learning rates from a gradient-
only perspective using classification;

3. Sub-dimensional surrogates (higher than 1D) on smooth loss functions to isolate the iden-
tification of appropriate bases on simple test problems.

This study concludes that both 1 and 2 further warrant investigation, with the longer-term goal
to be extended to sub-dimensional surrogates to enhance efficiency.

1

Acknowledgements

I would like to my extend my deepest gratitude to Prof. Wilke for all his help throughout
this arduous journey. I first made Prof. Wilke’s acquaintance in 2014, and until now his logical,
productive, and diligent mindset has been a constant source of inspiration and respect. Through
many different projects, I was privileged to receive his teaching and advice. Whilst completing
my Master’s and Doctor’s degrees under his guidance, Prof. Wilke has pushed me to come this
far, and for that, I will always be indebted to him. I have so much more to learn from him and
hope he will always be my mentor. Prof. Wilke has taught me that a true researcher should
never stop asking the question ‘why?’. I will always keep this lesson in my heart. In this long
period of working together as co-researchers I feel that I have made great progress both as a
person and as a researcher, and I believe this experience will be a source of strength throughout
my life.

Next, I would like to thank my colleague, Dominic Kafka. For many years while sharing the
same office, we developed a great friendship. We spent many hours sharing numerous ideas and
valuable thoughts, reflecting on and discussing their feasibility. I would like to thank him for
giving me this opportunity to let those ideas flow and thank him for his friendship through thick
and thin. I could never have reached this place on my own. I especially would like to acknowledge
him for helping me in my struggle with the English language throughout my research.

Also, to Prof. Heyns as the head of the Centre for Asset and Integrity Management (C-AIM),
Department of Mechanical and Aeronautical Engineering at the University of Pretoria, South
Africa, thank you for providing all the resources necessary and support to complete my Doctor’s
degree.

Lastly, I would like to thank my family for their continued love and support throughout the
years. It was difficult to be so far away but thank you for always making me feel like I am never
alone. Thank you for all your prayers and emotional support. Without you all, I would not be
here right now.

Without the help of the above-mentioned people in my life, it would not have been possible
to attain this degree. I believe the only way to repay this heart of gratitude is to give back to
the country and society what I have gained through this journey.

2

Contents

List of Abbreviations 10

List of Symbols 11

1 Overview 13
1.1 Training strategies for DNNs . 13
1.2 Various optimizers for DNNs . 13
1.3 Adopting surrogate models for training DNNs . 15
1.4 Rationale of chapters . 15

1.4.1 Part 1: Line searches with 1-D approximation models 16
1.4.2 Part 2: Optimization with sub-dimensional surrogate models 17

2 Empirical Study Towards Understanding Line Search Approximations For
Training Deep Neural Networks 19
2.1 Summary of chapter . 19
2.2 Introduction . 19
2.3 Related work . 21

2.3.1 Using approximations for line searches . 23
2.4 Enforcing selective information to construct 1D quadratic approximations 23
2.5 Pseudocode and implementation details . 26
2.6 Experimental setup . 28
2.7 Experimental results . 29
2.8 Conclusion . 33

3 GOALS: Gradient-Only Approximations for Line Searches Towards Robust
and Consistent Training of Deep Neural Networks 34
3.1 Chapter overview . 34
3.2 Introduction . 34
3.3 Background . 38

3.3.1 Dynamic mini-batch sub-sampling . 38
3.3.2 Gradient-only optimality criterion . 38
3.3.3 Line searches for dynamic MBSS loss functions 39
3.3.4 Gradient only surrogate (GOS) . 39

3.4 Robustness measure, R . 40
3.5 Gradient-only approximation line search (GOALS) 41

3.5.1 Immediate accept condition (IAC) . 41
3.5.2 Bracketing strategy . 43
3.5.3 Proof of convergence . 44

3.6 Numerical study design . 46
3.6.1 Hyperparameter settings of GOALS . 46
3.6.2 Numerical study 1 setup . 47
3.6.3 Numerical study 2 setup . 47

3.7 Results of numerical study . 48
3.7.1 Results of numerical study 1 . 48

3

3.7.2 Results of numerical study 2 . 53
3.8 Conclusions . 58

4 GOCLS: Gradient-Only Line Search With Bayesian Classification Approach
For Training Neural Networks 60
4.1 Chapter overview . 60
4.2 Introduction . 60
4.3 Related work . 61

4.3.1 Dynamic mini-batch sub-sampling . 62
4.3.2 Comparisons of learning rate strategies 62
4.3.3 Objective functions for optimization approaches 63
4.3.4 Comparisons of line searches for training DNNs 64
4.3.5 Relative robustness measure, R . 64

4.4 Gradient-only classification line search . 64
4.4.1 Derivation of gradient-only classification line search (GOCLS) 65
4.4.2 Pseudo-code for GOCLS . 66

4.5 Numerical study design . 66
4.5.1 Numerical study 1: Hyperparameter studies 66
4.5.2 Numerical study 2: Performance comparison 67
4.5.3 Standard experiment setting for numerical study 1 and 2 68

4.6 Results of numerical study . 68
4.6.1 Numerical study 1: hyperparameter study 68
4.6.2 Numerical study 2: Comparison between various learning rate strategies . 70

4.7 Conclusion . 74

5 Sub-dimensional Surrogates to Solve High Dimensional Optimization Prob-
lems in Machine Learning 77
5.1 Chapter overview . 77
5.2 Introduction . 77
5.3 Sub-dimensional Surrogates . 78

5.3.1 Sub-dimensional Greedy Surrogates . 79
5.4 Numerical Study Outline . 80
5.5 Results . 82

5.5.1 Ackley Results . 82
5.5.2 Sum of Squares Results . 84
5.5.3 Discussion on Higher Versus Lower Dimensional Searches on Initial Per-

formance . 86
5.6 Lessons Learned and Sensible Heuristics . 86

5.6.1 Surrogate Dimensionality Heuristic . 86
5.6.2 Sampling Dimensions Heuristic or Strategy 87
5.6.3 Sampling Quantity Heuristic . 89
5.6.4 Sampling Domain Heuristics . 89

5.7 Neural Network Training . 90
5.8 Conclusions . 94

6 Conclusions and Future Work 95
6.1 Conclusions . 95
6.2 Future work . 96

A Appendix 98
A.1 Pseudocode for various approximations . 98

4

List of Figures

1.1 Illustration of strategies for improving training results in DNNs. The colored cells
indicate the contributions of the thesis. 14

1.2 The outline of the main chapters in the thesis. 16

2.1 Demonstration of plotting function value and directional derivative functions for
static and dynamic MBSS in red and full-batch function value and directional
derivative functions in blue. A 3-hidden-layer feedforward network is used for the
MNIST dataset. 20

2.2 Illustration of quadratic approximations using different types of information; (top
left) the function-value-only approximation (f-f-f), (bottom right) the mixed ap-
proximation with the directional derivative at α0 (fg-f), (bottom middle) the
mixed approximation with the directional derivative at α1 (f-fg), (bottom right)
the mixed approximation with the directional derivatives at both α0 and α1 (fg-fg)
and (top right) derivative-only approximation (g-g). 25

2.3 Illustration of 1) unbounded extrapolation and 2) bounded extrapolation 3) in-
terpolation situations for approximations in (a) function value or (b) directional
derivative domain. 26

2.4 Comparison of the required number of function evaluations of the five approximation-
assisted line search methods: 1) directional-derivative-only (g-g), 2) function-
value-only (f-f-f), 3) mixed approximation with function values at both α0 and
α1 and directional derivative only at α0 (fg-f), 4) directional derivative only at α1

(f-fg) and 5) directional derivatives at both α0 and α1 (fg-fg), as well as Adam
and SSGD on MNIST dataset with N-I architecture. 30

2.5 Comparison of the required number of function evaluations of the five approximation-
assisted line search methods: 1) directional-derivative-only (g-g), 2) function-
value-only (f-f-f), 3) mixed approximation with function values at both α0 and
α1 and directional derivative only at α0 (fg-f), 4) directional derivative only at α1

(f-fg) and 5) directional derivatives at both α0 and α1 (fg-fg), as well as Adam
and scheduled SSGD on MNIST dataset with N-II architecture. 31

2.6 N-I minimizer variance for the five approximations by resampling the mini-batches
50 times: f-f-f, fg-f, f-fg, fg-fg, and g-g. The derivative-only approximations are
plotted as a loss function by adding arbitrary constants. 32

2.7 N-II minimizer variance for the five approximations by resampling the mini-
batches 50 times: f-f-f, fg-f, f-fg, fg-fg, and g-g. The derivative-only approxi-
mations are plotted as a loss function by adding arbitrary constants. 32

3.1 Illustration of finding local minima in (a) static and (c) dynamic MBSS loss
functions, as well as locating SNN-GPPs using (b) static and (d) dynamic MBSS
directional derivatives. 36

3.2 Illustration of three possible cases when implementing the vanilla line search algo-
rithm using the derivative-only approximation: (a) bounded interpolation, when
f̃ ′1,n > 0, (b) bounded extrapolation when f̃ ′0,n < f̃ ′1,n < 0 and (c) unbounded

extrapolation, when f̃ ′1,n < f̃ ′0,n. 41

5

3.3 Illustration of immediate accept condition: (a) when the IAC (3.15) satisfies, the
initial guess, α1,n, is accepted and (b) when the IAC (3.15) does not satisfy, the
initial guess, α1,n, is not accepted. 42

3.4 The flowchart of the GOALS line search strategy 45
3.5 Comparisons of the performances of (a) SGD, (b) RMSprop, (c) Adam between

with and without GOALS applied, tested on ResNet-18 for the CIFAR-10 dataset,
the results are averaged over five runs and smoothened out with moving average
over five epochs. From left to right, it presents the training errors, test errors,
learning rates on the log10 scale, and the average number of gradient evaluations
per every iteration. 49

3.6 Comparisons of the performances of (a) SGD, (b) RMSprop, (c) Adam between
with and without GOALS applied, tested on EfficientNet-B0 for the CIFAR-10
dataset, the results are averaged over five runs and smoothened out with moving
average over five epochs. From left to right, it presents the training errors, test
errors, learning rates on the log10 scale, and the average number of gradient
evaluations per every iteration. 50

3.7 N-II MNIST dataset with batch size, |B| = 10, 100, 200 and 1000 from left to right
for various hyperparameters settings of GOALS which are listed in Table 3.1. The
comparison of training dataset error (the 1st row), test set error (the 2nd row)
and learning rate (the 3rd row) on a log10 scale versus the number of function
evaluations. 54

3.8 N-II MNIST dataset with batch size, |B| = 10, 100, 200 and 1000 from left to
right for various line search methods: constant learning rates, cosine annealing,
GOLS-I, vanilla GOS, and GOALS-4. The comparison of training dataset error
(the 1st row), test set error (the 2nd row) and learning rate (the 3rd row) on a
log10 scale versus the number of function evaluations. 56

4.1 Simplified flowchart of the GOCLS algorithm . 68
4.2 Various target probability hyperparameter, πξ, values tested for the GOCLS al-

gorithm on the ResNet-18 architecture with CIFAR-10 using the SGD optimizer.
Training error (top left), test error (bottom left), learning rates (top right) are
shown on the log10 scale and the sample probability of positive signs, π̂ξ, (bottom
right) against the number of epochs. 69

4.3 Various target probability hyperparameter, πξ, values tested for the GOCLS al-
gorithm on the ResNet-18 architecture with CIFAR-10 using the RMSProp op-
timizer. Training error (top left), test error (bottom left), learning rates (top
right) are shown on the log10 scale and the sample probability of positive signs,
πξ, (bottom right) against the number of epochs. 70

4.4 Various target probability hyperparameter, πξ, values tested for the GOCLS algo-
rithm on the ResNet-18 architecture with CIFAR-10 using the Adam optimizer.
Training error (top left), test error (bottom left), learning rates (top right) are
shown on the log10 scale and the sample probability of positive signs, π̂ξ, (bottom
right) against the number of epochs. 71

4.5 Various window size hyperparameter, ω, values tested for the GOCLS algorithm
on the ResNet-18 architecture with CIFAR-10 using the SGD optimizer. Training
error (top left), test error (bottom left), learning rates (top right) are shown on
the log10 scale and the sample probability of positive signs, π̂ξ, (bottom right)
against the number of epochs. 72

4.6 ResNet-18: performance comparison for various learning rate strategies including
the fixed learning rate, GOS, GOALS-4, GOCLS, step decay, cosine annealing
with Tmax = 350 and 50 using the CIFAR-10 dataset for (a) SGD, (b) RMSProp
and (c) Adam. We present training error, testing error, learning rate on the
log10 scale, and the average number of gradient evaluations per iteration for each
optimizer. 73

6

4.7 EfficientNet-B0: performance comparison for various learning rate strategies in-
cluding the fixed learning rate, GOS, GOALS-4, GOCLS, step decay, cosine an-
nealing with Tmax = 350 and 50 using the CIFAR-10 dataset for (a) SGD, (b)
RMSProp and (c) Adam. We present training error, testing error, learning rate
on the log10 scale, and the average number of gradient evaluation per iteration
for each optimizer. 75

5.1 A function and the same function arbitrarily rotated to affect the variable inter-
action. 81

5.2 The Ackley function in 2-D (left) and the loss surfaces of ResNet-56 (right) [Li
et al., 2017], both functions are depicted on a log-scale for the function values. . 82

5.3 Ackley function sampled with (a) p = 8, (b) p = 16, (c) p = 32, and (d) p =
64 data points at each iteration for unrotated (solid line) and rotated problem
(dashed line) reference frames for the problem description. 83

5.4 Sum of squares function sampled with (a) p = 8, (b) p = 16, (c) p = 32, and
(d) p = 64 data points at each iteration for unrotated (solid line) and rotated
problem (dashed line) reference frames for the problem description. 85

5.5 Performance differences between surrogate sub-dimensions when sampling using
p = 64 points on (a) Ackley, and (b) Sum of squares. 86

5.6 Decreasing sub-surrogate dimensions for (a) Ackley (p = 16) and (b) Sum of
squares (p = 64) from 4-D to 2-D to 1-D. 87

5.7 Ackley function sampled with (a) p = 8 and (b) p = 16 data points at each
iteration. Sub-dimensional variable selection (1-D, 2-D and 4-D) is based on the
gradient vector or randomly selected (rand:1D, rand:2D and rand:4D). 87

5.8 Sum of squares function sampled with (a) p = 8, (b) p = 16, (c) p = 32, and (d)
p = 64 data points at each iteration. Sub-dimensional variable selection (1-D,
2-D, and 4-D) is based on the gradient vector or randomly selected (rand:1D,
rand:2D and rand:4D). 88

5.9 Increasing the number of sampling points for (a) Ackley and (b) Sum of squares
for the 4-D sub-surrogate. 89

5.10 Decreasing the sampling volume for (a) Ackley (p = 16 points) and (b) Sum of
squares (p = 32 points). 90

5.11 Training Iris data set with the gradient-based variable selection approach for 11-D. 91
5.12 Training Iris data set with the gradient-based variable selection approach for 51-D. 92
5.13 Training Iris data set with the gradient-based variable selection approach for 507-D. 93

7

List of Tables

2.1 Required number of function evaluations for each approximation for resampling
and building an approximation. 28

2.2 Top training and testing accuracy obtained from the ResNet-18 experiment on
CIFAR-10 dataset. 33

3.1 Comparison between the settings of vanilla GOS and GOALS that are tested in
this paper. We choose the initial learning rates for the first iteration, α0,1, the
curvature hyperparameter, c, and decide whether we want to use the final learning
rate as the next initial learning rate, α0,n = α∗

0,n−1. 47
3.2 Descriptions of datasets used in the numerical study 47
3.3 Top average training and test accuracies over the five runs tabulated for optimiz-

ers, including SGD, RMSprop and Adam, with the fixed recommended learning
rates, vanilla GOS, and GOALS with various settings on ResNet-18. The dif-
ferences in performance compared to the fixed learning rate are given inside the
brackets. It measures the relative robustness, Ry,h, by computing summing the
differences, ψy,h,o, between the performance and the best one from the same opti-
mizer. The ratios of test to training accuracies are given in the last column, and
the average ratios for each optimizer are computed in the last row. The highest
train, test accuracies, and the lowest robustness measures are indicated in bold. . 51

3.4 Top average training and test accuracies over the five runs tabulated for optimiz-
ers, including SGD, RMSprop and Adam, with the fixed recommended learning
rates, vanilla GOS, and GOALS with various settings on EfficientNet-B0. The
differences in performance compared to the fixed learning rate are given inside
the brackets. It measures the relative robustness, Ry,h, by computing summing
the differences, ψy,h,o, between the performance and the best one from the same
optimizer. The ratios of test to training accuracies are given in the last column,
and the average ratios for each optimizer are computed in the last row. The
highest train, test accuracies, and the lowest robustness measures are indicated
in bold. 52

3.5 The training and test relative robustness, Ry, for different strategies are given by
summing the training and test relative robustness, Ry,h, over different problems,
given in Tables 3.3 and 3.4. The average ratios of training to test accuracies for
each strategy is given as the average values of the ratios (Te./Tr.) from the two
problems in Tables 3.3 and 3.4. The lowest train and test accuracies robustness
measures are indicated in bold. 53

3.6 Top average training and test accuracies over the ten runs for the various GOALS
settings, GOALS-1, GOALS-2, GOALS-3, GOALS-4, and GOS on the N-II archi-
tecture with different batch sizes, |B| = 10, 100, 200, 1000 for the SGD optimizer.
It also measures the difference, ψy,|B|, between the performance and the best one
from the different batch sizes. The ratios of test to training accuracies are given
in the last column. The highest train and test accuracies are indicated in bold. . 55

8

3.7 The training and test relative robustness, Ry, for different strategies are given
by summing the differences, Ψy,|B|, given in Table 3.6. The average ratios of
training to test accuracies for each strategy is given as the average values of the
ratios listed in Table 3.6 across the different batch sizes. The lowest robustness
measures are indicated in bold. 55

3.8 Top average training and test accuracies over the ten runs for the SGD opti-
mizer with various learning rate strategies, y, including the fixed learning rates,
cosine annealing with warm restart, GOLS-I, GOALS-4, and GOS on the N-II
architecture with different batch sizes, |B| = 10, 100, 200, 1000. It measures the
difference, ψy,|B|, between the performance and the best one from the different
batch sizes. The ratios of test to training accuracies are given in the last column.
The highest train and test accuracies are indicated in bold. 57

3.9 The training and test relative robustness, Ry, for different strategies are given by
summing the differences, Ψy,|B|, given in Table 3.8. The average ratios of training
to test accuracies for each strategy are given as the average values of the ratios
listed in Table 3.8 across the different batch sizes. The lowest robustness measures
are indicated in bold. Additionally, the relative robustness, Ry, the average ratios
measured excluding |B| = 10 are listed in brackets. 58

4.1 Various classes and examples of learning rate strategies and their required infor-
mation. 61

4.2 ResNet-18. The maximum mean values for both training and test accuracies over
the five runs are listed for SGD, RMSProp and Adam, for the fixed learning
rates, GOS, GOALS-4, step decay, cosine annealing with Tmax = 50 and 350 on
ResNet-18. Ry,h presents the sum of the differences, ψy,h,o, between the accuracies
and the best one for each optimizer. The maximum accuracies and the best
robustness measured are shown in bold. The ratios of training to test accuracies
are listed in the last column. 74

4.3 EfficientNet-B0. The maximum mean values for both training and test accuracies
over the five runs are listed for SGD, RMSProp and Adam, for the fixed learning
rates, GOS, GOALS-4, step decay, cosine annealing with Tmax = 50 and 350 on
EfficientNet-B0. Ry,h, presents the sum of the differences, ψy,h,o, between the
accuracies and the best one for each optimizer. The maximum accuracies and
the best robustness measured are shown in bold. The ratios of training to test
accuracies are listed in the last column. 76

4.4 The overall relative robustness measure, Ry, is computed by summing for ResNet-
18 and EfficientNet-B0 in Tables 4.2 and 4.3. The best robustness measures, Ry,
for training and test accuracies are shown in bold. The average ratios of training
to test accuracies over the two problems are listed in the last column. 76

5.1 Prescribed domain and the global minimum function values for the two test func-
tions. 80

9

List of Abbreviations

MBSS Mini-batch sub-sampling
NN-GPP Non-Negative Associated Gradient Projection Point
SNN-GPP Stochastic Non-Negative Associated Gradient Projection Point

SGD Stochastic Gradient Descent algorithm
SSGD Scheduled SGD algorithm
IAC Initial Accept Condition
GOS Gradient-Only Surrogate

GOALS Gradient-Only Approximation Line Search
GOCLS Gradient-Only (Bayesian) Classification Line Search
GOLS-I Gradient-Only Line Search that is Inexact
DNN Deep Neural Network

MNIST Modified National Institute of Standards and Technology
CIFAR Canadian Institute For Advanced Research
PLS Probabilistic Line Search

COBRA Constrained Optimization By Radial basis function Approximation
DYCORS DYnamic COordinate search Response Surface models
WGEK Weighted Gradient-Enhanced Kriging
CD Coordinate descent
CCD Cyclic Coordinate Descent
RCD Random Coordinate Descent
BCD Block Coordinate Descent
DDS Dynamically Dimensioned Searches
GPU Graphics Processing Unit

10

List of Symbols

n Counter for iteration number
i Counter for function evaluation within an iteration
.m An optimum solution of static MBSS
.∗ An optimum solution of dynamic MBSS
|.| Cardinality of a set
α Learning rate
B Uniform-randomly sub-sampled mini-batch, a subset of training set, T
M Total number of training samples, equivalent to |T |
dn Search direction used for an algorithm at iteration n
tb Training dataset pair (input and output) in training set T for observation b
x Weights for neural network models

L(x) Deterministic full-batch loss function
∇L(x) Deterministic full-batch gradient function
ℓ(x; tb) Individual sample loss for a training sample, tb

∇ℓ(x; tb) Individual sample gradient for a training sample, tb
F(α) 1-D full-batch sampled loss for a specified search direction, dn

F ′(α) 1-D full-batch sampled directional derivative function for a specified search
direction, dn

.̄ Static MBSS function evaluated using Bn

.̃ Dynamic MBSS function evaluated using Bn,i

.̂ Approximation model function
L(x) Mini-batch loss function
g(x) Mini-batch gradient function
f(α) 1-D loss function for a specified search direction, dn

f ′(α) 1-D directional derivative function for a specified search direction, dn

k Coefficients for f̂(α) and f̂ ′(α)
A Spatial location matrix
b Vector containing loss and/or directional derivatives, where b = Ak
ε Prescribed tolerance

Ninput Number of weights in the input layer
Noutput Number of weights in the output layer
Bϵ Ball containing all SNN-GPPs
ω Prescribed Armijo constant
c Curvature hyperparameter
c1 Undershooting hyperparameter
c2 Overshooting hyperparameter

11

γ Default learning rate for optimizers
I Learning rate interval for bracketing strategy
.L Value corresponds to the lower bound of interval I
.U Value corresponds to the upper bound of interval I

Γ(x) Lyapunov function
.ξ Positive directional derivative sign
.ζ Negative directional derivative sign
π Desired probability of observing a directional derivative sign
π̂ Sample probability of observing a directional derivative sign
A Set of directional derivative signs
S Set of different sign classes (positive and negative)
µ Mean value obtained from a distribution
σ2 Variance obtained from distribution

N (µ, σ2) Normal distribution with mean of µ and variance of σ2

µe Mean value for an exploration function
σ2e Variance for an exploration function
σ2a Overall variance
αf Final learning rate on the log10 scale
w Original problem dimension
v Reduced problem dimension, where v ≪ w
D Original bound constrained domain
Ds Sampling domain for a surrogate model
N Scaled bound constrained domain
z Weights in scaled bound constrained domain, z ∈ N
Φ Cubic radial basis function matrix
r Radial basis function
c Polynomial coefficients
ϕ Cubic radial basis function
λ Weights for radial basis function
P Low order polynomial matrix
xv∗ Sub-dimensional minimizer in Ds

zv∗ Sub-dimensional minimizer in N
Q Arbitrary proper orthogonal matrix
p Number of data points evaluated for constructing a model
τ Scaling factor

12

Chapter 1

Overview

Advancements in computer technologies made machine learning implementable to assist our
daily lives in many forms. However, the difficulty of solving machine learning optimization
problems is overgrowing due to an extension in the size and complexity of models [Goodfellow
et al., 2016, Brown et al., 2020]. No matter how accurately a model is developed, the model
cannot convincingly perform if it is not adequately trained. Hence, we must not neglect the
importance of improving optimization techniques concurrent with refining machine learning
models. This thesis mainly aims to discover various potential training optimization methods
that have not been attempted elsewhere. Therefore, we do not expect any State of the Arts
(SOTA) performances, but this thesis should build the foundation for various novel optimization
strategies, specifically for deep learning.

1.1 Training strategies for DNNs

Regarding deep neural network (DNN) problems, numerous strategies exist to improve training
and test performances as shown in Figure 1.1. Popular methods concerning data include increas-
ing data size, data augmentation [Shorten and Khoshgoftaar, 2019], data rescaling, and data
transformation [Bishop, 2006]. Concerning optimization, regularization techniques [Kukačka
et al., 2017] are used to prevent overfitting, various weight initialization [Boulila et al., 2021]
and activation functions [Nwankpa et al., 2018] may improve the training results. Mini-batch
sub-sampling methods [Csiba and Richtárik, 2018] reduce the computational cost by limiting
the memory usage while it produces a better generalization effect [Masters and Luschi, 2018].
An appropriate choice of loss functions defines the objectives of the problem, and optimizers
help adjust the weights of the problem to satisfy the objectives.

1.2 Various optimizers for DNNs

Among many strategies to enhance training DNNs, this research focuses on optimizers. The
most straightforward yet most robust optimizer is the stochastic gradient descent (SGD) al-
gorithm. For better performance, SGD with momentum [Queipo et al., 2005] and Nesterov
accelerated gradient (NAG) [Sutskever et al., 2013] are developed. Nevertheless, these gradient-
based algorithms remain challenging when choosing the learning rates. The adaptive learning
rate methods such as Adagrad [Duchi et al., 2011], Adadelta [Zeiler, 2012b], RMSProp [Tiele-
man and Hinton, 2012], Adam [Kingma and Ba, 2014], and the variations of Adam, AdamW
[Loshchilov and Hutter, 2017b], AdaMax, and Nadam [Dozat, 2016] are developed. However,
it does not mean that their prespecified learning rates are entirely insensitive to the results,
and the recommended learning rates exist for each optimizer. Besides, gradient-based adaptive
algorithms may generalize worse than SGD, although they accelerate the training speed [Zhou
et al., 2020].

13

Figure 1.1: Illustration of strategies for improving training results in DNNs. The colored cells
indicate the contributions of the thesis.

14

1.3 Adopting surrogate models for training DNNs

Learning rate is perhaps the most critical and challenging hyperparameter to select for practical
training results because almost any choices we make may alter the characteristics of problems.
These include all the strategies mentioned earlier, including the selection of optimizers. Fur-
thermore, DNNs are often computationally costly to evaluate the functions, high-dimensional,
black-box, and even discontinuous for specific mini-batch sampling methods [Kafka and Wilke,
2019a].

Interestingly, surrogate models (or approximation models for low dimension) are known for
their computational efficiency for optimizing 1) computationally expensive, 2) black-box, 3)
discontinuous functions since it only requires much fewer function evaluations to construct a
smooth continuous model without identifying the actual mathematical formulation. The only
critical downside to using surrogate models for training DNNs is the “curse of dimensionality,”
which exponentially increases the computational requirements for the high-dimensional problem.
However, the excellent news is that we only require one dimensional model for line searches,
determining optimal learning rates for the descent directions. This motivates our aim to discover
potential approaches for adopting surrogate models in training DNNs.

1.4 Rationale of chapters

The thesis largely consists of two parts, as shown in 1.2. Specifically, we split the complexities
relating to surrogate dimensionality and surrogate surface estimation given high variance data.
This is done to avoid drawing poor conclusions as a result of interaction between the two.
Hence, the thesis mainly consists of two parts. In Part 1, we eliminate complexities related to
dimensionality but embrace the complexities arising from high variance in the data to establish
which information should be considered to approximate the function. Hence, in Part 1, we only
consider 1D surrogates. In Part 2, we eliminate the complexities of variance in the data but
embrace the complexities arising from moving beyond 1D to higher subdimensions. Hence, we
only consider smooth and continuous loss functions, largely based on well-known test problems.

Part 1 develops surrogate-based line searches using various deterministic and stochastic 1-D
approximation models. Investigating the basic 1-D approximations allows us to closely explore
mini-batch sub-sampling (MBSS) implications, manifesting as biases and variances in functions.
While static MBSS yields large biases and small variances, dynamic MBSS produces large vari-
ances and small biases. We utilize dynamic MBSS in Part 1 because it allows more significant
data throughput and yields less bias. Besides, two recent studies introduced line searches in the
dynamic MBSS setting using the Bayesian regression model [Mahsereci and Hennig, 2017] and
the direct optimization approach using only directional derivative sign information [Kafka and
Wilke, 2019a]. This motivates us to investigate approximation-based line searches that reduce
model error exhibited as the variance. In addition, we limit the model complexities to the sim-
plest model that can be deployed to allow us to focus on which information, function values, or
directional derivative to consider for the surrogate approximation of point-wise discontinuous
loss functions.

Part 2 focuses on sub-dimensional surrogate-based optimization, in short, subsurrogate,
which are higher-dimensional models. Part 2, in contrast to Part 1, builds up the complex-
ity of the model while the information setting is as simple as possible using a compact neural
network with full-batch sampling, which removes nonlinearity in functions and discontinuities
from the loss function. This allows us to investigate the models’ actual behavior rather than its
response to additional complexities. Utilizing the high-dimensional model as an optimizer has
the benefit of expressing the complexity of the original problem in more detail and adjust the
search directions within the subspace.

We explore three distinct approximation approaches, the first two in Part 1 and the last in
Part 2, in the thesis:

� Chapter 2 and 3: Minimization approach using deterministic quadratic function approxi-

15

Figure 1.2: The outline of the main chapters in the thesis.

mations;

� Chapter 4: Bayesian classification approach using directional derivative sign bound ap-
proximations;

� Chapter 5: Minimization approach using sub-dimensional surrogate models.

1.4.1 Part 1: Line searches with 1-D approximation models

Part 1 contains three chapters, Chapters 2-4, and aims to investigate the potential for various de-
terministic and stochastic approximations as line searches. The three chapters commonly adopt
the dynamic mini-batch sub-sampling (MBSS). The mini-batch is uniform-randomly resampled
within every function evaluation in iteration, creating stochastic and discontinuous function
settings. Dynamic MBSS has the benefit of allowing faster data throughput.

Chapter 2: “Empirical Study Towards Understanding Line Search Approximations
For Training Deep Neural Networks” [Chae and Wilke, 2019a]

Chapter 2 studies the characteristics of five distinct deterministic quadratic approximation mod-
els built using different information, including function values, directional derivatives, and their
mixtures. Quadratic models are chosen because they are the most simplistic deterministic mod-
els with local minima in 1-D. This work aims to study the relationships between the information
type and the approximation errors, which is crucial for developing line searches. We realize that
both spatial location and the number of information pieces used for the models have a diverse
effect on the approximation errors. Involving a lot of unnecessary information may increase
the error, but directional derivative information at the origin of every approximation minimizes
the variance in the models. The study showed that one of the most promising five quadratic
approximations was the gradient-only surrogate (GOS) which we continued to work on in the
following chapter.

Chapter 3: “GOALS: Gradient-Only Approximations for Line Searches Towards
Robust and Consistent Training of Deep Neural Networks” [Chae et al., 2021]

Chapter 3 extends the GOS model to a robust line search algorithm by adopting the Wolfe con-
vergence criteria. Our proposed line search, so-called Gradient-Only Approximation Line Search
(GOALS), sequentially builds gradient-only approximations until the convergence criteria meet.
With curvature condition hyperparameter, it allows the users to trade between the precision and
computational cost and select the degrees of either undershooting or overshooting. However,

16

the disadvantage of GOALS is that it may produce a significant approximation error if one of
the spatial locations of information for building approximation models is too far or too close to
each other.

Recall that we intend to show potentials, not optimal performance, in each approach that
we present. Hence, we introduced a new concept evaluation criteria called relative robustness
measure to evaluate our strategies. While the conventional performance measure only considers
the top performances, such as the Top-1 or Top-5 accuracies, the relative robustness measure
also considers the poor performances to measure each strategy’s consistency across different
problems. We implement this measure in Chapters 3 and 4 to choose hyperparameters and
compare our algorithms against other methods.

Based on the relative measure, we found out that the distance between each data point for
constructing approximations needs to be shorter for more complex DNN problems than shallower
DNN problems to reduce the model errors. Due to the convergence criteria adopted, GOALS
tends to be less aggressive in terms of performance compared to vanilla GOS. However, it ranked
third and second among the ten strategies we compared for training and test robustness measures
to show its potential for future research.

Chapter 4: “Gradient-Only Line Search With Bayesian Classication Approach For
Training Neural Networks”

Line searches often require more than one function evaluation to find a learning rate that sat-
isfies the objective function. This can easily be costly when the function is computationally
expensive to evaluate. Chapter 4 introduces a Bayesian classification-based line search (GO-
CLS) using the bound approximations. While the previous two chapters used the deterministic
quadratic models, which required extra gradient computations for descent directions, Gradient-
Only Classification Line Search (GOCLS) uses the historical directional derivative data from
previous iterations. It only requires one gradient evaluation per iteration. Using the historical
data, GOCLS builds two probability distributions for positive and negative signs of directional
derivatives. It predicts the learning rates at which the signs change from negative to positive at a
user-specified target probability. The target probability is a comprehensible hyperparameter. It
trades between undershooting and overshooting by setting it below or above 50%, respectively.
We also perform an investigation to tune this hyperparameter for different optimizers such as
SGD, RMSProp, and Adam.

This chapter again restates the relative robustness measure, and based on the measure, the
robustness of GOCLS is compared against other learning rate strategies. The results show that it
ranks third for both training and test robustness measures, leading the GOALS algorithm across
different problems. Hence, the results of GOCLS support the potential of the classification-based
approach for future researches.

Transition from Part 1 to Part 2

Part 1 investigates the potential for the various approximations for line searches which is 1-D.
Therefore, We could build the complexity of the problems by adopting gradient-only models,
dynamic MBSS causing point-wise discontinuity to the problem. However, Part 2 studies the
potential for reduced sub-dimensional surrogate (or subsurrogate) models in higher dimensions
than Part 1 for training DNN problems. Hence, we intentionally keep the problem settings as
simple as possible to add clarity to the model’s behaviors. This means that we no longer use a
gradient-only model but a conventional function-value-only model and not dynamic mini-batch
but full-batch for a single hidden layer neural network problems.

1.4.2 Part 2: Optimization with sub-dimensional surrogate models

Part 2 consists of one chapter introducing a novel crude concept of optimization technique that
adopts multi-dimensional subsurrogate. Its dimension is much less than the original problem
but higher than one (e.g., line searches).

17

Chapter 5: “Sub-dimensional Surrogates to Solve High Dimensional Optimization
Problems in Machine Learning” [Chae and Wilke, 2019b]

Chapter 5 investigates the potential for multi-dimensional subsurrogate (or sub-dimensional
surrogate) models for training NNs in the most basic neural network problem settings. Based
on the sensitivity ranked by the magnitudes of the gradient, we test the various number of
the weights to build a cubic radial basis function (RBF) surrogate model with a linear term for
avoiding collinearity. In every iteration, these computational inexpensive low dimensional models
are updated. As we optimize the weights involved in the model by minimizing the function value,
the resolved weights are updated in the original problem. This process is repeated until it reaches
convergence.

We performed hyperparameter studies, including varying the models’ dimensionality, data
points, data sampling domains, and selection methods for the weights. The results show that
the higher the surrogate dimension is, the faster the convergence becomes, but it also requires
more data point and function evaluations. Hence, reducing the dimensionality and the data
points while training helps for faster convergence. The rate of reducing the sampling domain
turns out to be trading between localized search and wasting computational resources. However,
although complexity follows this approach as many hyperparameters to choose from, we show
that this method falls within the potential area for future researches.

18

Chapter 2

Empirical Study Towards
Understanding Line Search
Approximations For Training Deep
Neural Networks

2.1 Summary of chapter

Selecting appropriate learning rates is a critical task in training deep neural networks (DNNs) for
reducing the computational cost. Concerning line searches, keeping the mini-batch size small
helps to enhance the training speed. Employing dynamic mini-batch sub-sampling (MBSS),
which refers to sub-sampling mini-batches for every loss function evaluation, helps to increase the
data throughput as compared to static MBSS, which sub-samples only when the search direction
updates. However, dynamic MBSS loss functions are point-wise discontinuous or stochastic.
This study investigates the influence of enforcing different pieces of information (function values
or directional derivatives) at different spatial locations along a search direction on the quality
of univariate line search approximations. In particular, our empirical investigation focuses on
quadratic approximations to approximate stochastic loss functions. We examine five quadratic
approximation models with function and directional derivative information enforced in various
ways. The results for several neural network problems show that enforcing the directional
derivative information at the origin helps to reduce the variance of predicted learning rates and
that using less but specific data reduces approximation errors. The study demonstrates that
quadratic approximations could potentially be proposed to resolve learning rates for point-wise
discontinuous loss functions automatically.

2.2 Introduction

Training neural networks on large training sets remain challenging as the effectiveness thereof
is determined by learning rates (or step sizes), that are not known upfront. Factors such as the
optimizer, data set, scaling, and network architecture can significantly influence what is useful.
During these difficulties, we need to search for efficient learning rates with special care [Bengio,
2012, Smith, 2017], in particular for large-scale problems, because choosing an inefficient learning
rate may significantly expand the required computational cost, and that then results in energy
waste causing unnecessary CO2 emissions [Strubell et al., 2019].

Choosing learning rates is further complicated when having to resolve them within a stochas-
tic optimization setting [Robbins and Monro, 1951] because sampling errors are introduced by
mini-batch sub-sampling (MBSS). A mini-batch can be updated for every loss function evalua-
tion, often referred to as dynamic MBSS, or only when the search direction is updated, referred
to as static MBSS. For the latter, the mini-batch, therefore, remains fixed for loss function eval-

19

0.0 0.1 0.2 0.3 0.4

0.090

0.095

0.100

0.105

Fu
nc

tio
n
va

lu
e

Static MBSS

0.0 0.1 0.2 0.3 0.4

0.090

0.095

0.100

0.105

Dynamic MBSS

0.0 0.1 0.2 0.3 0.4
Learning rate, α

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Di
re
ct
io
na

l d
er
iv
at
iv
e

0.0 0.1 0.2 0.3 0.4
Learning rate, α

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Figure 2.1: Demonstration of plotting function value and directional derivative functions for
static and dynamic MBSS in red and full-batch function value and directional derivative func-
tions in blue. A 3-hidden-layer feedforward network is used for the MNIST dataset.

uations along a search direction. Figure 2.1 illustrates function value and directional derivative
plots using static and dynamic MBSS in red, with the full-batch plots in blue, using 3-hidden-
layer feedforward deep neural network (DNN) [Mahsereci and Hennig, 2017] for the Modified
National Institute of Standards and Technology (MNIST) dataset [LeCun et al., 1998]. Resolved
minimizers on static MBSS loss functions have low variance, but high bias between static MBSS
loss functions as compared to the low bias and higher variance of dynamic MBSS loss functions.
The higher variance in dynamic MBSS loss functions is due to changes in sampling errors re-
sulting from frequently updating the mini-batches [Kafka and Wilke, 2021]. The advantage of
dynamic MBSS over static MBSS is that the training data throughput is significantly larger
[Bottou, 2010] for the same batch size, which motivates the direction of our study to resolve
the issues associated with point-wise discontinuities when aiming to resolve learning rates using
univariate approximations.

MBSS has enabled the training of numerous machine learning problems, which could not
be trained using full-batch sampling [Masters and Luschi, 2018]. MBSS, therefore, remains the
industry norm for neural network training. Variance reduction techniques [Wang et al., 2013,
Johnson and Zhang, 2013, Xiao and Zhang, 2014, Shang et al., 2018] aim to reduce sampling
errors but are unable to eliminate them, therefore, still requiring optimization strategies that
can optimize these loss functions.

It is, therefore, not surprising that numerous strategies for selecting efficient learning rates
within a stochastic setting have been introduced. These include scheduling methods, such as
cyclical learning rates [Smith, 2017] and cosine annealing [Loshchilov and Hutter, 2017a]. How-
ever, these often require new hyper-parameters to be selected. Secondly, we have adaptive
learning rate methods such as AdaDelta [Zeiler, 2012a], Adam [Kingma and Ba, 2014], which
resolve learning rates based on diagonal Hessian approximations. However, these including
RMSprop [Tieleman and Hinton, 2012], generalize poorly compared to the stochastic gradient
descent (SGD) for some cases [Wilson et al., 2017]. Lastly, line searches using sequential eval-
uations of the loss function, have proven useful in estimating optimizers when evaluating loss
functions using static mini-batches [Friedlander and Schmidt, 2012, Byrd et al., 2011, 2012b,
Bollapragada et al., 2018, Kungurtsev and Pevny, 2018, Bergou et al., 2018, Mutschler and Zell,
2019].

20

Attempts to resolve learning rates for dynamic MBSS loss functions are limited to two
studies, namely, a probabilistic line search (PLS) [Mahsereci and Hennig, 2017] and an inexact
gradient-only line search (GOLS-I) [Kafka and Wilke, 2021]. PLS’s uses both function value
and directional derivative information to construct a Gaussian process surrogate [Mahsereci and
Hennig, 2017]. Conversely, GOLS-I conducts direct optimization along a search direction by
locating stochastic non-negative gradient projection points (SNN-GPPs). SNN-GPPs manifest
as a sign change, from negative to positive, in the directional derivative when moving along a
descent direction [Kafka and Wilke, 2021]. SNN-GPPs are characterized as points in the design
domain from which all directional derivatives around this point have a non-zero probability of
being positive. GOLS-I proved to be competitive against PLS, although it uses significantly less
information [Kafka and Wilke, 2021]. This raises the question of the usefulness of function value
and directional derivative information when constructing approximations for dynamic MBSS
loss functions, which is the subsequent focus of this study.

We investigate the quality of function value and directional derivative information in the
construction of quadratic line search approximations. Specifically, we construct univariate (1-
dimensional) quadratic approximations in five ways using

1. Only function values (one approximation)

2. Both function values and directional derivatives (three approximations)

3. Only directional derivative information (one approximation)

The usefulness of the various pieces of information in constructing quadratic approxima-
tions of the loss function, which is the most straightforward polynomial function with one
extremum, is quantified. This implies a linear approximation of the directional derivative or a
linear directional-derivative-only (related to gradient-only surrogates [Snyman and Wilke, 2018])
approximation. Although quadratic approximations may seem simplistic, they are popular in
practice, which includes second order and state-of-art adaptive learning rate methods such as
AdaDelta and Adam. These efficiently solve highly non-linear and ill-conditioned problems
when compared to first-order approaches [Bordes et al., 2009, Bottou et al., 2018].

As a simple quadratic approximation may introduce bias into the learning rate predictions, we
focus on the variance of the predicted learning rates to assess the usefulness of the approximations
as opposed to purely the performance of the line searches. This is also justified from our study
being focused on SGD directions. The performance of SGD may be improved by overshooting
the optimizers to alleviate the resulting orthogonality of consecutive steepest descent directions,
that are optimally resolved, to aim for some form of conjugacy between search directions. The
usefulness of function values and directional derivatives to construct approximations are assessed
on 1-layer and 3-layer deep networks for MNIST dataset [LeCun et al., 1998], and ResNet-18 [He
et al., 2016] for CIFAR-10 [Krizhevsky, 2009] dataset. Our primary finding is that approximation
errors that have high variance perform worse than approximation errors with high bias but low
variance for training a neural network problem. Our primary recommendation is that it is
essential to have directional derivative information at the initial point to reduce the variance in
predicted learning rates.

2.3 Related work

The neural network full-batch loss function, L(x), and gradient function, ∇L(x), of weights
x ∈ Rw, is given by

L(x) := 1

M

M∑
b=1

ℓ(x; tb), (2.1)

∇L(x) :=
1

M

M∑
b=1

∇ℓ(x; tb), (2.2)

21

where the individual sample loss, ℓ(x; tb) ∈ R, and gradient, ∇ℓ(x; tb) ∈ Rw, is computed using
each training sample, tb, taken from the whole training set, {t1, ..., tM}, of the total M samples.
Mini-batch sub-sampling [Robbins and Monro, 1951] loss, L(x), and gradient, g(x), are given
by

L(x) :=
1

|B|
∑
b∈B

ℓ(x; tb), (2.3)

g(x) :=
1

|B|
∑
b∈B

∇ℓ(x; tb), (2.4)

where the uniform-randomly sub-sampled mini-batch, B ⊂ {1, 2, ...,M}, of subset size, |B| ≪M
is used, instead of the full-batch. Mini-batch sub-sampling (MBSS) can be performed either
statically or dynamically, concerning line search methods, which require multiple function or
gradient evaluations to be computed along every n-th search direction, dn. Static MBSS re-
samples a new mini-batch for every search direction, dn. Conversely, dynamic MBSS, which
this paper focuses on, resamples a new mini-batch for every function computation; hence, the
mini-batch is updated multiple times along a search direction. The dynamic MBSS loss, L̃(x),
and gradient functions, g̃(x), are given by

L̃(x) :=
1

|Bn,i|
∑

b∈Bn,i

ℓ(x; tb), (2.5)

g̃(x) :=
1

|Bn,i|
∑

b∈Bn,i

∇ℓ(x; tb), (2.6)

where Bn,i denotes the dynamically sub-sampled mini-batch at the i-th function evaluation for
the n-th search direction.

Unlike static MBSS for which the loss function is smooth and continuous, dynamic MBSS
loss functions are point-wise discontinuous or stochastic resulting in many local minima when
using the minimization approaches. The n-th line search is given by,

α∗
n = argmin

αn

L̃(xn + αndn), (2.7)

where α∗
n and αn denote the optimal learning rate and learning rate at the n-th iteration,

respectively.
To solve the issues resulting from point-wise discontinuities, a Gaussian process surrogate

model based on Bayesian optimization was proposed by Mahsereci and Hennig [2017] to estimate
the expected local minima by satisfying the Wolfe condition [Wolfe, 1969, 1971] in a probabilistic
sense for stochastic gradient descent, and, furthermore, Wills and Schön [2018] proposed a
probabilistic quasi-Newton method. Kafka and Wilke [2021] developed an inexact gradient-only
line search (GOLS-I), that explicitly evaluates directional derivatives to locate sign changes from
negative to positive along descent directions.

GOLS-I is based on the principles underlying gradient-only optimization [Snyman and Wilke,
2018], which aim to resolve Stochastic Non-Negative Associated Gradient Projection Points
(SNN-GPPs), xsnngpp, which satisfy

p(d⊤ · g̃(xsnngpp + ϵd) ≥ 0) > 0, ∀∥d ∈ Rw∥2 = 1, ∀ϵ ∈ (0, ϵmax], (2.8)

where p(∗) denotes the probability [Kafka and Wilke, 2021]. This states that there is always
a learning rate, travelled along d from xsnngpp, which results in p > 0 for having a positive
directional derivative. The proposed directional-derivative-only approximations aim to resolve
xsnngpp, since no function value information is used to construct the approximation. In turn,
the zero-order approximation aims to resolve minimizers (2.7) as it only uses function value
information. The other three approximations use both function value and directional derivative
information.

22

2.3.1 Using approximations for line searches

The two main reasons for investigating univariate approximations for line searches to training
DNNs are i) computational efficiency [Vu et al., 2017, Bhosekar and Ierapetritou, 2018] and
ii) higher-dimensional surrogates are susceptible to the “curse of dimensionality” [Kubicek et al.,
2015].

Approximation (or surrogate) models are often used to analyze and optimize expensive black-
box problems [Vu et al., 2017, Bhosekar and Ierapetritou, 2018]. They are usually constructed
by regressing through function values sampled in the domain of interest because gradients are
often not available for many applications [Regis and Shoemaker, 2013]. However, when gradients
are available, they are likely to improve the quality of the models [Chen et al., 2019, Laurent
et al., 2019]. In neural network training, analytical gradient information is readily available
through back-propagation [Rumelhart et al., 1986].

Higher-dimensional approximations (or surrogates) are susceptible to the “curse of dimen-
sionality” [Kubicek et al., 2015], making them unsuited for high-dimensional problems like DNNs.
However, univariate line searches resolve this issue and require fewer data points as compared to
higher-order approximations. Furthermore, Wilke [2016], Snyman and Wilke [2018] showed that
continuous approximations could also be constructed using only directional derivative informa-
tion. In this study, we quantify the effect of enforcing different information, such as function
value and directional derivatives, at different spatial locations along a descent direction in the
construction of univariate approximations.

Approximation errors may appear as biases and variances. Let us consider two extreme cases
of biases and variances to show the implications of them to line searches. When approximation
errors have large bias but no variance, we know that the approximation errors are determin-
istic and improving the approximation model would help reduce the errors. However, when
approximation errors have no bias but large variance, the approximation errors are stochastic
and therefore, also the learning rates. To reduce the variance of the approximation predicted
learning rates, one can choose information used to construct the approximation that reduces the
variance. Hence, for a problem which produces noisy function value and directional derivative
information, we prefer to find an approximation with a larger bias than a larger variance.

Using approximations for line searches for training DNNs

Research over the last few years proved promising when using line search approximations to
resolve learning rates during DNNs training. Gaussian process approach based on Bayesian op-
timization sampled using dynamic MBSS to implement a univariate (1-D) line search [Mahsereci
and Hennig, 2017], and recently, univariate parabolic approximations were introduced to resolve
learning rates for static MBSS loss functions [Mutschler and Zell, 2019]. Both approaches use
function values and directional derivative information to construct approximations.

In the next section, we propose five parabolic approximations, constructed using different sets
of information, to study the characteristics and effects of using function values and directional
derivatives computed at various locations for training DNNs.

2.4 Enforcing selective information to construct 1D quadratic
approximations

In the construction of 1D quadratic approximations, selected information is enforced at different
points along the descent direction. Specifically, we consider the following five approximations
using function value and/or directional derivative information at α0 = 0, α1 > 0 and α2 > 0,
with α1 > α2:

1. f-f-f (function-value-only): the function values at α0, α1 and α2, respectively, denoted by
f̃0, f̃1 and f̃2;

23

2. fg-f (mixed): the function value and directional derivative at α0 and the function value at
α1, respectively, denoted by f̃0, f̃

′
0 and f̃1;

3. f-fg (mixed): the function value at α0 and the function value and directional derivative at
α1, respectively, denoted by f̃0, f̃1 and f̃ ′1;

4. fg-fg (mixed): the function value and directional derivative at α0 and the function value
and directional derivative at α1, respectively, denoted by f̃0, f̃

′
0, f̃1 and f̃ ′1;

5. g-g (derivative-only): the directional derivatives measured at both α0 and α1, respectively,
denoted by f̃ ′0 and f̃ ′1.

Note that we do not consider fg-g and g-fg, which use one function value either at α1 or α2,
respectively and directional derivatives at both points, because they produce the identical local
minima along α as g-g.

A multivariate dynamic MBSS loss function, L̃ : (x ∈ Rw) → R, along the search direction,
d, is given by the univariate function

f̃(α) := L̃(x+ αd). (2.9)

The 1D quadratic approximation function, f̂(α), of f̃(α) is denoted by

f̂(α) = k1α
2 + k2α+ k3 ≈ f̃(α). (2.10)

Similarly, the directional derivative function along dn is denoted by

f̃ ′(α) = dTg̃(x+ αd) (2.11)

and this is approximated by the following linear gradient approximation function:

f̂ ′(α) = 2k1α+ k2 ≈ f̃ ′(α). (2.12)

The approximation f̃ required at least three pieces of independent information to resolve
k1, k2 and k3, while f

′(α) requires only two pieces of independent information to resolve k1 and
k2. The function-value-only and mixed models are constructed using the quadratic approxima-
tion function (2.10), and the derivative-only model is constructed using a linear approximation
function (2.12). The five approximations with the required information (red circle indicates
respective function value and red slope indicates the derivative of the respective function) to
construct each is shown in Figure 2.2. All approximations are well-specified linear systems ex-
cept for the over-specified mixed (fg-fg) approximation, that requires a least-squares solution to
approximate four pieces of information using only three variables.

Each approximation can be constructed by solving a small linear system, Aiki = bi, i =
1, 2, 3, 4, 5, that is obtained by evaluating (2.10) and/or (2.12) at selected α values to en-
force/approximate the respective function or derivative information, with Ai and bi respectively
given by

A1 =

 0 0 1
α2
1 α1 1
α2
2 α2 1

 ; b1 =
[
f̃0 f̃1 f̃2

]T
(2.13)

A2 =

 0 0 1
0 1 0
α2
1 α1 1

 ; b2 =
[
f̃0 f̃ ′0 f̃1

]T
(2.14)

A3 =

 0 0 1
α2
1 α1 1

2α1 1 0

 ; b3 =
[
f̃0 f̃1 f̃ ′1

]T
(2.15)

24

Function-value-only

3 function values (f-f-f)

Derivative-only

2 directional derivative values (g-g)

Mixed (function value and directional derivative information)

2 function & 1 dervative values (fg-f) 2 function & 1 dervative values (f-fg) 2 function & 2 dervative values (fg-fg)

Figure 2.2: Illustration of quadratic approximations using different types of information; (top
left) the function-value-only approximation (f-f-f), (bottom right) the mixed approximation
with the directional derivative at α0 (fg-f), (bottom middle) the mixed approximation with the
directional derivative at α1 (f-fg), (bottom right) the mixed approximation with the directional
derivatives at both α0 and α1 (fg-fg) and (top right) derivative-only approximation (g-g).

A4 =

0 0 1
0 1 0
α2
1 α1 1

2α1 1 0

 ; b4 =
[
f̃0 f̃ ′0 f̃1 f̃ ′1

]T
(2.16)

A5 =

[
0 1

2α1 1

]
; b5 =

[
f̃ ′0 f̃ ′1

]T
(2.17)

Because we use the linear and quadratic approximation models to predict the optimal learn-
ing rate, α∗

n, approximation error is inevitable, and it may be in forms of either undershooting
or overshooting. There are three possible scenarios when computing α∗

n from a 1D quadratic
approximation (2.10) or linear derivative approximation (2.12): i) unbounded extrapolation,
ii) bounded extrapolation and iii) interpolation, depending on whether the approximation is
convex, k1 > 0, or concave, k1 < 0, as shown in Figures 2.3(a) and (b) for the function value
and derivative approximations, respectively. The three possible extrapolation or interpolation
scenarios are as follows:

1. If f̃ ′1 < f̃ ′0 < 0, the approximation becomes concave for unbounded extrapolation;

2. If f̃ ′0 < f̃ ′1 < 0, the approximation becomes convex for bounded extrapolation, with local
minimum α∗ at α∗ > α1;

3. If f̃ ′1 > 0, the approximation interpolates, and there is a local minimum α∗ at α0 < α∗ < α1.

Both unbound and bound extrapolations predict the local minima, α∗
n, beyond the largest

observation point, α1. This may cause a large prediction error when α∗
n is far from α1. Hence,

we only allow for the interpolation scenario when computing α∗
n in the study.

25

Concave

Convex

(a) Function value domain

Concave

Convex

(b) Directional derivative domain

Figure 2.3: Illustration of 1) unbounded extrapolation and 2) bounded extrapolation 3) interpo-
lation situations for approximations in (a) function value or (b) directional derivative domain.

2.5 Pseudocode and implementation details

The general pseudocode is presented in Algorithm 1. The line search algorithm starts with the
inputs of the current mini-batch gradient g̃0,n and search direction dn. The direction d only
needs to be a valid descent direction, but in this paper, we use the SGD directions for simplicity,
dn = −g̃0,n at α0.

26

Algorithm 1: Line search approximation

Input: g̃0,n = g̃∗
n−1, dn, f̃0,n = f̃∗n−1, ε, αmin, αmax

Output: α∗
n, g̃

∗
n, f̃

∗
n

1 Compute directional derivative f̃ ′0,n at α0

2 if |f̃ ′0,n| < ε then

3 Recompute g̃0,n at α0 with a new sub-sampled mini-batch for the next iteration.

4 return α∗
n = 0, g̃∗

n, f̃
∗
n

5 α1 = max(αmin,min(∥dn∥−1
2 , αmax))

/* Option 1: Function-value-only approximation (f-f-f) */

6 Compute f̃1,n at α1 and f̃2,n at α2 = α1/2

7 α∗ = StepSizeFFF(α1, α2, f̃0,n, f̃1,n, f̃2,n); // Algorithm 2

/* Option 2: Mixed approximation (fg-f) */

8 Compute f̃1,n at α1

9 α∗ = StepSizeFGF(α1, f̃0,n, f̃1,n, f̃
′
0,n); // Algorithm 6 in Appendix A.1

/* Option 3: Mixed approximation (f-fg) */

10 Compute f̃1,n, f̃
′
1,n at α1

11 α∗ = StepSizeFFG(α1, f̃0,n, f̃1,n, f̃
′
1,n); // Algorithm 7 in Appendix A.1

/* Option 4: Mixed approximation (fg-fg) */

12 Compute f̃1,n, f̃
′
1,n at α1

13 α∗ = StepSizeFGFG(α1, f̃0,n, f̃1,n, f̃
′
0,n, f̃

′
1,n); // Algorithm 8 in Appendix A.1

/* Option 5: Derivative-only approximation (g-g) */

14 Compute f̃ ′1,n at α1

15 α∗ = StepSizeGG(α1, α2, f̃
′
0,n, f̃

′
1,n); // Algorithm 9 in Appendix A.1

16 if (α∗ ̸= α1) & (0 < α∗ < α1) then
17 g̃∗

n = g̃n(x0 + α∗dn)
18 else
19 α∗

n = α1

20 return α∗
n, g̃

∗
n, f̃

∗
n

In Algorithm 1, we first check whether the magnitude of the directional derivative |f̃ ′0,n| is
greater than a prescribed tolerance of ε ≈ 10−16. The magnitude needs to be large enough not to
cause any numerical errors. Otherwise, the local stochastic gradient, g̃0,n, is recomputed using
a new randomly sampled mini-batch to be returned for the next iteration with the final learning
rate of α∗

n = 0. For sufficiently large |f̃ ′0,n|, an initial learning rate, α1, based on the magnitude
of the direction vector, dn, is chosen. We select it to be the inverse of the l2-norm of the search
direction, ∥dn∥−1

2 , as this provides small and exploiting learning rates for steeper directional
derivatives, |f ′0| ≫ 0, and large and exploring learning rates for flatter directional derivatives,
|f ′0| ≈ 0. We still make sure that α1 falls within the prescribed bounds denoted by αmin and
αmax, which are bounded to 10−7 and 108 in this study, as used by Kafka and Wilke [2021].
This extremely large choice of learning rate may demonstrate the robustness of the algorithm.

Once, the initial guess, α1, is finalized, we can compute relevant information required to
construct the approximation of our choice. Since we already have f̃0,n and f̃ ′0,n available, we
need to compute additionally

1. f̃1,n and f̃2,n for the f-f-f approximation,

2. f̃1,n for the fg-f approximation,

3. f̃1,n and f̃ ′1,n for the f-fg and fg-fg approximations,

4. f̃ ′1,n for the g-g approximation.

27

Function evaluations
Approx. Resample Approximation

f-f-f 3 5
fg-f 3 4
f-fg 3 6
fg-fg 3 6
g-g 3 6

Table 2.1: Required number of function evaluations for each approximation for resampling and
building an approximation.

The learning rates for each approximation are computed using StepSizeFFF (Algorithm 2),
StepSizeFGF, StepSizeFFG, StepSizeFGFG and StepSizeGG (Algorithms 6-9 in Appendix A.1)
for the f-f-f, fg-f, f-fg, fg-fg and g-g approximations, respectively.

Algorithm 2: StepSizeFFF

Input: α1, α2, f̃0, f̃1, f̃2, ε
Output: α∗

1 α∗ = α1

2 Define a matrix A1 and a vector b1 from (2.13)
3 if rank(A1) = 3 then

4 Solve for the constants k = A−1
1 b1 from (2.10)

5 if k1 > ε then
6 α∗ = max(αmin,min(−k2/(2k1), αmax))

The respective learning rate functions ensure that the matrix A is not singular (e.g. line 3 in
Algorithm 2). We check whether the curvature k1 is a positive value or larger than a prescribed
tolerance ε, which we set to be 10−16. This ensures that the approximation is convex and that it
does not run into numerical issues for computing the learning rate α∗ (e.g. line 5 in Algorithm 2).

Again, we check if the computed learning rate is within the upper and lower bounds (αmax

and αmin). Note that the linear system of the fg-fg approximation (2.16) is solved using least-
squares regression or Moore-Penrose pseudoinverse and that when implementing the g-g case,
the rank of the matrix A5 (2.17) needs to be 2, since there are only 2 constants (i.e. k1 and k2)
that are solved.

Table 2.1 shows that the required number of function evaluations may vary between approx-
imation types, and conditions enforced in an iteration. The different conditions are

1. Resample when the initial magnitude of the directional derivative is too small (line 2 in
Algorithm 1);

2. Constructing approximations for computing α∗.

We count the number of function evaluations required for forward pass and backward pass
as 1 and 2, respectively. Note, the gradient at a point can only be computed once the forward
pass has been conducted. Therefore, g-g requires 6 function evaluations for interpolation in
total. Additionally, we always require the gradient at the starting point, α0, for the search
direction, whether it is used or not for constructing the model, f-f-f, for example, needs 5 function
evaluations. Hence, the fg-f approximation is computationally inexpensive as it requires only 4
function evaluations.

2.6 Experimental setup

In this section, we consider numerical investigations to examine the performance and character-
istics of the five approximation models in Algorithm 1. First, we take the experimental study
as outlined by Mahsereci and Hennig [2017] for the MNIST dataset [LeCun et al., 1998], which

28

is a 10-class classification dataset with 28 × 28 input size, 6 × 104 train samples and 1 × 104

test samples. The batch sizes chosen for MNIST are 10, 100, 200 and 1000. The maximum
number of function evaluations is 4×104. The MNIST dataset is trained on two fully connected
feedforward nets with biases: N-I and N-II.

� N-I: it has a shallow network structure of a single hidden layer; Ninput-800-Nouput with
sigmoid activation functions and a cross-entropy loss. The initial weights are sampled from
a normal distribution.

� N-II: it has a deep network structure of three hidden layers; Ninput-1000-500-250-Noutput

with tanh activation functions and a square loss function. The initial weights are obtained
using the Xavier initialization [Glorot and Bengio, 2010].

Note that all the problems are one-hot encoded. The training for each approximation is con-
ducted ten times at different starting points to compute the mean and standard deviation. For
this experiment, we compare the performance of the five approximation models against 1) Adam
using the default PyTorch settings [Paszke et al., 2019] and 2) scheduled SGD (SSGD) [Liu, 2020]
with diminishing steps size by a factor of 10 at 3/7 and 5/7 of the maximum number of function
evaluations, starting from the initial learning rate of 0.1.

Secondly, we also conduct investigations using ResNet-18 [He et al., 2016] on the CIFAR-10
dataset. CIFAR-10 is a 10-class classification dataset with 32 × 32 input size, 5 × 104 training
samples and 1×104 testing samples. The results are averaged over five runs using a chosen batch
size of 128 [He et al., 2016]. The maximum number of epochs is 350. We based our ResNet-18
PyTorch implementation on the source code provided by Liu [2020] to implement the ResNet-18
problem. We compare the results against SSGD with diminishing steps size by a factor of 10
at 150 and 250 epochs, starting from the initial learning rate of 0.1 as proposed by Liu [2020]
except we omitted weight decay and momentum for fair learning rate comparisons.

Note that the search direction for the five approximations in both experiments is set to be
the stochastic gradient descent (SGD) direction. The minimum and the maximum learning
rates are chosen for the five approximations are αmin = 10−8 and αmax = 107, respectively.
The wide limit ranges allow us to investigate the robustness of the various approximations.
Also, note that both SSGD and Adam are state-of-art optimizers that include momentum. The
implications are that their search directions are distinct from gradient descent that is used for
the five approximations. Hence, the performances of SSGD and Adam are a combination of
their learning rates as well as their descent directions. The reader is, therefore, cautioned not
to overinterpret the comparisons to the five approximations using gradient decent directions.

2.7 Experimental results

The results for N-I and N-II for the MNIST dataset are shown in Figures 2.4 and 2.5, respectively.
We compare the performance of the five approximation models with Adam and SSGD. For each
figure, from the top row, each row shows train errors, test errors, and learning rates in log10
scale, respectively, and the batch size, |B|, increases from left to right.

From Figure 2.4, it is evident the initial training errors are high for all methods when the
smallest batch size, |B| = 10, is considered. This is due to the high variance in the computed gra-
dients. The five approximations show significant improvements, as |B| increases, outperforming
the SSGD. Adam, which its search direction is based on the estimates of 1st and 2nd moments
of the gradients, shows the best performance. The test errors show only slight improvements,
as |B| increases for all methods. The five approximations show that their learning rates grow,
as training continues. This is due to the quadratic approximation curvature reducing as the
problems converge. Note that we do not show the learning rates of Adam.

In Figure 2.5, we show the results for the deeper net, N-II. As |B| increases, the training
errors generally decrease, except for the following approximations: f-f-f, f-fg, and fg-fg. It also
shows that g-g and fg-f approximations result in lower train errors than Adam for smaller |B|,

29

0 10000 20000 30000 40000
10−4

10−3

10−2

10−1

100
Tr
ai
n
er
ro
r

Batch si e = 10

0 10000 20000 30000 40000

10−1

100

Te
st
 e
rro

r

0 10000 20000 30000 40000
Function evaluations

10−2

100

102

Le
ar
ni
ng

 ra
te

0 10000 20000 30000 40000
10−4

10−3

10−2

10−1

100 Batch si e = 100

0 10000 20000 30000 40000

10−1

100

0 10000 20000 30000 40000
Function evaluations

10−2

100

102

0 10000 20000 30000 40000
10−4

10−3

10−2

10−1

100 Batch si e = 200

0 10000 20000 30000 40000

10−1

100

0 10000 20000 30000 40000
Function evaluations

10−2

100

102

0 10000 20000 30000 40000
10−4

10−3

10−2

10−1

100 Batch si e = 1000

0 10000 20000 30000 40000

10−1

100

0 10000 20000 30000 40000
Function evaluations

10−2

100

102

fg-f f-fg fg-fg f-f-f g-g SSGD ADAMfg-f f-fg fg-fg f-f-f g-g SSGD ADAMfg-f f-fg fg-fg f-f-f g-g SSGD ADAMfg-f f-fg fg-fg f-f-f g-g SSGD ADAM

Figure 2.4: Comparison of the required number of function evaluations of the five approximation-
assisted line search methods: 1) directional-derivative-only (g-g), 2) function-value-only (f-f-f),
3) mixed approximation with function values at both α0 and α1 and directional derivative only
at α0 (fg-f), 4) directional derivative only at α1 (f-fg) and 5) directional derivatives at both α0

and α1 (fg-fg), as well as Adam and SSGD on MNIST dataset with N-I architecture.

although Adam converges initially faster. The similar trend also appears in the test errors. The
variance in the SSGD results is lower than the other methods, but it only outperforms the poor
performing approximations that include f-f-f, f-fg, and fg-fg.

This clearly indicates that the type of information and the spatial location thereof need to
be carefully considered. Above all, it indicates that more information is not necessarily better
as is evident with the g-g approximation outperforming the f-f-f and fg-fg approximations. The
results show that either not enforcing directional derivative information at α0, or enforcing too
much information, may result in large approximation errors, especially, when using larger |B| for
the deeper network, N-II, as opposed to smaller |B| for the shallow network, N-I. The learning
rates for f-f-f, f-fg, and fg-fg approximations are significantly smaller than the learning rates
resulting from g-g, fg-f and SSGD.

To motivate this statement further, we also investigated the characteristics of the five ap-
proximations for the N-I and N-II architectures, in Figures 2.6 and 2.7, respectively, by plotting
the variance of the model minimum, α∗, resulted from each approximation, and quantify the
characteristics of the solutions. It shows the distributions of the optimizers for the five approx-
imations by resampling the mini-batch 50 times, starting at the initial random weights. Each
approximation is constructed using dynamic MBSS with |B| = 10. For direct comparison, all ap-
proximations are depicted in the loss domain and directional derivative domain in Figure 2.6(a)
and (b), respectively, for N-I. In Figure 2.6(a), we converted the directional-derivative-only ap-
proximation (g-g) to the loss function domain, integrating the approximation w.r.t learning rate
α and choosing an arbitrary value for the integration constant.

Note that, in Figure 2.6, the approximation error appears as large variance to the ones
that do not use directional derivative information at the origin: f-f-f and f-fg, compared to
the ones use the information: fg-f, fg-fg, g-g. Recall we did not consider fg-g and g-fg cases,
since it would produce the identical learning rate results as g-g. Hence, this implies that using
directional derivative information is essential for reducing the variance of the approximation
error and consequently predicted learning rates.

The approximation error for N-II, shown in Figure 2.7, appears similar across the different

30

0 10000 20000 30000 40000

10−3

10−2

10−1

100
Tr
ai
n
er
ro
r

Batch size = 10

0 10000 20000 30000 40000

10−1

100

Te
st
 e
rro

r

0 10000 20000 30000 40000
F nction eval ations

10−8

10−5

10−2

101

Le
ar
ni
ng

 ra
te

0 10000 20000 30000 40000

10−3

10−2

10−1

100 Batch size = 100

0 10000 20000 30000 40000

10−1

100

0 10000 20000 30000 40000
F nction eval ations

10−8

10−5

10−2

101

0 10000 20000 30000 40000

10−3

10−2

10−1

100 Batch size = 200

0 10000 20000 30000 40000

10−1

100

0 10000 20000 30000 40000
F nction eval ations

10−8

10−5

10−2

101

0 10000 20000 30000 40000

10−3

10−2

10−1

100 Batch size = 1000

0 10000 20000 30000 40000

10−1

100

0 10000 20000 30000 40000
F nction eval ations

10−8

10−5

10−2

101

fg-f f-fg fg-fg f-f-f g-g SSGD ADAMfg-f f-fg fg-fg f-f-f g-g SSGD ADAMfg-f f-fg fg-fg f-f-f g-g SSGD ADAMfg-f f-fg fg-fg f-f-f g-g SSGD ADAM

Figure 2.5: Comparison of the required number of function evaluations of the five approximation-
assisted line search methods: 1) directional-derivative-only (g-g), 2) function-value-only (f-f-f),
3) mixed approximation with function values at both α0 and α1 and directional derivative only
at α0 (fg-f), 4) directional derivative only at α1 (f-fg) and 5) directional derivatives at both α0

and α1 (fg-fg), as well as Adam and scheduled SSGD on MNIST dataset with N-II architecture.

types of approximations. This is due to the closer distance to the first local minima from the
initial guess for N-II, which lowers the quadratic approximation error. However, as we observed
from the train and test errors in Figure 2.5, f-f-f, f-fg and fg-fg performs poorly during the training
for N-II. Recall that f-f-f and fg-f are the two approximations which showed large variance in
the approximation errors in Figure 2.6, since approximation errors with high variance are worse
than high bias as discussed in Section 2.3.1. We also learn that fg-fg that regresses through an
excessive amount of noisy data may lead to unreliable training results, as shown in Figure 2.4.

Let us consider the results of ResNet-18 for the CIFAR-10 dataset shown in Figure 2.8,
and the best results are recorded in Table 2.2, which shows that g-g, fg-f, fg-fg and SSGD
significantly outperform f-f-f and f-fg for both train and test accuracies. Although the SSGD
was implemented by Liu [2020] to obtain high accuracy for precisely this problem, it did not
perform the best among the other methods when optimizing N-I and N-II. In Figure 2.8, from
left to right, it shows train accuracy, test accuracy in percentage, and the learning rates in
log10 scale over 350 epochs. Note that fg-f, g-g and fg-fg perform similarly when observing the
training and testing accuracy, while f-fg and f-f-f underperform. As before, enforcing directional
derivative information at the origin is essential. Previously, fg-fg was considered to enforce too
much poor quality information, which in this case performs much better. In the regression
enforcement, it could be that the directional derivative magnitudes are now much larger relative
to the function values than for the previous problems. This implies that directional derivative
information is enforced stronger than the function values. SSGD performs the best and only
marginally so, but required extensive tuning to do so [Liu, 2020]. It is interesting to note that the
performance difference between SSGD and the g-g, fg-f, and fg-fg approximations is marginal,
but the learning rates are distinctly different. learning rates for SSGD decrease over epochs,
while g-g, fg-f and fg-fg approximations it increases quite aggressively. The studies show that
both g-g and fg-f show potential to be further developed as line search algorithms.

31

−5

0

5
Function-value-only, f-f-f

−5

0

5
Mixed, fg-f

−5

0

5

Fu
nc

tio
n
va

lu
e Mixed, f-fg

−5

0

5
Mixed, fg-fg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning rate

−5

0

5
Derivative-only, g-g

True min. Func. eval. Model min.

(a) Function value

−10

0

10
Function-value-only, f-f-f

−10

0

10
Mixed, fg-f

−10

0

10

Di
re
ct
io
na

l d
er
iv
at
iv
e

Mixed, f-fg

−10

0

10
Mixed, fg-fg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning rate

−10

0

10
Derivative-only, g-g

True min. Func. eval. Model min.

(b) Directional derivative

Figure 2.6: N-I minimizer variance for the five approximations by resampling the mini-batches
50 times: f-f-f, fg-f, f-fg, fg-fg, and g-g. The derivative-only approximations are plotted as a loss
function by adding arbitrary constants.

0.08
0.09
0.10
0.11
0.12

Function-value-only, f-f-f

0.08
0.09
0.10
0.11
0.12

Mixed, fg-f

0.08
0.09
0.10
0.11
0.12

Fu
nc
tio

n
va

lu
e Mixed, f-fg

0.08
0.09
0.10
0.11
0.12

Mixed, fg-fg

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Learning rate

0.08
0.09
0.10
0.11
0.12

Derivative-only, g-g

True min. Func. eval. Model min.

(a) Function value

0.0

0.2

Function-value-only, f-f-f

0.0

0.2

Mixed, fg-f

0.0

0.2

Di
re
ct
io
na

l d
er
iv
at
iv
e

Mixed, f-fg

0.0

0.2

Mixed, fg-fg

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Learning rate

0.0

0.2

Derivative-only, g-g

True min. Func. eval. Model min.

(b) Directional derivative

Figure 2.7: N-II minimizer variance for the five approximations by resampling the mini-batches
50 times: f-f-f, fg-f, f-fg, fg-fg, and g-g. The derivative-only approximations are plotted as a loss
function by adding arbitrary constants.

32

0 100 200 300
Epoch

20

40

60

80

100
Tr

ai
n

ac
cu

ra
cy

 [%
]

0 100 200 300
Epoch

20

40

60

80

100

Te
s

 a
cc

ur
ac

y
[%

]
0 100 200 300

Epoch
−4

−2

0

2

4

6

lo
g 1

0(
le

ar
ni

ng
 ra

 e
)

fg-f f-fg fg-fg f-f-f g-g SSGD

Figure 2.8: Comparison on ResNet-18 for the CIFAR-10 dataset for the following approxima-
tions: f-f-f, fg-f, f-fg, fg-fg, g-g and SSGD.

g-g f-f-f fg-f f-fg fg-fg SSGD

Train accuracy [%] 99.71 67.95 99.62 92.25 99.73 99.99
Test accuracy [%] 92.91 69.07 92.81 87.83 92.96 93.68

Table 2.2: Top training and testing accuracy obtained from the ResNet-18 experiment on
CIFAR-10 dataset.

2.8 Conclusion

Dynamic sub-sampling updates mini-batches for every loss function evaluation, even along the
same descent direction, allowing for a higher throughput of training data, when using smaller
mini-batch sizes. The result is that the loss function is point-wise discontinuous or stochastic.
As a result, it is challenging to conduct line searches when employing dynamic MBSS. We in-
vestigated the possibility of employing quadratic approximations to resolve learning rates. A
carefully constructed and systematic empirical study revealed that it is essential to be selec-
tive about what information is enforced where along a descent direction. We investigated five
approximations that differed only in the type of information, function value and directional
derivative, and where they are enforced along a search direction, mainly at the start or end of
a search interval.

The empirical results indicate that directional derivative information is more critical to
enforce than function value information. In particular, enforcing the directional derivative in-
formation at the beginning of the search interval is more informative than the end-point. This
mainly guarantees that the approximation optimizer is along the descent search direction, which
also helps to reduce the variance of the solutions within this stochastic setting. It was found that
enforcing any information for small batch sizes is useful. However, for deeper network tasks with
only slightly larger mini-batch sizes, the distinction between enforcing fewer samples of selective
information is much more beneficial than larger quantities of indiscriminate information. This
implies that having less but the right type of information, in particular, directional derivatives,
outperforms approximations using more information.

In this study, basic quadratic approximations proved to be competitive against a well-tuned
scheduled SGD on CIFAR-10 using ResNet-18, and against scheduled SGD andAdam on MNIST
using deep feedforward neural networks. Our experiments showed that quadratic approximation
errors are manifested as biases and variances. We showed that reducing the variance error is more
critical than reducing the bias error for training neural network problems. The variance could
be reduced by using directional derivative information at the initial point of each approximation
interval.

33

Chapter 3

GOALS: Gradient-Only
Approximations for Line Searches
Towards Robust and Consistent
Training of Deep Neural Networks

3.1 Chapter overview

Mini-batch sub-sampling (MBSS) is favored in deep neural network training to reduce the compu-
tational cost. Still, it introduces an inherent sampling error, making the selection of appropriate
learning rates challenging. The sampling errors can manifest either as a bias or variances in a line
search. Dynamic MBSS re-samples a mini-batch at every function evaluation. Hence, dynamic
MBSS results in point-wise discontinuous loss functions with smaller bias but larger variance
than static sampled loss functions. However, dynamic MBSS has the advantage of having larger
data throughput during training but requires the complexity regarding discontinuities to be
resolved. This study extends the gradient-only surrogate (GOS), a line search method using
quadratic approximation models built with only directional derivative information, for dynamic
MBSS loss functions. We propose a gradient-only approximation line search (GOALS) with
strong convergence characteristics with defined optimality criterion. We investigate GOALS’s
performance by applying it on various optimizers that include SGD, RMSprop and Adam on
ResNet-18 and EfficientNet-B0. We also compare GOALS’s against the other existing learning
rate methods. We quantify both the best performing and most robust algorithms. For the
latter, we introduce a relative robust criterion that allows us to quantify the difference between
an algorithm and the best performing algorithm for a given problem. The results show that
training a model with the recommended learning rate for a class of search directions helps to
reduce the model errors in multimodal cases.

3.2 Introduction

In neural network training, choosing appropriate learning rates or learning rate schedules is
non-trivial [Bengio, 2012, Goodfellow et al., 2016, Strubell et al., 2019]. As the neural net-
work architectures become larger and more complex, the cost of training increases significantly
[Brown et al., 2020]. The monetary, energy and CO2 emission consequence of selecting a training
strategy with significant performance variance, i.e. having near-optimal or poor training perfor-
mance when combined with various optimizers, neural network architectures, and datasets, is
noteworthy and important. Therefore, it becomes more and more important to formally quan-
tify the robustness and consistency of a training approach instead of only quantifying its best
performance. This also highlights the inherent Pareto optimal nature of selecting a training
approach optimal for a specific application (specialist) or being adequate over a larger domain

34

of applications (generalist). In other words, the learning rate strategy selected needs to be ro-
bust enough that when it performs sub-optimally, the difference between its performance and
the best performing approaches is limited. Incorporating this as a formal selection criterion
improves the certainty with which an analyst can interpret the performance of an algorithm on
a given problem without having to conduct additional exhaustive studies.

A natural consideration to resolve learning rates may be to consider line searches. Line
searches are well-established in mathematical programming to efficiently resolve learning rates
and identify descent directions. However, they require the underlying loss function to be convex
or unimodal over an identified interval. This would be the case if full-batch training of machine
learning and deep learning neural networks would be attenable. However, when conducting full-
batch training, computational and memory requirements are untenable for practical training.
This makes full-batch training ill-suited for DNNs on modern memory limited graphics pro-
cessing unit (GPU) compute devices. As a result, the standard training procedure for machine
learning and deep learning relies on mini-batch sub-sampling.

Mini-batch sub-sampling (MBSS) reduces the computational cost by using only a sub-sample
of the training data at a time. This also provides a generalization effect [Masters and Luschi,
2018] by turning a smooth continuous optimization problem into a stochastic optimization prob-
lem [Robbins and Monro, 1951]. The stochastic or discontinuous nature of the loss function is
due to the selected mini-batches’ inherent sampling errors.

For line searches, the sampling errors manifest mainly in the form of bias or variance along a
descent direction, depending on whether mini-batches are sub-sampled statically or dynamically
[Chae and Wilke, 2019c, Kafka and Wilke, 2019a]. Static MBSS sub-samples a new mini-
batch for every descent direction, while dynamic MBSS sub-samples a new mini-batch for every
function evaluation. Hence, the loss function for static MBSS is continuous along a descent
direction. The consequence is that the expected value of a static MBSS loss, has a small
variance but a large bias compared to the expected or full-batch response. Conversely, the
loss function for dynamic MBSS is point-wise discontinuous [Kafka and Wilke, 2019b, Chae
and Wilke, 2019c]. The expected response of the dynamic MBSS loss has a small bias but a
large variance compared to the expected or full-batch response [Kafka and Wilke, 2019b, Chae
and Wilke, 2019c]. Consider Figure 3.1, which contrasts a full batched sampled loss function
(F - orange) against a static (f̄) and dynamic (f̃) sampled loss functions for fully-connected
feedforward neural network [Mahsereci and Hennig, 2017] initialized with Xavier initialization
[Glorot and Bengio, 2010]. Figure 3.1 (a) depicts 20 potential static MBSS loss functions. Each
loss has zero variance but a large bias in this case. Figure 3.1 (c) depicts a dynamic MBSS loss
function. It is clear that there is a large variance in the loss response, but the expected response
has a lower bias since a mini-batch does not influence it in particular.

Line searches have been implemented for both static MBSS and dynamic MBSS loss func-
tions. The main drawback of static MBSS is that it results in large biases in loss approxima-
tions and has been improved by applying sample variance reduction techniques [Friedlander and
Schmidt, 2012, Bollapragada et al., 2018]. Meanwhile, attempts to resolve learning rates in the
point-wise discontinuous loss approximations of dynamic MBSS include the probabilistic line
search [Mahsereci and Hennig, 2017] and Gradient-Only Line Search that is Inexact (GOLS-I)
[Kafka and Wilke, 2019b]. The probabilistic line search resolve learning rates by minimizing
an approximation constructed using both function value and directional derivative information,
while GOLS-I uses only directional derivative sign change information.

GOLS-I locates optima by searching for stochastic non-negative gradient projection points
(SNN-GPP). These manifest as positive directional derivatives with a non-zero probability
around a ball encapsulating SNN-GPPs. Any point around the SNN-GPP ball is taken and
the directional derivative from the SNN-GPP to the point computed. An SNN-GPP along a
descent direction merely manifests as a sign change from negative to positive. Importantly, a
sign change from negative to positive is necessary and sufficient to identify an SNN-GPP, or al-
ternatively stated, a minimizer as inferred solely from derivative information for this univariate
case. This is empirically demonstrated in Figure 3.1.

35

��� ��� ��� ��� ��� ��� ��� ��� ���
�������������

���	

����

����

����

����

���	

����

����

�
�

���
��
��

��
�

̄f
̄αm

α*

(a) Minimization with static MBSS

��� ��� ��� ��� ��� ��� ��� ��� ���
	
�������
�

�����

�����

�����

�����

����

����

����

����

����

�
��

��
��
�

���
�
��

�
��

̄f′
̄α*

′

α*

(b) Locating SNN-GPPs with static MBSS

��� ��� ��� ��� ��� ��� ��� ��� ���
�������������

���	

����

����

����

����

���	

����

����

�
�

���
��
��

��
�

̃f
α̃m

α*

(c) Minimization with dynamic MBSS

��� ��� ��� ��� ��� ��� ��� ��� ���
	
�������
�

�����

�����

�����

�����

����

����

����

����

����

�
��

��
��
�

���
�
��

�
��

̃f
α̃*

′

α*

(d) Locating SNN-GPPs with dynamic MBSS

Figure 3.1: Illustration of finding local minima in (a) static and (c) dynamic MBSS loss functions,
as well as locating SNN-GPPs using (b) static and (d) dynamic MBSS directional derivatives.

36

Learning rates resolved by locating minimizers or SNN-GPPs are equivalent for static MBSS
loss functions as depicted by the minimizer solution, ᾱm, and SNN-GPP solution, ᾱ∗, in Figures
3.1 (a) and (b), respectively. However, for dynamic sampled loss functions, minimizers are iden-
tified over the entire domain, as shown in Figure 3.1 (c). In turn, SNN-GPPs are concentrated
around the full batch solution, as shown in Figure 3.1 (d). SNN-GPPs indicate a lower bias to
the expected full-batch minimizer than minimizers of SNN-GPPs resolved from the static MBSS
loss.

A recent empirical study investigated how function value and directional derivative informa-
tion help locate SNN-GPPs by comparing the resulting learning rates from various quadratic ap-
proximation models built from enforcing information in multiple ways [Chae and Wilke, 2019c].
Chae and Wilke [2019c] demonstrated that using only function value information resulted in
learning rates with the larger variance due to the larger variance when predicting function val-
ues when conducting dynamic MBSS. Using only derivative information resulted in learning rates
with smaller variance as the derivative information predicts more consistently when considering
dynamic MBSS. Hence, gradient-only quadratic approximations result in stable and consistent
learning rate predictions. Chae and Wilke [2019c] constructed derivative only approximations
using only two directional derivative evaluations referred to as gradient-only surrogates (GOS).
One evaluated at the origin, and the other at an “initial guess” learning rate along the descent
direction. The directional derivative at the origin is strictly less than zero for descent directions.
If the directional derivative at the initial guess is also less than zero, the initial guess learning
rate is immediately accepted. In turn, if the directional derivative at the initial guess is posi-
tive, linear interpolation between the two points is performed to approximate the location of a
directional derivative sign change. The proposed approach served as an initial investigation and
proof of a “vanilla” line-search concept for only stochastic gradient descent (SGD). The “vanilla”
directional-derivative-only approximation line search, proposed and investigated by Chae and
Wilke [2019c], has no strong convergence characteristics, lacks a robust bracketing strategy and
has not been demonstrated for descent directions strategies other than SGD. The contributions
of this study include:

1. It extends the shortcomings of the vanilla directional-derivative-only approximation line
search by proposing a line search with strong convergence characteristics. This is achieved
by introducing a robust bracketing strategy to improve linear interpolation accuracy, re-
ferred to as the gradient-only approximation line search (GOALS). The bracketing strategy
is based on a modified strong Wolfe condition [Wolfe, 1969, 1971] to isolate SNN-GPP.
We essentially propose a conservative algorithm with strong convergence characteristics,
which may result sacrifice the performance for convergence.

2. GOALS is demonstrated as a suitable line search strategy for descent direction approaches
other than SGD, including RMSprop and Adam on deep neural network architectures
with CIFAR-10 [Krizhevsky, 2009].

3. GOALS is compared to fixed learning rates, cosine annealing, GOLS-I, and GOS line
search strategies on a shallow neural network architecture with MNIST [LeCun et al.,
1998]. GOALS exhibits competitive results compared to other line search methods.

To compare the performance of different strategies, we introduced a relative robustness
measure to quantify the differences between an algorithm and the best-performing algorithm
for a given problem. In contrast to the traditional performance measure that only considers
the best performance, the relative robustness measure considers all accounts, including poor
performance. Hence, the criterion favors the strategy that performs well overall across different
problems and optimizers rather than a problem-specific strategy.

The experimental results showed that our proposed algorithm GOALS ranked third and sec-
ond for overall training and test relative robustness among ten strategies, led by GOS. Although
GOS is not robust in convergence, it is more aggressive in training due to no curvature condition
restricting its learning rates.

37

3.3 Background

In general, line searches can be employed to train deep neural networks to identify minimizers,
first-order optimality candidate solutions (directional derivatives equal to 0) and SNN-GPPs.
For convex functions, all three are equivalent. Several line searches which implement static
MBSS have been presented, which take advantage of continuous loss functions that often assume
convexity [Friedlander and Schmidt, 2012, Byrd et al., 2011, 2012a, Bollapragada et al., 2018,
Kungurtsev and Pevny, 2018, Bergou et al., 2018, Mutschler and Zell, 2019, Yedida et al., 2021].

However, as illustrated in Figure 3.1, for dynamic MBSS loss functions, SNN-GPPs identify
sensible solutions when compared to the full batch solution. Minimizers are hampered by local
minima resulting in large variance, while first-order optimality candidate solutions may not exist
for point-wise discontinuous loss functions. The present section summarizes several state-of-the-
art sub-sampling and line search schemes applied to dynamic MBSS loss functions in machine
learning literature. Firstly, we formalize dynamic MBSS and SNN-GPPs in Sections 3.3.1 and
3.3.2, respectively.

3.3.1 Dynamic mini-batch sub-sampling

Given weights x, the function value computed with dynamic MBSS is expressed as

L̃(x) =
1

|Bn,i|
∑

b∈Bn,i

ℓ(x; tb), (3.1)

where ℓ(x; tb) is computed using training samples in the sampled mini-batch, tb, with approxi-
mate gradient given by

g̃(x) =
1

|Bn,i|
∑

b∈Bn,i

∇ℓ(x; tb), (3.2)

where i denotes the i-th function evaluation of the n-th iteration of a given algorithm. The loss
function as a function of learning rate, α, along a given descent direction, dn, starting from xn

is given by:
f̃n(α) = L̃(x(α)) = L̃(xn + αdn), (3.3)

with the directional derivative, f̃ ′n, given by

f̃ ′n(α) = d⊺
ng̃(xn + αdn). (3.4)

Dynamic MBSS loss functions are point-wise discontinuous functions with point-wise discontin-
uous gradient fields.

3.3.2 Gradient-only optimality criterion

Multiple local minima would be found when locating minimisers for discontinuous functions
such as a dynamic MBSS loss function. Instead, we may opt to locate Non-Negative Gradient
Projection Points (NN-GPPs) for which its gradient-only optimality criterion was specifically
designed for deterministic discontinuous function [Wilke et al., 2013], given by

d⊺
n∇L(xnngpp + αndn) ≥ 0, ∀∥dn ∈ Rp∥2 = 1, ∀α ∈ (0, αmax], (3.5)

for the 1-D case, along a given search direction, dn. NN-GPP is representative of a local optimum
because no descent directions are allowed away from it. This is only possible at a critical point
or a local minimum in a smooth and continuous function.

The NN-GPP definition is limited to deterministic discontinuous functions. Therefore, to
accommodate stochastic discontinuous functions, the NN-GPP definition was generalized and
extended to the Stochastic NN-GPP (SNN-GPP), given by

d⊺
ng̃(xsnngpp + αndn) ≥ 0, ∀∥dn ∈ Rp∥2 = 1, ∀α ∈ (0, αmax], p(xsnngpp) > 0, (3.6)

38

with probability, p(xsnngpp), greater than 0 [Kafka and Wilke, 2019b].
The difference between NN-GPP and SNN-GPP is that NN-GPP is a point where the signs

of directional derivatives change in the deterministic setting. However, in the stochastic setting,
a directional derivative sign change location may vary, depending on the instance of the sampled
stochastic loss. Transferred to dynamic MBSS losses, this means that for each distinct mini-
batch, B, selected, we have a distinct location of a sign change. However, these remain bounded
in a ball, Bϵ, [Kafka and Wilke, 2019b] of a given loss landscape neighborhood. The size of
Bϵ is, among other factors, dependent on the variance in the stochastic loss function, which
in dynamic MBSS losses is dependent on the mini-batch size. Hence, the larger the difference
between individual samples, Bn,i, the larger the size of the ball, Bϵ. Notably, the SNN-GPP
definition also generalizes to the NN-GPP, critical point and local minimum, as these are all
SNN-GPPs with probability 1.

3.3.3 Line searches for dynamic MBSS loss functions

To the best of the author’s knowledge, only three line search techniques have been proposed to
resolve learning rates for dynamic MBSS loss functions, namely:

1. A probabilistic line search using Bayesian optimization with Gaussian surrogate models,
built using both function value and directional derivative information [Mahsereci and Hen-
nig, 2017].

2. The Gradient-only line search, Inexact (GOLS-I), locates SNN-GPPs along the search
directions, using only directional derivative information [Kafka and Wilke, 2019b].

3. Proof of concept quadratic approximations [Chae and Wilke, 2019c].

All three line search methods showed competitive training performance for dynamic MBSS
losses and outperformed various constant learning rates.

Notably, Chae and Wilke [2019c] the quality of function values and directional derivatives in
the context of approximation-based line searches is investigated empirically. The quality of in-
formation used to produce approximations in dynamic MBSS losses was studied by constructing
five types of quadratic approximation models using different information sampled at two loca-
tions (e.g. only function value, only directional derivative, both function value and directional
derivative models) [Chae and Wilke, 2019c]. The results showed that using directional deriva-
tive information at the origin (starting point) of a line search is critical for constructing quality
approximations, decreasing the variances in optimal learning rates. The two best performing
models were

1. Derivative-only quadratic model: A quadratic approximation is built using two directional
derivatives, values measured at the origin and another point along descent direction.

2. Mixed quadratic model: A quadratic approximation is built using the directional derivative
measured at the origin and function values at both origin and another point.

Note that both quadratic approximation models proposed by Chae and Wilke [2019c] demon-
strate “vanilla” algorithms without guaranteed convergence. Although the mixed-model has
been investigated by Mahsereci and Hennig [2017] and Mutschler and Zell [2019] before, the
derivative-only model has not been extended to a fully automated line search technique, which
is the aim of this paper. Next, we discuss the heuristics and the corresponding shortcomings of
the vanilla derivative-only approximation using the derivative-only model proposed in Chae and
Wilke [2019c], extending in this study.

3.3.4 Gradient only surrogate (GOS)

Given a multivariate dynamic MBSS loss function, L̃(xn), along a given descent direction, dn,
f̃(α), we want to resolve the learning rate, α. The quadratic approximation model, f̂(α), of

39

f̃(α) is given by
f̂(α) := k1α

2 + k2α+ k3 ≈ f̃(α), (3.7)

where k1, k2 and k3 are the constants to be computed. Similarly, the first-order derivative of the
quadratic approximation, f̂ ′(α), is a linear approximation given by

f̂ ′(α) := 2k1α+ k2 ≈ f̃ ′(α). (3.8)

Note that f̂ ′(α) is the derivative-only approximation proposed by Chae and Wilke [2019c],
and is implemented throughout this paper. The approximation uses only directional derivative
information. The constants at n-th iteration, k1,n and k2,n can be solved using a linear system
of equations, constructed from two instances of Equation (3.8), given by[

2α0,n 1
2α1,n 1

] [
k1,n
k2,n

]
=

[
f̃ ′0,n
f̃ ′1,n

]
, (3.9)

where f̃ ′0,n and f̃ ′1,n denote the dynamic MBSS directional derivatives measured at α0,n and α1,n

respectively, where α0,n = 0 is the current starting point and α1,n is the initial guess (α1,n > 0).

The approximate minimum, α̃∗
n, is computed as α∗

n = −k2,n/(2k1,n), where f̂ ′(α̃∗
n) = 0. For the

implementation, we compute α̃∗
n in the closed-form as follows:

α∗
n = α0,n − f̃ ′0,n

∆αn

∆f̃ ′n
= α0,n − f̃ ′0,n

α1,n − α0,n

f̃ ′1,n − f̃ ′0,n
. (3.10)

The heuristics of the vanilla line search algorithm using Equation (3.10), proposed by Chae
and Wilke [2019c], are recalled here:

1. If f̃ ′1,n > 0, as shown in Figure 3.2(a), we may perform bounded linear interpolations,
Equation (3.10), to resolve learning rate, α̃∗

n.

2. If f̃ ′0,n < f̃ ′1,n < 0, as shown in Figure 3.2(b), we can perform bounded extrapolation using
Equation (3.10), but the prediction error is expected to be larger than the case of bounded
interpolation. Hence, we immediately choose the initial guess as the resulted learning rate,
i.e. α̃∗

n = α1,n.

3. If f̃ ′1,n < f̃ ′0,n, as shown in Figure 3.2(c), it would be unwise to perform unbounded extrap-
olation for the same reason as in the case of bounded extrapolation. Therefore, we imme-
diately accept the initial guess α∗, as the learning rate of the current iteration α̃∗

n = α1,n.

The examples, studied by Chae and Wilke [2019c], used stochastic gradient descent (SGD)
with the vanilla algorithm, dn = −g̃n. The initial guess, α1,n, for every iteration was chosen
to be the inverse of L-2 norm of the search direction vector, α1,n = ∥d∥−1

2 . This means that
α1,n is adapted to the magnitude of the search direction vector, dn, to prevent overly aggressive
(potentially unstable) training behavior, when ∥∇L̃n∥2 ≈ 0.

3.4 Robustness measure, R

Traditional performance measures only consider the top performances of strategies in DNNs.
However, we observe rapid growth in the size of DNN problems, and the complexity of the
problems also increases. This means that when we face an unseen problem, we might want to
choose a more robust strategy across different problems and optimizers than a problem-specific
top-performing strategy. Hence, we propose a new relative robustness measure that considers
both poor and excellent performances of learning rate strategies across different problems and
optimizers instead of considering only the top performances. We define the relative robustness
measure for learning rate strategies as follows:

40

(a) Bounded Interpolation (b) Bounded extrapolation (c) Unbounded extrapolation

Figure 3.2: Illustration of three possible cases when implementing the vanilla line search algo-
rithm using the derivative-only approximation: (a) bounded interpolation, when f̃ ′1,n > 0, (b)

bounded extrapolation when f̃ ′0,n < f̃ ′1,n < 0 and (c) unbounded extrapolation, when f̃ ′1,n < f̃ ′0,n.

Definition 3.4.1 (Relative robustness). The relative robustness, R, of a strategy, y, is com-
puted by summing the absolute differences, ψy,h,o, in the strategy’s accuracy, ηy,h,o, and the best
accuracy of all strategies, η∗h,o, for all optimizers, O ∋ o, and all problems, H ∋ h. Hence, the
less the measure, Ry, is, the more robust the strategy is. The equation for Ry is given by

Ry =
∑
h∈H

∑
o∈O

ψy,h,o, where ψy,h,o = |η∗h,o − ηy,h,o|. (3.11)

One may also compute a robustness measure, Ry,h, for a strategy, y and a specific problem,
h while considering all optimizers, O. We will compare the training and test performance of
our proposed algorithm, GOALS, against the other learning rate strategies based on the relative
robustness measure throughout the paper.

3.5 Gradient-only approximation line search (GOALS)

This section proposes our line search strategy, gradient-only approximation line search (GOALS),
using the quadratic derivative-only approximation, capable of locating the SNN-GPPs in the
stochastic loss functions produced by dynamic MBSS. Unlike the vanilla algorithm, GOALS
requires consecutive function evaluations to converge to an interval of sign changes for a given
descent direction, dn, update.

GOALS is comprised of the two main stages: 1) An immediate accept condition (IAC), and
2) a bracketing strategy. The IAC means that we accept the initial learning rate guess of the n-
th iteration, α1,n, as the approximate solution, α̃∗

n, when α1,n falls within the accepted range set
by the Wolfe condition [Wolfe, 1969, 1971]. If the IAC is not satisfied, the proposed bracketing
strategy is used to locate SNN-GPPs.

3.5.1 Immediate accept condition (IAC)

The IAC aims to save computational cost. When the immediate accept condition (IAC) is
satisfied, we immediately accept the initial guess, α1,n, and continue to the next search direction.
The IAC is based on the Wolfe condition, consisting of two conditions: 1) Armijo condition and
2) Wolfe curvature condition. The Armijo condition ensures that the function value at the
accepted learning rate decreases monotonically as outlined,

f̃1,n ≤ f̃0,n + ωα1,nf̃
′
0,n. (3.12)

Here, ω is a prescribed constant, often very small (e.g. ω = 10−4). Note that the Armijo
condition limits the maximum learning rate by disallowing any increase in function value.

41

Accepted

Not accepted

Not acceptedD
ir

e
c
ti

o
n
a
l
d
e
ri

v
a
ti

v
e
,

Learning rate,

(a) Accepted

Accepted

Not accepted

Not accepted

Learning rate,

D
ir

e
c
ti

o
n
a
l
d
e
ri

v
a
ti

v
e
,

(b) Not accepted

Figure 3.3: Illustration of immediate accept condition: (a) when the IAC (3.15) satisfies, the
initial guess, α1,n, is accepted and (b) when the IAC (3.15) does not satisfy, the initial guess,
α1,n, is not accepted.

The Wolfe curvature condition ensures that the directional derivative at the initial guess,
f ′1,n, is less than the directional derivative at the starting point, f ′0,n. The condition is given by:

− f̃ ′1,n ≤ −cf̃ ′0,n, (3.13)

where c ∈ (0, 1) a prescribed curvature constant. The Wolfe curvature condition limits the min-
imum learning rate based solely on directional derivative information. In contrast, the Armijo
condition, Equation (3.12), requires function value information. Hence, it is not suitable for our
derivative-only purpose. However, the Armijo condition is essential for limiting the maximum
learning rates by not allowing growth in the function value. Therefore, we will implement the
strong Wolfe condition as an alternative to Equations (3.12) and (3.13):

|f̃ ′1,n| ≤ c|f̃ ′0,n|. (3.14)

As a consequence of applying the strong Wolfe condition, we gain control over preventing over-
shooting, Equation (3.12), and undershooting, Equation (3.13), by changing the c constant.

Although we implement Equation (3.13) as the IAC throughout the paper, note that one
could also independently control undershoot and overshoot limits by splitting c into two positive
constants, c1 and c2, respectively, as follows:

c1f̃
′
0,n ≤ f̃ ′1,n ≤ −c2f̃ ′0,n, c1, c2 ∈ [0, 1). (3.15)

If the IAC in Equation (3.14) is satisfied, there is just one directional derivative computation
required to determine the learning rate along a descent direction, dn. Figure 3.3 illustrates cases
of when the initial guess, f̃ ′1,n, is either accepted (left) for satisfying the IAC condition, or not
accepted (right) for not satisfying the condition.

However, if the initial guess is not accepted, we employ the bracketing strategy introduced
in the next section to search for SNN-GPPs. Note that the larger the c value becomes, the
larger the range of the IAC becomes. Algorithm 3 lists the pseudocode for the main GOALS
algorithm with the IAC.

42

Algorithm 3: GOALS

Input: g̃0,n = g̃∗
n−1, α̃

∗
n−1, dn, c, αmin, αmax, γ and ε

Output: α̃∗
n, g̃

∗
n

1 Compute directional derivative at α0,n → f̃ ′0,n
/* Magnitude check for avoiding numerical issues */

2 if |f̃ ′0,n| < ε then

3 Recompute g̃∗
n for the next iteration.

4 return α̃∗
n := 0, g̃∗

n

/* Setting the initial guess, α1,n */

5 α1,n → γ

6 Compute gradient and directional derivative at α1,n → g̃1,n, f̃
′
1,n

/* Check whether the IAC satisfies */

7 if |f̃ ′1,n| ≤ c|f̃ ′0,n| then

8 α̃∗
n := α1,n and g̃∗

n := g̃1,n

9 else

10 α̃∗
n,g̃

∗
n := Bracketing(α0,n, α1,n, f̃

′
0,n, f̃

′
1,n)

11 return α̃∗
n,g̃

∗
n

For every iteration, n, GOALS requires the gradient vector at the starting point, g̃0,n.
Therefore, for n > 0, the resulting gradient from the previous iteration, g̃∗

n−1, can be used for

g̃0,n in the next iteration. In line 2, the tolerance value, ε, ensures that f̃ ′0,n is a numerically
positive value. Otherwise, we recompute the gradient at the same point with the resulted
learning rate, α̃∗

n = 0, using a new mini-batch, B, and continue to the next iteration.
In line 5, the initial guess, α1,n, is set to be the default learning rate, γ, often the recom-

mended learning rate for the chosen optimizer. Next, we compute the gradient vector, g̃1,n, and

directional derivative, f̃ ′1,n, at the initial guess, α1,n. In line 7, if the IAC satisfies, we choose
the current learning rate, α̃∗

n = α1,n, and the resulting gradient, g̃∗
n = g̃1,n. If the IAC is not

satisfied, we implement the bracketing strategy to compute α̃∗
n and g̃∗

n. The bracketing strategy
aims to minimize the model error using linear interpolation, introduced in the following section.

3.5.2 Bracketing strategy

The bracketing strategy aims to isolate an SNN-GPP inside an interval, I ∈ [αL, αU] with lower
bound, αL and upper bound, αU , by updating I repeatedly, until the strong Wolfe condition,
Equation (3.15) of α̃∗

n is satisfied. Once the directional derivative signs at αL and αU are
found to brackets an SNN-GPP, we reduce the interval by applying the Regula-Falsi method
[Gupta, 2019]. This is essentially a consecutive linear interpolation method, until α̃∗

n satisfies
Equation (3.15). We provide the pseudocode for the bracketing strategy in Algorithm 4.

43

Algorithm 4: Bracketing

Input: α0,n, α1,n, f̃
′
0,n, f̃

′
1,n, dn, αmin, αmax, c and ε

Output: α∗
n, g̃

∗
n

1 Initialize αL := α0,n, f̃
′
L := f̃ ′0,n, αU := α1,n and f̃ ′U := f̃ ′1,n

/* Shifting the interval to larger learning rates */

2 while (f̃ ′U < cf̃ ′0,n) and (2αU < αmax) do

3 Update αL := αU and f̃ ′L := f̃ ′U
4 αU := 2(αU) and recompute g̃U , f̃

′
U

5 f̃ ′temp := f̃ ′U
6 αtemp := αU

/* Shrinking the interval using linear interpolations */

7 while (f̃ ′temp > −cf̃0,n) and (f̃ ′U f̃
′
L < 0) and (|f̃ ′U − f̃ ′L| > ε) do

8 αtemp =
αLf̃

′
U−αU f̃ ′

L

f̃ ′
U−f̃ ′

L

9 Recompute f̃ ′temp at αtemp

10 if f̃ ′tempf̃
′
L < 0 then

11 f̃ ′U := f̃ ′temp

12 αU = αtemp

13 else

14 f̃ ′L := f̃ ′temp

15 αL = αtemp

16 α∗
n = αtemp

17 Compute gradient g̃∗
n at α∗

n

18 return α∗
n, g̃

∗
n

In line 1, we begin with initialization of the lower, αL, and upper, αU , bounds, and their re-
spective directional derivatives, f̃ ′L and f̃ ′U . In line 2, the interpolation interval grows by doubling
αU which is directly followed by αL, until it reaches αmax or f̃ ′U ≥ cf̃ ′0,n is satisfied. In line 7,
the size of the interpolation interval is reduced by consecutively performing linear interpolation
until f̃ ′U ≤ −cf̃0,n is satisfied. The rest of conditions in line 7 ensures that linear interpolation
steps with the Regula-Falsi method in lines 8-15 do not cause any numerical instabilities. The
second term, f̃ ′U f̃

′
L < 0, ensures that the sign of the two directional derivatives are opposite to

each other, and the last term, |f̃ ′U f̃ ′L| < ϵ, provides the denominator of line 8 to be non-zero.
The Wolfe curvature conditions are divided into two sections, as shown in lines 2 and 7, to

prevent this algorithm from searching infinitely for points that do not satisfy the Wolfe curvature
conditions. Due to the stochastic nature of dynamic MBSS loss functions, it is not guaranteed
that continually reducing learning rates would find a negative directional derivative with less
magnitude than the directional derivative at the origin, f̃ ′n,0. This implies that we can not assure
that the first condition in line 2 is still met after the second condition in line 7 is satisfied. The
risk associated with undershooting is lower than that of overshooting because overshooting may
cause divergence in training, while undershooting, in the worst case, causes slower training. The
flowchart of GOALS is shown in Figure 3.4.

3.5.3 Proof of convergence

Let us assume that the full-batch loss function, L(x), is a smooth coercive function of a weight
vector, x ∈ Rp, so that we can replace L(x) with a Lyapunov function, Γ(x) [Lyapunov,
1992]. The Lyapunov’s global stability theorem states that a Lyapunov function, Γ(x), results
in lim

n→∞
xn = 0, ∀ xn ∈ Rp under the following conditions:

1. Positivity: Γ(0) = 0 and Γ(x) > 0, ∀ x ̸= 0

2. Coercive: lim
x→∞

Γ(x) = ∞

44

Figure 3.4: The flowchart of the GOALS line search strategy

3. Strict descent: Γ(D(x)) < Γ(x), ∀ x ̸= 0

where D(x) is a weight update function given by

xn+1 := D(xn); D : Rp → Rp. (3.16)

It is proven by Wilke et al. [2013] that locating an NN-GPP along a strictly descending direction,
dn, is equivalent to minimizing along dn when L(xn + αdn) is a smooth function. Therefore,
locating NN-GPPs along descent directions in consecutive iterations of a training algorithm
behaves like D(x). Similarly, for loss functions resulting from dynamic MBSS, L̃, we assume as
point-wise discontinuous coercive.

Hence, the Lyapunov’s global stability theorem is relaxed for the expected Lyapunov func-
tion, E[Γ(x)], where:

1. Expected positivity: E[Γ(0)] = 0 and E[Γ(x)] > 0, ∀ x ̸= 0

2. Expected coercive: lim
x→∞

E[(Γ(x)] = ∞

3. Expected strict descent: E[Γ(D(x))] < E[Γ(x)], ∀ x ̸= 0

Subsequently, consecutively searching for SNN-GPPs along descent directions makes the training
algorithm behave like D(x), which tends towards a ball, Bϵ:

lim
n→∞

xn = {q|∥q − x∗∥ < ϵ} ∈ Bϵ (3.17)

where Bϵ is a ball function with the radius of ϵ, with the true optimum, x∗, located at its center.
Since our bracketing strategy searches for SNN-GPPs with weights, xn ∈ Bϵ, respectively, along
a strictly descending direction, dn,

|E[Γ(xn+1)]− E[Γ(x∗)]| < |E[Γ(xn)]− E[Γ(x∗)]|, (3.18)

and weights outside the ball, xn ∈ B′
ϵ, would eventually be inside the ball, xn ∈ Bϵ, as n→ ∞.

45

3.6 Numerical study design

We conducted two sets of numerical studies to investigate the performance of the proposed
learning rate algorithm, GOALS. First, we prepared GOALS with four different hyperparam-
eter settings, namely, GOALS-1, 2, 3, 4. Their details are explained in Section 3.6.1. We
compared them against the fixed learning rates, which are recommended learning rates for dif-
ferent optimizers, and the vanilla GOS on ResNet-18, and EfficientNet-B0 with the CIFAR-10
dataset for optimizers, including SGD, RMSProp, and Adam. We chose the batch size of 128
as implemented by Liu [2020]. From this experiment, we aim to investigate the followings:

1. Relative robustness of GOALS on the various optimizers that generate different descent
directions;

2. Relative robustness of GOALS compared to the fixed learning rates and vanilla GOS;

3. Effect of various hyperparameter settings for GOALS;

4. Generalizability of the different learning rate strategies.

Note that as previously motivated in Section 3.4, we measured the performance of a strategy
using the relative robustness measure in (3.11) since we were interested in a learning rate strategy
that operates well over different problems and optimizers.

Generalization is an ability of a problem to perform well on unobserved inputs [Goodfellow
et al., 2016]. Hence, to check generalizability, we measure the ratios of training to test accuracies.
When the ratios approach one, it implies that the relative discrepancy between the training
accuracy and test accuracy is small, which indicates the problem generalizes well.

Second, we conducted a hyperparameter study for GOALS using only SGD on a shallower
DNN, N-II, implemented by Mahsereci and Hennig [2017]. We tested the four hyperparameter
settings for GOALS and the most robust setting on our relative robustness measure was tested
against other learning rate strategies. These included fixed learning rates, vanilla GOS [Chae
and Wilke, 2019c], GOLS-I [Kafka and Wilke, 2019a], cosine annealing with warm restarts
[Loshchilov and Hutter, 2016]. We tested multiple batch sizes of 10, 100, 200, and 1000. The
small batch size of 10 allows us to investigate the behaviors of strategies when the information
is critically sparse. We only used SGD as the optimizer for this experiment because SGD is
sensitive to different learning rates as we compare strategies. We aimed to investigate the
following in the second experiment:

1. Relative robustness of GOALS compared to the fixed learning rates and vanilla GOS on
different batch sizes;

2. Effect of various hyperparameter settings for GOALS;

3. Generalizability of the different learning rate strategies.

3.6.1 Hyperparameter settings of GOALS

GOALS requires three hyperparameters to be selected:

1. The initial learning rate, α0,1;

2. The curvature hyperparameter, c;

3. A decision on whether we want to use the last learning rate for the following initial learning
rate, α0,n = α∗

0,n−1. The opposite of this would be to reset the next initial learning rate
to the default initial learning rate, α0,n = α0,1.

Table 3.1 lists the four different settings of hyperparameters for GOALS. While all four
settings keep the curvature hyperparameter, c, identical and large, the initial learning rates,
α0,1, are either the recommended learning rates, γ, for the selected optimizer or the inverse of
the L-2 norm of the search direction, 1/∥dn∥. Note that the hyperparameter setting closest to
the vanilla GOS is GOALS-4 allowing for direct comparison of performance between them.

46

Algorithms Settings α0,1 α0,n = α∗
0,n−1 c

GOALS

GOALS-1 γ No 0.9
GOALS-2 γ Yes 0.9
GOALS-3 1/∥dn∥ Yes 0.9
GOALS-4 1/∥dn∥ No 0.9

GOS - 1/∥dn∥ No -

Table 3.1: Comparison between the settings of vanilla GOS and GOALS that are tested in this
paper. We choose the initial learning rates for the first iteration, α0,1, the curvature hyperpa-
rameter, c, and decide whether we want to use the final learning rate as the next initial learning
rate, α0,n = α∗

0,n−1.

3.6.2 Numerical study 1 setup

For the first numerical study, we investigate the performance of GOALS for different architec-
tures and optimizers. It is compared against GOS and fixed learning rates for various optimiz-
ers’ search directions: SGD, RMSProp, and Adam. We chose ResNet-18 [He et al., 2016] and
EfficientNet-B0 [Tan and Le, 2019], which are implemented by Liu [2020] in PyTorch [Paszke
et al., 2019], for the test DNN models and the CIFAR-10 dataset [Krizhevsky, 2009] for this
experiment. The details of the dataset are shown in Table 3.2. The chosen mini-batch size, |B|,
for this numerical study is 128.

The following learning rate strategies were trained for 350 epochs, repeated five times: fixed
learning rate, GOS, GOALS-1, GOALS-2, GOALS-3, and GOALS-4. The fixed learning rates,
γ, for SGD, RMSprop, and Adam are 0.01, 0.01, and 0.001, respectively, which are the default
values provided by PyTorch [Paszke et al., 2019] and TensorFlow [Abadi et al., 2015].

Note that because we adopt dynamic MBSS, a different mini-batch for every function eval-
uation, for the experiments, the fixed number of epoch also means the fixed number of gradient
computations in training. Hence, some strategies may have fewer search directions when more
gradient evaluations are required for each search direction or iteration.

Datasets Classes Input sizes Training samples Test samples

MNIST [LeCun et al., 1998] 10 28× 28 6× 104 1× 104

CIFAR-10 [Krizhevsky, 2009] 10 32× 32 5× 104 1× 104

Table 3.2: Descriptions of datasets used in the numerical study

3.6.3 Numerical study 2 setup

For the second numerical study, we first examine the performance of GOALS with different hy-
perparameter settings: GOALS-1, 2, 3, and 4 to choose the most robust hyperparameter setting,
based on the relative robustness measure. Next, we test GOALS with the best hyperparameter
setting against various learning rate strategies such as GOS, GOLS-I, fixed learning rate meth-
ods, cosine annealing with warm restarts [Loshchilov and Hutter, 2016] with different mini-batch
sizes. We restrict ourselves to SGD directions on shallower neural network architecture.

We used similar neural network training problems to those proposed by Mahsereci and
Hennig [2017], namely training on a fully-connected feedforward neural network problem, N-II.
This network’s architecture involves fully connected layers with three hidden layers, ninput −
1000−500−250−noutput. Hence, this architecture has shallower networks compared to the test
problems in Numerical study 1. It contains the tanh activation functions, mean square loss, and
Xavier initialization [Glorot and Bengio, 2010]. The dataset used for the problem is MNIST in
Table 3.2.

The descriptions of the learning rate strategies compared against GOALS are listed as follows:

1. Fixed learning rates: we test five sets of fixed learning rates, α = 10−3, 10−2, 10−1, 100

47

and, 101;

2. The cosine annealing scheduler with warm restarts [Loshchilov and Hutter, 2016]: starting
learning rates used are α = 10−1 and 100, the initial restart period, the multiplying factor
is chosen to be T0 = 1 epoch, and Tmult = 2;

3. The gradient-only line search that is Inexact (GOLS-I) [Kafka and Wilke, 2019b];

4. The vanilla gradient-only surrogate/approximation (GOS) line search [Chae and Wilke,
2019c].

5. The gradient-only approximation line search (GOALS) allows various hyperparameter set-
tings. For the comparison, we choose GOALS-4 in Table 3.1.

This makes ten strategies in total. The training is limited in the number of directional
derivative computations per training run, and the limit is 4× 104. The mini-batch sizes chosen
were |B| ∈ {10, 100, 200, 1000}. We include the batch size of 10 to investigate how the strategies
behave when insufficient information is provided for them. As mentioned earlier, we select the
SGD direction as the search directions, computed using the same mini-batch size, |B|. For each
setting, we take ten runs for generating results.

3.7 Results of numerical study

3.7.1 Results of numerical study 1

Figures 3.5 and 3.6 show the results for SGD, RMSprop and Adam, respectively. For each
optimizer, the 5-step simple moving average values of the training errors, test errors, learning
rates, and the number of gradient computations are plotted along 350 epochs using error bars
on a log10 scale. The lower errors and upper errors represent the minimum and the maximum
errors of the five runs. Note that dynamic MBSS requires a new mini-batch for every function
evaluation. Hence, the larger the number of function evaluations computed per iteration, the
fewer search direction updates per epoch.

A common phenomenon observed in most of the results in Figures 3.5 and 3.6 is that the
average learning rates of both GOS and GOALS increase as the epoch increases. This happens
because the directional derivative at the origin, f̃ ′0,n, decreases throughout training. This means
that the average number of gradient computations for GOALS may increase over epochs to
satisfy the curvature condition on the flatter domains of the functions. On the other hand, the
average number of gradient computations for GOS decreases since the chance of observing a
directional derivative at α1,n, f̃

′
1,n less than the initial directional derivative, f̃ ′0,n, grows. In this

case, it is the immediate accept condition (IAC). Hence, we accept α1,n as the final learning
rate, α∗

n.
The ResNet results shown in Figure 3.5 indicate that the initial convergence rate in GOS’s

training is slightly lower than for the fixed learning rates and GOALS. This is because GOS has
a small learning rate initially since the inverse of the norm of search direction is small and does
not extend the learning rate to be inside the ball like GOALS. Figure 3.5(a) shows that although
the training error of GOS is relatively high, its test error is one of the lowest. The performance
of GOALS-1 is similar to that of the fixed learning rate since the initial learning rate, α0,n = γ,
happens to satisfy the Wolfe condition most of the time. Hence, note that there is a slightly
increasing number of gradient evaluations only at the end of the training. GOALS-2 shows a
large variance in the performance since using previous learning rates may cause a large model
error as the previous learning rate might be far from the ball. Hence, it is more challenging to
find the SNN-GPPs for possibly multimodal distributions of sign changes.

Note that the lower limit of GOALS’ learning rates is softly bounded since we satisfy the
lower curvature condition before satisfying the upper independently. Consequently, when the
model error is large due to using the previous learning rates as initial guesses, it may allow
learning rates to be numerically zero. For the same reason, we also observe the phenomenon

48

0 100 200 300
Epoch

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
lo
g 1

0(
Tr

ai
n

er
ro

r)

0 100 200 300
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e

rro
r)

0 100 200 300
Epoch

−4

−2

0

2

4

lo
g 1

0(
Le

ar
ni

ng
 ra

te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Av
g.

 N
o.

 o
f g

ra
d.

 e
va

 ./
ite

r.

Fi(ed GOS GOALS-1 GOALS-2 GOALS-3 GOALS-4

(a) SGD

0 100 200 300
Epoch

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g 1

0(
Tr

ai
n

er
ro

r)

0 100 200 300
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e

rro
r)

0 100 200 300
Epoch

−4

−2

0

2

4

lo
g 1

0(
Le

ar
ni

ng
 ra

te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Av
g.

 N
o.

 o
f g

ra
d.

 e
va

 ./
ite

r.

Fi(ed GOS GOALS-1 GOALS-2 GOALS-3 GOALS-4

(b) RMSprop

0 100 200 300
Epoch

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g 1

0(
Tr

ai
n

er
ro

r)

0 100 200 300
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e

rro
r)

0 100 200 300
Epoch

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

lo
g 1

0(
Le

ar
ni

ng
 ra

te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
g.

 N
o.

 o
f g

ra
d.

 e
va

 ./
ite

r.

Fi(ed GOS GOALS-1 GOALS-2 GOALS-3 GOALS-4

(c) Adam

Figure 3.5: Comparisons of the performances of (a) SGD, (b) RMSprop, (c) Adam between
with and without GOALS applied, tested on ResNet-18 for the CIFAR-10 dataset, the results
are averaged over five runs and smoothened out with moving average over five epochs. From
left to right, it presents the training errors, test errors, learning rates on the log10 scale, and the
average number of gradient evaluations per every iteration.

of diminishing learning rate in GOALS-3. However, it starts with larger learning rates and a
steeper convergence rate in training, and it also shows the lowest test error for SGD. Although
GOALS-4 has a similar hyperparameter setting as GOS, it shows quicker convergence in both
training and test. The growth rate of its learning rate is also faster than GOS, and the average
number of gradient evaluations increases faster than the other hyperparameter settings.

Figure 3.5(b) shows that the ResNet-18 results for RMSprop show that GOALS-4 has the
lowest training and test errors, while both GOALS-2 and GOALS-3 show large fluctuations in
learning rates. GOALS-1 and the fixed learning rate perform similarly since the recommended
learning rate approximates SNN-GPPs well.

The ResNet-18 results for Adam in Figure 3.5(c) show that while both GOALS-2 and
GOALS-3 again perform poorly, both GOS and the fixed learning rate perform similarly. Note
that GOALS-1 and GOALS-4 show the best training and test performance. Also, note that the
average numbers of gradient computations for GOALS-1, 4 increase as the epoch increases, and
it shows the largest values among the optimizers. This means the recommended learning rate,

49

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
lo
g 1

0(
Tr
ai
n
er
ro
r)

0 100 200 300
Epoc

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

lo
g 1

0(
Te
s(
 e
rro

r)

0 100 200 300
Epoc

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g 1

0(
Le
ar
ni
ng

 ra
(e
)

0 100 200 300
Epoc

1.0

1.2

1.4

1.6

1.8

2.0

A)
g.
 N
o.
 o
f g

ra
d.
 e
)a
l./
i(e

r.

Fixed GOS GOALS-1 GOALS-2 GOALS-3 GOALS-4

(a) SGD, α = 0.01

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 100 200 300
Epoc

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

lo
g 1

0(
Te
s(
 e
rro

r)

0 100 200 300
Epoc

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g 1

0(
Le
ar
ni
ng

 ra
(e
)

0 100 200 300
Epoc

1.0

1.2

1.4

1.6

1.8

2.0

A)
g.
 N
o.
 o
f g

ra
d.
 e
)a
l./
i(e

r.

Fixed GOS GOALS-1 GOALS-2 GOALS-3 GOALS-4

(b) RMSprop

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 100 200 300
Epoc

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

lo
g 1

0(
Te
s(
 e
rro

r)

0 100 200 300
Epoc

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

lo
g 1

0(
Le
ar
ni
ng

 ra
(e
)

0 100 200 300
Epoc

1.0

1.2

1.4

1.6

1.8

A)
g.
 N
o.
 o
f g

ra
d.
 e
)a
l./
i(e

r.

Fixed GOS GOALS-1 GOALS-2 GOALS-3 GOALS-4

(c) Adam

Figure 3.6: Comparisons of the performances of (a) SGD, (b) RMSprop, (c) Adam between
with and without GOALS applied, tested on EfficientNet-B0 for the CIFAR-10 dataset, the
results are averaged over five runs and smoothened out with moving average over five epochs.
From left to right, it presents the training errors, test errors, learning rates on the log10 scale,
and the average number of gradient evaluations per every iteration.

γ, for Adam requires more adjustments to satisfy the curvature condition close to the end of
training.

The EfficientNet-B0 results shown in Figures 3.6(a) and (b) indicate that SGD and RM-
Sprop are mostly unaffected by GOALS-1 and GOALS-2. This is because their default learning
rates mostly satisfy the curvature condition. Hence, the IAC continues through the whole train-
ing. However, Adam with GOALS affected the learning rates close to the end of training with
slightly lower training and test errors. GOALS-3 for SGD, shown in Figure 3.6(a), has a high
initial convergence rate. However, the large variance in learning rates resulted in fluctuations
in the training error. GOALS-4 shows the lowest training and test errors for both SGD and
RMSProp followed by GOS. Yet, it requires fewer gradient computations. Figure 3.6(c) shows
the average numbers of gradient computation for both GOALS-1 and GOALS-2 increase for
Adam, unlike SGD and RMSprop. This results in more adjustments in learning rates and
improved train accuracies compared to the fixed learning rate.

Tables 3.3 and 3.4 present the top average training and test accuracies, and the performance

50

Models Optimizers Strategies Train acc. [%] Diff., ψy,h,o Test acc. [%] Diff., ψy,h,o Te./Tr.

ResNet-18

SGD

Fixed 99.94 0.02 91.88 1.9 0.919
GOS 99.72 (-0.22) 0.24 92.93 (+1.05) 0.85 0.932
GOALS-1 99.96 (+0.02) 0 91.96 (+0.08) 1.82 0.92
GOALS-2 99.43 (-0.51) 0.53 92.33 (+0.45) 1.45 0.929
GOALS-3 99.93 (-0.01) 0.03 93.78 (+1.90) 0 0.938
GOALS-4 99.8 (-0.14) 0.16 93.02 (+1.14) 0.76 0.932

RMSProp

Fixed 99.64 0.15 92.37 0.65 0.927
GOS 99.78 (+0.14) 0.01 93.02 (+0.65) 0 0.932
GOALS-1 99.65 (+0.01) 0.14 92.59 (+0.12) 0.43 0.929
GOALS-2 99.56 (-0.08) 0.23 93.02 (+0.65) 0 0.934
GOALS-3 99.25 (-0.39) 0.54 92.24 (-0.13) 0.78 0.929
GOALS-4 99.79 (+0.15) 0 93.01 (+0.64) 0.01 0.932

Adam

Fixed 99.87 0.09 93.3 0.28 0.934
GOS 99.86 (-0.01) 0.1 93.23 (-0.07) 0.35 0.934
GOALS-1 99.96 (+0.09) 0 93.58 (+0.28) 0 0.936
GOALS-2 93.79 (-6.08) 6.17 86.08 (-7.22) 7.5 0.918
GOALS-3 99.31 (-0.56) 0.65 92.53 (-0.77) 1.05 0.932
GOALS-4 99.94 (+0.07) 0.02 93.16 (-0.14) 0.42 0.932

Ry,h

Fixed - 0.26 - 2.83 -
GOS - 0.35 - 1.2 -
GOALS-1 - 0.14 - 2.25 -
GOALS-2 - 6.93 - 8.95 -
GOALS-3 - 1.22 - 1.83 -
GOALS-4 - 0.18 - 1.19 -

Avg.
Te./Tr.

Fixed - - - - 0.927
GOS - - - - 0.933
GOALS-1 - - - - 0.928
GOALS-2 - - - - 0.927
GOALS-3 - - - - 0.933
GOALS-4 - - - - 0.932

Table 3.3: Top average training and test accuracies over the five runs tabulated for optimizers,
including SGD, RMSprop and Adam, with the fixed recommended learning rates, vanilla GOS,
and GOALS with various settings on ResNet-18. The differences in performance compared to
the fixed learning rate are given inside the brackets. It measures the relative robustness, Ry,h,
by computing summing the differences, ψy,h,o, between the performance and the best one from
the same optimizer. The ratios of test to training accuracies are given in the last column, and
the average ratios for each optimizer are computed in the last row. The highest train, test
accuracies, and the lowest robustness measures are indicated in bold.

differences, Ψy,h,o for them, and the ratios of the training to test accuracies for Numerical study 1.
The ratio measures the generalization of each learning rate strategy. The closer the ratio becomes
to one, the smaller discrepancy between the training accuracy and test accuracy becomes. This
implies that the strategy generalizes well for the optimizer and problem. The tables also provide
the relative robustness measure, Ry,h, over different optimizers, o, by summing the differences,
Ψy,h,o, and the average ratios of test accuracies to training accuracies over the optimizers.

Table 3.3 shows the results of ResNet-18. The Ry,h values indicate that GOALS-1 and
GOALS-4 are the most robust strategies for training and test, respectively, over the optimizers
for ResNet-18 among the six strategies. Concerning the ratios, GOS and GOALS-3 have the
highest generalizability as their ratios are the closest ones, followed by GOALS-4. On the other
hand, the lowest ratio, shown by GOALS-2, indicates that GOALS-2 experiences more overfitting
compared to others on ResNet-18.

Table 3.4 shows the results of EfficientNet-B0. The Ry,h values indicate that GOALS-4 is the
most robust strategy for both training and test, over the optimizers for EfficientNet-B0 among
the six strategies. GOS shows the average ratio closest to one. Hence, GOS is again the most
generalizing strategy, followed by GOALS-4. Note that it is more challenging to generalize on
EfficientNet-B0 compared to ResNet-18. GOALS-3 shows the lowest ratio of test to training

51

Models Optimizers Strategies Train acc. [%] Diff., ψy,h,o Test acc. [%] Diff., ψy,h,o Te./Tr.

EfficientNet-B0

SGD

Fixed 98.18 0.7 85.37 4.48 0.87
GOS 97.94 (-0.24) 0.94 89.44 (+4.07) 0.41 0.913
GOALS-1 98.25 (+0.07) 0.63 85.39 (+0.02) 4.46 0.869
GOALS-2 98.15 (-0.03) 0.73 84.97 (-0.4) 4.88 0.866
GOALS-3 98.64 (+0.46) 0.24 87.8 (+1.43) 2.05 0.89
GOALS-4 98.88 (+0.7) 0 89.85 (+4.48) 0 0.909

RMSProp

Fixed 97.6 1.53 89.44 0.15 0.916
GOS 98.43 (+0.83) 0.7 89.0 (-0.44) 0.59 0.904
GOALS-1 97.51 (-0.09) 1.62 89.55 (+0.11) 0.04 0.918
GOALS-2 97.46 (-0.14) 1.67 89.42 (-0.02) 0.17 0.918
GOALS-3 98.4 (+0.8) 0.73 81.51 (-7.93) 8.08 0.828
GOALS-4 99.13 (+1.53) 0 89.59 (+0.15) 0 0.904

Adam

Fixed 99.21 0.15 89.96 0.34 0.907
GOS 98.85 (-0.36) 0.51 90.22 (+0.26) 0.08 0.913
GOALS-1 99.34 (+0.13) 0.02 90.22 (+0.26) 0.08 0.908
GOALS-2 99.36 (+0.15) 0 90.13 (+0.17) 0.17 0.907
GOALS-3 99.0 (-0.21) 0.36 90.3 (+0.34) 0 0.912
GOALS-4 98.57 (-0.64) 0.79 90.18 (+0.22) 0.12 0.915

Ry,h

Fixed - 2.38 - 4.97 -
GOS - 2.15 - 1.08 -
GOALS-1 - 2.27 - 4.58 -
GOALS-2 - 2.4 - 5.22 -
GOALS-3 - 1.33 - 10.13 -
GOALS-4 - 0.79 - 0.12 -

Avg.
Te./Tr.

Fixed - - - - 0.898
GOS - - - - 0.91
GOALS-1 - - - - 0.898
GOALS-2 - - - - 0.897
GOALS-3 - - - - 0.877
GOALS-4 - - - - 0.909

Table 3.4: Top average training and test accuracies over the five runs tabulated for optimizers,
including SGD, RMSprop and Adam, with the fixed recommended learning rates, vanilla GOS,
and GOALS with various settings on EfficientNet-B0. The differences in performance compared
to the fixed learning rate are given inside the brackets. It measures the relative robustness,
Ry,h, by computing summing the differences, ψy,h,o, between the performance and the best one
from the same optimizer. The ratios of test to training accuracies are given in the last column,
and the average ratios for each optimizer are computed in the last row. The highest train, test
accuracies, and the lowest robustness measures are indicated in bold.

52

Strategies Training Ry Test Ry Avg. Te./Tr.

Fixed 2.64 7.8 0.913
GOS 2.5 2.28 0.922
GOALS-1 2.41 6.83 0.913
GOALS-2 9.33 14.17 0.912
GOALS-3 2.55 11.96 0.905
GOALS-4 0.97 1.31 0.921

Table 3.5: The training and test relative robustness, Ry, for different strategies are given by
summing the training and test relative robustness, Ry,h, over different problems, given in Ta-
bles 3.3 and 3.4. The average ratios of training to test accuracies for each strategy is given as
the average values of the ratios (Te./Tr.) from the two problems in Tables 3.3 and 3.4. The
lowest train and test accuracies robustness measures are indicated in bold.

accuracies, meaning that GOALS-3 experiences more overfitting.
Table 3.5 computes the overall training and test robustness measures, Ry, and the average

ratios of test to training accuracies over the two problems, ResNet-18 and EfficientNet-B0.
Hence, the relative robustness, Ry, for a strategy is computed as the sum of Ry,h from Tables 3.3,
3.4. Both training and test Ry is the lowest with GOALS-4, followed by GOS. However, GOS
has the highest generalizability ratio, closely followed by GOALS-4. According to the results,
GOALS-4 is the most robust hyperparameter setting for GOALS in DNNs, while GOALS-3 is
the least robust in testing and generalization, leading to overfitting. The only difference between
the GOALS-3 and GOALS-4 is that GOALS-4 resets the next initial learning rate to the default
initial learning rate.

From the results of Numerical study 1, we discovered that using the previous resultant
learning rates from the previous iteration, α∗

n−1, as the next initial guess, α0,n, is not a reliable
plan for using quadratic approximations. When for a highly non-linear problem, we expect a
large discrepancy in the shapes of the approximation in different iterations. Hence, it is much
more conservative to start the initial guess with the recommended learning rate, γ, for the chosen
optimizer at every iteration. This phenomenon was apparent when the optimizer was Adam.

As a result, we recommend the user employ the GOALS-4 hyperparameter setting, as it
resets the initial guess as the fixed recommended learning rates, γ, at every iteration. Among
the different hyperparameter settings, GOALS-4 had the best relative robustness measures, Ry,
for both training and test accuracies, and it also had the best generalizability among the different
hyperparameter settings. This means that GOALS-4 is least likely to fail to an unseen problem.

GOALS-4 tended to show more aggressive learning rates followed by GOS, which led to
better performance than GOALS. However, this is because GOS does not have any convergence
proof enforced, and it is not robust in terms of convergence.

3.7.2 Results of numerical study 2

This section studies GOALS on a shallower DNN problem, N-II. We start with the hyperparam-
eter study of four different settings, as shown in Table 3.1. We expect GOALS-4 to outperform
other settings because the setting does not use the previously resolved learning rate, α∗

n−1, as the
next initial guess, α0,n. This reduces the model error based on the previous study. Additionally,
we use the 1/∥dn∥2 value as the initial guess, which elongates as the magnitudes of gradients
reduce. This helps to increase the model accuracy.

Next, we determine the most robust GOALS setting based on the relative robustness measure
and compare it to nine other strategies only on SGD, which is an optimizer that is sensitive
to the choice of learning rates. The results we obtain from this numerical study help us to
determine which strategies are robust in training DNNs.

53

Performance test for different hyperparameter settings

Figure 3.7 shows the training error, test error, and learning rates for the various hyperparameter
settings on the N-II architecture with MNIST. Note that the training and test errors for MNIST
are plotted on the log10 scale, averaged over ten runs.

GOALS-1, which starts every iteration with the initial learning rate of 0.01, did not modify
the learning rates. This means that the fixed recommended learning rate of SGD continuously
satisfied the curvature condition, resulting in the IAC condition. Hence, it would perform almost
exactly like the fixed learning rate of 0.01. Both GOALS-2 and GOALS-3 reuse the previously
resolved learning rates. As a result, both settings experience significant approximation errors,
and the learning rates are unstable, often approaching zeros.

On the other hand, GOALS-4, whose setting is similar to GOALS-1 except for the initial
guess equals 1/∥dn∥2, outperforms other hyperparameter settings, and the learning rates are
close to the vanilla GOS. The differences in learning rates tend to increase as the larger batch
sizes grow. GOALS-4 shows its best performance when its learning rates are closest to GOS.
This is when the batch size is 100.

� ����� 	����
!��

!���

!��

!���

!��

���

lo
g 1

0�
��

��
��

��
��

��

 �����

� ����� 	����
!��

!���

!��

!���

!��

���
 ������

� ����� 	����
!��

!���

!��

!���

!��

���
 ������

� ����� 	����
!��

!���

!��

!���

!��

���
 �������

� ����� 	����
!���

!��

!���

!��

���

lo
g 1

0�
��

��
��

���
��

� ����� 	����
!���

!��

!���

!��

���

� ����� 	����
!���

!��

!���

!��

���

� ����� 	����
!���

!��

!���

!��

���

� ����� 	����
������������������

!�

!�

!�

�

�

lo
g 1

0�
��

��
��

��
���

��
�

� ����� 	����
������������������

!�

!�

!�

�

�

� ����� 	����
������������������

!�

!�

!�

�

�

� ����� 	����
������������������

!�

!�

!�

�

�

������� ������� ������� ������	 ���

Figure 3.7: N-II MNIST dataset with batch size, |B| = 10, 100, 200 and 1000 from left to right
for various hyperparameters settings of GOALS which are listed in Table 3.1. The comparison
of training dataset error (the 1st row), test set error (the 2nd row) and learning rate (the 3rd
row) on a log10 scale versus the number of function evaluations.

Table 3.6 shows the top average training and test accuracies for each hyperparameter setting
and the differences, ψy,|B|, for each batch size on N-II. The ratios of test to training accuracies
are given in the last column. Note that there are ratios greater than one. This might happen
due to biases existing in the test dataset when the problem is simple to generalize. The lowest
ratios are given by GOALS-3 except for the batch size, |B|, of 100, meaning that GOALS-3 has

54

the least generalizability. Except when the batch size, |B|, is 10, the difference values, ψy,|B|,
show that the aggressive vanilla GOS tends to outperform all GOALS settings again because no
convergence condition restricts its learning rate.

Batch size, |B| Strategies Train acc. Diff., ψy,|B| Test acc. Diff., ψy,|B| Te./Tr.

10

GOALS-1 91.95 0 92.26 0 1.003
GOALS-2 88.05 3.9 88.63 3.63 1.007
GOALS-3 10.05 81.9 10.02 82.24 0.997
GOALS-4 89.4 2.55 89.55 2.71 1.002
GOS 90.62 1.33 90.93 1.33 1.003

100

GOALS-1 92.33 7.29 92.57 5.49 1.003
GOALS-2 88.05 11.57 88.66 9.4 1.007
GOALS-3 9.95 89.67 9.93 88.13 0.998
GOALS-4 98.89 0.73 97.55 0.51 0.986
GOS 99.62 0 98.06 0 0.984

200

GOALS-1 92.43 7.44 92.62 5.64 1.002
GOALS-2 89.23 10.64 89.83 8.43 1.007
GOALS-3 9.98 89.89 9.78 88.48 0.98
GOALS-4 98.8 1.07 97.53 0.73 0.987
GOS 99.87 0 98.26 0 0.984

1000

GOALS-1 92.44 7.49 92.62 5.75 1.002
GOALS-2 91.49 8.44 91.74 6.63 1.003
GOALS-3 10.31 89.62 10.12 88.25 0.982
GOALS-4 96.51 3.42 96.18 2.19 0.997
GOS 99.93 0 98.37 0 0.984

Table 3.6: Top average training and test accuracies over the ten runs for the various GOALS
settings, GOALS-1, GOALS-2, GOALS-3, GOALS-4, and GOS on the N-II architecture with
different batch sizes, |B| = 10, 100, 200, 1000 for the SGD optimizer. It also measures the
difference, ψy,|B|, between the performance and the best one from the different batch sizes. The
ratios of test to training accuracies are given in the last column. The highest train and test
accuracies are indicated in bold.

Table 3.7 shows the training and test relative robustness, Ry, and the average ratios of test
to training accuracies of the results in Table 3.6 over the batch sizes. The measures indicate
that GOS is the most robust strategy in both training and test results, followed by GOALS-4.
Note that this result is consistent with the previous numerical study. Since the N-II architecture
is not challenging to generalize, the average ratios are practically alike, but the results show
that the least generalizable strategies are GOS and GOALS-3 on this problem with the smallest
average ratios. Based on these results, we chose GOALS-4 for the additional comparison against
other strategies.

Strategies Training Ry Test Ry Avg. Te./Tr.

GOALS-1 22.22 16.88 1.003
GOALS-2 34.55 28.09 1.006
GOALS-3 351.08 347.1 0.989
GOALS-4 7.77 6.14 0.993
GOS 1.33 1.33 0.989

Table 3.7: The training and test relative robustness, Ry, for different strategies are given by
summing the differences, Ψy,|B|, given in Table 3.6. The average ratios of training to test
accuracies for each strategy is given as the average values of the ratios listed in Table 3.6 across
the different batch sizes. The lowest robustness measures are indicated in bold.

Performance comparison for different strategies

Next, Figure 3.8 shows the training error, test error, and learning rates for the ten strategies
on the N-II architecture with MNIST. The constant learning rates generally show low variance

55

in error during training. Its error noticeably reduces from |B| = 10 to |B| = 100 since the SGD
direction becomes more representative of the exact (full-batch) SGD direction. The learning
rates are independent of noisy information when |B| is small. Hence, the more straightforward
strategies may perform better than more sophisticated ones.

� ����� 	����
'��

'���

'��

'���

'��

���

lo
g 1

0�
��
��
��
��
��
��

&&�����

� ����� 	����
'��

'���

'��

'���

'��

���
&&������

� ����� 	����
'��

'���

'��

'���

'��

���
&&������

� ����� 	����
'��

'���

'��

'���

'��

���
&&�������

� ����� 	����
'���

'��

'���

'��

���

lo
g 1

0�
��

 !
��
���

��

� ����� 	����
'���

'��

'���

'��

���

� ����� 	����
'���

'��

'���

'��

���

� ����� 	����
'���

'��

'���

'��

���

� ����� 	����
�"��!�����#��"�!���

'�

'�

'�

�

�

lo
g 1

0�
��

��
��
��

���
!�
�

� ����� 	����
�"��!�����#��"�!���

'�

'�

'�

�

�

� ����� 	����
�"��!�����#��"�!���

'�

'�

'�

�

�

� ����� 	����
�"��!�����#��"�!���

'�

'�

'�

�

�

��$��� !��� �%� � ������������� ������ ����� ���

Figure 3.8: N-II MNIST dataset with batch size, |B| = 10, 100, 200 and 1000 from left to right
for various line search methods: constant learning rates, cosine annealing, GOLS-I, vanilla GOS,
and GOALS-4. The comparison of training dataset error (the 1st row), test set error (the 2nd
row) and learning rate (the 3rd row) on a log10 scale versus the number of function evaluations.

The best performing strategy for SGD overall is GOS, which is consistent with the obser-
vation in Section 3.6. Although the learning rates of GOS are continuously larger than others,
SGD benefits from overshooting because it causes conjugacy in search directions. The training
performance of GOS noticeably improves as |B| increases.

Cosine annealing with warm restarts changes the learning rates over periods of epoch and
resets them to the initial learning rates. Hence, we observe slight fluctuations in both training
and test errors. Although this method sweeps through an extensive range of learning rates, the
results show that initial learning rate choice significantly affects the strategy’s performance.

Both GOALS-4 and GOLS-I try to locate SNN-GPPs. However, GOALS-4, which uses
the quadratic model, outperforms GOLS-I without any approximation model. Both strategies
double the learning rates to grow, but GOALS-4 uses quadratic approximations to shrink, while
GOLS-I halves the learning rates to shrink. Hence, GOALS-4 may perform worse if the quadratic
approximation has a large approximation error due to noisy information.

Table 3.8 shows the top average training and test accuracies of each strategy and the differ-
ences measured for the same experiment. The last column in the table shows the ratios of test
to training accuracies. The fixed learning rate results indicate that the performance of SGD
differs considerably with the choice of learning rates. The fixed learning rate of 0.1 presents

56

the best training and test accuracies for the batch size of 10. For the larger batch sizes, GOS
shows the highest accuracies of all strategies with SGD. The average ratios show that some are
greater than one. This could mean the test data is biased when the problem is not challenging
to generalize. The highest and lowest ratios are shown by the fixed learning rate of 0.001 and
10, respectively. When the ratios are lower, the strategy is more overfitted.

Batch size, |B| Strategies Train acc. Diff., ψy,|B| Test acc. Diff., ψy,|B| Te./Tr.

10

Fixed, α = 0.001 84.54 12.13 85.3 11.06 1.009
Fixed, α = 0.01 92.1 4.57 92.4 3.96 1.003
Fixed, α = 0.1 96.67 0 96.36 0 0.997
Fixed, α = 1 10.09 86.58 10.14 86.22 1.005
Fixed, α = 10 10.05 86.62 9.74 86.62 0.969
Cosine, α = 0.1 95.73 0.94 95.55 0.81 0.998
Cosine, α = 1 36.2 60.47 36.4 59.96 1.006
GOLS-I 83.29 13.38 83.39 12.97 1.001
GOALS-4 89.4 7.27 89.55 6.81 1.002
GOS 90.62 6.05 90.93 5.43 1.003

100

Fixed, α = 0.001 84.59 15.03 85.27 12.79 1.008
Fixed, α = 0.01 92.41 7.21 92.61 5.45 1.002
Fixed, α = 0.1 97.64 1.98 97.02 1.04 0.994
Fixed, α = 1 10.05 89.57 9.95 88.11 0.99
Fixed, α = 10 10.03 89.59 9.86 88.2 0.983
Cosine, α = 0.1 96.35 3.27 96.03 2.03 0.997
Cosine, α = 1 36.68 62.94 36.84 61.22 1.004
GOLS-I 94.66 4.96 94.68 3.38 1
GOALS-4 98.89 0.73 97.55 0.51 0.986
GOS 99.62 0 98.06 0 0.984

200

Fixed, α = 0.001 84.46 15.41 85.28 12.98 1.01
Fixed, α = 0.01 92.53 7.34 92.65 5.61 1.001
Fixed, α = 0.1 97.72 2.15 97.08 1.18 0.993
Fixed, α = 1 10.07 89.8 9.89 88.37 0.982
Fixed, α = 10 10.02 89.85 9.84 88.42 0.982
Cosine, α = 0.1 96.42 3.45 96.11 2.15 0.997
Cosine, α = 1 19.14 80.73 19.07 79.19 0.996
GOLS-I 94.56 5.31 94.6 3.66 1
GOALS-4 98.8 1.07 97.53 0.73 0.987
GOS 99.87 0 98.26 0 0.984

1000

Fixed, α = 0.001 84.42 15.51 85.29 13.08 1.01
Fixed, α = 0.01 92.39 7.54 92.65 5.72 1.003
Fixed, α = 0.1 97.79 2.14 97.12 1.25 0.993
Fixed, α = 1 10.31 89.62 10.14 88.23 0.984
Fixed, α = 10 10.06 89.87 9.94 88.43 0.988
Cosine, α = 0.1 96.77 3.16 96.45 1.92 0.997
Cosine, α = 1 18.5 81.43 18.52 79.85 1.001
GOLS-I 94.55 5.38 94.57 3.8 1
GOALS-4 96.51 3.42 96.18 2.19 0.997
GOS 99.93 0 98.37 0 0.984

Table 3.8: Top average training and test accuracies over the ten runs for the SGD optimizer
with various learning rate strategies, y, including the fixed learning rates, cosine annealing with
warm restart, GOLS-I, GOALS-4, and GOS on the N-II architecture with different batch sizes,
|B| = 10, 100, 200, 1000. It measures the difference, ψy,|B|, between the performance and the
best one from the different batch sizes. The ratios of test to training accuracies are given in the
last column. The highest train and test accuracies are indicated in bold.

Table 3.9 shows the training and test relative robustness, Ry, and the average ratios of test
to training accuracies of the results in Table 3.8 over the different batch sizes. The most robust
training and test results are obtained from GOS and the fixed learning rate of 0.1, respectively.
GOALS-4 ranked fourth in both training and test results, led by GOS, the fixed learning rate
of 0.1 and cosine annealing with α = 0.1. However, note that the results of learning rate and
cosine annealing are highly responsive to learning rates.

57

The table also computes the relative robustness measures and average ratios of each strategy
when the impractical mini-batch size of 10 is excluded. Note that GOALS-4 now ranks third and
second in both training and test robustness, respectively. This happens because the information
for the batch size of 10 makes the information sparse, affecting the approximation accuracy
for GOALS-4. The fixed learning rates and cosine annealing are not sensitive to the choice of
the sparsity of the information like GOALS-4, but GOALS-4 can adopt learning rates based on
the available information. The average ratio of 0.99 for GOALS-4 indicates that the quadratic
function approximation has competitive generalizability. The average ratio of 0.99 for GOALS-4
indicates that the quadratic function approximation has competitive generalizability.

Strategies Training Ry Test Ry Avg. Te./Tr.

Fixed, α = 0.001 58.08 (30.54) 49.91 (38.85) 1.009 (1.009)
Fixed, α = 0.01 26.66 (14.75) 20.74 (16.78) 1.002 (1.002)
Fixed, α = 0.1 6.27 (4.12) 3.47 (3.47) 0.994 (0.993)
Fixed, α = 1 355.57 (179.19) 350.93 (264.71) 0.99 (0.985)
Fixed, α = 10 355.93 (179.46) 351.67 (265.05) 0.981 (0.984)
Cosine, α = 0.1 10.82 (6.43) 6.91 (6.1) 0.997 (0.997)
Cosine, α = 1 285.57 (144.37) 280.22 (220.26) 1.002 (1)
GOLS-I 29.03 (10.34) 23.81 (10.84) 1(1)
GOALS-4 12.49 (4.15) 10.24 (3.43) 0.993 (0.99)
GOS 6.05 (0) 5.43 (0) 0.989 (0.984)

Table 3.9: The training and test relative robustness, Ry, for different strategies are given by
summing the differences, Ψy,|B|, given in Table 3.8. The average ratios of training to test
accuracies for each strategy are given as the average values of the ratios listed in Table 3.8 across
the different batch sizes. The lowest robustness measures are indicated in bold. Additionally,
the relative robustness, Ry, the average ratios measured excluding |B| = 10 are listed in brackets.

3.8 Conclusions

Dynamic mini-batch sub-sampling (MBSS) in deep neural network problems causes the loss
functions point-wise discontinuous. This makes the function value minimization approach im-
practical as line searches because it would find infinitely many local minima in discontinuous
settings. Dynamic MBSS also causes sampling errors, manifesting as small bias and large vari-
ance. As a solution to minimize the variance, a recent study introduced gradient-only surrogates
(GOS) to resolve learning rates. GOS is a quadratic function approximation model constructed
using only directional derivative information. It approximates the spatial locations of sign
changes in directional derivatives to choose learning rates. The previous study showed the com-
petitive performance of GOS in training DNNs. However, it does not have a convergence proof
developed, and it makes GOS not conservative.

Hence, this study extends the vanilla GOS to be conservative by limiting GOS to be con-
vergent using a bracketing strategy, with provided proof. We implemented the Wolfe curvature
condition as the convergence proof because it only requires directional derivative information.
The bracketing strategy is empowered by the Regular-Falsi method. It aims to restrict the
domain of GOS for higher model accuracy because the accuracy could have been reduced by
implementing the simplistic quadratic models for computational efficiency. Unlike GOS, which
constructs an approximation once for a descent direction, GOALS consecutively constructs the
GOS models until the curvature condition is satisfied. This makes GOALS more robust in terms
of convergence.

We introduced a new relative robustness measure for assessing the performance of GOALS.
The traditional performance measure for a learning rate strategy only considers the top per-
formance for a specific problem and optimizer. On the other hand, our relative robustness
measure considers all accounts, including poor performances. Hence, the robustness measure
favors strategies that perform well over different optimizers and problems.

58

We conducted hyperparameter studies for GOALS on ResNet-18 and EfficieintNet-B0 with
the CIFAR-10 dataset using various optimizers, including SGD, RMSProp, and Adam. Testing
on various optimizers showed the adaptability of GOALS as a learning rate strategy. Based on
the robustness measure, we learned it is essential to choose the data point close to the origin to
reduce the model error. Using the fixed recommended learning rate for the specific optimizer
to determine the data point for every descent direction is turned out to be a better choice to
reduce the approximation error than using the previously resolved learning rate as the next
initial guess. The experimental results showed that one hyperparameter setting close to GOS
outperformed GOS in both training and test accuracy for both test problems. It also showed
that GOALS, led by GOS, generalizes better and is more robust than the recommended learning
rates for each optimizer.

We further compared the performance of GOALS against nine other learning rate strategies
on a shallower DNN, N-II, using only the SGD optimizer, as the performance of SGD is sensitive
to learning rates. For this less nonlinear problem compared to ResNet-18 and EfficientNet-B0,
extending the initial data point for GOALS farther than the recommended learning rates helped
with performances based on the relative robustness measures. On the N-II architecture, GOALS
ranked third and second for the training and test robustness based on the relative robustness
measures, respectively, led by less conservative GOS among ten learning rate strategies in total.
The results show that quadratic approximations warrant further investigation.

59

Chapter 4

GOCLS: Gradient-Only Line Search
With Bayesian Classification
Approach For Training Neural
Networks

4.1 Chapter overview

The learning rate is a critical hyperparameter that requires tuning in deep neural network (DNN)
training. Strategies to resolve learning rates can be classified as follows: 1) fixed learning rates,
2) decay methods, 3) cyclical methods, and 4) line searches. Along a descent direction, line
searches can be designed to find a minimizer point, an optimality criterion point (necessary
condition), or a non-negative gradient projection point (NN-GPP). However, these line searches
either approximate the loss function or directly optimizes the loss function. Both may be com-
putationally demanding. This paper investigates the potential of classification as an alternative
paradigm to resolve learning rates. This is enabled through gradient-only optimization prin-
ciples, where we can resolve an NN-GPP by finding a sign change from negative to positive.
The proposed approach is adaptive and based on Bayesian classification that uses historical di-
rectional derivative information to discriminate between negative and positive signs. This only
requires one gradient computation per line search iteration. In addition, the line search hyper-
parameter is interpretable. It implies the probability of seeing a positive or negative sign for
the directional derivative. The approach is adaptable to optimizers such as SGD, RMSProp,
and Adam. This study compares our proposed classification-based line search to other learning
rate strategies that include constant learning rate, step decay, cosine annealing, and different
gradient-only line searches that include GOS and GOALS based on a newly proposed robust-
ness measure. Instead of considering only the best performance, we consider the reliability of
an algorithm to perform well across optimizers and problems. The architectures we consider are
ResNet-18 and EfficientNet-B0 on the CIFAR-10 dataset.

4.2 Introduction

A learning rate is a hyperparameter that is critical for successful deep neural network training.
The learning rate is dependent on various factors such as optimizers, models, datasets, and
preprocessing of the data. Hence, there are many popular learning rate strategies: fixed or
constant learning rates, learning rate decay methods, cyclic learning rates, and line searches
as listed in Table 4.1. Conventional line search methods attempt to search for a learning rate
to locate a minimizer point that satisfies its desired optimality criterion, often minimizing the
function value or locating where directional derivatives’ sign changes from negative to positive,
so-called non-negative gradient projection point (NN-GPP). This is usually accomplished by

60

either consecutively evaluating the functions or indirectly constructing approximation models.
Several attempts to apply line search methods for training deep neural networks (DNN) in a
stochastic setting have been attempted. They are the probabilistic line search using Bayesian
optimization [Mahsereci and Hennig, 2015], the line search for locating Stochastic NN-GPP
(SNN-GPP) with [Chae and Wilke, 2019a, Chae et al., 2021] or without [Kafka and Wilke,
2019a] using approximation models.

Class Examples Required information Citation

Constant Fixed learning rate None -

Decay
Step Epoch [Paszke et al., 2019]
Exponential Epoch [Paszke et al., 2019]

Cyclic
Cosine annealing Epoch [Loshchilov and Hutter, 2016]
Cyclic Epoch [Smith, 2017]

Line search
Probabilistic Loss and gradient [Mahsereci and Hennig, 2015]
Gradient-only Gradient [Kafka and Wilke, 2019a, Chae and Wilke, 2019a]

[Chae et al., 2021]
Classification GOCLS Gradient -

Table 4.1: Various classes and examples of learning rate strategies and their required information.

In this study, we introduce a new class to adaptively determine learning rates using a clas-
sification. This is enabled by gradient-only optimization principles [Snyman and Wilke, 2018],
particularly, that of locating a non-negative gradient projection point (NN-GPP). An NN-GPP
along a descent direction manifest as a sign change from negative to positive. This naturally
enables classification to be considered as a paradigm to find learning rates. It only requires
historic spatial locations of negative and positive signs of directional derivatives along the de-
scent search direction. Hence, the gradient computation per iteration is limited to one. Our line
search algorithm is similar to one dimensional Linear Discriminant Analysis (LDA) [Friedman
et al., 2001]. We use Bayesian inference to find a location that separates the negative directional
derivative signs from the positive. An NN-GPP along a descent direction is assumed to have a
50% chance of observing positive or negative directional derivatives for different mini-batches.
The advantage of having such an interpretable hyperparameter is that we can choose whether
we want to resolve, overshoot or undershoot an NN-GPP.

Note that the adaptive learning rate strategies such as Adam [Kingma and Ba, 2014],
Adadelta [Zeiler, 2012b], RMSProp [Tieleman and Hinton, 2012] are not included in Table 4.1.
This is because we consider optimizers for which the search direction is coupled with the di-
rectional learning rates. Using these optimizers, we compared various learning rate strategies:
1) a decay learning rate, Step Decay, 2) a cyclic learning rate [Smith, 2017], Cosine Annealing
[Loshchilov and Hutter, 2016], 3) constant learning rate, 4) GOS [Chae and Wilke, 2019a], 5)
GOALS on ResNet-18 [He et al., 2016] and EfficientNet-B0 [Tan and Le, 2019] for the CIFAR-10
dataset [Krizhevsky, 2009].

Current researches in this field mainly consider only the best performances to rank different
strategies. This only allows us to detect the strategies that are specialized for specific archi-
tectures. Because neural network architectures keep growing in size and more complex to train
every year [Brown et al., 2020], we need to distinguish strategies that work well across differ-
ent architectures to create a benchmark result. We managed this by considering all accounts,
including poor performances, for comparison since this allows us to quantify the least bad per-
formance on average. We formally define the relative robustness measure in the paper. The
results showed that our classification-based strategy is competitive against six other strategies
based on the measure.

4.3 Related work

This section briefly explains the dynamic mini-batch sub-sampling (MBSS), which we implement
throughout the research for training DNN problems, and discusses the characteristics of various

61

types of learning rate strategies available. Last, we introduce a new concept of predicting the
location of minima using a classification approach, leading to the derivation of our line search
algorithm in Section 4.4.

4.3.1 Dynamic mini-batch sub-sampling

Mini-batch sub-sampling is essential in deep learning because it resolves the issues related to the
limited amount of computational memory and helps with regularization by focusing on a small
bit of information in train data. We introduce the notations for the full-batch evaluation and
move on to the dynamic mini-batch sub-sampling, which we implement throughout the paper.
Whereas a neural network full-batch loss function, L(x), of the weight, x, is given by

L(x) := 1

M

M∑
b=1

ℓ(x; tb), (4.1)

a mini-batch sub-sample (MBSS) loss, L(x), is given by

L(x) :=
1

|B|
∑
b∈B

ℓ(x; tb), (4.2)

where the individual sample loss, ℓ(x; tb), is computed using each training sample, tb ∈ RD×1,
taken from the training sample set, {t1, t2, ..., tM}. The mini-batch subset, B ⊂ {1, 2, 3, ...,M},
with size of |B| ≪ M is uniform randomly sampled for computing, ℓ(x; tb). In addition, the
gradient of the full-batch loss function, ∇L(x), and the gradient of MBSS loss function, g(x),
are given by

∇L(x) :=
1

M

M∑
b=1

∇ℓ(x; tb), (4.3)

and

g(x) :=
1

|B|
∑
b∈B

∇ℓ(x; tb), (4.4)

respectively, where ∇ℓ(x; tb) ∈ Rp×1 is the individual sample gradient vector evaluated using a
single sample, tb.

In the context of line search, we may formulate the MBSS loss function using either static
MBSS, L̄(x), or dynamic MBSS, L̃(x). A dynamic MBSS loss function, L̃(x), is given by

L̃(x) :=
1

|Bn,i|
∑

b∈Bn,i

ℓ(x; tb), (4.5)

where Bn,i denotes the mini-batch re-sampled at the i-th function evaluation (either loss value
or gradient evaluation) of the n-th iteration. As a result, the dynamic MBSS loss function,
L̃(x), is point-wise discontinuous with small biases but large variances in the solutions of each
loss functions. In contrast, the static MBSS loss function, L̄(x), is continuous. But still, there
are large biases and small variances in the solutions of each loss function.

4.3.2 Comparisons of learning rate strategies

As the learning rate is a critical hyperparameter to be adjusted appropriately for successful
neural network problems training, researchers often employ numerous learning rate strategies.
We broadly categorize them into four groups: 1) fixed learning rates, 2) decay methods, 3) cyclic
methods, and 4) line searches.

Since the fixed learning rates are monotonous, it requires the user to optimize the learning
rate for the problem. The decay methods start with relatively larger learning rates for practical
exploration and reduce the learning rates for exploitation close to training. The cyclic methods

62

oscillate the learning rates at a specified rate. Both methods are effective for improving the
convergence rates. However, it might not be obvious to select the appropriate hyperparameters
without prior knowledge about the problems.

Line searches are adaptive to the various problem settings and environments, which requires
minimum prior knowledge about the problems. However, it often requires more than one function
evaluation for a descent direction to search for learning rates that satisfy optimality criteria
discussed in the previous section.

Lastly, the line searches utilize optimization techniques to search for learning rates that
satisfy optimality criteria along a descent direction. Although this method is adaptive to various
problem settings and requires minimum prior knowledge about the problems, it often requires
more than one function evaluation per iteration. In the next section, we study two distinct
objective functions for line searches. One minimizes the function values, and the other locates
where the signs of the directional derivatives change.

4.3.3 Objective functions for optimization approaches

Before studying the two objective functions in this section, we want to clarify that both static
and dynamic MBSS work identically when an optimizer evaluates the DNN function just once
every iteration or search direction. The difference only occurs when multiple function evaluations
are required at each iteration, such as line searches.

Function value minimization

For a smooth function such as a static MBSS loss function, L̄(x), we implement minimization
formulation along a chosen search direction, dn, given by

argmin
α

L̄n(x+ αdn), (4.6)

where α denotes the learning rate. However, for a point-wise discontinuous function such as
a dynamic MBSS loss function, L̃(x), we need an alternative way to formulate the objective
function since (4.6) finds irrelevant multiple local minima.

Stochastic non-negative gradient projection point

As a solution to the previous matter, we could alternatively search for stochastic non-negative
gradient projection points (SNN-GPPs) which is given by

d⊺
ng̃(xsnngpp + αndn) ≥ 0, ∀∥dn ∈ Rp∥2 = 1, ∀α ∈ (0, αmax], p(xsnngpp) > 0, (4.7)

with probability, p(xsnngpp), greater than 0. SNN-GPPs expect to observe positive direc-
tional derivatives when moving away from the points by a given learning rate, α, along the
search direction, dn. It implies that SNN-GPPs are the possibly local minima in a stochastic
discontinuous function. Kafka and Wilke [2019a] extended the definition of SNN-GPP from
NN-GPP [Wilke et al., 2013] given by this,

d⊺
n∇L(xnngpp + αndn) ≥ 0, ∀∥dn ∈ Rp∥2 = 1, ∀α ∈ (0, αmax], (4.8)

which only accommodates a deterministic discontinuous function. The following section
introduces our line search algorithm, which aims to locate the SNN-GPPs using only gradient
information with a Bayesian statistics perspective.

63

4.3.4 Comparisons of line searches for training DNNs

We may categorize various line search algorithms by different MBSS techniques, approximation
model usages, optimality criteria, and information they utilize. [Mutschler and Zell, 2019] uses
a deterministic parabolic approximation built with function value and gradient information to
search for local minima in the static MBSS setting. In dynamic MBSS settings, Chae and Wilke
[2019a] and Chae et al. [2021] approximate the location of sign changes using a deterministic
quadratic approximation model built only with gradient information in the dynamic MBSS
setting. [Mahsereci and Hennig, 2015] utilizes a stochastic Bayesian optimization model with
both function value and gradient information to locate local minima. [Kafka and Wilke, 2019a]
deterministically searches for SNN-GPPs only with gradient information without approximation
models.

4.3.5 Relative robustness measure, R

As DNN problems have become more complex, we might prefer using a robust optimizer that
performs well across various problems to a problem-specific optimizer for training an unseen
problem. In other words, we would be interested in the strategy not necessarily outperforms all
the other optimizers for only a specific problem but has the slightest differences in performance
from the best version of each problem. Hence, we define the relative robustness measure [Chae
et al., 2021] for learning rate strategies as follows:

Definition 4.3.1 (Relative robustness). Given a line search strategy, y, optimizer, o, and
problem, h, the absolute performance differences, ψy,h,o, is computed as the difference between
the strategy’s accuracy, ηy,h,o, and the overall best accuracy, η∗h,o. The relative robustness, Ry,
of a strategy, y, is computed by summing the absolute performance difference over all optimizers
and all problems given by

Ry =
∑
h∈H

∑
o∈O

ψy,h,o, where ψy,h,o = |η∗h,o − ηy,h,o|. (4.9)

Hence, the lower the measure, Ry, the more robust the strategy. One may also compute
a robustness measure, Ry,h, for a strategy, y, and a specific problem, h, while considering all
optimizers, O. We will compare the training and test performance of our proposed algorithm,
GOALS, against the other learning rate strategies based on the relative robustness measure
throughout the paper.

4.4 Gradient-only classification line search

This section introduces the gradient-only classification line search (GOCLS), which combines the
ideas of Bayesian probability and the observation of sign-changes to build a classification-based
line search algorithm. As we call the cluster of SNN-GPPs, the ball, B, we assume that, at any
point inside B along the given search direction, each probability of observing the positive or
negative signs of directional derivatives are between 0 and 1, while they sum up to 1.

Assuming that the properties of B in the current iteration are closely related to the ones
observed iterations in the past, we predict the learning rates that are likely to provide the target
probability of observing positive or negative signs. In other words, it allows controlling whether
we need to overshoot or undershoot while remaining inside the ball. We later show in the
experiment that this parameter considerably influences the performance in training.

GOCLS focuses on locating the SNN-GPPs from a Bayesian perspective. We try to predict
the learning rate required to get to the local minima using the historical data accumulated during
the training. Hence, we assumed that at the local minima, the probability of observing positive
signs, πξ, is about the same as observing negative signs, πζ , throughout different mini-batches
over iterations. Note that we distinguish between πs and π̂s as the target probability and the
sample probability in this paper, respectively.

64

We follow linear discriminant analysis (LDA) [Friedman et al., 2001] to locate such points
since we assume that the variance of the probability density function (pdf) of the positive signs
is identical to that of the negative signs. The difference is that we use a single random variable
which is the learning rate, α, instead of using a bivariate Gaussian distribution. This assumption
is appropriate based on the single-mode assumption when we scale the learning rates on the log10
scale.

4.4.1 Derivation of gradient-only classification line search (GOCLS)

We start the derivation of GOCLS by matching the posterior probabilities of observing a sign
class, S, that is positive, ξ and that is negative, ζ, given the observations of learning rates, α,
for a target probability of observing the positive signs, πξ.

p(S = ξ|A = α)

(
1− πξ
πξ

)
= p(S = ζ|A = α), (4.10)

where

p(S = s|A = α) =
qsπ̂s∑

k∈S qkπ̂k
. (4.11)

The prior, p(S = s) = π̂s, is the sample probability which is the ratio of the number of
samples in class s to the total number of samples, |N |, in the sample set, N . The likelihood,
p(A = α|S = s) = qs(α), is a pdf of the Gaussian distribution, given by

qs(α) =
1

σs
√
2π
e−

1
2
(α−µs

σs
)2 (4.12)

where µs and σs are the mean and the standard deviation of each class. However, as mentioned
earlier, we assume that the standard deviation for the positive class, σξ, and the negative class
σζ are identical to be the overall standard deviation, σa. Hence, (4.11) is rewritten after taking
the log of both sides as follows:

log(qs(α)π̂s) = − log(σa
√
2π)− 1

2

(
α− µs
σa

)2

+ log(π̂s) (4.13)

=
αµs
σ2a

− µ2s
2σ2a

+ log(π̂s). (4.14)

Therefore (4.10) can be simplified as follows:

log

(
π̂ξ
π̂ζ

)
+ log

(
1− πξ
πξ

)
+
α(µξ − µζ)

σ2a
−
µ2ξ − µ2ζ
2σ2a

= 0 (4.15)

Now solving for learning rate, α, that satisfies (4.10) is given by

α = −
[
log

(
π̂ξ
π̂ζ

)
+ log

(
1− πξ
πξ

)]
σ2a

µξ − µζ
+
µξ + µζ

2
, (4.16)

where the overall variance, σ2a, is given [Friedman et al., 2001] by

σ2a =

∑S ∑N
i=1(α

(i) − µs)
2

|N | − |S|
. (4.17)

Note that |N | and |S| denote the cardinality of the learning rate sample set, N , and class set,
S, respectively.

When we blindly accept the learning rate obtained from (4.16), the sample domain will
shrink, and no more exploration occurs in training. In other words, it needs a balance be-
tween exploration and exploitation when resolving the learning rates. Hence, we take care of
exploration introducing an exploration function in the form of a normal distribution, N (µe, σe),
with

65

µe = log10(∥dn∥−1
2) and σ2e = 1. (4.18)

The exploration mean, µe, is the inverse of the L-2 norm of search direction on a log10 scale, and
the variance, σ2e , is assumed to be 1. We compute the final learning rate on a log10 scale, αf ,
by combing both exploitation and exploration normal distributions, N (α, σ2a) and N (µe, σ

2
e),

respectively, in a closed-form as follows:

αf =
σ2e

σ2e + σ2a
α+

σ2a
σ2e + σ2a

µe (4.19)

When employing the learning rate for training, we take the final learning rate on a log10
scale back to the standard scale,

L̃n+1(x) = L̃n(x+ α̃∗
ndn); α̃

∗
n = 10αf . (4.20)

4.4.2 Pseudo-code for GOCLS

In this section, we present the pseudo-code of GOCLS in Algorithm 5. It only requires a single
function evaluation per iteration. Hence, it does not require any extra function evaluation when
implemented for other optimizers for choosing the learning rate.

GOCLS requires several values as inputs for every iteration: the lists of learning rates,
An, the list containing the directional derivative signs, Sn, observed for the past ω number of
iteration, the search direction, dn, and the target probability of observing positive signs, πξ.

The algorithm creates two lists for learning rates resulting in positive directional derivative
signs, Aξ,n and negative signs, Aζ,n. Once the lengths of both lists reach two, we begin to find
the means, µξ and µζ , and the overall standard deviation, σa, for both classes, which leads
to the computation of the exploitation learning rate, α in (4.16). Next, we find a balancing
value, αf , satisfying both the exploitation learning rate, α, and exploration mean, µe, based on
their corresponding variances. We then rescale the computed learning rate in a log10 scale, αf ,
back to the original scale and call it the final learning rate, α̃∗

n. Lastly, the iteration ends with
computing the new gradients, g̃∗n, at the final learning rate, α̃∗

n, storing the learning rate and the
calculated gradient signs. We also ensure that the length of both the sign list, |Sn|, and learning
rate list, |An|, does not exceed the prescribed length, ω. The simplified flowchart of GOCLS is
shown in Figure 4.1.

4.5 Numerical study design

We conducted two numerical studies for the proposed line search algorithm, GOCLS. First,
we conduct a hyperparameter study to search for appropriate target positive probabilities, πξ,
for different optimizers, including SGD, RMSProp, and Adam. Learning rates selected using
GOCLS are based on the choice of πξ. Hence, we aim to know which πξ produces the best
performance for the different optimizers. Second, we conduct a performance comparison study
of GOCLS using the previously chosen hyperparameters to compare the performance against
the other strategies. We measure the performance of each strategy using the relative robustness
measure introduced in Section 4.3.5. In the following sections, we discuss the details of the two
numerical studies.

4.5.1 Numerical study 1: Hyperparameter studies

The first experiment aims to demonstrate the significance of the target probability parameter,
πξ, by varying the parameter range from 40% to 90% with a 10% increment. It implies that we
test undershooting by reducing it below 50% and overshooting by increasing it over 50%. This
detailed study is conducted on ResNet-18 [He et al., 2016] for 350 epochs using the CIFAR-10
dataset [Krizhevsky, 2009] for the SGD, RMSProp and Adam optimizers. Hence, by no means

66

Algorithm 5: GOCLS

Input: list of learning rates, An, list of signs, Sn, search direction, dn, size of window,
ω, target probability of observing positive signs, πξ

Output: resolved learning rate, α̃∗
n, list of learning rates, An+1, list of signs, Sn+1

1 Aξ,n → {αi|si ≥ 0, si ∈ Sn, αi ∈ An}
2 Aζ,n → {αj |sj < 0, sj ∈ Sn, αj ∈ An}
3 µe → ∥dn∥−1

2

4 if |Aξ,n| ≤ 1 and |Aζ,n| ≤ 1 then
5 α̃∗

n → µe
6 else

7 π̂ξ →
|Aξ,n|

|Aξ,n|+|Aζ,n|
8 Compute µξ, µζ

9 σ2a → Σ(Aξ,n−µξ)
2+Σ(Aζ,n−µζ)

2

|Aξ,n|+|Aζ,n|−2

10 α→ µξ+µζ

2 − [log(
π̂ξ

1−π̂ξ
) + log(

1−πξ

πξ
)](σ2

a
µξ−µζ

)

11 αf → σ2
e

σ2
e+σ2

a
α+ σ2

a
σ2
e+σ2

a
µe

12 α̃∗
n → 10αf

13 Compute g̃∗n at α̃∗
n

14 f̃ ′n → d⊺
ng̃

∗
n

15 Sn+1 → [Sn, sign(f̃
′
n)]

16 An+1 → [An, log10(α̃
∗
n)]

17 if |An+1| > ω then
18 Sn+1 → Sn+1.pop(0)
19 An+1 → An+1.pop(0)

do we try to determine the optimum πξ covering all kinds of problems. Nonetheless, the results
demonstrate that overshooting rather than undershooting outperforms creating conjugacy in the
subsequent search direction, dn.

4.5.2 Numerical study 2: Performance comparison

The second experiment aims to compare the performance of GOCLS using one of the best
performing hyperparameter values, πξ, from the previous experiment against the results of
the popular learning rate strategies. These include the fixed learning rates, GOS [Chae and
Wilke, 2019a], GOALS [Chae et al., 2021], step decay [Paszke et al., 2019], and cosine annealing
[Loshchilov and Hutter, 2016]. For the second experiment, we use ResNet-18 [He et al., 2016]
and EfficientNet-B0 [Tan and Le, 2019] for 350 epochs using the CIFAR-10 dataset for the SGD,
RMSProp [Tieleman and Hinton, 2012], and Adam [Kingma and Ba, 2014] optimizers.

We set the fixed learning rates to be the same as the recommended ones for each optimizer.
Those are 0.01 for SGD and RMSProp and 0.001 for Adam. The step decay uses the multi-
plicative factor of 0.1 for every 100 epoch starting from the recommended learning rate for each
optimizer. For the cosine annealing, we prepared two maximum numbers of iterations, Tmax:
50 and 350. For the GOALS strategy, we choose GOALS-4, the hyperparameter setting recom-
mended by Chae et al. [2021] to train DNN problems. GOALS is a line search method that
constructs quadratic approximations only using gradient information to locate the sign changes
of directional derivatives from negative to positive.

To compare the performances of the learning rate strategies, we employ the relative robust-
ness measure introduced in Section 4.3.5. The measure is computed by summing the differences
between the training or test accuracies and the best strategy’s accuracy for each tested optimizer.
Additionally, we measure the ratios of the test to training accuracies of different strategies. This
means that the closer the ratios are to one, the more minor the relative discrepancy between the

67

Figure 4.1: Simplified flowchart of the GOCLS algorithm

training and test accuracies is. The DNN generalizes well as it shows abilities to perform well
on unobserved inputs [Bengio et al., 2017].

4.5.3 Standard experiment setting for numerical study 1 and 2

The observation window size, ω, chosen for both experiments is 100. We conducted the numerical
experiments with ResNet-18 and EfficientNet-B0 using the PyTorch code set up by Liu [2020].
The batch size for the experiments is 128. We repeat each case in the experiments five times for
350 epoch to generate errorbar graphs. Note that since we adopt dynamic MBSS in the research,
the epoch number is directly proportional to the number of gradient evaluations each strategy
has taken. This means that when the average number of gradient evaluations per iteration is
higher for a strategy, fewer descent directions are allowed to iterate. Since GOCLS evaluates
gradient only once every iteration, it searches for minimum using the maximum number of
descent directions allocated.

4.6 Results of numerical study

4.6.1 Numerical study 1: hyperparameter study

Choosing πξ for SGD

Figure 4.2 shows the training error, test error, learning rates on the log10 scale and the sample
probability of positive signs, π̂ξ, along the 350 epoch for various πξ values. The train and
test errors show that the more we allow overshooting with higher πξ, the lower errors become.
Suppose we want to maintain the sample probability as high as the target probability. In that
case, the learning rate must exponentially grow because it becomes challenging for the sample
probability to match the desired one close to the end of training.

The lowest target probability, 40%, shows that the learning rate rapidly approaches the
minimum bound for the learning rates. Although the highest target probability, 90%, shows the
quickest convergence rate, it also indicates erratic training close to the end. We decided to select
a target probability of 70% for SGD in the further experiments as it shows the lowest training
error without instability as with 90%.

68

0 50 100 150 200 250 300 350
Epoch

−1.0

−0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 50 100 150 200 250 300 350
Epoch

−5

0

5

10

15

20

lo
g 1

0(
Le

ar
ni
ng

 ra
te
)

0 50 100 150 200 250 300 350
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e
rro

r)

0 50 100 150 200 250 300 350
Epoch

40

50

60

70

80

90

̂ π ξ

40% 50% 60% 70% 80% 90%

Figure 4.2: Various target probability hyperparameter, πξ, values tested for the GOCLS algo-
rithm on the ResNet-18 architecture with CIFAR-10 using the SGD optimizer. Training error
(top left), test error (bottom left), learning rates (top right) are shown on the log10 scale and
the sample probability of positive signs, π̂ξ, (bottom right) against the number of epochs.

Choosing πξ for RMSProp

Figure 4.3 shows the training error, test error, learning rates on the log10 scale, and the sample
probability of positive signs for the RMSProp optimizer. Similar to the behaviors observed in
Figure 4.2, both training and test errors decline as the hyperparameter increases, resulting in
larger learning rates. The higher the hyperparameter values become, the higher the growth in
learning rates to maintain the sample probability, π̂ξ, as high as the target probability, πξ. We
decided to choose the target probability, πξ, of 90% for RMSProp in the further experiments
as it shows both the lowest training and test errors.

Choosing πξ for Adam

Figure 4.4 shows the training error, test error, learning rates on the log10 scale, and the sample
probability, π̂ξ, of positive signs for the Adam optimizer. Both training and test errors decrease
as the target probability, πξ, increases, however, with more than a probability of 70%, no
significant difference in the test, training errors, and learning rates. Interestingly, the learning
rate which converged towards when the target probability, πξ, is high is approximately the
recommended learning rate for Adam. We decided to choose the target probability, πξ, of 70%
for Adam in the experiments that follow, as it shows the lowest training and test errors.

Window size, ω

We employ GOCLS with a window size hyperparameter, ω, of 100. This section aims to briefly
show the implication of the windows size hyperparameter to the training and test performances
only using one of the optimizers we tested, SGD, with the target probability, π̂ξ, of 70%.

Figure 4.5 shows that the training, test errors, and learning rates on the log10 scale and
the sample probabilities for SGD with different window sizes, including 50, 100, and 200. The

69

0 50 100 150 200 250 300 350
Epoch

−0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 50 100 150 200 250 300 350
Epoch

−5

0

5

10

15

20

lo
g 1

0(
Le

ar
ni
ng

 ra
te
)

0 50 100 150 200 250 300 350
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e
rro

r)

0 50 100 150 200 250 300 350
Epoch

40

50

60

70

80

90

̂ π ξ

40% 50% 60% 70% 80% 90%

Figure 4.3: Various target probability hyperparameter, πξ, values tested for the GOCLS algo-
rithm on the ResNet-18 architecture with CIFAR-10 using the RMSProp optimizer. Training
error (top left), test error (bottom left), learning rates (top right) are shown on the log10 scale
and the sample probability of positive signs, πξ, (bottom right) against the number of epochs.

training error of the smallest ω of 50 reduces at the quickest rate, and its learning rate is quick
to increase. However, due to the instability, its training error abruptly increases close to the
end of the training. On the other hand, the learning rate of ω = 200 is hardly increasing, and
as a result, the training error reduces at the slowest rate. The test errors of all three window
size values are performing similarly. Hence, this motivates the choice of our ω = 100, which is
the intermediate value of the two extremes.

Conclusion of numerical study 1

The target probability value, πξ, is an interpretable hyperparameter across optimizers. As
we increase the target probability value, we expect the learning rates to grow since it tries
to overshoot, and subsequently, the optimizers outperform with a quicker convergence rate.
When the target probability, πξ, is a high value, the sample probability, π̂ξ, tends to keep the
learning rate large only initially, as it requires exponentially growing learning rates. The chosen
target probabilities, πξ, for numerical experiments that follow are 70%, 90%, and 70% for SGD,
RMSProp, and Adam, respectively.

4.6.2 Numerical study 2: Comparison between various learning rate strate-
gies

This section compares the proposed Bayesian classification-based line search performance, GO-
CLS, against six other learning rate strategies discussed in Section 4.5.2, based on the relative
robustness measure. We use the target probability hyperparameter, πξ, that produced the best
results from the previous numerical study for different optimizers.

70

0 50 100 150 200 250 300 350
Epoch

−1.0

−0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 50 100 150 200 250 300 350
Epoch

−8

−6

−4

−2

0

lo
g 1

0(
Le

ar
ni
ng

 ra
te
)

0 50 100 150 200 250 300 350
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e
rro

r)

0 50 100 150 200 250 300 350
Epoch

40

50

60

70

80

90

̂ π ξ

40% 50% 60% 70% 80% 90%

Figure 4.4: Various target probability hyperparameter, πξ, values tested for the GOCLS algo-
rithm on the ResNet-18 architecture with CIFAR-10 using the Adam optimizer. Training error
(top left), test error (bottom left), learning rates (top right) are shown on the log10 scale and
the sample probability of positive signs, π̂ξ, (bottom right) against the number of epochs.

ResNet-18

Figure 4.6(a) shows that both GOS and GOCLS have the highest training errors compared
to the other strategies. The cosine annealing with Tmax = 350 gets the lowest training error.
However, both GOS and GOCLS certainly do not have the highest testing errors. GOS and
GOALS-4, which have the highest overall learning rates, show the lowest test errors. We learn
that decreasing the learning rate for convergence is the only way to obtain a good generalization
result. The average number of gradient evaluations per iteration of GOS decreases since it tends
to find convex quadratic approximation less frequently as the training continues. Conversely,
that of GOALS-4 increases to satisfy the curvature condition [Chae et al., 2021]. The rest of the
strategies only require a single number of gradient evaluations per iteration, which means more
iterations are allowed per epoch with the same number of mini-batches.

Figure 4.6(b) indicates that overshooting with the RMSProp optimizer outperforms the
fixed learning rates and GOS. The cosine annealing with Tmax = 350 obtains the lowest train.
However, all the methods show similar test errors. Note that the learning rate of GOCLS
increases exponentially, while that of the cosine annealing decreases exponentially.

Figure 4.6(c) shows that the fixed learning rate, GOS, and GOCLS produces almost identical
training and test error as their learning rates are very similar to the recommended learning rate.
The two cosine annealing and step decay show better results in Adam’s test and training errors
in ResNet-18.

Table 4.2 shows the top average training and test accuracies and the differences, ψy,h,o, in
the accuracies of various strategies, y, for each optimizer, o, on the problem, h, ResNet-18.
The ratios of the test to training accuracies are given in the last column. The top training
accuracies are shown by the step decay and cosine annealing strategies. However, all strategies
have similar training performances, that the most considerable difference, ψy,h,o, observed in
training accuracy is 0.36 for the fixed learning rate with the RMSProp optimizer. The best

71

0 50 100 150 200 250 300 350
Epoch

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
lo
g 1

0(
Tr
ai
n
er
ro
r)

0 50 100 150 200 250 300 350
Epoch

−5

0

5

10

15

20

lo
g 1

0(
St
ep

 si
ze
)

0 50 100 150 200 250 300 350
Epoch

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

st
 e
rro

r)

0 50 100 150 200 250 300 350
Epoch

40

50

60

70

80

90

 π ξ

ω=50, πξ=70̂ ω=100, πξ=70̂ ω=200, πξ=70̂

Figure 4.5: Various window size hyperparameter, ω, values tested for the GOCLS algorithm on
the ResNet-18 architecture with CIFAR-10 using the SGD optimizer. Training error (top left),
test error (bottom left), learning rates (top right) are shown on the log10 scale and the sample
probability of positive signs, π̂ξ, (bottom right) against the number of epochs.

performing in terms of test accuracies for SGD, RMSProp, and Adam are GOALS-4, cosine
annealing with Tmax = 350, and step decay, respectively. The relative robustness measures, Ry,h,
show that cosine annealing with Tmax = 350 ranks first in both training and test robustness
measures over the optimizers. On the other hand, GOCLS ranked last and fifth among the seven
strategies. In terms of generalizability, GOCLS ranks second for both SGD and RMSProp and
fifth for Adam.

EfficientNet-B0

Figure 4.7 shows the performances of the various learning rate strategies on the EfficientNet-
B0 architecture. Figure 4.7(a) shows that SGD with GOALS-4 has the lowest training error,
followed by GOCLS. Their test errors are also significantly lower than the rest—the average
learning rate of GOS about ten times larger than GOCLS.

Figure 4.7(b) shows that RMSProp results with GOCLS at the target probability of 90%
and well-tuned GOALS-4 have an aggressive training aspect initially, and later, cosine annealing
with T = 350 overtook it. The test error of GOCLS shows an average performance relative to
the other methods. Figure 4.7(c) shows that although Adam with GOCLS again has the highest
training error, its test error is on the average of all methods.

Table 4.3 shows the top average training and test accuracies and the differences, ψy,h,o, in the
accuracies of various strategies, y, for each optimizer, o, on the problem, h, EfficientNet-B0. The
ratios of the test to training accuracies are given in the last column. The highest training and test
accuracies are given by GOCLS and GOS, respectively. The highest training and test accuracies
for both RMSProp and Adam are given by cosine annealing with Tmax = 350. However, the
cosine annealing had large difference, ψy,h,o, values for training and test accuracies for SGD.
Hence, although the cosine annealing gives the highest relative training robustness measures
over the optimizers, the highest test accuracies are obtained by GOS, followed by GOALS. In

72

0 100 200 300
Epoch

−2

−1

0

1

lo
g 1

0(
T(

ai
n

e(
(o

()

0 100 200 300
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

)t
 e

((o
()

0 100 200 300
Epoch

−6

−4

−2

0

2

4

6

lo
g 1

0(
Le

a(
ni

ng
 (a

te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Av
g.

 n
o.

 o
 g

(a
d.

 e
va

l./
ite

(.

Fixed GOS GOALS-4 GOCLS 70% Step decay Cosine annealing, Tmax = 350 Cosine annealing, Tmax = 50

(a) SGD

0 100 200 300
Epoch

−3

−2

−1

0

1

lo
g 1

0(
T(

ai
n

e(
(o

()

0 100 200 300
Epoch

0.8

1.0

1.2

1.4

1.6

lo
g 1

0(
Te

)t
 e

((o
()

0 100 200 300
Epoch

−6

−4

−2

0

2

4

lo
g 1

0(
Le

a(
ni

ng
 (a

te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Av
g.

 n
o.

 o
 g

(a
d.

 e
va

l./
ite

(.

Fixed GOS GOALS-4 GOCLS 90% Step decay Cosine annealing, Tmax = 350 Cosine annealing, Tmax = 50

(b) RMSprop

0 100 200 300
Epoch

−6

−5

−4

−3

−2

−1

0

1

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 100 200 300
Epoch

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

lo
g 1

0(
Te
st
 e
rro

r)

0 100 200 300
Epoch

−7

−6

−5

−4

−3

−2

lo
g 1

0(
Le
ar
ni
ng

 ra
te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
g.
 n
o.
 o
f g

ra
d.
 e
va
l./
ite

r.

Fixed GOS GOALS-4 GOCLS 70% Step decay Cosine annealing, Tmax = 350 Cosine annealing, Tmax = 50

(c) Adam

Figure 4.6: ResNet-18: performance comparison for various learning rate strategies including
the fixed learning rate, GOS, GOALS-4, GOCLS, step decay, cosine annealing with Tmax =
350 and 50 using the CIFAR-10 dataset for (a) SGD, (b) RMSProp and (c) Adam. We present
training error, testing error, learning rate on the log10 scale, and the average number of gradient
evaluations per iteration for each optimizer.

terms of generalizability, GOCLS ranks third, seventh and first for SGD, RMSProp, andAdam,
respectively.

Table 4.4 shows the overall training and test relative robustness measures, Ry, and the
average ratios of test to training accuracies for the strategies. Cosine annealing with Tmax =
350 and GOALS-4 rank first in the overall training and test relative robustness measures, Ry,
respectively.

GOCLS ranks fourth in both training and test robustness measures. The two cosine annealing
strategies and GOALS-4 lead GOCLS in the training robustness. GOS, cosine annealing with
Tmax = 350, and GOALS-4 lead GOCLS in the test results. The average ratios show that
the generalizability of GOCLS ranks fourth, led by GOS, step decay, and GOALS-4. The least
generalizable strategy or overfitting strategy is the fixed learning rate. Although the performance
of GOCLS may not be the best in any of the categories, GOCLS certainly shows competitive
overall robustness measures, Ry.

Moreover, the Tmax value of cosine annealing Tmax = 350, which showed the best training
performance, was an unusual choice for the hyperparameter, which happens to perform well,

73

Optimizers Strategies Train acc. [%] Diff., ψy,h,o Test acc. [%] Diff., ψy,h,o Te./Tr.

SGD

Fixed 99.94 0.06 91.88 1.14 0.919
GOS 99.72 0.28 92.93 0.09 0.932
GOALS 99.8 0.2 93.02 0 0.932
GOCLS 99.7 0.3 92.36 0.66 0.926
Step 99.95 0.05 92.0 1.02 0.92
Cosine, Tmax = 350 100.0 0 92.08 0.94 0.921
Cosine, Tmax = 50 99.98 0.02 91.97 1.05 0.92

RMSprop

Fixed 99.64 0.36 92.37 1.25 0.927
GOS 99.78 0.22 93.02 0.6 0.932
GOALS 99.79 0.21 93.01 0.61 0.929
GOCLS 99.75 0.25 93.03 0.59 0.933
Step 100.0 0 93.22 0.4 0.932
Cosine, Tmax = 350 100.0 0 93.62 0 0.936
Cosine, Tmax = 50 99.98 0.02 93.32 0.3 0.933

Adam

Fixed 99.87 0.13 93.3 0.99 0.934
GOS 99.86 0.14 93.23 1.06 0.934
GOALS 99.94 0.06 93.16 1.13 0.932
GOCLS 99.84 0.16 93.38 0.91 0.935
Step 100.0 0 94.29 0 0.943
Cosine, Tmax = 350 100.0 0 94.12 0.17 0.941
Cosine, Tmax = 50 100.0 0 93.98 0.31 0.94

Ry,h

Fixed - 0.55 - 3.29 -
GOS - 0.64 - 1.66 -
GOALS - 0.47 - 1.74 -
GOCLS - 0.71 - 2.07 -
Step - 0.05 - 1.33 -
Cosine, Tmax = 350 - 0 - 1.02 -
Cosine, Tmax = 50 - 0.04 - 1.57 -

Table 4.2: ResNet-18. The maximum mean values for both training and test accuracies over
the five runs are listed for SGD, RMSProp and Adam, for the fixed learning rates, GOS,
GOALS-4, step decay, cosine annealing with Tmax = 50 and 350 on ResNet-18. Ry,h presents
the sum of the differences, ψy,h,o, between the accuracies and the best one for each optimizer.
The maximum accuracies and the best robustness measured are shown in bold. The ratios of
training to test accuracies are listed in the last column.

and GOS, which showed the best test performance, does not guarantee its convergence.

4.7 Conclusion

Learning rate is a crucial hyperparameter to be chosen carefully for successful training in neural
network problems. Line search algorithms select learning rates for a descent direction provided
by an optimizer, often requiring more than one function evaluation per iteration to satisfy specific
optimality criteria. Hence, we proposed a computationally cost-efficient Bayesian classification-
based line search method that uses the historical gradient data to choose learning rates by
predicting the location of sign changes in directional derivatives. This approach only requires
one gradient computation per line search iteration. Hence, there is no other gradient that we
need to compute but for the optimizers.

GOCLS constructs bound approximations to resolve learning rates that provide the prob-
ability of observing positive directional derivative signs at a target probability. This target
probability is a hyperparameter that can adjust the degrees of overshooting or undershooting.
We conduct a hyperparameter study to decide which target probability would be appropriate
for the optimizers, including SGD, RMSProp, and Adam. The hyperparameter study shows
that the tested optimizers prefer overshooting to undershooting with high target probabilities:
70%, 90%, 70% of observing positive signs for SGD, RMSProp, and Adam, respectively.

Using those target probability values, we conduct comparison tests for GOCLS with the
various optimizers against six other learning rate strategies on ResNet-18 and EfficientNet-
B0. We quantify their performances using the relative robustness measures that we propose.
While the traditional metrics quantify only the best performances of strategies, the robustness
measures consider all performances, including the best and poorest performances. As a result,

74

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 100 200 300
Epoch

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

lo
g 1

0(
Te
st
 e
rro

r)

0 100 200 300
Epoch

−6

−5

−4

−3

−2

−1

0

lo
g 1

0(
Le
ar
ni
ng

 ra
te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Av
g.
 n
o.
 o
f g

ra
d.
 e
va
l./
ite

r.

Fixed GOS GOALS-4 GOCLS 90% Step decay Cosine annealing, Tmax = 350 Cosine annealing, Tmax = 50

(a) SGD

0 100 200 300
Epoch

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
g 1

0(
Tr
ai
n
er
ro
r)

0 100 200 300
Epoch

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
lo
g 1

0(
Te
st
 e
rro

r)

0 100 200 300
Epoch

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g 1

0(
Le
ar
ni
ng

 ra
te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Av
g.
 n
o.
 o
f g

ra
d.
 e
va
l./
ite

r.

Fixed GOS GOALS-4 GOCLS 90% Step decay Cosine annealing, Tmax = 350 Cosine annealing, Tmax = 50

(b) RMSprop

0 100 200 300
Epoch

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
T(

ai
n

e(
(o

()

0 100 200 300
Epoch

1.0

1.1

1.2

1.3

1.4

1.5

1.6

lo
g 1

0(
Te

)t
 e

((o
()

0 100 200 300
Epoch

−7

−6

−5

−4

−3

−2

lo
g 1

0(
Le

a(
ni

ng
 (a

te
)

0 100 200 300
Epoch

1.0

1.2

1.4

1.6

1.8

Av
g.

 n
o.

 o
 g

(a
d.

 e
va

l./
ite

(.

Fixed GOS GOALS-4 GOCLS 70% Step decay Cosine annealing, Tmax = 350 Cosine annealing, Tmax = 50

(c) Adam

Figure 4.7: EfficientNet-B0: performance comparison for various learning rate strategies in-
cluding the fixed learning rate, GOS, GOALS-4, GOCLS, step decay, cosine annealing with
Tmax = 350 and 50 using the CIFAR-10 dataset for (a) SGD, (b) RMSProp and (c) Adam.
We present training error, testing error, learning rate on the log10 scale, and the average number
of gradient evaluation per iteration for each optimizer.

the measures favor well-performing strategies across different problems and optimizers rather
than the strategies specialized at specific problems.

The results showed that GOCLS ranks fourth for both training and test relative robustness
measures among seven strategies led by cosine annealing, GOS, and GOALS-4. However, the
cosine annealing required a carefully selected and unusual value for the hyperparameter. GOS
and GOALS-4 demonstrated the competitiveness of quadratic approximations. The results
showed that the approach warrants further investigation in training DNN.

75

Optimizers Strategies Train acc. [%] Diff., ψy,h,o Test acc. [%] Diff., ψy,h,o Te./Tr.

SGD

Fixed 98.18 0.7 85.37 4.48 0.87
GOS 97.94 0.94 89.44 0.41 0.913
GOALS 98.88 0 89.85 0 0.909
GOCLS 98.82 0.06 87.07 2.78 0.881
Step 93.68 5.2 83.83 6.02 0.895
Cosine, Tmax = 350 97.93 0.95 84.86 4.99 0.867
Cosine, Tmax = 50 97.33 1.55 84.32 5.53 0.866

RMSprop

Fixed 97.6 1.84 89.44 0.96 0.916
GOS 98.43 1.01 89.0 1.4 0.904
GOALS 99.13 0.31 89.59 0.81 0.904
GOCLS 99.16 0.28 89.38 1.02 0.901
Step 98.04 1.4 89.83 0.57 0.916
Cosine, Tmax = 350 99.44 0 90.4 0 0.909
Cosine, Tmax = 50 98.99 0.45 90.3 0.1 0.912

Adam

Fixed 99.21 0.75 89.96 0.96 0.907
GOS 98.85 1.11 90.22 0.7 0.913
GOALS 98.57 1.39 90.18 0.74 0.915
GOCLS 98.48 1.48 90.25 0.67 0.916
Step 99.85 0.11 90.79 0.13 0.909
Cosine, Tmax = 350 99.96 0 90.92 0 0.91
Cosine, Tmax = 50 99.85 0.11 90.56 0.36 0.907

Ry,h

Fixed - 3.29 - 6.4 -
GOS - 3.06 - 2.51 -
GOALS - 1.7 - 1.55 -
GOCLS - 1.82 - 4.47 -
Step - 6.71 - 6.72 -
Cosine, Tmax = 350 - 0.95 - 4.99 -
Cosine, Tmax = 50 - 2.11 - 5.99 -

Table 4.3: EfficientNet-B0. The maximum mean values for both training and test accuracies
over the five runs are listed for SGD, RMSProp and Adam, for the fixed learning rates, GOS,
GOALS-4, step decay, cosine annealing with Tmax = 50 and 350 on EfficientNet-B0. Ry,h,
presents the sum of the differences, ψy,h,o, between the accuracies and the best one for each
optimizer. The maximum accuracies and the best robustness measured are shown in bold. The
ratios of training to test accuracies are listed in the last column.

Strategies Train overall, Ry Train rank Test overall, Ry Test rank Avg. Te./Tr.

Fixed 3.84 6 9.78 7 0.912
GOS 3.7 5 4.26 2 0.921
GOALS-4 2.17 3 3.29 1 0.921
GOCLS 2.53 4 6.63 4 0.915
Step 6.76 7 8.14 6 0.919
Cosine, Tmax = 350 0.95 1 6.1 3 0.914
Cosine, Tmax = 50 2.15 2 7.65 5 0.913

Table 4.4: The overall relative robustness measure, Ry, is computed by summing for ResNet-18
and EfficientNet-B0 in Tables 4.2 and 4.3. The best robustness measures, Ry, for training and
test accuracies are shown in bold. The average ratios of training to test accuracies over the two
problems are listed in the last column.

76

Chapter 5

Sub-dimensional Surrogates to Solve
High Dimensional Optimization
Problems in Machine Learning

5.1 Chapter overview

Approximation or surrogate models are widely used in optimization in either 1-D or full-
dimensional models. While a 1-D approximation is a computationally inexpensive approach,
it might not allow enough complexity to express the original problem for quick convergence. On
the other hand, while a full-dimensional surrogate model allows for fast convergence and a more
definite expression of the actual problem, this approach might require multiple computationally
costly function evaluations for a high-dimensional problem. For optimizing high-dimensional,
nonlinear, black-box problems, such as neural network problems, there needs to be a trade-off
between increasing the dimensionality for complexity and reducing the computational cost in
surrogate-based optimization. We try to achieve this balance by introducing sub-dimensional
surrogates, in short, subsurrogates. The dimensionality of the subsurrogate is between one and
the full dimension of the original problem, often much less than the full dimension. Since we
search for the potential in the subsurrogate-based optimization approach, we intentionally re-
move any advanced features from the approach. This means that we employ full-batch sampling
instead of mini-batch sampling, function-value-only surrogates instead of involving gradient in-
formation. Still, we add flexibility to the model by utilizing the cubic radial basis functions. We
tested this crude subsurrogate approach on the Ackley and sum of squares functions for various
data points, dimensions, and search directions. Lastly, we examine the approach on a simple
single-layer neural network problem with various choices in dimensions. The results showed that
the approach has merit in training DNN and deserves future research.

5.2 Introduction

High dimensional optimization problems, f : Rw → R, w ≫ 100, are either solved by successively
solving a series of one-dimensional problems, which includes classical gradient-based optimizers,
or by successively searching in the full w-dimensional space as is usually done by evolutionary
approaches [Yang et al., 2008a]. As a consequence surrogate-assisted optimization [Queipo
et al., 2005, Shyy et al., 2011, Shan and Wang, 2010, Kubicek et al., 2015] for high dimensional
optimization problems has received limited attention, and is considered to be computationally
intractable [Shan and Wang, 2010]. Recent attempts to address some of these challenges include
constructing multiple multivariate linear interpolation models over different sub-spaces of a 16
dimensional design domain [Kang et al., 2017], to predict low cycle fatigue life. Constrained
Optimization By Radial basis function Approximation (COBRA) has been used to solve a 124
dimensional vehicle dynamics problem subjected to 68 black-box inequality constraints [Regis,
2014]. The construction of surrogate models can be enhanced with gradient information, e.g.

77

weighted gradient-enhanced kriging (WGEK) [Han et al., 2013] has been used to combine a
number of sub-domain models to solve a 108 design variable problem for the inverse design of
a transonic wing [Han et al., 2017]. In turn, DYnamic COordinate search Response Surface
models (DYCORS) construct surrogate models for the full dimension but only selects a subset
of variables to be perturbed for additional DOE points to extend surrogate-based optimization
to 200 dimensional problems [Regis and Shoemaker, 2013].

As an alternative way to solve optimization problems in sub-spaces, the successive one-
dimensional updates of coordinate descent (CD), random coordinate descent (RCD) [Nesterov,
2012] and cyclic coordinate descent (CCD) [Canutescu and Dunbrack Jr, 2003, Sauer and
Bouman, 1993, Bertsekas, 1997, Wright, 2015] has been extended to block coordinate descent
(BCD) by selecting a subset or block of variables [Luo and Tseng, 2002, Richtárik and Takáč,
2014] to update. That is a high dimensional problem solved by successively solving sub-
dimensional problems. In evolutionary optimization, this concept was introduced as cooperative
searches by Potter and Jong (1994) [Potter and De Jong, 1994], and dynamically dimensioned
searches (DDS) by Tolson and Shoemaker (2007) [Tolson and Shoemaker, 2007]. Renewed inter-
est into CD and BCD has been sparked by success in various applications in statistical learning
[Friedman et al., 2008, 2010] and machine learning [Chang et al., 2008].

Research into CD and BCD has been largely limited to direct optimization of objective
functions with limited work on surrogate-based optimization, which are limited to the work by
Werth et al. [2017] that divides high-dimensional optimization problems into low-dimensional
sub-problems using the monotony and non-linearity tests to solve 1000 dimensional problems.
A sub-dimensional surrogate model can be optimized using appropriate optimizers that may
include gradient-based, gradient-free or evolutionary optimizers [Regis and Shoemaker, 2013,
Sun et al., 2017]. A number of research questions in sub-dimensional searches remains, which
includes:

1. Selection of sub-dimensional spaces: cyclically, randomly, elastic nets [Zou and Hastie,
2005], DM-HDMR [Mahdavi et al., 2014], monotony [Werth et al., 2017], non-linearity [Werth
et al., 2017], random decomposition method (DECC-G) [Yang et al., 2008a] and the self-adaptive
decomposition method [Yang et al., 2008b]; 2. Number of variables to define the sub-space; 3.
Which sub-space to select; 4. Appropriate test problems. In this study, we investigate in par-
ticular the utility of the gradient vector to select sub-dimensional spaces for a vanilla algorithm
that incorporates no heuristics. The availability of analytical gradients is becoming standard
with automatic differentiation numerical libraries such as Pytorch and Tensorflow [Paszke et al.,
2017, Shukla and Fricklas, 2018]. We demonstrate that the gradient vector allows for sensible se-
lection of sub-space over which to construct surrogate models for 500 dimensional test problems
that include Ackley and Sum of squares, in both their original description frames and rotated
description frames. We include the performance of CD and steepest gradient descent (SGD) as
baseline strategies. Various potential heuristics are proposed based on the lessons learned from
the test problems. Lastly, the sub-dimensional surrogate strategy was implemented to train
the Iris dataset with 11, 51, and 507 weight variables in order to compare the relationships be-
tween the training errors and test errors for a various number of dimensions for sub-dimensional
surrogates.

5.3 Sub-dimensional Surrogates

Given a function f : Rw → R, we may construct an v ≪ w dimensional surrogate function f̂n :
Rv → R that approximates f : Rv → R with the remaining variables xw−v

n kept fixed. Numerous
approaches have been proposed for CD and BCD strategies to select the v variables, which could
be used to construct an v-dimensional surrogate. These include cyclically, randomly, elastic nets
[Zou and Hastie, 2005], DM-HDMR [Mahdavi et al., 2014], monotony [Werth et al., 2017], non-
linearity [Werth et al., 2017], random decomposition method (DECC-G) [Yang et al., 2008a]
and the self-adaptive decomposition method [Yang et al., 2008b]. In this study, we investigate
the gradient vector to serve as a selection strategy, with gradients that are becoming more and

78

more accessible with the likes of automatic differentiation frameworks such as Tensorflow and
PyTorch that are used extensively in statistical learning, machine learning, deep learning, data
science and numerical modelling.

5.3.1 Sub-dimensional Greedy Surrogates

Given the current best solution xn, we compute the gradient ∇f(xn) and select the v gradient
components with the largest magnitudes to select the sub-space Rv in which we construct our
v-dimensional surrogates, i.e. we construct greedy v-dimensional surrogates following the four
steps:

1. Compute ∇f(xn ∈ Rw);

2. Select the v ≪ w variables, v, associated with the v largest components of ∇f(xn);

3. Sample the v-dimensional sub-space to obtain p new samples, while keeping the other

variables x
(w−v)
n fixed;

4. Using the p sampled designs, construct the sub-dimensional surrogate f̂n : Rv → R;

5. Find the minimizer xv∗
n ∈ Rv by minimizing f̂n;

6. Update xv
n+1 = xv∗

n to construct xn+1 ∈ Rw;

7. Repeat steps 1 - 6 until convergence or maximum iterations is reached.

As this is one of the first papers to investigate sub-dimensional surrogates to solve high
dimensional problems, our aim is not to propose state of the art algorithms but rather to inves-
tigate the potential merits of sub-dimensional surrogates to solve high dimensional problems.
In particular, we want to investigate the merits of using the gradient vector as a variable selec-
tion strategy. Hence, we only consider a base (or vanilla) algorithm without the incorporation of
heuristics for this study. This is done to allow us to explore the merits of solving sub-dimensional
surrogates, with a gradient-based selection criterion. Although we do not include heuristics, we
do offer a number of avenues that could be pursued to include heuristics that offers a substantial
improvement on the performance of the current study that could be explored in future studies.

Construction of Sub-dimensional Surrogates

At the nth iterate, given that xw−v
n ∈ Rw−v remains fixed, we construct an v-dimensional

surrogate f̂n : Rv → R. It is evident that information density over which we construct a
surrogate is critical i.e. larger domains require more sampling points for the same accuracy.
Although this is important, we simplify our study by fixing the sampling of surrogate domain
Ds to 120% of the original bound constrained domain D = {xmin

i ≤ Di ∈ R ≤ xmax
i , i ∈ v}.

The bound constraints are however imposed to be the size of the original domain, this is to
ensure we have a proper surrogate description at the bounds of the problem.

We, therefore, sample the sub-dimensional surrogate domain using Latin Hypercube Sam-
pling (LHS) [McKay et al., 2000] using p points. For the surrogate construction, we transform
D = {xmin

i ≤ Di ∈ R ≤ xmax
i , i ∈ v} to N = {0 ≤ Ni ∈ R ≤ 1, i ∈ v}. Hence, before evaluating

the surrogate, we first transform x ∈ Ds to z ∈ N .
In this study, we construct radial basis function (RBF) surrogate supplemented by a bias

and linear polynomials [Powell, 1992, 2005].

f̂(x) =
[
1 x

]

c1
c2
...
cp

+Σw
i=1λiΦi(x), (5.1)

79

using the cubic radial basis function

ϕ(ri(x)) = ri(x)
3, ri = ∥x− xi∥2, (5.2)

where ri(x) is the Euclidean distance x to the center xi of the i
th basis function. Given p = v

sampled LHS designs X ∈ Rv×p, with their associated function evaluations, f , the unknown
RBF weights λ and polynomial coefficients c are then solved from the following square system
of equations [

Φ P
P 0

] [
λ
c

]
=

[
f
0

]
, (5.3)

to obtain an interpolation based RBF approximation. Here, Φp×p denotes the matrix with
each ith row ϕi(xj) for

xj ∈ Xj , j = 1, ..., p. (5.4)

The cubic basis functions together with low order polynomials have been demonstrated by
Regis and Shoemaker [2013] and Ilievski et al. [2017] of which the linear polynomial tail ensures
for unique solutions if and only if the rank of the matrix P is 1 + w to obtain an invertible
coefficient matrix in (5.3) [Powell, 1992].

Sub-dimensional Surrogate Minimization

The sub-dimensional surrogates (or ‘sub-surrogates’ for compactness) are then minimized using
the Nelder-Mead algorithm [Nelder and Mead, 1965] by using MATLAB [2015] built-in optimiza-
tion algorithm fminsearch from 10 random initial starting points within the feasible domain.
Although we are solving 500-dimensional problems in this study for which Nelder-Mead is in-
tractable, our sub-dimensional surrogates are limited to 1, 2 and 4-dimensions. The optimization
is conducted from 9 random starting points, with the tenth point as the current best point.

The sub-dimensional minimizer zv∗
n ∈ N is then transformed to xv∗n ∈ D and the solution

for the next iterate constructed xn+1 ∈ Rw.

5.4 Numerical Study Outline

In this study, we first consider two well-known test problems, listed in Table 5.1, with n =
500 (MATLAB codes for the test problems supplied by Surjanovic and Bingham (2013) [36]).
We also include the performance of steepest gradient descent (SGD) and coordinate descent
(CD) algorithms. In addition, we include results for the problems formulated in their proposed
reference frame, as well as in an arbitrary rotated reference frame. This is to investigate the
performance when the formulated functions are separable as well as when there is a strong
interaction between the variables. That is the function f(x) expressed in the original coordinate
system x ∈ Rw is related to the arbitrary rotated function f́(x́) as follows x́ = Qx, where
Q ∈ Orth+ is an arbitrary proper orthogonal matrix, i.e. det(Q) = 1 as shown in Figure 5.1.
In this study, Q is constructed following a simple series expansion of an exponential map Q =
I + W + (1/2)WWW + (1/6)WWW + ... as outlined by Moler and Van Loan (2003) [37],
where W = απ

180(A−AT) and A is a random w ×w matrix, with each entry a random number
between −0.5 and 0.5.

Function xmin xmax f(x∗)

Ackley -32.768 32.768 0
Sum of squares -5.12 5.12 0

Table 5.1: Prescribed domain and the global minimum function values for the two test functions.

Although the problems under consideration are test problems, some of them are representa-
tive of actual objective functions often encountered in machine learning and deep learning. In

80

Figure 5.1: A function and the same function arbitrarily rotated to affect the variable interaction.

particular, the Ackley function is a good candidate for a typical state of the art deep network,
namely ResNet-56 [Li et al., 2017], as depicted in Figure 5.2. It is well known that objective func-
tion surfaces in machine learning often have large domains with low gradients and curvatures,
which surround higher curvature domains of the manifold [Goodfellow et al., 2014].

The remaining test problem, Sum of squares is representative of general ellipsoidal bowl-
shaped optimization problem that is coercive. This test problem is representative of classical
regularization or penalization that results in a coercive function given a sufficiently large regu-
larization parameter. We conclude our numerical study with the neural network training a deep
neural network on the Iris dataset to convey the basic findings of the potential impact of this
approach on machine learning when considering not only a training set performance but also the
test set performance for generalization of the trained result. Note that for the two test problems,
the gradients were computed analytically to resemble gradients from automatic differentiation
packages such as Tensorflow or Pytorch.

To allow for a systematic study, for both SGD and CD at every iteration, a fixed number
of function evaluations were taken along the descent direction using Latin hypercube samplings
(LHS) of the actual function. The update to the minimum function value was considered as the
update step at every iteration. Hence, the number of function evaluations per iteration for SGD
and CD matches the number of points sampled per iteration for a sub-dimensional surrogate
approach to generate surrogate models. For CD, the highest magnitude partial derivative in the
gradient is chosen as the coordinate to update. Lastly, the sampling domain is chosen to be 20%
larger than the surrogate optimization domain along the descent direction.

Surrogate optimizers are denoted 1-D, 2-D, and 4-D, while SGD1 and SGD2 denote SGD
sampling the univariate function along only the descent direction or sampling the univariate
function along the entire sub-domain, i.e. along ascent and descent of the univariate function.
Similarly, CD1 and CD2 respectively denote sampling along the descent direction or sampling
over the entire domain of the univariate function. It is important to note, that differences
between 1-D and CD2 are only due to the surrogate being minimized in 1-D using the same
sampling points as CD2.

We limit the maximum number of function evaluations to 105, for the sub-dimension v =
1, 2 and 4, using p = 8, 16, 32 and 64 LHS sampling points per iteration. As we do not vary the
size of the surrogate domain, the information density for each surrogate remains constant at
every iteration.

The expected values for each test problem were computed over 30 runs. The initial guesses
were taken randomly from the prescribed domains for each test problem as listed in Table 5.1.

81

(a) Ackley 2-D (b) ResNet-56

Figure 5.2: The Ackley function in 2-D (left) and the loss surfaces of ResNet-56 (right) [Li et al.,
2017], both functions are depicted on a log-scale for the function values.

5.5 Results

The results for our two test functions, Ackley and Sum of squares are discussed in this section.
Although it is expected for SGD to perform exactly the same for the unrotated and rotated
problems, observed differences are due to the stochastic sampling along the search directions.

5.5.1 Ackley Results

In particular, the results of the various optimizers on the Ackley function are shown in Fig-
ure 5.3(a)-(d). It is clear that as the number of sampling points increases, the higher sub-
dimensional surrogates are better defined and the respective variance of the 30 averaged solu-
tions decrease, e.g. for the 4-dimensional sub-surrogate the averaged response using p = 16
sampling points is more smooth than the p = 8 LHS points.

For p = 8 sampling points, the initial performance of the 2-dimensional sub-surrogate model
performs the best. The performance stagnates in the limit as the accuracy of the surrogate
is reached, since we do not reduce the volume of the domain over which the surrogate is con-
structed. The 1-D surrogates have a much higher sampling density and consequently result in a
significantly more accurate surrogate that is limited to a single dimension.

For p = 16 sampling points, the initial performance of the 4-dimensional sub-surrogate
model now performs the best, i.e. the higher sampling density results in a much more reliable
surrogate to guide the optimizer. In fact, using p = 16 points for 4-dimensional sub-surrogate
outperforms the 2-D sub-surrogate sampled using both p = 8 and p = 16 points. As expected,
the performance stagnates in the limit as the accuracy of the surrogates reaches a limit, since we
do not reduce the domain over which the surrogates are constructed. It is also evident that the
surrogates become more accurate in the limit as more sample points are used, however in most
cases to reach this accuracy a larger number of total function evaluations are required. The
exceptions here are the 4-dimensional sub-surrogate that obtains better solutions using fewer
total function evaluations when sampling p = 16 points as apposed to p = 8 samples, whereas
p = 32 and p = 64 results in better solutions but requires significantly more total function
evaluations to reach the same accuracy as p = 8 and p = 16 sampling points.

For p = 32 and 64 sampling points, it is evident that the required number of function
evaluations to reach a specific accuracy is significantly more. The total improvement of the

82

(a) p = 8 (b) p = 16

(c) p = 32 (d) p = 64

Figure 5.3: Ackley function sampled with (a) p = 8, (b) p = 16, (c) p = 32, and (d) p = 64 data
points at each iteration for unrotated (solid line) and rotated problem (dashed line) reference
frames for the problem description.

83

solution in the limit due to a better-resolved surrogate is also marginal. In turn, reducing the
problem dimension from 4-D to 2-D, and 2-D to 1-D significantly improves the accuracy of the
sub-dimensional surrogates in the limit. This study clearly demonstrates that surrogates do
not have to be either one-dimensional or full-dimensional, but sub-dimensional surrogates are
powerful in that they allow for an alternative mechanism between exploration and exploitation,
as well as adjusting sampling density given a fixed number of points. This adds an additional
mechanism to control the sampling density, which traditionally consisted of:

1. Sampling using more points to better resolve a surrogate;

2. Sampling over a sub-domain (but in the same sub-space) is closely related to using more
sampling points over sub-domain of the same volume, which this study complements with
a significant third mechanism;

3. Reducing the sub-dimension of the surrogate, which significantly enhances the limit accu-
racy of the surrogate.

We consider a second test function to demonstrate that a significant amount of work is still
required as the performance of Ackley, which seems to be well suited to a number of machine
learning and deep learning objective functions, does not necessarily apply to all test problems.
We, therefore, consider a second test problem namely the Sum of squares function that is a
coercive function (as ∥x∥2 → ∞, f(x) → ∞), which is distinct from the noisy flat planes of the
Ackley test function.

5.5.2 Sum of Squares Results

The results of the various optimizers on the Sum of squares function are shown in Figure 5.4(a)-
(d). Two significantly different characteristic changes are evident. It is clear that coordinate
descent performs much better on Sum of squares than Ackley.

For p = 8 sampling points, the initial performance of SGD1 (descent direction domain sam-
pling) and SGD2 (full domain sampling) and the 2-dimensional sub-surrogate models perform
the best, which is followed by the 4-dimensional and 1-dimensional sub-surrogate models. The
performance stagnates in the limit as the accuracy of the surrogate is reached.

For p = 16 sampling points, the initial performance of both CDs and 1-dimensional sub-
surrogate models are similar, with a significant improvement in the lowest error of the 1-
dimensional sub-surrogate model. The initial performance of the 4-D sub-surrogate model sig-
nificantly outperforms the 2-D sub-surrogate but it stagnates quicker than 2-D sub-surrogate
model.

For p = 32 and 64 sampling points, it is evident that the 2-D benefits from more sampling
points to obtain lower minima due to a higher sampling density. Importantly, the 4-D sub-
surrogate has the best initial performance of all the strategies, while the 1-D sub-surrogate
sampled using 64-points has the best overall final performance. Note the larger the number of
sampling points becomes the less iterations are achieved for a fixed number of function evalu-
ations. Hence, the graphs look stretched as the rate of decrease in the model errors affecting
the function value is slower than the rate of convergence of function value due to new models at
each iteration.

Although the performance of the various algorithms on Sum of squares is significantly differ-
ent to Ackley, the noteworthy observations based on Ackley are still evident on Sum of squares,
i.e. higher dimensional surrogates have significantly better initial performance and reducing the
surrogate sub-space significantly increases the sampling density.

For unrotated (solid) and rotated (dashed) Sum of squares descriptions, it is clear that by
increasing the interaction amongst the variables, the performance in general degrades. That
said, it is important to note that the severity is more pronounced for the lower dimensional
surrogates and alleviated for the higher dimensional surrogates. This is a critical observation:

84

(a) p = 8 (b) p = 16

(c) p = 32 (d) p = 64

Figure 5.4: Sum of squares function sampled with (a) p = 8, (b) p = 16, (c) p = 32, and (d)
p = 64 data points at each iteration for unrotated (solid line) and rotated problem (dashed line)
reference frames for the problem description.

85

(a) zoom-in view of Figure 5.3(d) (b) zoom-in view of Figure 5.4(d)

Figure 5.5: Performance differences between surrogate sub-dimensions when sampling using
p = 64 points on (a) Ackley, and (b) Sum of squares.

searching in sub-dimensions makes the optimization strategy less sensitive to stronger interaction
or coupling amongst the variables.

Evidently, higher sub-dimensional surrogates allow for better exploration and initial im-
provement, while lower dimensional surrogates allow for surrogates that are better resolved.
This opens up a new area of research to explore algorithms and heuristics that can be developed
to explore and exploit the benefits and trade-offs of sub-dimensional surrogates.

5.5.3 Discussion on Higher Versus Lower Dimensional Searches on Initial
Performance

We demonstrate that on all the test problems considered, the 4-D performs best, followed by
2-D, followed by 1-D sub-surrogates in Figure 5.5(a)-(b).

This clearly informs desirable characteristics for heuristics to be developed for sub-dimensional
surrogates, i.e. initial searches should be high dimensional, while lower the dimensionality of the
searches should be reduced as improvements are made. This is in addition to simple heuristics
that would have significantly improved the performance of our sub-dimensional surrogates in
this study but at the cost of obscuring insights due to the heuristic performance dominating the
foundational algorithmic performance. For example, choosing the best solution not only from
the best surrogate solutions but also from the best-sampled solutions. This would have com-
pletely hidden any indication of the quality of the surrogate surface. This just again emphasizes
the importance of using a vanilla sub-dimensional surrogate strategy in initial investigations. We
emphasize again this study does not propose a state of the art algorithm but clearly highlights
insight and focus points for potential heuristics in this domain of sub-dimensional surrogates.

5.6 Lessons Learned and Sensible Heuristics

Performance of the proposed vanilla flavored sub-dimensional surrogates can be significantly
improved by incorporating sensible heuristics. Based on the findings of our study, we outline a
number of potentially sensible heuristics as well as what they should aim to achieve.

5.6.1 Surrogate Dimensionality Heuristic

This study proposes sub-dimensionality of surrogates as a new domain of research. This study
clearly indicates that higher dimensional sub-surrogates offer better exploration and faster con-
vergence but suffers from low sampling density. This can be alleviated by decreasing the sampling

86

(a) Ackley (b) Sum of squares

Figure 5.6: Decreasing sub-surrogate dimensions for (a) Ackley (p = 16) and (b) Sum of squares
(p = 64) from 4-D to 2-D to 1-D.

(a) p = 8 (b) p = 16

Figure 5.7: Ackley function sampled with (a) p = 8 and (b) p = 16 data points at each
iteration. Sub-dimensional variable selection (1-D, 2-D and 4-D) is based on the gradient vector
or randomly selected (rand:1D, rand:2D and rand:4D).

domain, increasing the number of samples, and as shown in the results of this study reducing
the dimensionality of the domain over which the sub-dimensional surrogate is constructed.

Heuristics that identifies when to rather construct as a lower dimensional surrogate is very
important. The benefits of such a heuristic are demonstrated in Figure 5.6(a) and (b) for
the Ackley and Sum of squares test functions, where we start off initially with the 4-D sub-
surrogate that is then reduced to 2-D and finally 1-D for a sampling density of 16-points per
sub-dimensional surrogate.

5.6.2 Sampling Dimensions Heuristic or Strategy

Strategies to identify appropriate sub-dimensions for the construction of the surrogates also
plays a critical role. In this study, we considered a basic and effectively greedy strategy, where
we selected the partial derivatives of the gradient vector that is the highest magnitude. We
demonstrate the importance of a selection heuristic and selection strategy by considering the
random selection of a sub-space for the 1-D (denoted rand:1-D), 2-D (denoted rand:2-D) and
4-D (denoted rand:4-D) sub-surrogates for Ackley and Sum of squares which are depicted in
Figures 5.7(a)-(b) – 5.8(a)-(d).

87

(a) p = 8 (b) p = 16

(c) p = 32 (d) p = 64

Figure 5.8: Sum of squares function sampled with (a) p = 8, (b) p = 16, (c) p = 32, and (d)
p = 64 data points at each iteration. Sub-dimensional variable selection (1-D, 2-D, and 4-D) is
based on the gradient vector or randomly selected (rand:1D, rand:2D and rand:4D).

88

(a) Ackley (b) Sum of squares

Figure 5.9: Increasing the number of sampling points for (a) Ackley and (b) Sum of squares for
the 4-D sub-surrogate.

For the Ackley function, it is evident that the lower the sub-surrogate dimension the more
sensitive the solution to variable interaction and the more care should be exercised to select sub-
dimensions. In turn, the 2-D and 4-D sub-dimensional surrogates were less affected. In addition,
it is clear that there is room for improvement in using the magnitude of gradient components
for the 2-D and 4-D sub-dimensional surrogates, as the randomly selected sub-dimensions had
better initial performance than the sub-dimensions selected on the gradient criteria on Ackley
function.

That said for the Sum of squares function, the gradient component magnitude strategy
significantly outperformed the randomly selected sub-dimensions for the 1-D, 2-D and 4-D sub-
dimensional surrogates.

There is significant room for improvement on our investigated greedy gradient component
magnitude strategy to identify appropriate sub-dimensions for future research.

5.6.3 Sampling Quantity Heuristic

The number of sampling points can be increased e.g. doubled by going from 8 to 16 to 32 and 64
to obtain the performance depicted in Figure 5.9(a) and (b) for Ackley and Sum of squares. It
is evident from Figure 5.6(a) and (b) that reducing the dimensionality seems to be a much more
beneficial strategy to increase sampling density than increasing the number of points. That said,
increasing the number of points allows for a finer grained control of the sampling density, i.e. a
slight increase in the number of sampling points may supply enough information and allow for
a useful higher dimensional surrogate to be constructed.

5.6.4 Sampling Domain Heuristics

Closely related to the sampling quantity is the sampling volume for a given sub-dimension.
Reducing the sampling volume too aggressively results in a localized search early on, while
reducing the sampling volume too slowly may waste significant computational resources. Again,
the sampling allows for finer control of sampling density. In this study, we always constructed
surrogates over the entire domain, however, Figure 5.10(a) and (b) depict the potential benefits
of sampling an appropriate sub-domain. This was conducted by multiplying a dynamically
changing scaling factor τn with the distances from the current point xn to the boundaries of the
surrogates. The expression for τn is given by

τn = (
√
v)−1(1− 10−10)

(
1−

(
fevaln
fevalmax

)β)
+ 10−10. (5.5)

89

(a) Ackley (b) Sum of squares

Figure 5.10: Decreasing the sampling volume for (a) Ackley (p = 16 points) and (b) Sum of
squares (p = 32 points).

5.7 Neural Network Training

We now demonstrate that the behavior and performance observed on our test problems are
related to actual machine learning problems. Towards this aim we consider three neural network
architectures to solve the Iris dataset that has 4 input variables and 3 output variables for which
the gradients were computed using backpropagation. We consider 3 problems of neural network
(NN) with single hidden layer:

1. 1 node in the hidden layer resulted in a (4 + 1)1 + (1 + 1)3 = 11 variable problem;

2. 6 nodes in the hidden layer resulted in a (4 + 1)6 + (6 + 1)3 = 51 variable problem;

3. 63 nodes in the hidden layer resulted in a (4 + 1)63 + (63 + 1)3 = 507 variable problem.

All variables are initialized between -1 and 1. For training the network problems, a heuristic
method is implemented such that the optimization range is not fixed between -1 and 1 but the
range may slide dynamically along with the current solution xn so that xn always remains at
the centre of the range. This method allows for the sampling density to be constant while the
domain over which we sample may change.

The training errors are indicated with solid lines and the test errors are indicated by dotted
lines for 11, 51 and 507-D in Figures 5.11-5.13.

The results for the 11-D problem are similar to the results obtained for the test problems.
The multi-dimension surrogate search outperforms the univariate searches in terms of compu-
tational cost and generality as both the 2-D and 4-D achieve significantly improved test errors
for p = 32 and 64 sampling points (see Figure 5.11(c) and (d)). In fact, 2-D achieved the best
performance using p = 8 and p = 16 points, while 4-D saw significant improvement going from
p = 16 to p = 32 points. Both training and test errors of the 4-D are significantly higher when
lower number of sampling points were used (Figure 5.11(a)), however, as the number of points
increase, the lower the minimum (Figure 5.11(d)).

The trend between 51-D and 507-D are similar due to the simplicity of the problem due
to overfitting (see Figures 5.12- 5.13). It needs to be emphasized that the test errors for both
CD and 1-D sub-surrogate approaches are insensitive to the number of sampling points but for
2-D and 4-D sub-surrogate approaches, increasing the number of sampling points noticeably
increases convergence rate with decreases in both training and test errors.

90

(a) p = 8 (b) p = 16

(c) p = 32 (d) p = 64

Figure 5.11: Training Iris data set with the gradient-based variable selection approach for 11-D.

91

(a) p = 8 (b) p = 16

(c) p = 32 (d) p = 64

Figure 5.12: Training Iris data set with the gradient-based variable selection approach for 51-D.

92

(a) p = 8 (b) p = 16

(c) p = 32 (d) p = 64

Figure 5.13: Training Iris data set with the gradient-based variable selection approach for 507-D.

93

5.8 Conclusions

Currently surrogates are constructed for either 1-dimensions, i.e. line searches or full-dimensional,
i.e. standard surrogates. This study proposes sub-dimensional surrogates, i.e. constructing sur-
rogates in sub-dimensions between 1-dimension and the full-dimensions. We demonstrated that
there is merit in exploring this research domain using merely a vanilla sub-dimensional surro-
gate strategy, without any heuristics, yes, we even omitted the obvious ones on purpose. This
was done to ensure we investigate and learn from our investigation to gain further insight into
this new research domain of surrogate construction, namely, sub-dimensional surrogates. We
demonstrate that sub-dimensional surrogates are a viable approach to extend surrogate-based
optimization to even higher dimensions on two test problems as formulated and randomly rotated
to increase the variable interaction. Higher sub-dimensions allow for better initial improvement
and exploration that are less sensitive to variable interactions, while lower sub-dimensions allow
for better exploitation and are more sensitive to variable interactions. This study introduces two
new domains for heuristics in surrogate construction namely sub-dimensions to control sampling
density and heuristics to identify appropriate sub-dimensional spaces.

Based on our findings, we have identified the following areas of future research, which are to
develop heuristics that:

1. Identify when to reduce the dimensionality of the sub-dimensional surrogate;

2. Identifying appropriate sub-dimensions;

3. Scale the number of samples and sampling domain (sub-space) given the sub-dimension.

We concluded our study by showing that the carefully selected test problems for our study are
related to actual cost functions encountered in machine learning by training three neural nets
on a well-known test problem in machine learning, namely the Iris data set.

94

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The thesis searched for potential approaches for training deep neural network (DNN) architec-
tures using 1-D approximation models and reduced-dimensional surrogate models because the
computational cost of evaluating the function models grows every year. It is critical to keep
exploring alternative ways to training those complex architectures.

The motivation for utilizing approximation and surrogate models for optimization in DNN
is summarized to three points:

1. Efficiency for analyzing computationally expensive problems;

2. No need for figuring out the actual mathematical formulation for the black-box problems;

3. Transformation of discontinuous functions into smooth and continuous functions.

We began employing the 1-dimensional approximations as line searches because we may
quickly build up the complexity of problems because it is the lowest dimensional model. The
complexity includes the model errors manifested as biases and variances due to dynamic mini-
batch sub-sampling. To compare the performance of each line search method against other
learning rate strategies, we introduced a new relative robustness measure that considers both
inferior and best performances of each strategy across different problems. This is in contrast to
the traditional performance measure, which only analyzes the best performances. We can use
the relative robustness measure for choosing benchmark algorithms for unseen problems.

The first approach of employing a 1-D approximation for optimization was minimization
using the quadratic approximations. Although it may be the simplest model with the single
minimum with limited flexibility, we considered all possible variations in the information required
for the approximation. These included only function values, only directional derivatives, and the
three more mixtures of both function values and directional derivatives, hence, five quadratic
models in total.

Investigating the approximation errors of each model showed that the directional derivative
data at the starting point (origin) of the model is critical for reducing the variance in the errors,
and having a large amount of data does not necessarily decrease the model errors. This was a
crucial finding for line searches since it aims to find the local minima using minimization for this
approximation type.

Next, we enforced conservatism to the best performing quadratic approximation, ensuring
convergence with provided proof using a bracketing strategy at the cost of performance and
convergence rate. This allowed us to quantify the sacrifice in convergence rate when increasing
the robustness. The chosen model for this development was the gradient-only surrogate (GOS)
which requires two directional derivative points. The extended algorithm called Gradient-Only
Approximation Line Search (GOALS) consecutively constructs GOS along descent directions to
search for the stochastic non-negative gradient projection points (SNN-GPPs) until the curvature
condition satisfies.

95

We conducted several hyperparameter studies on GOALS. The hyperparameters include the
degrees of overshooting and undershooting, the initial guess, and whether to use the learning
rate in the previous iteration for the next. Various hyperparameters allow for examining how
they affect the performance of training DNN. The most robust initial guess at each iteration
was not using the previous resultant learning rate but the inverse of the norm of the direction
vector for each optimizer we employed. GOALS often does not allow to be as aggressive as GOS
in training with convergence criteria. Still, GOALS ranked second for both training and test
accuracies out of ten other strategies based on the relative robustness measure, led by GOS,
for a shallow network problem, and GOALS outperformed GOS for deeper network problems.
This showed deterministic approximation usage is a potential area for line searches and future
researches.

Line searches optimize the learning rate to satisfy its specified cost functions for a descent
direction. Therefore, it often requires more than one function evaluation per iteration. This
led to the exploration of the bound approximation approach for line search using Bayesian
classification. Our Gradient-Only Bayesian Classification Line Search (GOCLS) constructs two
bound approximations of each directional derivative sign using historical data to assume that
the location of the current SNN-GPPs is a function of previous iterations. Hence, GOCLS only
requires a single gradient computation per iteration, even as a line search.

GOCLS is efficient in computational cost and ranks fourth for training and test accuracies
among the seven state-of-the-art strategies, based on the relative robustness measures. These
results showed the Bayesian classification-based approach a clear research potential as a line
search. GOCLS is controlled by an intuitive hyperparameter called the target probability. This
regulates how often the resultant learning would observe a certain sign of directional derivative,
which means the user may control the degrees of overshooting and undershooting. The hyperpa-
rameter study for choosing the value showed that for all optimizers, including SGD, RMSProp,
and Adam, the overshooting improves convergence rates in training.

The last chapter about the sub-dimensional surrogate model approach was an introductory
chapter to a novel multi-dimensional selected variable model for training DNNs. We did not
restrict the dimensionality of the approximation approach to one. However, We attempted to
overcome the “curse of dimensionality” for the high-dimensional problem by employing a still
small but multi-dimensional approach to better comprehend the actual problem’s complexity.

To concentrate on the subsurrogate models’ behavior, we kept the test problem as small as
possible and utilized full-batch for clearing discontinuity. This does not mean that the model
is oversimplified. The subsurrogate model was constructed using the cubic radial basis function
with extra linear polynomial function to avoid under-rank issues.

As a crude subsurrogate model, several hyperparameters were explored, including the ap-
propriate dimension of the model, the choice of descent directions, the number of data points,
and the volume shrinkage rate for faster convergence. The approach tested on various high-
dimensional problems showed that we maintain rapid convergence in optimization when the
dimensionality of the subsurrogate reduces and the number of data points increases during
training. Although the subsurrogate model is still at a crude stage, the study shows that it is
worth investigating further for training DNNs as it is not as computationally expensive as a
full-dimensional surrogate. It expresses much more details than a one-dimensional approxima-
tion, line searches. Approximation and surrogate models are powerful tools in engineering and
sciences with the major downside of difficulties in high-dimensions. The thesis illustrated that
it could overcome these challenges with lower-dimensional models, and we hope that this work
sets a foundation for further researches.

6.2 Future work

As the future work for the deterministic function approximation line searches, we explore higher
dimensionalities of approximations to express more nonlinearity in the highly nonlinear prob-
lems. This would require a trade-off between reducing the number of function evaluations

96

required and reducing the approximation errors. The computational cost of higher dimensional
models would be compensated with the usage of the immediate accept conditions (IAC). One
could also adaptively change the dimensionality of approximations over the number of iterations.

As the future work of the stochastic bound approximation line searches, one could explore
various probability density functions to capture directional derivative signs’ distributions better.
The target probability of observing certain signs does not need to be fixed as we experimented.
This means that the target probability hyperparameter could vary over training DNNs. To
prevent the learning rates from increasing explodingly, one could attempt lowering the hyper-
parameter over the training. We also explore the number of historical data points to consider
for constructing bound approximation. This hyperparameter could increase as approaching the
end of training for steadier changes in learning rates.

As future work of the last chapter about subsurrogate models, we could develop a model in
which each weight consists of linear or nonlinear combinations of multiple variables in the ac-
tual problem. In this way, the subsurrogate model would control more variables simultaneously,
enhancing training speed and requiring fewer dimensions. However, choosing such combined
directions may require expensive computations. Hence, it is critical to efficiently finding the
causalities between variables. If one designs a model too complex, it requires more function eval-
uated points to regress on. Therefore, there needs to be a good balance between the resolution of
the model and computational cost. Although the thesis only explored the function-value-based
subsurrogate models, Snyman and Wilke [2018] introduces a gradient-only surrogate model for
discontinuous functions. Employing this to our surrogate approach may be a good direction
for the subsequent research to resolve the discontinuities in DNNs due to dynamic mini-batch
sub-sampling.

97

Appendix A

Appendix

A.1 Pseudocode for various approximations

Algorithm 6: StepSizeFGF

Input: α1, f̃0, f̃1, f̃
′
0, ε

Output: α∗

1 α∗ = α1

2 Define a matrix A2 and a vector b2 from (2.14)
3 if rank(A) = 3 then
4 Solve for the constants k = A−1b from (2.10)
5 if k1 > ε then
6 α∗ = max(αmin,min(−k2/(2k1), αmax))

Algorithm 7: StepSizeFFG

Input: α1, f̃0, f̃1, f̃
′
1, ε

Output: α∗

1 α∗ = α1

2 Define a matrix A3 and a vector b3 from (2.15)
3 if rank(A) = 3 then
4 Solve for the constants k = A−1b from (2.10)
5 if k1 > ε then
6 α∗ = max(αmin,min(−k2/(2k1), αmax))

Algorithm 8: StepSizeFGFG

Input: α1, f̃0, f̃1, f̃
′
0, f̃

′
1, ε

Output: α∗

1 α∗ = α1

2 Define a matrix A4 and a vector b4 from (2.16)
3 if rank(A) = 3 then
4 Solve for the constants k = A−1b from (2.10)
5 if k1 > ε then
6 α∗ = max(αmin,min(−k2/(2k1), αmax))

98

Algorithm 9: StepSizeGG

Input: α1, f̃
′
0, f̃

′
1, ε

Output: α∗

1 α∗ = α1

2 Define a matrix A5 and a vector b5 from (2.17)
3 if rank(A) = 2 then
4 Solve for the constants k = A−1b from (2.12)
5 if k1 > ε then
6 α∗ = max(αmin,min(−k2/(2k1), αmax))

99

Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from tensorflow.org.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437–478. Springer, 2012. ISBN 978-3-642-35288-1.

Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT press
Massachusetts, USA:, 2017.

El-houcine Bergou, Youssef Diouane, Vladimir Kunc, Vyacheslav Kungurtsev, and Clément W
Royer. A subsampling line-search method with second-order results. arXiv preprint
arXiv:1810.07211, 2018.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48
(3):334–334, 1997.

Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based modeling, feasibility
analysis, and optimization: A review. Computers & Chemical Engineering, 108:250–267, 2018.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Raghu Bollapragada, Richard Byrd, and Jorge Nocedal. Adaptive sampling strategies for
stochastic optimization. SIAM Journal on Optimization, 28(4):3312–3343, 2018.

Antoine Bordes, Léon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-newton stochastic
gradient descent. Journal of Machine Learning Research, 10:1737–1754, 2009.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

Leon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization Methods for Machine Learning.
SIAM Review, 60(2):223–311, 2018. ISSN 0036-1445. doi: 10.1137/16M1080173.

Wadii Boulila, Maha Driss, Mohamed Al-Sarem, Faisal Saeed, and Moez Krichen. Weight
initialization techniques for deep learning algorithms in remote sensing: Recent trends and
future perspectives. arXiv preprint arXiv:2102.07004, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

100

https://www.tensorflow.org/
https://www.tensorflow.org/

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample Size Selection in Optimization
Methods for Machine Learning. Mathematical Programming, 134(1):127–155, August 2012a.
ISSN 0025-5610. doi: 10.1007/s10107-012-0572-5.

Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic
hessian information in optimization methods for machine learning. SIAM Journal on Opti-
mization, 21(3):977–995, 2011.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical programming, 134(1):127–155, 2012b.

Adrian A Canutescu and Roland L Dunbrack Jr. Cyclic coordinate descent: A robotics algorithm
for protein loop closure. Protein science, 12(5):963–972, 2003.

Younghwan Chae and Daniel N Wilke. Empirical study towards understanding line search
approximations for training neural networks. arXiv preprint arXiv:1909.06893, 2019a.

Younghwan Chae and Daniel N Wilke. Sub-dimensional surrogates to solve high dimensional
optimization problems in machine learning. In Sergey Yurish, editor, Advances in Artificial
Intelligence: Reviews, chapter 2, pages 59–83. IFSA Publishing, 2019b.

Younghwan Chae and Daniel N Wilke. Empirical study towards understanding line search
approximations for training neural networks. arXiv preprint arXiv:1909.06893, 2019c.

Younghwan Chae, Daniel N Wilke, and Dominic Kafka. GOALS: Gradient-only approximations
for line searches towards robust and consistent training of deep neural networks. arXiv preprint
arXiv:2105.10915, 2021.

Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method for large-scale
l2-loss linear support vector machines. Journal of Machine Learning Research, 9(7), 2008.

Liming Chen, Haobo Qiu, Liang Gao, Chen Jiang, and Zan Yang. A screening-based gradient-
enhanced kriging modeling method for high-dimensional problems. Applied Mathematical
Modelling, 69:15–31, 2019.

Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. The Journal of
Machine Learning Research, 19(1):962–982, 2018.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data
fitting. SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical learning,
volume 1. Springer series in statistics New York, 2001.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

101

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning (Adaptive Computation
and Machine Learning series). The MIT Press, 2016. ISBN 0262035618.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural
network optimization problems. arXiv preprint arXiv:1412.6544, 2014.

Rajesh Kumar Gupta. Numerical Methods: Fundamentals and Applications. Cambridge Uni-
versity Press, 2019.

Zhong-Hua Han, Stefan Görtz, and Ralf Zimmermann. Improving variable-fidelity surrogate
modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerospace
Science and technology, 25(1):177–189, 2013.

Zhong-Hua Han, Yu Zhang, Chen-Xing Song, and Ke-Shi Zhang. Weighted gradient-enhanced
kriging for high-dimensional surrogate modeling and design optimization. Aiaa Journal, 55
(12):4330–4346, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Shoemaker. Efficient hyperparameter
optimization for deep learning algorithms using deterministic rbf surrogates. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26:315–323, 2013.

D. Kafka and D. N. Wilke. Resolving Learning Rates Adaptively by locating Stochastic Non-
Negative Associated Gradient Projection Points using Line Searches. Unpublished: In review
at the Journal of Global Optimization, 7 2019a.

Dominic Kafka and Daniel Wilke. Gradient-only line searches: An alternative to probabilistic
line searches. arXiv preprint arXiv:1903.09383, 2019b.

Dominic Kafka and Daniel N Wilke. Resolving learning rates adaptively by locating stochastic
non-negative associated gradient projection points using line searches. Journal of Global
Optimization, 79(1):111–152, 2021.

Kyeonghwan Kang, Ikjin Lee, and Donghyun Kim. Efficient metamodeling strategy using mul-
tivariate linear interpolation for high dimensional problems. In World Congress of Structural
and Multidisciplinary Optimisation, pages 234–241. Springer, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Science Department,
University of Toronto, Tech., 2009. ISSN 1098-6596. doi: 10.1.1.222.9220.

Martin Kubicek, Edmondo Minisci, and Marco Cisternino. High dimensional sensitivity analysis
using surrogate modeling and high dimensional model representation. International Journal
for Uncertainty Quantification, 5(5), 2015.

102

Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A tax-
onomy. arXiv preprint arXiv:1710.10686, 2017.

Vyacheslav Kungurtsev and Tomas Pevny. Algorithms for solving optimization problems arising
from deep neural net models: smooth problems. arXiv preprint arXiv:1807.00172, 2018.

Luc Laurent, Rodolphe Le Riche, Bruno Soulier, and Pierre-Alain Boucard. An overview of
gradient-enhanced metamodels with applications. Archives of Computational Methods in En-
gineering, 26(1):61–106, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. arXiv preprint arXiv:1712.09913, 2017.

K. Liu. 95.16% on CIFAR10 with PyTorch. https://github.com/kuangliu/pytorch-cifar,
2020.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts.
5th International Conference on Learning Representations, ICLR 2017 - Conference Track
Proceedings, aug 2017a. URL https://arxiv.org/abs/1608.03983.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017b.

Zhi-Quan Luo and Paul Tseng. A coordinate gradient descent method for nonsmooth separable
minimization. Journal of optimization theory and applications, 72(1), 2002.

Aleksandr Mikhailovich Lyapunov. The general problem of the stability of motion. International
journal of control, 55(3):531–534, 1992.

Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan. Cooperative co-
evolution with a new decomposition method for large-scale optimization. In 2014 IEEE
Congress on Evolutionary Computation (CEC), pages 1285–1292. IEEE, 2014.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic optimization.
arXiv preprint arXiv:1502.02846, 2015.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic optimization.
The Journal of Machine Learning Research, 18(1):4262–4320, 2017.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks.
arXiv preprint arXiv:1804.07612, 2018.

MATLAB. version 8.6.0.267246. The MathWorks Inc., Natick, Massachusetts, 2015.

Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 42(1):55–61, 2000.

Maximus Mutschler and Andreas Zell. Parabolic approximation line search: An efficient and
effective line search approach for DNNs. arXiv preprint arXiv:1903.11991, 2019.

John A Nelder and Roger Mead. A simplex method for function minimization. The computer
journal, 7(4):308–313, 1965.

103

https://github.com/kuangliu/pytorch-cifar
https://arxiv.org/abs/1608.03983

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation
functions: Comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to function
optimization. In International Conference on Parallel Problem Solving from Nature, pages
249–257. Springer, 1994.

Michael JD Powell. The theory of radial basis function approximation in 1990. Advances in
numerical analysis, pages 105–210, 1992.

Mike JD Powell. Five lectures on radial basis functions. Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2005.

Nestor V Queipo, Raphael T Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan, and
P Kevin Tucker. Surrogate-based analysis and optimization. Progress in aerospace sciences,
41(1):1–28, 2005.

Rommel G Regis. Constrained optimization by radial basis function interpolation for high-
dimensional expensive black-box problems with infeasible initial points. Engineering Opti-
mization, 46(2):218–243, 2014.

Rommel G Regis and Christine A Shoemaker. Combining radial basis function surrogates and
dynamic coordinate search in high-dimensional expensive black-box optimization. Engineering
Optimization, 45(5):529–555, 2013.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of math-
ematical statistics, pages 400–407, 1951.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Ken Sauer and Charles Bouman. A local update strategy for iterative reconstruction from
projections. IEEE Transactions on Signal Processing, 41(2):534–548, 1993.

Songqing Shan and G Gary Wang. Survey of modeling and optimization strategies to solve high-
dimensional design problems with computationally-expensive black-box functions. Structural
and multidisciplinary optimization, 41(2):219–241, 2010.

104

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Fanhua Shang, Kaiwen Zhou, Hongying Liu, James Cheng, Ivor W Tsang, Lijun Zhang, Dacheng
Tao, and Licheng Jiao. Vr-sgd: A simple stochastic variance reduction method for machine
learning. IEEE Transactions on Knowledge and Data Engineering, 32(1):188–202, 2018.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):1–48, 2019.

Nishant Shukla and Kenneth Fricklas. Machine learning with TensorFlow. Manning Greenwich,
2018.

Wei Shyy, Young-Chang Cho, Wenbo Du, Amit Gupta, Chien-Chou Tseng, and Ann Marie Sas-
try. Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics
problems. Acta Mechanica Sinica, 27(6):845–865, 2011.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017.

Jan A.. Snyman and Daniel N.. Wilke. Practical Mathematical Optimization: Basic Optimization
Theory and Gradient-based Algorithms. Springer., 2018.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Chaoli Sun, Yaochu Jin, Ran Cheng, Jinliang Ding, and Jianchao Zeng. Surrogate-assisted
cooperative swarm optimization of high-dimensional expensive problems. IEEE Transactions
on Evolutionary Computation, 21(4):644–660, 2017.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147. PMLR, 2013.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

Bryan A Tolson and Christine A Shoemaker. Dynamically dimensioned search algorithm for
computationally efficient watershed model calibration. Water Resources Research, 43(1), 2007.

Ky Khac Vu, Claudia d’Ambrosio, Youssef Hamadi, and Leo Liberti. Surrogate-based methods
for black-box optimization. International Transactions in Operational Research, 24(3):393–
424, 2017.

Chong Wang, Xi Chen, Alex Smola, and Eric P. Xing. Variance reduction for stochas-
tic gradient optimization. In C J C Burges, L Bottou, M Welling, Z Ghahramani,
and K Q Weinberger, editors, Advances in Neural Information Processing Systems,
pages 181–189. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5034-variance-reduction-for-stochastic-gradient-optimization.pdf.

Bernhard Werth, Erik Pitzer, and Michael Affenzeller. Enabling high-dimensional surrogate-
assisted optimization by using sliding windows. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 1630–1637, 2017.

Daniel N Wilke. How to get rid of discontinuities when constructing surrogates from piece-
wise discontinuous functions. In Proceedings of the 7th International Conference on Discrete
Element Methods. Springer, 2016.

105

http://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization.pdf
http://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization.pdf

Daniel Nicolas Wilke, Schalk Kok, Johannes Arnoldus Snyman, and Albert A Groenwold.
Gradient-only approaches to avoid spurious local minima in unconstrained optimization. Op-
timization and Engineering, 14(2):275–304, 2013.

Adrian G. Wills and Thomas B. Schön. On the construction of probabilistic Newton-type
algorithms. In 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017,
volume 2018-Janua, pages 6499–6504. IEEE, 2018. ISBN 9781509028733. doi: 10.1109/CDC.
2017.8264638.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems, volume 2017-December, pages 4149–4159, 2017.

Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.

Philip Wolfe. Convergence conditions for ascent methods. ii: Some corrections. SIAM review,
13(2):185–188, 1971.

Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,
2015.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using cooperative
coevolution. Information sciences, 178(15):2985–2999, 2008a.

Zhenyu Yang, Ke Tang, and Xin Yao. Multilevel cooperative coevolution for large scale op-
timization. In 2008 IEEE congress on evolutionary computation (IEEE World Congress on
Computational Intelligence), pages 1663–1670. IEEE, 2008b.

Rahul Yedida, Snehanshu Saha, and Tejas Prashanth. Lipschitzlr: Using theoretically computed
adaptive learning rates for fast convergence. Applied Intelligence, 51(3):1460–1478, 2021.

Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. dec 2012a. URL
http://arxiv.org/abs/1212.5701.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012b.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven HOI, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. arXiv preprint
arXiv:2010.05627, 2020.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

106

http://arxiv.org/abs/1212.5701

	List of Abbreviations
	List of Symbols
	Overview
	Training strategies for DNNs
	Various optimizers for DNNs
	Adopting surrogate models for training DNNs
	Rationale of chapters
	Part 1: Line searches with 1-D approximation models
	Part 2: Optimization with sub-dimensional surrogate models

	Empirical Study Towards Understanding Line Search Approximations For Training Deep Neural Networks
	Summary of chapter
	Introduction
	Related work
	Using approximations for line searches

	Enforcing selective information to construct 1D quadratic approximations
	Pseudocode and implementation details
	Experimental setup
	Experimental results
	Conclusion

	GOALS: Gradient-Only Approximations for Line Searches Towards Robust and Consistent Training of Deep Neural Networks
	Chapter overview
	Introduction
	Background
	Dynamic mini-batch sub-sampling
	Gradient-only optimality criterion
	Line searches for dynamic MBSS loss functions
	Gradient only surrogate (GOS)

	Robustness measure, R
	Gradient-only approximation line search (GOALS)
	Immediate accept condition (IAC)
	Bracketing strategy
	Proof of convergence

	Numerical study design
	Hyperparameter settings of GOALS
	Numerical study 1 setup
	Numerical study 2 setup

	Results of numerical study
	Results of numerical study 1
	Results of numerical study 2

	Conclusions

	GOCLS: Gradient-Only Line Search With Bayesian Classification Approach For Training Neural Networks
	Chapter overview
	Introduction
	Related work
	Dynamic mini-batch sub-sampling
	Comparisons of learning rate strategies
	Objective functions for optimization approaches
	Comparisons of line searches for training DNNs
	Relative robustness measure, R

	Gradient-only classification line search
	Derivation of gradient-only classification line search (GOCLS)
	Pseudo-code for GOCLS

	Numerical study design
	Numerical study 1: Hyperparameter studies
	Numerical study 2: Performance comparison
	Standard experiment setting for numerical study 1 and 2

	Results of numerical study
	Numerical study 1: hyperparameter study
	Numerical study 2: Comparison between various learning rate strategies

	Conclusion

	Sub-dimensional Surrogates to Solve High Dimensional Optimization Problems in Machine Learning
	Chapter overview
	Introduction
	Sub-dimensional Surrogates
	Sub-dimensional Greedy Surrogates

	Numerical Study Outline
	Results
	Ackley Results
	Sum of Squares Results
	Discussion on Higher Versus Lower Dimensional Searches on Initial Performance

	Lessons Learned and Sensible Heuristics
	Surrogate Dimensionality Heuristic
	Sampling Dimensions Heuristic or Strategy
	Sampling Quantity Heuristic
	Sampling Domain Heuristics

	Neural Network Training
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future work

	Appendix
	Pseudocode for various approximations

