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Abstract

Di�usion processes are e�ective tools for modeling �nancial and economic phenomena. Di�usion

models have been implemented with great success in �nancial markets where stochastic calculus

based on such models allow researchers to probe the dynamics of processes ranging from stock prices,

yields and interest rates to volatility studies and exchange rates. These processes, according to [17],

allow for the investigation and quanti�cation of the dynamics of various real world �nancial models.

The dynamics of di�usion processes are governed by stochastic di�erential equations (SDEs), which

dictate how these processes evolve over time. A key component in the analysis of such systems is the

transitional density, which allows one to make predictions about the state of the process, or functions

of the state of the process, when its parameters are known/�xed, or perhaps more importantly,

when the parameters are not known a transition density allows one to estimate parameters and

subsequently perform inference. Unfortunately, with the exception of certain processes, many of

these models' transition density cannot be expressed by an explicit analytical expression. Therefore,

e�cient and consistent approximation techniques, to obtain an analytical expression for the transition

density function, is of paramount interest and importance. The Hermite expansion method, of [3],

outlines one of the most e�ective methods of obtaining an approximation to the transition density. The

Saddlepoint, or Cumulant Truncation approximation method, provides a strong and robust alternative

approximation method, [21] and [17]. In the present paper, we explore how these techniques can be

used to analyse popular non-linear di�usion models from the world of �nance. In particular, we focus

on construction of the transition density approximations for the Ornstein-Uhlenbeck (OU) model,

Cox-Ingersoll and Ross (CIR) model and the Heston model, and the application of these models

to real-world datasets, such as the CBOE volatility/VIX index and the S&P 500 stock index. The

Sapplepoint or Cumulant Truncated approximate transition density will be used to perform infernce

on the mentioned datasets.
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1 Introduction

[17] de�nes a di�usion process as the stochastic generalisation to ordinary di�erential equations. There-

fore, a general di�usion process, is de�ned by the following stochastic di�erential equation (SDE):

dXt = µ(Xt, t;θ)dt+ σ(Xt, t;θ)dW t, (1)

s.t t ∈ [s, T ] represents the time domain over which the process continuously evolves. These models

inherit the Markov property, and the stochastic nature is driven by Brownian motion W t, [1]. The

state variable of interest, Xt, is governed by the SDE, dXt; the time- and state dependent functions

are given by µ(Xt, t,θ) and σ(Xt, t,θ), respectively. θ represents the parameter vector. Itô's lemma is

often applied to Xt to investigate the dynamics of the state variable, and to approximate the stochastic

integrals in closed-form. Equation 1 can be viewed as the instantaneous change in the state of the

process, Xt. dXt is governed by a time-dependent drift component µ(Xt, t,θ), which may depend on

the state vector of the process and/or the time, as well as a stochastic component σ(Xt, t;θ)dW t which

may depend on the state of the process through the di�usion coe�cient σ(Xt, t;θ) and continuous time

stochastic process, W t which in this case we assume to be a vector of Brownian motions.

Contrary to the continuous nature of these models, data in �nance and economics are mostly observed

in a discrete time epochs. As such, despite the model process evolving continuously in time, we conduct

the analysis of such models in the present context on discrete/�nite time scales so as to interface discretely

observed real-world processes with continuous time models. Indeed, a �eld of interest where di�usion

models often �nd application is that of the modeling of (discretely observed) interest rate processes. The

analysis of short rates is of major interest in the economic and �xed income environment. The dynamics

of economic variables, such as price indices, exchange rates, stock indices and volatility indices; and �xed

income variables, such as yields and short rates are often modeled with great success by di�usion models

(in both the univariate and multivariate case). The Heston model, Ornstein Uhlenbeck (OU), Cox-

Ingersoll-Ross (CIR), [7] and Black-Scholes model, to only name a few, is some of the most important

models in the mentioned �elds. In the present paper we focus on the analysis of the univariate and

bivariate OU and CIR processes.

In the �nancial �eld of bond �nance the yield curve is of fundamental importance. Given a yield

curve is constructed by a sequence of interest rates, di�usion models can e�ectively be used as a modeling

technique for the yield curve. One of the most popular and most used methods for �tting the yield curve

is the Nelson-Siegel approach, as �rst introduced by [13]. In this methodology, optimization is used to

estimate the parameters for the level, steepness and curvature of the yield curve. However, using di�usion

processes to model yield curves have been an interesting �eld of research and provides new techniques to
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produce promising results. The work of [5] indicates that di�usion models, can be used to estimate or �t

a yield curve through the estimation of the sources of steepness, level and curvature of the yield curve, in

which case the e�cient method of moments (EMM) is utilized in to estimate the parameters and capture

the mean drift and stochastic volatility in the given short rate di�usion. [14] modeled the yield curve by

forecasting interest rates by the use of di�usion processes, more speci�cally CIR and Vascicek models.

This methodology is based on a partitioning approach. Future interest rates are being forecasted, for

each tenor of a given yield curve, based on partitioned �nancial market data. Di�usion processes provide

valuable insights into the evolution of the trajectory of short-rates over time. In an extension, this

evolution can often be attributed to an underlying process or processes, which can be modeled using a

multivariate di�usion process. Modeling individual short-rates or tenors (with each tenor of the yield

curve being an individual time-series of yields for a speci�c time to maturity, combining various tenors

constitutes a yield curve), through univariate di�usion processes, may provide a decent �t to the yield

curve, however an approach like this will not encapsulate underlying processes or the dependencies that

the various maturities has on the other. Therefore, a multivariate di�usion process, modeling a certain

tenor as the dependent process, and the most signi�cant other tenor and/or other continuous rate may

provide a more reliable estimate to that speci�c point on the yield curve, at a speci�c point in time. The

latter will be showed in a multivariaty trajectory analysis of yield curve tenors.

The premise of the current paper is to model discretely observed interest rate time series using

di�usion models, which replicate salient features of interest rate processes. In order to study how these

processes evolve over time, the transition density function is analysed. However, an anlytical or closed-

form solution to the true transition density rarely exists, and therefore this paper will focus on the

approximation of this transition density function. Investigation into di�usion processes will include

trajectory studies, Euler-Maruyama schemes and transition density analysis and approximation. The

Hermite Approximation Method,[1, 4], will be compared to the Saddlepoint or Cumulant Truncation

Approximation Method, [17, 21]. The theory and derivation of these approximate transition densities

will be thoroughly explained. The Cumulant Truncation Approximation Method will provide the closed-

form approximate density, which will be used for inference on �nancial data..

The paper is structured as follows; �rst a discussion on the fundamentals and dynamics of di�usion

processes will be given, followed by the derivation and approximation of transition densities. The uni-

variate case will be discussed, followed by the multivariate case, where examples will be provided at the

end of each of the cases. The approximate densities will be applied for inferencial purposes on �nancial

data. Finally , concluding remarks will be given, summarizing key �ndings.
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2 Fundamentals of di�usion processes

For simplicity, the univariate instance will be explained prior to generalizing to the multivariate case.

2.1 Univariate difussion processes

[15], formally de�nes a di�usion process in De�nition 1:

De�nition 1. Consider a time dependent Markovian process,with state variable Xt, and transition

density function p(dy, t|x, s). dXt is referred to as a di�usion process if, for all x with ε > 0:

1.
�
|x−y|>ϵ

p(dy, t|x, s) = o(t− s) uniformly over [s, t] for s < t, (i.e continuity),

2. there exists a real-valued function µ(x, t), (drift coe�cient), s.t.
�
|x−y|≤ϵ

p(dy, t|x, s)(y − x) =

µ(x, t)(t− s) + o(t− s) uniformly over [s, t] for s < t,

3. there exists a real-valued function σ(x, t), (di�usion coe�cient), s.t.
�
|x−y|≤ϵ

p(dy, t|x, s)(y− x)2 =

σ(x, t)(t− s) + o(t− s) uniformly over [s, t] for s < t.

Lemma 2. A real-valued function p(y) is o(y) if lim
y→0

p(y)
y = 0

A transition density, is de�ned by [15]:

De�nition 3. When considering a discrete state domain, the transition probability (density) of a shift,

from Xs = x to Xt = y is de�ned as:

Pr(Xt = y|Xs = x) = pxy(s, t) = p(y, t|x, s) in the time-inhomogeneous case (time-dependent), and

Pr(Xt = y|Xs = x) = Pr(Xt+j = y|Xs+j = x) = pxy(t − s) for all j, in the time homogeneous case

(independent of shifts in time).

Where the probability measure function, Pr(.) is de�ned as:

De�nition 4. Pr(.) is referred to as a probability measure function if a mapping of ψ is made into [0, 1],

s.t:

1. Pr(Ω) = 1, for Ω the non-empty set of all attainable elements,

2. Pr(A) ≥ 0 ∀ A ∈ ψ,

3. if A1, A2, A3, ... ∈ ψ. is a sequence of mutually disjoint subsets, then Pr
[⋃∞

i=1Ai

]
=
∑∞

i=1 Pr(Ai).

De�nition 5. Revisiting Equation 1, which will serve as the o�cial notation in this papers.

dXt = µ(Xt, t;θ)dt+ σ(Xt, t;θ)dWt, (2)

11



s.t t ∈ [s, T ], with θ the parameter vector. Therefore, a general di�usion process, is de�ned by a stochastic

di�erential equation (SDE), and inherits the Markov property, [17]. The di�usion process inherits both

a deterministic and stochastic nature, given by the drift coe�cient, µ(Xt, t;θ), and di�usion coe�cient

µ(Xt, t;θ), respectively. Randomness, or the stochastic nature is driven by a sequence of Brownian

motions -Wt, s.t. Wt, t ≥ 0 [1], (seen as the continuous counterpart of a Random Walk), which is de�ned

as such:

De�nition 6. [8] de�nesWt≥0 ∈ Ras a Brownian motion or Wiener Process if:

� for t0 < t1 < t2 < ... < tn−1 < tn thenWt0 , Wt1−Wt0 ,Wt2−Wt1 , ..., Wtn−Wtn−1 are independent,

� for s, t ≥ 0, and A a subset of a σ − algebra (please. see De�nition 7), say ψ, then Wt+s −Ws∼

N(0, t), i.e Pr(Wt+s −Ws ∈ A) = (2πt)−1/2
�
A
e−

y2

2t dy,

� Pr(t→Wt is continuous) = 1, and

� Wt=0 =W0 = 0.

De�nition 7. A collection of subsets, say ψ, of Ω, is called a σ − algebra/ -field if:

� for ∅ - the empty set - ∅ ∈ Ω,

� A ∈ ψ then AC ∈ ψ,

� for a sequence of sets A1, A2, A3, ... ∈ ψ, then
⋃∞

i=1Ai ∈ ψ.

In the present context, consider the time-space or time-domain [s, T ] s.t t ∈ [s, T ]. An single occurrence

(ς) of the sample path of the state space (Ω), is given by Xt(ς) ∈ R s.t ς∈ Ω. Since the sample path

followed is assumed to be known the single occurrence can be denoted as Xt(ς).

A realisation of the process manifests as a solution to the SDE in Equation 2, via the integration of

dXt with respect to t, which through the trajectory of Wt, and the drift and di�usion coe�cients gives

rise to the trajectory of the process. . [17], explains that di�usion processes, such as in Equation 2, can be

expressed through di�erential equations, where the deterministic part of the di�usion process is governed

by the change in time, dt, and where the stochastic/random part of the di�usion process is governed by

the change in a Wiener Process, dWt. In consequence, the drift and di�usion coe�cients can be de�ned

as, [12]:

µ(Xt, t;θ) = lim
δ→0

E
[
(Xt+δ −Xt)|Xt

δ

]
,

and

σ2(Xt, t;θ) = lim
δ→0

E
[
(Xt+δ −Xt)

2|Xt

δ

]
,

where E(.) denotes the expected value.
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Therefore, Equation 2 can be viewed as:

dXt = lim
δ→0

E
[
(Xt+δ −Xt)|Xt

δ

]
dt+

√
lim
δ→0

E
[
(Xt+δ −Xt)2|Xt

δ

]
dWt.

Therefore the instantaneous variance of the process, is given by the di�usion coe�cient. The movement in

the process, are dictated by the drift coe�cient, with the intensity of the stochastic movements determined

by the di�usion coe�cient. The randomness are re�ected by the Brownian Motion. Solving Equation 2,

over an appropriate transition horizon, yields the trajectory of the stochastic process Xt, provided the

process started in the initial known state of Xs at time s < t. The solution can be obtained, by applying

Ito's lemma (Lemma 9), through integration:

Xt = Xs +

� t

s

µ(Xτ , τ ;θ)dτ +

� t

s

σ(Xτ , τ ;θ)dWτ . (3)

The drift and di�usion coe�cients determine the existence of a solution to De�nition 9. Xt in Equation

2 has a unit di�usion if the di�usion-coe�cient is the unit di�usion, that is σ(Xt, t;θ) = 1. Itô Calculus,

used in the trajectory derivation, is explained by the following results, combined from [20], [11] and [19].

Theorem 8. De�ne p to be a continuous function, where p(Wτ ) is the stochastic process, explained

through Brownian motion (or the Wiener Process).

If
� t

0
E[p(Wτ )

2]dτ <∞, for τ∈ [0, t], then:

1. E
(� t

0
p(Wτ )dWτ

)
= 0,

2. E
(∣∣∣ � t

0
p(Wτ )dWτ

∣∣∣2) =
� t

0

[
E|p(Wτ )|2

]
dWτ .

An Itô process can now be de�ned.

De�nition 9. a stochastic process, Xt,which can be denoted in the following form, is known as an Itô

process

Xt = X0 +

� t

0

Φτdτ +

� t

0

ΘτdWτ , (4)

where Φand Θ are driven by Brownian motion s.t

� t

0

|Φτ |2dτ <∞,

and � t

0

E[Θ2
τ ]dτ <∞.

13



When considering integrate function g : R 7→ R, G : R 7→ R is de�ned as

G(t) = G(0) +

� t

0

g(s)dτ, (5)

di�erentiating over the time horizon yields

d
dtG(t) =

d
dtG(0) +

d
dt

� t

0
g(s)dτs,

leads the following direct implication of the Fundamental Theorem of Calculus

d
dtG(t) = g(t), or

G′(t) = g(t).

Which can be written in the standard SDE di�usion process form:

dXt = Φtdt+ΘtdWt. (6)

Itô's lemma naturally follows:

Theorem 10. Itô's lemma: for a Brownian motion, Wt∈ R, where t ∈ [0, T ] with real-valued and twice

di�erentiable function g(x), it follows that:

f(Wt) = f(0) +
1

2

� t

0

f”(Ws)ds+

� t

0

f ′(Ws)dWs.

Lemma 11. Itô's lemma in standard SDE notation: consider an Itô process - Xt ,with stochastic

di�erential equation:

dXt = µtdt+ σtdWt. (7)

De�ne f(t,Xt) : R→ R,and t ⩾ 0 , Zt = f(t,Xt), then

dZt =
∂

∂t
f(t,Xt)dt+

∂

∂Xt
f(t,Xt)dXt +

1

2

∂2

∂X2
t

f(t,Xt)(dXt)
2. (8)

Substituting Equation 7 into Equation 8:

dZt =

(
∂

∂t
f(t,Xt) +

∂

∂t
f(t,Xt)µt +

1

2

∂2

∂X2
t

f(t,Xt)σ
2
t

)
dt+

∂

∂Xt
f(t,Xt)σtdWt. (9)

The following Examples will display the dynamics of two of the most acclaimed di�usion models in

Finance and Economics, [1, 7], that is the univariate Ornstein-Uhlenbeck (OU) and Cox, Ingersoll and

Ross (CIR) di�usion processes.
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Figure 1: one simulated trajectory for a univariate OU process.

2.1.1 Examples of univariate di�usion processes

Example 12. Consider the univariate Ornstein Uhlenbeck di�usion process:

dXt = κ(α−Xt)dt+ σdWt, (10)

s.t. t ∈ [s, T ], and with Wt Brownian Motion, as in De�nition 6. The parameter vector θ = (κ, α, σ),

consists of κ, α, σ the deterministic parameters, where α refers to the mean reversion level (that is lim
t→∞

Xt =

α), κ the tempo of reversion and σ the volatility factor. In terms of Equation 2, the drift and di�usion

coe�cients are given by µ(Xt, t;θ) = κ(α−Xt) and σ(Xt, t;θ) = σ, respectively. From the latter it can

be seen that the di�usion coe�cient is constant and independent of the value of the process. The OU

model is a simple but e�ective model, regularly adopted in �nance, especially in short rate modeling

Figure 2 illustrates the empirical distribution (histogram) of the process, constructed using simulated

trajectories under the .Euler Maruyama scheme.

Performing the simulation study on t ∈ [0, 5], Xt ∈ [12, 19], θ = (κ, α, σ) = (0.85, 15, 0.75), with X0 = 16,

and stepsize = 1/250 (approximate number of annual trading days) . Figure 1 displays one simulated

trajectory for a univariate OU process.

The e�ect and sensitivity of changing a single parameter value, whilst keeping all else equal, are given

in Figure 3. As can be seen, changing α changes the mean revering level, where the speed a reversion in

adjusted through changing κ, and the larger σ becomes, the more volatile the model becomes. Finally,
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Figure 2: histogram (through the Euler Maruyama shceme) of the simulated process trajectories (uni-
variate OU model).

the process can tend to a negative value if the mean reversion parameter - α - is negative. Please see

Algorithms 1 and 4.

Often the volatility of a process (depicted through the di�usion coe�cient) is dependent on the value

of the process itself. Since di�usion coe�cient is constant and independent of the value of the process in

the OU model, the CIR process will be considered next.

Example 13. Univariate Cox, Ingersoll and Ross (CIR) di�usion process:

De�ne the well-known CIR model, as in , as in [7, 1], through the SDE :

dXt = κ(α−Xt)dt+ σ
√
XtdWt, (11)

s.t. t ∈ [s, T ], with Wt denoting a standard Brownian motion, as in De�nition 6 The parameter vector

θ = (κ, α, σ), consists of κ, α, σ the deterministic parameters, where α refers to the mean reversion level

(that is lim
t→∞

Xt = α), κ the tempo of reversion and σ the volatility factor . In terms of Equation 2, the

drift and di�usion coe�cients are given by µ(Xt, t;θ) = κ(α −Xt) and σ(Xt, t;θ) = σ
√
Xt,respectively.

The CIR model is an excellent model for capturing short rate dynamics, given the short rate is positive

at all times. However, given that international Financial Markets have moved into negative interest rate

environments in some domiciles (e.g European Fixed Income government bond yields), the drawback of

the model becomes evident. Nonetheless, with most short rates still being non-negative, the CIR model is

16
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Figure 4: one simulated trajectory for a univariate CIR process.

still worth analyzing and implementing in �nancial and economic problems. According to [7], for κ, α > 0,

the de�ned process is equivalents to a continuous Autoregressive(1) model. Since lim
t→∞

Xt|σ2 > 2κα = 0

the parameters are constrained as σ2 ≤ 2κα to ensure lim
t→∞

Xt = α, (provided α > 0), s.t. t ∈ [s, T ] for

all s ≥ 0. If Xs > 0 then Xt > 0 for all t ≥ 0. Therefore Xt will then eventually settle in a steady

state.The lim
t→∞

Xt|σ2 > 2κα = 0 makes practical sense when considering an actively traded asset, it the

assets volatility is in well in excess of 2κα, this will eventually lead to a sell-o� the asset, i.e the price

and hence Xt reaching 0.

Performing the simulation study on t ∈ [0, 5], Xt ∈ [0, 1],θ = (κ, α, σ) = (0.9, 0.3, 0.075), with X0 =

0.15, and stepsize = 1/250 (proximate number of annual trading days). Note that 2κα = 0.27 > σ2 =

0.005625. Figure 4 displays one simulated trajectory for the CIR process, the dotted reference line

indicates the mean reverted level, i.e α = 0.3. Figure 5 gives the �rst view of a distribution for Xt, that

is due to a histogram (through the Euler Maruyama scheme which will be discussed later in the paper)

of the simulated process trajectories.

The e�ect and sensitivity of changing a single parameter value, whilst keeping all else equal, are given

in Figure 6. As can be seen, changing α changes the mean revering level, where the speed a reversion

in adjusted throuh changing κ, and the larger σ becomes, the more volatile the model becomes. Lastly,

no change in parameter leads to the Xt becoming negative, as expected through the model de�nition.

Please see Algorithms 2 and 4.
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variate CIR model).

Lastly we will consider the famous univariate Black-Scholes model, which is synonymous with option

pricing:

Example 14. Black and Scholes di�usion process:

De�ne the option pricing Black-Scholes (BS) model as:

dXt =
1

2
ϕ2Xtdt+ ϕXtdWt, (12)

s.t. t ∈ [s, T ], and with Wt Brownian Motion, as in De�nition 6 The parameter ϕ is the key deterministic

factor of the model. In terms of Equation 2, the drift and di�usion coe�cients are given by µ(Xt, t;θ) =

1
2ϕ

2Xt and σ(Xt, t;θ) = ϕXt,respectively. Therefore both the drift and di�usion coe�cients is dependent

on the value of the process. The model is very sensitive to changes in ϕ, and tends to diverge quickly.

Figure 7, shows the divergent nature of the process, through the simulation of 100 trajectories.

Performing the simulation study on t ∈ [0, 1], Xt ∈ [0,∞),ϕ = 0.25, with X0 = 1, and stepsize =

1/250 (approximate number of annual trading days) .Please see Algorithms 1.
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variate CIR model).
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Figure 7: 100 simulated trajectory for a univariate BS process.

2.2 Multivariate di�usion processes

The dynamics of a general multivariate di�usion process , Xt, can be de�ned by the stochastic di�erential

equation:

dXt = µ(Xt,t;Θ)dt+ σ(Xt,t;Θ)dW t, (13)

s.t. Xt : n × 1 is the state vector, µ(Xt, t) : n × 1 the drift vector, and Σ(Xt, t) : n × n the di�usion

matrix of the matrix, [17]. Θdenotes the parameter space. The instantaneous covariance matrix of the

process is de�ned as

σ(Xt,t)σ(Xt,t)
T = γ(Xt,t) : n× n,

s.t σT = transpose(σ),W t : n×1 denotes the vector of Brownian Motions, as de�ned in 6. The dynamics

of the process in Equation 13 is therefore dictated by stochastic elements, through the di�usion coe�cient,

as well as deterministic elements, via the drift coe�cient. These coe�cients can be expressed in terms of

the instantaneous moments of the system:

µi(Xt,t) = lim
δ→0

E
[
X

(i)
t+h −X

(i)
t |Xt

]
δ

(14)
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and

γij(Xt,t) = lim
δ→0

E
[(
X

(i)
t+δ −X

(i)
t

)(
X

(j)
t+δ −X

(j)
t

)
|Xt

]
δ

, ∀ i, j = 1, 2, ..., k. (15)

The solution to Equation 13, is quite often focal point in the analysis of di�usion processes. The trajectory,

at time t, of the general di�usion process, Xt, at a known initial state of Xs, s.t. s < t, is provided by

the following equation, through the implementation of Ito calculus:

Xt = Xs +

� t

s

µ(Xv, v)dv +

� t

s

σ(Xv, v)dW v (16)

For the premise of this paper it is assumed that the initial value of the process, under consideration,

and therefore the initial distribution, is always known. It is also assumed that the drift and di�usion

coe�cients of are Lipschitz continuous, and therefore satis�es the accompanied linear growth conditions.

This implies continuity in the coe�cients and that the coe�cients inherit unbounded rates of change.

These assumptions ensure the existence of a solution to Equation 13, which is a fundamental requirement

for the methods to be considered in this paper. The distribution of the state vector, Xt is of absolute

importance in the analysis of the dynamics of this stochastically driven process.

De�nition 15. (Ω, ξ,Pr) is is referred to as a probability space, if

1. A non-empty set, Ω, called the sample space, exists which includes all possible outcomes,

2. ξ is a σ − algebra, consisting of subsets of Ω, and

3. Pr is probability measure function on (Ω, ξ), s.t. (Ω, ξ) is a measurable space.

Let (Ω, ξ,Pr) be a as a probability space, as per De�nition 15, where Ω ⊆ Rk is the sample space, ξ the

σ− algebra of subsets of Ω,as per De�nition 7, and Pr denotes the probability measures of events in the

σ − algebra ξ. As per [4], the probability density function, of moving from states Xs to Xt, denoted by

g(Xt|Xs),is obtained by solving the Kolmogorov forward equation (or Fokker-Planck equation), [17]:

∂

∂t
g(Xt|Xs) =−

k∑
i=1

∂

∂X
(i)
t

(µi(Xt,t)g(Xt|Xs))

+
1

2

k∑
i=1

k∑
j=1

∂2

∂X
(i)
t ∂X

(j)
t

(σij(Xt,t)g(Xt|Xs)) , (17)

where X
(r)
t denotes the rth element of the process Xt. The Dirac delta function, which speci�es the initial

conditions of the transition density, is de�ned by

g(xs|Xs) = ∆(xs−Xs),
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where ∆(.) is de�ned as

∆(x) =


∞ if x = 0

0 otherwise.

The initial condition Dirac delta function implies that the dynamics of the general di�usion process, Xt,

are driven by drift vector µ(Xt,t) and di�usion matrix σ(Xt,t). Consequently the shape of the transition

density, g(Xt|Xs), are driven by the functional dynamics of the respective drift and di�usion functions.

Since the transition density function yields important inferential traits, an analytical expression for this

density function is paramount to this paper. However, to �nd a closed-form analytical solution to the true

transition density is a di�cult, and often impossible task.The main complication lies in expressing the

dynamics of the process, probabalistically over �nite transition horizons. When limiting the time-space

to small time epochs, the transition density is multivariate Normal:

g(Xt|Xs) ∽MV.NORM
(
Xs + δtsµ(Xs, s), δtsσ(Xs, s)σ(Xs, s)

T
)
,

with δts = (t−s). Unfortunately, as the time horizon increase, the shape of the transition density diverges

from the normal distribution.

To obtain an analytical expression for the transition density, allows for the identi�cation of a closed-

form likelihood function, which in tern can be maximized over a �nancial data set to �nd parameters of

best �t. This allows for analysis, inference and forecasting/prediction on the particular dataset. Unfor-

tunately, as indicated, closed-form theoretical analytical solutions to the true transition density rarely

exist and warrants the investigation into consistent approximation techniques to obtain an expression

for this approximate transition density function. Approximation methods, of particular interest in this

paper, includes the Hermite Expansion� method, [3] and the Cumulant truncation method/Saddlepoint

approximation method, [21] and [17]. The use of Monte Carlo and Euler simulations, where kernel density

estimates can yield an approximate density, will also be brie�y explored.

Example 16. Bivariate Cox Ingersoll and Ross (CIR) Di�usion Process applied to the South African

Reserve Bank's Monetary Policy

De�ne the bivariate CIR model as, [16]:

dXt = (α1(β1 −Xt)− λ1Yt)dt+ σ1
√
XtdW

(1)
t

dYt = (α2(β2 − Yt)− λ2Xt)dt+ σ2
√
YtdW

(2)
t ,
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or equivalently:

dZt =

dXt

dYt

 =

(α1(β1 −Xt)− λ1Yt)

(α2(β2 − Yt)− λ2Xt)

 dt+

σ1√Xt 0

0 σ2
√
Yt


dW (1)

t

dW
(2)
t

 ,

s.t. t ∈ [s, T ], with s ⩾ 0 and Xt ∈ [Xs, XT ], Yt ∈ [Ys, YT ] and with s ⩾ 0, and Xt, Yt ⩾ 0

for all t (due to
√
Xt,
√
Yt being in the Real space), and with dW

(i)
t : i = 1, 2 the Brownian Mo-

tions, as in De�nition 6 The parameter space θ = (α, β, λ,σ) consists of deterministic parameters

{αi=1,2, βi=1,2, λij=1,2, σi=1,2}.Note σ12 = σ21 = 0 implying that the volatility sources (dW
(i)
t : i = 1, 2)

are independent . In terms of Equation 13, the drift and di�usion coe�cients are given by

µ(Zt,t;Θ) =

(α1(β1 −Xt)− λ1Yt)

(α2(β2 − Yt)− λ2Xt)


and

Σ(Zt,t;Θ) =

σ1√Xt 0

0 σ2
√
Yt


respectively. Note that Zt is de�ned as

Zt =

Xt

Yt

 .

The South African Reserve Bank (SARB) are mandated to implement e�ective Monetary Policy to

maintain price stability (to keep headline consumer price in�ation between (CPI) 3% and 6%). The

SARB performs this function, through monthly adjustments in the Repurchase (Repo) Rate. The ad-

justments are usually (but not constrained to) a binary move of of 25 basis points (0.25%). Economical

theory dictates that an expansionary/hawkish monetary policy - reduction in the Repo Rate - will lead

to expansionary consumer spending via credit cycles, resulting in future increased in�ation. Similarly,

an contractionary/dovish monetary policy - increase in the Repo Rate - will lead to slowed consumer

spending, resulting in future decreased in�ation. Therefore there is a strong relationship between the

two variables. Through a simulation study, this relationship is displayed and in line with expectation.

Performing the simulation study on t ∈ [0, 24],Xt ∈ [0, 5], Yt ∈ [0, 5]; θ = (αi=1,2, βi=1.2, λi=1.2, σi=12) =

(2, 2, 4.2, 6.75, 0.1, 0.1, 0.75, 0.5), with X0 = 3.8 and Y0 = 6.5, and stepsize = 1/30. De�ne

Zt =

 Xt = CPI

Yt = Repo Rate

 .

In Figure 8 it can be seen, that there is clear bias in movement, i.e, a hike in the Repo Rate leads to a

24



reduction in CPI in the coming months, and vice versa. The Repo Rate does not behave like a di�usion

process, as it clearly changes discretely, due to the Central Bank's incremental 25 basis point (0.25%)

changes. Smoothing the Repo rate would enable the series to behave as di�usion process and ennable

further analysis. This is important to note, as in the market the data under review is not always in the

ideal format, and transformation may be needed. Please see R code in Algorithm6.

3 Obtaining closed-form transition densities for di�usion pro-

cesses

Having a closed-form true transition density for a di�usion process, simpli�es the inference on di�usion

processes signi�cantly. However, very little of these models's true transition density can be obtained in

closed-form. Therefore, to develop a suitable and accurate approximation technique to enable inference

on a wider class of di�usion models, is of paramount interest.

3.1 Transition densities in the univariate state variable case

For this section, consider the general univariate di�usion process in Equation 2, i.e dXt = µ(Xt, t;θ)dt+

σ(Xt, t;θ)dWt.

3.2 Examples of di�usion processes with closed-form transition densities

Albeit rare, we are often privileged to obtain a true closed-form transition density for Equation 2. This

true transition density,provided such exist, can be obtained through applying Ito calculus and solving the

Kolmogorov Forward or Backward equation, [15]. Denote the true transition density by p(xt, t | xs, s;θ),

s ≤ t, the solution of following Kolmogorv equations:

Kolmogorov Forward Equation (KDE):

∂

∂t
p(xt, t | xs, s;θ) = −

∂

∂xt
[µ(xt, t;θ)p(xt, t | xs, s;θ)] +

1

2

∂2

∂x2t
[σ2(xt, t;θ)p(xt, t | xs, s;θ)], (18)

and the Kolmogorov Backward Equation (KBE):

− ∂

∂s
p(xt, t | xs, s;θ) = −µ(xs, s;θ)

∂

∂xs
p(xt, t | xs, s;θ) +

1

2
σ2(xs, s;θ)

∂2

∂x2s
p(xt, t | xs, s;θ). (19)

Example 17. Univariate Ornstein Uhlenbeck di�usion process true transition density.
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Figure 8: bivariate CIR model simulation study applied to the South African Reserve Bank's monetary
policy implementation mechanism.
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Consider the de�ned OU model, and parameter values, as in Example 12, that is

dXt = κ(α−Xt)dt+ σdWt, (20)

s.t. t ∈ [s, T ], with s ⩾ 0 and Xs ⩾ 0.

Solving the KDE

∂

∂t
p(xt, t | xs, s;θ) = −

∂

∂xt
[κ(α− xt)p(xt, t | xs, s;θ)] +

1

2

∂2

∂x2t
[σ2p(xt, t | xs, s;θ)],

yields the true (and Gaussian) transition density for the univariate OU process, Xt, [1] :

p(xt, t | xs, s;θ) =
(πγ2
κ

)− 1
2

exp
(
−(κ/γ2)((xt − α)− (xs − α) exp(−κδ))2

)
,

s.t.

γ =
(
σ2(1− exp(−2κδ)

)−1/2

,

with δ increment in time. The true transition density is plotted in Algorithm 1 and displayed in Figure

9.

Example 18. Univariate CIR process true transition density.
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Figure 10: true transition density perspective plot of the univariate OU process,

Consider the CIR model, as in Example 13, [7, 1], with the SDE :

dXt = κ(α−Xt)dt+ σ
√
XtdWt, (21)

s.t. t ∈ [s, T ], with s ⩾ 0 andXt ⩾ 0 for all t (due to
√
Xt being in the Real space).

Solving the KDE

∂

∂t
p(xt, t | xs, s;θ) = −

∂

∂xt
[κ(α− xt)p(xt, t | xs, s;θ)] +

1

2

∂2

∂x2t
[σ
√
xtp(xt, t | xs, s;θ)],

yields the true transition density for the univariate CIR process, Xt, [1] :

p(xt, t | xs, s;θ) = c exp(−(u+ v))
( v
u

) q
2 Iq(2(uv)

1
2 ), (22)

where s < t , c = 2κ
σ2(1−exp(−κδ)) , u = cxs exp(−κδ), δ = t − s, v = cxt and q = 2κα

σ2 − 1. Denote

Iq(2(uv)
1/2) as a modi�ed Bessel function of the 1st kind and of the qth order, with dynamics given by

the following ODE:

t2 ∂2

∂x2
t
p(xt, t | xs, s;θ)′ + t ∂

∂xt
p(xt, t | xs, s;θ) = (t2 + q2)xt,

solved, as in [22], yields
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Iq(2(uv)
1/2) = (uv)q/2

∑∞
k=0

[
1

Γ(q+k+1)Γ(k+1) (uv)
k

]
,

with gamma function, Γ(n) = (n− 1)!.

Alternatively [7], Xt is non-centrally Chi-squared distributed:

2cXt ∼ χ2(2(q + 1), 2u),

The true transition density is plotted in Algorithm 2 and displayed in Figure 9.

3.3 Transition density approximation

The most important aspect of the given paper will now be discussed, that is the development a closed-form

transition density approximation. That is, to obtain p̃(xt, t | xs, s;θ) ≈ p(xt, t | xs, s;θ), with precision

and generality. The methods to be discussed include the Euler-Maruyama (EM), [11], the Hermite series

expansion, [4], and the Cumulant Truncation / Saddlepoint, [21, 17] transition density approximation

methods.
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Figure 12: true transition density perspective plot of the univariate CIR process,

3.3.1 Euler-Maruyama

The EM transition density approximation methods, [11], �nds numerical solutions for a process, as in

Equation 2, by means of recursive simulation of the governing SDE. The method yields a distribution on

which a kernel density can be �t to obtain a closed-form approximate transition density.

Consider the time-space [s, T ], de�ne δ = t−s
M and εi = iδ. Let X̃ibe a numerical approximation to

X(εi). Recursively the sequence of approximations is obtained

X̃i = X̃i−1 + µ(X̃i−1, i− 1;θ)δ + σ(X̃i−1, i− 1;θ)(Wεi −Wεi−1
), (23)

for all i = s+ 1, s+ 2, ..., s+M , X̃s = Xs as initial condition.

As examples, the EM approximate distribution for the univariate OU and CIR process is displayed

in Figures 9 and 11 and coded in Algorithms 2 and 1.

3.3.2 Hermite-series transition density approximation

[1], developed a approximation technique, based on Hermite series expansions, which provides a closed-

from analytical expression for the process's transition density.

The Hermite transition density approximation, is developed in orders of approximation, i.e. p̃
(K)
X (xt, t|xs, s;θ),

where K ≥ 0 , s.t p̃
(K)
X (xt, t|xs, s;θ) is the kth order approximation of pX(xt, t|xs, s;θ). Before an approx-
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imation to the transition density for the process at hand can be obtained, i.e p̃
(K)
X (xt, t|xs, s;θ), a Hermite

approximation for the transformed unit di�usion (where the di�usion coe�cient is the unit di�usion, i.e.

σ(γ, t;θ) = 1) process is obtained, namely p̃
(K)
Y (yt, t|ys, s;θ) . The transformation from Xt to Yt, to

obtain the desired unit di�usion, is known as the Lamperti transform. [9] provides more information on

the Lamperti Transform. The transformation, to obtain the required unit di�usion is given by

λ(Xt, t;θ) =

� Xt

σ−1(γ, t;θ)dγ = Yt, (24)

where σ−1(γ, t;θ) is the inverse of σ(γ, t;θ). Applying Itô′s-lemma yields the desired unit di�usion:

dYt = µY (Yt, t;θ)dt+ 1dWt, (25)

s.t σ(γ, t;θ) = 1. By assuming σ(Xt, t;θ) > 0, implies the increasing and invertible nature of λ(Xt, t;θ)

in Equation 24. The transformed drift coe�ecient, µY (Yt, t;θ), in Equation 25 is determined as follows

µY (Yt, t;θ) =
µ(λ−1(Yt,t;θ),t,θ)
σ(λ−1(Yt,t;θ),t,θ)

− ∂σ(λ−1(Yt,t;θ),t,θ)
2∂Xt

.

The transformation allows for the derivation of a closed-form approximtion, p̃Y (yt, t|ys, s;θ), for pY (yt, t|ys, s;θ).

As with the original process, the Hermite technique involves the approximation of the density increasing

orders of K, that isp̃
(K)
Y (yt, t|ys, s;θ), s.t K ⩾ 0. . The Jacobian formula, as given in [1], is imployed to

gain the required approximate density for Xt, p̃X(xt, t|xs, s;θ) from given the approximate denisty for

Yt, p̃Y (yt, t|ys, s;θ),was obtained. The Jacobian transformation follows as:

p̃X(xt, t|xs, s;θ) =
∂Pr[Xt ≤ xt|Xs = xs]

∂xt

=
∂Pr[Yt ≤ λ(xt, t;θ)|Xs = λ(xs, s;θ)]

∂xt

=
∂
� λ(xt,t;θ) p̃Y (yt, t|λ(xs, s;θ), s;θ)dyt

∂xt

= σ−1(λ(xt, t;θ);θ)p̃Y (λ(xt, t;θ), t|λ(xs, s;θ), s;θ).

(26)

The approximation procedure is started with the Hermite-series expansion for density function of Yt

around a Gaussian density. For increasing orders ofK, closed-form analytical approximations, p̃
(K)
Y (yt, t|ys, s;θ),

forpY (yt, t|ys, s;θ) is derived as follow,[1]:

p̃
(K)
Y (yt, t|ys, s;θ) =

exp
[
− 1

2

(
yt−ys

δ1/2

)2]
δ1/2
√
2π

exp
[� yt

ys

µY (γ, tγ ;θ)dγ
] K∑
k=0

ck(yt, t|ys, s;θ)
δk

k!
, (27)
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where δ = t− s and yt−ys

δ1/2
∼ N(0, 1) and cs(yt, t|ys, s;θ) = 1 for all n > s, otherwise:

cn(yt, t|ys, s;θ) =
n
� yt

ys
(γ − ys)n−1

[[
µ2
Yt
(yt, t;θ) +

∂µYt (yt,t;θ)

∂yt

]
cn−1(γ, tγ |ys, s;θ) + ∂2cn−1(γ,tγ |ys,s;θ)

∂γ2

]
dγ

2(yt − ys)n
.

(28)

The Kolmogorov forward and Kolmogorov backward equations, solve the sequence of equations, p̃
(K)
Y (yt, t|ys, s;θ),

in Equation 27, for all K ≥ 0:

∂p̃
(K)
Y (yt, t|ys, s;θ)

∂δ
+
∂[µYt

(yt, t;θ)p̃
(K)
Y (yt, t|ys, s;θ)]
∂yt

− 1

2

∂2p̃
(K)
Y (yt, t|ys, s;θ)

∂y2t
= o(δK), (29)

and

∂p̃
(K)
Y (yt, t|ys, s;θ)

∂δ
− µYs

(ys, s;θ)
∂p̃

(K)
Y (yt, t|ys, s;θ)

∂ys
− 1

2

∂2p̃
(K)
Y (yt, t|ys, s;θ)

∂y2s
= o(∆K),

for all K ⩾ 0, s.t t ∈ [s, T ] and where a real-valued function g(δ) is o(δ) if lim
δ→0

g(δ)
δ = 0.

Finally, the approximate density function for the variable of interest, Xt, can be obtained. Tha is

p̃
(K)
X (xt, t|xs, s;θ), the Kth order approximation of pX(xt, t|xs, s;θ). This is achieved by applying the

Jacobian formula as in Equation 26 to obtain p̃
(K)
X (xt, t|xs, s;θ), from p̃

(K)
Y (yt, t|ys, s;θ):

p̃
(K)
X (xt, t|xs, s;θ) ≡ σ−1(Xt, t; θ)p̃

(K)
Y (λ(Xt, t;θ), t|λ(Xs, s;θ), s;θ), (30)

for increasing orders of K. Approximating p̃
(1)
X (xt, t|xs, s;θ) and/or p̃(2)X (xt, t|xs, s;θ), has been proven ef-

fective in various �nancial settings, [1]. Higher orders of approximatio, will modelrately improve accuracy,

but exponentiate computational complexity.

3.3.3 Cumulant truncated transition density approximation (saddlepoint approximation)

Cumulant or moment truncation is a transition density approximation technique where the system of

ordinary di�erential moment equations, for the process under consideration, is solved and passed to a

surrogate density, such as the saddlepoint density, [17].

Considering the general di�usion process, as in Equation 2, i.e

dXt = µ(Xt, t;θ)dt+ σ(Xt, t;θ)dWt,

s.t t ∈ [s, T ]. The non-central moments of the di�usion process is obtained by solving a system of ordinary

di�erential equations (ODEs) , [17]. The moments equations will be in the general form of:

m′
i(t) = f(mi−1(t),mi(t),θ), (31)
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s.t. f(.) is a real valued function, θ a function of parameters, and i = 1, 2, ... ,s.t E[Xi
t |Xs] = mi(t) the

ith non-central moment. To obtiain the system of ODEs, in Equation 31, the methodology as in [17] is

imployed. Denote the moment generating function (MGF) of Xt by:

M(Xt, t) = E[exp(νXt)].

It follows that M(x, t) solves the partial di�erential equation (PDE):

∂M(ν, t)

∂t
= νµ

( ∂
∂ν
, t
)
M(ν, t) +

1

2
ν2σ2

( ∂
∂ν
, t
)
M(ν, t),

s.t µ
(

∂
∂ν , t

)
and σ2

(
∂
∂ν , t

)
are the di�erential operators on M(ν, t). The implication of this is that if

integer powers of Xt are contained in µ(Xt, t;θ) and σ
2(Xt, t;θ), a partial di�erential equation for the

moment generating function in terms of derivatives w.r.t. ν (i.e. ∂/∂ν) can be obtained. For, example,

by setting µ(xt, t;θ) = B0 +B1xt +B2x
2
t and σ

2(xt, t;θ) = B2
3 it follows that:

∂M(ν, t)

∂t
= ν

[
B0 +B1

∂

∂ν
+B2

∂2

∂ν2

]
M(ν, t) +

1

2
ν2σ2B2

3M(ν, t). (32)

De�ne

mi(t) = E[Xi
t ]

and

M(ν, t) =

∞∑
i=0

νimi(t)

i!
. (33)

By substituting Equation 33 into Equation 32, we obtain a system ordinary di�erential equations for the

non-central moments of the di�usion process, i.e m′
i(t) = f(mi−1(t),mi(t),θ). The number of moments

are truncated at a speci�c order, often at the second or fourth moment. Higher order moments may

improve accuracy, but the trade of against computational complexity, may deem it futile to do so.

The resulting system of ODEs can be solved by applying the Laplace transform (L{.}):

L{m′
j(t)} =

� ∞

0

e−vtmj(t)dt,

and solving the partial fractions. The resulting solution yields the desired moments for use in the

transition density approximation:

mi(t) = z(mi−1(t), ..,m1(t),m0(t),θ), (34)

Given that the cumulants are used in the saddlepoint approximation, the cumulants must be found
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from the moments. We simply calculate the cumulants by use of the following relation between the CGF

and MGF:

K(ν, t) = ln
[
M(ν, t)

]
,

withM(ν, t), the moment generating function. The saddlepoint transition density function approximation

is derived in closed-form, by substituting the calculated cumulants (ki) into the surrogate saddlepoint

density,[10]. Firstly, de�ne the cumulant generating function as

K(ν, t) = ln

[ ∞∑
i=0

νimi(t)

i!

]
, (35)

With the �rst four cumulants given by

k1(t) = m1(t),

k2(t) = m2(t)− (m1(t))
2,

k3(t) = 2(m1(t))
3 − 3(m1(t))(m2(t)) +m3(t),

k3(t) = −6(m1(t))
4 + 12(m1(t))

2(m2(t))− 3(m2(t))
2 − 4(m1(t))(m3(t)) +m4(t).

Following calculate the �rst two partial derivatives partial derivatives, in terms of t:

K
′

m(ν, t) =
∂

∂t
ln

[ ∞∑
i=0

νimi(t)

i!

]
(36)

and

K
′′

m(ν, t) =
∂2

∂t2
ln

[ ∞∑
i=0

νimi(t)

i!

]
, (37)

with km(ν, t) denoting the mth cumulant at time t. Next, Setting Xt = K
′′

m(ν, t), t is determined as a

function of Xt, that is:

t = ζ(Xt). (38)

Finally, substituing the resulting cumulant equations obtained in Equation 36 and 38, into the sad-

dlepoint surrogate density, as in [10], the closed-form cumulant-truncated transition density function

approximation, psaddleX (Xt, t|Xs, s;θ), is obtained as:

psaddleX (Xt, t|Xs, s;θ)) = exp(Km(ν, t)− ζ(Xt)xt)
(
2πK

′′

m(ν, t)
)−1/2

, (39)

for the mth order of approximation.

3.3.4 Examples of �tting approximate transition densities to univariate di�usion processes.

Example 19. Hermite approximate transition density function derivation for a univariate CIR process
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Consider the CIR model in Example 13 :

dXt = κ(α−Xt)dt+ σ
√
XtdWt, (40)

s.t.t ∈ [0, 5], Xt ∈ [0, 1],θ = (κ, α, σ) = (0.9, 0.3, 0.075), with X0 = 0.15, and stepsize = 1/250. The

Hermite approximate transition density function derivation for a univariate CIR process, as in [1] follows.

Firstly, since dXt does not have a unit di�usion, a transformation is to be made, in terms of a change of

variable, from Xt to Yt, to obtain a unit di�usion. The required transformation follows as

Yt = Ω(Xt, t;θ) = 2σ−1
√
Xt. (41)

To prove Yt has unit di�usion, Itô's lemma is applied

dYt =
∂

∂t
Ω(Xt, t;θ)dt+

∂

∂Xt
Ω(Xt, t;θ)dXt +

1

2

∂2

∂X2
t

Ω(Xt, t;θ)(dXt)
2, (42)

with partial derivatives equal to
∂Ω(Xt, t;θ)

∂t
) = 0,

∂Ω(Xt, t;θ)

∂Xt
=
(
σ
√
Xt

)−1

,

∂2Ω(Xt, t;θ)

∂X2
t

= −X
−3/2
t

2σ
,

(43)

yields the desired unit di�usion

dYt =
[κ(α−Xt)− σ2

σ
√
Xt

]
dt+ 1dWt. (44)

In Equation 44, Yt clearly has the unit di�usion, as required.

The Hermite-series expansion for of order K = 0 for Yt is given follows:

p̃
(0)
Y (yt, t|ys, s;θ) =

exp(− (yt−ys)
2

2δ − κy2
t−y2

s

4 )
√
2πδ

[
y

1
2−

2ακ
σ2

s

][
y
− 1

2+
2ακ
σ2

t

]
, (45)

41 the Hermite-series transition density function approximation of order Xt, for K = 0, is given by means

of the Jacobian transformation:

p̃
(0)
X (xt, t|xs, s;θ) = σ−1(xt, t;θ)p̃

(0)
Y (Ω(xt, t;θ), t|Ω(xs, s;θ), s;θ),

p̃
(0)
X (xt, t|xs, s;θ) = exp(− (Ω(xt, t;θ)−Ω(xs, s;θ))

2

2δ
−κΩ

2(xt, t;θ)−Ω2(xs, s;θ)

4
)
Ω(xt, t;θ)

− 1
2+

2ακ
σ2 Ω(xs, s;θ)

1
2−

2ακ
σ2

σ
√
2πδxt

,

(46)
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The Hermite-series expansion of order K = 1, for Yt is given by:

p̃
(1)
Y (yt, t|ys, s;θ) = p̃

(0)
Y (yt, t|ys, s;θ)(1 + δc1(yt, t|ys, s;θ)), (47)

where

c1(yt, t|ys, s;θ) = − (48α2κ2−48ακσ2+9σ4+ytκ
2σ2(−24α+y2

tσ
2)ys+y2

tκ
2σ4y2

s+ytκ
2σ4y3

s)
24ytysσ4 .

The Hermite-series transition density function approximation of order Xt, for K = 1, is given by means

of the Jacobian transformation:

p̃
(1)
X (xt, t|xs, s;θ) = σ−1(xt, t;θ)p̃

(1)
Y (Ω(xt, t;θ), t|Ω(xs, s;θ), s;θ),

p̃
(1)
X (xt, t|xs, s;θ) =

p̃
(0)
Y (Ω(xt,t;θ),t|Ω(xs,s;θ),s;θ){1+δc1(Ω(xt,t;θ),t|Ω(xs,s;θ),s;θ)}

σ
√
xt

.

With the Hermite-series transition density function approximation, of order K = 1, for Xt, given by:

p̃
(1)
X (xt, t|xs, s;θ) =

exp(− (Ω(xt,t;θ)−Ω(xs,s;θ))2

2δ −κ
Ω2(xt,t;θ)−Ω2(xs,s;θ)

4 )Ω(xt,t;θ)
− 1

2
+ 2ακ

σ2 Ω(xs,s;θ)
1
2
− 2ακ

σ2

σ
√
2πδxt

×

[
1− δ

24Ω(xt,t;θ)Ω(xs,s;θ)σ4

[
48α2κ2 − 48ακσ2 + 9σ4

Ω(xt, t;θ)κ
2σ2(−24α+Ω(xt, t;θ)

2σ2)Ω(xs, s;θ)

Ω(xt, t;θ)
2κ2σ4Ω(xs, s;θ)

2 +Ω(xt, t;θ)κ
2σ4Ω(xs, s;θ)

3)

]]
.

The Hermite-series expansion of order K = 2, for Yt is given by:

p̃
(2)
Y (yt, t|ys, s;θ) = p̃

(0)
Y (yt, t|ys, s;θ)(1 + δc1(yt, t|ys, s;θ) +

δ2

2
c2(yt, t|ys, s;θ)),

s.t

c2(yt, t|ys, s;θ) =
Λ(yt, t|ys, s;θ)
576y2t y

2
sσ

8
,

where

Λ(yt, t|ys, s;θ) =9(256(κα)4 − 512(κα)3σ2 + 224(κα)σ4 + 32(κα)σ6 − 15σ8)

+6ytκ
2σ2(−24α+ y2t σ

2)(16α2κ2 − 16ακσ2 + 3σ4)ys

+y2t κ
2σ4(672α2κ2 − 48ακ(2 + y2t κ)σ

2 + (−6 + y4t κ
2)σ4)y2s

+2ytκ
2σ4(48α2κ2 − 24ακ(2 + y2t κ)σ

2 + (9 + y4t κ
2)σ4)y3s

+3y2t κ
4σ6(−16α+ y2t σ

2)y4s + 2y3t κ
4σ8y5s + y2t κ

4σ8y6s .

With the Hermite-series transition density function approximation, of order K = 2, for Xt, given by:

p̃
(2)
X (yt, t|ys, s;θ) ≡

p̃
(2)
Y (Ω(xt,t;θ),t|Ω(xs,s;θ),s;θ)

σ(xt,t;θ)
,
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,
p̃
(2)
Y (xt, t|xs, s;θ) ≡

p̃
(0)
Y (Ω(xt,t;θ),t|Ω(xs,s;θ),s;θ)(1+δc1(Ω(xt,t;θ),t|Ω(xs,s;θ),s;θ)

σ(xt,t;θ)

+
δ2

2 c2(Ω(xt,t;θ),t|Ω(xs,s;θ),s;θ)

σ(xt,t;θ)
,

(48)

with

c2(xt, t|xs, s;θ) = η(xt,t|xs,s;θ)
576Ω2(xt,t;θ)Ω2(xs,s;θ)σ8 ,

where

η(xt, t|xs, s;θ) =9(256(κα)4 − 512(κα)3σ2 + 224(κα)σ4 + 32(κα)σ6 − 15σ8)

+6Ω(xt, t;θ)κ
2σ2(−24α+Ω2(xt, t;θ)σ

2)(16α2κ2 − 16ακσ2 + 3σ4)Ω(xs, s;θ)

+Ω2(xt, t;θ)κ
2σ4(672α2κ2 − 48ακ(2 +Ω2(xt, t;θ)κ)σ

2 + (−6 +Ω4(xt, t;θ)κ
2)σ4)Ω2(xs, s;θ)

+2Ω(xt, t;θ)κ
2σ4(48α2κ2 − 24ακ(2 +Ω2(xt, t;θ)κ)σ

2 + (9 +Ω4(xt, t;θ)κ
2)σ4)Ω3(xs, s;θ)

+3Ω2(xt, t;θ)κ
4σ6(−16α+Ω2(xt, t;θ)σ

2)Ω4(xs, s;θ)

+2Ω3(xt, t;θ)κ
4σ8Ω5(xs, s;θ) +Ω2(xt, t;θ)κ

4σ8Ω6(xs, s;θ).

Figure13 shows the decreasing signi�cance in the ckcoe�cients as the order of approximationincrease.

Algorithm 7 and Figure 16 contains the plotted Hermite Approximate CIR transition densities for K =

1, 2.

Example 20. Cumulant Truncated (saddlepoint) approximate transition density function derivation for

a univariate CIR process

An alternative strategy for approximating the transitional density of the CIR process is by the so-called

cumulant truncation procedure developed in [17]. The true transition density is plotted in Figure 16 for

comparison.

Consider the CIR model in Example 13 :

dXt = κ(α−Xt)dt+ σ
√
XtdWt, (49)

s.t.t ∈ [0, 5], Xt ∈ [0, 1],θ = (κ, α, σ) = (0.9, 0.3, 0.075), with X0 = 0.15, and stepsize = 1/250. The

derived system of ODEs are given by:

m
′

1(t) = 1κ(α−m1(t)),

m
′

2(t) = 2κ(αm1(t)−m2(t)) + σ2m1(t),

m
′

3(t) = 3κ(αm2(t)−m3(t)) + 3σ2m2(t),

m
′

4(t) = 4κ(αm3(t)−m4(t)) + 6σ2m3(t).

(50)
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Figure 13: decreasing signi�cance in the ckcoe�cients as the order of approximation - k- increase.
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The system of ODEs is solved by applying the Laplace transform and partial fractions, to obtain the

non-central moments of the proces:

E[Xt|Xs] =m1(t) = Xs exp(−κt) + α(1− e−κt),

E[X2
t |Xs] =m2(t) = X2

s exp(−2κt) + (α+
σ2

2κ
)(α+ 2(Xs − α)e−κt + (α− 2Xs)e

−2κt),

E[X3
t |Xs] =m3(t) = X3

s exp(−3κt) + 3(κα+ σ2)(A+Be−κt + Ce−2κt +De−3κt),

E[X4
t |Xs] =m4(t) = X4

s exp(−4κt) + (4κα+ 6σ2)
[
E + Fe−κt +Ge−2κt +He−3κt + Ie−4κt

]
,

(51)

where

E =
3(κα+ σ2)(6κ3A)

24κ4
,

I =− 1

6κ3

((
4κ2X3

s + 3(κα+ σ2)
[
11κ2A+ 6κ2B + 3κ2C + 2κ2D

]
− 13

12

3(κα+ σ2)(6κ3A)

κ

)
− 12κ2

(
5κX3

s + 3(κα+ σ2)
[
6κA+ 5κB + 4κC + 3κD

]
− 3(κα+ σ2)(6κ3A)

24κ3

)
− 4κ

((
5κX3

s + 3(κα+ σ2)
[
6κA+ 5κB + 4κC + 3κD

]
− 3

8

3(κα+ σ2)(6κ3A)

κ

)
− 7κ

(
5κX3

s + 3(κα+ σ2)
[
6κA+ 5κB + 4κC + 3κD

]
− 3(κα+ σ2)(6κ3A)

24κ3

)))
,

H =
1

2κ2

( (
5κX3

s + 3(κα+ σ2)
[
6κA+ 5κB + 4κC + 3κD

]
− 3

8

3(κα+ σ2)(6κ3A)

κ

)
−7κ

(
5κX3

s + 3(κα+ σ2)
[
6κA+ 5κB + 4κC + 3κD

]
− 3(κα+ σ2)(6κ3A)

24κ3

)
− 6κ2I

)
F =− (E +G+H + I),

A =
α(α+ σ2

2κ )

3κ
,

C =− 4(
1

4κ2
(κ(X2

s + (α+
σ2

2κ
)(α− 2Xs)) + 3κα(α+

σ2

2κ
) + 4κ(α+

σ2

2κ
)(Xs − α),−9κ2A)

− 1

2κ
(X2

s + (α+
σ2

2κ
)(α− 2Xs) + α(α+

σ2

2κ
) + 2(α+

σ2

2κ
)(Xs − α),−3κA)),

B =
X2

s + (α+ σ2

2κ )(α− 2Xs) + α(α+ σ2

2κ ) + 2(α+ σ2

2κ )(Xs − α)− 3κX2
s

2κ
,

+
−3κX2

s + (α+ σ2

2κ )(α− 2Xs) + α(α+ σ2

2κ ) + 2(α+ σ2

2κ )(Xs − α)− κC
2κ

D =− (A+B + C).

As the cumulants are of main interest for the saddlepoint approximation, and given the following moment

to cumulant conversion equations: Figure 14 depicts the empirical moments plotted againts the theoretical
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moments, illustrationg the accuracy of the cumulant truncation procedure.

K1(t) = m1(t),

K2(t) = m2(t)− (m1(t))
2,

K3(t) = 2(m1(t))
3 − 3(m1(t))(m2(t)) +m3(t),

K3(t) = −6(m1(t))
4 + 12(m1(t))

2(m2(t))− 3(m2(t))
2 − 4(m1(t))(m3(t)) +m4(t).

(52)

Therefore substituting the moments into the cumulant equations yields:

K1(t) = Xs exp(−κt) + α(1− e−κt),

K2(t) = X2
s exp(−2κt) + (α+

σ2

2κ
)(α+ 2(Xs − α)e−κt + (α− 2Xs)e

−2κt)

− (X2
s exp(−2κt) + (α+

σ2

2κ
)(α+ 2(Xs − α)e−κt + (α− 2Xs)e

−2κt))2,

K3(t) = 2(Xs exp(−κt) + α(1− e−κt))3 +m3(t),

− 3(Xs exp(−κt) + α(1− e−κt))(X2
s exp(−2κt) + (α+

σ2

2κ
)(α+ 2(Xs − α)e−κt + (α− 2Xs)e

−2κt))

+X3
s exp(−3κt) + 3(κα+ σ2)(A+Be−κt + Ce−2κt +De−3κt)

K3(t) = −6(Xs exp(−κt) + α(1− e−κt))4

+ 12(Xs exp(−κt) + α(1− e−κt))2(X2
s exp(−2κt) + (α+

σ2

2κ
)(α+ 2(Xs − α)e−κt + (α− 2Xs)e

−2κt))

− 3(X2
s exp(−2κt) + (α+

σ2

2κ
)(α+ 2(Xs − α)e−κt + (α− 2Xs)e

−2κt))2

− 4(Xs exp(−κt) + α(1− e−κt))(X3
s exp(−3κt) + 3(κα+ σ2)(A+Be−κt + Ce−2κt +De−3κt))

+X4
s exp(−4κt) + (4κα+ 6σ2)

[
E + Fe−κt +Ge−2κt +He−3κt + Ie−4κt

]
.

(53)

We can now di�erentiate and start plugging the expressions into the surrogate saddlepoint density ap-

proximate.

Figure 14, with the code contained in Algorithm 9, displays the theoretical cumulants of the CIR process,

given in Equation 52, with the empirical cumulants. As the order of the cumulants increase, the empirical

cumulants drift further apart from the theoretical cumulants.

K
′

4(ν, t) ≈ K̃4(ν, t) = tK1(t) +
1

2!
t2K2(t) +

1

3!
t3K3(t) +

1

4!
t4K4(t), (54)

for Ki(t) for i = 1, 2, 3, 4 as in Equation 52. A Taylor-series is applied to get K̃4(ν, t). Where the exact

cumulant generating function of the CIR process is K(ν, t) = ln(M(ν, t)), provided M(ν, t) exists and

M(ν, t) > 0 for all values of t, where M(ν, t) is the exact moment generating function of the CIR process.
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Consider the �rst and second order partial derivatives of Equation 54, in terms of t:

K ′
4(Xt, t) ≈ K1(t) + tK2(t) +

1

2
t2K3(t) +

1

6
t3K4(t), (55)

K ′′
4 (Xt, t) ≈ K2(t) + tK3(t) +

1

2
t2K4(t). (56)

Setting Xt = K1(t) + tK2(t) +
1
2 t

2K3(t) +
1
6 t

3K4(t), we solve for t:

t =
−K2(t) +

√
(K2(t))2 − 2K3(t)(K1(t)−Xt)

K3(t)
. (57)

Finally substituting all expressins into the saddlepoint approximation, yields the �nal cumulant truncated

approximate transition density:

psaddleX (Xt, t|Xs, s;θ) =

√
(2π(K2(t) + tK3(t) +

1

2
t2K4(t)))−1

× exp

[
tK1(t) +

1

2!
t2K2(t) +

1

3!
t3K3(t) +

1

4!
t4K4(t)

]
−

[
−K2(t) +

√
(K2(t))2 − 2K3(t)(K1(t)− xt)

K3(t)

]
Xt.

(58)

Algorithm 7 and Figure 16 contains the code and plot for the Saddlepoint Approximate CIR transition

density psaddleX (Xt, t|Xs, s;θ)).

3.3.5 Hermite-series transition density function approximation compared to the moment-

truncated saddlepoint approximation

The work of [21] indicates that the Hermite-series transition density function approximation can only be

applied to reducible (i.e Yt → Xt is a one-to-one transformation) di�usion processes, although all uni-

variate processes are reducible, not all multivariate di�usion processes are reducible. The Hermite-series

transition density function approximation is di�cult to implement and there is signi�cant improvement

needed in the accuracy from that provided by the Hermite-series transition density function approxima-

tion. Since a simpler, more general and accurate transition density function approximation is required,

the saddlepoint approximation is ideal since it only requires the �rst few moment trajectories of the given

di�usion process. The saddlepoint approximation also seems to be more robust to changes in the un-

derlying parameters. Although neither the Hermite-series transition density function approximation, nor

the moment-truncated saddlepoint approximation integrate to 1, this can be corrected for by normalizing

constants.

Example 21. Univariate Ornstein Uhlenbeck di�usion processprocess' Hermite and Saddlepoint/Cumu-

lant truncation approximate transition density comparison

Example 12 continued.
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Figure 14: theoretical and empirical evolution of the cumulants of a univariate CIR Process.
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Figure 15: univariate OU Process's Theoretical density, EM distribution, Hermite transition approxima-
tion for K = 1, as well as the Saddlepoint/Cumulant truncation approximate transition density

dXt = κ(α−Xt)dt+ σdWt, (59)

s.t. t ∈ [s, T ], with s ⩾ 0 and Xt ∈ [Xs, XT ], with s ⩾ 0, and Xs ⩾ 0 and withWt Brownian Motion, as in

De�nition 6. Performing the simulation study on t ∈ [0, 5], Xt ∈ [12, 19],θ = (κ, α, σ) = (0.85, 15, 0.75),

with X0 = 16, and stepsize = 1/250 (aprroximate number of annual trading days) . Algorithm 7 and

Figure 15 contains the plotted densities the Theoretical density, EM distribution, Hermite transition

approximation for K = 1, as well as the Saddlepoint/Cumulant truncation approximate transition den-

sity. It can be seen that the Saddlemoint method is the best �t to the true density, with the Hermite

approximate not perfroming well for K = 1, due to sensitivity to the size of increments. Algorithm 7.

The system of ODEs used for deriving the cumulant truncated approximate OU transition density is
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given by:

m
′

1(t) = κ(α−m1(t)),

m
′

2(t) = 2κ(αm1(t)−m2(t)) + σ2,

m
′

3(t) = 3κ(αm2(t)−m3(t)) + 3σ2m1(t),

m
′

4(t) = 4κ(αm3(t)−m4(t)) + 6σ2m2(t).

(60)

Example 22. Univariate CIR process' Hermite and Saddlepoint/Cumulant truncation approximate tran-

sition density comparison

Consider the CIR model, as in Example 13, [7, 1], with the SDE :

dXt = κ(α−Xt)dt+ σ
√
XtdWt, (61)

s.t. t ∈ [s, T ], , and with dW Brownian Motion. With for t ∈ [0, 5], Xt ∈ [0, 1], θ = (α, β, σ) =

(0.9, 0.30.075), X0 = 0.15 and , stepsize = 1/250 for �tting. Algorithm 7 and Figure 16 contains the

code and plotted true and approximate densities respectively (that is, the true density, EM distribution,

Hermite transition approximation for K = 1, 2, and the Saddlepoint/Cumulant truncation approximate

transition density). It can be seen that the Cumulant truncated/ Saddlepoint approximation method is

the best �t to the true density.

3.3.6 Inferenece on a di�usion process

Once an anlytical expression is obtained, maximum likelihood estimation (MLE) can be executed on

the true, if available, approximate transition density. In this paper the sadlepoint approximation wil

be subject to MLE, in order to show the e�ciency of the method when a true densioty is not available.

Assuming normality in the residual distribution, for an observed dataset with n observations the likelihood

function is given by:

L(θ|X) =

n∏
i=1

(pX(Xi, i|Xs, s;θ)), (62)

for X = (Xs, ..., XT ). De�ne the log-likelihood function as:

log(L(θ|X)) = log
{ n∏
i=1

(pX(Xi, i|Xs, i− 1;θ))
}
=

n∑
i=1

log
{
(pX(Xi, i|Xs, i− 1;θ))

}
. (63)

To �nd the maximum likelihood estimators, Equation 63 needs to be maximized, to obtainθ̂
mle

max, to obtain

the maximum likelihood estimators. I.e.

θ̂
mle

max ←[ max
θ

(
log(L(θ|X))

)
= max

θ

(
n∑

i=1

log
{
pX(Xi, i|Xs, i− 1;θ)

})
,
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Figure 16: univariate CIR Process's Theoretical density, EM distribution, Hermite transition approxima-
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is to be found which maximizes the log-likelihood function. Since di�usion processes have the Markov

property the likelihood function can also be de�ned as,[21]:

L(θ|X) =
∏n

i=1(pX(Xi, i|Xs, i− 1;θ)) = pX(Xs, s;θ)
∏n

i=1(pX(Xi, i|Xi−1, i− 1;θ).

For an approximate density p̃X(Xi, i|Xs, i − 1;θ) is used instead of pX(Xi, i|Xs, i − 1;θ). For example,

when perfroming inference by use of the cumulant truncated transition density approximation, parameter

estimates is obtained by:

θ̂
mle

max ←[ maxθ

(
log(L(θ|X))

)

= maxθ

(∑n
i=1 log

{
psaddleX (Xt, i|Xs, i− 1;θ)

})

= maxθ

(∑n
i=1 log

{
exp(K̃X(t)− txt)

√
(2πK̃

′′
X(t))−1

})
,

Maximum likelihood estimation will be conducted for a model of a �nancial time series on �nancial data

in order to obatin the parameter of best �t for inferential purposes.

Example 23. Univariate CIR di�usion process inference on the Chicago Board Options Exchange Volatil-

ity Index (VIX Index)

The VIX Index is a volatility benchmark based on market estimates of th expected volatility of the

S&P500 Index, calculated using the mid option bid/ask price quotes.Consider the VIX index's volatility

values from 31 August 2020 to 31 August 2021, as can be seen in the timeplot in Figure 17. MLE on

the Cumulant Truncated Approximate density for a univariate CIR model has been applied to the data,

with the CIR difussion process as the underlying model:

dXt = κ(α−Xt)dt+ σ
√
XtdWt. (64)

Based on the Saddlepoint approximation derived in Example 12, MLE performed on 1 year's volatolity

values. θ̂
mle

Saddle coverged to the maximum likelihood estimators θ̂
mle

Saddle = (κ̂, α̂, σ̂) = (22.27, 21.46, 32.65).

The MLE procedure was initiated at (50, 50, 50). The data was obtained from Bloomberg.

Figure 17 plots the �tted cumulant truncated/saddlepoint density, based on θ̂
mle

Saddle = (κ̂, α̂, σ̂) =

(22.27, 21.46, 32.65). See Algorithm 12 for the R code used to plot the time series. Figure 18 displays

the univariate CIR �tted saddlepoint density based on the MLE values. See Algorithm 12 for the R code

used to plot the saddlepoint approximate density.
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Figure 18: univariate CIR �tted saddlepoint density based on the MLE values.
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4 Transition densities in the multivariate state variable case

To infer the implications of a process evolution over in�ntesmall time-epochs relies heavelly on the pro-

cess'stransition density. However a true transition density rarerly exists in closed-form. This section is

dedicated in exploring the methodologies for obtaining closed-form approximations for the true multi-

variate transition densities of om multivariate di�usion processes. The strenghts and limitations of the

method will be explored and utilized to develop an e�cient method of getting an approximation to a

given multivariate process' transition density function. An obtained closed-form expression for a true

transition density can be used for a variety of statistical procedures and inferences on data, i.e. �nancial

and rates data as will be explored in this paper. With many �nancial models encapsolating various state

variables, there is su�cient need to explore the multivariate case.

4.1 Multivariate Hermite Expansion method

Firstly the assumptions and model will be speci�ed. Reducibility of a di�usion process and necessary

and su�cient conditions for redulcibility of a multivariate di�usion process will be discussed. In the

current paper, the technique applied for getting explicit Hermite expansions, in the univariate di�usion

case will be expanded to multivariate di�usions. The Hermite expansion method can be easily extended

to the multivariate di�usion scenario, if the di�usion process is reducible, unfortately not alll of these

processes are reducible in natrue. Therefore, another method will be introduced, where the co�cients

(in closed-form) satisfying the Kolmogorov equations, are determined, [3].The method of closed-form

log-likelihood expansions, as developed in [3], is based on the explicit calculation of the coe�cients of a

process's expansion based on the process unique structure. It should be noted that this method, provided

that the multivariate di�usion process at hand is reducible, is an expansion to the univeriate Hermite

expansion method. The Markov property, which di�usion processes inheret, allows for the construction

of log-likelihood transition expansions over discretized time epochs to be reduced to the sum of the

log-likelihod transition expansion function over consequtive observations. Quasi-likelohood inference are

therefore made possible.

4.1.1 Assumptions and setup

The following time-homogeneous di�usion process are considered:

dXt = µ(Xt, t,θ)dt+ σ(Xt, t,θ)dW t, (65)

s.t t ∈ [s, T ], with Xt : m × 1 is the state vector of interest, µ(Xt, t,θ) : m × 1 and σ(Xt, t,θ) :

m ×m the di�usion vector and covariance matrix respectively. W t : m × 1 is a vector of independent
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Brownian Motions. This equation is equivalent to Equation 13, were θ represents the parameter vector.

Independence, without loss of generality, through the structuring of σ(Xt, t,θ), is assumed. The time

variable, t , can be studied in both the time-inhomogeneous case, as well as the time homogeneous case,

where t is considered as an additional state variable. The premise is to derive an approximate conditional

density of Xt+δ = x, given the initial condition Xt = x0. The determination of an approximate

transition density function, P̃X(x|x0, δ), for PX(x|x0, δ), allows for inference to be conducted on the

transition density pro�le and parameter structure, through maximum likelihood estimation, MLE.

Assume the parameterization of µ(Xt, t), functionally dependent on θ, the parameter vector, where

Xt is observed at dates {t = iδ, i = 0, ..., n} s.t. δ > 0. Considering Equation 65, inheriting the Markov

Property, it can be implied that the log-likelihood function can be represented as:

Ln(θ, δ) =

n∑
i=1

ln(PX(Xiδ|X(i−1)δ, δ)). (66)

It is of key importance to note the a closed-form function for PX(x|x0, δ), and hence, ln(PX(x|x0, δ)),does

not necessarily exist in closed-form, which emphasizes the importance to develop an approximate closed-

form function for the preceeding functions.

Now, let ζX ⊆Rm, represent the domain of Xt. De�ne the Jacobian, for function η(x), di�erentiable

in x. as

δη(x) =
∂ηi

(x)

∂xj
,

s.t. i = 1, ..., d and j = 1, ...,m.

Assume that ζX ⊆Rm is the product of m intervals within open limits (−∞,+∞).

The variance-covariance matrix, γ(Xt, t) : m ×m, can be parameterized for use instead of σ(Xt, t),

where:

γ(Xt, t) = σ(Xt, t)σ
T (Xt, t), (67)

where σT (Xt, t) denotes the transpose of σ(Xt, t). As such the transition density of the process depends

on (µ, ν), and it can be shown that there exist exist a spectrum of solutions to Equation 67, for all σ.

This can be viewed by the generator function, AX , of the process in which depends on ν. For function,

f(δ,x), di�erentiable on its domain, the function AX • f can be de�ned as:

AX • f =
∂f(δ,x)

∂x
+

m∑
i=1

µi(x)
∂f(δ,x)

∂xi
+

1

2

m∑
i=1

νij(x)
∂2f(δ,x)

∂xi∂yi
. (68)

The domain of AX includes su�ciently di�erntiable functions, which will be of importance in the speci-
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�cation of the likelihood function. As result de�ne Λυ(x) as:

Λν(x) =
1

2
ln(Det[ν(x)]),

where the ν(x) matrix is assumed to be positive de�nite for all x∈ ζX ⊆Rm.

Other assumptions to ensure that an unique solution to Equation 65 includes:

� dXt is reducible,

� | γ(x) |=| γ(Xt, t) |> 0 for all X ∈ ζX ,

� γ(x) and σ(x) are in�nitely di�erentiable for all x ∈ ζX , which implies the uniqueness of the

solution and that the coe�cients are Lipschitz ,

� linear growth is satis�ed in the drift and di�usion functions, i.e there exists a K s.t K ∈ Nfor all

x ∈ ζXand for all i, j s.t.

| µi(x) |⩽ K(1+ ∥ x
n
)

and

| σij(x) |⩽ K(1+ ∥ x
n
),

where ∥ x
f
, for all x ∈ Rm denotes the euclidean norm. This assumption ensures the existence of

a solution to the equation,

� the di�usion process Xt is fully de�ned by the drift and di�usion functions, µ(Xt, t) and σ(Xt, t),

within and at the boundaries of ζX .

.Where possible the di�usion, under consideration, will be transformed into a reducible di�usion.

De�nition 24. Reducibility: a di�usion X is reducible if and only if a one to one transformation from

di�usion X into Y , where σY is the identity matrix. There exists an in�nitely di�erentiable, invertible

function Γ (X), for X ∈ ζX , s.t. Yt ≡ Γ(X)satis�es the following SDE

dY t = µY (Y t, t)dt+ dW t, (69)

on domain ζY ⊆ Rm.

Itô's lemma implies that a for a reducible di�usion, the change of variable, γ (also known as the

Lamperti Transform), satis�es:

∇γ(x) = σ−1(x), (70)

s.t σ−1(x) denotes the inverse of σ(x).
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All univariate di�usion processes are reducible, through the implementation of the following transforma-

tion

Yt = λ(Xt) =

Xt�
1

σ(u)
du. (71)

.

Therefore for the univariate case, the Hermite expansion can be utilized to get a closed-form expansion

for the density of Y , and therefore by transformation, for X can be obtained. As a result a closed-

form expansion can be obtained for PX ,followed by PY . Unfortunately, not all multivariate di�usions

are reducible. The reducibility of a multivariate di�usion depends on the speci�cation of the di�usion

matrix, σ. We can express reducibility in the multivariate case, by means of the following proposition.

Proposition 25. A di�usion, X is reducible, if and only if

m∑
l=1

∂σik(x)

∂xl
σlj(x) =

m∑
l=1

∂σij(x)

∂xl
σlk(x),

for all x ∈ ζx ⊆ Rm, where i, j, k = 1, 2, ...,m s.t k > j. If | σ|> 0 then the above expression can be

expressed as

∂

∂xk
σ−1
ij (x) =

∂

∂xj
σ−1
ik (x).

For example, in the bivariate case (m = 2), it follows that:

∂

∂x2
σ−1
11 (x)−

∂

∂x1
σ−1
12 (x) = 0

and

∂

∂x2
σ−1
21 (x)−

∂

∂x1
σ−1
22 (x) = 0,

therefore

∂

∂x2
σ−1
11 (x)−

∂

∂x1
σ−1
12 (x) =

∂

∂x2
σ−1
21 (x)−

∂

∂x1
σ−1
22 (x).

In the multivariate case, when the di�usion is reducible, two techniques will be discussed for deriving

closed-form expansions for the log-likelihood function. The �rst method focuses on the computation of the

coe�cients for the Hermite expansion for the transition density of the Y , namely PY . The coe�cients are

determined through a series expansion in the timeepochs between observations, namely △ . The second

method, also using the Hermite series expansion, determines the coe�cients, by solving the Kolmogorov
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partial di�erential equations characterizing transition density function PY . In both methods, the reversal

of the change of variable in the Jacobian formula yields the transition density approximation for PX .

4.1.2 Closed-form likelihood expansion of reducible di�usions

For a reducible di�usion process, two methods for the expansion of the log-likelihood function can be

constructed. Firstly, the coe�cients of a Hermite expansion for PY can be computed. The coe�cients

are observed and computed by means of a series expansion in δ, the time between observations.The

second method, is in the form of a Hermite series, and relies on obtaining the coe�cients by solving the

Kolmogorov partial di�erential equations (P.D.E), which specify the dynamics of PY .By reversing the

change of variable, γ, and the Jacobian, both methods yield PX , given the series for PY is obtained.

4.1.3 Multivariate Hermite expansions

Consider the multivariate counterpart to the univariate Hermite expansion as done in [2]. Let θ(x)

denote the density function of an n-dimensional multivariate normal distribution, with mean zero and

the covariance matrix being the identity matrix. For every vector h = (h1, ..., hn) ∈ Nn. Denote Hh(x)

as the associated Hermite polynomials, such that

Hh(x) =

[
(−1)tr(h)

θ(x)

][
∂tr(h)θ(x)

∂xh1
1 ...∂xhn

n

]
,

which can be explicitly computed to an arbitrary order of tr(h). The polynomials are orthonormal, such

that
�
Rn Hh(x)Hk(x)θ(x)dx = h1!...hn! if h = k and 0 otherwise. The Hermite series approximation for

pY follows:

p̃
(J)
Y (y | y0,∆) = ∆

−m
2 θ

(
y − y0
∆

1
2

) ∑
h∈Nn,tr(h)≤J

ηh(∆, y0)Hh

(
y − y0
∆

1
2

)
, (72)

where ηh(
a
, y0), the Hermite coe�cients, can be computed in the same manner as in the univariate

case. That is, via the orthonormality of the Hermite polynomials, the conditional expectation yields the

coe�cients ηh:

ηh(∆, y0) =
1

h1!...hn!
E

[
Hh

(
∆− 1

2 (Yt+∆ − y0) | Yt = y0

)]
. (73)

This expression can be amended in computing an expansion in ∆, using a generator function. The

conditional expectation can be evaluated , by using the deterministic Taylor expansion:

EY1 [f(Y∆, Y0,∆)|Y0 = y0] =

K∑
k=0

∆k

k!
Ak

Y .f(y, y0, δ)|y=y0,δ=0 +O(∆K+1), (74)
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such that AY is an in�nitesimal generator function of Y such that

AY .f =
∂f(y,∆)

∂∆
+

n∑
i=1

µi(y)
∂f(y,∆)

∂yi
+

1

2

n∑
i,j=1

υkl(y)
∂2f(y,∆)

∂yi∂yj
, (75)

whereAY depends on ν rather than σ, where ν is positive de�nite for all y ∈ δY . Function f is di�erentiable

on (y, δ) and iterable, by application of AY K times in A′
Y s domain. By the replacement of the unknown

function ηhin Equation 72 by the expansion around ∆ to order K the expansion of p̃
(J)
Y can be obtained.

The coe�cients are obtained in increasing powers of ∆, which will be denoted by p̃
(J,K)
Y . A truncated

series, in ∆, for p̃
(J,K)
Y can be obtained by rewriting the terms of Equation 72:

p̃
(J,K)
Y (y|y0,∆) = ∆−m

2 θ

(
y − y0
∆

1
2

) K∑
k=0

c
(J,k)
Y (y|y0)

∆k

k!
. (76)

Where the log-transition density function, for all J , similarly in the univariate case where the Hermite

series is obtained as J tends to in�nity, the following expression can be obtained:

l
(K)
Y (y|y0,∆) = −m

2
ln(2π∆) +

C
(−1)
Y (y|y0)

∆
+

K∑
k=0

C
(k)
Y (y|y0)

∆k

k!
, (77)

such that the coe�cients C
(k)
Y , where k = −1, 0, 1, 2, ...,K, are combinations of the coe�cients of Equation

72, through the identi�cation of terms in△ for the log of Equation 76. This approach is a natural extension

of the Univariate Hermite Expansion method. However, the Hermite expansion approach a requires a

reducible di�usion. Albeit all Univariate di�usions are reducible, not all multivariate di�usions are. This

leads to the development of the following alternative method, namely the Connection to Kolmogorov

Equations.

4.1.4 Connection to Kolmogorov Equations

As an alternative approach, a closed-form expansion for lY (y|y0,∆), can be obtained by using Equation

77 and solving the Kolmogorov equations. Therefore consider the forward and backward Kolmogorov

equations:

∂

∂∆
pY (y|y0,∆) = −

m∑
i=1

∂

∂yi
µYi

(y)pY (y|y0,∆) +
1

2

m∑
i=1

∂2

∂y2i
pY (y|y0,∆) (78)

∂

∂∆
pY (y|y0,∆) =

m∑
i=1

∂

∂y0i
µYi

(y0)pY (y|y0,∆) +
1

2

m∑
i=1

∂2

∂y20i
pY (y|y0,∆). (79)

Using the forward equation, the equivalent form for lY is:

∂

∂∆
lY (y|y0,∆) = −

m∑
i=1

∂

∂yi
µYi(y)−

m∑
i=1

µYi(y)lY (y|y0,∆)+
1

2

m∑
i=1

∂2

∂y2i
lY (y|y0,∆)+

1

2

m∑
i=1

(
∂

∂yi
lY (y|y0,∆)

)2

.

(80)
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By substituting Equation 77 into Equation 80, the following set of equations is obtained:

∂

∂∆
l
(K)
Y (y|y0,∆) = − 1

∆2
C

(−1)
Y (y|y0)−

m

2∆
+

K−1∑
k=1

C
(k)
Y (y|y0)

∆k−1

(k − 1)!

∂

∂yi
l
(K)
Y (y|y0,∆) =

1

∆

∂

∂yi
C

(−1)
Y (y|y0) +

K∑
k=0

∂

∂yi
C

(−1)
Y (y|y0)

∆k

k!

∂2

∂y2i
l
(K)
Y (y|y0,∆) =

1

∆

∂2

∂y2i
C

(−1)
Y (y|y0) +

K∑
k=0

∂2

∂y2i
C

(−1)
Y (y|y0)

∆k

k!
.

By Equating the coe�cients of 1
∆2 on both sides of Equation 80 , the leading coe�cient in the expansion

C
(−1)
Y solves the non-linear equation:

C
(−1)
Y (y|y0) = −

1

2

(
∂

∂yi
C

(−1)
Y (y|y0)

)T (
∂

∂yi
C

(−1)
Y (y|y0)

)
. (81)

The approximate solution is strictly maximized at y = y0,since transition density approximates the

Normal Density as ∆→ 0, that is:

C
(−1)
Y (y|y0) = −

1

2
∥ y − y0 ∥2= −

1

2

m∑
i=1

(yi − y0i)2. (82)

Considering the coe�cients of 1
∆ on both sides of Equation 80, it follows that:

m∑
i=1

∂

∂yi
C

(0)
Y (y|y0)(yi − y0i) =

m∑
i=1

µYi(y)(yi − y0i)

..

By integrating between y0 and y, C
(0)
Y (y|y0) equates to

C
(0)
Y (y|y0) =

m∑
i=1

(yi − y0i)
1

∫
0
µYi

(y)(y0 + v(y − y0))dv. (83)

The higher order coe�cients are obtained in a similar fashion.

Theorem 26. The coe�cients of l
(K)
Y (y|y0,∆) are given by Equation 82 and 83 and for all k ≥ 1,

C
(k)
Y (y|y0) = k

1

∫
0
G

(k)
Y (y)(y0 + v(y − y0) | y0)vk−1dv, (84)

where G
(k)
Y is obtained by

G
(1)
Y (y|y0) = −

∑m
i=1

∂
∂yi

µYi
(y)−

∑m
i=1 µYi

(y) ∂
∂yi

C
(0)
Y (y|y0)

+ 1
2

∑m
i=1

(
∂2

∂y2
i
C

(0)
Y (y|y0) +

(
∂

∂yi
C

(0)
Y (y|y0)

)2)
,

(85)
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and where k ≥ 2

G
(k)
Y (y|y0) = −

∑m
i=1 µYi

(y) ∂
∂yi

C
(k−1)
Y (y|y0) + 1

2

∑m
i=1

∂2

∂y2
i
C

(k−1)
Y (y|y0)

+ 1
2

∑m
i=1

∑k−1
h=0

(
k − 1

h

)
∂

∂yi
C

(h)
Y (y|y0) ∂

∂yi
C

(k−1−h)
Y (y|y0).

(86)

The closed-form of l
(K)
Y that solves the Kolmogorov equations for all orders of ∆, i.e ∆k,k = 1, 2, ...,K,

are then consequently obtained.

4.1.5 Change of variable

By use of the Jacobian formula, and given the obtained expression lY , the expression for lX is obtained

as such:

lX(x|x0,∆) = − 1
2 ln(Det[v(x)]) + lY (∆, γ(x)|γ(x0))

= Dv(x) + lY (∆, γ(x)|γ(x0)).
(87)

l
(K)
X , for all orders K, in ∆ is therefore de�ned as:

l
(K)
X (x|x0,∆) = −Dυ(x) + l

(K)
Y (∆, γ(x)|γ(x0))

= −m
2 ln(2π∆)−Dυ(x) +

C
(−1)
Y (γ(x)|γ(x0))

∆ +
∑K

k=0 C
(k)
Y (γ(x)|γ(x0))∆

k

k! ,
(88)

where l
(K)
Y is given as in Equation 77, and by utilizing the coe�cients, C

(k)
Y , for all k = −1, 0, 1, ...,K−1,K.

It therefore follows that the Kolmogorov equations is solved by l
(K)
X for X, for all k = −1, 0, 1, ...,K−1,K.

4.1.6 Closed-form log-likelihood expansion of irreducible di�usions

For reducible di�usions, the Hermite method and solving of the Kolmogorov equations are equivalent.

Unfortunately the upfront transformation X → Y , followed by the computation of lX → lY , via the

Jacobian formula, is no longer viable. However it it is possible to derive an expansion for lX and to

determine that the coe�cients satisfy the Kolmogorov equations, for all k = −1, 0, 1, ...,K − 1,K. The

preceding can be accomplished by the following approach:

By considering the structure of the expansion around ∆, Equation 88 as per the reducible case, the

postulation of the for an expansion of the log-likelihood is obtained by:

l
(K)
X (x|x0,∆) = −m

2 ln(2π∆)−Dυ(x) +
C

(−1)
X (x|x0)

∆ +
∑K

k=0 C
(k)
X (x|x0)∆

k

k!
. (89)

By using the Kolmogorov equations solutions for the coe�cients can also be obtained. For the irreducible
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case, for the process X, the equations can be expressed as follow:

−
∑m

i=1
∂

∂xi
µi(x) +

1
2

∑m
i,j=1

∂2

∂xi∂xj
υij(x)

∂
∂∆ l

(K)
X (x|x0,∆) = −

∑m
i=1 µi(x)

∂
∂xi

l
(K)
X (x|x0,∆) +

∑m
i,j=1

∂
∂xi

νi(x)
∂

∂xj
l
(K)
X (x|x0,∆)

+ 1
2

(∑m
i,j=1

(
νij(x)

∂2

∂xi∂xj
l
(K)
X (x|x0,∆) + ∂

∂xi
l
(K)
X (x|x0,∆)νij(x)

∂
∂xj

l
(K)
X (x|x0,∆)

))
(90)

∂
∂∆ l

(K)
X (x|x0,∆) =

∑m
i=1 µi(x0)

∂
∂x0i

l
(K)
X (x|x0,∆)

+ 1
2

(∑m
i,j=1

(
νij(x0)

∂2

∂x0i∂x0j
l
(K)
X (x|x0,∆) + ∂

∂x0i
l
(K)
X (x|x0,∆)νij(x0)

∂
∂x)j

l
(K)
X (x|x0,∆)

))
,

(91)

In order to obtain a solution, the following method is applied: similarly to the reducible case, the

substitution of Equation 89 into Equation 90 yields an equation for all orders k = −1, 0, 1, ...,K −

1,K in ∆ which is solved for the respective coe�cients. Although the di�erential equation for lX is

nonlinear, through exponentiation it can be transformed into a linear equation, and hence the expansion

l
(K)
X (x|x0,∆) will approximate lX . Begin with with equation with order ∆−2, which determines the

leading order coe�cient C
(−1)
X (x|x0). Where the leading coe�cient, in the reducible case, is simply given

by

C
(−1)
X (x|x0) = −

1

2
||γ(x)− γ(x0)||2,

the irreducible case is more complicated. The equation determining the coe�cient C
(−1)
X (x|x0) is derived

by equating the terms of order ∆−2 in Equation 90:

C
(−1)
X (x|x0) = −

1

2

(
∂

∂x
C

(−1)
X (x|x0)

)T

ν(x)

(
∂

∂x
C

(−1)
X (x|x0)

)
, (92)

which yields a good geometric interpretation to the solution of the equation in Rm.

4.1.7 Time and state expansion

The structure of C
(−1)
X (x|x0) implies that it would be near impossible to get an explicit characterization of

the coe�cients of the expansion in question, since Equation 92 won't generally yield an explicit solution.

Therefore an explicit approximation in (x− x0) of C(−1)
X (x|x0) will be derived:

Consider a quadratic approximation (around (x − x0)) for the solution of Equation 92, which deter-

mines C
(−1)
X (x). The non-singularity of ν(x) implies the constant and linear terms are zero. The 2ndorder

expansion is written as

C
(−1)
X (x|x0) = −

1

2
(x− x0)TV (x− x0) + ϵ(∥ x− x0 ∥2).
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Equation 92 implies the Equation

V = V ν(x0)V,

with solution

V = ν−1(x0).

Consequently the leading term of C
(−1)
X (x|x0) around (x− x0) is

−1

2
∆(x− x0)T ν(x0)(x− x0),

such that the leading term of the log-likelihood expansion corresponds to a N(x0,∆ν(x0)) distribution.

Generally, for each k = −1, 0, 1, ...,K, a series around (x − x0), for each C
(k)
X at an order jk will be

derived, i.e. C
(jk,k)
X . Therefore, note that

X∆ −X0 = Up(∆
1
2 ),

such that

∣∣∣C(k)
X (X∆ | X0)∆

k − C(jk,k)
X (X∆ | X0)∆

k
∣∣∣ = Up

(
∥ X∆ −X0 ∥jk ∆k

)
= Up

(
∆

jk
2 +k

)
.

Setting jk
2 + k = K + 1, will yield an approximation error due to the expansion around (x − x0) of the

same order ∆K+1 for each term in Equation 89. As result the expansion take form:

l̃
(K)
X (x|x0,∆) = −m

2
ln(2π∆)−Dν(x) +

C
(j−1,−1)
X (x|x0)

∆
+

K∑
k=0

C
(jk,k)
X (x|x0)

∆k

k!
. (93)

Note that Dν(x), which arises from the Jacobian transformation, in the reducible case, is independent of

∆, and can therefore be incorporated in C
(0)
X .

4.1.8 Determination of coe�cients in the irreducible case

An explicit expansion of C
(jk,k)
X , around (x− x0) will now be derived. De�ne a vector i ≡ (i1, i2,..., im)

of integers, and Ik =
{
i ≡ (i1, i2,..., im) ∈ Nm : 0 ≤ tr(i) ≤ jk

}
, such that

C
(jk,k)
X (x|x0) =

∑
i∈Ik

β
(k)
i (x0)(x1 − x01)i1(x2 − x02)i2 ...(xm − x0m)im . (94)

The coe�cients are then calculated recursively. From C
(j−1,−1)
X the following term, C

(j0,0)
X is derived.

From C
(j0,0)
X , C

(j1,1)
X is calculated explicitly etc. In order to state the �nal result, the following functions
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are de�ned:

G
(0)
X (x|x0) = m

2 −
∑m

i=1 µi(x)
∂

∂xi
C

(−1)
X (x|x0) +

∑m
i,j=1

∂
∂xi

νij(x)
∂

∂xj
C

(−1)
X (x|x0)

+ 1
2

∑m
i,j=1 νij(x)

∂2

∂xi∂xj
C

(−1)
X (x|x0)−

∑m
i,j=1 νij(x)

∂
∂xi

C
(−1)
X (x|x0) ∂

∂xj
Dν(x),

G
(1)
X (x|x0) =

∑m
i=1

∂
∂xi

µi(x) +
1
2

∑m
i,j=1

∂2

∂xi∂xj
νij(x)−

∑m
i=1 µi(x)

(
∂

∂xi
C

(0)
X (x|x0)− ∂

∂xi
Dν(x)

)
=

+
∑m

i,j=1
∂

∂xi
νij(x)

((
∂

∂xj
C

(0)
X (x|x0)− ∂

∂xj
Dν(x)

))
+ 1

2

∑m
i,j=1 νij(x)×{

∂2

∂xi∂xj
C

(0)
X (x|x0)− ∂2

∂xi∂xj
Dν(x) +

(
∂

∂xi
C

(0)
X (x|x0)− ∂

∂xi
Dν(x)

)(
∂

∂xj
C

(0)
X (x|x0)− ∂

∂xj
Dν(x)

)}
,

and generally for k ≥ 2:

G
(k)
X (x|x0)−

∑m
i=1 µi(x)

∂
∂xi

C
(k−1)
X (x|x0) =

+
∑m

i,j=1
∂

∂xi
νij(x)

∂
∂xj

C
(k−1)
X (x|x0)

+ 1
2

∑m
i,j=1 νij(x)

∂2

∂xi∂xj
C

(k−1)
X (x|x0)

+ 1
2

∑m
i,j=1 νij(x)×

(
∂

∂xi
C

(0)
X (x|x0)− 2 ∂

∂xi
Dν(x)

)
∂

∂xj
C

(k−1)
X (x|x0) +

∑k−2
h=0

 k − 1

h

 ∂
∂xi

C
(h)
X (x|x0) ∂

∂xj
C

(k−1−h)
X (x|x0)

 .

(95)

In order to determine the coe�cients C
(jk,k)
X , i.e. β

(k)
i for i ∈ Ik, consider the following theorem.

Theorem 27. The coe�cient, C
(k)
X (x|x0), for k = −1, 0, ...,K, in equation

l
(K)
X (x|x0,∆) = −m

2 ln(2π∆)−Dυ(x) +
C

(−1)
X (x|x0)

∆ +
∑K

k=0 C
(k)
X (x|x0)∆

k

k! ,

solves

h
(k−1)
X (x|x0) = 0,

s.t

h
(−2)
X (x|x0) = −2C(−1)

X (x|x0)−
m∑

i,j=1

νij(x)
∂

∂xi
C

(−1)
X (x|x0)

∂

∂xj
C

(−1)
X (x|x0)

and

h
(−1)
X (x|x0) = −

m∑
i,j=1

νij(x)
∂

∂xi
C

(−1)
X (x|x0)

∂

∂xj
C

(0)
X (x|x0)−G(0)

X (x|x0)

and for k ≥ 1

h
(k−1)
X (x|x0) = C

(k)
X (x|x0)−

1

k

m∑
i,j=1

νij(x)
∂

∂xi
C

(−1)
X (x|x0)

∂

∂xj
C

(k)
X (x|x0)−G(k)

X (x|x0),

where the coe�cients β
(k)
i for i ∈ Ik, explicitly solves a system of linear equations.
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Applying the above theorem, the coe�cients are determined recursively. That is h
(j+1)
X (x|x0) = 0

yields C
(j)
X which allows for G

(j+1)
X to be determined, for j = 1, 2, ..., k. That is β

(k)
i for i ∈ Ik, is

determined. Each of the equations are solved explicitly, by form of the expansion C
(jk,k)
X of C

(k)
X around

(x − x0) at order jk, where β(k)
i (x0) for i ∈ Ik are determined by setting hX

(jk,k−1) of h
(k−1)
X equal to

zero. A closed-form solution is obtained by solving a system of linear equations: for tr[i] = 0, β
(k)
i is

determined, then for tr[i] = 1, β
(k)
i is determined, continued until β

(k)
i is determined for tr[i] = jk. Note

that the polynomial has no linear or constant terms, i.e. β
(−1)
i = 0 for tr[i] = 0. For tr[i] = 2, with

j−1 ≥ 2: ∑
tr[i]=2;i∈I−1

β
(−1)
i (x0)

m∏
j=1

(xj − x0j)j = −
1

2
(x− x0)T ν−1(x0)(x− x0).

For j−1 ≥ 3 only the terms β
(−1)
i for tr[i] = 3, 4, ..., j−1. Hence the solution β

(k)
i only depends on the

dynamics of the di�usion matrix, ν(x).

Finally, in order to obtain an expansion for pX ,instead of lX , the exponential of l̃
(K)
X can be determined,

or the exponential in ∆ can be expanded to obtain the coe�cients cX ,for the expansion of the density pX ,

from the coe�cients CX , for the expansion of the log-density lX . To ensure the density approximations

for lX and pX integrate to one, division by the integral over ζX should be applied.

4.1.9 Application of the irreducible approach to reducible di�usions

Theorem 27 is more general than Theorem 26, in the sense that reducibility is not required. However,

explicit coe�cients are only available in the series expansion of x around x0. In order to view the

relationship between the two approaches, the following proposition will be considered.

Proposition 28. Suppose a given di�usion process, X, is reducible; with the log-likelihood calculated by

applying Theorem 26, denoted by l
(K)
X . Further, suppose the log-likelihood expansion, denoted by l̃

(K)
X ,

without the transformation of X to the unit di�usion of Y , i.e. by the direct application of Theorem 27.

Every coe�cient, C
(jk,k)
X (x | x0) from the log-likelihood expansion l̃

(K)
X , is an expansion around (x− x0),

at order jk of the coe�cient C
(k)
X (x | x0) = C

(k)
Y (γ(x) | γ(x0)), from the log-likelihood l

(K)
X .

Therefore, by applying the irreducible approach to a reducible di�usion, the expression for C
(k)
X (x | x0)

is replaced by its series around (x− x0). However, this is not needed if the di�usion is reducible and the

transformation γ : X 7→ Y is explicit. When the di�usion is reducible, but the transformation γ : X 7→ Y

is not explicit, Proposition 28 is applied. Finally, when considering a reducible di�usion, the double

series in ∆ and around (x− x0), is equivalent to the expansion produced by the Hermite series since its

coe�cients are determined as a series in ∆ by the computation of the conditional expectation. For each

order of ∆, the coe�cients solve the Kolmogorov Equations. Hence the methods are equivalent.
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4.1.10 Approximate maximum likelihood estimation (MLE) and convergence to the true

log-likelihood

Let (µ, σ) be parameterized by parameter vector, θ. Suppose that (µ, σ), with its derivatives are con-

tinuously di�erentiable over θ. The di�erentiability of the coe�cients also applies to the log-likelihood

lX . De�ne the parameter space as Θ ⊆ Rr, and true parameter value θ0. Assume, for �xed n ∈ N and

∆. A unique maximum likelihood estimator (MLE), θ̂n,∆ ∈ Θ.θ̂n,∆, exists for θ 7→ ln(θ,∆). De�ne

approximate MLE, θ̂
(K)

n,∆, which is obtained by maximizing l
(K)
n (θ,∆) (or l̃

(K)
n (θ,∆) in the irreducible

case), with expansion l
(K)
X (or l̃

(K)
X in the irreducible case), instead of lX (true log-likelihood transition

density function). Therefore, the following theorem is stated:

Theorem 29. For any n ∈ N

lim sup
θ∈Θ,∆→0

| l̃(K)
n (θ,∆)− ln(θ,∆) |=in probability 0. (96)

The same holds for l
(K)
n in the reducible case. The approximate Maximum Likelihood Estimate sequence

exists, i.e θ̂
(K)

n,∆ and satis�es

lim
θ∈Θ,∆→0

(
θ̂
(K)

n,∆ − θ̂n,∆

)
=in probability 0. (97)

Further,

lim
n→∞

θ̂
(K)

n,∆ =in probability θ̂n,∆.

There exist a sequence of matrices, | Sn,∆ : r × r |> 0, s.t.

S−1
n,∆

(
θ̂n,∆ − θ0

)
= Op(1). (98)

There then exists a sequence ∆n, where limn→∞ ∆n = 0, s.t.

S−1
n,∆n

(
θ̂
(K)

n,∆n
− θ̂n,∆n

)
= Op(1). (99)

Theorem 29 indicates that the approximation error is small, when su�ciently close to∆ = 0 (reducible

case) or x = x0 (irreducible case), due to the Taylor expansion of the log-likelihood around ∆ = 0 or

x = x0. Lastly, θ̂
(K)

n,∆n
and θ̂n,∆n

has the same asymptotic distribution.

60



4.2 Cumulant truncation transition density approximation method

The Cumulant (or Moment) Truncation transition density approximation method, based on the works of

[17, 21], is a consistent alternative for deriving a a robust closed-form density approximation to a general

multivariate di�usion process. The procedures relies in the evaluating moment trajectories of the model

process in consideration, which in turn is used in a saddlepoint density ( a surrogate density) function,

to get a �nal approximation. The moment equation of the process is derived by the evaluation of the

moment generating function (MGF)

Theorem 30. Partial di�erential equation (PDE) for the MGF of a multivariate di�usion process.

Denote the MGF by

M(θ, t) =

∞∑
i=0

θiE[Xi
t ]

i!
,

it then follows that the MGF of a multivariate di�usion process is governed by the PDE:

∂

∂t
M(θ, t) = θµ

(
∂

∂θ
, t

)
M(θ, t) + θ2µ2

(
∂

∂θ
, t

)
M(θ, t).

Consider the multivariate di�usion process in Equation 13. Consider θm = (θ1,θ2, ..., θm), the pa-

rameter vector of the process, with MGF

M(θ) = E

[
eθ1X1+θ2X2+...+θmXm

]
.

and cumulant generating function (CGF)

K(θ) = ln (M(θ))

= ln
(
E(eθ1X1+θ2X2+...+θmXm)

)
.

The moment truncation approximation method can therefore also be referred to as the cumulant trun-

cation method. The transformation from moment to cumulant generating function is given by

M(θ) = 1 +

∞∑
n=1

µ′
nθ

n

n!
= e

∑∞
n=1

κ′
nθn

n! = eK(θ),

where µ′
n and κ′ndenotes the n

th central moment and cumulant respectively.

Assuming the existence of the MGF on its domain, upon evaluation, using the saddlepoint approximation,

as surrogate density, an approximate closed-form density can be obtained as:

f(x) = (2π)−
m
2

∣∣∣∇2K(θ)
∣∣∣− 1

2

e(K(θ)−θTx), (100)
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where ∇2K(θ) : m×m denotes the Hessian Matrix for K(θ) and ∇K(θ ) = x.

For the instances the CGF is unknown, it may be approximated by

K(θ) = E[eτX ] ≈
n≤m∑
i=1

τn

n!
kn,

where (k1,k2,..., kn) denotes the �rst n ≤ m cumulants of the process.[17]

Due to the fact that a di�usion process inherits the Markov property, the likelihood of the di�usion

process, at N discrete time epochs, is given by:

L(θ) = f(xt1)

N∏
i=2

f(xti | xti−1
), (101)

where f(.) is the saddlepoint approximation to the true density.

Example 31. Bivariate Ornstein Uhlenbeck Process applied to the South African Reserve Bank's Mon-

etary Policy

De�ne the bivariate OU model as:

dXt = (α1(β1 −Xt)− λ1Yt)dt+ σ1dW
(1)
t

dYt = (α2(β2 − Yt)− λ2Xt)dt+ σ2dW
(2)
t ,

or equivalently:

dZt =

dXt

dYt

 =

(α1(β1 −Xt)− λ1Yt)

(α2(β2 − Yt)− λ2Xt)

 dt+

σ1 0

0 σ2


dW (1)

t

dW
(2)
t

 ,

s.t. t ∈ [s, T ], with s ⩾ 0 and Xt ∈ [Xs, XT ], Yt ∈ [Ys, YT ], and with dW
(i)
t : i = 1, 2 the Brownian

Motions, as in De�nition 6 The parameter space θ = (α, β, λ,σ) consists of deterministic parameters

{αi=1,2, βi=1.2, λij , σi=12}.Note σ12 = σ21 = 0 implying that the volatility sources (dW
(i)
t : i = 1, 2) are

independent . In terms of Equation 13, the drift and di�usion coe�cients are given by

µ(Zt,t;Θ) =

(α1(β1 −Xt)− λ1Yt)

(α2(β2 − Yt)− λ2Xt)


and

Σ(Zt,t;Θ) =

σ1 0

0 σ2

 ,
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Figure 19: 100 simulated trajectories from the bivariate OU Process

respectively. Note that Zt is de�ned as

Zt =

Xt

Yt

 .

Performing the simulation study on t ∈ [0, 100],Xt ∈ [0, 10], Yt ∈ [0, 10]; θ = (αi=1,2, βi=1.2, λi=1.2, σi=12) =

(4.5, 6, 0.2, 0.15, 0.09, 0.25, 0.5, 0.25), with X0 = 3.8 and Y0 = 6.5, and stepsize = 1/30. Note

Zt =

 Xt = CPI

Yt = Repo Rate

 .

Figure19 illustrates displays 100 simulated trajectories from the bivariate OU Process. Please see

Algorithm 11, as perfromed via R package Sim.Di�Proc, [6].

Based on the simulations an Euler-Maruyama distributions is �tted to the process, which can be

viewed in the contour plot, perspective plot, and marginal kernel density estimates in Figures 20, 21, 22.

Fitting a bivariate Hermite Approximation, k = 1, at t = 10 yields the Hermite approximate densities,

63



0.0

0.1

0.2

0.3

0.4

3 4 5 6 7

3

4

5

6

Bivariate Transition Density at time t=10

x

y

Figure 20: Euler approximate bivariate OU Process viewed at t = 10 contour plot
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Figure 21: Euler approximate bivariate OU Process viewed at t = 10 perspective plot
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Figure 22: Euler approximate bivariate OU Process viewed at t = 10 kernel-approximated/�tted marginal
densities
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Figure 23: bivariate Hermite Approximation, k = 1, at t = 10

as shown in Figure 23 (Xt) and Figure24 (Yt).

In order to obtain a Cumulant truncated approximate density, truncated at 2, the moments and cumulants

are calculated, as shown in Figure25, and plugged into the saddlepoint surrogate density.

The cumulant truncated (at 2 moments) approximated transition density for the bivairate OU model,

plotted as a contour plot at t = 10, through the surrogate saddelpoint density, which can be seen in

Figure 26.

4.2.1 Inference on a bivariate di�usion process

Example 32. Bivariate Cox Ingersoll and Ross (CIR) Di�usion Process applied to the VIX index and

USDZAR Exhange rate

Consider the Chicago Board Volatilty Index/ VIX index as well as the daily USDZAR exhange rate

values, drawn from Bloomberg.

In an attemt to explain the data and relationship, de�ne the bivariate CIR model as, [16]:

Zt =

 Xt = V IX

Yt = USDZAR

 ,

where
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Figure 24: bivariate Hermite Approximation, k = 1, at t = 10
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Figure 25: bivariate OU moment/cumulant equations as part of the cumulant truncation approximation
method (truncated at 2)

67



3 4 5 6 7 8 9 10

2
4

6
8

Xt: CPI

Yt
: R

ep
o

Figure 26: contour plot showing the cumulant truncated (at 2 moments) approxiamted transition density
for the bivairate OU model.

dXt = (α1(β1 −Xt)− λ1Yt)dt+ σ1
√
XtdW

(1)
t

dYt = (α2(β2 − Yt)− λ2Xt)dt+ σ2
√
YtdW

(2)
t ,

or equivalently:

dZt =

dXt

dYt

 =

(α1(β1 −Xt)− λ1Yt)

(α2(β2 − Yt)− λ2Xt)

 dt+

σ1√Xt 0

0 σ2
√
Yt


dW (1)

t

dW
(2)
t

 ,

s.t. t ∈ [s, T ], with s ⩾ 0 and Xt ∈ [Xs, XT ], Yt ∈ [Ys, YT ] and with s ⩾ 0, and Xt, Yt ⩾ 0 for all t (due to
√
Xt,
√
Yt being in the Real space), and with W : i = 1, 2 the Brownian Motions, as in De�nition 6 The

parameter space θ = (α, β, λ,σ) consists of deterministic parameters {αi=1,2, βi=1.2, λij , σi=12}.Note

σ12 = σ21 = 0 implying that the volatility sources (dW
(i)
t : i = 1, 2) are independent . In terms of

Equation 13, the drift and di�usion coe�cients are given by

µ(Zt,t;Θ) =

(α1(β1 −Xt)− λ1Yt)

(α2(β2 − Yt)− λ2Xt)
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Figure 27: theoretical and empirical evolution of the cumulants of a univariate CIR Process.
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Figure 28: marginal denisties �tted, by use of the MLE estimates, based on a bivariate CIR process.

and

Σ(Zt,t;Θ) =

σ1√Xt 0

0 σ2
√
Yt

 ,

respectively. Based on the Saddlepoint approximation or Cumulant Truncation Approximation tech-

nique MLE performed on 1 year's volatolity and Rand/Dollar values. θ̂
mle

Saddle coverged to the maximum

likelihood estimators θ̂
mle

Saddle = (κ̂1, α̂2, σ̂3, κ̂4, α̂5, σ̂6) = (22.27, 21.46, 32.65, 5.89, 14.58, 2.19). The MLE

procedure was initiated at (50, 50, 50, 16, 15, 5). Based on the MLE values the Marginal densities has

been plotted, as can be seen in Figure 28.

4.2.2 Inference on bivariate �nancial data

Example 33. Bivariate Heston model, eith inference on the Chicago Board Options Exchange Volatility

Index (VIX Index) and and teh S&P 500 Index.

The VIX Index is a volatility benchmark based on market estimates of th expected volatility of the

S&P500 Index (consisting of 500 leading US entities). Bothe indices are obtained from Bloomberg, and

plotted as seen in Figure29.
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Figure 29: observed and transformed S&P500 and CBOE VIX time-series.
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Therefore, as de�ned in [18] the bivariate Heston model as

dZt =

 dXt ≡ dS&P 500

dYt ≡ dCBOE V IX

 ,

where Xt denotes the S&P 500 spot price, and Ytdenotes the CBOE Vix volatility value.

dXt = α1Xtdt+ α2Xt

√
Ytdω

(1)
t

dYt = (α3 − α4Yt)dt+ α6dω
(2)
t ,

A geometric Brownian motion is used to model the S&P 500 value, where its volatility component is

driven by a CIR process. De�ne the correlation between the Brownian Motion for the two process as:

corr(ω
(1)
t , ω

(2)
t ) = α6.

Since we are interested in the log of the asset price, i.e Rt = log(Xt), by means of Ito's lemma we �nd

the Heston Model under log-transform (also seen in Figure 29):

dXt = (α1 − 0.5α2
2Yt)dt+ α2

√
Ytdω

(1)
t

dYt = (α3 − α4Yt)dt+ α6dω
(2)
t ,

and in order to incorporate the correlated brownian motions, ω
(1)
t , ω

(2)
t , we need to write the process in

terms of independent Brownian motions, i.e W
(1)
t ,W

(2)
t , de�ned as

dω(1)
t

dω
(2)
t

 =

 1 0

α6

√
1− α2

6


dW (1)

t

dW
(2)
t

 ,
with di�usion tensor calculated as

α2

√
Yt 0

0 α5

√
Yt


 1 α6

α6 1


α2

√
Yt 0

0 α5

√
Yt


T

=

 α2
2Yt α2α5α6Yt

α2α5α6Yt α2
5Yt

 .
Performing maximum likelihood estimation, by use of R package Di�usionRgqd [17] , yields �tted paa-

rameters

θ̃ = (α̃i)i=1,2,3,4,5,6 = (0.143, 0.673, 0.567, 8.154, 0.725,−0.754).

initiated at (8, 1, 0.05, 0.5, 1, 0) with AIC = −3689.995. α̃6 = −0.752 implies the strong negative corre-
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lation between the VIX and S&P 500. This makes sense over the period the data was gathered, at the

economic correction phaseamidst the Covid-19 pandemic; as volatilities subsided returns strenghtened.

Please see code in Algorithm 14.

5 Fixed income market simulation study

As the order of the difssion model increase, the mathematical and numerical computations becomes

exponentially larger and more complicated, and di�cult to display in 2d or 3d space. Nonetheless, through

the simulation studies, such as simulation of trajectories in this paper can be e�ciently en successfully

applied. The parameter values can be estimated through a variety of techniques, e.g maximum likelihood

estimation through linear regression, and a correlation analysis.. An excellent use case is the simulation

or construction of the yield curve in bond (�xed income) markets. A yield curve is constructed out of

numerous tenors, e.g {1day, 10days, 1month, 3months, 1year, 2years, 5years, 10years, 30years}with each

tenor representing the market yield, however each tenor is dependent on the other. Therefore I attempt

to replicate a yield curve, including jumps, by studying the dynamics of each tenor to get an idea of the

parameters to use to de�ne the di�usion model. Each tenor's yield (as a forward rate in this case, however

spot rates could also be used), is modeled as a dependent factor, being dependent on the other tenors as

underlying processes. The model is composed of simulating the yield-trajectories forward for each tenor

and the combining them to form a predilection for a speci�ed day. The yield curve for a speci�ed date

is compared to the �tted curve, and visually it seems to be a good �t. The accuracy in jump detection

should be noted. Through more accurate and robust estimation of parameters and enhanced simulations

the model can provide an even more accurate �t. Accuracy of �t can be seen in Figure 30. A multivariate

CIR di�usion process, with jumps, are simulated. See Algorithm 30, for the R code used in generating

the plots in Figure 30.

The model is represented as

dXi
t = (αi(βi −Xi

t)−
∑
∀i ̸=j

λjY
j
t )dt+ σi

√
Xi

tdW
i
t + dP i

t , (102)

∀ i tenors,

dt � change in time,

W i
t � BrownianMotion,

P i
t � Poisson Process (Jump),

αi � Reversion speed,
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βi � Reverting mean,

λi � Dependence factor,

and

σi � V olatility factor.

Each tenor's yield (as a forward rate in this case, however spot rates could also be used), is modeled as

a dependent factor, being dependent on the other tenors as underlying processes. The correct parameter

values can be estimated through a variety of techniques, e.g maximum likelihood, estimation through

linear or non-parametric regression, and even a correlation analysis. The model is composed of simulating

the yield-trajectories forward for each tenor and the combining them to form a predilection for a speci�ed

day. The �tted/simulated, with the actual yields, are plotted, then combined to construct a full yield

curve. See Figure 30.
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Figure 30: Multivariate CIR Fitted Forward Rate Yield Curve



The yield curve for a speci�ed date is compared to the �tted curve, and visually it seems to be a good

�t. The accuracy in jump detection should be noted.

6 Conclusion

In this paper, it was shown that understanding the dynamics of di�usion models allows for the explanation

of various �nancial and economic phenomena. Building on that, the inferential strength attainable from

obtaining a closed-form transition density was illustrated. As discussed, a true transition density in closed-

form seldom exists, therefore the need to develop an e�ective closed-form approximation technique, proved

fundamental. Firstly, simulating a distribution through the Euler-Maruyama scheme, provided a good

visual view of the underlying density, however the method lacks in analytical and inferential power. The

Hermite approximation technique,[1], proved e�ective and accurate under certain conditions, however

lacked accuracy when the time domain was enlarged. This method also required substantial additional

complexity as the order of approximation was increased. Lastly, the Cumulant Truncation approximation

technique,[17], has proved to be the most accurate and robust under various conditions. By means of

the Saddlepoint approximation, with cumulants, as inputs, valuable inference on �nancial time series was

conducted.
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B Algorithms

Algorithm 1 univariate OU process simulation and density study R Code.

1 rm(list=ls(all=TRUE))

2 set.seed (2021)

3

4 s = 0

5 t = 5

6 Xs = 17

7 kappa = 0.75

8 alpha = 15

9 sigma = 1.1

10 delta_t = 1/250

11 startingstate = 12

12 endstate = 19

13 simulations = 1000

14 timespace = seq(s,t,delta_t)

15 statespace = seq(startingstate ,endstate ,delta_t)

16

17 uni_OU_trajectory = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

18 {

19

20 timeseq = (seq(s,t,delta_t))

21 uni_OU_dm = matrix(0,nrow = length(timeseq), ncol = 1)

22 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

23 Xt = Xs + kappa*(alpha -Xs)*delta_t + sigma*Z1

24 uni_OU_dm[1] = Xt

25

26 for(i in 2: length(timeseq))

27 {

28 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

29 Xtplus1 = Xt + kappa *(alpha -Xt)*delta_t + sigma*dWt

30 Xt = Xtplus1

31 uni_OU_dm[i] = Xtplus1

32 }

33

34 X = uni_OU_dm

35

36

37 plot(X~seq(s,t,delta_t),type ='l', col = "royalblue3",xlab="Time (e.g days)",ylab = "Xt
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(e.g Exchange Rate)")

38 abline(h=15, col="purple", lty = 3, lwd = 1)

39 }

40

41 trajectory_plot = uni_OU_trajectory(s,t,Xs ,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

42

43 OU_perpective = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

44 {

45

46 timespace = seq(s,t,delta_t)

47 statespace = seq(startingstate ,endstate ,delta_t)

48 uni_OU_dm = matrix(0,length(timespace),length(statespace))

49

50 for (t in s:length(timespace))

51 {

52 for (state in startingstate:length(statespace))

53 {

54

55 gamma = ((sigma ^2) *(1 - exp(-2*kappa*( timespace[t]-s))))^(1/2)

56 dens_point = ((pi*gamma ^2)/kappa)^( -1/2)*exp(-( statespace[state]-alpha -(Xs-

alpha)*exp(-kappa*( timespace[t]-s)))^2*( kappa/gamma ^2))

57 uni_OU_dm[t,state] = dens_point

58 }

59

60 }

61

62

63 persp(timespace ,statespace ,uni_OU_dm, col = "royalblue3",xlab="Times", ylab="States",

zlab="Surface", border = NA , shade = 0.9 , theta = 45, phi = 35, r = 35)

64 }

65 perspective_plot = OU_perpective(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

66

67 OU_EM = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate ,simulations)

68 {

69 mufunc = function(Xt,t) { return(kappa*(alpha - Xt)) }

70

71 sigfunc = function(Xt,t) { return(sigma) }

72

73 histfunc = function(Xs,s,t,delta_t,simulations)

74 {

75

76 Xt = rep(Xs ,simulations)
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77 timespace = seq(s,t,delta_t)

78

79 for(i in 2: length(timespace))

80 {

81 dWt = sqrt(delta_t)*rnorm(simulations)

82 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

83 hist(Xt, freq = FALSE , col = 'royalblue3 ', border = 'white', breaks = 50, main = NA

) # ylim = c(0,2)

84 }

85

86 return(list(Xt=Xt,time = t))

87

88 }

89

90 plot = histfunc(Xs ,s,t,delta_t,simulations)

91 }

92

93 EM_plot = OU_EM(s,t,Xs ,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate ,simulations)

94

95 OU_theoretical1 = function(s,t,Xs ,Xt,kappa ,alpha ,sigma)

96 {

97 gamma = ((sigma ^2) *(1 - exp(-2*kappa*(t-s))))^(1/2)

98 dens_point = ((pi*gamma ^2)/kappa)^( -1/2)*exp(-(Xt-alpha -(Xs-alpha)*exp(-kappa*(t-s)))

^2*( kappa/gamma ^2))

99

100 return(dens_point)

101 }

102

103 Xt = statespace

104 plot_theoretical1 = OU_theoretical1(s,t,Xs,Xt,kappa ,alpha ,sigma)

105

106 lines(plot_theoretical1~Xt,col = "black",lwd = 3)

107

108 OU_hermite = function(s,t,Xs ,Xt,kappa ,alpha ,sigma ,K)

109 {

110

111 invsigxt = 1/( sigma)

112 gamxt = ((Xt)/sigma) # = Yt

113 gamxs = ((Xs)/sigma) # = Ys

114 part1 = 1/sqrt (2*pi*(t-s))

115 part2 = exp( - ((( gamxt - gamxs)^2) /(2*(t-s))) - ((( gamxt ^2)*kappa)/2) + ((( gamxs ^2)*

kappa)/2) + ((gamxt*alpha*kappa)/sigma) - ((gamxs*alpha*kappa)/sigma))

116 p = part1*part2
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117 c1 = -(1/(6* sigma ^2)) * (kappa*( 3*alpha ^2* kappa - 3*( gamxt+gamxs)*alpha*kappa*sigma +

(-3 + gamxt ^2* kappa + gamxt*gamxs*kappa +gamxs ^2* kappa)*sigma ^2))

118 hermitedens = invsigxt*p

119 if (K>0) { hermitedens = invsigxt*p*(1+(t-s)*c1) }

120

121 return(hermitedens)

122 }

123

124 K = 1

125 Xt = statespace

126 plot_hermite = OU_hermite(s,t,Xs,Xt,kappa ,alpha ,sigma ,K)

127 lines(plot_hermite~Xt,lty = 3,col = "darkorchid1", lwd = 3)

128

129 library(expm)

130 Xs = initial

131 y0 =c(1, Xs , Xs^2, Xs^3, Xs^4)

132

133 a_x = 0.25

134 b_x = 0.07

135 s_x = 0.022^(0.5)

136 A = rbind(c(0,0,0,0,0),

137 c(a_x*b_x, -a_x, 0, 0, 0),

138 c(0, 2*a_x*b_x+s_x^2, -2*a_x, 0, 0),

139 c(0, 0, 3*a_x*b_x+3*s_x^2, -3*a_x, 0),

140 c(0, 0, 0, 4*a_x*b_x+6*s_x^2, -4*a_x))

141

142 yt =expm(A*(Tmax -Tstart))%*%y0

143

144 res_package$moments[,dim(res_package$moments)[2]]

145 yt

146

147 xt = states

148 u = yt [1:4+1]

149 mm = u*0

150

151 mm[1] = u[1]

152 mm[2] = u[2] - 1*mm[1]*u[1]

153 mm[3] = u[3] - 1*mm[1]*u[2] - 2*mm[2]*u[1]

154 mm[4] = u[4] - 1*mm[1]*u[3] - 3*mm[2]*u[2] - 3*mm[3]*u[1]

155

156 p = 1/3 * (3*(mm [4]/6)*mm[2] - ((mm [3]/2) ^2))/((mm [4]/6) ^2)

157 q = 1/27 *(27*(( mm [4]/6) ^2)*(mm[1]-xt) - 9*(mm [4]/6) *(mm [3]/2)*mm[2] + 2*((mm [3]/2) ^3))

/((mm [4]/6) ^3)
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158 chk = (q^2)/4 + (p^3) /27

159 th = -(mm [3]/2) /(3*(mm [4]/6))+(-q/2 + sqrt(chk))^(1/3) - (q/2 + sqrt(chk))^(1/3)

160

161 k = (mm[1]*th) + (mm[2]*th^2)/2 + (mm[3]*th^3)/6 + (mm[4]*th^4) /24

162 k1 = mm[1] + (mm[2]*th) + (mm[3]*th^2)/2 + (mm[4]*th^3)/6

163 k2 = mm[2] + (mm[3]*th) + (mm[4]*th^2)/2

164 k3 = mm[3] + (mm[4]*th)

165 k4 = mm[4]

166 dens = 1/sqrt (2*pi*(k2))*exp(k-th*k1)

167 dens

168

169 lines(dens~xt, type ='l',col = "green" ,xlab="Xt",ylab = "Density", lty = 1, lwd = 2)

170 lines(res_package$density[,dim(res_package$density)[2]]~ states , lty = 2, lwd = 2, col = '

red')

171

172 labels = c("Theoretical", "Hermite approx", "Euler -Maruyama", "Saddle pt approx")

173 legend("topright", inset = 0.0005 , title = NA,labels ,lty = c(1,3,2,3), lwd = c(3,3,6,3) ,

col=c("black", "gray47","royalblue","green", "red"), bty = 'n')

Algorithm 2 univariate CIR process simulation and density study R Code.

1 rm(list=ls(all=TRUE))

2 set.seed (2021)

3

4 s = 0

5 t = 5 # years

6 Xs = 0.15

7 kappa = 0.9

8 alpha = 0.3

9 sigma = 0.075

10 delta_t = 1/250 #step length #trade days in year

11 startingstate = 0

12 endstate = 1

13 simulations = 1000

14 timespace = seq(s,t,delta_t)

15 statespace = seq(startingstate ,endstate ,delta_t)

16

17

18 CIR_trajectory = function(s,t,Xs ,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

19 {

20

21 timeseq = (seq(s,t,delta_t))

22 datamatrix = matrix(0,nrow = length(timeseq), ncol = 1)
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23 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

24 Xt = Xs + kappa*(alpha -Xs)*delta_t + sigma*sqrt(Xs)*Z1

25 datamatrix [1] = Xt

26

27 for(i in 2: length(timeseq))

28 {

29 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

30 Xtplus1 = Xt + kappa *(alpha -Xt)*delta_t + sigma*sqrt(Xt)*dWt

31 Xt = Xtplus1

32 datamatrix[i] = Xtplus1

33 }

34

35 X = datamatrix

36

37

38 plot(X~seq(s,t,delta_t),type ='l', col = "royalblue",xlab="Time",ylab = "Xt")

39 abline(h=0.3, col="magenta", lty = 3, lwd = 1)

40 }

41

42 trajectory_plot = CIR_trajectory(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

Algorithm 3 univariate BS process simulation and density study R Code.

1 library(Sim.DiffProc)

2

3 set.seed (2021)

4

5 phi <- 0.25

6 x0 <- 1

7 f <- expression (0.5 * phi^2 * x)

8 g <- expression(phi * x)

9

10 general_model <- snssde1d(drift = f, diffusion = g, x0 = x0 , M = 100, type = "ito", col =

blue ,Dt =1/250)

11 general_model

12

13 plot(general_model , col = "royalblue", lwd = 1, ylab = "Xt")

14 lines(time(general_model),apply(general_model$X,1,mean),lwd=2,col = "magenta1")

15 lines(time(general_model),apply(general_model$X,1,bconfint ,level =0.95)[1,],col = "black",

lwd =2)

16 lines(time(general_model),apply(general_model$X,1,bconfint ,level =0.95)[2,],col = "black",

lwd =2)

17 legend("topright",c("mean path",paste("bound of", 95," percent confidence")),inset = .01,
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col=c("magenta1", "royalblue"),lwd=2,cex =0.8)

18

19 moments <- MEM.sde(drift = f, diffusion = g, type = "ito",)

20 moments

21

22 start <- c(m = x0, S = 0)

23 mem.general_model <- MEM.sde(drift = f, diffusion = g, type = "ito", solve = TRUE , parms

= c(phi = 0.75), init = start , time = seq(0, 1, by = 0.001))

24 summary(mem.general_model , at = 1)

25

26 plot(mem.general_model$sol.ode , ylab = "m(t)", select = "m", xlab = "Time", main = "",

col = "blue", lty = 1, las = 1, lwd = 2)

27 legend("topleft", expression(m[general_model](t)), inset = 0.01, col = "blue", lty = 1,

lwd = 2, cex = 1.4)

28 plot(mem.general_model$sol.ode , ylab = "S(t)", select = "S", xlab = "Time", main = "",

col = "violet", lty = 1, las = 1, lwd = 2)

29 legend("topleft", expression(S[general_model](t)), inset = 0.01, col = "violet", lty =

1, lwd = 2, cex = 1.4)

Algorithm 4 univariate OU process parameter sensitivity analysis R code.

1 rm(list=ls(all=TRUE))

2 set.seed (2021)

3

4 s = 0

5 t = 5

6 Xs = 16.5

7 kappa = 0.85

8 alpha = 15

9 sigma = 0.75

10 delta_t = 1/250

11 startingstate = 12

12 endstate = 19

13 simulations = 1000

14 timespace = seq(s,t,delta_t)

15 statespace = seq(startingstate ,endstate ,delta_t)

16

17 uni_CIR_sim_traj = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

18 {

19

20 timeseq = (seq(s,t,delta_t))

21 uni_CIR_dm = matrix(0,nrow = length(timeseq), ncol = 1)

22 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))
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23 Xt = Xs + kappa*(alpha -Xs)*delta_t + sigma*Z1

24 uni_CIR_dm[1] = Xt

25

26 for(i in 2: length(timeseq))

27 {

28 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

29 Xtplus1 = Xt + kappa *(alpha -Xt)*delta_t + sigma*dWt

30 Xt = Xtplus1

31 uni_CIR_dm[i] = Xtplus1

32 }

33

34 X = uni_CIR_dm

35

36 plot(X~seq(s,t,delta_t),type ='l', col = rainbow(1, start = runif (1 ,0.55 ,0.8), end =

runif (1 ,0.55 ,0.7)) ,xlab="t",ylab = "Xt", ylim = c(5,20))

37 }

38

39

40 par(mfrow=c(3,4),ps=9,cex.lab=1,cex.axis =0.75,mar=c(1, 1, 2, 1), mgp=c(1.5, 0.8, 0), las

=1)

41

42 alpha = 15

43 sigma = 0.75

44

45 kappa = 0.2

46 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

47 title(main=bquote(kappa == .( kappa)))

48 kappa = 0.85

49 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

50 title(main=bquote(kappa == .( kappa)))

51 kappa = 1.5

52 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

53 title(main=bquote(kappa == .( kappa)))

54 kappa = 2

55 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

56 title(main=bquote(kappa == .( kappa)))

57

58

59 alpha = 12
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60 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

61 title(main=bquote(alpha == .( alpha)))

62 alpha = 5

63 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

64 title(main=bquote(alpha == .( alpha)))

65 alpha = 15

66 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

67 title(main=bquote(alpha == .( alpha)))

68 alpha = 220

69 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

70 title(main=bquote(alpha == .( alpha)))

71

72

73 kappa = 0.85

74 alpha = 15

75

76

77 sigma = 0.05

78 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

79 title(main=bquote(sigma == .( sigma)))

80 sigma = 0.45

81 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

82 title(main=bquote(sigma == .( sigma)))

83 sigma = 0.75

84 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

85 title(main=bquote(sigma == .( sigma)))

86 sigma = 1.5

87 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

88 title(main=bquote(sigma == .( sigma)))

Algorithm 5 univariate CIR process parameter sensitivity analysis R code.

1 rm(list=ls(all=TRUE))

2

3 s = 0
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4 t = 5 # years

5 Xs = 0.15

6 kappa = 0.9

7 alpha = 0.3

8 sigma = 0.075

9 delta_t = 1/250 #step length #trade days in year

10 startingstate = 0

11 endstate = 1

12 simulations = 100

13 timespace = seq(s,t,delta_t)

14 statespace = seq(startingstate ,endstate ,delta_t)

15

16

17 uni_CIR_sim_traj = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

18 {

19

20 timeseq = (seq(s,t,delta_t))

21 uni_CIR_dm = matrix(0,nrow = length(timeseq), ncol = 1)

22 Z1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

23 Xt = Xs + kappa*(alpha -Xs)*delta_t + sigma*sqrt(Xs)*Z1

24 uni_CIR_dm[1] = Xt

25

26 for(i in 2: length(timeseq))

27 {

28 dWt = rnorm(1,mean = 0, sd = sqrt(delta_t))

29 Xtplus1 = Xt + kappa *(alpha -Xt)*delta_t + sigma*sqrt(Xt)*dWt

30 Xt = Xtplus1

31 uni_CIR_dm[i] = Xtplus1

32 }

33

34 X = uni_CIR_dm

35

36 plot(X~seq(s,t,delta_t),type ='l', col = rainbow(1, start = runif (1 ,0.55 ,0.8), end =

runif (1 ,0.55 ,0.7)) ,xlab="t",ylab = "Xt", ylim = c( -0.1 ,0.7))

37 }

38

39

40 par(mfrow=c(3,4),ps=9,cex.lab=1,cex.axis =0.75,mar=c(1, 1, 2, 1), mgp=c(1.5, 0.8, 0), las

=1)

41

42 kappa = 0.9

43 alpha = 0.3

44 sigma = 0.075
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45

46 kappa = -0.5

47 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

48 title(main=bquote(kappa == .( kappa)))

49 kappa = 0.5

50 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

51 title(main=bquote(kappa == .( kappa)))

52 kappa = 0.9

53 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

54 title(main=bquote(kappa == .( kappa)))

55 kappa = 2

56 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

57 title(main=bquote(kappa == .( kappa)))

58

59

60 kappa = 0.9

61 alpha = 0.3

62 sigma = 0.075

63

64 alpha = -0.5

65 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

66 title(main=bquote(alpha == .( alpha)))

67 alpha = 0.3

68 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

69 title(main=bquote(alpha == .( alpha)))

70 alpha = 0.5

71 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

72 title(main=bquote(alpha == .( alpha)))

73 alpha = 1

74 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

75 title(main=bquote(alpha == .( alpha)))

76

77

78 kappa = 0.9

79 alpha = 0.3
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80 sigma = 0.075

81

82 sigma = 0

83 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

84 title(main=bquote(sigma == .( sigma)))

85 sigma = 0.075

86 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

87 title(main=bquote(sigma == .( sigma)))

88 sigma = 0.25

89 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

90 title(main=bquote(sigma == .( sigma)))

91 sigma = 0.5

92 trajectory_plot = uni_CIR_sim_traj(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,

endstate)

93 title(main=bquote(sigma == .( sigma)))

Algorithm 6 bivariate CIR model simulation study applied to the SARB's monetary policy implemen-
tation mechanism

1 #Bivariate CIR Diffusion Process Analysis

2 #General:

3 #1. dXt = mu1(Xt ,Yt,t)*dt + sigma11(Xt,t)*dWt1

4 #2. dYt = mu2(Xt ,Yt,t)*dt + sigma22(Xy,t)*dWt2

5 #Biv CIR:

6 #1. dXt = (alpha1 *(beta1 -Xt)-lambda1*Yt)*dt + sigma1*sqrt(Xt)*dWt1

7 #2. dYt = (alpha2 *(beta2 -Yt)-lambda1*Xt)*dt + sigma2*sqrt(Yt)*dWt2

8

9 rm(list=ls(all=TRUE))

10

11 #Seed

12 seed = round(runif(1, min=0, max =10000))

13 set.seed(seed)

14

15 #Parameters

16 s = 0

17 t = 24

18 Xs = 3.8

19 Ys = 6.5

20 delta_t = 1/30 #step length

21 startingstate = 0
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22 endstate = 5

23 numbsims = 10000

24 timespace = seq(s,t,delta_t)

25 statespace = seq(startingstate ,endstate ,delta_t)

26

27

28 #Simulating the trajectory

29

30 CIR_trajectory = function(s,t,Xs ,alpha1 ,beta1 ,sigma1 ,lambda1 ,Ys,alpha2 ,beta2 ,sigma2 ,

lambda2 ,delta_t,startingstate ,endstate)

31 {

32

33 timeseq = (seq(s,t,delta_t))

34 datamatrix = matrix(0,nrow = length(timeseq), ncol = 2)

35 Z11 = rnorm(1,mean = 0, sd = sqrt(delta_t))

36 Z21 = rnorm(1,mean = 0, sd = sqrt(delta_t))

37 Xt = Xs + (alpha1 *(beta1 -Xs)-lambda1*Ys)*delta_t + sigma1*sqrt(Xs)*Z11

38 Yt = Ys + (alpha2 *(beta2 -Xs)-lambda2*Xs)*delta_t + sigma2*sqrt(Ys)*Z21

39 datamatrix [1,1] = Xt

40 datamatrix [1,2] = Yt

41

42 for(i in 2: length(timeseq))

43 {

44 dWt1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

45 dWt2 = rnorm(1,mean = 0, sd = sqrt(delta_t))

46 Xtplus1 = Xt + (alpha1 *(beta1 -Xt)-lambda1*Yt)*delta_t + sigma1*sqrt(Xt)*dWt1

47 Ytplus1 = round ((Yt + (alpha2 *(beta2 -Yt)-lambda2*Xt)*delta_t + sigma2*sqrt(Yt

)*dWt2)/0.5) *0.5

48 Xt = Xtplus1

49 Yt = Ytplus1

50 datamatrix[i,1] = Xtplus1

51 datamatrix[i,2] = Ytplus1

52 }

53

54 X = datamatrix

55

56 par(mfrow=c(2,1),ps=9,cex.lab=1,cex.axis =0.75,mar=c(3, 3, 2, 1), mgp=c(1.5, 0.8, 0),

las =1)

57 plot(X[,1]~seq(s,t,delta_t),type ='l', col = "royalblue" ,xlab="Months",ylab=NA ,ylim=c

(0,10),lwd=2)

58 lines(X[,2]~seq(s,t,delta_t),type ='l', col = "magenta" ,xlab="Months",ylab = NA,ylim=c

(4,10),lwd=2)

59 labels = c("Headline CPI", "Repurchase Rate")
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60 legend("bottomleft", title = NA,labels ,lty = c(1,1), lwd = c(2,2) , col=c("royalblue","

magenta"), bty = "n")

61

62 plot(X[,1]~X[,2],type ='p', cex=0.5,col = "salmon1" ,xlab="Repo Rate",ylab = "Headline

CPI", ylim = c(2,6))

63

64 }

65

66

67 beta1 = 4.2

68 sigma1 = 0.75

69 alpha1 = 2

70 lambda1 = 0.1

71 beta2 = 6.75

72 sigma2 = 0.5

73 alpha2 = 2

74 lambda2 = 0.1

75

76 trajectory_plot = CIR_trajectory(s,t,Xs,alpha1 ,beta1 ,sigma1 ,lambda1 ,Ys ,alpha2 ,beta2 ,

sigma2 ,lambda2 ,delta_t,startingstate ,endstate)

Algorithm 7 Hermite and Saddlepoint approximate densities for the univariate CIR model

1 rm(list=ls(all=TRUE))

2 set.seed (2021)

3

4 s = 0

5 t = 5 # years

6 Xs = 0.15

7 kappa = 0.9

8 alpha = 0.3

9 sigma = 0.075

10 delta_t = 1/250 #step length #trade days in year

11 startingstate = 0

12 endstate = 1

13 simulations = 1000

14 timespace = seq(s,t,delta_t)

15 statespace = seq(startingstate ,endstate ,delta_t)

16

17 CIR_perpective = function(s,t,Xs ,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

18 {

19 #Creating the grid

20

92



21 timespace = seq(s,t,delta_t)

22 statespace = seq(startingstate ,endstate ,delta_t)

23

24 datamatrix = matrix(0,length(timespace),length(statespace))

25

26 #Populating the matrix of densities

27

28 for (t in s:length(timespace))

29 {

30 for (state in startingstate:length(statespace))

31 {

32 c = (2* kappa)/(( sigma ^2)*(1-exp(-kappa*( timespace[t]-s))))

33 u = c*Xs*exp(-kappa*( timespace[t]-s))

34 v = c*statespace[state]

35 q = 2* kappa*alpha/(sigma ^2) - 1

36 besselparameter = 2*(u*v)^(0.5)

37 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+

besselparameter

38 logfXt_t = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

39

40 datamatrix[t,state] = exp(logfXt_t)

41 }

42

43 }

44

45 #PLotting the perspective plot

46 persp(timespace ,statespace ,datamatrix , col = "royalblue",xlab="t", ylab="Xt",zlab="p(xt

|xs)", border = NA, shade = 0.9 , theta = 45, phi = 35, r = 35)

47 }

48

49 perspective_plot = CIR_perpective(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate

)

50

51 CIR_EM = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate ,simulations)

52 {

53 mufunc = function(Xt,t) { return(kappa*(alpha - Xt)) }

54

55 sigfunc = function(Xt,t) { return(sigma*sqrt(Xt)) }

56

57 histfunc = function(Xs,s,t,delta_t,simulations)

58 {

59

60 Xt = rep(Xs ,simulations)
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61 timespace = seq(s,t,delta_t)

62

63 for(i in 2: length(timespace))

64 {

65 dWt = sqrt(delta_t)*rnorm(simulations)

66 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

67 hist(Xt, freq = FALSE , col = 'royalblue3 ', border = 'white', breaks = 50, main =

NA)

68 }

69

70 return(list(Xt=Xt,time = t))

71

72 }

73

74 plot = histfunc(Xs ,s,t,delta_t,simulations)

75 }

76

77 EM_plot = CIR_EM(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate ,simulations)

78

79

80 CIR_theoretical1 = function(s,t,Xs,Xt ,kappa ,alpha ,sigma)

81 {

82 c = (2* kappa)/(( sigma ^2)*(1-exp(-kappa*(t-s))))

83 u = c*Xs*exp(-kappa*(t-s))

84 v = c*Xt

85 q = 2* kappa*alpha/(sigma ^2) - 1

86 besselparameter = 2*(u*v)^(0.5)

87 besselfunction = besselI(besselparameter ,q,expon.scaled = TRUE)

88 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+besselparameter

89 logfXt = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

90 return(exp(logfXt))

91 }

92

93 Xt = statespace

94 plot_theoretical1 = CIR_theoretical1(s,t,Xs,Xt,kappa ,alpha ,sigma)

95

96 lines(plot_theoretical1~Xt,col = "navy",lwd = 2,lty=3)

97

98 theodensity = function(Xs ,Xt,s,t)

99 {

100 a = ((sigma ^2)/kappa)*(exp(-kappa*(t-s))-exp(-2* kappa*(t-s)))

101 b = (1-exp(-kappa*(t-s)))

102 mean = Xs*exp(-kappa*(t-s)) + alpha*b
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103 variance = Xs*a + alpha *(( sigma ^2) /(2* kappa))*(b^2)

104 theta = variance/mean

105 kappa = (mean ^2)/variance

106 gammadensity = dgamma(Xt ,scale=theta ,shape=kappa)

107 return(list(density = gammadensity , Xt = Xt))

108 }

109

110 Xt = statespace

111 plot2 = theodensity(Xs,Xt,s,t)

112

113 lines(plot2$density~plot2$Xt ,col = "orchid",lwd = 4,lty=1)

114 labels = c("Euler -Maruyama", "Th Bessel", "Th Chi -Sq")

115 legend("topright", inset = 0.03, title = NA,labels ,lty = c(2,3,1), lwd = c(6,2,2) ,col=c(

"royalblue","white","orchid"), bty = 'n')

116

117 CIR_hermite = function(s,t,Xs,Xt ,kappa ,alpha ,sigma ,K)

118 {

119

120 invsigxt = 1/( sigma*sqrt(Xt))

121 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

122 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

123 p1 = 1/sqrt (2*pi*(t-s))

124 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(kappa*( gamxt ^2)/4)+(kappa*(gamxs ^2)/4))*( gamxt

^( -0.5+2* kappa*alpha/sigma ^2))*(gamxs ^(0.5 -2* kappa*alpha/sigma ^2))

125 p = p1*p2

126 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( kappa*alpha)^2-48* kappa*alpha *( sigma ^2) +9*( sigma

^4)+gamxt *(kappa ^2)*( sigma ^2)*gamxs *(-24* alpha +( gamxt ^2)*( sigma ^2))+( gamxt ^2)*(

kappa ^2)*(sigma ^4)*( gamxs ^2)+gamxt *( kappa ^2)*( sigma ^4)*(gamxs ^3))

127 hermitedens = invsigxt*p

128 if (K>0) { hermitedens = invsigxt*p*(1+(t-s)*c1) }

129

130 return(hermitedens)

131 }

132

133 K = 1

134 Xt = statespace

135 plot_hermite = CIR_hermite(s,t,Xs ,Xt,kappa ,alpha ,sigma ,K)

136

137 lines(plot_hermite~Xt,lty = 3,col = "gray47", lwd = 3)

138

139 del = Xs^2 + (alpha + ((sigma ^2) /(2* kappa)))*(alpha -2*Xs)+alpha *(alpha + ((sigma ^2) /(2*

kappa)))+2*( alpha + ((sigma ^2) /(2* kappa)))*(Xs-alpha)

140 gamma = kappa*(Xs^2 + (alpha + ((sigma ^2) /(2* kappa)))*(alpha -2*Xs))+3* kappa*alpha*(alpha
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+ ((sigma ^2) /(2* kappa)))+4* kappa *( alpha + ((sigma ^2) /(2* kappa)))*(Xs-alpha)

141 kappa = 2*( kappa ^2)*alpha*(alpha + ((sigma ^2) /(2* kappa)))

142 A = kappa /(6* kappa ^3)

143 C = -4*((1/(4* kappa ^2))*(gamma -9*A*kappa ^2) -(1/(2* kappa))*(del -3* kappa*A))

144 B = (1/(2* kappa))*(del -3* kappa*A-kappa*C)

145 D = -A-B-C

146

147 gamma_star = Xs^3 + 3*( kappa*alpha + sigma ^2)*(A + B + C + D)

148 lambda_star = 3* kappa*Xs^3 + 3*( kappa*alpha + sigma ^2) *(6* kappa*A + 5* kappa*B + 4*kappa*C

+ 3*kappa*D)

149 omega_star = 2*( kappa ^2)*Xs^3 + 3*( kappa*alpha + sigma ^2) *(11*( kappa ^2)*A + 6*( kappa ^2)*B

+ 3*( kappa ^2)*C + 2*( kappa ^2)*D)

150 nu_star = 3*( kappa*alpha + sigma ^2) *(6*A*kappa ^3)

151

152 E = nu_star /(24* kappa ^4)

153 I = ( -1/(6* kappa ^3))*((( omega_star -(13*nu_star /(12* kappa))) -12*( kappa ^2)*(gamma_star -(nu_

star /(24* kappa ^3)))) -4*kappa *(( lambda_star -(3*nu_star /(8* kappa ^2))) -7*kappa *(( gamma_

star -(nu_star /(24* kappa ^3))))))

154 H = (1/(2* kappa ^2))*((( lambda_star -(3*nu_star /(8* kappa ^2))) -7*kappa *(( gamma_star -(nu_star

/(24* kappa ^3))))) - 6*( kappa ^2)*I)

155 G = (-1/kappa)*(( gamma_star -(nu_star /(24* kappa ^3)))+ 2*kappa*H + 3* kappa*I)

156 FF = -E - G - H - I

157

158 theomoment1 = Xs*exp(-kappa *(t-s)) + alpha *(1 - exp(-kappa*(t-s)))

159 theomoment2 = (Xs^2)*exp(-2* kappa*(t-s)) + (alpha + (sigma ^2) /(2* kappa))*(alpha + 2*(Xs-

alpha)*exp(-kappa*(t-s)) + (alpha - 2*Xs)*exp(-2* kappa*(t-s)))

160 theomoment3 = (Xs^3)*exp(-3* kappa*(t-s)) + (3* kappa*alpha +3* sigma ^2)*(A + B*exp(-kappa*(t

-s)) + C*exp(-2* kappa*(t-s)) + D*exp(-3*kappa *(t-s)))

161 theomoment4 = (Xs^4)*exp(-4* kappa*(t-s)) + (4* kappa*alpha + 6* sigma ^2)*(E + FF*exp(-1*

kappa*(t-s)) + G*exp(-2* kappa*(t-s)) + H*exp(-3*kappa *(t-s)) + I*exp(-4*kappa*(t-s)))

162

163

164 theocumulant1 = theomoment1

165 theocumulant2 = theomoment2 -( theomoment1)^2

166 theocumulant3 = theomoment3 - 3* theomoment1*theomoment2 + 2* theomoment1 ^3

167 theocumulant4 = -6*( theomoment1 ^4) + 12*( theomoment1 ^2)*( theomoment2) - 3*( theomoment2 ^2)

- 4* theomoment1*theomoment3 + theomoment4

168

169 X = statespace

170

171 s = (1/ theocumulant3)*(sqrt(theocumulant2 ^2 - 2* theocumulant3 *( theocumulant1 -X)) -

theocumulant2)

172 Ksapprox = theocumulant1*s + theocumulant2 *((1/2)*s^2) + theocumulant3 *((1/6)*s^3) +
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theocumulant4 *((1/24)*s^4)

173 Ks2approx = theocumulant2 + theocumulant3*s + 0.5* theocumulant4*s^2

174

175 saddle_pt_approx = exp(Ksapprox -s*X)*sqrt (1/(2* pi*Ks2approx))

176 print(saddle_pt_approx)

177

178 lines(saddle_pt_approx~statespace ,lty = 3,col = "firebrick1", lwd = 3)

179 labels = c("Theoretical", "Hermite approx", "Euler -Maruyama", "Saddle pt approx")

180 legend("topright", inset = 0.0005 , title = NA,labels ,lty = c(1,3,2,3), lwd = c(3,3,6,3) ,

col=c("black", "gray47","dodgerblue3","firebrick1"), bty = 'n')

Algorithm 8 univariate CIR Hermite orders of approximation

1 rm(list=ls(all=TRUE))

2 library(RColorBrewer)

3 set.seed (2021)

4

5 s = 0

6 t = 5 # years

7 Xs = 0.15

8 alpha = 0.9

9 beta = 0.3

10 sigma = 0.075

11 delta_t = 1/250 #step length #trade days in year

12 startingstate = 0

13 endstate = 1

14 numbsims = 1000

15 timespace = seq(s,t,delta_t)

16 statespace = seq(startingstate ,endstate ,delta_t)

17

18 par(mfrow=c(3), ps=10,cex.lab=1.5,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.5, 1, 0),

las =1)

19

20 #Hermite Approximation:

21

22 CIR_main = function(Xt,K)

23 {

24

25 Xt = statespace

26

27 #Theoretical density (Sahalia 1999)

28

29 CIR_theoretical1 = function(s,t,Xs,Xt ,alpha ,beta ,sigma)
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30 {

31 c = (2* alpha)/(( sigma ^2)*(1-exp(-alpha*(t-s))))

32 u = c*Xs*exp(-alpha*(t-s))

33 v = c*Xt

34 q = 2*alpha*beta/(sigma ^2) - 1

35 besselparameter = 2*(u*v)^(0.5)

36 besselfunction = besselI(besselparameter ,q,expon.scaled = TRUE)

37 logbessel = log(besselI(besselparameter ,q,expon.scaled = TRUE))+besselparameter

38 logfXt = log(c) - (u+v) + (q/2)*log(v/u) + logbessel

39 return(exp(logfXt))

40 }

41

42

43 plot_theoretical1 = CIR_theoretical1(s,t,Xs,Xt,alpha ,beta ,sigma)

44

45 plot(plot_theoretical1~Xt ,col = "royalblue", type = "l" , lwd = 2, ylab = "Density",

xlab="t")

46

47

48 CIR_hermite = function(s,t,Xs,Xt ,alpha ,beta ,sigma ,K)

49 {

50

51 Xt = statespace

52

53 invsigxt = 1/( sigma*sqrt(Xt))

54 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

55 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

56 p1 = 1/sqrt (2*pi*(t-s))

57 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)/4))

*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

58 p = p1*p2

59 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*( sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+( gamxt

^2)*( alpha ^2)*( sigma ^4)*(gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

60 c2 = (1/(576* gamxt ^2* gamxs ^2))*(9*(256* alpha ^4* beta ^4 -512* alpha ^3* beta ^3* sigma

^2+224* alpha*beta*sigma ^6-15* sigma ^8) +6* gamxt*alpha ^2* sigma ^2*( -24* beta+gamxt ^2*

sigma ^2) *(16* beta ^2* alpha ^2 -16* beta*alpha*sigma ^2+3* sigma ^4)*gamxs+gamxt ^2* alpha ^2*

sigma ^4*(672* beta ^2* alpha ^2 -48* beta*alpha *(2+ gamxt ^2* alpha)*sigma ^2+( -6+ gamxt ^4*

alpha ^2)*sigma ^4)*gamxs ^2+2* gamxt*alpha ^2* sigma ^4*(48* beta ^2* alpha ^2-24* beta*alpha

*(2+ gamxt ^2* alpha)*sigma ^2+(9+ gamxt ^4* alpha ^2)*sigma ^4)*gamxs ^3+3* gamxt ^2* alpha ^4*

sigma ^6*( -16* beta+gamxt ^2* sigma ^2)*gamxs ^4+2* gamxt ^3* alpha ^4* sigma ^8* gamxs ^5+ gamxt

^2* alpha ^4* sigma ^8* gamxs ^6)

61
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62

63 if (K==0) { hermitedens = invsigxt*p }

64

65 if (K==1) { hermitedens = invsigxt*p*(1+(t-s)*c1) }

66

67 if (K==2) { hermitedens = invsigxt*p*(1+(t-s)*c1 + (((t-s)^2) /2)*c2) }

68

69

70 hermite_plot = lines(hermitedens~Xt, lty = 3, col = "magenta", lwd = 5)

71

72 return(hermite_plot)

73

74 }

75

76 call_hermite = CIR_hermite(s,t,Xs,Xt ,alpha ,beta ,sigma ,K)

77 return(call_hermite)

78

79 }

80

81

82 call_main = CIR_main(Xt ,0)

83 labels = c("Theoretical", "Hermite: K=0")

84 legend("top", inset = -0.095, title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("black

","azure4"), bty = 'n')

85

86 call_main = CIR_main(Xt ,1)

87 labels = c("Theoretical", "Hermite: K=1")

88 legend("top", inset = -0.095, title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("black

","azure4"), bty = 'n')

89

90 call_main = CIR_main(Xt ,2)

91 labels = c("Theoretical", "Hermite: K=2")

92 legend("top", inset = -0.095, title = NA,labels ,lty = c(1,3), lwd = c(2,3) , col=c("black

","azure4"), bty = 'n')

93

94 CIR_hermite_diff = function(s,t,Xs,Xt ,alpha ,beta ,sigma ,K1,K2)

95 {

96

97 Xt = statespace

98

99 invsigxt = 1/( sigma*sqrt(Xt))

100 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

101 gamxs = ((2* sqrt(Xs))/sigma) # = Ys
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102 p1 = 1/sqrt (2*pi*(t-s))

103 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)/4))

*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

104 p = p1*p2

105 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*( sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+( gamxt

^2)*( alpha ^2)*( sigma ^4)*(gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

106 c2 = (1/(576* gamxt ^2* gamxs ^2))*(9*(256* alpha ^4* beta ^4 -512* alpha ^3* beta ^3* sigma

^2+224* alpha*beta*sigma ^6-15* sigma ^8) +6* gamxt*alpha ^2* sigma ^2*( -24* beta+gamxt ^2*

sigma ^2) *(16* beta ^2* alpha ^2 -16* beta*alpha*sigma ^2+3* sigma ^4)*gamxs+gamxt ^2* alpha ^2*

sigma ^4*(672* beta ^2* alpha ^2 -48* beta*alpha *(2+ gamxt ^2* alpha)*sigma ^2+( -6+ gamxt ^4*

alpha ^2)*sigma ^4)*gamxs ^2+2* gamxt*alpha ^2* sigma ^4*(48* beta ^2* alpha ^2-24* beta*alpha

*(2+ gamxt ^2* alpha)*sigma ^2+(9+ gamxt ^4* alpha ^2)*sigma ^4)*gamxs ^3+3* gamxt ^2* alpha ^4*

sigma ^6*( -16* beta+gamxt ^2* sigma ^2)*gamxs ^4+2* gamxt ^3* alpha ^4* sigma ^8* gamxs ^5+ gamxt

^2* alpha ^4* sigma ^8* gamxs ^6)

107

108

109 if (K1==0) { hermitedens1 = invsigxt*p }

110

111 if (K1==1) { hermitedens1 = invsigxt*p*(1+(t-s)*c1) }

112

113 if (K1==2) { hermitedens1 = invsigxt*p*(1+(t-s)*c1 + (((t-s)^2)/2)*c2) }

114

115

116 if (K2==0) { hermitedens2 = invsigxt*p }

117

118 if (K2==1) { hermitedens2 = invsigxt*p*(1+(t-s)*c1) }

119

120 if (K2==2) { hermitedens2 = invsigxt*p*(1+(t-s)*c1 + (((t-s)^2)/2)*c2) }

121

122

123

124 plot(hermitedens1~Xt , type = "l" , col = "azure4", lwd =2,ylim=c

(0.5000000002 ,0.5000000004) , xlim = c(2.4941 ,2.49418) ,ylab="Density",axes = F)

125 axis(1, xaxp=c(2.4941 , 2.49418 , 1), las =2)

126 #axis(2, yaxp=c(0.5000000002 , 0.5000000004 , 1),outer = F, las =2)

127 title(main="Density in [0.5000000002 , 0.5000000004]")

128 box()

129 lines(hermitedens2~Xt, lty = 1 , col = "cornflowerblue", lwd = 2, ylim=c

(0.5000000002 ,0.5000000004) , xlim = c(2.4941 ,2.49418) ,ylab=NA)

130

131 }

132
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133

134 CIR_hermite_coeff = function(s,t,Xs,Xt ,alpha ,beta ,sigma ,coeff)

135 {

136

137 Xt = statespace

138

139 invsigxt = 1/( sigma*sqrt(Xt))

140 gamxt = ((2* sqrt(Xt))/sigma) # = Yt

141 gamxs = ((2* sqrt(Xs))/sigma) # = Ys

142 p1 = 1/sqrt (2*pi*(t-s))

143 p2 = exp(-((gamxt -gamxs)^2) /(2*(t-s)) -(alpha *( gamxt ^2)/4)+(alpha*(gamxs ^2)/4))

*(gamxt ^( -0.5+2* alpha*beta/sigma ^2))*( gamxs ^(0.5 -2* alpha*beta/sigma ^2))

144 p = p1*p2

145 c1 = -1/(24* gamxt*gamxs*sigma ^4) *(48*( alpha*beta)^2-48* alpha*beta*( sigma ^2)

+9*( sigma ^4)+gamxt*(alpha ^2)*(sigma ^2)*gamxs *( -24* beta+(gamxt ^2)*( sigma ^2))+( gamxt

^2)*( alpha ^2)*( sigma ^4)*(gamxs ^2)+gamxt*(alpha ^2)*(sigma ^4)*(gamxs ^3))

146 c2 = (1/(576* gamxt ^2* gamxs ^2))*(9*(256* alpha ^4* beta ^4 -512* alpha ^3* beta ^3* sigma

^2+224* alpha*beta*sigma ^6-15* sigma ^8) +6* gamxt*alpha ^2* sigma ^2*( -24* beta+gamxt ^2*

sigma ^2) *(16* beta ^2* alpha ^2 -16* beta*alpha*sigma ^2+3* sigma ^4)*gamxs+gamxt ^2* alpha ^2*

sigma ^4*(672* beta ^2* alpha ^2 -48* beta*alpha *(2+ gamxt ^2* alpha)*sigma ^2+( -6+ gamxt ^4*

alpha ^2)*sigma ^4)*gamxs ^2+2* gamxt*alpha ^2* sigma ^4*(48* beta ^2* alpha ^2-24* beta*alpha

*(2+ gamxt ^2* alpha)*sigma ^2+(9+ gamxt ^4* alpha ^2)*sigma ^4)*gamxs ^3+3* gamxt ^2* alpha ^4*

sigma ^6*( -16* beta+gamxt ^2* sigma ^2)*gamxs ^4+2* gamxt ^3* alpha ^4* sigma ^8* gamxs ^5+ gamxt

^2* alpha ^4* sigma ^8* gamxs ^6)

147 sum.c1.c2 = c1+c2

148

149

150 if (coeff == 1)

151 {

152 plot(c1~Xt, type = "p" , col = "blue", lwd = 2)

153 }

154

155 if (coeff == 2)

156 {

157 plot(c2~Xt, type = "p" , col = "skyblue", lwd = 2)

158 }

159

160 if (coeff == 7)

161 {

162 plot(sum.c1.c2~Xt, type = "p" , col = "navy", lwd = 2)

163 }

164

165 }
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166 par(mfrow=c(3,1))

167 CIR_hermite_coeff(s,t,Xs,Xt,alpha ,beta ,sigma ,1)

168 CIR_hermite_coeff(s,t,Xs,Xt,alpha ,beta ,sigma ,2)

169 CIR_hermite_coeff(s,t,Xs,Xt,alpha ,beta ,sigma ,7)

Algorithm 9 univariate CIR di�usion Process Cumulants

1 rm(list=ls(all=TRUE))

2

3 set.seed (2021)

4

5

6 s = 0

7 t = 5 # years

8 Xs = 0.15

9 alpha = 0.9

10 beta = 0.3

11 sigma = 0.075

12 delta_t = 1/250 #step length #trade days in year

13 startingstate = 0

14 endstate = 1

15 numbsims = 1000

16 timespace = seq(s,t,delta_t)

17 statespace = seq(startingstate ,endstate ,delta_t)

18

19 par(mfrow=c(2,2),ps=10,cex.lab=1,cex.axis=1,mar=c(3.5 ,3.5 ,3.5 ,2.5), mgp=c(2.8, 1, 0), las

=1)

20

21

22 CIR_cumulant1 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

23 {

24 mufunc = function(Xt,t)

25 {

26 return(alpha*(beta - Xt))

27 }

28

29 sigfunc = function(Xt,t)

30 {

31 return(sigma*sqrt(Xt))

32 }

33

34 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

35 {
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36

37 Xt = rep(Xs ,numbsims)

38 timespace = seq(s,t,delta_t)

39

40 cumulant1mat = matrix(Xs ,nrow=length(timespace),ncol =1)

41 for(i in 1: length(timespace))

42 {

43 dWt = sqrt(delta_t)*rnorm(numbsims)

44 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

45 cumulant1mat[i] = mean(Xt)

46 }

47

48 plot(cumulant1mat~timespace ,xlab='t',ylab='k1(t)',type = 'p',lwd = 1 ,col = 'magenta '

)

49

50

51 m_t1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

52

53

54 K_t1 =m_t1

55 lines(K_t1~timespace ,col="royalblue",lwd = 2)

56

57 }

58

59 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

60 }

61

62

63 CIR_cumulant2 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

64 {

65 mufunc = function(Xt,t)

66 {

67 return(alpha*(beta - Xt))

68 }

69

70 sigfunc = function(Xt,t)

71 {

72 return(sigma*sqrt(Xt))

73 }

74

75 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

76 {

77
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78 Xt = rep(Xs ,numbsims)

79 timespace = seq(s,t,delta_t)

80

81 cumulant2mat = matrix(Xs,nrow=length(timespace),ncol =1)

82 for(i in 1: length(timespace))

83 {

84 dWt = sqrt(delta_t)*rnorm(numbsims)

85 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

86 cumulant2mat[i] = mean(Xt^2) - (mean(Xt))^2

87 }

88

89 plot(cumulant2mat~timespace ,xlab='t',ylab='k2(t)',type = 'p',lwd = 1 ,col = 'magenta '

)

90

91

92 m_t1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

93 m_t2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs-

beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2* alpha*timespace))

94

95

96 K_t2 =m_t2 -(m_t1)^2

97 lines(K_t2~timespace ,col="royalblue",lwd = 2)

98

99 }

100

101 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

102 }

103

104

105 CIR_cumulant3 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

106 {

107 mufunc = function(Xt,t)

108 {

109 return(alpha*(beta - Xt))

110 }

111

112 sigfunc = function(Xt,t)

113 {

114 return(sigma*sqrt(Xt))

115 }

116

117 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

118 {
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119

120 Xt = rep(Xs ,numbsims)

121 timespace = seq(s,t,delta_t)

122

123 cumulant3mat = matrix(Xs,nrow=length(timespace),ncol =1)

124 for(i in 1: length(timespace))

125 {

126 dWt = sqrt(delta_t)*rnorm(numbsims)

127 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

128 #K_t3 =m_t3 - 3*m_t1*m_t2 + 2*m_t1^3

129 cumulant3mat[i] = mean(Xt^3) - 3*mean(Xt)*(mean(Xt^2)) + 2*mean(Xt)^3

130 }

131

132 plot(cumulant3mat~timespace ,xlab='t',ylab='k3(t)',type = 'p',lwd = 1 ,col = 'magenta '

)

133

134 #theoretical Moment

135 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

136 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta

+ ((sigma ^2) /(2* alpha)))+4* alpha *(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

137 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

138 A = kappa /(6* alpha ^3)

139 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

140 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

141 D = -A-B-C

142

143 m_t1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

144 m_t2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs-

beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2* alpha*timespace))

145 m_t3 = (Xs^3)*exp(-3* alpha*timespace) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-alpha*

timespace) + C*exp(-2*alpha*timespace) + D*exp(-3* alpha*timespace))

146

147 #theoretical Cumulant

148 K_t1 =m_t1

149 K_t2 =m_t2 -(m_t1)^2

150 K_t3 =m_t3 - 3*m_t1*m_t2 + 2*m_t1^3

151 lines(K_t3~timespace ,col="royalblue",lwd = 2)

152

153 }

154

155 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

156 }
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157

158

159 CIR_cumulant4 = function(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

160 {

161 mufunc = function(Xt,t)

162 {

163 return(alpha*(beta - Xt))

164 }

165

166 sigfunc = function(Xt,t)

167 {

168 return(sigma*sqrt(Xt))

169 }

170

171 cumulantfunc = function(Xs,s,t,delta_t,numbsims)

172 {

173

174 Xt = rep(Xs ,numbsims)

175 timespace = seq(s,t,delta_t)

176

177 cumulant4mat = matrix(Xs,nrow=length(timespace),ncol =1)

178 for(i in 1: length(timespace))

179 {

180 dWt = sqrt(delta_t)*rnorm(numbsims)

181 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

182 #K_t3 =m_t3 - 3*m_t1*m_t2 + 2*m_t1^3

183 cumulant4mat[i] = -6*(mean(Xt)^4) + 12*( mean(Xt)^2)*(mean(Xt^2)) - 3*( mean(Xt^2)^2)

- 4*mean(Xt)*mean(Xt^3) + mean(Xt^4)

184 }

185

186 plot(cumulant4mat~timespace ,xlab='t',ylab='k4(t)',type = 'p',lwd = 1 ,col = 'magenta '

)

187

188 #theoretical Moment

189 del = Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs)+beta*(beta + ((sigma ^2) /(2*

alpha)))+2*( beta + ((sigma ^2) /(2* alpha)))*(Xs-beta)

190 gamma = alpha*(Xs^2 + (beta + ((sigma ^2) /(2* alpha)))*(beta -2*Xs))+3* alpha*beta*(beta

+ ((sigma ^2) /(2* alpha)))+4* alpha *(beta + (( sigma ^2) /(2* alpha)))*(Xs -beta)

191 kappa = 2*( alpha ^2)*beta*(beta + ((sigma ^2) /(2* alpha)))

192 A = kappa /(6* alpha ^3)

193 C = -4*((1/(4* alpha ^2))*(gamma -9*A*alpha ^2) -(1/(2* alpha))*(del -3* alpha*A))

194 B = (1/(2* alpha))*(del -3* alpha*A-alpha*C)

195 D = -A-B-C
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196 gamma_star = Xs^3 + 3*( alpha*beta + sigma ^2)*(A + B + C + D)

197 lambda_star = 3* alpha*Xs^3 + 3*( alpha*beta + sigma ^2) *(6* alpha*A + 5*alpha*B + 4*

alpha*C + 3* alpha*D)

198 omega_star = 2*( alpha ^2)*Xs^3 + 3*( alpha*beta + sigma ^2) *(11*( alpha ^2)*A + 6*( alpha

^2)*B + 3*( alpha ^2)*C + 2*( alpha ^2)*D)

199 nu_star = 3*( alpha*beta + sigma ^2) *(6*A*alpha ^3)

200

201 E = nu_star /(24* alpha ^4)

202 I = ( -1/(6* alpha ^3))*((( omega_star -(13*nu_star /(12* alpha))) -12*( alpha ^2)*(gamma_star

-(nu_star /(24* alpha ^3)))) -4*alpha *(( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha

*(( gamma_star -(nu_star /(24* alpha ^3))))))

203 H = (1/(2* alpha ^2))*((( lambda_star -(3*nu_star /(8* alpha ^2))) -7*alpha *(( gamma_star -(nu_

star /(24* alpha ^3))))) - 6*( alpha ^2)*I)

204 G = (-1/alpha)*(( gamma_star -(nu_star /(24* alpha ^3)))+ 2*alpha*H + 3* alpha*I)

205 FF = -E - G - H - I

206

207 m_t1 = Xs*exp(-alpha*timespace) + beta *(1 - exp(-alpha*timespace))

208 m_t2 = (Xs^2)*exp(-2* alpha*timespace) + (beta + (sigma ^2) /(2* alpha))*(beta + 2*(Xs-

beta)*exp(-alpha*timespace) + (beta - 2*Xs)*exp(-2* alpha*timespace))

209 m_t3 = (Xs^3)*exp(-3* alpha*timespace) + (3* alpha*beta +3* sigma ^2)*(A + B*exp(-alpha*

timespace) + C*exp(-2*alpha*timespace) + D*exp(-3* alpha*timespace))

210 m_t4 = (Xs^4)*exp(-4* alpha*timespace) + (4* alpha*beta + 6*sigma ^2)*(E + FF*exp(-1*

alpha*timespace) + G*exp(-2* alpha*timespace) + H*exp(-3*alpha*timespace) + I*exp

(-4*alpha*timespace))

211

212 #theoretical Cumulant

213 K_t1 =m_t1

214 K_t2 =m_t2 -(m_t1)^2

215 K_t3 =m_t3 - 3*m_t1*m_t2 + 2*m_t1^3

216 K_t4 = -6*(m_t1^4) + 12*(m_t1^2)*(m_t2) - 3*(m_t2^2) - 4*m_t1*m_t3 +m_t4

217 lines(K_t4~timespace ,col="royalblue",lwd = 2)

218

219 }

220

221 c = cumulantfunc(Xs,s,t,delta_t,numbsims)

222 }

223

224 #Plots

225

226

227 C1_plot = CIR_cumulant1(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

228 labels = c("Theoretical", "Emperical")

229 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("royalblue","

107



magenta"), bty = 'n', inset = -0.025)

230

231 C2_plot = CIR_cumulant2(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

232 labels = c("Theoretical", "Emperical")

233 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("royalblue","

magenta"), bty = 'n', inset = -0.025)

234

235 C3_plot = CIR_cumulant3(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

236 labels = c("Theoretical", "Emperical")

237 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("royalblue","

magenta"), bty = 'n', inset = -0.025)

238

239 C4_plot = CIR_cumulant4(s,t,Xs,alpha ,beta ,sigma ,delta_t,startingstate ,endstate ,numbsims)

240 labels = c("Theoretical", "Emperical")

241 legend("bottomright", title = NA,labels ,lty = c(1,3), lwd = c(2,3) ,col=c("royalblue","

magenta"), bty = 'n',inset = -0.025)

Algorithm 10 OU Hermite and Saddlepoint approximate densities

1 #Univariate OU model:

2 #General model: dXt = mu(Xt ,t)dt + sigma(Xt,t)dWt

3 #dXt = kappa*(alpha -Xt)*dt + sigma*dWt

4

5 rm(list=ls(all=TRUE))

6

7 library(RColorBrewer)

8 # col = brewer.pal(3, "GnBu")

9

10 set.seed (2021)

11

12 s = 0

13 t = 5

14 Xs = 16.5

15 kappa = 0.85

16 alpha = 15

17 sigma = 0.75

18 delta_t = 1/250 #step length

19 startingstate = 12

20 endstate = 19

21 numbsims = 500

22 timespace = seq(s,t,delta_t)

23 statespace = seq(startingstate ,endstate ,delta_t)

24
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25

26 OU_perpective = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

27 {

28 #Creating the grid

29

30 timespace = seq(s,t,delta_t)

31 statespace = seq(startingstate ,endstate ,delta_t)

32

33 datamatrix = matrix(0,length(timespace),length(statespace))

34

35 #Populating the matrix of densities

36

37 for (t in s:length(timespace))

38 {

39 for (state in startingstate:length(statespace))

40 {

41

42 gamma = ((sigma ^2) *(1 - exp(-2*kappa*( timespace[t]-s))))^(1/2)

43 dens_point = ((pi*gamma ^2)/kappa)^( -1/2)*exp(-( statespace[state]-alpha -(Xs-alpha)*

exp(-kappa*( timespace[t]-s)))^2*( kappa/gamma ^2))

44 datamatrix[t,state] = dens_point

45 }

46

47 }

48

49 #PLotting the perspective plot

50 persp(timespace ,statespace ,datamatrix , col = "dodgerblue3",xlab="Times", ylab="States",

zlab="Surface", border = NA , shade = 0.9 , theta = 45, phi = 35, r = 35)

51 }

52

53 OU_perpective(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate)

54

55

56 OU_EM = function(s,t,Xs,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate ,numbsims)

57 {

58 mufunc = function(Xt,t)

59 {

60 return(kappa*(alpha - Xt))

61 }

62

63 sigfunc = function(Xt,t)

64 {

65 return(sigma)
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66 }

67

68 histfunc = function(Xs,s,t,delta_t,numbsims)

69 {

70

71 Xt = rep(Xs ,numbsims)

72 timespace = seq(s,t,delta_t)

73

74 for(i in 2: length(timespace))

75 {

76 dWt = sqrt(delta_t)*rnorm(numbsims)

77 Xt = Xt + mufunc(Xt, timespace[i])*delta_t + sigfunc(Xt ,timespace[i])*dWt

78 hist(Xt, freq = FALSE , col = 'royalblue ', border = 'white', breaks = 50, main = NA)

# ylim = c(0,2)

79 }

80

81 return(list(Xt=Xt,time = t))

82

83 }

84

85 plot = histfunc(Xs ,s,t,delta_t,numbsims)

86 }

87

88 EM_plot = OU_EM(s,t,Xs ,kappa ,alpha ,sigma ,delta_t,startingstate ,endstate ,numbsims)

89

90 OU_theoretical1 = function(s,t,Xs ,Xt,kappa ,alpha ,sigma)

91 {

92 gamma = ((sigma ^2) *(1 - exp(-2*kappa*(t-s))))^(1/2)

93 dens_point = ((pi*gamma ^2)/kappa)^( -1/2)*exp(-(Xt-alpha -(Xs-alpha)*exp(-kappa*(t-s)))

^2*( kappa/gamma ^2))

94

95 return(dens_point)

96 }

97

98 Xt = statespace

99 plot_theoretical1 = OU_theoretical1(s,t,Xs,Xt ,kappa ,alpha ,sigma)

100

101 lines(plot_theoretical1~Xt,col = "navy",lwd = 3)

102

103 OU_hermite = function(s,t,Xs ,Xt,kappa ,alpha ,sigma ,K)

104 {

105 #-----

106 invsigxt = 1/( sigma)
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107 gamxt = ((Xt)/sigma) # = Yt

108 gamxs = ((Xs)/sigma) # = Ys

109 part1 = 1/sqrt (2*pi*(t-s))

110 part2 = exp( - ((( gamxt - gamxs)^2) /(2*(t-s))) - ((( gamxt ^2)*kappa)/2) + ((( gamxs ^2)*

kappa)/2) + ((gamxt*alpha*kappa)/sigma) - ((gamxs*alpha*kappa)/sigma))

111 p = part1*part2

112 c1 = -(1/(6* sigma ^2)) * (kappa*( 3*alpha ^2* kappa - 3*( gamxt+gamxs)*alpha*kappa*sigma +

(-3 + gamxt ^2* kappa + gamxt*gamxs*kappa +gamxs ^2* kappa)*sigma ^2))

113 hermitedens = invsigxt*p

114 if (K>0)

115 {

116 hermitedens = invsigxt*p*(1+(t-s)*c1)

117 }

118

119 return(hermitedens)

120 #----

121

122 }

123

124 K = 1

125 Xt = statespace

126 plot_hermite = OU_hermite(s,t,Xs,Xt,kappa ,alpha ,sigma ,K)

127

128 lines(plot_hermite~Xt,lty = 3,col = "purple", lwd = 3)

129

130 #Parameters

131 s = 0

132 t = 5

133 Xs = 16.5

134 kappa = 0.85

135 alpha = 15

136 sigma = 0.75

137 delta_t = 1/250 #step length

138 startingstate = 12

139 endstate = 19

140 numbsims = 500

141 timespace = seq(s,t,delta_t)

142 statespace = seq(startingstate ,endstate ,delta_t)

143

144

145 states <- statespace

146 initial <- Xs

147 Tmax <- 5

111



148 Tstart <- 0

149 increment <- 1/250

150

151

152 library(expm)

153 Xs = initial

154 y0 =c(1, Xs , Xs^2, Xs^3, Xs^4)

155

156 a_x = kappa#kappa tempo

157 b_x = alpha #alpha mean

158 s_x = sigma

159 A = rbind(c(0,0,0,0,0),

160 c(a_x*b_x, -a_x, 0, 0, 0),

161 c(+s_x^2, 2*a_x*b_x, -2*a_x, 0, 0),

162 c(0, +3*s_x^2, 3*a_x*b_x, -3*a_x, 0),

163 c(0, 0, +6*s_x^2+6*s_x^2, 4*a_x*b_x, -4*a_x))

164

165 yt =expm(A*(Tmax -Tstart))%*%y0

166

167 res_package$moments[,dim(res_package$moments)[2]]

168 yt

169

170 xt = states

171 u = yt [1:4+1]

172 mm = u*0

173

174 mm[1] = u[1]

175 mm[2] = u[2] - 1*mm[1]*u[1]

176 mm[3] = u[3] - 1*mm[1]*u[2] - 2*mm[2]*u[1]

177 mm[4] = u[4] - 1*mm[1]*u[3] - 3*mm[2]*u[2] - 3*mm[3]*u[1]

178

179 p = 1/3 * (3*(mm [4]/6)*mm[2] - ((mm [3]/2) ^2))/((mm [4]/6) ^2)

180 q = 1/27 *(27*(( mm [4]/6) ^2)*(mm[1]-xt) - 9*(mm [4]/6) *(mm [3]/2)*mm[2] + 2*((mm [3]/2) ^3))

/((mm [4]/6) ^3)

181 chk = (q^2)/4 + (p^3) /27

182 th = -(mm [3]/2) /(3*(mm [4]/6))+(-q/2 + sqrt(chk))^(1/3) - (q/2 + sqrt(chk))^(1/3)

183

184 k = (mm[1]*th) + (mm[2]*th^2)/2 + (mm[3]*th^3)/6 + (mm[4]*th^4) /24

185 k1 = mm[1] + (mm[2]*th) + (mm[3]*th^2)/2 + (mm[4]*th^3)/6

186 k2 = mm[2] + (mm[3]*th) + (mm[4]*th^2)/2

187 k3 = mm[3] + (mm[4]*th)

188 k4 = mm[4]

189 dens = 1/sqrt (2*pi*(k2))*exp(k-th*k1)
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190 dens

191

192 res_package$cumulants[,dim(res_package$cumulants)[2]]

193 mm[1]

194 mm[2]

195

196 dens = dnorm(states ,mm[1],sqrt(mm[2]))

197

198 lines(dens~states , type ='l',col = "magenta" ,xlab="Xt",ylab = "Density", lty = 1, lwd =

2)

199 #lines(res_package$density[,dim(res_package$density)[2]]~ states , lty = 2, lwd = 5, col =

'red')

200

201 labels = c("Theoretical","Euler -M", "Hermite", "Cumulant T")

202 legend("topright", inset = 0.0005 , title = NA,labels ,lty = c(1,3,2,3), lwd = c(3,3,6,3) ,

col=c("navy", "royalblue","purple","magenta"), bty = 'n')

Algorithm 11 bivariate OU CPI-Repo analysis and densities.

1 #Multivariate CIR Jump process

2

3 rm(list=ls(all=TRUE))

4

5 library(readxl)

6 ForwardO <- read_excel("C:/Users/P523119/Dropbox/Thinus/SARB/FMD/RESMAN/Team/Byran/

YieldCurvePCA/Forward.xlsx")

7 BondTermCorrelations <- read_excel("C:/Users/P523119/Dropbox/Thinus/SARB/FMD/RESMAN/Team/

Byran/YieldCurvePCA/BondTermCorrelations.xlsx")

8 Forward <- ForwardO [1000:2500 ,]

9

10 #n = nrow(Forward)

11

12 #Seed:

13 #set.seed (7)

14

15 #Parameters

16 s = 0

17 t = 6

18 delta_t = 0.004 #step length

19 startingstate = 0

20 endstate = 5

21 numbsims = 10

22 timespace = seq(s,t,delta_t)
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23 statespace = seq(startingstate ,endstate ,delta_t)

24

25

26 alpha1 = 0.05

27 alpha2 = 0.1

28 alpha3 = 0.12

29 alpha4 = 0.17

30 alpha5 = 0.14

31 alpha6 = 0.15

32 alpha7 = 0.15

33 alpha8 = 0.15

34 alpha9 = 0.05

35 alpha10 = 0.05

36 alpha11 = 0.02

37 alpha12 = -0.02

38 alpha13 = -0.05

39

40 beta1 = 2.07745

41 beta2 = 2.30683

42 beta3 = 2.44751

43 beta4 = 2.57561

44 beta5 = 2.65372

45 beta6 = 2.73313

46 beta7 = 2.78896

47 beta8 = 2.81654

48 beta9 = 2.838

49 beta10 = 2.85736

50 beta11 = 2.98396

51 beta12 = 3.04719

52 beta13 = 3.11052

53

54

55 sigma1 = 0.1

56 sigma2 = 0.1

57 sigma3 = 0.1

58 sigma4 = 0.1

59 sigma5 = 0.1

60 sigma6 = 0.1

61 sigma7 = 0.1

62 sigma8 = 0.1

63 sigma9 = 0.1

64 sigma10 = 0.1

65 sigma11 = 0.1
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66 sigma12 = 0.1

67 sigma13 = 0.1

68

69 lambda1 = 0.01

70 lambda2 = 0.01

71 lambda3 = 0.01

72 lambda4 = 0.01

73 lambda5 = 0.01

74 lambda6 = 0.01

75 lambda7 = 0.01

76 lambda8 = 0.01

77 lambda9 = 0.01

78 lambda10 = 0.01

79 lambda11 = 0.01

80 lambda12 = 0.01

81 lambda13 = 0.01

82

83

84 gamma = as.matrix(BondTermCorrelations ,nrow=13,ncol =13) #adjust acordingly if required

85 gamma = gamma *0.1

86

87 #Simulating the trajectory

88

89

90 timeseq = (seq(s,t,delta_t))

91 datamatrix = matrix(0,nrow = length(timeseq), ncol = 13)

92 Y = datamatrix

93 Z = Y

94

95 for( k in 1: numbsims)

96 {

97 j11 = rnorm(1,mean = 0, sd = sqrt(delta_t))

98 j21 = rnorm(1,mean = 0, sd = sqrt(delta_t))

99 j31 = rnorm(1,mean = 0, sd = sqrt(delta_t))

100 j41 = rnorm(1,mean = 0, sd = sqrt(delta_t))

101 j51 = rnorm(1,mean = 0, sd = sqrt(delta_t))

102 j61 = rnorm(1,mean = 0, sd = sqrt(delta_t))

103 j71 = rnorm(1,mean = 0, sd = sqrt(delta_t))

104 j81 = rnorm(1,mean = 0, sd = sqrt(delta_t))

105 j91 = rnorm(1,mean = 0, sd = sqrt(delta_t))

106 j101 = rnorm(1,mean = 0, sd = sqrt(delta_t))

107 j111 = rnorm(1,mean = 0, sd = sqrt(delta_t))

108 j121 = rnorm(1,mean = 0, sd = sqrt(delta_t))
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109 j131 = rnorm(1,mean = 0, sd = sqrt(delta_t))

110 poi11 = rpois(1,lambda1 *( timespace [1]-0))

111 poi21 = rpois(1,lambda2 *( timespace [1]-0))

112 poi31 = rpois(1,lambda3 *( timespace [1]-0))

113 poi41 = rpois(1,lambda4 *( timespace [1]-0))

114 poi51 = rpois(1,lambda5 *( timespace [1]-0))

115 poi61 = rpois(1,lambda6 *( timespace [1]-0))

116 poi71 = rpois(1,lambda7 *( timespace [1]-0))

117 poi81 = rpois(1,lambda8 *( timespace [1]-0))

118 poi91 = rpois(1,lambda9 *( timespace [1]-0))

119 poi101 = rpois(1,lambda10 *( timespace [1] -0))

120 poi111 = rpois(1,lambda11 *( timespace [1] -0))

121 poi121 = rpois(1,lambda12 *( timespace [1] -0))

122 poi131 = rpois(1,lambda13 *( timespace [1] -0))

123 z11 = rnorm(1,mean = 0.25*(1 + sin (2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

124 z21 = rnorm(1,mean = 0.15*(1 + sin (2*pi*timeseq)), sd = 0.15*(1 + 0.2* sin

(2*pi*timeseq)))

125 z31 = rnorm(1,mean = 0.25*(1 + sin (2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

126 z41 = rnorm(1,mean = 0.15*(1 + sin (2*pi*timeseq)), sd = 0.15*(1 + 0.2* sin

(2*pi*timeseq)))

127 z51 = rnorm(1,mean = 0.25*(1 + sin (2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

128 z61 = rnorm(1,mean = 0.15*(1 + sin (2*pi*timeseq)), sd = 0.15*(1 + 0.2* sin

(2*pi*timeseq)))

129 z71 = rnorm(1,mean = 0.25*(1 + sin (2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

130 z81 = rnorm(1,mean = 0.15*(1 + sin (2*pi*timeseq)), sd = 0.15*(1 + 0.2* sin

(2*pi*timeseq)))

131 z91 = rnorm(1,mean = 0.25*(1 + sin (2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

132 z101 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2* sin

(2*pi*timeseq)))

133 z111 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

134 z121 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2* sin

(2*pi*timeseq)))

135 z131 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5* sin

(2*pi*timeseq)))

136

137 Xsvec = matrix(0,nrow = 13, ncol = 1)

138 Xsvec [1] = Forward $`1`[1]
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139 Xsvec [2] = Forward $`2`[1]

140 Xsvec [3] = Forward $`3`[1]

141 Xsvec [4] = Forward $`4`[1]

142 Xsvec [5] = Forward $`5`[1]

143 Xsvec [6] = Forward $`6`[1]

144 Xsvec [7] = Forward $`7`[1]

145 Xsvec [8] = Forward $`8`[1]

146 Xsvec [9] = Forward $`9`[1]

147 Xsvec [10] = Forward $`10`[1]

148 Xsvec [11] = Forward $`15`[1]

149 Xsvec [12] = Forward $`20`[1]

150 Xsvec [13] = Forward $`30`[1]

151

152

153 Xt1 = Xsvec [1] + alpha1 *((beta1 -Xsvec [1]) -(gamma [1 ,]%*%Xsvec -Xsvec [1]))*

delta_t + sigma1*sqrt(Xsvec [1])*j11 + z11*poi11

154 Xt2 = Xsvec [2] + alpha2 *((beta2 -Xsvec [2]) -(gamma [2 ,]%*%Xsvec -Xsvec [2]))*

delta_t + sigma2*sqrt(Xsvec [2])*j21 + z21*poi21

155 Xt3 = Xsvec [3] + alpha3 *((beta3 -Xsvec [3]) -(gamma [3 ,]%*%Xsvec -Xsvec [3]))*

delta_t + sigma3*sqrt(Xsvec [3])*j31 + z31*poi31

156 Xt4 = Xsvec [4] + alpha4 *((beta4 -Xsvec [4]) -(gamma [4 ,]%*%Xsvec -Xsvec [4]))*

delta_t + sigma4*sqrt(Xsvec [4])*j41 + z41*poi41

157 Xt5 = Xsvec [5] + alpha5 *((beta5 -Xsvec [5]) -(gamma [5 ,]%*%Xsvec -Xsvec [5]))*

delta_t + sigma5*sqrt(Xsvec [5])*j51 + z51*poi51

158 Xt6 = Xsvec [6] + alpha6 *((beta6 -Xsvec [6]) -(gamma [6 ,]%*%Xsvec -Xsvec [6]))*

delta_t + sigma6*sqrt(Xsvec [6])*j61 + z61*poi61

159 Xt7 = Xsvec [7] + alpha7 *((beta7 -Xsvec [7]) -(gamma [7 ,]%*%Xsvec -Xsvec [7]))*

delta_t + sigma7*sqrt(Xsvec [7])*j71 + z71*poi71

160 Xt8 = Xsvec [8] + alpha8 *((beta8 -Xsvec [8]) -(gamma [8 ,]%*%Xsvec -Xsvec [8]))*

delta_t + sigma8*sqrt(Xsvec [8])*j81 + z81*poi81

161 Xt9 = Xsvec [9] + alpha9 *((beta9 -Xsvec [9]) -(gamma [9 ,]%*%Xsvec -Xsvec [9]))*

delta_t + sigma9*sqrt(Xsvec [9])*j91 + z91*poi91

162 Xt10 = Xsvec [10] + alpha10 *((beta10 -Xsvec [10]) -(gamma [10 ,]%*% Xsvec -Xsvec

[10]))*delta_t + sigma10*sqrt(Xsvec [10])*j101 + z101*poi101

163 Xt11 = Xsvec [11] + alpha11 *((beta11 -Xsvec [11]) -(gamma [11 ,]%*% Xsvec -Xsvec

[11]))*delta_t + sigma11*sqrt(Xsvec [11])*j111 + z111*poi111

164 Xt12 = Xsvec [12] + alpha12 *((beta12 -Xsvec [12]) -(gamma [12 ,]%*% Xsvec -Xsvec

[12]))*delta_t + sigma12*sqrt(Xsvec [12])*j121 + z121*poi121

165 Xt13 = Xsvec [13] + alpha13 *((beta13 -Xsvec [13]) -(gamma [13 ,]%*% Xsvec -Xsvec

[13]))*delta_t + sigma13*sqrt(Xsvec [13])*j131 + z131*poi131

166

167 datamatrix [1,1] = Xt1

168 datamatrix [1,2] = Xt2
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169 datamatrix [1,3] = Xt3

170 datamatrix [1,4] = Xt4

171 datamatrix [1,5] = Xt5

172 datamatrix [1,6] = Xt6

173 datamatrix [1,7] = Xt7

174 datamatrix [1,8] = Xt8

175 datamatrix [1,9] = Xt9

176 datamatrix [1,10] = Xt10

177 datamatrix [1,11] = Xt11

178 datamatrix [1,12] = Xt12

179 datamatrix [1,13] = Xt13

180

181 for(i in 2: length(timeseq))

182 {

183 dWt1 = rnorm(1,mean = 0, sd = sqrt(delta_t))

184 dWt2 = rnorm(1,mean = 0, sd = sqrt(delta_t))

185 dWt3 = rnorm(1,mean = 0, sd = sqrt(delta_t))

186 dWt4 = rnorm(1,mean = 0, sd = sqrt(delta_t))

187 dWt5 = rnorm(1,mean = 0, sd = sqrt(delta_t))

188 dWt6 = rnorm(1,mean = 0, sd = sqrt(delta_t))

189 dWt7 = rnorm(1,mean = 0, sd = sqrt(delta_t))

190 dWt8 = rnorm(1,mean = 0, sd = sqrt(delta_t))

191 dWt9 = rnorm(1,mean = 0, sd = sqrt(delta_t))

192 dWt10 = rnorm(1,mean = 0, sd = sqrt(delta_t))

193 dWt11 = rnorm(1,mean = 0, sd = sqrt(delta_t))

194 dWt12 = rnorm(1,mean = 0, sd = sqrt(delta_t))

195 dWt13 = rnorm(1,mean = 0, sd = sqrt(delta_t))

196

197 z1 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

198 z2 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2*

sin (2*pi*timeseq)))

199 z3 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

200 z4 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2*

sin (2*pi*timeseq)))

201 z5 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

202 z6 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2*

sin (2*pi*timeseq)))

203 z7 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

204 z8 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2*
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sin (2*pi*timeseq)))

205 z9 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

206 z10 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2*

sin (2*pi*timeseq)))

207 z11 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

208 z12 = rnorm(1,mean = 0.15*(1 + sin(2*pi*timeseq)), sd = 0.15*(1 + 0.2*

sin (2*pi*timeseq)))

209 z13 = rnorm(1,mean = 0.25*(1 + sin(2*pi*timeseq)), sd = 0.25*(1 + 0.5*

sin (2*pi*timeseq)))

210

211

212 poi1 = rpois(1,lambda1 *( timespace[i]-timespace[i-1]))

213 poi2 = rpois(1,lambda2 *( timespace[i]-timespace[i-1]))

214 poi3 = rpois(1,lambda3 *( timespace[i]-timespace[i-1]))

215 poi4 = rpois(1,lambda4 *( timespace[i]-timespace[i-1]))

216 poi5 = rpois(1,lambda5 *( timespace[i]-timespace[i-1]))

217 poi6 = rpois(1,lambda6 *( timespace[i]-timespace[i-1]))

218 poi7 = rpois(1,lambda7 *( timespace[i]-timespace[i-1]))

219 poi8 = rpois(1,lambda8 *( timespace[i]-timespace[i-1]))

220 poi9 = rpois(1,lambda9 *( timespace[i]-timespace[i-1]))

221 poi10 = rpois(1,lambda10 *( timespace[i]-timespace[i-1]))

222 poi11 = rpois(1,lambda11 *( timespace[i]-timespace[i-1]))

223 poi12 = rpois(1,lambda12 *( timespace[i]-timespace[i-1]))

224 poi13 = rpois(1,lambda13 *( timespace[i]-timespace[i-1]))

225

226 c = as.matrix(datamatrix[i-1,],nrow=13,ncol =1)

227

228 Xt1plus1 = Xt1 + alpha1 *((beta1 -Xt1) -(gamma [1 ,]%*%c-Xt1))*delta_t + sigma1*

sqrt(Xt1)*dWt1 + z1*poi1

229 Xt2plus1 = Xt2 + alpha2 *((beta2 -Xt2) -(gamma [2 ,]%*%c-Xt2))*delta_t + sigma2*

sqrt(Xt2)*dWt2 + z2*poi2

230 Xt3plus1 = Xt3 + alpha3 *((beta3 -Xt3) -(gamma [3 ,]%*%c-Xt3))*delta_t + sigma3*

sqrt(Xt3)*dWt3 + z3*poi3

231 Xt4plus1 = Xt4 + alpha4 *((beta4 -Xt4) -(gamma [4 ,]%*%c-Xt4))*delta_t + sigma4*

sqrt(Xt4)*dWt4 + z4*poi4

232 Xt5plus1 = Xt5 + alpha5 *((beta5 -Xt5) -(gamma [5 ,]%*%c-Xt5))*delta_t + sigma5*

sqrt(Xt5)*dWt5 + z5*poi5

233 Xt6plus1 = Xt6 + alpha6 *((beta6 -Xt6) -(gamma [6 ,]%*%c-Xt6))*delta_t + sigma6*

sqrt(Xt6)*dWt6 + z6*poi6

234 Xt7plus1 = Xt7 + alpha7 *((beta7 -Xt7) -(gamma [7 ,]%*%c-Xt7))*delta_t + sigma7*

sqrt(Xt7)*dWt7 + z7*poi7
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235 Xt8plus1 = Xt8 + alpha8 *((beta8 -Xt8) -(gamma [8 ,]%*%c-Xt8))*delta_t + sigma8*

sqrt(Xt8)*dWt8 + z8*poi8

236 Xt9plus1 = Xt9 + alpha9 *((beta9 -Xt9) -(gamma [9 ,]%*%c-Xt9))*delta_t + sigma9*

sqrt(Xt9)*dWt9 + z9*poi9

237 Xt10plus1 = Xt10 + alpha10 *((beta10 -Xt10)-(gamma [10 ,]%*%c-Xt10))*delta_t +

sigma10*sqrt(Xt10)*dWt10 + z10*poi10

238 Xt11plus1 = Xt11 + alpha11 *((beta11 -Xt11)-(gamma [11 ,]%*%c-Xt11))*delta_t +

sigma11*sqrt(Xt11)*dWt11 + z11*poi11

239 Xt12plus1 = Xt12 + alpha12 *((beta12 -Xt12)-(gamma [12 ,]%*%c-Xt12))*delta_t +

sigma12*sqrt(Xt12)*dWt12 + z12*poi12

240 Xt13plus1 = Xt13 + alpha13 *((beta13 -Xt13)-(gamma [13 ,]%*%c-Xt13))*delta_t +

sigma13*sqrt(Xt13)*dWt13 + z13*poi13

241

242

243 Xt1 = Xt1plus1

244 Xt2 = Xt2plus1

245 Xt3 = Xt3plus1

246 Xt4 = Xt4plus1

247 Xt5 = Xt5plus1

248 Xt6 = Xt6plus1

249 Xt7 = Xt7plus1

250 Xt8 = Xt8plus1

251 Xt9 = Xt9plus1

252 Xt10 = Xt10plus1

253 Xt11 = Xt11plus1

254 Xt12 = Xt12plus1

255 Xt13 = Xt13plus1

256

257

258 datamatrix[i,1] = Xt1plus1

259 datamatrix[i,2] = Xt2plus1

260 datamatrix[i,3] = Xt3plus1

261 datamatrix[i,4] = Xt4plus1

262 datamatrix[i,5] = Xt5plus1

263 datamatrix[i,6] = Xt6plus1

264 datamatrix[i,7] = Xt7plus1

265 datamatrix[i,8] = Xt8plus1

266 datamatrix[i,9] = Xt9plus1

267 datamatrix[i,10] = Xt10plus1

268 datamatrix[i,11] = Xt11plus1

269 datamatrix[i,12] = Xt12plus1

270 datamatrix[i,13] = Xt13plus1

271
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272

273 }

274

275 X = datamatrix

276 Y = Y + X

277 Z = (1/k)*Y

278

279 par(mfrow=c(5,3),ps=9,cex.lab=1,cex.axis =0.75,mar=c(3, 3, 2, 1), mgp=c(1.5, 0.8, 0),

las =1)

280

281 # nd = nrow(datamatrix)

282 # nf = nrow(Forward)

283 # ns = length(seq(s,t,delta_t))

284 # nd

285 # nf

286 # ns

287 #

288

289 plot(X[,1]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "1",ylim=c

(0,5))

290 lines(y=Forward$`1`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "1")

291 labels = c("Actual", "Simulated")

292 legend("topleft", title = NA ,labels ,lty = c(1,1), lwd = c(1,1) ,col=c("red","dodgerblue

"), bty = 'n')

293

294 plot(X[,2]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "2",ylim=c

(0,5))

295 lines(y=Forward$`2`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "2")

296

297

298 plot(X[,3]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "3",ylim=c

(0,5))

299 lines(y=Forward$`3`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "3")

300

301

302 plot(X[,4]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "4",ylim=c

(0,5))

303 lines(y=Forward$`4`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "4")

304

305

306 plot(X[,5]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "5",ylim=c

(0,5))

307 lines(y=Forward$`5`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "5")
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308

309

310 plot(X[,6]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "6",ylim=c

(0,5))

311 lines(y=Forward$`6`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "6")

312

313

314 plot(X[,7]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "7",ylim=c

(0,5))

315 lines(y=Forward$`7`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "7")

316

317

318 plot(X[,8]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "8",ylim=c

(0,5))

319 lines(y=Forward$`8`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "8")

320

321

322 plot(X[,9]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "9",ylim=c

(0,5))

323 lines(y=Forward$`9`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "9")

324

325

326 plot(X[,10]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "10",ylim=c

(0,5))

327 lines(y=Forward$`10`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "10")

328

329

330 plot(X[,11]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "15",ylim=c

(0,5))

331 lines(y=Forward$`15`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "15")

332

333

334 plot(X[,12]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "20",ylim=c

(0,5))

335 lines(y=Forward$`20`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "20")

336

337

338 plot(X[,13]~seq(s,t,delta_t),type ='l', col = "dodgerblue" ,xlab="t",ylab = "30",ylim=c

(0,5))

339 lines(y=Forward$`30`,x=seq(s,t,delta_t),type ='l', col = "red" ,xlab="t",ylab = "30")

340

341 plot(Z[1000 ,]~ seq(1,13,1),type ='l', col = "dodgerblue" ,xlab="t",ylab = "Yield",ylim=c

(0,5),lwd=2)
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342 lines(y=Forward [1000,],x=seq(1,13,1),type ='l', col = "red" ,xlab="t",ylab = "Term",lwd

=2)

343 labels = c("Actual", "Simulated")

344 legend("topleft", title = NA ,labels ,lty = c(1,1), lwd = c(2,2) ,col=c("red","dodgerblue

"), bty = 'n')

345 }

Algorithm 12 inference on VIX data based on the univariate CIR model

1 #Univariate UNI_CIR model:

2 #General model: dXt = mu(Xt ,t)dt + sigma(Xt,t)dWt

3 #dXt = kappa*(alpha -Xt)*dt + sigma*sqrt(Xt)dWt

4

5 rm(list=ls(all=TRUE))

6 library(RColorBrewer)

7 set.seed (2021)

8

9

10 library(readxl)

11 VixData <- read_excel("C:/ Users/P523119/Dropbox/Thinus/MastersAppliedDataAnalytics_MSc/

Dissertation/FinalDissertation/VixData.xlsx")

12

13 dt = 1/262

14

15

16 X= VixData$`VIX Index `

17

18 plot(VixData$Dates ,VixData$`VIX Index `, lty = 1, lwd = 1, col = "navy", type="l", ylab =

"VIX", xlab = "date")

19

20 likelihood = function(theta)

21 {

22 N = length(X)

23 Xs = X[-N]

24 Xt = X[-1]

25 k1 = Xs*exp(-theta [1]*dt)+theta [2]*(1 - exp(-theta [1]*dt))

26 k2 = theta [3]^2/(2* theta [1])*(1-exp(-2*theta [1]*dt))

27 ldens = dnorm(Xt,k1,sqrt(k2), log = TRUE)

28 return(-sum(ldens))

29

30 }

31

32 res = nlm(likelihood , c(50 ,50 ,50))

123



33 res

34

35

36 #Parameters

37 s = 0

38 t = 5

39 Xs = 26

40 kappa = 22.27057

41 alpha = 21.46218

42 sigma = 32.65406

43

44 delta_t = 1/250 #step length

45 startingstate = 5, for the R code generating the plots.

46 endstate = 35

47 numbsims = 1000

48 timespace = seq(s,t,delta_t)

49 statespace = seq(startingstate ,endstate ,delta_t)

50

51

52 #Theoretical density 1: PLotted from the density given in Sahalia -paper

53

54 CIR_theoretical1 = function(s,t,Xs,Xt ,kappa ,alpha ,sigma)

55 {

56 gamma = ((sigma ^2) *(1 - exp(-2*kappa*(t-s))))^(1/2)

57 dens_point = ((pi*gamma ^2)/kappa)^( -1/2)*exp(-(Xt-alpha -(Xs-alpha)*exp(-kappa*(t-s)))

^2*( kappa/gamma ^2))

58

59 return(dens_point)

60 }

61

62 Xt = statespace

63 plot_theoretical1 = CIR_theoretical1(s,t,Xs,Xt,kappa ,alpha ,sigma)

64

65 plot(plot_theoretical1~Xt ,col = "royalblue",lwd =2,ylab = 'Fitted Denisty ', xlab = "VIX

Value", type='l') #"p(xt|xs)"

66 `

Algorithm 13 bivariate CIR inference on VIX and USDZAR values.

1 #Univariate UNI_CIR model:

2 #General model: dXt = mu(Xt ,t)dt + sigma(Xt,t)dWt

3 #dXt = kappa*(alpha -Xt)*dt + sigma*sqrt(Xt)dWt

4
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5 rm(list=ls(all=TRUE))

6 library(RColorBrewer)

7 set.seed (2021)

8

9

10 library(readxl)

11 VixData <- read_excel("C:/ Users/P523119/Dropbox/Thinus/MastersAppliedDataAnalytics_MSc/

Dissertation/FinalDissertation/VixData.xlsx")

12 USDZARData <- read_excel("C:/ Users/P523119/Dropbox/Thinus/MastersAppliedDataAnalytics_MSc

/Dissertation/FinalDissertation/USDZARData.xlsx")

13 dt = 1/262

14

15

16 X= VixData$`VIX Index `

17 Y = USDZARData$`USDZAR Curncy `

18

19 plot(VixData$Dates ,VixData$`VIX Index `, lty = 1, lwd = 1, col = "navy", type="l", ylab =

"Value", xlab = "date", ylim = c(14 ,40))

20 lines(VixData$Dates ,USDZARData$`USDZAR Curncy `, lty = 1, lwd = 1, col = "magenta")

21 labels = c("VIX", "USDZAR")

22 legend("topright", inset = 0.0005 , title = NA,labels ,lty = c(1,1), lwd = c(1,1) ,col=c("

navy","magenta"), bty = 'n')

23

24

25 likelihood = function(theta)

26 {

27 N = length(X)

28

29 Xs = X[-N]

30 Xt = X[-1]

31 k1 = Xs*exp(-theta [1]*dt)+theta [2]*(1 - exp(-theta [1]*dt))

32 k2 = theta [3]^2/(2* theta [1])*(1-exp(-2*theta [1]*dt))

33 ldens1 = dnorm(Xt ,k1,sqrt(k2), log = TRUE)

34

35 Ys = Y[-N]

36 Yt = Y[-1]

37 k12 = Ys*exp(-theta [4]*dt)+theta [5]*(1 - exp(-theta [4]*dt))

38 k22 = theta [6]^2/(2* theta [4])*(1-exp(-2*theta [4]*dt))

39 ldens2 = dnorm(Yt ,k12 ,sqrt(k22), log = TRUE)

40

41 ldens_bi = ldens1+ldens2

42

43 return(-sum(ldens_bi))
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44

45 }

46

47 res = nlm(likelihood , c(50,50,50,16,15,5))

48 res

49

50

51 #Parameters

52 s = 0

53 t = 5

54 Xs = 26

55 kappa = 22.27057

56 alpha = 21.46218

57 sigma = 32.65406

58

59 delta_t = 1/250 #step length

60 startingstate = 5

61 endstate = 35

62 numbsims = 1000

63 timespace = seq(s,t,delta_t)

64 statespace = seq(startingstate ,endstate ,delta_t)

65

66

67 #Theoretical density 1: PLotted from the density given in Sahalia -paper

68

69 OU_theoretical1 = function(s,t,Xs ,Xt,kappa ,alpha ,sigma)

70 {

71 gamma = ((sigma ^2) *(1 - exp(-2*kappa*(t-s))))^(1/2)

72 dens_point = ((pi*gamma ^2)/kappa)^( -1/2)*exp(-(Xt-alpha -(Xs-alpha)*exp(-kappa*(t-s)))

^2*( kappa/gamma ^2))

73

74 return(dens_point)

75 }

76

77 Xt = statespace

78 plot_theoretical1 = OU_theoretical1(s,t,Xs,Xt ,kappa ,alpha ,sigma)

79

80 plot(plot_theoretical1~Xt ,col = "royalblue",lwd =2,ylab = 'Fitted Denisty ', xlab = "VIX

Value", type='l') #"p(xt|xs)"

81 `

Algorithm 14 bivariate Heston model�tted to S&P 500 and CBOE VIX data.
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1 rm(list = ls())

2 library(DiffusionRgqd)

3

4 library(readxl)

5 S_P<- read_excel("C:/Users/P523119/Dropbox/Thinus/MastersAppliedDataAnalytics_MSc/

Dissertation/FinalDissertation/spxvix.xlsx")

6

7

8 X = S_P$SPX

9 Y = S_P$VIX

10

11 par(mfrow=c(2,2))

12

13 plot(S_P$Dates ,S_P$SPX , lty = 1, lwd = 1, col = "navy", type="l", ylab = "Index Value",

xlab = "date")

14 labels = c("S&P 500")

15 legend("topright", inset = 0.0005 , title = NA,labels ,lty = c(1), lwd = c(1) ,col=c("navy"

), bty = 'n')

16 plot(S_P$Dates ,S_P$VIX , lty = 1, lwd = 1, col = "magenta",ylab = "Volatility Value", xlab

= "date", type='l')

17 labels2 = c("CBOE VIX")

18 legend("topright", inset = 0.0005 , title = NA,labels2 ,lty = c(1), lwd = c(1) ,col=c("

magenta"), bty = 'n',)

19

20

21 plot(S_P$Dates ,log(S_P$SPX), lty = 1, lwd = 1, col = "royalblue", type="l", ylab = "log(

Index Value)", xlab = "date")

22 labels = c("Transformed S&P 500")

23 legend("topright", inset = 0.0005 , title = NA,labels ,lty = c(1), lwd = c(1) ,col=c("

royalblue"), bty = 'n')

24 plot(S_P$Dates ,(S_P$VIX /100)^2, lty = 1, lwd = 1, col = "purple",ylab = "(VIX /100) ^2",

xlab = "date", type='l')

25 labels2 = c("Transformed CBOE VIX")

26 legend("topright", inset = 0.0005 , title = NA,labels2 ,lty = c(1), lwd = c(1) ,col=c("

purple"), bty = 'n',)

27

28

29 Z = cbind(log(X),(Y/100) ^2)

30 Z

31

32 time_diff = diff(S_P$Dates)

33 time = cumsum(c(0,time_diff /365))

34
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35

36 GQD.remove ()

37 #X

38 a00 <- function(t){theta [1]}

39 a01 <- function(t){-0.5* theta [2]* theta [2]}

40 c01 <- function(t){theta [2]* theta [2]}

41 d01 <- function(t){theta [2]* theta [5]* theta [6]}

42 #Y

43 b00 <- function(t){theta [3]}

44 b01 <- function(t){-theta [4]}

45 e01 <- function(t){theta [2]* theta [5]* theta [6]}

46 f01 <- function(t){theta [5]* theta [5]}

47

48

49 theta.start <- c(8, 1, 0.05, 0.5, 1, 0)

50

51 model_h <- BiGQD.mle(Z, time , mesh = 100, theta = theta.start)

52

53

54 GQD.estimates(model_h)

55 GQD.aic(list(model_h))

56

57 theta <- c(0.143 ,0.673 ,0.566 ,8.138 ,0.726 , -0.754)
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