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Abstract

The management and control of inventory has become a core part of management,

which plays a significant role through achieving efficient and profitable operations

of a business organization. Hence, considerable efforts have been made to develop

models that can be implemented to optimize inventory systems without compromis-

ing customer needs. The classic Economic Production Quantity (EPQ) model is the

most widely used of these models; however, this model presents certain limitations,

leading researchers to extend some of the assumptions to increase its applicability

to present-day organizations. In manufacturing, studies of the functional state of

equipment have, for a long time, been based on binary modelling conditions where

two states were considered: the operational state and the complete failure state.

However, a growing literature takes into consideration the numerous scenarios that

may occur during the lifetime of some equipment. Such systems are called Multi-

State Systems (MSS). Thus, in this dissertation, a perishable replenishment policy

is developed based on the MSS concept to optimize a EPQ model that operates in

a degraded state, producing both perfect and imperfect products, under constant

demand and backlog dependent-demand. The cycle was assumed to start with a

particular production rate until a point when the inventory reached a certain level,

and after which the failure mode was activated due to the deterioration of certain

components, and the production rate was reduced to a lower rate to ensure the con-

tinuity of supply, until the maximum inventory level was reached. Production then

stopped to restore the machine and the cycle started again. The model assumed that

inventory was subject to deterioration, the demand rate was constant, and partial

backlogging was allowed. The work done included an exploration of the modelling

methods, analysis and evaluation of the performance of the multi-state system in

which the level of service relies on the state of the equipment during the production

cycle. An evaluation and optimisation of the system’ performance indicators such as

inventory levels, backorder level, cycle time and the total cost function were carried

out. Due to model complexity, the Newton-Raphson approach was used to solve

the model and numerical examples are provided to illustrate the solution procedure.

Based on the results, the presence of imperfect quality outputs forced the system

to produce more items to meet the needs for perfect quality items. As the propor-

tion of imperfect quality items produced increased, the proportional increase in cost

seems to have grown more quickly. As the production rate in the first production-

consumption cycle increased, the total cost function increased; this was mainly due

to higher production cost, holding and disposal costs incurred. However, as the



inventory holding cost rate increased, the optimal inventory levels decreased, the

cycle time decreased, but the shortage and the total cost increased. The decrease in

production rate during the second production-consumption cycle was shown to have

increased the cycle time and the inventory level in the first cycle, but decreased the

inventory level in the second cycle and the total cost. Sensitivity analysis showed

that working with low values of cost parameters provided better results in terms of

optimizing the total cost.

The EPQ model presented in this research can be used by production managers,

working in industries such as assembly lines, steel factory, hydrometallurgical plants

under different operational scenarios, as a guideline when making production deci-

sions.
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Chapter 1

Introduction

1.1 Background

Every organization holds inventory. According to Chase et al (2007), inventory rep-

resents the quantity of a given resource or item utilized by an organization. In other

words, inventory is a quantity of material resources owned and stored by a business.

For an organization to grow and survive, inventories play a vital role because excess

inventory may arise as a result of poor management of inventory level. This in turn

leads to an upsurge in the cost of inventory. In addition, inventory shortage may

lead to poor service levels and customer dissatisfaction. Without inventories, most

operations in an organization are impossible. It is thus critical to have the right

levels of inventory because it allows operations to be more productive and efficient.

Systems of managing inventories are essential in helping businesses with the mini-

mization of costs incurred as well as maximization of profits. This is achieved by

ensuring that customer demands are met mainly by delivering the correct quantity

and quality, of goods at the right time and place.

Poor inventory management affects product availability, delivery lead time, organi-

zation’s performance, customer satisfaction, service level and the perceived product

value. They affect the operating cost, and consequently, the return on investment,

profit and assets. Without proper inventory management, organizations may not

function properly. It, therefore, becomes vital to manage the inventory that must be

held. Inventory management affects multiple departments such as sales, marketing,

procurement, production and finance within an organization and across the entire

supply chain. Inventory management is a well-studied area that has been researched

for over a century. Clodfelter (2010) argued that effective inventory management

benefit businesses in: 1) delivering good services; 2) optimizing the investment level

required for proper inventory planning and allocation; 3) earning discounts on trade
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procurements; 4) ensuring the procurement and storage of materials that meet the

required product specifications; and 5) efficient management of production sched-

ules. Nevertheless, effective inventory management presents some challenges for

businesses. Many business organizations face conflicting objectives of improving

customer service by preventing under-stocking, which may result in lost orders and

lost sales, and minimizing the costs of manufacturing finished goods. Therefore,

businesses should meticulously manage their inventories to balance these conflicting

objectives and achieve the best trade-off option between them in terms of optimality.

Another issue in the control of inventory is the cost associated with the deteriorating

nature of stocked items. Wee (1993) defines deterioration or spoilage as any process

that inhibits the usage of an item for its intended original use. Most inventory mod-

els assume implicitly that stored items have infinite shelf life, meaning that stocked

products remain unchanged and fully usable for future demand satisfaction. The

effect of the deterioration rate can be ignored if it is low and negligible; however,

in most cases the effect of deterioration rate plays a significant role and its impact

must be considered explicitly.

Manufacturing organizations face significant challenges such as, availability of equip-

ment and other resources, flexibility of manufacturing systems, reliability of the pro-

cesses, the quality of the output products, and the integration of new products and

services into the existing production process. The optimal policy of production to

satisfy a certain demand is determined using Economic Production Quantity (EPQ)

models. The condition of a fixed rate of production is used while developing a clas-

sical EPQ model. However, production rate has been determined to be dependent

on the type of process. Production processes with small production runs are less

complex and have a lower setup cost requirement compared to long runs with several

units of operations (Mukhopadhyay and Goswami, 2013). This means deterioration

is more likely to occur in production processes with long production runs. Obser-

vations of production processes deterioration have been made in many industrial

organizations such as plastic industry, assembly lines, steel manufacturing and food

processing. The problem that arises is determining the production plan to satisfy

the demand while minimising the system’s total cost in a manufacturing system

characterised by breakdowns, and degradation of the machines. A fundamental

characteristic of a production system is that it behaves like a chain, in which each

link has an impact on the rest of the chain; in other words, machines in a manu-

facturing system can enhance the production policy of a given system and deliver

services more promptly or have the opposite impact on the system. That is, while

developing EPQ models for inventory systems, the state of equipment should not
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be neglected. For example, any shortage of raw materials or machine breakdown in

production could have repercussions on the end product.

The dependency between production run and the type of production process is also

effected by the quality of the production output. Significant studies have been con-

ducted on inventory models, lifting the assumption that only perfect quality items

are produced within an organization. Various research have extended the model to

represent different and more realistic inventory systems. Rosenblatt and Lee (1986)

presented the first work dealing with inventory management with imperfect quality

items in a production system, and there still seems to be opportunities for further

research in this area. The effects of integrating quality control into the Economic

Order Quantity (EOQ) model were studied by Porteus (1986). Schwaller (1998)

presented a model that assumes the presence of imperfect quality items in a known

proportion. His study further considered the application of fixed and variable in-

spection costs when finding and removing the item. Inspection policy and joint lot

sizing were considered by Zhang and Gerchak (1990) in an EOQ model with ran-

dom yield. Chiu et al. (2011) proposed a numerical method for determination of

the optimal Lot Size for a manufacturing system with discontinuous issuing policy

and rework. Cheng (1991) proposed an EOQ model with demand-dependent unit

production cost and imperfect production processes. Chiu (2003) generalized the

model in Hayek and Salameh’s (2001) model by considering a production process

with random defective rate where the defective items are reworked and unsatisfied

demand is backlogged. El-Kassar et al. (2007) considered continuous demand of

perfect and imperfect items in production systems.

A good production policy is crucial for optimising any system. This requires reliable

equipment, good quality of finished products, and a production planning which con-

siders contingencies and adequate inventory management. This study will extend

the basic EPQ model by relaxing three implicit assumptions made in Bhowmick

and Samantha (2011). The first assumption is that production systems are deteri-

oration free and that performance indicators such as production rates, inventories

levels, cycle time, backorder level are independent of production process state. They

therefore, assumed that the equipment of the manufacturing system could operate

efficiently, without breakdown over a finite planning horizon.

The study of manufacturing systems has long been based on binary modelling where

a system is either perfectly operational or in complete failure state (out of service).

Although such modelling has, in practice, numerous practical applications, it is

still not adequate to capture many situations that may arise in real-life and that
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may affect their performance. A growing literature considers numerous cases that

may occur during the lifetime of some systems, Multi-State System (MSS) is the

term associated with such systems. MSS’s are usually subject to many different

types of changes with different impacts on the systems’ performances. Deteriorated

or degraded state is considered as one of the states; it allows the MSS to continue

to perform its service with a decrease in the performance caused by the breakdowns.

The second assumption relaxed is that all the finished products are of acceptable

quality. Realistically, it is not always possible in any production process to produce

all items of perfect quality. The production of imperfect quality items is a natural

occurrence in production process. Hence, it is very unlikely that perfect quality

will be achieved for all the items produced from a production process. The third

assumption relaxed is that shortages are fully backlogged. Sometimes customers may

not be willing to wait until the next replenishment before their order is fulfilled.

As a result, some of the customer orders received might be lost, and this is the

assumption made in this study, that is some proportion of customer demand not

met immediately is lost.

1.2 Motivation

Nowadays, challenges like increasing difficulties in procurement, difficult production

management conditions and the complexities of the operational techniques applied

within a business organization (such as identifying suitable methods for managing

the flow of goods and services, the number of variety of products, the complex nature

of demand predictions, fast-changing customer preferences, the competitiveness of

manufacturing firms, shortened product lifetimes, as well as the impact of the deteri-

oration in inventory management), make the production and replenishment policies

for deteriorating goods rather complex and attract the attention of both business

managers and researchers.

For years, researchers in production-inventory system have been studying different

mathematical models that have constant production rates. However, in reality, the

production rate in a manufacturing environment is subject to many challenges. The

problems faced by manufacturing companies can be strategic, tactical or operational.

These problems may be linked to various variables such as rapid growth, the com-

plexity of planning and scheduling processes, the difficulties of delivering on time

due to lead time changes, material flow, labour shortage, complex inventory man-

agement policies and raw material purchasing decisions, inability to assess various
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scenarios and measure their impacts, the nature of the product, the requirements of

consumers, low equipment performance and reliability, ageing manufacturing com-

ponents, costly distribution methods, and competition with other organizations.

When planning for production, possibilities of manufacturing defects have to be

taken into consideration. Typical EPQ models assume perfect production processes

with reliable equipment and perfect product quality. Imperfect production processes

and imperfect quality items are common in manufacturing. During the production

process, some of the items produced are considered imperfect, and this defect in the

product quality may be the result of many factors, such as human error, process

deterioration, wide tolerance, equipment failure, mishandling, and incorrect speci-

fications for raw materials (Al-Salamah, 2019). Machines are usually set up at the

beginning of the production of a batch. Moreover, it is usually assumed that the

production process is under control and that the items produced are of acceptable

quality. In general, manufacturers are often confronted with the problem of mea-

suring system capacity. So if one looks at a manufacturing system like a complex

sequence with several unit processes, each with its characteristics, questions such as

what is the system capacity, what the capacity of the plant is, how much to produce,

how the production depends on the equipment used, the type of equipment the op-

erator uses and the way they operate, amongst others, become central issues that

manufacturers have to address in production and capacity planning. Thus, running

a system without correctly addressing the issues mentioned above may, for instance,

accelerate the production process deterioration leading to a complete shutdown of

the production chain (Shib et al., 2007). Deterioration of processes is a source of

malfunction in manufacturing, and it affects the system in various ways (Hall, 1983).

It can lead to product defects, which in turn may affect the quality of the product. It

may cause process stoppages and failures, which may affect the entire process’ avail-

ability. Ben-Daya et al. (2008) demonstrated that process deterioration could also

be the cause of minor stoppages and the reduction of productivity (speed losses),

which can affect the efficiency of the process. Over the past few years, many stud-

ies addressed the effects or process deterioration on process availability (Ben-Daya

and Rahim, 2001). However, the combined effect on process efficiency, quality of

the items produced, equipment’s reliability and process deterioration have not been

adequately discussed in literature. This dissertation is intended to contribute in this

direction.

In addition, EPQ models are widely used in industries and despite the successful ap-

plication of EPQ models in management of inventory in the previous century, EPQ

models still bear quite a number of unrealistic assumptions. One such assumption
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is that all the items are deterioration free; however, some items change while in

storage. Hence, they become either entirely or partially unfit for use with time.

Deterioration refers to a product’s vaporization, spoilage, damage, or obsolescence

(Wee, 1993). Generally, it may be assumed that products deteriorate over time,

leading to a decline in either their utility or their price compared to the original

(Hsu et al., 2007). An ever-increasing variety of items such as food, health care

products, perfumes, vegetables, biotechnology products, pharmaceuticals, cosmet-

ics, radioactive and many chemical products are classified as deteriorating products.

As per the definition, there are two categories of deteriorating items. The primary

category are items that lose some or all of their value over a period, such as phones

and computer chips. The secondary category refers to items that evaporate, decom-

pose or expire, such as chemical products, vegetables, meat, flowers, pharmaceutical

products, and fruits. The current market trend is that customers demand not only

more product’s varieties but also items of good quality. This fact makes modelling

the inventory systems more challenging. Moreover, a price markdown policy is often

used as the product’s best before date approaches to remove deteriorated items from

those still in a condition to satisfy the demand. Integrating these approaches into

inventory control makes models more complex to develop.

Nowadays, the effects of deterioration cannot be neglected. Deterioration can also

lead to product imperfections. This and the costs associated with recycling/disposal

processes for expired/deteriorated products complicate the modelling of the system’s

costs. Therefore, efficient inventory management has a significant effect on a com-

pany’s competitive advantage and profitability.

1.3 Problem statement and objectives

1.3.1 Problem statement

Production systems are combinations of materials handling equipment and pro-

cessing machines set up to deliver the expected products. This is accomplished by

maintaining a smooth flow of components throughout the system to prevent produc-

tion waste. Technological progress has provided several possibilities for production

managers to exercise better control over a production plant’s performance, both

from production logistics and quality perspectives. However, the integrated analysis

of both the productivity of unreliable systems and the quality of finished goods in

manufacturing has received limited attention.

In the context of this dissertation, special attention has been given to a continuous

6



production system with unreliable equipment subject to breakdowns, and also hav-

ing both deteriorating inventory and imperfect production outputs. Several prob-

lems may arise in such production systems, of which imperfect processes and im-

perfect products are considered here. Production process deterioration, which is the

degradation of equipment in a production environment, represents one of the obsta-

cles to achieving high productivity with minimal rejects. Generally, degradation or

deterioration of production processes and deteriorating inventory, are known to be

detrimental, but they cannot be permanently eliminated. For this reason, it is vital

to identify the causes of degradation of processes, defects in quality outputs and

deteriorating inventory system, understand their relationship with the manufactur-

ing system, and quantify its impact on the system’s performance. Also, modelling

systems with imperfect products make inventory control and replenishment policy

challenging, which leads some researchers such as Tsou et al. (2012) to restrict

the expressions that represent the perfect, imperfect or defective products to con-

stant values and establish a relationship between their models and the classical EPQ

model.

1.3.2 Objectives

Studying a system from a production perspective consists of identifying the rela-

tionship and interaction between people, technology and resources, to understand

how a system works, what constraints limits its performances, how to evaluate its

performance levels and implement strategies for optimising them and how to quan-

tify decisions trade-offs so that a company can plan, allocate and utilise its resources

effectively. The following objectives were determined based on the problem state-

ment:

1. To characterise the modelling of deterioration processes based on the assump-

tions of published works in the literature.

2. To explore modelling methods, and optimization of manufacturing systems

with equipment subject to breakdowns.

3. To propose the scheme of multi-state production systems, which incorporates

the continuity of production in the failure state.

4. To model, analyse and evaluate the performance of a manufacturing system

with unreliable machines and the impact of its parameters on the manufactur-

ing objective.

To meet these objectives, this dissertation aims to answer the following research

questions:
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1. How can one develop a replenishment policy for deteriorating inventory in a

manufacturing system for both perfect and imperfect production based on a

multi-state system?

2. What is the appropriate method for solving this model to handle the multiple

state nature of the manufacturing system, the imperfect production outputs

and the deterioration of inventory?

3. Does any evidence exist to support the robustness of the developed model and

whether the model can handle different real-life scenarios?

1.4 Scope of the study

The themes presented in this study are deteriorating items, imperfect quality prod-

ucts, performance, backlog, unreliable equipment and multi-state system. The first

theme implies that the available inventory of items produced undergoes changes

with time while in storage. The second theme implies a production system that is

not defect-free; as a result, a portion of items produced is considered defective and

unfit to meet the customer demand. The third theme implies the measure of the

physical nature of the outputs of the manufacturing system. The performance can

be structural, functional, behavioural, etc. Thus, productivity or capacity, reliabil-

ity, availability and speed rate may represent the performance measure of a given

system. Backlog implies all the unfulfilled demand. Unreliable equipment implies

machines that are subject to breakdowns. A lot of elements cause equipment failure,

and many failures happen randomly. Lastly, a multi-state system involves a flexible

industrial system based on automatic internal activation of mechanisms for recon-

figuring a system to ensure the continuity of an operation when a failure occurs. In

such a situation, a failure results in a decrease in the system’s performance, but not

systematically in its total shutdown.

1.5 Research methodology

Bertrand and Fransoo (2002) suggested several methodologies for performing quan-

titative research in operations research (OR) and operations management (OM).

The following methodology, which was previously adapted from their methodolo-

gies, served as the basis in conducting the research discussed in this dissertation:

• Conceptual model of the process or problem: The first step is the

identification of a problem. The proposed inventory systems are described in

depth. These descriptions are based on real situations in organizations that
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produce items, certain number of which are defective, and the remaining are

subject to deterioration once stored.

• Scientific model of the process or process: Mathematical models are

developed based on the problem statements. Since mathematical models are

intended to reproduce real situations as closely, clearly and concisely as pos-

sible, several assumptions are made to bridge the gap between reality and the

mathematical formulation of the problems.

• Solution to the scientific model: Solution procedures for solving the pro-

posed mathematical models are presented. The solution algorithm techniques

are then applied to numerical examples to solve the conceptual problem or

process.

• Proof of the solution: Finding the solution and proving the correctness

of the solution play an essential role in research methodology. The proof of

solution demonstrates that solutions to the mathematical models describing

the proposed production systems exist.

• Insights related to the conceptual model: As seen from Figure (1.1), a

sensitivity analysis is conducted to examine the robustness of the developed

model. The results found are then used to make suggestions and recommen-

dations on the manufacturing systems for deteriorating items.

1.6 Framework of the dissertation

This dissertation is divided into six chapters. The research topic and particularly

the research gaps were introduced in chapter one. These gaps are mainly in the

area of inventory management as discussed, leading to the definition of the research

problem. In addition, the main research objectives, aims, research questions and the

methodology adopted, which is a combination of mathematical modelling, analytical

approaches and sensitivity analysis, have also been defined.

The literature review is composed of three main areas which are divided into three

chapters:

Chapter two provides a literature review focusing on the fundamental thinking and

principles of inventory management as shown in Figure (1.1). A definition of terms

used, description of features in inventory management are provided as well as the

classical EOQ model. A description of some extensions that have been made in
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Figure 1.1: Proposed Research Methodology
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recent years is also presented. This chapter provides a broad overview subsequently

setting the scene before moving to other core chapters of the dissertation.

Chapter three: provides a comprehensive systematic literature review focusing on

deteriorating inventory replenishment. Through this review, a description of the

modelling philosophy of deteriorating replenishment policy as well as other cat-

egorizations based on demand functions and objective function’s components are

discussed. A classification of works on deteriorating inventory is also provided.

Chapter four: provides a review focusing on the deteriorating processes in manufac-

turing systems. A review of the literature on deterioration of production equipment,

inflexible manufacturing systems, flexible manufacturing systems with unreliable

equipment, as well as the integration of quality are examined. Finally, a concluding

section and motivations for the model that will be proposed in the next chapter is

also provided.

The remaining sections of this dissertation are divided as follows:

Chapter five: addresses the main objective of the study, which is the development

of a deteriorating replenishment EPQ model for a MSS with imperfect quality and

variable production rate. Firstly, the MSS model is described for a manufacturing

system in which the deterioration of equipment leads to a change in the production

rate i.e. switching from one rate to another. Prior to meeting the customer’s de-

mand, good items are separated from defective ones by screening with the defective

products disposed of. The stock is depleted and a level of backlog is attained after

which the production commences again, clearing the backlog, after which the cycle

starts again. In developing the model, the relevant variables are first defined. The

mathematical model is then formulated, as a set of differential equations representing

the different time periods of the entire cycle. The relevant optimisation technique is

used to solve the models and the feasibility conditions of the decision variables are

introduced. To illustrate the use of the solution methodology, numerical examples

are presented. Sensitivity analyses are also conducted to determine the situations

under which each model parameter is most sensitive.

Chapter six: the conclusion, where a summary of possible practical applications and

contributions are presented. Potential topics for future research work and research

perspectives are also provided in this chapter.
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Chapter 2

Review of keys definitions and

concepts in inventory management

In modern manufacturing, monitoring the flow of materials, information and ser-

vices from suppliers to end-users are critical issues for almost everyone in any sector

of Supply Chain Management (SCM). In a typical SCM, raw materials are pro-

cured, shipped to one or more factories and then in factories items are produced

and shipped for intermediate storage at warehouses before being shipped to retail-

ers or end-users. The challenges in this area are well known by top management. As

inventories are considered practically universal, it is worth starting with the funda-

mental question: “Why do companies keep inventories”? One of the main responses

is that inventories are a way of dealing with variability and uncertainty in demand

and supply. Inventories act as a buffer between suppliers and customers which helps

in maintaining customer service when the supply chain has problems. However,

this buffer comes at a price and organizations have to continuously devise ways of

lowering the inventory costs while maintaining acceptable levels of customer service.

Inventory does not exist in isolation, so consideration must be given to its possible

implications on other areas of the business. Therefore, inventory management aims

to balance opposing goals within an organization. One of these goals is to maintain

inventory levels at a relatively low level to ensure that cash can be used for other

functions, and the second objective is to carry enough inventory that provides a

desired service level. This chapter starts with the fundamentals of inventory man-

agement as described in Section 2.1. Particularly, the need for inventory control,

as well as definitions of basic concepts, types of inventory, and cost components

involved are presented. The Economic Order Quantity (EOQ) model is introduced

in section 2.2 including its assumptions, limitations and extensions.
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2.1 Fundamental notions of inventory management

Most organizations carry inventories. These are the reserves of materials that are

held until needed. When a business possesses resources that are not immediately

needed, it stores these materials. For instance, there is stock of recorded programs

for television companies; stock of goods purchased from wholesalers by various shops

and kept until they sell them to customers; a bank carries cash on hand for its daily

banking activities; hay held by a farmer to feed his cattle in winter; a factory carries

a reserve of raw materials for its products; a research firm has a stock of information.

(Donald, 2003). The following section provides a brief overview of basic concepts of

inventory management that will be used in the next chapters; the description of the

concepts mentioned below is based on Donald (2003):

• An item is a distinct product that is kept in stock: it is one entry in the

inventory.

• A unit is the standard size or quantity of an item.

• An inventory is a list of the items held in stock.

• On-hand inventory: This is the physically available inventory; it determines if

a given demand from a customer could be met directly from the stock.

• Lead-time: the amount of time that goes by, from start to finish of any given

process. Shortages: represents the portion of the unmet demand. There are

three types of shortages:

– Partial backlog/back-order: some of the unfulfilled customer orders are

lost, and the rest are backlogged.

– Complete backlog demand: represents a state in which all unmet cus-

tomer orders await fulfilment at the next replenishment.

– Another possibility is loss of sale. Loss of sale represents a particular case

in which unfulfilled demands are entirely lost.

2.1.1 Inventory Management

Inventory management refers to a systematic approach to the procurement, storage

and sale of inventory, whether raw materials or finished goods.It’s responsible for

inventory-related decisions. These decisions are driven by critical factors such as

the type of item, expected customer orders, and the inventory level. A primary

aim of any inventory management system is to identify what item, when it should

be ordered and how much should be ordered. Inventory management has received

13



considerable attention from managers over the past few decades because managers

became aware of the high costs that arise from holding unnecessary inventory in

warehouses (Gourdin ,2001). Hence, many efforts have been made, and different ap-

proaches to managing inventory have been conducted to minimise excess inventory

while maintaining customer service. An additional insight from Gourdin (2001) is

the importance of carrying inventory in certain circumstances, such as meeting de-

mands of global consumers, and therefore, business management aims to carry just

what is needed to meet this objective. To this effect, Chase et al. (2007) described

inventory as ”the stock of any item or resource available for use in any given orga-

nization”. From this perspective, to measure inventory levels regularly and make

adjustments based on business needs, an appropriate set of controls and policies

for the inventory system are required. In addition, replenishment procedures and

inventory size are also considered important. Moreover, Pycraft et al. (2010) pro-

vided a more extensive definition of inventory as ”the accumulated stock of material

resources in a processing system.

2.1.2 Types of Inventory

Six main categories of inventory were identified by Stock and Lambert (2001). They

discussed the role and use of each type within an organization as:

• Fluctuation Inventory: This inventory can be used in unplanned manufac-

turing situations where forecasts of the quantity of the finished goods required

cannot be assured.

• Anticipation inventory: also known as Speculation inventory, is the accu-

mulated inventory that a business intends to use for an anticipated or expected

future peak in sales. Examples of speculation inventory are winter fashion

goods or Christmas items.

• Lot-size (batch-size) inventory: This type of inventory does not consider

individual units because the demand of the stock is considered in batch.

• In-transit inventory: In-transit inventory, also known as pipeline inventory,

is the stock that has been ordered but has still not been delivered. Work-in-

process (WIP) inventory is considered part of this category and is intended

for the plant design and layout processes type.

• Buffer Stock: also called decoupling Inventory, buffer stocks are used to

prevent a company from any potential failure, ensure the continuity of the

production and give the company enough time to address or resolve the pro-

cess.
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• Dead inventory: also known as dead stock or obsolete inventory, refers to

unwanted stocks that are not expected to be utilized for any long term or im-

mediate purposes. Additional costs are therefore incurred to store and main-

tain dead inventory. In some cases, the stock may be stored to anticipate an

eventual increase in demand or simply because disposal costs are higher than

the storage costs. However, customer service is a primary reason that pushes

businesses to stock dead inventory to enable occasional buyers to procure them

at a salvage price in the future.

Depending on the nature of goods, the above types of inventory can be categorised

into three major classes:

1. Unlimited lifetime inventory: refers to inventory, which has no deterioration.

2. Obsolete inventory: refers to inventory that has lost its worth over time as

a result of new substitute items being introduced or due to quick changes in

technology. Obsolete inventories are usually disposed of or sold at a salvage

price after their season is over.

3. Deteriorating inventory: refers to damaged, decomposed, vaporized, spoiled,

or degraded inventory.

2.1.3 Inventory Control

Wild (2017) defines inventory control as a term widely used to organize the in-

ventory management procedure to ensure that customers obtain products when

required. Procurement, production, storage, and delivery activities are primarily

driven by the business’s marketing and sales functions. Hence, inventory control

is responsible for managing finished products, raw materials, defective goods and

other necessary supplies. According to Jaber et al. (2009), production, logistics,

and customer service functions depend significantly on effective inventory control.

Businesses hardly fulfil customer demands with inefficient inventory management if

production does not match procurement and sales needs. Research in operations

management focuses extensively on inventory control and its applications in vari-

ous industries. From this perspective, it is crucial for any firm to answer the three

following questions regarding inventory management (Silver et al., 2017):

1. How frequently does the status of items in inventory need to be reviewed?

2. When does a replenishment order get placed?

3. How large should the order be?
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Answering these questions can seem quite simple at first, however the properties or

characteristics of the materials, resources being managed make inventory manage-

ment difficult. For years, researchers and managers in inventory management have

developed mathematical models to answer the three questions above while keeping

in mind the characteristics of the items being managed. To this effect, a classifica-

tion of these mathematical models is presented in Figure (2.1). This classification is

based on Vrat’s (2014) approach, which considered several factors such as probabilis-

tic or deterministic demand, varying or constant replenishment lead time, single or

multiple items productions, perishable or non-perishable items, and single or multi

echelons supply models.

Figure 2.1: Types of inventory control systems

Silver et al. (1998) suggested that supply chain activities based on coordination are

necessary to raise the efficiency levels of firms. Saxena (2003) suggested that the

shortage cost or excess inventory cost incurred must be minimized to ensure the

effectiveness of the inventory control in managing inventory turnover.

2.1.4 Costs components in inventory management

The performance criteria in inventory management is based on either minimizing the

total cost or maximizing the profit. Costs in inventory management are generally

divided into four major groups (Silver et al., 1998):
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• The carrying cost: is the total of all the costs incurred due to the quantity

of the physical inventory available at a particular time. The cost of carrying

items in inventory includes counting and handling costs, the expenses incurred

in running a warehouse operation cost, special storage requirements cost, de-

terioration of stock and obsolescence, and insurance.

• The ordering or setup cost: is the cost associated with ordering the inven-

tory or replenishment. This cost has two components: the variable and the

fixed costs. The variable cost typically includes the cost of both loading and

unloading the truck, the costs of checking the orders, etc. (Chaaben, 2010).

The fixed cost is irrespective of the replenishment size. In production, the fixed

setup cost includes many components such as costs associated with interrupt-

ing production, costs associated with material handling and transportation,

the cost of administration associated with the time and effort expended in

preparing orders, etc.

• The purchase cost: which is the cost proportional to the quantity ordered. It

may depend directly the replenishment size or there may be quantity discounts.

• The Penalty (stock out, shortage or backorder) costs: are costs to an

organization when it is unable to satisfy a demand. This cost might include the

cost of substitution of a less profitable item, the cost of emergency shipments

or loss of sale cost.

2.2 Classic Economic Order Quantity (EOQ) model

and Extensions

This section provides a review of the classic inventory control theory. It discusses

the optimal size to order by balancing the various costs involved when conditions

are rather stable with no uncertain demand. The EOQ model is the most basic

of all inventory models that helps inventory managers in determining the optimal

order quantity, and its applicability has been accepted by research throughout the

century (Donald, 2003). Harris (1913) was the first to propose the formulation

for determining the order quantity by balancing the setup cost, purchasing cost and

inventory carrying cost; However, the actual calculation is mostly accredited to Wil-

son (1934), who marketed the results. Harris’s (1913) model development involved

several assumptions with some of the assumptions being pretty unrealistic and limit

the model’s application to many real-life inventory systems. In attempts to improve

the application and practicality of classic EOQ model in real-life problems, several
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research studies have been conducted to determine which of these assumptions to

relax, and how the results of such relaxation would impact the companies’ costs

(Andriolo et al., 2014).

2.2.1 The classic EOQ model

As mentioned earlier, Harris’s EOQ model is the most straightforward inventory

control model. This model considers an idealized inventory system and finds the

fixed replenishment quantity that minimizes certain inventory-related costs. There

are four fundamental categories of costs as discussed in section 2.1.4 namely the

ordering and setup costs, the inventory carrying costs, the purchasing costs, and the

penalty costs.

The model is restricted to an order quantity system. Therefore, the optimum quan-

tity is independent of the control system costs. Since demand is assumed to be

known, constant, and deterministic, the only relevant cost for the third category

would be if the decision maker deliberately chooses to run out of stock before re-

plenishing; however, no shortages are allowed. In addition, the purchasing cost

doesn’t affect the optimum quantity; therefore, this cost is not relevant. Finally,

only the ordering and inventory carrying costs are relevant to the inventory model.

In determining the appropriate order quantity, the criterion of minimization of total

relevant costs that balances the ordering costs and holding is applied because as the

order quantity increases, the ordering costs decrease, and the holding costs increase

and vice versa (Sebatjane, 2018). These trade-offs are shown in Figures (2.2) and

(2.3), demonstrating how the total cost change with order quantity and the changes

to the inventory level with time, respectively.

Figure 2.2: Ordering cost, carrying cost, and total cost as functions of order quantity

The inventory system shown in Figure (2.3 considers a model with only a single

item in isolation, and it is assumed that the replenishment is instantaneous so that
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all the order quantity arrives in stock simultaneously and can be used immediately.

Each time an order for Q items is placed, an ordering cost of Cord is incurred. The

items are consumed at a constant annual rate D; this means that the consumption

is always at the same rate. Eventually, no stock remains at the end of cycle T .

(a) (b)

Figure 2.3: Typical inventory system behaviour for the classic EOQ model

A new order for quantity Q is received when the previous quantity Q runs out.

A unit of the item is kept in stock at a holding cost h per unit time. The Total

cost (CT) is the sum of ordering costs and holding costs

CT = h

(
Q

2

)
+ Cord

(
D

Q

)
(2.1)

A convenient way to optimise the above equation is to differentiate CT with respect

to Q and equate it to zero.

dCT (Q)

dQ
= 0 (2.2)

That is,

h

2
− Cord

D

Q2
= 0 (2.3)

Qopt =

√
2Cord D

h
(2.4)

Equation (2.4) represents the optimal order quantity. This expression shows, among

other points that the optimal order quantity goes up with the square root of demand

rather than being directly proportional. Substituting the value of Q from Equation

(2.4) back into Equation (2.1), the following equation is obtained:

CT (EOQopt) =
√

2CordDh (2.5)
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With:

Cord : the inventory ordering cost

h : the inventory holding cost.

2.2.2 Extensions made to the classic EOQ model

Harris’s (1913) EOQ model is based on some assumptions that make the model

limited in real life. Woolsey (1988) argued that the assumptions made in the set of

parameters of the EOQ model are too simplistic for practical implementation and

showed the inapplicability of the model to some scenarios encountered in real life.

Many possible constraints and some not explicitly incorporated in the model may

prevent using the classic EOQ model. Therefore, development of many inventory

models has been based on the publication of Harris’s (1913) classic EOQ model

(Andriolo et al., 2014). Some of the most significant extensions made throughout

the century concerning Harris’ model are represented in Figure (2.4), which also

depicts the evolution in the area of inventory management.

The first significant extension in relation to Harris’s classic EOQ model came in

the form of what is now widely known as the EPQ model, which is utilized in the

determination of the optimal lot size for a production system whereby the primary

units of a lot can be utilized to meet customer demand while the remainder of the

products is still in production. Two significant events occur simultaneously in de-

veloping the EPQ model, namely periodic production and continuous consumption.

In the late 1950s, several extensions had been made in the area of lot sizing. Wagner

and Whitin (1958) relaxed the assumption of constant deterministic to a periodic

demand rate through developing the Dynamic Economic Lot (DEL) model using a

recursive algorithm.

Harris (1913)’s model assumes that items can be stored for an indefinite period

without changing the item’s value, integrity or utility. However, this is not always

true, especially for items such as vegetables, meat, flowers, and pharmaceutical prod-

ucts, to name a few. Such items are called perishable or deteriorating items. The

customer’s taste can be influenced by introducing a more attractive product com-

pared to the product already present in the market. Researchers have also shown

that there may be loss of consumers’ confidence concerning an item’s quality due

to age, which has an undesirable effect on demand. Deterioration is an umbrella

term, which encompasses any forms of damage, obsolescence, pilferage, evaporation

or spoilage of goods. Whitin (1957) is considered as the pioneer of deteriorating
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inventory model, where for the first time, the deterioration of fashion items was

taken into account when the prescribed storage period came to an end. Ghare et al.

(1963) developed the first inventory model with an exponential deterioration rate.

Hadley and Whitin (1963) considered quantity discounts when modelling inventory

systems for the first time. These authors restricted the attention to types of dis-

count structures, namely all-units and marginal quantity discounts. Subsequently,

Hadley and Whitin (1963) studied inventory systems where shortages are permitted.

The year 1970 marked the start of exponential growth of extensions made to the

original models over the following forty years. Consideration of multiples setup costs

and stochastic environment are some of the extensions included in the EOQ. Lipp-

mann (1971) proposed an EOQ policy with multiple set-up costs. Mohan (1978)

developed a model under the working capital constraint. The stochastic Lead-Time

is discussed in the study of Liberatore (1979). Another area of research that has

emerged in this decade involves the relation between material requirements plan-

ning (MRP) and the EOQ. MRP was described as the “salvation of production and

inventory control management” by Chamberlain (1977) due to the limitations of the

EOQ and its inability to respond to plans aimed at reducing inventory.

During the 1990s, the classic EOQ model was still applicable in real business sit-

uations. Moreover, the EOQ remained the most studied in the area of inventory

control to manage constraints in real life situations. Cheng (1990) discussed the ef-

fect of inventory investment constraints and storage space on the EOQ model with

demand dependant unit production cost. Hill (1995) proposed the inventory model

with ramp-type demand. Khouja and Mehrez (1994) extended the EPQ model

by considering the production rate as a factor or decision variable. The research

demonstrated that the deterioration was significant with the increase in the produc-

tion rate. After that, Mandal et al. (1998) extended Hill’s model to make the model

more realistic by considering the effect of shortages while considering that the items

were deteriorating.

The EOQ model was extended by research studies in the early 2000’s to include the

impact of rework, imperfect quality, quantity discounts, shortages, trade credits, ca-

pacity constraints, and probabilistic functions. However, two areas of research that

increased in importance in recent years were the role of EOQ in relation to sustain-

ability applications along with EOQ models and their influence on the performance

and coordination of a supply chain system. Goyal and Giri (2000) presented a

detailed review of deterioration models, providing further clarity on the literature

regarding the deteriorating inventory models. Agrawal and Ferguson (2007) devel-
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oped an EOQ model under stochastic demand. In this decade various extensions of

the EOQ model have been developed in other areas including impact of discounts,

inflation, the time value of money, imperfect quality, limited space area and the

inclusion of Just-In-Time. Yen et al. (2012) proposed an optimal retailer’s ordering

policies with trade credit financing and limited storage capacity in the supply chain

system. Abdul et al. (2012) discussed an EPQ model that includes the cost of

raw materials required for production. In their model, the researchers considered a

situation where the raw material purchased from the supplier contained a fraction

of items of poor quality. A control process is put in place to detect poor quality

items. The development of the mathematical model led the researchers to study two

different scenarios in which the items of imperfect quality are sold at a discounted

price; the alternative scenario implies that, after screening, the proportion of the

imperfect raw material could be stored until the end of the inventory cycle and

then returned to the supplier. Ghosh, et al. (2015) extended the classic EOQ to

a space-dependent EOQ model of a multiple-item deteriorating inventory. Figure

(2.4) below shows the century of evolution of the Wilson model written by Andriolo

et al. (2014).

Figure 2.4: Timeline showing some of the major developments in inventory theory

Recently, Maiti, and Giri (2015) developed a closed loop supply chain under retail

price and product quality dependent. Liu et al. (2015) extended Harris’s (1913)

model to a continuous replenishment policy model for perishable goods in which the

demand depends on the product’s quality. Gupta and Nisha (2015) extended the

basic EPQ by relaxing the assumption that the production rate is constant. The

assumption is that change in demand could be one of the critical factors that may

change the production rate. Therefore, the research proposed a linear model that
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varies according to the demand with two production rates. It has been stated that

the production could also fluctuate with the deterioration. Majumder et al. (2015)

proposed a model considering an imperfect production process for breakable goods

within a limited period. The formulation was based on two models, which included

shortages. The research done in this area demonstrated that the cost of production

is a function of raw materials, the production rate, the product reliability indicator,

the workload and the cost of deterioration. In order to model specific and realistic

inventory systems, some of the features of the classic EOQ model and its extensions

are combined, either together or with new assumptions. This study is concerned with

managing deteriorating inventory items under a set of realistic conditions, namely:

discontinuous production, imperfect quality, time-dependent demand, rework and

quantity discounts, which might arise in manufacturing plants. Gothi et al. (2017)

discussed an inventory model in which the deterioration is represented through an

exponential distribution.

This chapter is a discussion of the general evolution of the models of inventory

management and covers foundational inventory control, the basic EOQ/EPQ mod-

els, their limitations and general extensions. The next chapter presents a review

of deteriorating items inventory systems as an extension of interest to the problem

studied in this research.
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Chapter 3

Review of deteriorating inventory

systems

The present chapter provides an overview of some existing primary studies on the

replenishment policies of deteriorating inventory. A classification of the literature

on deteriorating inventories is presented in Section 3.2. Additional classifications

are also provided depending on the characteristics of the objective and demand

functions. A summary of some of the reviewed studies is provided in Table (3.1).

3.1 Definitions of deterioration

Diverse definitions and classifications of deteriorating items with minor distinctions

exist in the literature. These include the following:

• A process of degradation that prevents an item from performing its primary

function, such as breakdown of equipment, degradation of radioactive sub-

stances, electronic parts and pharmaceutical drugs.

• Deterioration can also refer to damage, decay or obsolescence of an item re-

sulting in a decrease in its utility such as spoilage of perishable goods (Wee,

1993).

There are a number of definitions of deteriorating and perishable inventories, in-

cluding that provided by Goyal and Giri (2001), but the preferred definition in this

study is that of Disney et al. (2012), who proposed the following distinction be-

tween perishable and deteriorating stocks. In the perishable inventory, items lose

value but are not destroyed, as opposed to the deteriorating inventory, where items

physically deteriorate and are destroyed over time. Different concepts of deterio-

ration are involved when analysing the deteriorating of inventory. First, there are
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instances where all items in inventory become out-of-date, such as fashion items.

Second, there are instances involving the deterioration of items throughout their

planning horizon. Deteriorating items may also be categorized based on their utility

or value over time. Constant value perishables undergo deterioration and face no

substantial decay in value during their cycle, such as drugs and other pharmaceu-

tical products. Decreasing-value perishable items lose their utility throughout the

planning horizon, such as fresh fruits.

3.2 Modelling approaches of deteriorating inven-

tory

This section provides a review on the modelling approaches in inventory control,

giving special attention to three main classes within the context of modelling of

deteriorating inventory. The purpose of the review is to gather insights from previous

works and research gaps that may exist prior to developing a replenishment policy

for a multi-state system and make a valuable contribution in inventory management.

The literature on deterioration is extensive, and thus no single literature review can

fully cover the field. Deteriorating inventory models can be classified intro three

major groups based on the following modelling approach:

1. Non-linear inventory function;

2. Variable holding cost function;

3. Non-linear inventory function and variable holding cost function.

These three types are presented in Figure (3.1).

Figure 3.1: Categorization of deterioration modeling approaches

with:

I(t) : Instantaneous inventory per time unit
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θ(t): the deterioration rate function

D(t) : Demand per time units

P (t) : Production rate per time unit

HC(t) : Inventory holding cost function

h̃ : Constant

f(t, I, . . . ,m) : a non-linear function of parameters such as on-hand inventory, time.

3.2.1 Non-linear inventory functions

Most researchers in inventory control assume that deterioration is time-dependent.

In many real-life circumstances, this is because some stored goods can decrease in

value as they stay longer in inventory. Therefore, a more extended storage period is

expensive, as it involves sophisticated technology to conserve the value of the goods.

This is the reason why the on-hand inventory function is essential in inventory

studies. Thus, the change in inventory level can be determined by the following

equation:

dI(t)

dt
+ θ(t)I(t) = P (t)−D(t) (3.1)

In this type of representation, the inventory holding cost function is assumed con-

stant. This means that the inventory carrying cost is a linear function that depends

on factors such as the inventory level, the storage time t, and can be expressed as

follows:

HC(t) = h̃tI (3.2)

Where:

h̃ is constant.

This type of modelling is best suited to decaying goods. Ghare and Schrader (1963)

were pioneers of deteriorating inventory studies, who for the first time considered

an inventory model with constant decaying rate and no-shortage. Since then, many

researchers have pursued extensive studies on deteriorating inventories and have

provided insights into how the stocks have changed over time. Manna and Chaudhuri

(2001), Wang and Chen (2001), Gede and Hui (2012), fall into this category.

3.2.2 Variable holding cost

In addition to the common components of holding cost like expenses for running

a warehouse, costs of special storage requirements, insurance, taxes, etc., in this

class of models, the inventory holding cost also includes the cost of deterioration
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of items, and thus the modelling the carrying cost of inventory is directly affected.

In this class, the function of the available inventory is similar in form to that of

non-deteriorated products, and the differential equation can be obtained by the

following:

dI(t)

dt
= P (t)−D(t) (3.3)

In this second category, the inventory holding cost, HC, is assumed to be a non-

linear increasing function of parameters such as the storage time, t, or the available

inventory, I. For this type of inventory systems, the deterioration rate function is

considered as part of the on-hand inventory function. For items that deteriorate,

particularly perishable goods such as food products like vegetables in which the

value and quality of goods decrease with age, a non-linear time-dependent holding

cost is assumed to be more appropriate. For products such as volatile liquids and

radioactive substances, where more extensive security measures are required, a non-

linear function may be appropriate to estimate the inventory holding cost. Weiss

(1982) is considered to be among the pioneers to develop an inventory model for

both stochastic and deterministic demands by treating the unit holding cost as a

non-linear time dependent function of the stock duration and represented this cost

as follows:

HC(t) = h̃tγ (3.4)

Where h̃ > 0 and γ1 are constant. He kept other conventional EOQ assumptions

such as constant unit cost, zero supply lead-time, selling price and set-up cost, and

developed two mathematical models for both deterministic and stochastic demand

rate.

In 1994, Goh proposed two deterministic inventory models for a single item with

infinite-horizon by considering stock-dependent demand. Both stock-dependent and

time-dependent holding costs were considered in these two deterministic inventory

models. He assumed that the variable holding cost is a polynomial function of

the storage duration. Recently, Ferguson et al. (2007) extended Weiss’s model by

including extra delivery charges and price discounts for perishable items. Later

that year, Alfares (2007) studied Goh’s (1994) model by extending some of the

assumptions made in Goh’s (1994) to address the case of discrete holding costs

dependent of storage time. A generalization of Alfares’s model was made in 2008

by Urban with the objective of optimizing the profit. In addition, he relaxed the

limitation that the inventory level is equal to zero at the end of each replenishment

cycle by considering it as non-negative. Alfares (2012) presented an EPQ model
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with stock dependent demand and time dependent holding cost. Later, Alfares

(2015) extended the EPQ model developed by Alfares (2014) by maximizing the

profit while considering a variable unit purchase cost based on all-units quantity

discounts. Recently, San-José et al. (2018) developed an EPQ model with time

nonlinear dependent holding cost, in which demand is price dependent and shortages

are partially backlogged.

3.2.3 Non-linear inventory function and variable holding cost

The approach for modelling this category of inventory system is considerably dif-

ferent from that of the first two classes presented in 3.2.1 and 3.2.2. Models in

this third category are developed with consideration of the deterioration rate func-

tion θ(t) and the variable holding cost, as discussed in Giri and Chaudhuri (1998).

They extended Goh’s model by considering two models with non-linear stock and

time-dependent holding costs, respectively, in addition to the constant deterioration

function. Several researchers have studied this category intensively over the past

twenty-five years. Chang (2004), Ferguson et al. (2007), Mahata and Goswami

(2009) fall in this category.

3.3 Deterioration function θ(t)

Generally, the deterioration function θ(t) is classified into two groups: continuous

deterioration and discrete deterioration functions.

3.3.1 Continuous deterioration

The continuous deterioration θ(t)can be classified into four major groups as follows:

Constant deterioration: Many studies consider models with constant deterioration

rate. Such models are suitable for products such as perfumes, electronic equip-

ment, pharmaceuticals or oil. Chung and Ting (1994) developed an inventory model

with constant deterioration rate and time-dependent demand function. Soumendra

(2010) developed a continuous order-level inventory model for deteriorating items

under deterministic demand. In this research, Soumendra worked on maximizing to-

tal profit, including ordering cost, holding cost, shortage cost, purchase cost and loss

of sales. The computational results indicated that the developed inventory model

provided insightful information in helping inventory managers decide on the optimal

quantity to keep in stock while maximizing the profit. Srivastava and Gupta (2007)

proposed an infinite time-horizon inventory model for deteriorating items assuming
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Figure 3.2: Graphical representation of the four major groups of continuous deteri-

oration

the deterioration rate and the demand rate to be constant for a period of time and

then as a linear function of time for another time period. Karthikeyan and Santhi

(2015) proposed an EOQ inventory model for deteriorating items in which the de-

terioration rate is constant, and salvage value is incorporated into the deteriorated

items.

Time linear deterioration: Generally, in deterministic inventory models, the deteri-

oration is assumed to be constant and has nothing to do with the duration of the

goods in the inventory. One of the models is Ghosh and Chaudhuri (2006), which

considers a time-proportional deterioration function of the form:

θ(t) = θ1 + θ2t (3.5)

Where: 0 ≤ θ(t) < 1 and 0 < θ1, θ2 < 1.

Trailokyanath and Hadibandhu (2013) developed an EOQ model for deteriorating

items with linear demand patterns and linear deterioration rate function. The au-

thors minimized the average total cost, including the inventory holding cost, shortage

cost, ordering cost and the opportunity cost due to lost sales. Singh et al. (2016) pro-

posed a replenishment policy with time-dependent deterioration and both constant
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and time-varying demand rate. Tripathia and Kaurb (2016) studied an optimum

EOQ model for non- decreasing time dependent deterioration and decaying demand

with shortages.

Logarithmic deterioration and multiple deterioration: Generally, the products are

such that the deterioration increases dramatically in the initial stage and after cer-

tain time the rate of deterioration increases slowly. This category is often appropri-

ate for items such as integrated circuits and other electronic equipment where the

degradation during the initial stage changes drastically. Patel and Sheikh (2015)

proposed a deteriorating items inventory model with different deterioration rates,

linear trend in demand time varying holding cost and shortages. Patel (2018) de-

veloped an inventory model with different deterioration rates under inflation and

permissible delay in payments for two level storage. Naik and Patel (2018) devel-

oped an inventory model for imperfect quality and repairable items with different

deterioration rates under price and time dependent demand.

Exponential deterioration: Unlike the logarithmic form, items deteriorate at a slow

rate in the initial phase and then shift rapidly after a certain period. Sivakumar

(2009) introduced the notion continuous finite-source inventory system for a model

with exponential lifetime for the items and exponential lead-time. Mahata (2011)

discussed a replenishment policy with exponential distribution deterioration rate and

time-dependent demand. The author proposed an exact formula of the optimal cost

without carrying out any approximation over the deterioration rate. Lawrence et al

(2013) considered an inventory system for deteriorating items with a quasi-random

demand distribution and exponential deterioration rate. They assumed that both

the lead-time and service time are independent phase type distributions. They de-

termined optimal order quantity that minimizes the total cost rate. Recently, Gothi

et al. (2017) proposed an inventory model for deteriorating and repairable items

with exponential deterioration and linear demand rate.

Weibull deterioration: Covert and Phillip (1973) were the first to introduce the

notion of Weibull deterioration for perishable inventory. Many researchers such as

Chakrabarty et al. (1998), Kumar et al. (2012) and Sharmila and Uthayakumar

(2016) have developed inventory models in which they assumed the instantaneous

rate of deterioration (t) to be a two-parameter Weibull distribution of the form:

θ(t) = αβtβ−1, α, β ≥ 0 (3.6)

The two-parameter Weibull distribution is adequate for goods with a decreasing rate

of deterioration, provided that the initial rate of deterioration is considerably high.
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Similarly, this type of distribution can also be used with goods with an increasing

rate of deterioration, provided that the initial rate of deterioration is practically

zero. The models of Covert and Philip (1973), Asoke and Ali (2014), etc., fall in

this class.

3.3.2 Discrete deterioration function

Discrete deterioration also known as Semi-continuous deterioration are mostly used

in inventory of non-instantaneous deterioration products such as foodstuffs like dry

fruits, potatoes, and vegetables. Wu et al. (2006) were among the first to discuss the

problem of determining the optimal replenishment policy for non-instantaneous de-

teriorating items with stock-dependent demand and partially backlogged shortages.

Further, Ouyang et al. (2006) presented an inventory model for non-instantaneous

deteriorating items with permissible delay in payments. Valliathal and Uthayaku-

mar (2011), proposed the optimal pricing and replenishment policies of an economic

order quantity model for non-instantaneous deteriorating items with partial back-

logging over an infinite time horizon.

3.4 Objective function

One of the characteristics that differentiates inventory management models is defin-

ing the objective function and the cost components that define that function. Many

studies in deteriorating inventory aim to minimise the total cost (Uthayakumar and

Tharani, 2017; Alfares, 2007; Girl and Chaudhuri, 1998; Weiss, 1982). Widyadana

and Wee (2012) developed integrated EPQ model for deteriorating items with pre-

ventive maintenance, random machine breakdown. It is assumed that the correc-

tive and preventive maintenance times are stochastic and unfilled demand is lost.

Two models have been developed by considering corrective repair and maintenance

times uniformly distributed for the first and exponentially distributed for the sec-

ond. Other research focus on optimizing the total profit over an infinite planning

horizon, while some consider optimizing the sum of the costs components over a

finite planning horizon. Widyadana and Wee (2012) proposed a production system

for deteriorating inventory under multiple production setups and rework to optimize

the system’s total cost function represented by:

TC (m,T1) =
mks + kr + hs [m (It1 + It2) + It3 + It4] + hrTRI +DcDi

m (T1 + T2) + T3 + T4
(3.7)

Where: TRI, ks and ks are the production setup cost and rework setup cost respec-

tively. Similarly, m, hs and hr are the number of production setup in one cycle,
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the serviceable items holding cost and recoverable items holding cost. Respectively,

It1, It2, It3, It4, T1, T2, T3, and T4 are the total serviceable inventory in a production

period, the total serviceable inventory in a non-production period, the total ser-

viceable inventory in a rework production period, the total serviceable inventory in

a rework non-production period, the production period, the nonproduction period,

the rework process period, the non-rework process period. Di and Dc indicates the

total number of deteriorating items and deteriorating cost respectively.

Sharmila and Uthayakumar (2016) considered an inventory model for deteriorating

items with three different rates of production and stock dependent demand. They

minimized the average total cost of the system, using a two-parameter Weibull distri-

bution to represent the deterioration rate. They also developed a continuous inven-

tory model with three rates of production under stock and time-dependent demand

for time-varying deterioration rate with shortages. Other types of cost components

such as transportation, greenhouse penalty costs or advertisement costs have been

incorporated into some deteriorating inventory replenishment models, in addition to

the usual cost components as discussed in section 3.4.2. Venkateswarlu and Mohan

(2013) and Begum et al. (2009) developed replenishment policies for deteriorating

items under profit maximization by treating the selling price as a decision variable.

Cheng et al. (2012) proposed an inventory model considering the financial environ-

ment to find the optimal order quantity and payoff time for maximizing the retailer’s

total profit.

The following section describes in detail the shortage cost as an important cost

component of the objective function of the replenishment policies for deteriorating

inventory.

3.4.1 Shortage cost

To simplify both the modelling and the solution approaches, many replenishment

policies for deteriorating items, particularly the basic models, have been developed

with no shortage cost. Models without shortages are considered in Sana (2011),

Ferguson et al. (2007), Rau et al. (2003), Girl and Chaudhuri (1998), Goh (1994),

and Weiss (1982). Shortages are of great importance, especially in a system that

takes into account delay in delivery or payment because shortages can affect a sys-

tem in several ways; shortages can affect the profit due to an increase in loss of sales

because of customers that are not willing to wait for the next replenishment; it can

also affect the selling price since some items are sold at a price discount in order

to not lose customers during the backlog cycle. Most researchers naturally address
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the question of how long the backlog cycle should be and whether the permissible

delay’s cycle is influenced by the batch size produced or the order quantity delivered.

Jamal et al (1997) proposed an EOQ model for deteriorating items with allowable

shortage and permissible delay payment. Kharde (2012) presented a replenishment

policy for planned shortages using the concept of Equivalent Holding Cost (EHC)

to optimize the EPQ system.

Some researchers dealt with shortages as partially backordered. Research under

partial backorder can be divided into two categories, as shown in Figure(3.3), such

as time-dependent and time-independent models. In time-dependent partial back-

order models, it is assumed that the number of outstanding orders during the backlog

cycle is time dependent demand. This implies that more demand can be fulfilled

if the permissible period for shortage is short. However, in time-independent par-

tial back-order models, it is assumed that the number of lost customers (or unful-

filled backordered) is independent of the waiting time for fulfilling the customer’s

needs. In 1995, Padmanabhan and Vrat dealt with profit maximization by consid-

ering an inventory-dependent demand function for deteriorating items with demand

dependent shortage. Goyal and Giri (2003) and Lo et al. (2007) fall into this

category. Pentico and Drake (2011) proposed the following Table (3.1) to classify

time-dependent partial back-order models:

Table 3.1: Time-dependent partial Backorder categories

With:

τ : The remaining time until replenishment

β(τ) : Stock out

β0 : The initial stock out level
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βM : The maximum stock out level

T1 : Permissible time for backordering τM : Maximum Customer’s waiting time
1∗ it is assumed that there are two kind of customers.

Figure 3.3: Partial backorder forms in the literature (Sazvar, 2013)

3.4.2 Other cost components

As previously mentioned, many researchers extended traditional models to consider

certain aspects of reality by including costs such as the advertisement cost Luo

(1998), inspection cost Chung and Wee (2008), the greenhouse gas penalty cost

Wangsa (2016), price discounting Pandey and Vaish (2017) and loss of sales Gothi

et al. (2017).

Pandey and Vaish (2017) developed an EOQ model considering the seasonal quadratic

type of demand, which started with zero, reached its maximum and ended with

zero. A fraction of the demand was backlogged until the next replenishment, and

a price discount was given on the backorder quantity in order to reduce the lost

sales. Wangsa (2016) developed a joint economic model for a buyer-vendor scenario

in which penalty and incentive policies of the government to reduce emissions are

considered. The proposed model involved the greenhouse gas emission from the

industrial and transport sectors. He divided the emission into two types, namely:

direct and indirect emissions for the buyer’s demand that was normally distributed

and partially backordered. The proposed model optimized the joint total cost in-

curred by a single manufacturer and a single buyer and involves the transportation

costs of the freight forwarder, with Transportation costs dependent on the distance,

shipping weight, fuel price and consumption. Finally, an algorithmic procedure was
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proposed to determine the optimal order quantity, the actual shipment weight, the

total emission, the safety factor and the frequency of delivery. Chung and Wee

(2008) dealt with a production inventory policy for items with negligible imper-

fect products. However, screening costs for defective items were considered as the

items underwent further processing. Gothi et al (2017) proposed a production sys-

tem for deteriorating items with time dependent demand and loss of sales. Their

model assumes that defective items can be repaired and that shortages are partially

backlogged.

3.5 Nature and function of the demand function

3.5.1 Nature of the demand

Problems in inventory management exist mainly due to demand. In general, the de-

mand is not directly controllable, and in many circumstances, it cannot be controlled

indirectly. The demand is mainly influenced by choices made by people outside the

organization. However, properties such as the size, rate and patterns of the process

may be evaluated. According to Giard (2003), analysing demand implies that three

essential elements should be considered:

• The demand pattern

• The source of demand

• Factors influencing demand.

The demand pattern

The demand pattern is one of the critical elements contributing to the complexity of

modelling replenishment for deteriorating items. The type of item and the quantity

to fulfil often characterise demand patterns. Many researchers consider the demand

size deterministic; however, the demand size is often a random variable that follows

certain probability distributions in real-life situations.

Source of demand

Demand can be internal or external. The difference between internal and external

demand is based on requirements and planning. For instance, for an internal demand

the number of consumers can be limited, the requirements are dependent; however,

for external demand, the number of clients can be unlimited and the requirements

independent.
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Factors influencing demand

The demand for many items has always been subject to variations. There are situ-

ations where the variations of certain factors are substantial and scenarios whereby

it is essential to have specific items available. It is important to note that multiple

variables such as quantity offered, quality, price, season, the discounts offered and

budgetary constraints always impact demand.

• Effect of the income: A client may always buy several goods. However, it

is impossible to buy everything due to limited income. Thus, the budget

constraint becomes an essential element of the dynamic nature of demand.

Income illustrates the combinations of goods that a particular consumer can

purchase based on income and the prices of the goods. Therefore, income has

a very considerable impact on the behaviour of demand components over time.

• Change in the price of goods: Change in the price of goods can affect the

consumer’s choice. To better understand this phenomenon, Mutombo (2015)

analysed consumers’ behaviours, when a change in the price of goods occurs.

The author came to the conclusion that a decrease in price opens up new

possibilities for consumers to purchase more. The change in the price of items

can be broken down into two effects:

– Since item x is cheaper, the income gives customers greater purchasing

power. The clients are somehow wealthier. Thus, they may purchase

more items x. This reaction describes the income effect.

– Due to item x being cheaper, each item y sacrificed by the consumer gives

the consumer more of item x. As the price of item y becomes relatively

more expensive than item x, consumers are likely to purchase less of item

y. This phenomenon describes the substitution effect. Lowering the price

of an item improves the consumer’s situation. The improvement in the

consumer’s purchasing power will have an impact on both goods. The

income and substitution effects lead consumers to purchase more items

compared to rival products.

Some goods escape the law of demand described by Mutombo (2015) and for which

demand curve increases with the price. These relevant effects are described as follow:

• The Veblen effect: Anomalous market behaviour in which consumers buy

higher-priced items while similar low-priced alternatives are available. This

is caused either by the desire for conspicuous consumption or the belief that

higher priced items are of a higher quality.
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• Anticipation: In the event of a generalized price increase, the observed be-

haviour opposed the law of demand. Therefore, consumers may find themselves

in a situation of increasing prices such that the best solution is to purchase

goods in order to avoid being affected by the price increase.

• King effect: for agricultural products, demand is generally very inelastic to

prices. As a result, good harvests may lead to a decrease in farmers’ total

income, while bad harvests will have the opposite effect. According to Peer

(2013), King’s Law or the King Effect refers to as a situation in which a deficit

of an item on the market causes its price to rise to such an extent that the

value of the product or crop increases disproportionately.

3.5.2 Demand function

The demand function is another crucial element in modelling deteriorating invento-

ries. Studies in inventory management are subdivided into two major groups (Figure

3.4):

• Constant demand rate models

• Variable demand rate models.

Figure 3.4: Classification of demand function
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Constant deterministic demand rate

One of the most critical assumptions in inventory management is that demand is

a constant deterministic function of stock, price or time over a finite or infinite

planning horizon, as shown in Figure (3.5). This hypothesis and many others may

look unrealistic; however, it is essential to keep in mind that all models are abstract

versions of reality with the goal being to provide valuable insights rather than to be a

precise representations of actual conditions. Secondly, this is a basic assumption that

can be extended in several ways. Ghare and Schrader (1963) proposed an inventory

Figure 3.5: Constant demand function over time

model under constant demand. Heng et al. (1991) studied a replenishment policy

with exponential decay and constant demand rate. Studies such as Muehlemann

and Valtis-Spanopoulos (1980), Rau et al. (2003), Ferguson et al. (2007), Jhuma

and Samanta (2011) and Wang et al. (2011) fall into this category.

Variable demand rate

Constant deterministic demand assumes that no change in the demand rate occurs,

which is unrealistic because the demand for any given item cannot be subject to

a fixed rate. In section 3.5.1, it has been shown that several factors influence de-

mand. This observation prompted researchers to consider the demand function in

several ways, such as time, seasonal, stock or price dependent. Many inventory

researchers have paid their attention to variable demand functions, focusing on de-

pendent, stochastic and fuzzy demands functions.
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• Dependent demand: Some research in deteriorating inventory have been

carried out with price-dependent, stock-dependent and time-dependent de-

mand functions. Khanra et al. (2011) studied an EOQ model for a deterio-

rating item with time varying quadratic demand under permissible delay in

payment. Tripathi et al. (2016) formulated an inventory model with time

dependent demand. Venkateswarlu and Mohan (2013) developed a determin-

istic inventory for deteriorating items in which the demand rate is assumed

to be quadratic price dependent together with a time dependent deteriora-

tion rate function. Kumar and Rajput (20.13) presented an EOQ model for

deteriorating Weibull items with a price-dependent demand rate and a re-

plenishment policy for profit maximization. Deteriorating Models in Sharmila

and Uthayakumar (2016), and Krishna and Bani (2016) are considered mixed

dependent demand.

• Stochastic demand: In section 3.5.2, it is assumed that the demand is

deterministic. In reality, this is unlikely to be true. From an actual world

perspective, a stochastic distribution of demand is more realistic. Stochastic

demand functions can be categorized into two groups depending on the type

of distribution Goyal and Giri (2001):

– By considering specific types of probability distribution functions (PDFs),

as in the work of Weiss (1982), in which the demand followed a Poisson

distribution.

– By considering the demand rate as an arbitrary probability distribution

function (ADF). Tadashi et al. (1993) proposed a stochastic EOQ model

with discounting. Berman and Perry (2006) formulated a stochastic EOQ

type model with an arbitrary random demand.

• Fuzzy demand: models such as Yao and al. (2000), Yao and Lee (2003)

consider a fuzzy function to represent the demand. Mahata and Dutta (2007)

proposed an EPQ with fuzzy deterioration rate and fuzzy demand rate with

a production loss incurred due to faulty or old machines, with manufactur-

ing defect also being considered by assuming a fraction of production item

deteriorates per unit time. The demand and deterioration were defuzzified

through the signed distance method to find the fuzzy number’s membership

function through extension principles. Neha and Soni (2012) studied an eco-

nomic production model with finite production rate and fuzzy deterioration

rate. Jeyakumari et al.(2018) considered set up cost, inventory holding cost

and demand as fuzzy parameters. They addressed the question of establish-

ing the inventory model for time-degenerating items in the fuzzy sense using
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penalty cost under the conditions of infinite production.

Table (3.2) presents a summary of some significant studies that have been under-

taken. For each research, the approach adopted to model the deteriorating inventory,

the type of the supply chain system, the deterioration function, demand function,

and shortage are presented together with the objective function. This leads to a

review of models of deteriorating manufacturing processes, which is the subject of

the next chapter.
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Table 3.2: Summary of selected deteriorating inventories
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Chapter 4

Review of deteriorating

manufacturing systems

4.1 introduction

Classical manufacturing systems are built on the idea that the process operates flaw-

lessly with machines and equipment designed to last indefinitely, generating items

of perfect quality at a constant production rate. This is not always true because

facilities and equipment are subject to deterioration over time due to several causes

such as age, deformation due to operation, wear and tear, and the effects of cor-

rosive agents (chemicals, atmospheric agents, etc.). These damages can lead to a

decrease in the production capacity, breakdowns which can result in the shutdown

of the plants, the production of more rejects, or decrease in the market value of

the products produced due to design or manufacturing failures; that is, due to the

poor quality of the finished products. In any case, these damages are a source of

additional direct or indirect costs. In some manufacturing systems, it is assumed

that, stopping a machine for repair after a breakdown restores the damaged machine

to its original state. However, if this were always the case, the systems could be

operational for an almost infinite time, which is almost impossible.

This chapter is arranged as follows: a review of non-flexible manufacturing systems is

presented in section 4.2; section 4.3 provides a comprehensive literature focusing on

the flexibility and adaptability of systems subject to breakdowns, the most relevant

topic in this research study. The integration of quality is presented in section 4.4;

finally, a conclusion and motivations for the models we will propose in the next

chapter is presented in section 4.5. Our objective is by no means to duplicate works

already done, but rather to show the complexity of modelling manufacturing systems

for perishable inventories with failure-states of machines while considering imperfect
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production

4.2 Non-flexible manufacturing systems

In today’s competitive business environment, organizations are increasingly con-

cerned with ensuring the efficiency of their production processes to optimize the

total cost incurred, or profit earned. A production system (PS) being a set of in-

terconnected sub-systems such as machines, assembly stations, conveyors, etc., used

for the production of goods or services; their availability and reliability are the most

crucial factors influencing the efficiency of the production system. While the pro-

duction system was first proposed by Taft (1918) as an extension of the Harris model

demonstrated in the previous chapter, it is only in the last 35 years that the field

of manufacturing system optimization has been extended. The characterization of

production systems provides a mechanism for identifying the conceptual and func-

tional attributes that drive their multiple performance levels. The behaviour of a

production process and its constituents can be modelled through two states with

performance levels associated with each of these states (Figure 4.1), such as the

functional state and the non-functional state (Zaitseva, 2003).

Figure 4.1: Functional diagram of a production system with two binary states

The problem of modelling production systems is often subject to assumptions, and

the specificity of the cases studied. Thus, the choice of the methodology for evalu-

ating the indicators of effectiveness is determined by the complexity of the systems

being modelled. Kimemia and Gershwin (1983) are considered to be the first to

introduce the concept of hedging point policies in manufacturing, a concept that

consists of maintaining a certain level of stock called safety stock at an optimal

level to prevent possible unforeseen circumstances that could occur such as machine

breakdowns, unscheduled shutdowns in unreliable production systems. They pro-

posed a control model using a heuristic approach to approximate the inventory level

to minimise the total cost. Akella and Kumar (1986) developed an optimal control

policy in a failure manufacturing system using Hamilton-Jacobi-Bellman (HJB) un-

der linear assumptions for surplus and backlog cost of a production control problem
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dependent on random breakdowns and repairs. Their control policy was represented

by the following equation:

u(x(t), α(t)) =


α(t)umax, if x(t) < z∗

α(t)d, if x(t) = z∗

0, if x(t) > z∗
(4.1)

Their system controls the production rate u(x(t), α(t)) in terms of stock x(t) and the

state of the machine at any given time α(t) ∈ {0, 1}, with α(t) = 1 if the equipment

is operational, α(t) = 0 if the equipment is non-operational, with z∗ the hedging

point. Bielecki and Kumar (1988) validated the control system proposed by Akella

and Kumar (1986), considering a random state evolution modelled as a birth-death

process to find real-time production rates in response to a stochastic disturbance and

to optimise the long-term average cost. Sethi et al. (1991) proposed an asymptotic

analysis of hierarchical production planning in a manufacturing system with two

tandem machines that are subject to breakdown and repair. Srivatsan and Dallery

(1996) extended Bielecki and Kumar (1988)’s model by considering a two-part-type

manufacturing systems and minimized the total expected surplus and backlog costs.

Gharbi and Kenne (2003) proposed an optimal control policy for a system composed

by several machines and producing several products using HJB equations. The au-

thors combined analytical methods and experimental design simulation to find an

estimation of the optimal policy because the HJB equations are complex to solve

for a multi-product production system. Krasik et al. (2008) extended Gharbi and

Kenne’s (2003) model to a system with multiple machines in parallel, producing

multiple products with non-zero setup costs. An algorithm based on dynamic pro-

gramming was used to determine the optimal cost consisting of inventory holding

cost and shortage costs. Gershwin et al. (2009) studied a manufacturing system by

incorporating the fraction of customers who withdraw their orders when shortages

have reached a certain level. Gupta and Arora (2010) studied a manufacturing sys-

tem of perishable inventory intending to meet a linearly increasing demand. For the

study and modelling of the functionality of such a system, a Multi Production Sys-

tem (MPS) for items that deteriorate according to a special form of Weibull density

function is considered. Sharmila and Uthayakumar (2016) investigated the effect

of stock dependent demand and time on the MPS. Their approach is based on a

combination of demand flexibility and item shelf life expressed in terms of Weibull

distribution to minimise the average total cost for operating the production system

and keeping the stock in inventory. Swagatika et al. (2019) developed a MPS with

three production rates in both crisp and fuzzy sense. Their study has been addressed
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by considering demand in the power form of frequency of advertisement and unit

price of the item, particularly for the fuzzy model.

None of the proposed models considers an approach that simultaneously integrates

production management and continuous operation of resources in a failure state.

When a failure occurs, the production process is usually stopped for repair. How-

ever, in flexible manufacturing systems, after a random failure, the machines may

continue to operate at a rate lower than the initial rate until a specific inventory

is reached because stopping the production process, such as the case of the above-

proposed models above, would incur high costs and customer losses. Therefore, it is

necessary to address the concept of multi-state systems with unreliable equipment

in continuous manufacturing planning and control.

4.3 Flexible manufacturing systems in inventory

management

Interest in research dealing with manufacturing systems with machines subject to

repairs and failures has been on the rise. An important manufacturing systems’

class is the one where the system is continuous and flexible. Several systems and

their components undergo different stages of deterioration during their shelf lives.

Deterioration processes or systems degradation studied in literature are often due

to environmental conditions such as corrosion, erosion, or physical phenomena such

as vibration, wear, fatigue, shock, etc. (Lam and Yeh, 1994). Different states of

deterioration are often used for the study and modelling of production systems and

their components, each of which reflects the stage of the system or its components.

If, from the production point of view, a system is conceived in a way that, at the

occurrence of any failure, a reconfiguration is undertaken automatically, allowing

the degraded machine or any other equipment to be functional, but with a decrease

of the service delivered, we refer to this as a Multi-State System (MSS) or degraded

system. Thus, a third state is added to the two previous states represented in Figure

(4.1), referred to as the degraded state. A system is considered degraded if, after a

failure, it remains operational but with a decreased level of performance. In other

words, in a degraded state of a system, the process operates with a loss of perfor-

mance due to a breakdown of one or more of its components. In contrast, a system

is described as non-degradable if it is failure-free and continues to be functional by

yielding the same level of performance at any point in time.

In the research based on non-flexible production systems illustrated in section 4.2,
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ensuring continuity of the production is an important issue. In those models de-

veloped, the occurrence of a failure would result in the complete shutdown of the

production system (Figure 4.1). This type of system can be highly costly, disas-

trous, and lead to production line losses in manufacturing. Wu and Chan (2003)

proposed a more robust system with unreliable machines while ensuring the con-

tinuity of production (Figure 4.2). This continuity of service depends mainly on

Figure 4.2: Functional diagram of a MSS with three binary states

the state of the partial degradation of the manufacturing system. For such sys-

tems, the breakdown of any component only minimally or at least partially disrupts

their performance. In this way, the system can continue to provide service with

an acceptable level of degradation. This approach differs from conventional meth-

ods implying the complete shutdown of the system, as it is a cost-effective approach.

To anticipate any severe failure of the MSS, proper analysis of the degraded mode

is often carried out. This involves identifying the component that must be urgently

restored. Such an evaluation aims to determine the most suitable compromise be-

tween the various possible options and tolerable losses. Having identified, assessed,

and prioritised the risks, the procedures to govern the downgraded mode are imple-

mented.

Generally, the approach adopted for operating a system in degraded mode is de-

scribed as follows:

1. Identifying and classifying the potential failures in terms of degree of severity;

2. Determining the impact of these failures on the manufacturing system;

3. Determining alternative control strategies to ensure the robustness of the sys-

tem once the failure mode is activated.
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MSS with unreliable machines subject to failures and random repair have been

widely investigated by several researchers. Boukas and Haurie (1990) studied a

MSS composed of two machines to optimize the total expected cost in terms of pro-

duction rates and maintenance rules over an infinite planning horizon. Boukas and

Haurie (1990) extended Rishel’s (1975) model by combining production planning of

unreliable machines deteriorating with the concept of hedging point introduced by

Kimemia and Gershwin (1983) and preventive maintenance. Koulamas (1993) con-

sidered a single-stage and serial production line systems with unreliable machines

and general probability distributions by using a Markovian approach to characterize

the states of the production process (busy, idle, undergoing repair).

Hu et al. (1994) proposed a single product, single- unreliable machine production

system with production rate dependent on failure rate. The authors indicated that

hedging point policies are optimal if the failure rate is linearly production-dependent

and suggested that the machine’s production rate be reduced as the hedging point

is approached to account for its reliability. Martinelli (2007) validated the results

provided by Hu et al. (1994) by considering an MSS with an unreliable machine

subjected to two different failure rates. The author later extended Martinelli’s (2007)

problem by considering an unreliable machine with the failure rate as a piecewise

increasing function of the production rate. Dehayem et al. (2011) considered a semi-

Markov method for a deteriorating production system dependent on the age and

the number of breakdowns. Moreover, the authors demonstrated that the process

becomes more complex if the degradation of the system varies with the production

rate. Figure (4.3) represents the behaviour an MSS with a failure state (degraded

mode).

The MSS system represented in Figure 4.3 shows that at time t1, the failure of a

constituent of the system is identified. The system switches to a failure state. This

state remains active until the repair of the damaged component is completed after

which the system switches to full functionality at time t2. Kouedeu et al. (2014)

proposed a single product, two unreliable, non-identical machines model with ran-

dom breakdowns and repairs. They indicated that the production speed should be

reduced when approaching the hedging point of finished products to address machine

reliability and reduce the total cost incurred. In addition, several methods have been

developed to improve such a system, including redundancy, safe control-monitoring

design and reconfiguration of functions. For systems with unreliable components in

which failure rates are time-dependent, preventive replacement may be an option

for enhancing the reliability of the system (Levitin and Lisnianski, 1999). How-

ever, the maintenance of systems having components of a system that are subject

to breakdown prevents the risk of failure but also lead to high costs, particularly
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Figure 4.3: State of a MSS in terms of equipment deterioration

for systems with high sensitive components. Moreover, minimal repair can be con-

sidered the cheapest option that allows the system’s constituents to resume their

function after failure of the system due to cumulative breakdowns of components

(Beihelt and Fisher, 1980). Several studies in the field of optimisation of multi-state

systems’ reliability aim to identify the optimal number of redundant components

in each subsystem of a production system to obtain the optimal solution by using

non-linear, integer or mixed programming approaches (Tillman et al., 1997). How-

ever, the processing time required to find an optimal solution is likely to increase

exponentially with the size of the problem, which makes exact methods inefficient

in large scale (Nahas, 2008). Heuristics have been developed for this purpose, and

the most commonly used meta heuristics for multi-state systems are ant colonies,

genetic algorithms, and neural networks. They do not guarantee an optimal so-

lution; however, they provide an acceptable solution in the case of medium-sized

combinatorial problems.

4.4 Integration of quality control in manufactur-

ing systems

Conventional production systems are based on some simplistic assumptions that

overlook many real-life factors. Several production systems assume that the out-

puts of a production system are always of perfect quality and ignored the process

in which defective products are generated, but instead considered that the yield of

the manufacturing process is perfect and equal to 100%. Production processes are
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often imperfect, and their outputs may contain some bad finished products. Such

products can either be reworked, scrapped, sold at a salvage price, or undergo fur-

ther processing. In all cases, this results in substantial costs. In the case where the

items may need further processing, additional costs such as the cost of the addi-

tional resources needed to further process the items, and the costs associated with

the increased lead-time resulting from the processing of the articles are incurred.

To ensure the quality expected by customers are met, manufacturers may need to

inspect the finished products before being delivered to customers. At the end of this

control, the products are classified as either being conforming or non-conforming

based on their quality. Rosenblatt and Lee (1987) were among the first to introduce

the concept of quality control in inventory control by modelling a process in which

defectives articles are generated explicitly based on whether the production system

is ”in control” or ”out of control”. Porteus (1990) later extended Rosenblatt and

Lee’s (1987) work by considering a case where inspection can be performed during

the production cycle to identify any defective during the production process. Shamsi

et. al. (2009) integrated imperfect quality items, rework, backlogging and inspection

error into a single EPQ model. Alimohamadi el. at. (2011) developed EPQ model

by considering preventive maintenance work in process inventory with reworkable

items and shortage. Rivera-Gomez et al (2013) discussed an unreliable production

system in which the scrap rate varies with the age of the machines. Abdul et al

(2012) and El-Kassar et al. (2012) have independently discussed a manufacturing

system with imperfect raw materials purchased from the supplier and its reverse

logistics. Krishnamoorthi and Panayappan (2012) developed an inventory system

for a single stage production process with rework of imperfect and shortages. Li et

al. (2015) examined a production model jointly considering product deterioration

and unreliable machines with time increasing defective rates and rework.

Majumder et al (2016) proposed a model considering an imperfect production pro-

cess for breakable goods within a limited time frame to optimize the profit as well

as the reliability indicator (r) using the Euler-Lagrange equations. Patra (2018)

presented a non-reliable production system for deteriorating inventory with adver-

tisement and price dependent demand and no rework. A ”Multi-Objective Genetic

Algorithm (MOGA)” was used to maximize the profit and minimize the risk. Sakou

(2019) investigated a non-reliable production system consisting of a single machine

and a single product subject to random failures and repairs. The author then used

control theory based on dynamic programming of the HJB type to optimize the

production policy that minimized the total cost. Kumar (2020) proposed an im-

perfect production system with imperfect inspection processes and rework of the
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defectives produced and scrapping of the non-reworkable defectives under complete

backlogging.

4.5 Conclusion

The quest for continuous improvement drives managers to develop strategies of seek-

ing more significant levels of productivity, quality and safety in production systems.

Faced with the globalization of markets and technological issues in production, man-

ufacturing factories are confronted with issues related to optimizing their production

systems. Production planning problems in a manufacturing system are often subject

to constraints related to the equipment used, the quantity and the quality of the

products produced. A company wins when it can meet its customers’ needs without

unnecessary costs. For this reason, every organization will seek to maximize its profit

and minimize its costs. However, if one or more components of a production system

are unavailable due to some failure, the system will not deliver the required service.

An extensive literature has been dedicated to production systems with binary states

in which a system is either operational or out of service. Strategies for improving

or restoring the performance of these binary systems have often been based on the

use of redundancy, preventive maintenance, etc.

Research on MSS is sparse and has only recently begun to receive attention, fol-

lowing the publication of Ben-Daya et al.’s (2009) work. Several extensions have

been made, but none of them takes into account the MSS with unreliable machines

and imperfect quality outputs, stock dependent demand, time exponential deteriora-

tion function of items, stochastic failure rate, green house policies, capacity limits,

non-linear shortage costs, quantity discounts, salvage price, maintenance, rework

and risk measures. Substitutability is rarely addressed in deteriorating inventories,

whilst it is relevant to inventory managers. Owing to these gaps in the current body

of knowledge, this study seeks to bridge some of the mentioned gaps in the next

chapter. Therefore, when formulating the specific model, the assumption of deteri-

oration of a machine, as used in the model developed by Ben-Daya et al. (2008),

is adapted because, despite the occurrence of a failure, the system reconfiguration

mechanisms with partial reduction of the nominal performance of the equipment

ensures the continuation of service. Furthermore, in addition to Ben Daya et al.’s

(2008) model, the use of modelling methods and implementation of optimisation

strategies for performance measures proposed in Bhowmick and Samantha’s (2011)

model is also integrated. In addition, for market survival, the manufacturer also

allows backorder. Obviously, the backordered demand depends on the portion of
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customers that are willing to stay until the next replenishment, as developed in

Gothi et al. (2017). Numerical methods are proposed to evaluate the impact of

failure state on performance measurements of the continuous production system.
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Chapter 5

A lot sizing model for a

Multi-State System with

deteriorating items, variable

production rate and imperfect

quality

5.1 Introduction

The traditional economic production model made a number of simplifying assump-

tions that might be unrealistic in real-world situations. Ever since the Economic

Production Quantity (EPQ) model was first introduced in the early decades of the

21st century, researchers have extended it in many ways through thee relaxation of

key assumptions, including considerations of shortages, degradation of equipment,

deterioration of goods, variable demand, imperfect quality of the outputs and some

combinations of these relaxations. Many inventory models have been developed un-

der the assumption that the lifetime of an item is infinite while it is in storage. In

many real life situations, this assumption may not be true. The management of de-

teriorating inventories has received much attention by several researchers in recent

years because deterioration of items is one of the important factors in inventory con-

trol problems. Chemicals, fruits, vegetables, fertilizers, perfumes, pharmaceutical

products, radioactive substances, gasoline, and different types of oils are examples of

deteriorating items. The classical production model of Taft (1918) assumes that the

depletion of inventory is due only to the constant demand rate while in many inven-

tory systems, the effect of deterioration cannot be ignored. Whitin (1957) was the

first to consider the effect of deterioration in inventory. Ghare and Schrader (1963)
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proposed a replenishment policy for an exponentially decaying inventory. Covert

et al. (1973) developed an EOQ model for deteriorating items by considering a

two-parameter Weibull deterioration rate. Datta and Pal (1990) proposed a deter-

ministic inventory system for deteriorating items with constant deterioration rate

and demand rate that is a linear function of stock level. Giri et al. (1997) developed

heuristic models for deteriorating items with shortages and time-changing request

and expense. Panda et al (2008) developed an inventory model for perishable prod-

ucts with time varying demand. Pandey and Vaish (2017) developed an optimal

inventory policy for deteriorating items with seasonal demand under the effect of

price discounting on unit selling price for backordered quantity so as to enhance the

demand and to reduce the lost sale.

Many researchers have also studied production systems where perfect quality items

are always produced, but in actual situations, manufactured products may include

a number of imperfect items. This defect in the product quality may be the result

of many factors such as human errors, wide tolerance, equipment failure, mishan-

dling, and incorrect specifications for raw materials (Muhammad, 2019) and is now

being studied. Zang and Gerchak (1990) extended the classical EOQ model to sys-

tems with imperfect quality by studying an inspection policy with random yield

on lot sizing and assuming that defective units are replaced by non-defective ones.

Cheng (1991) presented an EOQ model with imperfect production processes and

price dependent demand. Chang (2004) presented a model in which the propor-

tion of items considered imperfect and the demand rate were assumed to be fuzzy

variables. Ozdemir (2007) examined an EOQ model with defective items and back-

ordering. Jaber et al. (2008) presented an EOQ model for imperfect quality items

subject to learning effects.

Typical models of production systems do not consider processes with speed losses or

breakdown of machines. However, considering the manufacturing system as a com-

plex sequence with several unit processes, each with its characteristics, the issues of

resource reliability has become an issue that producers have to address because the

performance of a system depends on the availability of machinery. Process degrada-

tion is a natural phenomenon in a production process that runs for long time, hence,

the problem of degradation of processes has been addressed by several authors. Hall

(1983) studied the effect of malfunctions of equipment on the quality of products.

Sana et al. (2007) extended Sethi and Sethi’s (1990) model by considering a system

with imperfect production (due to staff impatience), constant demand, loss of sale,

and price discounting on the quality items. Ben-Daya et al. (2008) studied an EPQ

model with a shifting production rate under stoppages due to speed losses. They
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demonstrated that process deterioration could be the result of minor stoppages and

speed losses, which in practice may affect the efficiency of the process. Kenne and

Nkeungoue (2008) proposed homogenous Markov Processes using the Hedging point

policy with failures and repairs of machines. The authors assumed that the machine

failures were age-dependent. Mehrgani et al. (2014) studied production systems

with machines subjected to random breakdowns and repairs under preventive main-

tenance with human error.

The study of system’s reliability has traditionally been based on binary modelling

(using two states) namely the operational state and the complete failure state. How-

ever, growing literature now considers numerous situations that may occur during

the lifetime of some production systems. Such systems may be Multi Production

System (MPS) or Multi-State System (MSS). MPS usually starts with low produc-

tion rates and then ramp up in order to lower the average holding cost as smaller

stock level is held for longer time while large stocks are held for longer period. MSS

however, may serve both the purpose of holding cost reduction and operation in a

degraded state. MSS may be subject to multiple failure modes which may have dif-

ferent effects on their performance. Degradation, being one of these failure modes,

allows a machine to continue to perform its function after a breakdown has occurred,

but resulting in a partial reduction of its nominal performance. A manufacturing

system’s effectiveness is usually determined by combining the system’s efficiency,

the product’s availability, and the product’s quality. Over the past few years, many

studies addressed the effects on process availability (Ben-Daya and Rahim, 2001).

However, MSS and its effect on both the efficiency and the quality of the items

produced has not been fully addressed in the literature. Some researchers have tried

to address this problem by simply inflating the quantity produced in the lot size by

an amount needed to take care of the quantity that needs to be discarded without

considering the implications of degraded state of the machine and other factors such

as the quality of items produced and the shelf life of items stored (Hu et al., 1994;

Martinelli, 2007; Dehayem et al., 2011). While this assumption seems reasonable

and may yield simpler and more direct mathematical solutions, the authors did

not address the question of what happens when the machine continues to work at

this higher rate of production, that may lead to more damage to the machine, and

may increase the level of defective items produced beyond what would have hap-

pened by shifting to a lower production rate. Silver (1990) considered a case of a

manufacturing equipment dedicated to the production of a family of items by delib-

erately slowing down the output to permit the individual item production rates to

be treated as controllable variables without taking into account the degraded mode.

Khouja and Mehrez (1994) developed an EPQ model where the production rate is
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a decision variable. Results of this model indicate that there are both weak and

strong relationships between the rate of production and process quality. Eiamkan-

chanalai (1995) extended the work of Khouja and Mehrez (1994) to scenarios where

the rate of production is a decision variable by including a linear penalty function

due to unused capacity. Shib et al. (2007) considered a production system with

adjustable rate with demand for both perfect and imperfect quality items. Ben-

Daya et al. (2007) developed a two-state production system, demonstrating the

effect of varying production rate on batch sizing due to speed loss. Bhowmick and

Samanta (2011) developed a production model for deteriorating items with constant

demand, increasing production rates and shortages. Uthayakumar and Sekar (2017)

developed an EPQ model for deteriorating items with multi-production setups and

rework of imperfect items and salvage value. We now discuss an identified gap in

literature

Table 5.1: Gap analysis of related works in literature

An analysis of the published EPQ model with MSS/MPS systems previously stud-

ied in the literature is provided in Table (5.1), which illustrates the various factors

considered with the MSS/MPS models by different research articles in the extant

literature, and what this paper adds to the research on production with machines

in degraded mode. A review of current literature seems to suggest that there is

no work published on inventory modelling for deteriorating items, which considered

the assumptions of multi-state production systems with non-increasing production

rate, imperfect quality and partial backlogging. This paper considers an MSS for
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a deteriorating item with imperfect items quality and degrading production rates,

while also allowing partial backlogging of demand with lost sales. The model, ex-

tends the work of Khouja and Mehrez (1994) and Al-Salamah (2019). The goal is

to examine deterioration of both products and processes and their impacts on the

economic production quantity decisions. In particular, we assume that the degrada-

tion of equipment results in a change in the production rate at a time the operator

may choose. This model may be applied in many industries in which machines can

be subject to failures and where their production rates can be controlled, like in ma-

chinery and mechanical assemblies including automobile, milling, turning, drilling,

aircraft engine and machine tools, and paper manufacturing plants. The rest of this

chapter is structured in the following manner. In section 2, the development of the

mathematical model is outlined. The total cost function and optimality conditions

are presented in section 4. Numerical examples are presented in section 5. Lastly,

the conclusion and future research suggestions are presented in Section 6.

5.2 Formulation of the proposed MSS

5.2.1 Notations and Fundamental assumptions

Assumptions

The following assumptions are made for development of the model:

• The production-inventory system produces a single item.

• Shortages are partially backlogged and partially lost.

• The changeover cost and time from k1 to k2 is assumed to be negligible

• All imperfect items are scrapped and disposed as a batch, and a disposal cost

is incurred per item scrapped.

• The production shift occurs during the production run, and is consequent to

the optimized inventory parameters.

• The deterioration of an item produced follows the exponential function θe−θt

for t ≥ 0 , where θ is the deterioration rate; i.e a constant fraction θ(0 ≤ θ � 1)

of the on-hand inventory deteriorates per unit time.

Notations

The following notations are adopted to develop the model:
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Table 5.2: Notations used in the formulation of the mathematical model

Symbol Description

Ca The deterioration cost per item.

Cs The shortage cost per item per time

Cb The disposal cost per unit item

Cp The penalty cost per unit lost sale

D(t) = a The constant demand rate for item produced

d1 Proportion of defective units produced during the time interval [0, t1]

d2 Proportion of defective units produced during the time interval [0, t2]

G The production setup cost

h The inventory carrying cost per item per time

HM The Hessian Matrix

I(t) The instantaneous state of the inventory level

at any time t (0 ≤ t ≤ T ).

k1, k2 The Constant production rates during the time intervals [0, t1]

and [t1, t2] respectively

I1 The inventory level at the end of time t = t1)

I2 The inventory level at the end of time t = t2)

r The fraction of demand lost due to inventory stock − out (0 < r < 1)

pc1, pc2 The constant unit production costs when the rate of productions are k1

and k2 respectively

S The maximum shortage, occuring at t = t4

T The total cycle time

CT The average total cost for the time period [0, T].

θ(t) The deterioration rate per (units/unit time).

ρ1, ρ2,,

Ψ, β, τ Aggregation parameters for some known variables

B,C,E, F
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5.2.2 Mathematical Formulation

In the following system, a company produces a certain item, which deteriorates over

time. Figure (5.1) represents the behaviour of the MSS with a single unreliable ma-

chine that produces the item through a degradable process. The system is designed

to start operating at a production rate of k1 and an inventory of perfect quality

items accumulates during the first part of the cycle at a rate (1− d1) k1 − a while

the imperfect quality items accumulate at the rate d1k1 and are disposed as a single

batch at the end of the cycle. We assume the elapsed time until the production pro-

cess switches to a ’degraded state’ to be t1, by which time the stock of good items

had reached the level I1. It is assumed that when breakdown occurs, the system is

automatically reconfigured to continue to be operational but at a lower production

rate, k2. The same concept was used by Khouja (2005) and Ben-daya et al. (2009)

dealing with shifts in the production rate. Therefore, the production rate switches

over to k2 and inventory of perfect items accumulates at the rate (1− d2) k2−a until

a level I2 is reached. The quantity of imperfect quality item continues to accumulate

at the rate d2k2 in the second production consumption cycle which ends at time t2

and is also disposed at the end of the cycle. We assume the ’failure state to be a

static. This implies that no further deterioration occurs overtime after the system

shifts to a ”failure” state. Once the level I2 is reached, production is then stopped for

maintenance, and the stock in inventory decreases due to demand and deterioration

until the stock level reaches zero. There are two unit costs of production associated

with each of the two states of production. These costs are assumed constant in each

state of the production, and increases in the second state of the machine due to the

degraded state of the machine, which is assumed to need more power and probably

labour. After the stock drops down to zero, the system goes into a state of backlog

of demand up to S (the maximum backorder level) and thereafter production starts

to clear the backlog.Gothi et al. (2017) assumed that demand during the time [t4, T ]

is satisfied as the production has already started at time t = t4 and so loss of sales

cost during this interval is not taken into account. But in reality some customers

are not willing to wait as the company is still not able to meet all the outstanding

demand instantaneously. Moreover, it is assumed that the production process is

restored to the original production rate only at the beginning of the next cycle.

The differential equations that represent the problem statement of the EPQ model

in the interval [0, T] are given by:

dI(t)

dt
+ θ × I(t) = (1− d1) k1 − a 0 ≤ t ≤ t1 (5.1)
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Figure 5.1: Inventory profile of the MSS with alternating production rates

dI(t)

dt
+ θ × I(t) = (1− d2) k2 − a t1 ≤ t ≤ t2 (5.2)

dI(t)

dt
+ θ × I(t) = −a t2 ≤ t ≤ t3 (5.3)

dI(t)

dt
= −(1− r)× a t3 ≤ t ≤ t4 (5.4)

dI(t)

dt
= [(1− d2) k2 − (1− r)a] t4 ≤ t ≤ T (5.5)

Next, the differential equations (5.1) -(5.5) of the manufacturing system are solved.

From equation (5.1)

dI(t)

dt
+ (θ)I(t) = (1− d1) k1 − a
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I(t) = e−(θ)t

[∫
(1− d1) k1 − a

e−(θ)t
× dt+ L1

]

I(t) =

[
(1− d1)) k1

θ
− a

θ

]
+ L1e

−θt (5.6)

By considering the boundary condition I(0) = 0, L1 is obtained from equation (5.6)

[
(1− d1)) k1

θ
− a

θ

]
+ L1 = 0

L1 =
a

θ
− (1− d1)) k1

θ
(5.7)

By substituting L1 from Equation (5.7) into equation (5.6)

I(t) =

[
(1− d1)) k1

θ
− a

θ

]
+

[
− (1− d1)) k1

θ
+
a

θ

]
e−(θ)t

I(t) =

[
(1− d1)) k1

θ
− a

θ

] (
1− e−θt

)
0 ≤ t ≤ t1 (5.8)

By applying the same procedure to equations (5.2) and (5.3), the following are

obtained:

I(t) =

[
(1− d2) k2

θ
− a

θ

]
+ L2e

−θt (5.9)

From equation (5.9) under the boundary condition I (t1) = I1 we obtain:

L2 =

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
eθt1 (5.10)

Therefore, the general representation of the inventory level in the interval [t1, t2] is:

I(t) =

[
(1− d2) k2

θ
− a

θ

]
+

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t−t1) t1 ≤ t ≤ t2

(5.11)

The solution of equation (5.3) is given by:

I(t) = −a
θ

+ L3e
−θt (5.12)
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From equation (5.12) under the boundary condition, I (t2) = I2 ,we get L3 in [t2, t3]

:

−a
θ

+ L2e
−θt2 = I2

L3 =
(
I2 +

a

θ

)
eθt2 (5.13)

Therefore, the general representation of the inventory level in the interval [t2, t3] :

becomes:

I(t) = −a
θ

+
(
I2 +

a

θ

)
e−θ(t−t2) t2 ≤ t ≤ t3 (5.14)

Since production stops at t2, and can only resume at t4, the items in inventory are

consumed until the inventory reaches zero at t3. However, not all customers are

willing to wait until the next replenishment; therefore, a portion of demand is lost;

the remaining order is backlogged until production begins. The quantity backlogged

is represented by equation (5.4), and can be solved as follows:

dI(t)

dt
= −(1− r)× a (5.15)

The solution of equation (5.15) is:

I(t) = −(1− r)at+ L4 (5.16)

From equation (5.16), under the boundary condition I (t3) = 0, we get:

L4 = (1− r)at3 (5.17)

Substituting L4 from (5.17) into (5.16), the inventory level during the backlog period

is obtained as:

I(t) = −(1− r)a (t− t3) t3 ≤ t ≤ t4 (5.18)

Finally, from Equation (5.5):

I(t) =

∫
[(1− d2) k2 − (1− r)× a]× dt (5.19)

I(t) = (1− d2) tk2 − (1− r)at+ L5 (5.20)

From equation (5.20), under the boundary condition I (t4) = −S, we get:

L5 = −S − (1− d2) t4k2 + (1− r)at4 (5.21)
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Substituting L5 from equation (5.21) back into Equation (5.20), leads to the follow-

ing:

I(t) = −S + (1− d2) (t− t4) k2 − (1− r)a (t− t4) t4 ≤ t ≤ T (5.22)

The model’s objective is to determine the optimal cycle time T, the inventories

I1, I2 and the optimal shortage that minimise the average total cost CT over the

time horizon [0, T ]. The evaluation of this manufacturing system is carried out using

the analytical approach, which consists of modelling the system under study through

mathematical equations (5.1) to (5.5), which are then solved through equations (5.8),

(5.11), (5.14), (5.18), and (5.22) to determine the characteristics of the decisions

variables that optimise this system. The planning horizon is divided into five cycles;

the proportion of time the system reaches inventory I1 during the first production-

consumption cycle can be obtained by solving the following set of equations: From

equation (5.8) we get:

I (t1) =

[
(1− d1) k1

θ
− a

θ

] (
1− e−θt1

)
(5.23)

From equation (5.11), we get:

I (t1) = I1 (5.24)

extracting t1 from Equation (5.23) and (5.24) leads to the following:

I1 =

[
(1− d1) k1

θ
− a

θ

] (
1− e−θt1

)
e−θt1 = 1− θI1

[(1− d)k1 − a]

ln e−θt1 = ln

[
1− θI1

[(1− d1) k1 − a]

]
−θt1 = ln

[
1− θI1

(1− d1) k1 − a

]

t1 = −1

θ
ln

[
1− θI1

(1− d1) k1 − a

]
(5.25)

From the Taylor’s series expansion, and under the assumption θ2 � 1 (neglecting

higher powers of θ ), the logarithmic function in equation (5.25) leads to

ln

[
1− θI1

[(1− d1) k1 − a]

]
=− θI1

(1− d1) k1 − a
− θ2I21

2 [(1− d1) k1 − a]2

− 2θ3

6 [(1− d1) k1 − a]3
I31

(5.26)
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By substituting Equation (5.26) into (5.25), we get:

t1 = −1

θ

[
− θI1

(1− d1) k1 − a
− θ2I21

2 [(1− d1) k1 − a]2
− 2θ3

6 [(1− d1) k1 − a]3
I31

]
t1 ≈

I1
(1− d1) k1 − a

+
θI21

2 [(1− d1) k1 − a]2

(5.27)

Thus, t1 can be written in terms of I1 and so, t1 is not a decision variable.

The proportion of time t2 during which the system reaches inventory I2 can be

obtained making t2 the subject as follows From equation (5.11), we get:

I (t2) =

[
(1− d2) k2

θ
− a

θ

]
+

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t2−t1) (5.28)

In addition, from equation (5.14), we get:

I (t2) = I2 (5.29)

Extracting t2 using equations (5.28) and (5.29) leads

θI2−(1−d2)k2+a
θ

θI1−(1−d2)k2+a
θ

= e−θ(t2−t1)

θI1−(1−d2)k2+a
−(1−d2)k2+a

θI2−(1−d2)k2+a
−(1−d2)k2+a

= eθ(t2−t1)

eθ(t2−t1) =

[
1− θI1

(1− d2) k2 − a

] [
1− θI2

(1− d2) k2 − a

]−1

ln eθ(t2−t1) = ln

[
1− θI1

(1− d2) k2 − a

] [
1− θI2

(1− d2) k2 − a

]−1

t2 − t1 =
1

θ
ln

[
1− θI1

(1− d2) k2 − a

] [
1− θI2

(1− d2) k2 − a

]−1

t2 − t1 =
1

θ
ln

[
1− θI1

(1− d2) k2 − a

]
− 1

θ
ln

[
1− θI2

(1− d2) k2 − a

]
(5.30)
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From Taylor’s series expansion, and under the assumption θ2 � 1 (neglecting higher

powers of θ ), the expansion of the logarithmic functions in (5.30) is represented by:

1

θ
ln

[
1− θI1

(1− d2) k2 − a

]
− 1

θ
ln

[
1− θI2

(1− d2) k2 − a

]
=

1

θ

[
− θI1

(1− d2) k2 − a
− θ2I21

2 [(1− d2) k2 − a]2
− 2θ3I31

6 [(1− d2) k2 − a]3

]
− 1

θ

[
− θI2

(1− d2) k2 − a
− θ2I22

2 [(1− d2) k2 − a]2
− 2θ3I32

6 [(1− d2) k2 − a]3

] (5.31)

Substituting equation (5.31) into Equation (5.30), we get:

t2 − t1 =
1

θ

[
− θI1

(1− d2) k2 − a
− θ2I21

2 [(1− d2) k2 − a]2
− 2θ3I31

6 [(1− d2) k2 − a]3

]
− 1

θ

[
− θI2

(1− d2) k2 − a
− θ2I22

2 [(1− d2) k2 − a]2
− 2θ3I32

6 [(1− d2) k2 − a]3

]
or:

t2 − t1 ≈
I2 − I1

(1− d2) k2 − a
+

θ (I22 − I21 )

2 [(1− d2) k2 − a]2
(5.32)

That is,

t2 =
I2 − I1

(1− d2) k2 − a
+

θ (I22 − I21 )

2 [(1− d2) k2 − a]2
+

I1
(1− d1) k1 − a

+
θI21

2 [(1− d1) k1 − a]2

(5.33)

Thus, t2 can be written in terms of I1 and I2. Therefore, t2 is not a decision variable.

By using equations (5.14) and (5.18), the time at which the system reaches the zero

inventory is obtained. Therefore, from equation (5.14),

I (t3) = −a
θ

+
{
I2 +

a

θ

}
e−θ(t3−t2) (5.34)

And from equation (5.18), we get:

I (t3) = 0 (5.35)

Again, eliminating I (t3) from equations (5.34) and (5.35), we get:

0 = −a
θ

+
{
I2 +

a

θ

}
e−θ(t3−t2)

a
θ(

a+θI2
θ

) = e−θ(t3−t2)

eθ(t3−t2) =
a+ θI2
a

θ (t3 − t2) ln e = ln

(
a+ θI2
a

)
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t3 − t2 =
1

θ
ln

(
a+ θI2
a

)
(5.36)

For small values of θ and using Taylor series approximation, we expand the loga-

rithmic function in (5.36) as follow:

ln

(
a+ θI2
a

)
=
θI2
a
− θ2I22

2a2
+

2θ3I32
6a3

(5.37)

By substituting equation (5.37) into equation (5.36),we obtain:

t3 − t2 =
1

θ

[
θ

a
I2 −

θ2

2a2
I22 +

2θ3

6a3
I32

]

=
I2
a
− θI22

2a2
+
θ2I32
3a3

t3 ≈
I2
a
− θI22

2a2
+ t2

That is,

t3 =
I2
a
− θI22

2a2
+

I2 − I1
(1− d2) k2 − a

+
θ (I22 − I21 )

2 [(1− d2) k2 − a]2
+

I1
(1− d1) k1 − a

+
θI21

2 [(1− d1) k1 − a]2

(5.38)

Thus, t3 can be written in terms of I1 and I2. Therefore, t3 is not a decision variable.

From equation (5.18),

(t4) = −(1− r)a (t4 − t3) (5.39)

And from equation (5.22),

I (t4) = −S (5.40)

Eliminating I (t4) from equations (5.39) and (5.40) , we get:

−(1− r)a (t4 − t3) = −S

t4 − t3 =
S

(1− r)a
(5.41)
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t4 =
S

(1− r)a
+

I1
(1− d1) k1 − a

+
θI21

2 [(1− d1) k1 − a]2
+

I2 − I1
(1− d2) k2 − a

+
θ (I22 − I21 )

2 [(1− d2) k2 − a]2
+
I2
a
− θI22

2a2

(5.42)

Thus, t4 can be written in terms of I1 and I2, therefore, t4 is not a decision variable,

with S the maximum backlog of the given production system. The production-

planning problem considered in this chapter also involves the determination of the

optimal backlog level, which can be computed as follow

− S + (1− d2) (T − t4) k2 − (1− r)a (T − t4) = 0

− S + [(1− d2) k2 − (1− r)a] (T − t4) = 0

T − t4 =
S

[(1− d2) k2 − (1− r)a]
(5.43)

Substituting equation (5.43) into equation (5.41), leads to:

T − t3 −
S

(1− r)a
=

S

[(1− d2) k2 − (1− r)a]

(1− r)a [(1− d2) k2 − (1− r)a] (T − t3)
(1− r)a [(1− d2) k2 − (1− r)a]

=
S [(1− d2) k2 − (1− r)a]

(1− r)a [(1− d2) k2 − (1− r)a]
+

S(1− r)a
(1− r)a [(1− d2) k2 − (1− r)a]

S (1− d2) k2 = (1− r)a [(1− d2) k2 − (1− r)a] (T − t3)

S =
(1− r)a [(1− d2) k2 − (1− r)a] (T − t3)

(1− d2) k2
Hence, the maximum backlog can be written as:

S =
(1− r)a [(1− d2) k2 − (1− r)a]

(1− d2) k2

[
T − I2

a
+
θI22
2a2
− I2 − I1

[(1− d2) k2 − a]
−

θ (I22 − I21 )

2 [(1− d2) k2 − a]2
− I1

[(1− d1) k1 − a]
− θI21

2 [(1− d1) k1 − a]2

]
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=
(1− r)a [(1− d2) k2 − (1− r)a]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
(5.44)

With:
(1− d1) k1 − a = ρ1

(1− d2) k2 − a = ρ2

1

a
+

1

ρ2
= B

1

a2
− 1

ρ22
= C

1

ρ2
− 1

ρ1
= E

1

ρ22
− 1

ρ21
= F

Thus, S can be written in terms of I1, I2 and T . Therefore, S is not a decision

variable.

5.3 Cost components involved in the mathemati-

cal formulation

To find the optimal quantities, we first calculate the total cost per inventory cy-

cle which is the sum of deteriorating cost, production cost, production setup cost,

inventory holding cost, cost of loss of sales, shortage costs and cost of disposing

defective items scrap. The cost components are as follows:

5.3.1 Setup Cost (SUC)

The modelling starts by formulating the setup cost. This cost is considered fixed

and represented by:

SUC = G (5.45)

5.3.2 Deteriorating cost (AC)

The number of deteriorating items is equal to the number of total items produced

minus the number of total demand. The total number of deteriorating items over

[0, T ] is:

∫ t1

0

[(1− d1) k1 − a] dt+

∫ t2

t1

[(1− d2) k2 − a] dt−
∫ t3

t2

adt (5.46)
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∫ t1

0

[(1− d1) k1 − a] dt

= [(1− d1) k1 − a] t1

= [(1− d1) k1 − a]

[
I1

(1− d)k1 − a
+

θI21
2 [(1− d)k1 − a]2

]

=

[
I1 +

θI21
2 [(1− d1) k1 − a]

]

(5.46a)

∫ t2

t1

[(1− d2) k2 − a] dt

= [(1− d2) k2 − a] (t2 − t1)

= [(1− d2) k2 − a]

[
I2 − I1

(1− d)k2 − a
+

θ (I22 − I21 )

2 [(1− d)k2 − a]2

]

=

[
Imax − I1 +

θ (I2max − I21 )

2 [(1− d2) k2 − a]

]

(5.46b)

∫ t3

t2

adt = a (t3 − t2)

=

[
I2 −

θI22
2a

] (5.46c)

The total cost of deteriorating items over [0, T] can be expressed as:

AC =Ca

{[
I1 +

θI21
2 [(1− d1) k1 − a]

]
+

[
I2 − I1 +

θ (I22 − I21 )

2 [(1− d2) k2 − a]

]
−
[
I2 −

θI22
2a

]}

=Ca

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2a

]
(5.47)
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5.3.3 Inventory Carrying Cost (ICC)

According to Figure (5.1), it can be seen that the total holding cost over [0, T ] can

be summarized as follow:

ICC = h×
{∫ t1

0

I(t)dt+

∫ t2

t1

I(t)dt+

∫ t3

t2

I(t)dt

}
(5.48)

For the solution approach of equation (5.48), the problem has been divided into 3

time periods, each with a Number of Items Kept in Stock (NIKS) held in inventory

Thus, the total number of items kept in inventory during [0, t1] is:

NIKS1 =

∫ t1

0

I(t)dt

=

∫ t1

0

{[
(1− d1) k1

θ
− a

θ

] (
1− e−θt

)}
dt

=

[
(1− d1) k1

θ
− a

θ

] [
t+

1

θ
e−θt

]t1
0

=

[
(1− d1) k1

θ
− a

θ

](
t1 +

1

θ
e−θt1

)
− 1

θ

[
(1− d)k1

θ
− a

θ

]

=
1

θ
[(1− d1) k1 − a]

(
t1 +

1

θ
e−θt1 − 1

θ

)

(5.49)

Recall from equation (5.25) that:

1

θ

(
−1 + e−θt1

)
= − I1

[(1− d1) k1 − a]
(5.50)

And that,

t1 =
I1

(1− d1) k1 − a
+

θI21
2 [(1− d1) k1 − a]2

+
θ2

3 [(1− d1) k1 − a]3
I31 (5.51)

Substituting (5.50) and (5.50) in (5.49), leads to:

[(1− d1) k1 − a]

[
I1

θ [(1− d1) k1 − a]
+

θI21
2θ [(1− d1) k1 − a]2

+
θ2

3θ [(1− d1) k1 − a]3
I31

− l1
θ [(1− d1) k1 − a]

]
(5.52)
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Hence, the total number of items kept in inventory (NIKS1) during [0, t1] is:

NIKS1 =
l21

2 [(1− d1) k1 − a]
+

θI31
3 [(1− d1) k1 − a]2

(5.53)

The total number of items kept in inventory (NIKS2) during [t1, t2] is:

NIKS2 =

∫ t2

t1

I(t)dt

=

∫ t2

t1

[
(1− d2) k2

θ
− a

θ

]
+

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t−t1)dt

=

{[
(1− d2) k2

θ
− a

θ

]
t− 1

θ

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t−t1)

}t2
t1

(5.54)

=
1

θ
[(1− d2) k2 − a] (t2 − t1)−

1

θ

[
(1− d2) k2

θ
− a

θ

]
+

1

θ
I1

− 1

θ

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t2−t1)

With:

I2 =

[
(1− d2) k2

θ
− a

θ

]
+

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t2−t1) (5.55)

Dividing both sides of equation (5.55) by − 1
a
, the following is obtained

−1

θ

[
(1− d2) k2

θ
− a

θ

]
− 1

θ

{
I1 −

[
(1− d2) k2

θ
− a

θ

]}
e−θ(t2−t1) = −1

θ
I2 (5.56)
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Substituting equation (5.56) into equation (5.54), leads to:

1

θ
[(1− d2) k2 − a] (t2 − t1)−

1

θ
I2 +

1

θ
I1

=
1

θ2
[(1− d2) k2 − a]

{
− θI1

(1− d2) k2 − a
− θ2I21

2 [(1− d2) k2 − a]2
− 2θ3

6 [(1− d2) k2 − a]3
I31

}
− 1

θ2
[(1− d2) k2 − a]

{
− θI2

(1− d2) k2 − a
− θ2I22

2 [(1− d2) k2 − a]2

− 2θ3

6 [(1− d2) k2 − a]3
I32

}
− 1

θ
(I2 − I1)

=
(I2 − I1)

θ
+

(I22 − I21 )

2 [(1− d2) k2 − a]
+

θ (I32 − I31 )

3 [(1− d2) k2 − a]2
− 1

θ
(I2 − I1)

Thus, the total number of items kept in inventory (NIKS) during [t1, t2] is:

NIKS2 =
(I22 − I21 )

2 [(1− d2) k2 − a]
+

θ (I32 − I31 )

3 [(1− d2) k2 − a]2
(5.57)

NIKS3 =

∫ t3

t2

I(t)dt =

∫ t3

t2

[
−a
θ

+
(
I2 +

a

θ

)
e−θ(t−t2)

]
dt

=

[
−a
θ
t− 1

θ

(
I2 +

a

θ

)
e−θ(t−t2)

]t3
t2

= −a
θ
t3 −

1

θ

(
I2 +

a

θ

)
e−θ(t3−t2) +

a

θ
t2 +

1

θ

(
I2 +

a

θ

)
e−θ(t2−t2)

= −a
θ

(t3 − t2)−
1

θ

(
I2 +

a

θ

)
e−θ(t3−t2) +

1

θ

(
I2 +

a

θ

)

= −a
θ

(t3 − t2)−
1

θ

[
−a
θ

+
(
I2 +

a

θ

)
e−θ(t3−t2)

]
+

1

θ
I2

(5.58)

With:

−a
θ

+
(
I2 +

a

θ

)
e−θ(t3−t2) = 0 (5.59)

t3 − t2 =
I2
a
− θI22

2a2
+
θ2I32
3a3

(5.60)
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Substituting the equations (5.59) and (5.59) into equation (5.58) leads to the fol-

lowing:

−a
θ

(t3 − t2)−
1

θ
0 +

1

θ
I2 = −a

θ

[
I2
a
− θI22

2a2
+
θ2I32
3a3

]
+

1

θ
I2

= −I2
θ

+
I22
2a
− θI32

3a2
+

1

θ
I2

Thus, the total number of items kept in inventory NIKS) over the period [t2, t3] is:

NIKS3 =
I22
2a
− θI32

3a2
(5.61)

Therefore, the total inventory carrying cost over the period [ 0, T] is given by:

ICC = h×
[

I21
2 [(1− d1) k1 − a]

+
θI31

3 [(1− d1) k1 − a]2
+

(I22 − I21 )

2 [(1− d2) k2 − a]
+

θ (I32 − I31 )

3 [(1− d2) k2 − a]2
+
I22
2a
− θI32

3a2

]

=h×
[
I21
2ρ1

+
θI31
3ρ21

+
(I22 − I21 )

2ρ2
+
θ (I32 − I31 )

3ρ22
+
I22
2a
− θI32

3a2

]
(5.62)

5.3.4 Shortage Cost (SC)

Backordered demand occurs in [t3, t4] and [t4, T ], the shortage cost over the period

[t3, T ] , SC, can be obtained in the form of equation (65) :

SC = Cs×
{∫ t4

t3

−a(1− r) (t− t3) dt+

∫ τ

t4

[−S + (1− d)k2 − a(1− r)] (t− t4) dt
}

(5.63)

Equation (5.63) can be summarized as follows:

SC = Cs ×
[∫ t4

t3

QB1dt+

∫ T

t4

QB2dt

]
(5.64)

While the Quantity Backordered (QB1) is allowed in the interval [t3, t4], the interval

[t4, T ] is the period of time needed to eliminate the backlog quantity QB2.

QB1 =

∫ t4

t3

−a(1− r) (t− t3) dt =

[
−a(1− r)

(
1

2
t2 − tt3

)]t4
t3

(5.65)
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=− a(1− r)
(

1

2
t24 − t4t3

)
+ a(1− r)

(
1

2
t23 − t23

)

=− a(1− r)
(

1

2
t24 − t4t3

)
− a(1− r)1

2
t23

=− 1

2
a(1− r) (t4 − t3)2

= −1

2

S2

(1− r)a
(5.66)

With:

t4 − t3 =
S

a(1− r)
(5.67)

QB2 =

∫ T

t4

{−S + [(1− d2) k2 − a(1− r)] (t− t4)} dt (5.68)

=

{
−St+ [(1− d2) k2 − a(1− r)]

(
1

2
t2 − tt4

)}T
t4

= −S (T − t4) +
1

2
[(1− d2) k2 − a(1− r)] (T − t4)2

= −S s

[(1− d2) k2 − a(1− r)]
+

1

2
[(1− d2) k2 − a(1− r)]

[
s

[(1− d2) k2 − a(1− r)]

]2

= − s2

[(1− d2) k2 − a(1− r)]
+

1

2

s2

[(1− d2) k2 − a(1− r)]

= − s2

2 [(1− d2) k2 − a(1− r)]
(5.69)

Hence, the total quantity backordered over the period [t3, T ] is given by:

− S2

2a(1− r)
− s2

2 [(1− d2) k2 − a(1− r)]

=
−S2 (1− d2) k2

2a(1− r) [(1− d2) k2 − a(1− r)]

(5.70)
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Therefore, the shortage cost over the period [t3, T ] is:

SC = Cs
S2 (1− d2) k2

2a(1− r) [(1− d2) k2 − a(1− r)]
(5.71)

With:

S =
(1− r)a [(1− d2) k2 − (1− r)a]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]

S2 =
(1− r)2a2 [(1− d2) k2 − (1− r)a]2

(1− d2)2 k22

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]2
(5.72)

Substituting equation (5.3.4) into equation (5.71),

SC =Cs

(1−r)2a2[(1−d2)k2−(1−r)a]2

(1−d2)2k22

(
T −BI2 + θ

2
CI22 + EI1 + θ

2
FI21

)2
(1− d2) k2

2a(1− r) [(1− d2) k2 − a(1− r)]

=Cs
1

2a(1− r) [(1− d2) k2 − a(1− r)]
(1− r)2a2 [(1− d2) k2 − (1− r)a]2

(1− d2)2 k22
[T−

BI2 +
θ

2
CI22 + EI1 +

θ

2
FI21

]2
(1− d1) k2

SC = Cs
a(1− r) [(1− d2) k2 − a(1− r)]

2 (1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]2
(5.73)

5.3.5 Disposal Cost (DC)

At the end of each production cycle, a proportion di of defective items is produced

and a cost is incurred by the company to dispose those imperfect items. This cost

can be represented as follows

DC = Cb × [d1k1t1 + d2k2 (t2 − t1) + d2k2 (T − t4)] (5.74)

= Cb×
{
d1k1

[
I1

(1− d1) k1 − a
+

θI21
2 [(1− d1) k1 − a]2

]
+

d2k2

[
I2 − I1

(1− d2) k2 − a
+

θ (I22 − I21 )

2 [(1− d2) k2 − a]2

]
+d2k2

S

[(1− d1) k1 − (1− r)a]

}

= Cb×
{
d1k1

[
I1
ρ1

+
θI21
2ρ21

]
+ d2k2

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+ d2k2

1

[(1− d2) k2 − (1− r)a]

(1− r)a [(1− d2) k2 − (1− r)a]

(1− d2) k2
×(

T −BI2 +
θ

2
CI22 +EI1 +

θ

2
FI21

)}
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= Cb ×
{
d1k1

[
I1
ρ1

+
θI21
2ρ21

+ d2k2

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+

(1− r)a
(1− d2)

d2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

] (5.75)

5.3.6 Lost Sale Cost (LC)

Out of stock situations can have two effects:

• Either the unrealized sale is postponed to the next period. This delay is

assumed to be evaluated financially (responses to customer reminders, possible

penalties to be paid to customers, favours granted, etc.). In theory, this cost

is a function of the number of missing units and the duration of the shortage.

• Alternatively, the unrealized sale is definitely lost: in this case, the penalty cost

corresponds to the loss of profit linked to the item requested but not supplied.

This shortfall is made up of the unit margin on purchase cost usually realized

on the product and the depreciation of the company’s image.

Gothi et al. (2017) assumed that demand during the time [t4, T ] is satisfied at a time

as the production has already started at time t = t4 and so loss of sales cost during

this interval is not considered. But in reality, some customers are not willing to wait

when the company is not able to meet all the outstanding demand instantaneously.

Thus, the expression for the loss of sale LC per cycle is determined by:

LC = Cp × r
[∫ t4

t3

a× dt+

∫ T

t4

a× dt
]

= Cp × r × a (T − t3)

(5.76)

with:

T − t3 =
S (1− d2) k2

(1− r)a [(1− d2) k2 − (1− r)a]
(5.77)

Substituting equations (5.44) and (5.77) in (5.76) gives:

Cp × r × a
(1− r)a [(1− d2) k2 − (1− r)a]

(1− d2) k2
×
[
T − I2

a
+
θI22
2a2
− I2 − I1

ρ2
−

θ (I22 − I21 )

2ρ22
− I1
ρ1
− θI21

2ρ21
× (1− d2) k2

(1− r)a [(1− d2) k2 − (1− r)a]

= Cp × r × a
[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
(5.78)
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5.3.7 Production Cost (PC)

The following definitions are made: ki are the production rate, such that k1 is

the production rate during the first production-consumption cycle and k2 the pro-

duction rate during the second production-consumption cycle; pc1 and pc2, are the

production cost per item in the first and second consumption cycle respectively.

For the production process of interest, the following is the computation of the total

production cost over the cycle [0, T]

PC = pc1k1t1 + pc2k2 (t2 − t1) + pc2k2 (T − t4) (5.79)

= pc1k1

[
I1

(1− d1) k1 − a
+

θI21
2 [(1− d1) k1 − a]2

]
+

pc2k2

[
I2 − I1

(1− d2) k2 − a
+

θ (I22 − I21 )

2 [(1− d2) k2 − a]2

]
+

pc2k2

[
2

[(1− d1) k2 − (1− r)a]

]

= pc1k1

[
I1

(1− d1) k1 − a
+

θI21
2 [(1− d1) k1 − a]2

]
+ pc2k2

[
I2 − I1

(1− d2) k2 − a
+

θ (I22 − I21 )

2 [(1− d2) k2 − a]2

]

+ pc2k2

[ (1−r)a[(1−d2)k2−(1−r)a]
(1−d2)k2

(
T −BI2 + θ

2
Cl22 + El1 + θ

2
FI21

)
[(1− d2) k2 − (1− r)a]

]

= pc1k1

[
I1

(1− d1) k1 − a
+

θI21
2 [(1− d1) k1 − a]2

]
+

pc2k2

[
I2 − I1

(1− d2) k2 − a
+

θ (I22 − I21 )

2 [(1− d2) k2 − a]2

]
+

pc2
(1− r)a
(1− d2)

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]

= pc1k1

[
I1
ρ1

+
θI21
2ρ21

]
+ pc2k2

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+

pc2
(1− r)a
(1− d2)

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

] (5.80)
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5.4 The total cost and optimality conditions

5.4.1 Total cost

The aim of the proposed system is to optimize the company’s Total cost (CT), whose

components are: production, loss of sale, disposal, shortage, holding, deterioration

and setup costs, denoted by PC, LC, DC, SC, ICC, AC and SUC respectively. The

total cost of the system per unit time is the cost divided by the cycle time, T , hence,

CT =
1

T
(PC + LC + SC +DC + ICC + AC + SUC) (5.81)

=
1

T

{
pc1k1

[
I1
ρ1

+
θI21
2ρ21

]
+ pc2k2

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+ pc2

(1− r)a
(1− d2)

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
+ Cp × r × a

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
+ Cb

{
d1k1

[
I1
ρ1

+
θI21
2ρ21

]
+ d2k2

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+

(1− r)a
(1− d2)

d2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]}
+ Cs

a(1− r) [(1− d2) k2 − a(1− r)]
2 (1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]2
+ h

[
I21
2ρ1

+
θI31
3ρ21

+
(I22 − I21 )

2ρ2
+
θ (I32 − I31 )

3ρ22
+
I22
2a
− θI32

3a2

]
+Ca

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2a

]
+G

}

CT =
1

T

{
[pc1k1 + Cbd1k1]

[
I1
ρ1

+
θI21
2ρ21

]
+ [pc2k2 + Cbd2k2]

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cbd2
(1− r)a
(1− d2)

+ Cp × r × a
] [
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
+ Cs

a(1− r) [(1− d2) k2 − a(1− r)]
2 (1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]2
+ C

[
I21
2ρ1

+
θI31
3ρ21

+
(I22 − I21 )

2ρ2
+
θ (I32 − I31 )

3ρ22
+
I22
2a
− θI32

3a2

]
+Ca

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2a

]
+G

}
(5.82)
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5.4.2 Optimality conditions for MSS problem

Two important axioms are assumed to be satisfied by the production system under

study. The first axiom is that there is an economic region in which a decrease in the

total cost value cannot result from an increased in value of the decisions variables.

This axiom is equivalent to the condition of non-input factor waste. This leads to

an important factor called the average cost, f (I1, I2, T ), which is the first partial

derivative or gradient of the total cost function. We have:

∂CT

∂I1
=

1

T

{
(pc1k1 + Cbd1k1)

[
1

ρ1
+
θI1
ρ21

]
− (pc2k2 + Cbd2k2)

[
1

ρ2
+
θI1
ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
[E + θFI1]

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
× [E + θFI1] + h×

[
I1
ρ1

+
θI21
ρ21
− I1
ρ2
− θI21

ρ22

]
+ Ca

[
θI1
ρ1
− θI1

ρ2

]}
(5.83)

∂CT

∂I2
=

1

T

{
(pc2k2 + Cbd2k2)

[
1

ρ2
+
θI2
ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
× [−B + CθI2]

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

×
[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
× [−B + CθI2]

+h×
[
I2
ρ2

+
θI22
ρ22

+
I2
a
− θI22

a2

]
+ Ca

[
θI2
ρ2

+
θI2
a

]}
(5.84)
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∂CT

∂T
=

1

T

{[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
+Cs

a(1− r) [(1− d2) k2 − a(1− r)]
(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]}
− 1

T 2

{
(pc1k1 + Cbd1k1)

(
I1
ρ1

+
θI21
2ρ21

)
+ (pc2k2 + Cbd2k2)

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

] [
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
+ Cs

a(1− r) [(1− d2) k2 − a(1− r)]
2 (1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]2
+ h

×
[
I21
2ρ1

+
θI31
3ρ21

+
(I22 − I21 )

2ρ2
+
θ (I32 − I31 )

3ρ22
+
I22
2a
− θI32

3a2

]
+ Ca

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2a

]
+G}

(5.85)
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When the data is available, optimum values of the decisions variables can be obtained

by solving equations (5.83), (5.84), and (5.85). Sahoo et al. (2019) argued that

Newton-Raphson’s method could solve such a problem. The optimum values of

decision variables I1, I2 and T could then be obtained by setting the average costs

in (5.83), (5.84), and (5.85) to zero.

∂CT

∂I1
= 0,

∂CT

∂I2
= 0,

∂CT

∂T
= 0 (5.86)

The second cost function axiom is that the second derivative of the total cost func-

tion, or Hessian Matrix (HM), is positive (semi)definite or surely nonnegative to be

more precise. Thus, we have in the feasible region matrices expressions represented

in (5.87) that are non-negative.

∆ |H1| =
∂2CT

∂I21
≥ 0 (5.87a)

∆ |H2| =

[
∂2CT
∂I21

∂2CT
∂I1∂I2

∂2CT
∂I2∂I1

∂2CT
∂I22

]
≥ 0 (5.87b)

∆ |H3| =


∂2CT
∂I21

∂2CT
∂I1∂I2

∂2CT
∂I1∂T

∂2CT
∂I2∂I1

∂2CT
∂I22

∂2CT
∂I2∂T

∂2CT
∂T∂I1

∂2CT
∂T∂I2

∂2CT
∂T 2

 ≥ 0 (5.87c)

With: HM : The Hessian Matrix
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∂2CT

∂I21
=

1

T
{(pc1k1 +Cbd1k1)

θ

ρ21
− (pc2k2 + Cbd2k2)

θ

ρ22
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
θF

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[E + θFI1]

2

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
θF + h

×
[

1

ρ1
+

2θI1
ρ21
− 1

ρ2
− 2θI1

ρ22

]
+ Ca

[
θ

ρ1
− θ

ρ2

]}
(5.88)

∂2CT

∂I1∂I2
=

1

T
Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[−B + θCI2] [E + θFI1] (5.89)

∂2CT

∂I1∂T
=

1

T

{
Cs
a(1

T

−r) [(1− d2) k2 − a(1− r)]
(1− d2) k2

[E + θFI1]

}
− 1

T 2

{
(pc1k1 + Cbd1k1)

(
1

ρ1
+
θI1
ρ21

)
− (pc2k2 + Cbd2k2)

[
1

ρ2
+
θI1
ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d1)

]
[E + θFI1]

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
[E + θFI1] + h

×
[
I1
ρ1

+
θI21
ρ21
− I1
ρ2
− θI21

ρ22

]
+ Ca

[
θI1
ρ1
− θI1

ρ2

]}
(5.90)
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∂2CT

∂I22
=

1

T
{(pc2k2 +Cbd2k2)

θ

ρ22
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
Cθ

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[−B + CθI2]

2

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
Cθ + h

×
[

1

ρ2
+

2θI2
ρ22

+
1

a
− 2θI2

a2

]
+ Ca

[
θ

ρ2
+
θ

a

]}
(5.91)

∂2CT

∂I2∂I1
=

1

T
Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[E + θFI1] [−B + CθI2] (5.92)

∂2CT

∂I2∂T
=

1

T
Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[−B + CθI2]

− 1

T 2

{
(pc2k2 + Cbd2k2)

[
1

ρ2
+
θI2
ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
[−B + CθI2]

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
[−B + CθI2] + h

×
[
I2
ρ2

+
θI22
ρ22

+
I2
a
− θI22

a2

]
+ Ca

[
θI2
ρ2

+
θI2
a

]}
(5.93)
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∂2CT

∂T 2
=

1

T
Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

− 2

T 2

{[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
+Cs

a(1− r) [(1− d2) k2 − a(1− r)]
(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]}
+

2

T 3

{
(pc1k1 + Cbd1k1)

(
I1
ρ1

+
θI21
2ρ21

)
+ (pc2k2 + Cbd2k2)

[
I2 − I1
ρ2

+
θ (I22 − I21 )

2ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

] [
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
+ Cs

a(1− r) [(1− d2) k2 − a(1− r)]
2 (1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]2
+ h

×
[
I21
2ρ1

+
θI31
3ρ21

+
(I22 − I21 )

2ρ2
+
θ (I32 − I31 )

3ρ22
+
I22
2a
− θI32

3a2

]
+ Ca

[
θI21
2ρ1

+
θ (I22 − I21 )

2ρ2
+
θI22
2a

]
+G}

(5.94)
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∂2CT

∂T∂I1
=

1

T

{
Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[E + θFI1]

}
− 1

T 2

{
(pc1k1 + Cbd1k1)

(
1

ρ1
+
θI1
ρ21

)
− (pc2k2 + Cbd2k2)

[
1

ρ2
+
θI1
ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
[E + θFI1]

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
[E + θFI1] + h

×
[
I1
ρ1

+
θI21
ρ21
− I1
ρ2
− θI21

ρ22

]
+ Ca

[
θI1
ρ1
− θI1

ρ2

]}
(5.95)

∂2CT

∂T∂I2
=

1

T

{
Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[−B + θCI2]

}
− 1

T 2

{
(pc2k2 + Cbd2k2)

[
1

ρ2
+
θI2
ρ22

]
+

[
pc2

(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
[−B + θCI2]

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
[−B + θCI2] + h

×
[
I2
ρ2

+
θI22
ρ22

+
I2
a
− θI22

a2

]
+ Ca

[
θI2
ρ2

+
θI2
a

]}
(5.96)
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The cost function CT is therefore strictly convex in the relevant economic region

if the two axioms are met. In the relevant economic region, we can show numeri-

cally that the main diagonal components of the Hessian matrix are positive. This

is physically a very significant result. Many researchers such as Salamah (2019),

Uthayakumar and Sekar (2017) and Sana (2007) use these two axioms for solving

inventory models. If the solutions obtained from equation (5.86) do not satisfy the

Hessian Matrix, it may be concluded that no possible solution will be optimal for

the set of parameters considered in this chapter. Such a situation will imply that

the parameter values are inconsistent or there is some error in their estimation.

Now, to prove that CT is positive (semi) definite, The determinants need to satisfy

the following condition: ∆ |H1| ≥ 0, ∆ |H2| ≥ 0 and ∆ |H3| ≥ 0.

To derive the conditions for ∆ |H1| ≥ 0, substitute (5.88) on the relevant determinant

in (5.87a) such that:

1

T

{(
pc1k1 + Cbd1k1

θ

ρ21
− (pc2k2 + Cbd2k2)

θ

ρ22
+[

pc2
(1− r)a
(1− d2)

+ Cp × r × a+ Cbd2
(1− r)a
(1− d2)

]
θF

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
[E + θFI1]

2

+ Cs
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
θF

+h×
[

1

ρ1
+

2θI1
ρ21
− 1

ρ2
− 2θI1

ρ22

]
+ Ca

[
θ

ρ1
− θ

ρ2

]}
≥ 0

= (pc1k1 + Cbd1k1)
θ

ρ21
− (pc2k2 + Cbd2k2)

θ

ρ22
+ [pc2ω + Cp × r × a+ Cbd2ω] θF

+ Csϕ [E + θFI1]
2 + Csϕ

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
θF

+ h×
[(

1

ρ1
− 1

ρ2

)
+ 2θI1

(
1

ρ21
− 1

ρ22

)]
+ Caθ

[
1

ρ1
− 1

ρ2

]
≥ 0

= (pc1k1 + Cbd1k1)
θ

ρ21
+ [pc2ω + Cp × r × a+ Cbd2ω] θF + Csϕ [E + θFI1]

2

+ Csϕ

[
T −BI2 +

θ

2
CI22 + EI1 +

θ

2
FI21

]
θF − h (E + 2θI1F )− CaθE

− (pc2k2 + Cbd2k2)
θ

ρ22
≥ 0
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M+(Qω + Cp × r × a+ Csϕσ) θF+(CsϕE − h) (E + 2θI1F ) > CaθE+N (5.97)

It is known that Pc2 > Pc1, k1 > k2 and d1 > d2; therefore whenM+(Qω + Cp × r × a+

Csϕσ) θF + (CsϕE − h) (E + 2θI1F ) > CaθE + N then the condition ∆ |H1| > 0

holds.

with:

ϕ =
a(1− r) [(1− d2) k2 − a(1− r)]

(1− d2) k2
(5.98a)

ω =
(1− r)a
(1− d2)

(5.98b)

M = (pc1k1 + Cbd1k1)
θ

ρ21
(5.98c)

Q = (pc2 + Cbd2) (5.98d)

N = (pc2k2 + Cḃd2k2)
θ

ρ22
(5.98e)

σ =

[
T −BI2 + EI1 +

θ

2

(
FI21 + CI22

)]
(5.98f)

To derive the conditions for ∆ |H2| ≥ 0. The determinant is given by:

∆ |H2| =
[
∂2CT

∂I21

∂2CT

∂I22

]
−
[
∂2CT

∂I1∂I2

∂2CT

∂I2∂I1

]
=

[
∂2CT

∂I21

∂2CT

∂I22

]
−
[
∂2CT

∂I1∂I2

]2
(5.99)

Substitute (5.88), (5.89), (5.91) and (5.92) into ∆ |H2| . Now the first term is:

1

T
{M + (Qω + Cp × r × a+ Csϕσ) θF + (CsϕE − h) (E + 2θI1F )− CaθE −N}

× 1

T
{N + [(pc2 + Cbd2)ω + Cp × r × a]Cθ + (CsϕB + h)× (B − 2θI2C)

+CsϕσCθ + CaθB}
(5.100)

91



And the second term of the determinant is:

1

T
Csϕ (E + θFI1) (−B + CθI2)

1

T
Csϕ (E + θFI1) (−B + CθI2) (5.101)

In order for ∆ |H2| To satisfy the condition, equation (100) and (101) must satisfy

the following condition:

1

T 2
{M + (Qω + Cp × r × a+ Csϕσ) θF + (CsϕE − h) (E + 2θI1F )− CaθE −N} {N

+ [(pc2 + Cbd2)ω + Cp × r × a]Cθ + (CsϕB + h)× (B − 2θI2C) + CsϕσCθ

+CaθB} −
1

T 2
C2
sϕ

2 (E + θFI1)
2 (−B + CθI2)

2 ≥ 0

(Qω +Cp × r × a+ Csϕσ) θF {N + (CsϕB + h)× (B − 2θI2C)} (CsϕE

− h) {[N + ((pc2 + Cbd2)ω + Cp × r × a)Cθ

+ (CsϕB + h)× (B − 2θI2C) + (CsϕσCθ + CaθB)]E

+ [N + (CsϕB + h)B] 2θFI1} − CaθE {N + (CsϕB + h)B}
≥ C2

sϕ
2EB [E (B − 2BCθI2) + 2BθFI1]

− (N −M) {N + ((pc2 + Cbd2)ω + Cp × r × a)Cθ + (CsϕB + h)× (B − 2θI2C)

+CsϕσCθ + CaθB}
(5.102)

To derive the conditions for ∆ |H3|, under which ∆ |H3| satify the proof of optimal-

ity, equation (5.103) must be non negative.

∆ |H3| =
∂2CT

∂I21

[
∂2CT

∂I22
· ∂

2CT

∂T 2
− ∂2CT

∂I2∂T
· ∂

2CT

∂T∂I2

]
− ∂2CT

∂I2∂I1

[
∂2CT

∂I1∂I2
· ∂

2CT

∂T 2
− ∂2CT

∂I1∂T
· ∂

2CT

∂T∂I2

]
+
∂2CT

∂T∂I1

[
∂2CT

∂I1∂I2
· ∂

2CT

∂I2∂T
− ∂2CT

∂I22
· ∂

2CT

∂I1∂T

] (5.103)

Therefore, ∆ |H3| ≥ 0, when
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∂2CT

∂I21

[
∂2CT

∂I22
· ∂

2CT

∂T 2
− ∂2CT

∂I2∂T
· ∂

2CT

∂T∂I2

]
− ∂2CT

∂I2∂I1

[
∂2CT

∂I1∂I2
· ∂

2CT

∂T 2
− ∂2CT

∂I1∂T
· ∂

2CT

∂T∂I2

]
+
∂2CT

∂T∂I1

[
∂2CT

∂I1∂I2
· ∂

2CT

∂I2∂T
− ∂2CT

∂I22
· ∂

2CT

∂I1∂T

]
≥ 0

(5.104)

Equations (5.102) and (5.104) being complex, proving the optimality conditions

would be challenging to find analytically. Therefore, a numerical approach is con-

sidered to be more appropriate.

5.5 Numerical examples and sensitivity analysis

5.5.1 Numerical results

A numerical example and a sensitivity analysis will be presented to illustrate the

feasibility of the proposed model. The Newton Raphson method is used to solve the

problem since it is difficult to find analytical solution. A deterministic deteriorating

production system consisting of a single unreliable machine in which the production

rate dependents on the failure state is analysed in this scenario. It is assumed that

when a breakdown occurs, the failure mode is activated and the production rate is

switched to a production rate k2, k2 < k1

Consider a production process for making a single item where the demand rate for

the item is 25 units per day, the first and second production rates are 80 units and

55 units per day respectively. Defective rates in the two production consumptions

cycles are 7% and 14% respectively. The setup cost is R2700. The holding cost of

one unit of the finished product R0.5 per day. The production costs of one unit of

the finished item during the two production cycles are R21 and R20 respectively.

The cost of a unit deteriorated items is R18 per day. The imperfect quality items

screened may be disposed of at the end of screening period at a unit cost of R3, the

portion of stock out demand sale lost is 20%, the rate at which items deteriorate is

0.002, the shortage cost is R5 per unit per time and the cost of loss of sale is R11

per unit.

Note from the results above that cost function is positive (semi)definite since the

following conditions are satisfied:

∆ |H1| = 0, ∆ |H2| = 0, ∆ |H3| = 0
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Table 5.3: summary of the results from the numerical example

t1 t2 t3 t4 T I∗1 I∗2 S

4.6 8.95 21.6 24.1 25.92 224.18 319.88 50.06

G AC ICC BC DC LC PC CT ∗

2700 134 1860 543 220 239 14511 20207

Based on the results of the numerical example summarised in Table (5.3) the com-

pany reaches a maximum inventory of 201.49 units in the first production-consumption

cycle and stops production once a stock level of 315.46 units is reached. A maximum

backlog of 49.91 units is allowed. This maximum backlog is reached at t4 = 24.28

days, and it takes 1.93 days for the company to clear this backlog in the system.

The cycle total time is 26.21 days, after which the cycle starts again. Deterioration,

inventory holding, shortage, disposal, loss of profit, setup and production costs per

cycle are R2700, R134, R1861, R539, R232, R238 and R14643 respectively. With

this optimal replenishment policy, the company will incur a total cost R20348 per

unit time.

Graphical illustrations are shown in Figures (5.2) and (5.3), which depict a typical

inventory system curve and the variation of the inventory levels, cycle time and

shortage for the model under study. Figures (5.2) and (5.3) also illustrate the aver-

age total cost that optimizes such a system.

Figure 5.2: Graph of total cost per unit time versus cycle time and inventory level
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Figure 5.3: Graph of total cost per unit time VS shortage and inventory level

5.5.2 Sensitivity analysis

Sensitivity analysis depicts the extent to which the optimal solution of the model is

affected by the changes in its input parameter values. Here, the sensitivity analysis

is performed for the inventory levels, backlog level, cycle time and the total cost per

cycle by changing values of parameters Ca, h, Cb, Cs, pc1, pc2, Cp, d1, d2, r, pc, θ, a and

G. The sensitivity analysis is performed by considering different values for each of

the above parameters while keeping all other parameters as fixed. The results are

presented in Tables (5.4) to (5.18).Moreover, the summary graphs for the percent-

age change in cycle time and total cost with respect to changes in parameter are

presented from Figure (5.4) to Figure (5.8) respectively.

Table 5.4: The effect of changing ca while keeping other parameters constant.

% Change

ca Change in parameter T I1 I2 S CT

11.7 −35% 0.99% 0.75% 1.22% −0.72% −0.23%

14.4 −20% 0.56% 0.43% 0.69% −0.41% −0.13%

17.1 −5% 0.14% 0.11% 0.17% −0.10% −0.03%

18 0% 0.00% 0.00% 0.00% −0.00% −0.00%

19.8 10% −0.28% −0.21% −0.34% 0.20% 0.07%

22.5 25% −0.69% −0.53% −0.85% 0.51% 0.16%

23.4 30% −0.82% −0.64% −1.01% 0.61% 0.19%
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Table 5.5: The effect of changing h while keeping other parameters constant.

% Change

h Change in parameter T I1 I2 S CT

0.325 −35% 17.76% 12.32% 21.27% −11.28% −3.62%

0.4 −20% 8.87% 6.73% 10.83% −6.10% −1.96%

0.475 −5% 1.98% 1.61% 2.45% −1.45% −0.47%

0.5 0% 0.00% 0.00% 0.00% −0.00% −0.00%

0.55 10% −3.57% −3.06% −4.48% 2.77% 0.89%

0.625 25% −8.14% −7.29% −10.33% 6.63% 2.13%

0.65 30% −9.49% −8.61% −12.08% 7.85% 2.52%

Table 5.6: The effect of changing cb while keeping other parameters constant.

% Change

cb Change in parameter T I1 I2 S CT

1.95 −35% −0.33% 5.39% 0.78% 0.20% −0.38%

2.4 −20% −0.19% 3.07% 0.44% 0.11% −0.22%

2.85 −5% −0.05% 0.77% 0.11% 0.03% −0.05%

3 0% 0.00% 0.00% 0.00% 0.00% 0.00%

3.3 10% 0.10% −1.53% −0.22% −0.05% 0.11%

3.75 25% 0.25% −3.82% −0.53% −0.12% 0.27%

3.9 30% 0.31% −4.58% −0.64% −0.15% 0.33%

Table 5.7: The effect of changing cs while keeping other parameters constant.

% Change

cs Change in parameter T I1 I2 S CT

3.25 −35% 3.70% −8.31% −5.74% 47.27% −1.37%

4 −20% 1.73% −3.99% −2.75% 22.44% −0.66%

4.75 −5% 0.37% −0.86% −0.59% 4.80% −0.14%

5 0% 0.00% 0.00% 0.00% 0.00% 0.00%

5.5 10% −0.64% 1.51% 1.04% −8.39% 0.25%

6.25 25% −1.41% 3.37% 2.32% −18.61% 0.56%

6.5 30% −1.63% 3.91% 2.69% −21.53% 0.64%
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Table 5.8: The effect of changing pc1 and pc2 while keeping other parameters con-

stant.

From Table (5.4), it is evident that T, I1, I2, S and CT are insensitive to changes

in Ca. Table (5.5) reveals that T, I1, I2, S and CT are highly sensitive to changes

in the values of h. As the unit holding cost increases T, I1 and I2 decrease while S

increases. The total cost CT increases moderately. When trying to optimise the

production and inventory control, managers should keep the holding cost as low as

possible because this enables them to produce and keep more items at a lower cost,

which in turn increases customer satisfaction levels by reducing the possibility of

running out of stock.

From Table (5.6), it can be seen that T, I2, S and CT are insensitive to changes in

Cb. From Table (5.7), (5.8) and (5.9), it’s evident that T, I1, I2 and S are highly

sensitive to changes in values of parameters Cs, pc1 and pc2. When Cs increases, the

backlog S decreases while the inventories I1 and I2 increases. As the shortage cost

Cs increases the cycle time T decreases while on the other hand the total cost CT

increases slightly. Similarly, when pc1 and pc2 increases, the cycle time T decreases

while the backlog and the total cost increase significantly.Therefore, when trying to

optimise the production and inventory control, managers should consider working

with small values of shortage cost.

From Table (5.10) and (5.11), it’s evident that CT are insensitive to changes in val-

ues of parameters Cp and θ. However, the inventory increases I1 slightly increases

with the increase in Cp while the backlog decreases moderately; the inventory in-

creases I2 slightly decreases with the increase in Cp. When θ increases the inventory

and the cycle time decrease while the backlog increases slightly as seen in Table

(5.11).
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Table 5.9: The effect of changing cs while keeping other parameters constant.

% Change

cs Change in parameter T I1 I2 S CT

3.25 −35% 3.70% −8.31% −5.74% 47.27% −1.37%

4 −20% 1.73% −3.99% −2.75% 22.44% −0.66%

4.75 −5% 0.37% −0.86% −0.59% 4.80% −0.14%

5 0% 0.00% 0.00% 0.00% 0.00% 0.00%

5.5 10% −0.64% 1.51% 1.04% −8.39% 0.25%

6.25 25% −1.41% 3.37% 2.32% −18.61% 0.56%

6.5 30% −1.63% 3.91% 2.69% −21.53% 0.64%

Table 5.10: The effect of changing cp while keeping other parameters constant.

% Change

cp Change in parameter T I1 I2 S CT

7.15 −35% −0.26% −2.61% −1.80% 6.35% −0.43%

8.8 −20% −0.14% −1.47% −1.02% 3.64% −0.24%

10.45 −5% −0.03% −0.36% −0.25% 0.91% −0.06%

11 0% 0.00% 0.00% 0.00% 0.00% 0.00%

12.1 10% 0.06% 0.72% 0.49% −1.83% 0.12%

13.75 25% 0.13% 1.77% 1.22% −4.59% 0.29%

14.3 30% 0.13% 1.92% 1.32% −5.01% 0.32%

Table 5.11: The effect of changing θ while keeping other parameters constant.

% Change

θ Change in parameter T I1 I2 S CT

1.3E− 3 −35% 2.34% 1.09% 2.70% −1.81% −0.58%

1.6E− 3 −20% 1.32% 0.62% 1.52% −1.02% −0.33%

1.9E− 3 −5% 0.32% 0.15% 0.37% −0.25% −0.08%

2E− 3 0% 0.00% 0.00% 0.00% 0.00% 0.00%

2.2E− 3 10% −0.64% −0.30% −0.74% 0.50% 0.16%

2.4E− 3 25% −1.26% −0.60% −1.46% 1.00% 0.32%

2.6E− 3 30% −1.88% −0.89% −2.17% 1.50% 0.48%
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Table 5.12: The effect of changing k2 while keeping other parameters constant.

% Change

k2 Change in parameter T I1 I2 S CT

35.75 −35% 3.58% 26.50% −7.35% −6.21% −1.99%

40 −20% 1.74% 24.59% −4.68% −3.85% −1.24%

47.5 −5% 0.39% 15.92% −1.94% −1.56% −0.50%

55 0% 0.00% 0.00% 0.00% 0.00% 0.00%

60.5 10% 0.14% −18.72% 1.33% 1.05% 0.34%

68.75 25% 1.19% −70.33% 3.85% 2.98% 0.96%

71.5 30% 1.94% −100.% 5.08% 3.91% 1.26%

Table 5.13: The effect of changing a while keeping other parameters constant.

% Change

a Change in parameter T I1 I2 S CT

16.25 −35% 13.59% −28.83% −8.07% −14.72% −28.49%

20 −20% 6.14% −14.70% −3.37% −7.49% −15.99%

23.75 −5% 1.22% −3.27% −0.56% −1.66% −3.93%

25 0% 0.00% 0.00% 0.00% 0.00% 0.00%

27.5 10% −1.94% 5.79% 0.60% 2.93% 7.73%

31.25 25% −3.82% 13.06% 0.16% 6.56% 19.76%

32.5 30% −4.08% 14.50% −0.21% 7.27% 22.71%

Table 5.14: The effect of changing d1 while keeping other parameters constant.

% Change

d1 Change in parameter T I1 I2 S CT

0.0455 −35% 2.73% −32.71% −3.36% −2.50% −0.80%

0.056 −20% 1.43% −19.43% −2.13% −1.59% −0.51%

0.665 −5% 0.32% −5.06% −0.59% −0.44% −0.14%

0.07 0% 0.00% 0.00% 0.00% 0.00% 0.00%

0.077 10% −0.55% 10.55% 1.31% 0.97% 0.31%

0.0875 25% −1.14% 27.53% 3.62% 2.69% 0.86%

0.091 30% −1.27% 33.52% 4.49% 3.34% 1.07%
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Table 5.15: The effect of changing d2 while keeping other parameters constant.

% Change

d2 Change in parameter T I1 I2 S CT

0.091 −35% ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
0.112 −20% −2.09% 50.65% 8.43% 4.39% −0.75%

0.133 −5% −0.77% 11.65% 1.87% 0.91% −0.26%

0.14 0% 0.00% 0.00% 0.00% 0.00% 0.00%

0.154 10% 2.03% −21.43% −3.30% −1.47% 0.66%

0.175 25% 6.14% −49.29% −7.34% −2.96% 1.96%

0.182 30% 7.77% −57.52% −8.47% −3.28% 2.47%

Table 5.16: The effect of changing G while keeping other parameters constant.

% Change

G Change in parameter T I1 I2 S CT

1755 −35% −18.81% −31.70% −21.90% −16.32% −5.23%

2160 −20% −10.21% −17.22% −11.89% −8.86% −2.84%

2565 −5% −2.45% −4.14% −2.86% −2.13% −0.68%

2700 0% 0.00% 0.00% 0.00% 0.00% 0.00%

2970 10% 4.73% 8.00% 5.52% 4.11% 1.32%

3375 25% 11.45% 19.38% 13.36% 9.96% 3.19%

3510 30% 13.60% 23.03% 15.88% 11.83% 3.79%

Table 5.17: The effect of changing r while keeping other parameters constant.

% Change

r Change in parameter T I1 I2 S CT

0.13 −35% 0.05% 3.07% 2.12% −7.33% 0.51%

0.16 −20% 0.04% 1.81% 1.25% −4.16% 0.30%

0.19 −5% −0.28% −0.21% −0.34% 0.20% 0.07%

0.2 0% 0.00% 0.00% 0.00% 0.00% 0.00%

0.22 10% −0.02% −0.97% −0.67% 2.05% −0.16%

0.25 25% −0.07% −2.51% −1.73% 5.07% −0.41%

0.26 30% −0.09% −3.05% −2.11% 6.07% −0.50%
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Table 5.18: The effect of changing k1 while keeping other parameters constant.

% Change

k1 Change in parameter T I1 I2 S CT

52 −35% ∗ ∗ ∗ ∗ ∗
64 −20% 7.66% −41.18% −4.92% −3.66% −1.18%

76 −5% 1.38% −6.01% −1.09% −0.82% −0.26%

80 0% 0.00% 0.00% 0.00% 0.00% 0.00%

88 10% −2.19% 8.72% 1.90% 1.42% 0.45%

100 25% −4.56% 17.29% 4.17% 3.11% 1.00%

104 30% −5.19% 19.44% 4.80% 3.58% 1.15%

Careful study of Tables (5.12) and (5.13) reveal that the decision variables T, I1, I2,

and S are highly sensitive to changes in k2 and a. The inventory I1 decreases

drastically as the production rate k2 increases whereas the inventory I2 moderately

increases as with the increase in the production rate. The backlog increases signifi-

cantly with the increase in values of k2. When the production rate k2 increases the

total cost slightly increases as seen from Table (5.12). When demand rate increases,

the inventory, the backlog and the total cost increase. The cycle time decreases

drastically with the increase in demand as seen from Table (5.13) and Figure (5.4).

Careful analysis of Tables (5.14), (5.15) and (5.16)reveals that the inventory, the

backlog and the cycle time are sensitive to changes in d1, d2 and G. Moreover, it

has been observed that the inventory I1 decreases with the increase in r and d2,

and increases with the increase in d1 and G. In addition, the backlog increases

with the increase in r, d1 and G, and decreases with the increase in d2. The cycle

time is insensitive to changes in r. The cycle time and the total cost increase with

the increase in G. The inventories increase drastically with the increase in G. the

backlog follows a similar trend as the inventories I1 and I2.

Table (5.17) indicates the effect of varying r on the decision variables of the MSS

under study. This Table shows that when r decreases by 35%, the stock levels of fin-

ished products increase by 3.07% and 2.12% and the backlog moderately decreases

by 7.33%. If r increases by 30%, the stock levels of finished products decrease by

3.05% and 2.11% and the backlog increases by 6.07%. The results of Table (5.17)

also show that the total cost and the cycle time are insensitive regardless of the level
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Figure 5.4: Changes in cycle time due to parameter changes

Figure 5.5: Changes in I1 due to parameter changes
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Figure 5.6: Changes in I2 due to parameter changes

Figure 5.7: Changes in S due to parameter changes
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Figure 5.8: Changes in CT due to parameter changes

of r. The results summarised in Table (5.18) show that the inventory levels and the

backlog increase with the increases in k1. However, this increase has an opposite

effect on the total cost and the cycle. Therefore, based on the results in Table (5.18)

it can be concluded that, higher values of k1 lead to higher values of I∗1 , I
∗
2 , S

∗ and

lower values of T ∗ and CT ∗.

In summary, it is observed that:

1. T is insensitive to changes in the values of ca, cb, cp and r, moderately sensitive

to changes in values of cs, pc1, pc2, k1, k2, θ, d1 and d2, highly sensitive to changes

in the values of h, a and G.

2. I1 is insensitive to changes in the values of ca and θ, moderately sensitive to

changes in values of cb, cs, cp, and r, highly sensitive to changes in the values

of h, pc1, pc2, k1, k2, d1, d2a and G.

3. I2 is insensitive to changes in the values of cb, moderately sensitive to changes

in values of cs, ca, cp, pc1, pc2, a, r, d1, and d2, highly sensitive to changes in the

values of h, and G.

4. S is insensitive to changes in the values of ca and cb, moderately sensitive to

changes in values of cp, a, k1, r, d1 and d2, highly sensitive to changes in the

values of h, cs, pc1, pc2 and G.
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These results indicate that the managers should consider working with small values

of the parameters in order to minimize the total cost.

5.6 Conclusion

This study presents an imperfect EPQ model for a multi-state system with deteri-

orating items and alternating production rates, while allowing shortages leading to

partial backlogging and lost sale. In this model, we assumed that the equipment’s

deterioration affects the quantity of the outputs, that the system operates in a de-

graded state. In such systems, the productivity is assumed to be dependent on the

equipment’s speed. It is also considered that the system produces both good and

poor quality items. After screening, the imperfect items are disposed as a batch

after the production process is completed, whilst the perfect quality items are used

to meet customer demand. A portion of stock-out demand is allowed in the model

formulation. The demand for the item is considered constant, and the deterioration

rate follows an exponential function. It is assumed that the deterioration starts right

from when finished inventory begins to accumulate after production. Shortages are

allowed and they are partially backlogged and partially lost. A numerical example

was presented to illustrate the solution procedure and a sensitivity analysis of vari-

ous parameters was conducted to understand the relative implications of changes in

input parameters on the model’s important variables.
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Chapter 6

Conclusion

6.1 Summary

The existing manufacturing system models in which only the binary approaches

with a constant production rate and perfect quality outputs during the production

processes present certain shortcomings such as flexibility, availability and reliability.

This dissertation proposed a model that considers flexible production systems that

continue to operate once non-essential equipment breaks down to deal with these

shortcomings. Extensions have been developed from this type of system to cover

more practical situations. This dissertation has been developed in five (5) chapters.

The problem statement of this research was described in Chapter one. Recent scien-

tific journals relevant to the manufacturing system were also described and critiqued.

The motivations and objectives of this research were also discussed.

Chapter two and three presented a general overview of the technical background.

some essential notions concerning inventory management as well as the classical

EOQ model were discussed. A literature review on some primary research for de-

teriorating inventory replenishment were also presented. Classification of works on

deteriorating inventory is also provided. A summary of some of the reviewed studies

was provided at the end of Chapter three.

In Chapter four, a review of deteriorating manufacturing systems is described. In

this chapter, the modelling philosophy of the performance of multi-state systems

(MSS) whose operating characteristics are subject to different conditions were ad-

dressed and treated. This characterization process was undertaken assuming that

the studied systems integrate reconfiguration mechanisms (hardware and/or soft-

ware). Thus, based on the characteristics of the systems under study, strategies for

optimizing their performance were identified. The study also focused on methodolo-
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gies for evaluating and optimizing these systems’ performance measures (inventories,

cycle time, shortages and total cost). Finally, a conclusion and several research gaps

were identified. We presented the objective and the methodology to adopt in the

following chapter.

Chapter five addressed the problem of optimizing a manufacturing system operating

in degraded mode. The system consisted of a single machine producing a single type

of product subject to deterioration, with a variable production rate and shortage.

The deterministic model obtained in this chapter demonstrated that the optimal

policies are characterized by three decision variables: the stock level in the first

cycle, the stock level in the second cycle, and the cycle time. The criteria for

performance was the total cost of the manufacturing system. The optimization

model studied was to minimize this total cost. Thus, the overall approach consisted

of implementing strategies that favour the manufacturing process in degraded mode.

A numerical example was provided to illustrate the usefulness of the proposed model,

and sensitivity analyses conducted confirmed the model’s reliability. It can be seen

that, from the numerical work and sensitivity analysis it is possible to integrate the

functioning of machines in degraded mode in a production system to meet customers’

demands. this dissertation is a contribution to the literature on the production

control of flexible manufacturing systems, where, at the lower level, the optimal

policies are determined for a manufacturing system of deteriorating inventories and

machines that are subject to failures.

6.2 Possible practical applications of findings

Applications of the results of the present research could be, under certain assump-

tions and extensions of the models, applied in:

• Assembly lines for automotive parts such as car seats: proposing optimal pro-

duction policies in degraded mode subject to non-essential equipment failures

• Manufacturing plants for mechanical parts with an assembly line of equipment

configured in series and buffer stock: joint optimization of a production system

for mechanical parts, availability and reliability of cutting tools.

• Hydrometallurgical plants for production of metals such as copper, cobalt,

zinc: optimization of the production with size reduction of ores, availability

and reliability of size reduction machines (mills, crushers) and classification

machines (cyclones).
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• Other production systems configured in line with the models proposed in this

dissertation.

6.3 Possible areas for future research

For years, the replenishment of deteriorating inventory has been investigated from

different perspectives, as described in the previous sections; however, the scope

remains vast, and several relaxations can be made out of this dissertation. Some

research gaps in this field are as follows:

1. This work addressed the possibility of carrying out quality control of products

after their production, which would prevent all non-conforming products from

going to the customer, causing damage on several levels to the company. How-

ever, the cost of quality control was not considered, nor was the time required

for inspection.

2. The model considers a system consisting of a single machine operating in

degraded mode with reduced of the performance once the machine breakdowns.

However, the model did not take into account preventive maintenance in order

to avoid breakdowns. And also the model can be generalized into both multi-

production and rework periods model and multiproduct and multi-machine

system.

3. To cope with a real industrial environment case, this model can be extended

to the case of manufacturing systems involving multiple products and multiple

machines in which the percentage of rejects depends on the deterioration of

the machine can be beneficial for several organizations.

4. Further investigation can be done in the case of manufacturing systems with

multiple failure rates, i.e. with more than two failure rates, where the speed

of production significantly influences the tool wear of the machines.

5. This model can be extended by assuming more reasonable assumptions such

as considering the demand rate, production rate and the deterioration rate as

fuzzy random variables also increased as carbon emission constraint.

6. Most of the inventory articles are developed with constant deterioration, but

deterioration also increases with time as stress of units in a heaped stock causes

damage on others. To the best of the authors’ knowledge, a set of few articles

have been published incorporating time varying deterioration. Moreover, the

above-mentioned inventory models are developed with either crisp or fuzzy
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inventory costs. Till now, none has considered time-dependent deterioration

and fuzzy/rough/fuzzy-rough inventory costs in an inventory model under a

two-level partial credit period in a multi-state system.

7. Considering a model with demand rate as a time- and price-dependent function

or a time- and stock-dependent function and time varying in parameters such

the deterioration rate, lead-time, has not attracted enough attention in the

existing literature.

8. In many studies and the model developed in this dissertation shortages are

partially backordered, and the rate of partial backorders is generally modelled

by a constant value. Developing models to consider polynomial fractions could

therefore be a promising area for further research.

9. Multi- deteriorating products models with nonlinear holding cost, stochastic

lead times could be studied for further research.

10. In this study, the optimization problem is done through minimizing total

cost. Applying other approaches for optimization, such as goal programming,

stochastic programming or risk measures have been less studied and is strongly

recommended for further research.

11. This model can also be extended to cases considering time-dependent dete-

rioration and fuzzy/rough/fuzzy-rough inventory costs in an inventory model

under a two-level partial credit period.

12. Lastly, a stochastic deteriorating production system consisting of a single ma-

chine or multiple parallel machines with the productivity-dependent failure

rates of the main machine could also be investigated. A stochastic model

could be proposed to evaluate and analyse the availability of a reconfigurable

system subject to random failures with production dependant on both the

demand and the age of the machines.
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