
1 
 

The effect of an objective weighting of the Global Food Security Index's 

natural resources and resilience component on country scores and ranking 

Valiant O Odhiambo1, Sheryl L Hendriks1* and Eness P Mutsvangwa-Sammie1 

1Department of Agricultural Economics, Extension and Rural Development, University of Pretoria, 
South Africa.  

* Corresponding author: sheryl.hendriks@up.ac.za 

 

Abstract 

Composite indicators have gained popularity in various research areas. However, the 
determination of an appropriate weighting method is challenging. Subjective weighting 
methods are criticised for their potential bias that may reduce stakeholders’ trust in the results 
of a composite index. By contrast, objective weighting processes are perceived to provide 
unbiased results that may overcome trust issues. The Global Food Security Index (GFSI) is a 
composite indicator that measures the comparative level of food insecurity for 113 countries. 
The initial components of the GFSI included the affordability, availability and quality and 
safety components. In 2017, the GFSI added a fourth component for natural resources and 
resilience (NRR) as a risk to food security. The Economist Intelligence Unit’s (EIU) panel of 
experts uses a subjective weighting of indicators in the GFSI model. This study set out to assess 
whether an objective weighting of the NRR component of the GFSI significantly changed the 
country scores and ranks compared to the subjective weighting process. The GFSI data was 
analysed using a principal component analysis (PCA) to derive objectively weighted NRR 
scores and ranks. The objectively and subjectively weighted NRR ranks were strongly 
correlated (rho = 0.831), implying that the GFSI model was not strongly statistically biased. 
The study concluded that subjective weighting of the NRR component of the GFSI may still 
provide relatively fair country scores and ranks. However, an objective weighting of the NRR 
component could improve the reliability of the NRR component of the GFSI and build greater 
trust. 

Keywords: Economist intelligence unit global food security index; Natural resources and 

resilience; Adjusted overall global food security index; Principal components analysis; Food 

security 

 

1 Introduction 

Composite indicators have gained popularity in various research areas, such as performance 

monitoring and decision making (OECD 2008). However, the determination of an appropriate 

weighting method is a significant problem in the creation of composite indices. Weighting 

methods significantly affect the results of composite indicators in a benchmarking context 
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(Nardo et al. 2005). Subjective weighting methods are criticised for their potential bias that 

may reduce stakeholders' trust in the results of a composite index (Maricic et al. 2016). By 

contrast, objective weighting processes are perceived to provide unbiased results that may 

overcome trust issues in the subjective judgements of the experts who construct composite 

indices. Therefore, the weighting of indicators should be accorded keen attention by the 

developers of a composite index (Nardo et al. 2005). 

Paruolo et al. (2013), noted a common assumption in the linear aggregation (the weighted 

arithmetic average) process where weights are coefficients allocated to reflect the relative 

importance of each indicator. Albeit intuitively appealing, this assumption is not defensible 

theoretically as weights in this aggregation setting represent the marginal rate of substitutability 

between individual indicators (Lindén 2018). The substitutability of indicators implies that 

weights show the possibility of compensating for a loss in one indicator with an improvement 

in another indicator (Decancq and Lugo 2013; Munda and Nardo 2005). The weights are 

perceived to express trade-off ratios between pairs of indicators, inferring a compensatory 

scheme as opposed to coefficients of relative importance (Freudenberg 2003; Nardo et al. 

2005). Therefore, high scores in some indicators may offset low scores in other indicators to 

attain a higher composite index score (Greco et al. 2019).     

The Global Food Security Index (GFSI) is a composite indicator designed by the Economist 

Intelligence Unit (EIU) as a benchmarking model that measures the comparative level of food 

insecurity for countries (EIU 2019). The initial components of the GFSI included the 

affordability, availability and quality and safety components that measured a specific food 

security dimension (EIU 2017). In 2017, the GFSI added a fourth component for natural 

resources and resilience (NRR) to the initial three dimensions of affordability, availability and 

quality and safety components (EIU 2017). This component was added as an adjustment factor 

to capture changes to the overall food security score in the event of climate-related and natural 

resource risks and how countries adapt to these risks.  

The scarcity of natural resources already constrains economic growth and food (Sweileh 2020). 

The changing climate-related conditions will profoundly affect those countries that are least 

resilient (Sova et al. 2019). Resilience is defined as the ability to restrain and mitigate crises 

and disaster, likewise, to anticipate, absorb and bounce back from these shocks in a timely, 

efficient and sustainable way (FAO 2013). The policymakers seek a working guide to 

improving their targeting and monitoring efforts for food security. An assessment of climate-
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related and natural resource risks is important for policymakers to make future decisions 

(Sweileh 2020). Also, national food security and climate-related performance scores may 

incentivise the government's progress towards global targets (Santeramo 2015a), such as 

sustainable food systems. A biased measurement of national food security and climate-related 

performance may drive misdiagnosis and inappropriate responses (Headey and Ecker 2013). 

Therefore, an evidence-based understanding of a country's progress in managing natural 

resource risks may help countries identify the areas that need intervention (Caccavale and 

Giuffrida 2020). 

The EIU panel consists of twenty renowned international experts on food security, agricultural 

policy, climate change and natural resources (EIU 2019). In the weighting of the GFSI, the EIU 

panel of experts apply two sets of weightings. The first, known as an equal weighting, assumes 

that all indicators have the same level of importance (EIU 2019). The second weighting option 

of the GFSI is referred to as the 'peer panel recommendation' as it involves averaging the 

indicator weights suggested by five members of the EIU panel of experts (EIU 2019). An 

analyst of the GFSI model has the option of using any of the two mentioned weights provided 

by the EIU or even applying new weights (EIU 2019). However, the default setting weights 

used in the GFSI model is the indicator weights suggested by the EIU experts (EIU 2019). This 

EIU weighting process of allocating indicator weights may be subjective for two reasons. 

Firstly, the suggestion of the indicator weights by the EIU experts depends on the knowledge 

and judgements of these experts. These experts may be conversant with the relative importance 

of the GFSI indicators (Gan et al. 2017). The EIU experts may assign high weights to focus 

advocacy efforts for some indicators while penalising other indicators with low weights (Greco 

et al. 2019). Therefore, the EIU panel of experts may subjectively assign a priori (biased) 

weights to the GFSI indicators (Kao 2010). 

Secondly, the EIU weighting process does not apply statistical techniques to derive the GFSI 

weights. Statistical methods used for the objective weighting of indicators are known to 

produce less biased results in a benchmarking context (Decancq and Lugo 2013). Examples of 

objective weighting methods are principal component analysis, factor analysis, regression 

analysis and unobserved component analysis (OECD 2008). By contrast, subjective weighting 

processes are criticised for not using statistical software and for their potential bias in the 

creation of scores and ranks (Maricic et al. 2016). Such criticism of the EIU weighting process 

may reduce the confidence of countries in the GFSI results. Examples of subjective weighting 

methods are the expert/public opinion-based weighting (public opinion, analytic hierarchy 
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process and conjoint analysis) and equal weighting (OECD 2008).  

Several studies have assessed the EIU panel of expert's application of weightings. Maricic et 

al. (2016), scrutinised the 2015 GFSI weighting process by applying the Composite I-Distance 

Indicator (CIDI) method and concluded that the GFSI was based on reliable data sources like 

the World Bank but biased weights. Chen et al. (2019), applied the Hierarchical Data 

Envelopment analysis (H-DEA) approach to derive indicator weights in the 2014 GFSI. Chen 

et al. (2019), concluded that the GFSI and H-DEA weighting schemes gave similar ranks but 

slightly different weights and scores. For this reason, Chen et al. (2019), suggested that the 

designers of the GFSI should consider using the H-DEA as it does not rely on experts' opinions. 

Finally, Izraelov and Silber (2019), applied the Data Envelopment Analysis (DEA), Principal 

Component Analysis (PCA) and Lower Convex Hull (LCH) methods to assess the 2015 GFSI. 

Izraelov and Silber (2019), concluded that the GFSI weighting process was not significantly 

statistically biased as the compared rank of countries were highly correlated. While Maricic et 

al. (2016) and Chen et al. (2019), recommended the adoption of the CIDI weights and H-DEA 

weights respectively, Izraelov and Silber (2019), suggested continued use of the GFSI weights. 

However, these studies did not conduct tests to evaluate any statistical significant change in 

the GFSI scores and ranks due to alternative weightings. Also, the NRR component of the GFSI 

was still new to many researchers. This study set out to fill the research gap by exploring how 

an objective weighting of the NRR component of the GFSI affected country scores and ranks. 

The EIU panel of experts may use the findings of this study as a guide to improving the design 

of the efforts for global food security. Also, the empirical evidence may help boost 

governments' confidence in the annual GFSI results.  

This paper is organised as follows. Section two describes the methodology used by the GFSI. 

Section three describes the methods and procedures used in this study. Section four presents 

the results and discussions. Finally, the fifth section provides conclusions and 

recommendations. 

2 The methodology of the Global Food Security Index 

The use of composite indicators has continued to rise, especially in the measurement of food 

security at the national level (Santeramo 2015b). The concept of food security is increasingly 

used in the design, implementation and evaluation of humanitarian and development programs 

(Hendriks 2015). For this reason, the Economist Intelligence Unit (EIU) developed the GFSI 
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to measure food security environment at the national level (EIU 2018). Since 2012, the GFSI 

has produced annual reports containing the analysis for 113 developing and developed 

countries (EIU 2019).  

The GFSI was founded on the idea that food security could be analysed within three broad 

components: affordability, availability and quality and safety (EIU 2019). The theoretical 

framework of the GFSI was based on the internationally accepted definition of food security 

and linked its components and their indicators. The indicators of the GFSI required quantitative 

data, qualitative data and proxies when the required data were unavailable. The EIU draws data 

for the quantitative indicators from various national and international databases (EIU 2019). 

For the quantitative indicators, the EIU uses data from multiple surveys and data sources and 

makes data estimations based on information from government websites and development 

banks (EIU 2019).  

The affordability component of the GFSI assesses the capacity of people in a country to pay 

for food, their vulnerability to food-related shocks and the presence of policies and programmes 

to support consumers in the face of shocks (EIU 2019). The affordability component of the 

GFSI includes ten indicators. The availability component of the GFSI includes sixteen 

indicators and assesses the factors contributing to the food supply, the ease of access to food, 

the risk of supply disruption, the national capacity to distribute food and the research efforts to 

raise agricultural production (EIU 2019). The quality and safety component of the GFSI 

explores the types and nutritional quality of the average diets, including food safety in each 

country (EIU 2019). For example, the consumption of a higher proportion of non-starchy foods 

indicates a greater diversity of dietary food groups (Pérez-Escamilla 2017). By contrast, 

deficiencies in vitamin A, iron and zinc cause blindness, anaemia and a weakened immune 

system, respectively (Pérez-Escamilla 2017). The quality and safety component of the GFSI 

includes fourteen indicators. 

In 2017, the GFSI added a fourth component for the natural resources and resilience (NRR) to 

the existing affordability, availability, and quality and safety components (EIU 2017). The 

NRR component was added as a risk to food security (EIU 2019). For example, in the 2019 

GFSI report, Singapore was ranked position one in the overall GFSI but dropped eleven places 

to the twelfth position in the NRR adjustment of the overall GFSI (EIU 2019). The NRR 

component of the GFSI includes 21 indicators within seven components. The NRR indicators 

measure different information depending on the NRR component within which they are 
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included. The seven NRR components include exposure to climate change risks, water, land, 

oceans, sensitivity to natural resource risks, adaptive capacity and demographic stresses (EIU 

2019).  

Natural resource risks are generally climate-related, cross-cutting and interconnected, posing a 

significant impact on the natural resources that drive food systems (EIU 2018). These natural 

resource risks affect food systems. For example,  climate change risks associated with exposure 

to temperature rise, drought, flood, storm severity and sea-level rise decrease soil fertility, crop 

growth and yield (EIU 2018; Sova et al. 2019). The level of food import dependency and 

disaster risk management determine countries' sensitivity or susceptibility to climate and 

natural resource risks (West et al. 2009). The inclusion of the NRR indicators by the EIU expert 

panel implies that countries should undertake measures to build resilience to climate-related 

risks and improve food systems. For example, countries should adopt less water-intensive but 

high yielding crops, agricultural practices and techniques (ICRISAT 2017). The indicators for 

the affordability; availability; quality and safety, and natural resources and resilience 

components of the GFSI and their data sources are presented in Supplementary Table 1.  

The EIU normalises the GFSI data using a minimum-maximum normalisation method (EIU 

2019). The indicators such as road infrastructure and national agricultural risk management 

system for which a high value implies a favourable situation for food security are normalised 

as specified in Equation (1): 

zi = (xi – Min(xi))/(Max(xi) – Min(xi))        (1) 

where zi is the normalised value of the ith indicator, xi is the actual value of the ith indicator, 

Min(xi) and Max(xi) are, respectively, the lowest and highest values of the ith indicator in the 

113 countries, for all i = 1, 2, …, n. This procedure normalises the values of all indicators to 

an identical range of zero to one. The normalised values are then rescaled from a range of zero 

to one to scores ranging from zero to 100. Consequently, a country with the highest or lowest 

value of the indicator scores 100 or zero (EIU 2019). 

The indicators such as drought and flooding for which a high value implies an unfavourable 

situation for food security (EIU 2019), are normalised as specified in Equation (2) and the 

interpretation is the same.  

zi = (xi – Max(xi))/(Max(xi) – Min(xi))       (2) 

The EIU applies either equal weights or peer panel suggested weights to GFSI indicators. The 
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EIU panel of experts assigned weights to the indicators of the GFSI by averaging the indicator 

weights suggested by five members of the EIU panel (EIU 2019). The GFSI uses linear 

aggregation (the weighted arithmetic average) to compute the scores of countries. Linear 

aggregation implies that the score of the overall index (or component of the index) is calculated 

by a weighted average of the scores for individual components (or indicators) (EIU 2019). The 

GFSI scores for countries are stated on a range of zero to 100, where 100 is the most favourable 

score. Linear aggregation method is defined as illustrated in Equation (3):  

y = ∑ wizi
n
i=1             (3) 

where y is the value of the overall index (or component of the index), zi is the normalised value 

of the ith indicator, and wi is the weight allocated to zi, with ∑ wi = 1n
i=1  and 0 ≤ wi ≤ 1, for all i 

= 1, 2, …, n (EIU 2019; OECD 2008). 

The EIU uses various tables and scatterplots to visualise the results of GFSI to decision-makers 

and users (EIU 2019). The GFSI model is available online along with the weights, data and 

methodological documentation (EIU 2019). The GFSI model allows users to apply alternative 

methods regarding data, weighting, normalisation, and others to replicate sensitivity tests (EIU 

2019; Nardo et al. 2005). 

Since 2017, the overall GFSI scores of 113 countries have been adjusted by the NRR scores as 

specified in Equation (4): 

A = x(1-z) + (x z(y/100))         (4) 

where A is the adjusted overall GFSI score, x is the original overall GFSI score, y is the NRR 

score, and z is the adjustment factor weighting, where the default z is 0.25 = 25% (EIU 2019). 

The overall GFSI score was adjusted downwards based on the NRR score and the selected 

adjustment factor weighting. The higher the NRR score, the lower the adjustment of the overall 

GFSI score. A rise in the adjustment factor weighting z from 25% towards 100% would 

increasingly reduce the overall GFSI score, thereby changing the adjusted overall GFSI scores 

and ranks (EIU 2019). Considering the 2019 GFSI model, Ireland attained position one and an 

adjusted overall GFSI score of 77.9 using the 25% adjustment factor. By contrast, Finland 

attained position one and an adjusted overall GFSI score of 72.1 using the 50% adjustment 

factor. Therefore, increasing the adjustment factor weighting may raise focus on the long-term 

sustainability of food systems. 
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3 Methods and procedures 

The researcher extracted the 2019 GFSI data of 113 countries from the EIU database (EIU 

2019) and proceeded with the analytical methods and procedures. The independent variables 

analysed in this study were drawn from the 21 indicators within seven components of the NRR 

component of the GFSI. The dependent variables used were the NRR component weights, NRR 

scores and ranks, overall GFSI scores, and adjusted overall GFSI scores and ranks from the 

GFSI model. A principal component analysis (PCA) was used as an objective weighting 

scheme of the NRR component of the GFSI. 

3.1 Principal component analysis  

PCA is a statistical technique that combines and transforms a set of n correlated variables 

(indicators) z linearly into uncorrelated principal components C, as defined in Equation (5):  

Cj = ∑ rijzi
n
i=1             (5) 

where Cj is the value of the jth principal component, zi is the normalised value of the ith indicator, 

and rij is the component loading on the jth principal component attached to zi with ∑ r2
ij = 1n

i=1  

and 0 ≤ r2
ij ≤ 1, for all i = 1, 2, …, n (Izraelov and Silber 2019). The rij were then estimated 

using Stata 15 statistical software to derive the component loadings. 

The correlation matrix version of PCA was applied to standardise the original variables to zero 

means, and unit standard deviations (Nardo et al. 2005). This standardisation created an even 

influence of all variables on the principal components (Jolliffe and Cadima 2016). This study 

adopted the following four steps recommended by Nardo et al. (2005) and OECD (2008) to 

derive the weights for the variables objectively. 

3.1.1 Step 1: Suitability test for principal component analysis 

The Kaiser-Meyer-Olkin (KMO) test (OECD 2008) and Bartlett's test of sphericity (Parinet et 

al. 2004) were conducted to examine the suitability of the normalised GFSI data for a PCA. 

The data was considered suitable for a PCA if the KMO value was at least 0.5 (Parinet et al. 

2004). The Bartlett's test of sphericity tested the null hypothesis that all pairs of indicators in 

any correlation matrix were not correlated (Parinet et al. 2004). The data was considered 

adequate for a PCA if Bartlett's test of sphericity was significant (p-value < 0.05) (Parinet et 

al. 2004). 
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3.1.2 Step 2: Eigenvalues computation and selection of principal components 

Theoretically, the number of principal components would equal the number of indicators used 

(OECD 2008). As recommended by Kaiser (1960), a principal component was selected for 

further analytical steps only if it had an Eigenvalue greater than 1.0.  

3.1.3 Step 3: Rotation of principal components 

The principal components were rotated using the varimax normalised rotation (Nardo et al. 

2005) to ensure high component loadings for a few indicators and low component loadings for 

the rest (OECD 2008). This procedure entailed a perpendicular rotation of the matrix of 

component loadings until each principal component was maximised (Nardo et al. 2005). As a 

result, a more interpretable and simplified solution was achievable (OECD 2008). Only the 

rotated component loadings greater than ±0.3 (significant loadings) were kept for the final 

construction step (Kutcher et al. 2013). 

3.1.4 Step 4: Construction and extraction of weights 

The final rotated component loadings (> ±0.3) were first normalised by obtaining their squares 

(OECD 2008). These squared component loadings represented the proportion of the total 

variance of a given indicator explained by the associated principal component (Nardo et al. 

2005). The weights for indicators of the NRR component of the GFSI were then constructed, 

as shown in Equation (6): 

wij = 
r2

ij

ej
           (6) 

where wij was the weight for the ith indicator in the jth principal component, r2
ij was the squared 

component loading attached to the ith indicator, and ej was the Eigenvalue of the jth principal 

component with 0 ≤ wij ≤ 1, for all i = 1, 2, …, n (Gómez-Limón and Riesgo 2009). Each 

indicator was then assigned to a specific principal component based on the highest wij across 

all principal components (Gómez-Limón and Riesgo 2009).  

The PCA weights for 21 indicators within the seven components of the NRR component of the 

GFSI were rescaled to unit sum to retain comparability (OECD 2008). The rescaling involved 

the division of each indicator's weight by the total weights for all indicators within a particular 

NRR component. A linear aggregation (EIU 2019) procedure was conducted to compute the 

score value of each of the seven NRR components. This procedure involved a weighted 

arithmetic average of indicators' normalised data with the rescaled PCA weights.  
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The previously discussed four weighting steps of PCA were again followed to assign a weight 

to each of the seven NRR components. In this procedural stage, the researcher used the newly 

computed score values of the NRR components as the data for the PCA model. Just as the NRR 

indicators' weights were rescaled to unit sum, the same rescaling was done for the weights for 

the seven NRR components. 

3.2 NRR scores and ranks based on the objective and subjective weighting models 

The first specific research question addressed whether an objective weighting significantly 

changed the countries' NRR scores and ranks compared to the subjective weighting of the NRR 

component of the GFSI. The hypothesis for the research question one assumed that objective 

weighting significantly changed the countries' NRR scores and ranks compared to the 

subjective weighting of the NRR component of the GFSI. This hypothesis was tested as 

follows. Firstly, a paired t-test was used to test for the significance of the difference between 

PCA (objective) and GFSI (subjective) weights at five per cent significance level. Secondly, a 

paired t-test was used to test for the significance of the difference between the countries' 

objective and subjective weighted NRR scores. Finally, a Spearman's rank correlation was used 

to test whether the subjectively and objectively weighted NRR ranks were significantly 

different. This test was conducted at five per cent significance level. 

3.3 Objective and subjective NRR adjustment of the overall GFSI scores and ranks 

The second specific research question addressed whether the objective NRR adjustment of the 

overall GFSI significantly changed the countries' adjusted overall GFSI scores and ranks. The 

countries' NRR scores obtained with the PCA model were used to adjust their overall GFSI 

scores at an adjustment factor weighting of 25% (EIU 2019). The hypothesis for the research 

question two assumed that the objective NRR adjustment of the overall GFSI significantly 

changed the countries' adjusted overall GFSI scores and ranks compared to the subjective NRR 

adjustment. This hypothesis was tested as follows. Firstly, a paired t-test was used to test for 

the significance of the difference between countries' adjusted overall GFSI scores obtained 

using an objective and subjective NRR adjustment. Secondly, a Spearman's rank correlation 

was used to test whether the countries' adjusted overall GFSI ranks obtained using an objective 

and subjective NRR adjustment were significantly different. 

4 Results and discussion 

The KMO value was 0.682, while Bartlett's test of sphericity was significant (p-value < 0.05) 
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for the NRR indicators. These results confirmed that the normalised GFSI data set was 

appropriate for conducting a PCA of the NRR indicators (Parinet et al. 2004). 

4.1 Comparative results of the PCA and GFSI models for the NRR scores and ranks 

The first specific research question addressed whether an objective weighting of the NRR 

component of the GFSI significantly changed the countries' NRR scores and ranks compared 

to the subjective weighting approach. The NRR weights based on the PCA (objective) and 

GFSI models showed substantial differences as presented in Supplementary Table 2.  

The NRR weights changed with the use of the statistical model (PCA) as observed in similar 

studies by Maricic et al. (2016) and Thomas et al. (2017). For example, the GFSI model placed 

demographic stresses (weight 7.27%) and exposure to climate change risks (weight 21.82%) 

as the least and most significant NRR components. Conversely, the PCA model weighted the 

oceans (weight 8.61%) and sensitivity to natural resource risks (weight 32.56%) as the least 

and largest contributors to the NRR component of the GFSI.  

The sensitivity component went through the most extensive changes among all the seven NRR 

components. The weight assigned to the sensitivity component increased from 10.91% to 

32.56% with PCA weighting. This observation indicated that the countries' level of sensitivity 

to climate and natural resource risks heavily determined their susceptibility to these risks (West 

et al. 2009). When looking at the NRR indicators, the ocean eutrophication and marine 

biodiversity indicators were assigned the same overall weight (5.45%) with the GFSI model 

but different overall weights (1.66% and 4.40%) with the PCA model. Weights were allocated 

as coefficients that reflect the relative importance of each indicator in the determination of the 

overall index score (Paruolo et al. 2013). These observed overall weights with the PCA model 

showed that marine biodiversity indicator was more important than the ocean eutrophication 

indicator. 

A paired t-test was run on the weights for the NRR component of the GFSI to determine 

whether there was a statistically significant difference between the weights assigned with PCA 

and GFSI models. As presented in Supplementary Table 3, the PCA weights were lower (mean 

= 0.208 ± 0.153) compared to the GFSI weights (mean = 1.991 ± 0.912). A statistically 

significant decrease in weights by 1.784 (95% confidence level) and p-value less than 0.05 (p 

< 0.05) were observed among the PCA weights. The hypothesis that objective weighting 

significantly changed the weights compared to the subjective weighting of the NRR component 
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of the GFSI was accepted. This finding was in agreement with the assertion made by Maricic 

et al. (2016) that the default GFSI weights were not a reflection of the relative importance of 

its indicators.  

 

Fig. 1. Comparison of the NRR ranks of the top twenty countries (rank 1–20) based on the subjective 

GFSI and objective PCA weighting models. Source: Author’s work using GFSI data (EIU, 2019) 

A weighted arithmetic average of the NRR components' score values with their PCA weights 

produced the NRR scores and rank of countries (Supplementary Table 4). When looking at the 

top twenty countries based on the GFSI model, 19 out of 20 countries changed their NRR rank 

with the use of the PCA model. However, these top twenty countries retained their cohort at 

the exception of five countries, namely Sweden, Austria, Poland, Germany and France (Fig. 

1). For example, Sweden moved from position six to 33, whereas France was displaced from 

position 19 to 27. A cohort as used in this section referred to a group of twenty countries with 

the highest or lowest NRR rank (Position 1-20 or position 94-113). Malawi and Niger were 

among the top twenty countries due to high scores for the water, oceans and adaptive capacity 

components despite the frequent droughts, floods, high rates of deforestation and soil 

degradation (Enaruvbe and Atafo 2016; McCarthy et al. 2021). Most of the top twenty 

countries retained their cohort due to their highest levels of economic development and 
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enhanced coordination of climate-related and food security policies (Candel 2016). Notably, 

countries that had high scores in the NRR components with extensive weights had a higher 

chance of a more favourable NRR score and rank. 

The twenty lowest-ranked countries (position 94-113) also experienced changes in their NRR 

rank. Most of the lowest-ranked twenty countries kept their cohort positions except for 

Vietnam, Sri Lanka, Nepal, India and Peru that increased their rank when the PCA weighting 

model was used (Fig. 2). For example, while Vietnam increased its rank from position 94 to 

83, Peru improved from 102 to 69. The bottom twenty countries, mostly African countries 

except Tajikistan, Haiti, Syria, Yemen and Venezuela, are less developed economically 

(Candel 2016). These observations were similar to the findings of Chen et al. (2019) and 

Izraelov and Silber (2019), who observed that the top and bottom twenty countries remained 

in their cohort no matter the weighting model used.  

 

Fig. 2. Comparison of the NRR ranks of the bottom twenty countries (rank 94–113) based on the 

subjective GFSI and objective PCA weighting models. Source: Author’s work using GFSI data (EIU, 

2019) 

The Czech Republic remained in the top rank one after the PCA model was used, just as Maricic 
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et al. (2016) observed that the United States retained the top-ranked position, no matter the 

weighting model used. Ukraine was assigned position 53 (score 57.0) with the GFSI weighting 

model but position five (score 72.1) with the PCA model. The NRR score for Ukraine improved 

by 15.1 points as a result of its high score on the sensitivity (99.3) and demographic stresses 

(94.0) components. The PCA weighting model had assigned high weights (compared to the 

GFSI weights) to the sensitivity (32.56%) and demographic stresses (9.56%) components on 

which Ukraine performed best. 

Ecuador advanced the most, moving 68 places (from rank 91 to 23) by improving its score 

from 48.4 to 60.1 with the PCA weighting. This increment was due to the high performance of 

Ecuador on the land (76.0) and demographic stresses (56.8) components which had higher 

PCA weights compared to the GFSI weights. The NRR score for South Africa increased from 

50.4 to 60.6, making it the next improved country by 61 places (from position 82 to 21) after 

Ecuador. As with Ecuador, South Africa had high achievements on the land (PCA model = 

74.0, GFSI model = 43.8) and demographic stresses (PCA model = 57.5, GFSI model = 55.9) 

components. In contrast, Honduras significantly dropped by 35 places from position 39 to 74. 

This decline resulted from the poor performance of Honduras on the sensitivity (from 50.0 to 

13.7) component. The sensitivity component was assigned a higher PCA weight (32.56%) 

relative to the GFSI weight (10.91%), thereby playing a significant role in the determination 

of countries' NRR scores. A higher weight meant that countries needed to devote more effort 

to improving the associated indicator and obtain a higher NRR score (Chen et al. 2019).  

The PCA weighting model changed the NRR scores for 112 out of 113 (99.12%) countries, 

where 21 countries changed their score by more than ±10.0. In addition, 109 out of 113 (6.46%) 

countries shifted their positions with 52 of them changing their rank by more than ten places. 

Generally, the rank of countries changed slightly with the objective weighting (PCA) model. 

The observed rank changes corroborated with the findings of Chen et al. (2019) and Maricic et 

al. (2016), who also noted slight shifts in countries positions with objective weighting models. 

In Table 1, the results of a paired t-test showed that the countries' NRR scores were lower for 

the PCA model (mean = 52.177 ± 10.255) relative to the GFSI model (mean = 57.135 ± 9.176). 

A statistically significant decrease in the NRR scores by 4.958 (95% confidence level) points 

and p-value less than 0.05 (p < 0.05) were observed. On average, the weights assigned to the 

NRR component of the GFSI by the EIU expert panel (GFSI model) were higher compared to 

the PCA model. These high GFSI weights were reflected on the higher NRR scores for 
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countries. The decrease in the NRR scores that were obtained using the PCA model indicated 

that the amount of the weight assigned to the NRR indicators significantly determined the 

countries' NRR scores. Therefore, the postulated hypothesis that objective weighting 

significantly changed the countries' NRR scores compared to the subjective weighting of the 

NRR component of the GFSI was accepted.  

Table 1. Results of paired t-test for the NRR scores of countries based on the objective PCA and 

subjective GFSI weighting models for 2019 

A Spearman's rank correlation test was used to determine whether the country ranks obtained 

using PCA and GFSI weighting models were significantly different. In Table 2, results showed 

a statistically significant rank correlation coefficient (rho = 0.831 at five per cent significance 

level) associated with a p-value less than 0.05 (p < 0.05). The high Spearman's rank correlation 

coefficient suggested that the NRR ranks based on the GFSI and PCA models were strongly 

correlated (closely related). An objective (PCA) weighting changed the country ranks, but the 

changes were not significant. The stated null hypothesis that an objective weighting 

significantly changed the countries' NRR ranks compared to the subjective weighting of the 

NRR component of the GFSI was rejected. This finding suggested that the application of 

subjective (GFSI model) or objective (PCA model) weighting approaches would provide 

similar NRR ranks. These findings were in concurrence with the observations made by Chen 

et al. (2019), and Izraelov and Silber (2019), who noted that objective and subjective weighting 

models gave similar ranks.  
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Table 2. Results of Spearman’s rank correlation test for the NRR component rank of countries based 

on the objective PCA and subjective GFSI weighting models for 2019 

 

4.2 Results of the objective versus subjective NRR adjustment of the overall GFSI scores 

and ranks  

The second specific research question addressed whether the objective NRR adjustment 

significantly changed the countries' adjusted overall GFSI scores and ranks compared to the 

subjective NRR adjustment of the overall GFSI. The NRR scores derived using the PCA 

weights were used to adjust the overall GFSI scores and ranks objectively. As shown in Table 

3, several differences emerged among the countries' adjusted overall GFSI scores and rank 

obtained with the objective and subjective NRR adjustments. The GFSI model had awarded 

the adjusted overall GFSI scores ranging between 70.5-77.9 to the top twenty countries. These 

countries portrayed the highest levels of economic development, including overall food 

security performance. Seventeen out of twenty countries changed their adjusted overall GFSI 

rank when the PCA model was applied. The top twenty countries also retained their adjusted 

overall GFSI rank cohort (position 1-20) except Portugal, which moved to position 21 (Fig. 3). 

These countries' adjusted overall GFSI scores decreased from a range of 70.5-77.9 to 68.7-77.7 

due to a decline in their objectively weighted NRR scores.  
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Table 3. Countries’ adjusted overall GFSI scores and ranks derived using subjectively weighted (GFSI 

model) and objectively weighted (PCA model) NRR scores for 2019 
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Fig. 3. Comparison of the adjusted overall GFSI ranks of the top twenty countries (rank 1–20) derived 

using the subjectively weighted (GFSI model) and objectively weighted (PCA model) NRR scores. 

Source: Author’s work using GFSI data (EIU, 2019) 

 

According to the GFSI model, the bottom twenty countries with the lowest adjusted overall 

GFSI scores had the lowest overall GFSI scores. These countries, mostly African countries 

except Tajikistan, Haiti, Syria, Yemen and Venezuela, retained their adjusted overall GFSI 

rank cohort (rank 94-113) when the PCA model was applied (Fig. 4). Considering that these 

bottom twenty countries are less developed economically, the choice of the NRR adjustment 

did not substantially influence their adjusted overall GFSI scores and ranks. 
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Fig. 4. Comparison of the adjusted overall GFSI ranks of the bottom twenty countries (rank 94–113) 

derived using the subjectively weighted (GFSI model) and objectively weighted (PCA model) NRR 

scores. Source: Author’s work using GFSI data (EIU, 2019) 

Despite the use of objectively weighted NRR scores, Ireland and Finland retained their first 

and second rank positions respectively for the adjusted overall GFSI. Ireland and Finland 

maintained their rank due to their high overall GFSI scores (84.0 and 82.9) and NRR scores 

(70.2 and 74.5).  

The subjectively adjusted overall GFSI rank of Mexico was position 46, but its rank improved 

to position 37 with the objective NRR adjustment of the GFSI scores. Mexico's high objectively 

weighted NRR score (59.7) led to an increase in its adjusted overall GFSI score by 1.5 points 

and rank by nine places. Ukraine was the most improved country from position 77 to 63, while 

both Russia and Honduras significantly dropped their rank by six places. The adjusted overall 

GFSI rank of Ukraine improved by 2.1 points due to its high NRR score (72.1 compared to 

57.1). Russia had a relatively high score (69.7) for the overall GFSI, but an 8.8 points drop in 

its NRR score resulted in a decline in its adjusted overall GFSI score from 63.6 to 62.1.  

The use of objectively weighted NRR scores to adjust the overall GFSI scores amplified the 
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role of indicators' weights in understanding the countries' food security context. The 

observations made hitherto showed that weighting models determined the outcome of the NRR 

scores, which in turn influenced the results of the adjusted overall GFSI scores. Countries 

required higher performance for the NRR indicators with greater weights to achieve higher 

NRR scores and ranks, including adjusted overall GFSI scores and ranks.  

The results of a paired t-test, as presented in Table 4, showed a lower objectively adjusted 

overall GFSI scores (mean = 52.496 ± 12.912) compared to the subjectively adjusted overall 

GFSI scores (mean = 56.258 ± 13.008). Further observations showed a statistically significant 

decrease in the countries' adjusted overall GFSI scores by 0.761 (95% confidence level) points 

and p-value less than 0.05 (p < 0.05). This mean difference was due to the countries' objectively 

weighted NRR scores which produced a lower adjusted overall GFSI scores compared to the 

subjective weighted NRR scores. Therefore, the hypothesis that the objective NRR adjustment 

of the overall GFSI scores significantly changed the countries' adjusted overall GFSI scores 

compared to the subjective NRR adjustment was accepted. This decision implied that 

objectively weighted NRR scores could offer an alternative approach to understanding global 

food security development and improvement.  

Table 4. Results of paired t-test for the countries’ adjusted overall GFSI scores derived using subjectively 

weighted (GFSI model) and objectively weighted (PCA model) NRR scores for 2019 

 

A Spearman's rank correlation test was applied to determine whether the countries' adjusted 

overall GFSI ranks obtained by the objective and subjective NRR adjustment of the overall 

GFSI ranks were significantly different. Results in Table 5 showed a statistically significant 

rank correlation coefficient (rho = 0.995 at five per cent significance level) with a p-value less 

than 0.05 (p < 0.05), signifying that the two separate ranks were closely related. Although the 

countries' objectively weighted NRR scores produced lower adjusted overall GFSI scores than 

those from the EIU, their ranks were not significantly different. Therefore, the null hypothesis 

that objective NRR adjustment of the overall GFSI scores significantly changed the countries' 

adjusted overall GFSI ranks compared to the subjective NRR adjustment was rejected.  
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Table 5. Results of Spearman’s rank correlation test for the countries’ adjusted overall GFSI ranks 

derived using subjectively weighted (GFSI model) and objectively weighted (PCA model) NRR scores 

for 2019 

 

5 Conclusions and recommendations 

The purpose of this study was to explore how an objective weighting of the NRR component 

of the GFSI affected the scores and rank of countries. The study found that on average, the 

objective weights derived using the PCA model were significantly lower compared to the 

subjective (GFSI model) weights assigned by the EIU. The different sets of NRR weights led 

to significant effects on the countries' NRR scores. The PCA (objective) weights produced the 

NRR scores for countries that were on average lower than the scores derived using the GFSI 

(subjective) weights. However, the subjectively (GFSI model) and objectively (PCA model) 

weighted NRR ranks were highly correlated, indicating that the subjectively weighted GFSI 

model was not strongly statistically biased. The study concluded that the NRR ranks and the 

adjusted overall GFSI rank of countries would change slightly if an objective weighting 

technique was applied to the NRR component of the GFSI. The findings implied that the 

subjective weighting of the NRR component of the GFSI may still provide relatively fair 

country scores and ranks for comparison purposes. However, the existence of subjectivity in 

the weighting of the NRR component may affect the trustworthiness of the GFSI results among 

governments and policymakers.  

The application of a particular weighting process for indicators may alter the food security and 

climate-related performance scores and ranks of countries. Both national food security and 

climate-related performance scores are politically sensitive for governments. Both are essential 

for incentivising progress towards global targets. Also, the policymakers need a working guide 

to improving their targeting and monitoring efforts for food security. While the GFSI 

methodology and data are both published and available for scrutiny, the subjective assessment 

of sensitive indicators may negate trust in the dimensions and overall score and ranks. There is 
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a need for the developers of the GFSI to apply an objective weighting model to boost the 

confidence of governments and policymakers in the GFSI results. The use of actual data to 

derive the indicator weights, scores and ranks may also motivate governments to invest in data 

collection, management and publication for access by the EIU experts. Data distribution can 

influence the ability of the weights to reflect a perceived level of importance of the indicators 

(Becker et al. 2017). If the data distribution changes, the objective weights will reflect a new 

level of importance of indicators and new scores and ranks of countries (Decancq and Lugo 

2013).  

The results of this study corroborated with the findings of Chen et al. (2019), who used 

the Hierarchical Data Envelopment analysis (H-DEA) model on the 2014 GFSI data an 

concluded that the GFSI weighting model was less biased than the H-DEA model. The results 

of the current study also concurred with the findings of Izraelov and Silber (2019), who 

used Data Envelopment Analysis (DEA), Principal Component Analysis (PCA) and Lower 

Convex Hull (LCH) on the 2015 GFSI and concluded that the GFSI weights selected by the 

EIU panel of experts were not biased. However, the results for this study did not concur with 

the findings of Maricic et al. (2016), who applied the Composite I-Distance Indicator (CIDI) 

model and the 2015 GFSI data and asserted that the GFSI weighting model provided biased 

results. 

Similar research could be conducted across income levels and regional groups to compare and 

identify where significant improvements in natural resources management are most needed. 

For example, a researcher may draw comparative analyses along high-income versus low-

income countries or sub-Saharan African versus European countries. Finally, additional 

research was recommended to compare the indicators of the NRR component of the GFSI with 

the indicators of other indices. For example, a study may compare the ranking of countries by 

the NRR component of the GFSI and the Environmental Sustainability Index (Saisana et al. 

2005). This comparison will help determine the sensitivity of the country ranks to the list of 

indicators selected. 
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