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Abstract

We use intraday data to construct measures of the realized volatility of bit-
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model to study whether these measures help to forecast subsequent realized
volatility. We find that mainly forecasters suffering a higher loss in case of
an underprediction of realized volatility (than in case of an overprediction
of the same absolute size) benefit from using the tail measures as predictors
of realized volatility, especially at a short and intermediate forecast hori-
zon. This result is robust controlling for jumps and realized skewness and
kurtosis, and it also applies to downside (bad) and upside (good) realized
volatility.
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1 Introduction

Bitcoin can be defined as “an online communication protocol that facilitates the

use of a virtual currency, including electronic payment” (Bohme, et al., 2015). It

was designed by Nakamoto (2008) as the first decentralized cryptocurrency based

on blockchain technology, and until now remains the most popular among the

4,000 alternative altcoins (i.e., cryptocurrencies that have been launched since the

introduction of bitcoin) currently available. Despite being anonymous and re-

ducing transaction costs (Kim, 2017), bitcoin is believed to be mostly used for

speculative purposes (Baek and Elbeck, 2015), resulting in extreme volatility and

creating bubbles followed by market crashes (Bouri et al., 2018). As such, normal-

ity assumptions are untenable as bitcoin seems to have heavy tails (Osterrieder and

Lorenz, 2017; Gkillas and Katsiampa, 2018; Gkillas and Longin, 2018). Mean-

while, there is evidence supporting the view that the inefficiency of the bitcoin

market is quite strong (Urquhart, 2016). Taken as a whole, the above issues gives

rise to many difficulties when attempting to model and predict the evolution of the

risk of bitcoin investments. Understandably, from the perspective of an investor,

it is of utmost importance to forecast the risk related to an investment in bitcoin,

that is, to predict its volatility.

Over the past few years, a large body of literature has emerged that aims to pre-

dict (in- and out-of-sample) daily movements in the volatility of cryptocurrencies,

and in particular of bitcoin. Most studies are based on same-frequency or mixed-

frequency variants of the Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH) model, using various types of financial and macroeconomic vari-

ables as predictors (see, e.g., Chu et al., 2017; Ardia et al., 2018; Conrad et al.,

2018 and Kochling et al., 2019), while a few attempts have been conducted in

the framework of realized volatility (see, Hattori, 2019, 2020). GARCH-type of

models rely heavily on the underlying model assumptions. Volatility, however, is
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a latent variable and, thus, requires non-parametric estimation techniques. Any

non-parametric estimator of volatility, such as the realized volatility, is based on

quadratic variation, which is regarded as the best estimator of integrated (latent)

volatility. The realized volatility captures the dynamics of two key elements of

volatility, namely its continuous sample-path part and its jump part. A benchmark

measure of realized volatility is the realized variance.1 The measurement of daily

realized volatility by means of realized variance has been studied by Andersen et

al. (2007), among others. Under weak regularity conditions, realized variance is

a consistent estimator of quadratic variation. Hansen and Huang (2016) show that

realized variance is more accurately estimated at a daily frequency by employing

high-frequency intraday data. High-frequency data reveal important information

about intraday changes and the microstructure of the market not easily seen on

a daily basis. As noted by Bekaert and Hoerova (2014), models based on high-

frequency information dominate standard GARCH-class models (see, also Chen

and Ghysels, 2012), as high-frequency models highlight the importance of persis-

tence (by employing lagged realized variances as predictors), capture additional

information contained in the most recent return variances (Corsi, 2009), shed

light on the asymmetry between positive and negative returns shocks (the classic

volatility asymmetry, Engle and Ng, 1993), and bring to the forefront potentially

differing predictive information present in jumps and continuous volatility com-

ponents (Andersen et al., 2007). Not surprisingly, there is a growing interest to

incorporate high-frequency data into models for lower-frequency data. As for the

modeling of the conditional second moment of the asset-return distribution, ex-

amples include Shephard and Sheppard (2010), Noureldin et al. (2012), Hansen

et al. (2012), and Hansen et al. (2014), among others. Other studies attempt

1In this research, we use the term realized volatility to refer to the realized variance rather than
the realized standard deviation of bitcoin returns. In Section 4.5, we shall present results for the
the realized standard deviation of bitcoin returns.
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to incorporate high-frequency data into models for the time-varying dependence

in a copula framework (see, De Lira Salvatierra and Patton, 2015; Oh and Pat-

ton, 2016), while Bee et al. (2019) suggest modeling the tails of the conditional

asset-return distributions with a class of extreme-value-theory models incorporat-

ing high-frequency information.

As mentioned in the previous paragraph, most attempts focus on the first and

second moments of the asset-returns distribution by exploiting information con-

tained in lagged realized variances and past daily returns. Higher-order moments,

however, may add significant explanatory power because they are associated with

events far away from the center of the distribution, which is consistent with em-

pirical evidence that points towards the existence of market frictions causing phe-

nomena such as jumps, inducing heaviness in the tails of the asset-returns distri-

bution. For example, jumps present dynamics that are often found to be related to

the level of volatility (see, Bandi and Reno, 2012; Bollerslev and Todorov, 2011).

Motivated by these ideas, we find it promising to link the dynamics of large in-

traday price fluctuations to that of the daily realized variance. We accommodate

all of these features in our study, yet we take a completely different perspective

grounded on the results of Dacorogna et al. (2001) and Amaya et al. (2015). More

specifically, our study is motivated by the research of Dacorogna et al. (2001)

who note that it is possible to use intraday returns to construct measures related to

the daily distribution of intraday returns beyond standard higher-order moments.

From a methodological perspective, we construct measures focusing exclusively

on relatively large intraday returns observations in order to assess the tail shape

of the returns distribution based on the Hill tail-index estimator. This estimator

is one of the most commonly used non-parametric estimators and first appears in

Hill (1975). We name our measures realized downside and upside tail-index esti-

mators, as we construct them exclusively from intraday data. We consider these

estimators as measures of the weight of the tails of the daily the bitcoin-returns
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distribution. In doing so, we are able to study the tail behavior of bitcoin returns

by taking into consideration only the relevant information on extremes. We can

then examine whether these two measures help the accuracy of forecasts of the

realized volatility of bitcoin returns. In other words, we link the insights derived

from an extensive strand of econometric literature on modeling and forecasting

volatility with one of the most appropriate statistical tools, i.e., extreme-value the-

ory, for modeling extremes. Over the years, extreme-value theory has proven its

practical value in many fields such as earth sciences, engineering, and finance (de

Haan and Ferreira, 2006). Danielsson and de Vries (1997), Longin (2000), and

Longin and Solnick (2001) offered some early applications of extreme-value the-

ory in finance. Other more recent examples include Bhatti and Nguyen (2012),

Nguyen and Bhatti (2012), Nguyen et al. (2016), Rahahleh and Bhatti (2017),

Nguyen et al. (2017), Mansor et al. (2019), among others. Following Amaya

et al. (2015), we also control for realized skewness and kurtosis as predictors of

realized volatility of bitcoin returns, and we consider its bad (downside) and good

(upside) components. In this regard, it must be pointed out that the motivation to

look at the role of realized skewness and realized kurtosis as predictors for fore-

casting the volatility of bitcoin returns originates from the enormous literature that

hypothesizes that heavy-tailed shocks alone with left-tail events play an important

role in explaining asset-price behavior (on realized skewness and kurtosis, see Mei

et al., 2017; see also Neuberger and Payne, 2018).

Another contribution of our research is that we use an asymmetric loss function

to assess the predictive value of our two measures of tail behavior. Given that we

study the predictive value of downside and upside measures of tail behavior, it

is a natural research strategy in our setting to consider the possibility that a fore-

caster may have an asymmetric loss function. A forecaster has an asymmetric loss

function when the loss of an overprediction of realized volatility differs from the

loss of an underprediction of the same absolute size. We consider the asymmetric
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loss function which was also studied by Elliott et al. (2005, 2008), among others.

This loss function has the advantage that it nests the symmetric quadratic and ab-

solute loss functions widely studied in the forecasting literature. An asymmetric

loss function is a natural modeling choice when one uses a utility-function-based

approach to evaluate forecasts (West et al., 1993) and also in a risk-management

context when a forecaster uses forecasts of realized volatility to implement certain

option-trading strategies.

For our empirical analysis, we use an extensive sample based on (15-minute inter-

val) intraday data, covering the period from 26th January 2015 to 11th November

2018. In order to forecast the daily realized volatility of bitcoin returns and, in

particular, to evaluate the out-of-sample predictive power of the realized mea-

sures of tail behavior proposed in this study, we proceed as follows: First, we use

the heterogeneous autoregressive realized volatility (HAR-RV) model proposed

by Corsi (2009) as our benchmark model. Second, we study whether the down-

side and upside measures of tail behavior add explanatory power to the baseline

HAR-RV model. Third, we study whether the predictive value of the these mea-

sures remains intact when we control for realized skewness and realized kurtosis.

We show that our measures for the shape of the tails constructed by intraday data

hold information about future volatility. In particular, our main finding is that

mainly forecasters who suffer a higher loss in case of an underprediction of real-

ized volatility than in case of an overprediction of the same absolute size benefit

from using downside and upside tail-index estimators as predictors of realized

volatility, especially at a short and an intermediate forecast horizon. Furthermore,

this result is robust across several proxies of the daily variance and it is not af-

fected by the inclusion of jumps (on the role of jumps, see, Andersen et al., 2007).

We also consider “bad” and “good” realized volatility. Our findings show that

forecasters who suffer a relatively higher loss in case of an overprediction of real-

ized volatility benefit from using the tail indices as predictors only in few model
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configurations, and mainly if the length of the rolling window used for estimation

is relatively short.

The remainder of the paper is organized as follows: In section 2, we present the

theoretical considerations underlying our empirical research. In Section 3, we

describe the methods that we use in our empirical research. In Section 4, we

describe our data and summarize our empirical results. Section 5 concludes the

paper.

2 Theoretical considerations

2.1 Tail index: A general framework

Let X = {X1,X2, ...,Xn} be a sequence of independent and identically distributed

random variables with a common continuous cumulative distribution function, FX ,

for j = 1,2, ...,n, defined on some probability space (Ω,F,P). Suppose that FX

is a heavy-tailed distribution, and let ξ > 0 be a parameter such that P(X > x) =

x−1/ξ L(x), for x≥ 0, and L(x) refers to a slowly varying function.2 The parameter

ξ is known as the tail index of the distribution. We can define the tail index as a

measure of the weight of the tails of the distribution. A commonly used estimator

of the parameter ξ is the Hill estimator (Hill, 1975). The Hill estimator for some

kn is defined by

ξ
H=

1
kn

n

∑
j=n−kn+1

log
X( j)

X(n−kn+1)
, (1)

where X(1) ≤ ...≤ Xk(n) ≤ ...≤ X(n), considering only the kn largest order statistics

of the sequence {X1,X2, ...,Xn}. The Hill estimator can be interpreted as the aver-

age vertical exceeds of the log-transformed data above a given threshold defined

2With the term heavy-tailed, we refer to those distributions that do not have all their moments
finite.
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by a sample fraction kn, where kn � n. Note that, if kn → ∞ and kn/n→ 0, as

n→ ∞ then ξ H → ξ , and
√

kn(ξ
H−ξ )→ N(0,ξ 2).

2.2 Tail index: An intraday framework

Let X j,i = {X1,i,X2,i, ...,Xn,i} again be a sequence of independent and identically

distributed random variables with a common continuous cumulative distribution

function, FXi , for j = 1,2, ...,n and i = 1,2, ...,N. Suppose also that FXi is a dis-

tribution that satisfies P(Xi > xi) = x−1/ξi
i L(Xi), for xi ≥ 0, and L(xi) is a slowly

varying function. For ξi > 0, we can also use the Hill estimator to estimate ξi. In

this case, the Hill estimator for some ki,N is defined by

ξ
H
i =

1
ki,N

N

∑
i=N−ki,N+1

log
X(i)

X(N−ki,N+1)
(2)

where X(1,i) ≤ ... ≤ Xk(i,N)
≤ ... ≤ X(n,i), considering only the ki,N largest order

statistics of the sequence Xi = {X1,i,X2,i, ...,Xn,i}. The Hill estimator applied

to intraday data can be interpreted as the average vertical exceeds of the log-

transformed data above a given threshold defined by a sample fraction ki,N , where

ki,N � N. As in the general framework, we have ki,N → ∞ and ki,N/N → 0, as

N→ ∞, ξ H
i → ξi, and

√
ki,N(ξ

H
i −ξi)→ N(0,ξ 2

i ).

3 Methods

3.1 Realized volatility

Before we present our realized volatility estimator, we first recall some basic def-

initions and notation. Time is discrete and measured in trading days, t. Within

each day, there are N + 1 intraday prices or N intraday returns. Within any day

t, the observed prices concern these intraday time periods: t0 < t1 < ... < tN+1.
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Following the research by Diebold et al. (1999) and Andersen et al. (2001), intra-

day returns are retrieved as the logarithmic difference (log-returns) between two

consecutive intraday observed prices.

Turning now our attention to the estimator being used, while there are many avail-

able realized volatility estimators, our main focus centers on the median realized

variance, MRV , proposed by Andersen et al. (2012) as a jump-robust estimator

of the realized variance. We primarily use the MRV as an estimator of daily real-

ized volatility RV for bitcoin returns. For the implementation of our forecasting

exercise, this measure exhibits some specific time-series properties that render it

possible to compare and contrast the behavior of the suggested tail-index estima-

tors and, more importantly, how they impact future realized volatility. In particu-

lar, MRV attenuates the effect of market-microstructure noise and exhibits better

finite sample properties than other realized measures (see, Ghysels and Sinko,

2011 for further discussion of volatility forecasting in the presence of market-

microstructure noise). It is also well recognized that MRV constructed from in-

traday data is not influenced by the sampling frequency as compared with other

jump-robust estimators. Meanwhile, it displays better finite-sample robustness to

the occurrence of “zero” returns in the sample.

Last but not least, as a jump-robust RV estimator, MRV is substantially less biased

than other realized measures in the presence of jumps. Although jumps present

dynamics that are often found to be related to the level of volatility, they are ex-

tremely unpredictable and hard to anticipate (see, e.g., Bollerslev et al., 2008).

In parallel to the reasons discussed above, a less obvious but rather important

gain from using MRV , therefore, is that this estimator enables us to shed light on

aspects of the dynamics of bitcoin returns that reflect other elements of the data-

generating process apart from price discontinuities -and that are, thus, not caused

by jumps- such as the asymmetry in the tails of the daily bitcoin-returns distri-

bution. Intuitively, by keeping the forecasting model parsimonious, we are able
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to separate the predictive information of jumps, and are, thus, in a position to fo-

cus on the predictive power of the proposed tail-index estimators. In other words,

separating jumps from RV helps us to better understand the tail behavior of the

bitcoin-returns distribution and the role played by the tail behavior for modeling

and forecasting an extremely volatile variable. To put it differently, while jumps

are associated “indirectly” with phenomena that may induce heaviness in the tails

of the bitcoin-returns distribution, we model the tail behavior of this distribution in

a more direct way by resorting to specific statistical tools that are tailored for such

an analysis. In the case where our tail measures provide extra predictive value in

a model that also features jumps as a predictor of realized volatility, we are cap-

turing something “more complicated” associated with, for example, the clustering

of extremes and the shape of the (upper and lower) tails of the bitcoins-returns

distribution.

In order to further validate the importance of the new estimators, however, we also

study their predictive value along with jumps. Jumps are associated with the dis-

continuo us part of the price process and can explicitly improve the overall fit of

volatility models (see, e.g., Duffie et al., 2000; Andersen et al., 2007). Also, as we

already noted, the empirical literature points toward the existence of market fric-

tions causing phenomena such as jumps, inducing heaviness in the tails of asset-

returns distributions (see, Bandi and Reno, 2012; Bollerslev and Todorov, 2011).

Against the background of the results documented in this literature, the result that

the predictive information of our tail measures for the subsequent realized volatil-

ity of bitcoin returns is not affected by the inclusion of jumps in the forecasting

model provides further insights that potentially complicated tail-event-dynamics

have predictive value for realized volatility.

A daily point estimate of MRV is given by

MRVt=
π

6−4
√

3+π

N
N−2

N−1

∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2, (3)
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where rt,i is the intraday return i within day t and i = 1, ..,N is the total number

of intraday observations within a day. We consider MRV as our measure of daily

RV .

3.2 Realized downside and upside tail indices

We present now the estimators of the realized downside and upside tail indices

of the bitcoin-returns distribution. However, before doing that it is instructive to

again consider the general theoretical framework that our idea is based on.

The increasing availability of intraday data has prompted researchers to study real-

ized measures of the daily distribution of the returns of asset prices. Realized mea-

sures are non-parametric estimators mainly using high-frequency intraday data to

model conditional moments of the asset-returns distribution. Further information

on realized measures can be found in the survey articles by Barndorff-Nielsen

and Shephard (2007) and Andersen et al. (2009). The most well-known example

of such measures is realized volatility (Andersen and Bollerslev, 1998; Andersen

et al., 2001; Barndorff-Nielsen and Shephard, 2001). A benchmark and widely

used estimator for realized volatility is the realized variance as it is a consistent

estimate of actual volatility based on the theory of quadratic variation. Realized

variance estimates the second moment of the daily asset-return distribution and

characterizes the dispersion around the mean or the dispersion risk. As such, it

has unobservable behavior, and events during a trading day can affect its behavior

in different ways.

Moreover, as we already noted, the empirical literature points toward the exis-

tence of market frictions causing “extreme” price changes inducing heaviness in

the tails of the asset-returns distribution. As discussed by Dacorogna et al. (2001),

it is possible to use intraday data to construct additional summary measures of the

daily asset-return distribution. Indeed, Amaya et al. (2015) construct a measure
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of ex-post realized daily skewness based on intraday returns to capture with more

precision statistical forces that affect the variations of the price path. They also

construct daily realized kurtosis as a measure that characterizes the flatness of

the distribution as it takes into account the existence of extremes in the distri-

bution of returns. While the latter measures in one way or another captures the

higher than normal daily kurtosis, no consensus has emerged in the literature as

to the exact amount of probability mass in the tails of daily asset-returns distri-

butions and, thus, about the most suitable tool to use in modeling large intraday

returns. We approach this issue in a novel way by explicitly focusing on the tails

of the daily bitcoin-returns distribution. Further, we propose a framework for

non-parametrically estimating the shape of the tails of the daily bitcoin-returns

distribution. As the tail shape of the distribution is essential for determining the

frequency of large returns, a precise estimation of the tail shape of the bitcoin-

returns distribution is crucial for proper risk assessment during extremely volatile

periods (see Jansen and de Vries, 1991; Danielsson and de Vries, 1997).

Our framework is based on the idea that aggregation of multiple jump events over

a fixed time interval (e.g., a trading day) will result in heavy-tailed asset-returns

distribution (see Bollerslev et al., 2013). In light of this, we construct two mea-

sures to analyze the tail shape of the daily bitcoin-returns distribution by building

on the Hill tail-index estimator presented in Section 2. This estimator is a suffi-

cient statistic for the tail shape of the asset-return distribution, while it does not

depend on a particular probability model. Going one step further, another advan-

tage of our measures is that they render it possible, in the context of our fore-

casting analysis, to distinguish days with high levels of volatility that can result in

seemingly large price fluctuations, even though the returns are drawn from a light-

tailed distribution, yet with large variance, from volatile days where the frequency

of market events can induce heaviness in the tails of the bitcoin-returns distribu-

tion. To put it differently, it is interesting to investigate whether our measures
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are useful predictors of realized volatility and/or whether the frequency of events

in the tails affects future volatility. In what follows, we present the estimation

framework of our estimators.

Within a non-parametric framework, as our estimators are based on intraday data

to model the shape of the distribution tails, we refer to them as realized estimators.

The estimators are denoted by T Nt and T Pt , where T N is defined as the downside

tail-index estimator, while T P as the upside tail-index. The former is referring to

negative intraday returns and the left tail, and the latter to positive intraday returns

and the right tail. A daily point estimate for T Nt and T Pt may given by

T Nt=

√
1

p−
log

(
1

k−t,N

N

∑
i=N−k−t,N+1

log
r(t,i)−

r(N−k−t,N+1)−

)
, (4)

T Pt=

√
1

p+
log

(
1

k+t,N

N

∑
i=N−k+t,N+1

log
r(t,i)+

r(N−k+t,N+1)+

)
, (5)

where r(t,i)− is the ordered intraday return, i, within day t for i = 1, ..,N, for the

sequence r(t,1)− ≤ ... ≤ r(t,k−t,N)− ≤ ... ≤ r(t,N)− . Similarly, r+
(t,i) is the ordered in-

traday return, i, within day t, i = 1, ..,N, for the sequence r(t,1)+ ≤ ...≤ r(t,k+t,N)+ ≤

... ≤ r(t,N)+ . N denotes the total number of intraday observations within a day.

Moreover, p refers to the tail probability obtained from kt,N/N, while kt,N is the

number of upper order statistics or the sample fraction to be included in the esti-

mation out of a sample of size N. For our empirical analysis, we select for k−t,N
(k+t,N) the 15% lowest (highest) observations of the sample of size N.3

3In order to find the appropriate sample fractions kt,N , we apply a failure-to-reject method
based on the idea of Choulakian and Stephens (2012). As such, we conduct a sensitivity analysis
by selecting a number of possible sample fraction values. We then we select the lowest sample
fraction for which the average value of the daily realized estimates (considering all the available
trading days in the sample) stabilizes. Very low sample fraction values are not selected to avoid
small sample errors which can give a false sense of accuracy. In any case, results suggest that the
exact choice of the optimal sample fraction kt,N does not matter much.
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In addition, we use two modifications to improve the efficiency of estimators in-

troduced in Section 2.2. First, the scaling by p− and p+ (for T Nt and T Pt ensures

that the magnitudes of the estimators correspond to daily estimates. Second, the

logarithmic transformation gives better finite sample properties.

3.3 Realized downside and upside volatility

We compute RV− and RV+, as defined by Barndorff-Nielsen et al. (2010), to

capture the sign asymmetry of the price process. We consider RV− and RV+ as

measures based entirely on downward or upward moves of intraday returns. The

daily RV−t and RV+
t are given by

RV−t =
N

∑
i=1

r2
t,iI[(rt,i)<0], (6)

RV+
t =

N

∑
i=1

r2
t,iI[(rt,i)>0], (7)

where rt,i is the intraday return i within day t, and i = 1, ..,N is the total number of

intraday observations within a day. Earlier studies have identified the importance

of downside risk in portfolio risk assessment and management. Unlike other prox-

ies of downside risk (e.g., downside deviation or downside beta), downside real-

ized semivariance is constructed entirely using high-frequency data, and hence,

it is considered to be a better proxy for downside risk (see, Hansen and Huang,

2016).

3.4 Realized skewness and realized kurtosis

We compute realized skewness, RSK, and realized kurtosis, RKU , as measures

of the higher moments of the daily asset-return distribution computed from intra-

day returns. These measures allow us to consider with more precision statistical
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forces that may affect the variations of the price process. Mei et al. (2017) in-

vestigate the importance of RSK and RKU for forecasting realized volatility for

the stock markets of China and the U.S. (for exchange rates, see Gkillas et al.,

2019). In our research, like Amaya et al. (2015), we consider RSK as a measure

of the asymmetry of the daily asset-return distribution. The interpretation of this

measure is straightforward. Positive values of RSK indicate that the distribution

has a right tail that is fatter than the left tail, and negative values indicate the op-

posite. Because we are interested in extremes of the bitcoin-returns distribution

more generally, we also construct RKU as a measure of kurtosis. The daily RSKt ,

and RKUt (standardized by RVt) are given by

RSKt=

√
N ∑

N
i=1 r3

t,i

(∑N
i=1 r2

t,i)
3/2

, (8)

RKUt=
N ∑

N
i=1 r4

t,i

(∑N
i=1 r2

t,i)
2
. (9)

The scaling of RSKt and RKUt by
√

N and N makes sure that their magnitudes

correspond to daily skewness and kurtosis.

3.5 HAR-RV models

We use the standard HAR-RV model originally proposed by Corsi (2009) as the

benchmark model for realized-volatility forecasting. The HAR-RV model is one

of the most often studied models in the literature on realized-volatility forecasting

because, despite its simplicity, it is flexible enough to to account for standard

features of realized volatility such as long memory and multi-scaling behavior.

The benchmark HAR-RV model for h−days-ahead forecasting is given by

RV j
t+h=β0 +βdRV j

t +βwRV j
w,t +βmRV j

m,t + εt+h, (10)

where RV j
t can be either RV s

t , RV−t or RV+
t , i.e., overall (standard), bad and good

realized volatility, with RV s
t = RV−t +RV+

t . RV j
w,t refers to the average RV j from
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day t−5 to day t−1. RV j
m,t refers to the average RV j from day t−22 to day t−1.

The above model can be extended in various ways. In the context of our analysis,

we use as additional explanatory variables our downside and upside realized tail-

index estimators (or both) as additional predictors. The extended HAR-RV models

model are given by

RV j
t+h=β0 +βdRV j

t +βwRV j
w,t +βmRV j

m,t + γ−T Nt + εt+h, (11)

RV j
t+h=β0 +βdRV j

t +βwRV j
w,t +βmRV j

m,t + γ+T Pt + εt+h, (12)

RV j
t+h=β0 +βdRV j

t +βwRV j
w,t +βmRV j

m,t + γ−T Nt + γ+T Pt + εt+h, (13)

In addition, we examine whether adding realized skewness, RSKt , realized kurto-

sis, RKUt , or both, as to the benchmark model affects the contribution of T Nt and

T Pt to forecast performance. To this end, we add as additional covariates RSKt

and/or RKUt to the three models above.

Finally, we consider an alternative benchmark HAR-RV model that features jumps

(HAR-RV-J; Andersen et al., 2007). As we already mentioned, in order to further

validate the importance of our estimators for realized-volatility forecasting, we

also study their predictive value along with jumps. Jumps are important elements

in volatility modeling as they can explicitly improve the overall fit of volatility

models (see, e.g., Duffie et al., 2000; Andersen et al., 2007). For this alternative

benchmark, we use the realized variance constructed by summing up all succes-

sive intraday squared returns as an RV estimator. Under weak regularity condi-

tions, this estimator is a consistent estimator of quadratic variation as the sampling

frequency increases. Quadratic variation, in turn, is regarded as the best estima-

tor of integrated (latent) volatility. In order to separate the price increments into

jumps and continuous price moves, we use MRV for the part of the total variation

due to continuous price moves, while we estimate the total variation by realized

variance. For the detection of jump components, we apply the jump test statistic
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of Barndorff-Nielsen and Shepherd (2006), and Huang and Tauchen (2005) using

the median realized quarticity (MedRQ). We refer to the study by Andersen et al.

(2012) for how MRV can be used for detecting jumps, and for how to construct

MedRQ.

3.6 Forecast evaluation

We define the forecast error as FE j
t+h = RV j

t+h− R̂V j
t+h|t ( j = s, −, +), and use

the loss function studied by Elliott et al. (2005, 2008) to evaluate forecasting

performance. The loss function is given by (dropping the j index)

L(FEt+h,α) = [α +(1−2α)I[FEt+h<0]]|FEt+h|s, (14)

This loss function is of the lin-lin type when we set s = 1, and of the quad-quad

type when we set s = 2. The parameter α ∈ (0,1) governs the shape of the loss

function. A symmetric loss function is obtained when α = 0.5. As a result, when

we set α = 0.5 and s = 1, then we use the common absolute loss criterion to

evaluate forecasts. In contrast, the widely-studied squared-error-loss criterion is

obtained when we set α = 0.5 and s = 2. When the shape parameter differs from

α = 0.5, the loss function becomes asymmetric. For α > 0.5, the loss a fore-

caster incurs in case an underprediction of realized volatility is larger than the loss

from an overprediction of the same absolute size. For α < 0.5, the loss from an

overprediction of realized volatility is larger than the loss from a corresponding

underprediction.

4 Empirical analysis

4.1 Data

We use high-frequency (intraday) bitcoin prices. The sample starts on 26th Jan-

uary 2015 and ends on 11th November 2018 incorporating various booms and
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crashes in the bitcoin market. We select prices every fifteen minutes (15-min) and

construct 15-min log-returns. The sample period and the data frequency are se-

lected in order to avoid liquidity issues from no-activity periods during very short

time windows.

More specifically, earlier empirical evidence suggests that intraday returns should

be computed at the highest possible frequency so that volatility estimators con-

verge asymptotically towards the true conditional volatility following fixed do-

main asymptotics (also called infill asymptotics). At the same time, the sampling

frequency should be not too high to induce spurious jumps due to market frictions

and not too low to lead to poor data analysis. In order to put it differently, as the

noise increases when the sampling frequency converges on zero (see Andersen

and Bollerslev 1997, 1998; Taylor and Xu, 1997), we select the highest sampling

frequency as the optimal sampling frequency at which the autocovariance bias

term disappears (see, Oomen, 2001; Oomen, 2004; Degianakis and Floros, 2016;

Degiannakis and Filis, 2017; Sévi, 2014, among others). The optimal sampling

frequency takes into consideration the trade-off between the bias of the estimators

and their accuracy. Also, it should be noted that, while in the literature on tradi-

tional assets a 5-min sampling frequency has been found adequate for forecasting

experiments (Liu et al., 2015), bitcoin is a new asset, and liquidity is one of many

factors that leads to sudden movements in its price (see, Scaillet et al., 2020).

We define a trading day from Monday to Sunday from 00:00 EST to 23:55 EST.

This definition also implies that we have enough observations to avoid poor data

analysis (Andersen, 2000). The intraday prices for bitcoin are collected from

the website Bitcoincharts (https://www.bitcoincharts.com), which offers data on a

number of liquid bitcoin markets.

We clean the sample following the suggestions by Barndorff-Nielsen et al. (2009)

in order to reduce the effect of market micro-structure noise and to avoid mislead-

17



ing results related to sample bias. Such a procedure is also required to deal with

higher-order moments so as to ensure that these moments can effectively capture

specific features like asymmetry and fat-tailedness (Amaya et al., 2015). More

specifically, we proceed in the following steps. First, we exclude fixed and mov-

ing holidays, including Christmas, New Year’s Day etc. from the sample. Second,

we remove days with infrequent trades (days with recorded prices for less than 70

percent of the expected observations on operating time) from the sample. Third,

we apply the estimators to the series of mid-quotes after filtering out spread out-

liers (less than 0.1 percent in each distribution tail).

− Please include Table 1 about here. −

The final sample includes 1381 trading days. The data on returns and realized

volatility (RV s) are plotted in Figure 1, and descriptive statistics of our key pre-

dictor variables are summarized in Table 1.

4.2 Baseline results

We use a rolling-estimation window to estimate the variants of the HAR-RV mod-

els that we study in our empirical research. We then use the variant of the Diebold

and Mariano (1993) test studied by Harvey et al. (1997) to analyze the incremental

predictive value of the realized tail-index estimators. We consider a short (h = 1),

a medium (h = 5), and a long (h = 22) forecast horizon.4 We mainly focus on

the quad-quad version of the loss function and present results for the lin-lin loss

function at the end of this section.

4We arrange the data matrix such that we have exactly the same number of observations for all
three forecasting horizons. We compute all estimation results that we report in this research using
the R programming environment (R Core Team 2017). We compute the p-values of the Diebold-
Mariano test using the R package “forecast” (Hyndman, 2017; Hyndman and Khandakar, 2008),
with the code changed to account for the asymmetry of the loss function.
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− Please include Figure 2 about here. −

Figure 2 summarizes the results for a baseline scenario in which we compare the

HAR-RV baseline model with an extended model that features one or both of the

tail-index estimators. For the short forecast horizon (specifications T P and T P+

T N) and for the medium forecast horizon (all three specifications), we observe a

relatively large area of significant test results for the quad-quad loss function for

α > 0.5 and a rolling-estimation window that comprises more than approximately

400 data. For the long forecast horizon, we only observe occasionally significant

test results. Moreover, we observe relatively small areas of significant test results

for α << 0.5 in case of the medium forecast horizon, and only for a rather short

rolling-estimation window.5

While MRV is a jump-robust estimator, results for a HAR-RV-J model that fea-

tures the jump component and estimated on a standard measure of RV are similar

to the results we report in Figure 2. We report the results for such a model at

the end of the paper (Appendix, Figure A1). It is important to mention that such

results are expected and that they suggest that our main evidence is robust to the

choice of alternative realized volatility estimators with and without the presence

of jumps.

− Please include Figure 3 about here. −

Figure 3 summarizes the results that we obtain when we control for RSK, RKU ,

or both. We observe for the RKU/T N+T P and RSK/T N+T P models relatively

5While we report results for the medium and long forecast horizon based on multiple-step
forecasts of yt+h, results for forecasts of mean(yt+1+...+yt+h) are similar. Moreover, as suggested
by an anonymous reviewer, we also consider as an extension HAR-RV models that includes returns
as an additional control variable. Results for these extended HAR-RV models are similar to those
reported in Figure 2. Complete results are available upon request.
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large areas of significant test results for both the short and the medium forecast

horizon when we assume that a forecaster incurs a larger loss from an underpre-

diction than from a corresponding overprediction and the length of the rolling-

estimation window is not too short. Such a forecaster benefits from considering

the tail-index estimators also in case of the RKU +RSK/T N +T P model, but the

areas of significant test results are smaller than in the case of the other two models

(short- and medium-forecast horizon). As compared to the baseline scenario, the

areas of significant test results that we observe for α << 0.5 are somewhat larger

in case of the medium-forecast horizon. For the long-forecast horizon, the areas

of significant test results are small and fragmented.

− Please include Figure 4 about here. −

Figure 4 summarizes the results for bad and good volatility. Results resemble the

results for the standard realized volatility. A forecaster who suffers more from an

underprediction than from a corresponding overprediction benefits from consid-

ering the tail-index estimators as predictors for medium and short forecast hori-

zons (quad-quad loss function) and when the rolling-estimation window is not

too short. For the long forecast horizon, test results are significant only for a

few specific constellations of the asymmetry parameter and the rolling-estimation

window.

− Please include Figure 5 about here. −

Figure 5 summarizes the results for a lin-lin loss function, where we focus on the

baseline model (without RKU and RSK). The results show that a forecaster who

suffers more from an overprediction than an underprediction (α < 0.5) tends to

benefit from accounting for the information embedded in the tail-index estimators
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when we study for a short- and medium-forecast horizon, and a short rolling-

estimation window. In contrast, when the length of the rolling-estimation window

increases, a forecaster who suffers more from an underprediction than an overpre-

diction (where α is substantially larger than its symmetric benchmark value of 0.5)

benefits from considering the tail indices for forecasting realized volatility, a result

that we observe for all three forecast horizons. For the short and medium forecast

horizon, however, the test results are significant only for a somewhat small range

of very large asymmetry parameters than in the case of a quad-quad loss function,

a result that was to be expected. Because the loss a forecaster suffers in case of a

large forecast error is larger under a quad-quad than under a lin-lin loss function,

it is not surprising that we observe for these two forecast horizons larger areas of

significant test results (for values of the asymmetry parameter α > 0.5) in case of

a quad-quad loss function.

4.3 Simulation results

The Diebold-Mariano test has a degenerate asymptotic distribution under the null

hypothesis in case one tests nested models. Given that we use a rolling-estimation

window, it is likely that the asymptotic properties of the Diebold-Mariano test are

not a major issue in the case of our research. In order to inspect this issue further,

however, we now present the results of a simulation study that serves to assess

the reliability of the results of the Diebold-Mariano test. The simulation study is

based on the simulation design described by Rapach et al. (2005).

In order to set up the simulation study, we estimate in a first step the baseline

HAR-RV model along with models for the realized tail-index estimators on the

full sample of data. As for the models for the tail-index estimators, we assume

AR(5) models to capture longer-range dependence in a stylized way. It is impor-

tant to note that the baseline HAR-RV model does not feature the measures of
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tail-index estimators, that is, the null hypothesis is that the tail-index estimators

do not add any value to the baseline HAR-RV model. We store the coefficients

and the residuals we obtain from the baseline HAR-RV model and the models

estimated for the measures of tail indices.

In a second step, we sample with replacement from the residuals, where we pre-

serve the contemporaneous correlation of the residuals from the different models.

We draw sampled time series of residuals for 1000 simulation runs. We sample

in such a way that after the initialization of RVm and MRVm and computing leads

(22 days-ahead-forecasts), 100 transitory data are available. The transitory data

are not used for the computation of the Diebold-Mariano test but are rather used

to initialize the models to be estimated.

In a third step, we use the sampled residuals along with the estimated coefficients

(step one), to simulate artificial time series of realized volatility and the measures

of realized tail-index estimators. Initial values are set to zero (which is innocuous

given that we delete 100 transitory observations). We then estimate the baseline

HAR-RV model and the HAR-RV models extended to include tail-index estima-

tors, where we consider rolling-estimation windows of length ranging from 50,

100, ..., to 800 observations. Forecasts and actuals obtained from these models

are stored.

In a fourth step, we estimate the baseline HAR-RV model and its extensions on

the original data for the various rolling-estimation windows. We then estimate the

Diebold-Mariano test for the original data and for the simulated data. We compute

the p-values for the Diebold-Mariano test for every length of the rolling-estimation

window, every asymmetry parameter, and for the three different forecast horizons.

We compute the p-values as #(simulated DM tests > original DM test) / #(simu-

lated DM tests).6

6In few cases, the Diebold-Mariano test produces a negative estimate of the variance of the
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− Please include Figure 6 about here. −

Figure 6 summarizes the simulation results. The simulation results corroborate

our main finding that mainly forecasters who suffer a larger loss in case of an un-

derprediction of realized volatility than in case of an overprediction of the same

absolute size benefit from using measures of realized tail indices to compute fore-

casts. This main finding is obtained mainly for the short- and medium-forecast

horizon.

4.4 The length of the rolling-estimation window

Our simulation study helps to assess the significance of the results of the Diebold-

Mariano test, given the length of a rolling-estimation-window. A different ques-

tion concerns how a forecaster should choose among the alternative lengths of

the rolling-estimation windows. This choice is of crucial importance, as our re-

sults demonstrate. One approach to address this question is to ask whether an

optimal rolling-estimation window can be identified.7 The choice of an optimal

rolling-estimation window involves a trade off that arises because a short rolling-

estimation window reduces the risk of computing biased forecasts when the data-

generating process underlying the dynamics of realized volatility changes over

time but, at the same time, may result in a higher forecast-error variance than fore-

casts computed based on a long rolling-estimation window. A second approach

is to use a unified test statistic that compares the accuracy of forecasts across the

loss differential. These cases are not used for the computation of the p-values.
7One way to identify the optimal length of the rolling-estimation window is to compute, given

the asymmetry parameter and the forecast horizon, the cumulated loss for the models that fea-
ture the realized tail indices and divide it by the cumulated loss obtained for the baseline model.
The minimum of this ratio gives the optimal length of the rolling-estimation window for every
asymmetry parameter and every forecast horizon (results are available upon request).
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whole array of different rolling-estimation windows. Such approaches have been

studied in recent research by Rossi and Inoue (2012), Inoue et al. (2017) and and

Pesaran and Timmermann (2007). The latter also consider, as a third approach,

procedures for combining forecasts from models estimated using different lengths

for the rolling-estimation window into a single forecast. We adopt in our research,

as a robustness check of our results, this third approach.

− Please include Figure 7 about here. −

The specific forecast-combination procedure that we use requires that a fore-

caster chooses in every out-of-sample period the median forecast computed across

rolling-estimation windows, where the length of the rolling-estimation windows

varies from 50, 100, ..., to 800 observations.8 We summarize the results in Figure

7. The results corroborate that the results of the Diebold-Mariano test get signifi-

cant when the asymmetry parameter approaches the upper bound of its admissible

range, where this effect is stronger for the short and the medium forecast horizon

than for the long forecast horizon.

4.5 Nonlinear transformations

As two important variants of our baseline models, we consider two common vari-

ants of the HAR-RV model that make use of nonlinear transformations of realized

volatility. In the first model, we replace realized volatility with its square root (that

is, the realized standard deviation). Modeling the square-root of realized volatil-

ity may be particularly relevant in risk-management applications. In the second

8As one would have expected, the variance of forecasts increases as the rolling-estimation
window gets shorter. For this reason, we do not to consider a mean forecast (on which the forecasts
from the short rolling-estimation window would have a relatively large effect) but rather a median
forecast.
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model, we study the natural logarithm of the realized standard deviation (see, e.g.,

Andersen et al., 2007). After having estimated the model in logs, we compute

the anti-log of the forecasts deriving from the estimated model and then add a

Jensen-Ito term, as in Degiannakis and Filis (2017).

− Please include Figures 8 about here. −

Figure 8 summarizes the results (quad-quad loss function). For both the square-

root model and the logarithmic model, we find that for not too short rolling-

estimation windows a forecaster with an asymmetric loss function that attaches

a larger loss to an underprediction relative to a corresponding overprediction ben-

efits from using the tail-index estimators in the forecasting model. We obtain this

finding not only for the short- and medium- forecast horizons, but also (albeit to a

lesser extent) for the long-forecasting horizon.

5 Concluding remarks

We conduct in our research a predictive analysis of realized volatility obtained

from intraday data of bitcoin returns. We use the HAR-RV model and study mea-

sures focusing exclusively on relatively large returns realizations to assess the tail

shape of the bitcoin-returns distribution. We study whether these measures help to

forecast the realized volatility of bitcoin returns more accurately. We construct our

tail measures based on the widely used Hill tail-index estimator for investigating

the tail behavior of asset returns. We also control for the impact of realized skew-

ness and realized kurtosis as predictors of realized volatility of bitcoin returns,

and we consider the bad (downside) and good (upside) component of realized

volatility.
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We find that our measures help to improve forecasts of daily realized bitcoin re-

alized volatility mainly for forecasters who have a loss function that attaches a

greater weight to losses from an underprediction of realized volatility than from

an overprediction of the same absolute size. Test results for forecasters who suffer

from a relatively high loss from an overprediction of realized volatility are signif-

icant only for few model configurations. Given that the bitcoin price is highly

volatile, and that price movements can be sudden and disruptive, this main result

of our empirical analysis is important for investors who rely on the highly popu-

lar HAR-RV model to forecast realized bitcoin volatility and to manage the risk

of their bitcoin investments, mainly at a short and medium forecast horizon. We

show that our main result also obtains when we consider variants of the HAR-RV

model that feature realized skewness and/or realized kurtosis, and when we con-

sider models that feature a nonlinear transformation of realized volatility (that is,

the square-root model and the logarithmic model). Moreover, the significance of

the predictive value added by our measures is somewhat stronger, as one would

have expected, when we consider a quad-quad rather than a lin-lin loss function.

Acknowledgments

We thank an associate editor and two anonymous reviewers for helpful comments.

The usual disclaimer applies.

References

Al Rahahleh, N., and Bhatti, M. I. (2017). Co-movement measure of informa-

tion transmission on international equity markets. Physica A: Statistical

Mechanics and its Applications 470: 119−131.

26



Amaya, D., Christoffersen, P., Jacobs, K., and Vasquez, A. (2015). Does realized

skewness predict the cross-section of equity returns? Journal of Financial

Economics 118: 135−167.

Andersen, T.G., Bollerslev, T. (1997). Intraday periodicity and volatility persis-

tence in financial markets. Journal of Empirical Finance 4: 115−158.

Andersen, T., and Bollerslev, T. (1998). Answering the skeptics: Yes, standard

volatility models do provide accurate forecasts. International Economic Re-

view 39: 885−905.

Andersen, T. G. (2000). Some reflections on analysis of high-frequency data.

Journal of Business & Economic Statistics 18(2): 146−153.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The dis-

tribution of realized stock return volatility. Journal of Financial Economics

61: 43−76.

Andersen, T. G., and Bollerslev, T., and Diebold, F.X. (2007). Roughing it up:

Including jump components in the measurement, modeling, and forecasting

of return volatility. Review of Economics and Statistics 89: 701−720.

Andersen, T. G., Bollerslev, T., Diebold, F.X. and Labys, P. (2009). Paramet-

ric and Nonparametric Volatility Measurement. In Y. Ait-Sahalia and L.

Hansen (eds), Handbook of Financial Econometrics, Vol. 1. p. 67−138.

North Holland, Amsterdam.

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility

estimation using nearest neighbor truncation. Journal of Econometrics 169:

75−93.

Ardia, D., Bluteau, K., and Rede, M. (2018). Regime changes in bitcoin GARCH

volatility dynamics. Finance Research Letters. DOI: https://doi.org/

27

https://doi.org/10.1016/j.frl.2018.08.009
https://doi.org/10.1016/j.frl.2018.08.009


10.1016/j.frl.2018.08.009.

Baek, C., Elbeck, M.A. (2015). Bitcoins as an investment or speculative vehicle?

A first look. Applied Economics Letters 22: 30−34.

Bandi, F. M., and R. Reno. (2012). Time-Varying Leverage Effects. Journal of

Econometrics 169: 94−113.

Barndorff-Nielsen, O.E., Shephard, N. (2006). Econometrics of testing for jumps

in financial economics using bipower variation. Journal of Financial Econo-

metrics 4: 1−30.

Barndorff-Nielsen, O. E., and Shephard, N. (2007). Variation, Jumps and High

Frequency Data in Financial Econometrics. In R. Blundell, T. Persson,

and W. Newey (eds), Advanced in Economics and Econometrics: Theory

and Applications, Ninth World Congress, Econometric Society Monograph,

328−72. Cambridge, UK: Cambridge University Press.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009).

Realized kernels in practice: Trades and quotes. Econometrics Journal 12:

C1−C32.

Barndorff-Nielsen, O.E., Kinnebrouk, S., and Shephard, N. (2010). Measuring

downside risk: realised semivariance. In: Volatility and time series econo-

metrics: Essays in honor of Robert F. Engle (edited by T. Bollerslev, J.

Russell and M. Watson), 117-136. Oxford University Press.

Bee, M., Dupuis, D. J., and Trapin, L. (2019). Realized Peaks over Threshold: A

Time-Varying Extreme Value Approach with High-Frequency-Based Mea-

sures. Journal of Financial Econometrics 17(2): 254−283.

Bekaert, G., and Hoerova, M. (2014). The VIX, the Variance Premium and Stock

Market Volatility. Journal of Econometrics 183: 181−192.

28

https://doi.org/10.1016/j.frl.2018.08.009
https://doi.org/10.1016/j.frl.2018.08.009


Bhatti, M. I., and Nguyen, C. C. (2012). Diversification evidence from interna-

tional equity markets using extreme values and stochastic copulas. Journal

of International Financial Markets, Institutions and Money 22(3): 622−646.

Bohme, R., Christin, N., Edelman, B., and Moore, T. (2015). Bitcoin: Eco-

nomics, technology, and governance. Journal of economic Perspectives

29(2): 213−38.

Bollerslev, T., Law, T. H., and Tauchen, G. (2008). Risk, jumps, and diversifica-

tion. Journal of Econometrics 144: 234−256.

Bollerslev, T., and V. Todorov. (2011). Estimation of Jump Tails. Econometrica

79: 1727−1783.

Bollerslev, T., Todorov, V., and Li, S. Z. (2013). Jump tails, extreme dependen-

cies, and the distribution of stock returns. Journal of Econometrics 172(2):

307−324.

Bouri, E., Shahzad, S.J.H., and Roubaudb, D. (2018). Co-explosivity in the

cryptocurrency market. Finance Research Letters. DOI: https://doi.

org/10.1016/j.frl.2018.07.005.

Chen, X., and E. Ghysels (2012). News −4 Good or Bad −4 and its Impact on

Volatility Predictions over Multiple Horizons. Review of Financial Studies

24(1): 46−481.

Choulakian, V., and Stephens, M. A. (2012). Goodness-of-fit tests for the gener-

alized pareto distribution. Technometrics 43: 478−484.

Chu, J., Chan, S., Nadarajah, S., and Osterrieder, J. (2017). GARCH modelling

of cryptocurrencies. Journal of Risk and Financial Management 10: 17.

DOI: 10.3390/jrfm10040017.

29

https://doi.org/10.1016/j.frl.2018.07.005
https://doi.org/10.1016/j.frl.2018.07.005
10.3390/jrfm10040017


Conrad, C., Custovic, A., and Ghysels, E. (2018). Long- and short-term cryp-

tocurrency volatility components: A GARCH-MIDAS analysis. Journal of

Risk and Financial Management 11: 23. DOI: 10.3390/jrfm11020023.

Corsi, F. (2009). A simple approximate long-memory model of realized volatil-

ity. Journal of Financial Econometrics 7: 174−96.

Dacorogna, M.M., Genay, R., Muller, U.A., Olsen, R.B. and Pictet, O.V. (2001).

An introduction to high-frequency finance. Academic Press, San Diego.

Danielsson, J., and De Vries, C. G. (1997). Tail index and quantile estima-

tion with very high frequency data. Journal of Empirical Finance 4(2−3):

241−257.

De Haan, L., and Ferreira, A. (2006). Extreme Value Theory: An Introduction,

Springer. Springer. DOI: 10.1007/0-387-33477-7.

Duffie D., Pan J., Singleton K. (2000). Transform analysis and asset pricing for

affine jump−diffusions. Econometrica 68:1343−1376.

Degiannakis, S., and Floros, C. (2016). Intraday realized volatility for European

and USA stock indices. Global Finance Journal 29: 24−41.

Degiannakis, S., and Filis, G. (2017). Forecasting oil price realized volatility us-

ing information channels from other asset classes. Journal of International

Money and Finance 76: 28−49.

De Lira Salvatierra, I. A., and A. J. Patton. (2015). Dynamic Copula Models and

High Frequency Data. Journal of Empirical Finance 30: 120−135.

Diebold, F.X., and Mariano, R.S. (1995). Comparing predictive accuracy. Jour-

nal of Business & Economic Statistics 13 (3): 253−263.

30

10.3390/jrfm11020023
10.1007/0-387-33477-7


Diebold, F. X., Hahn, J., and Tay, A. S. (1999). Multivariate density forecast

evaluation and calibration in financial risk management: High-frequency re-

turns on foreign exchange. Review of Economics and Statistics 81: 661−673.

Engle, R., and V. Ng (1993). Measuring and Testing the Impact of News and

Volatility. Journal of Finance. 48(5): 1749−1778.

Elliott, G., Komunjer, I. and Timmermann, A. (2005). Estimation and testing of

forecasting rationality under flexible loss. Review of Economic Studies 72:

1107−1125.

Elliott, G., Komunjer, I., and Timmermann, A. (2008). Biases in macroeconomic

forecasts: irrationality or asymmetric loss?. Journal of the European Eco-

nomic Association 6: 122−157.

Ghysels, E., and Sinko, A. (2011). Volatility forecasting and microstructure

noise. Journal of Econometrics, 160(1): 257−271.

Gkillas, K., and Katsiampa, P. (2018). An application of extreme value theory to

cryptocurrencies. Economics Letters 164: 109−111.

Gkillas, K., and Longin, F. (2018). Is bitcoin the new digital gold? Evidence

from extreme price movements in financial markets. SSRN Electronic Jour-

nal. URL: https://doi.org/10.2139/ssrn.3245571.

Gkillas, K., Gupta, R., and Pierdzioch, C. (2019). Forecasting (downside and

upside) realized exchange-rate volatility: Is there a role for realized skew-

ness and kurtosis?. Physica A: Statistical Mechanics and its Applications

532: 121867.

Hansen, P. R., Z. Huang, and H. H. Shek. (2012). Realized GARCH: A Joint

Model for Returns and Realized Measures of Volatility. Journal of Applied

Econometrics 27: 877−906.

31

https://doi.org/10.2139/ssrn.3245571


Hansen, P. R., A. Lunde, and V. Voev. (2014). Realized Beta GARCH: A Mul-

tivariate GARCH Model with Realized Measures of Volatility. Journal of

Applied Econometrics 29: 774−799.

Hansen, P. R., and Huang, Z. (2016). Exponential GARCH modeling with real-

ized measures of volatility. Journal of Business & Economic Statistics 34:

269−287.

Harvey, D., Leybourne, S., and Newbold, P., 1997. Testing the equality of

prediction mean squared errors. International Journal of Forecasting 13:

281−291.

Hattori, T. (2019). Does 5-minute RV Outperform Other Realized Measures

in the Cryptocurrency Market?. SSRN Electronic Journal. URL: http:

//dx.doi.org/10.2139/ssrn.3416106.

Hattori, T. (2020). A Forecast Comparison of Volatility Models Using Realized

Volatility: Evidence from the Bitcoin Market. Applied Economics Letters

27: 591−595.

Hill, B. M. (1975). A simple general approach to interface about the tail of a

distribution. Annals of Statistics 3: 1163−1174.

Huang, X., and Tauchen, G. (2005). The relative contribution of jumps to total

price variance. Journal of Financial Economics 3: 456−499.

Hyndman, R.J. (2017). forecast: Forecasting functions for time series and linear

models. R package version 8.0, URL: http://github.com/robjhyndman/

forecast.

Hyndman, R.J., and Khandakar, Y (2008). Automatic time series forecasting:

the forecast package for R. Journal of Statistical Software 26: 1−22.

32

http://dx.doi.org/10.2139/ssrn.3416106
http://dx.doi.org/10.2139/ssrn.3416106
http://github.com/robjhyndman/forecast
http://github.com/robjhyndman/forecast


Inoue, A., Jin, L., and Rossi, B. (2017). Rolling window selection for out-of-

sample forecasting with time-varying parameters. Journal of Econometrics

196: 55−67.

Jansen, D. W., and de Vries, C. G. (1991). On the frequency of large stock

returns: Putting booms and busts into perspective. Review of Economics

and Statistics 73: 18−24.

Kim, T. (2017). On the transaction cost of bitcoin. Finance Research Letters 23:

300−305.

Kochling, G., Schmidtke, P., and Posch, P. N. (2019). Volatility Forecasting

Accuracy for Bitcoin. Economics Letters. DOI: ://doi.org/10.1016/j.

econlet.2019.108836.

Mansor, F., Al Rahahleh, N, and Bhatti, M. I. (2019). New Evidence on Fund

Performance in Extreme Events. International Journal of Managerial Fi-

nance, 2019:15(4), 511−532.

Mei, D., Liu, J., Ma, F., and Chen, W. (2017). Forecasting stock market volatil-

ity: Do realized skewness and kurtosis help?. Physica A-Statistical Me-

chanics and its Applications 481: 153−159.

Nakamoto, S. (2008). Bitcoin: a peer to peer electronic cash system. Available

for download at: https://bitcoin.org/bitcoin.pdf.

Neuberger, A., and Payne, R.G. (2018). The skewness of the stock market at long

horizons. Available at SSRN: https://ssrn.com/abstract=3173581.

Nguyen, C. C., and Bhatti, M. I. (2012). Copula model dependency between oil

prices and stock markets: Evidence from China and Vietnam. Journal of

International Financial Markets, Institutions and Money 22(4): 758−773.

33

://doi.org/10.1016/j.econlet.2019.108836
://doi.org/10.1016/j.econlet.2019.108836
https://bitcoin.org/bitcoin.pdf
https://ssrn.com/abstract=3173581


Nguyen, C., Bhatti, M. I., Komorníková, M., and Komorník, J. (2016). Gold

price and stock markets nexus under mixed-copulas. Economic Modelling

58: 283−292.

Nguyen, C., Bhatti, M. I., and Henry, D. (2017). Are Vietnam and Chinese

stock markets out of the US contagion effect in extreme events?. Physica

A-Statistical Mechanics and its Applications 480: 10−21.

Noureldin, D., Shephard, N., and Shephard, K. (2012). Multivariate High−Frequency−Based

Volatility (HEAVY) Models. Journal of Applied Econometrics 27: 907−933.

Liu, L. Y., Patton, A. J. and Sheppard, K. (2015), Does Anything Beat 5-minute

RV? A Comparison of Realized Measures across Multiple Asset Classes.

Journal of Econometrics 187: 293−311.

Longin, F. (2000). From Value at Risk to Stress Testing: The Extreme Value

Approach. Journal of Banking & Finance 24: 1097−1130.

Longin, F., and Solnik, B. (2001). Extreme correlation of international equity

markets. The journal of finance 56(2): 649−676.

Oh, D. H., and A. J. Patton. (2016). High Dimension Copula-Based Distributions

with Mixed Frequency Data. Journal of Econometrics 193: 349–366.

Oomen, R. C. (2001). Using High Frequency Data to Calculate, Model and Fore-

cast Realized Volatility (No. 75). Society for Computational Economics.

Oomen, R. C. (2004). Modelling realized variance when returns are serially

correlated (No. SP II 2004−11). WZB Discussion Paper.

Osterrieder, J., and Lorenz, J. (2017). A statistical risk assessment of Bitcoin and

its extreme tail behavior. Annals of Financial Economics 12: 1750003−1

−1750003−19.

34



Patton, J. A. (2011). Volatility Forecast Comparison Using Imperfect Volatility

Proxies. Journal of Econometrics 160: 246−256.

Pesaran, H., and Timmermann, A. (2007). Selection of estimation window in the

presence of breaks. Journal of Econometrics 137: 134−161.

Rapach, D.E., Wohar, M.E., and Rangvid, J. (2005). Macro variables and inter-

national stock return predictability. International Journal of Forecasting 21:

137−166.

R Core Team (2017). R: A language and environment for statistical computing,

Vienna, Austria: R Foundation for Statistical Computing. URL: http://

www.R-project.org/.Rversion3.3.3.

Rossi, B., and Inoue, A. (2012). Out-of-sample forecast tests robust to the choice

of window size. Journal of Business & Economic Statistics 30: 432−453.

Scaillet, O., Treccani, A., and Trevisan, C. (2020). High−frequency jump analy-

sis of the bitcoin market. Journal of Financial Econometrics 18(2): 209−232.

Sevi, B. (2014). Forecasting the volatility of crude oil futures using intraday

data. European Journal of Operational Research 235: 643−659.

Shephard, N., and Shephard, K. (2010). Realizing the Future: Forecasting with

High-Frequency-Based Volatility (HEAVY) Models. Journal of Applied

Econometrics 25: 197−231.

Taylor, S. J., and Xu, X. (1997). The incremental volatility information in one

million foreign exchange quotations. Journal of Empirical Finance 4(4):

317−340.

Urquhart, A. (2016). The inefficiency of bitcoin. Economics Letters 150: 1−7.

35

http://www.R-project.org/. R version 3.3.3
http://www.R-project.org/. R version 3.3.3


West, K.D., Edison, H.J. and Cho, D. (1993). A utility-based comparison of

some models of exchange rate volatility. Journal of International Economics

35: 23−46.

36



Figure 1: Bitcoin Returns and Realized Volatility
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Figure 7: Results for Forecast Combination

Panel A: h = 1
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Panel c: h = 22
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Results are based on rolling-window estimates. The horizontal axis displays the asymmetry parameter. The vertical
axis displays the p-value of the Diebold-Mariano test. Null hypothesis: the two series of forecasts are equally accurate.
Alternative hypothesis: the forecasts from the model extended to include the tail-index estimators (TN and TP) is more
accurate. Forecasts Combination is achieved by choosing in every out-of-sample period the median forecast as computed
across rolling-estimation windows, where the length of the rolling-estimation windows varies from 50, 100, ..., to 800
observations.
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Table 1: Summary Statistics

Statistic RV RSK RKU TN TP
Min. 0.001 -35.766 2.396 -4.533 -4.185
1st Qu. 0.040 -1.534 5.364 -1.847 -1.981
Median 0.089 -0.935 8.116 -1.38 0 -1.570
Mean 0.385 -1.416 19.726 -1.147 -1.362
3rd Qu. 0.249 -0.543 14.637 -0.694 -0.952
Max. 46.876 0.302 1294.250 4.610 3.783

Note: The column for realized volatility shows the statistics for annualized realized volatility.
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Appendix

Figure A1: Results for a Model Featuring Jumps
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Note: Black area: Diebold-Mariano test is significant at the 5% level. Gray area: Diebold-Mariano test is significant at the
10% level. Null hypothesis: the two series of forecasts are equally accurate. Alternative hypothesis: the forecasts from
the model extended to include the tail-index estimator is more accurate. Results are based on rolling-window estimates.
The horizontal axis displays the length of a rolling window. The vertical axis displays the asymmetry parameter of the loss
function. L2: quad-quad loss.

46


	Introduction
	Theoretical considerations
	Tail index: A general framework
	Tail index: An intraday framework

	Methods
	Realized volatility
	Realized downside and upside tail indices
	Realized downside and upside volatility
	Realized skewness and realized kurtosis
	HAR-RV models
	Forecast evaluation

	Empirical analysis
	Data
	Baseline results
	Simulation results
	The length of the rolling-estimation window
	Nonlinear transformations

	Concluding remarks

