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Abstract

A characteristic feature of living organisms is their response to the environment in search

for food or reproduction opportunities. This paper is devoted to the investigation of the

pattern formation of the Holling-Tanner predator-prey model with predator-taxis. We first

summarise the qualitative properties of the model where a threshold for the appearance of

pattern formation is specified. Then we design and analyse a coupled nonstandard finite

difference and finite volume scheme for the proposed model. Numerical simulations are

provided to support theoretical findings.

1 Introduction

The pioneering work of Lotka [21] and Voltera [33] on predator-prey systems gave rise to rich

literature on biological models on interactions involving two or more species with application

to ecology and biology. However, the Lotka-Volterra model has many limitations. It is assumed

that when prey multiply, they will have an unlimited food supply and reproduce exponentially

unless subject to predation. Another limitation is, in the absence of predators, prey population

grows exponentially towards infinity due to the unlimited food supply assumption. While the

principles of this model have remained valid until today, there have been improvements on the

Lotka–Volterra model, and notables are: Solomon model [27], Rosenzweig–MacArthur model

[26], Holling model [13], to name just a few. In this work, we assume the kinetic dynamics of

the system is given by the generalised Holling–Tanner predator-prey model, first studied in [30].

Generalised reaction diffusion predator-prey models with self diffusion have been investigated

extensively in the literature, see for example [19] and the literature there in. In [19], the authors

showed the existence of Hopf bifurcation and Turing instability in the Holling–Tanner model

with linear and self diffusion. Predator-prey reaction diffusion models with prey-taxis have been

studied extensively in the literature [14, 3, 15, 31, 18, 28, 34, 38], where global existence, dynamic

behavior and steady states have been considered. These are strongly coupled models simulating

prey avoiding the predator or the predator chasing the prey, see also [36]. The movement of

predators controlled by prey density is often referred to as prey-taxis [3, 18, 38]. Prey-taxis can

either be attractive or repulsive and plays important roles in population aggregation [38]. In
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particular, the authors in [38] considered the Holling-Tanner predator-prey model with prey-

taxis, ratio-dependent functional responses, and an Allee effect to understand the control of

prey invasion. The results indicated that without Allee effect and assuming standard functional

response, the predator cannot stop the prey.

In addition to prey-taxis, researchers have proposed and investigated several mathematical

models involving predator-taxis, see for example the work [37, 2]. In these models, the authors

assumed the prey moves away from the direction of the higher predator density. However,

instead of advection induced by direct contact between prey and predator, chemical effects such

as specific odor, pheromone, and excrement may also influence the mobility of species [39, 2].

In this work, we consider a diffusive predator prey model with predator-taxis. Under this setup,

the prey is lured towards the predator through body coloration or some chemical signalling.

Of particular interest, the authors in [39] highlighted that this foraging tactic has been largely

ignored.

The discussion above summarised spatial independent models, reaction diffusion models with

self and cross diffusion. While a lot of work has focused on the qualitative properties of these

mathematical models, very few works have considered the numerical aspect of this problem.

It is also important to highlight the singularity in the model when prey population goes to

zero. This makes the numerical approach challenging. To the best of our knowledge, this is

the first time a nonstandard finite difference study on the Holling-Tanner predator-prey with

nonlinear predator-taxis is proposed. Due to the nonlinearity nature of these models, several

numerical methods have been proposed and used to simulate the different solution properties of

the equations. While in most cases integrated solvers such as Matlab’s PDEPE have been used

[37], here we highlight [3], where the authors designed a finite volume scheme for the resulting

system of equations to predict the pattern formation.

The novelty of this paper is twofold. We propose and investigate the Holling-Tanner

predator-prey model with nonlinear predator-taxis. Unlike most existing literature, the current

model assumes the prey is lured towards the predator. Secondly, for the proposed nonstandard

finite difference scheme, we prove dynamic consistence with the continuous spatial free Holling-

Tanner predator-prey model. A coupled nonstandard finite difference scheme and finite volume

scheme is proposed for the reaction diffusion system. Numerical simulations are provided to

support theoretical findings including the existence of patterns.

This paper is organised as follows. We begin in Section 2 where some preliminary results

are outlined. The model formulation is presented in Section 3. Here the model is rendered

dimensionless, thus reducing the number of parameters. In Section 4, the global existence

of classical solutions is established. In Section 5, we begin by summarising the qualitative

properties of the continuous Holling-Tanner predator-prey ordinary differential equation. The

qualitative properties of the proposed discrete model are presented and verified in this section.

Section 6 presents the linear stability analysis of the full Holling-Tanner predator-prey model

with nonlinear predator-taxis. Conditions on the existence of both Turing and Hopf instability

are discussed. In Section 7 we present some numerical simulations of the full model. We

conclude in Section 8.
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2 Preliminaries

In this section, we give some preliminary results for the numerical approach adopted in this

work. Let D ⊆ R
d be a domain (d ≥ 1) and let g ∈ C0(D,Rd) such that

du

dt
= g(u), u(0) = u0, (2.1)

with u0 ∈ R
d and t > 0. We assume (2.1) defines a dynamical system on D. The point ũ is an

equilibrium point of (2.1) if g(ũ) = 0. The numerical approximation of u(t) is represented by

un at time tn = n∆t, where n = 0, 1, · · · . A finite difference scheme to (2.1) has the general

explicit or implicit structure

un+1 = Dg(∆t;u
n;un+1), u0 = u(0), (2.2)

where Dg denotes the discrete operator.

Definition 2.1. A one-step scheme (2.2) is called a nonstandard finite difference scheme if at

least one of the following conditions is satisfied:

• The classical denominator ∆t, of the discrete derivative is replaced by a non-negative

function φ(∆t) satisfying the requirement φ(∆t) = ∆t+O([∆t]2);

• Nonlinear terms that occur in the right-hand side of (2.1) are approximated in a non-local

way, e.g., u2 ≈ unun+1.

The power and performance of the nonstandard finite difference scheme can be represented

in terms of its qualitative stability or dynamic consistency. A much stronger result is the

topological dynamic consistency. Further information can be found in [6, 7], and references

there in.

Definition 2.2 ([6]). Assume the solution to a differential equation satisfies some property P .

A numerical approximation F (vn,∆t, λ), is dynamically consistent with the differential equation

if the numerical solutions satisfy P for all values of the involved time step.

Local stability of fixed points for a discrete system can be investigated using the variational

matrix. If the absolute value of all eigenvalues satisfy |λi| > 1, a particular fixed point is

unstable, or stable if |λi| < 1 for i = 1, 2, · · · . On the other hand, a fixed point is non-

hyperbolic if at least one of the eigenvalues is identically equal to one. For a discrete system in

R
2, the following Jury’s test gives conditions for local stability.

Lemma 2.1. Consider the variational matrix J(u, v) ∈ R
2 × R

2. A fixed point (u, v) is locally

asymptotically stable if the following conditions hold

(i). 1− det(J) > 0, (ii). 1− trace(J) + det(J) > 0, (iii). 0 < J11 < 1, 0 < J22 < 1.
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3 Model formulation

Let x ∈ Ω ⊂ R
q, (q ≥ 1), be a simply connected bounded domain and ∂Ω, the surface boundary

enclosing Ω. We let u(x, t) and v(x, t) be the density of the prey and the density of the predator,

respectively.

The characteristic feature of predator-taxis models is that taxis is incorporated into dispersal

terms as an advection term where velocity is proportional to the gradient of the predator density,

see for example [35, 37]. The flux of the prey is given by

Ju = −Du∇u− γ(u, v)u∇v,

and the flux of the predator is

Jv = −Dv∇v,

where Du and Dv are positive diffusion coefficients and γ(u, v) is the predator-taxis function

denoting sensitivity of prey to predation risk. Mathematically, this represents attractive (re-

pulsive) effect if γ(u, v) < 0 (γ(u, v) > 0). Here we assume γ(u, v) = −Duvϕ(u) where Duv is

a positive constant. The function ϕ(u) is the predator-tactic sensitivity function satisfying the

following general hypothesis:

H1 : ϕ(u) > 0 for all u,

H2 : ϕ′(u) ≤ 0 for all u.

Motivated by the above discussion, in this paper we study the following Holling-Tanner

predator-prey model with predator-taxis,

∂u

∂t
= Du∇

2u−Duv∇[uϕ(u)∇v] + ru (1− u/κ) − vf(u),

∂v

∂t
= Dv∇

2v + vs (1− hv/u) ,

(3.1)

where ∇2 is the Laplace operator. In addition, r and s are the intrinsic rates of increase, κ is the

prey carrying capacity, h is the number of prey required to support one predator at equilibrium

and f(u) is the response function. In the absence of the predator, the prey population follows

a Logistic growth. In literature, several forms of the response function have been investigated.

For example, the Holling type I function, [16], Holling type II function, [30, 14, 25, 19], and

Holling type III function, [23, 14]. Throughout this work, we generalise the response function

and assume f(u) is a differentiable function satisfying the following conditions: f(0) = 0 and

f(u) ≥ 0, f ′(u) > 0 for all u > 0. (3.2)

We nondimensionalise the model by choosing the following scales

u ∼ κ, v ∼
κ

h
, t ∼

1

r
, x ∼

√

Du

r
.

4



The dimensionless model is given by

∂u

∂t
= ∇2u− duv∇[uχ(u)∇v] + u (1− u)− vf(u),

∂v

∂t
= d∇2v + vη (1− v/u) ,

(3.3)

where

duv =
Duv

Du
, d =

Dv

Du
, η =

s

r
,

and we have also chosen χ(u) = κϕ(κu). The system is complemented with appropriate initial

and Neumann boundary conditions.

4 Existence and uniqueness of solutions

The aim of this section is to establish global existence of classical solutions of the following

nonlinear system



























∂u

∂t
= u(1− u)− γ

uv

u+ δ
+∇2u− duv∇.(χ(u)u∇v),

∂v

∂t
= vη

(

1−
v

u

)

+ d ∇2v,

∂u

∂n
= 0,

∂v

∂n
= 0, ∀x ∈ ∂Ω,

(4.1)

with initial conditions u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0. Here, Ω ⊂ R
2 is an open

bounded set of Rq with boundary ∂Ω and ∂/∂n denoting the derivative with respect to the

outer normal of ∂Ω. We will follow the approach in [5, 35] where the authors investigated a

spatial model with the avoidance behavior of prey and the cost of anti-predator. To this end,

we let ω = (u, v)T , then problem (4.1) can be written as



















∂ω

∂t
= ∇ · (A(ω)∇ω) + F(ω), in Ω× (0,+∞)

Bω = 0 on ∂Ω× (0,+∞)

ω(·, 0) = ω0 in Ω,

(4.2)

where

A(ω) =

(

1 −duvϕ(u)u

0 d

)

, F(ω) =

(

u(1− u)− γ
uv

u+ δ
, vη

(

1−
v

u

)

)T

.

We begin with some notation. For p ∈ [1,∞), we denote by Lp(Ω), the space of measurable

scalar function on Ω for which

‖u‖Lp(Ω) =

(
∫

Ω
|u(x)|p dx

)1/p

,

for 1 ≤ p < ∞, and ‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| < +∞ for p = +∞. We denote by Hk∗(Ω)

the Sobolev space of scalar functions that are in L2(Ω) together with their weak derivatives of

order less than or equal to k∗ ∈ N∗. H1
0 (Ω) is the Hilbert subspace of H

1(Ω) made of functions
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vanishing on ∂Ω. Fix any p ∈ (n,+∞), then H1
p(Ω̄,R

2) is continuously embedded in C(Ω,R2),

and we consider solutions of (4.2) in

V := H1
p,B =

{

ω ∈ H1
p (Ω,R

2) :
∂ω

∂n
= 0 on ∂Ω

}

. (4.3)

We now have the following result.

Theorem 4.1. Consider the nonlinear system (4.1). There exists a unique nonnegative solution

(u(x, t), v(x, t)) ∈ V defined on Ω× [0, T ] satisfying ω(·, ω0) ∈ C([0, T ), V )∩C∞([0, T )× Ω̄,R2),

with T dependent on initial data ω0 ∈ V .

Since the eigenvalues of A(ω) are all positive, then problem (4.2) is normally elliptic and

the proof of Theorem 4.1 follows from [5, p. 17]. Readers can also consult Lemma 3.1 in [35]

for further details.

Lemma 4.1. Suppose the parameters d, duv , γ, δ, η are strictly positive, and Ω ⊂ R
q is a bounded

domain with smooth boundary ∂Ω. Assume 0 < u ≤ 1. If u0 > 0, v0 ≥ 0, then the system (4.2)

has a unique classical solution that exists globally in time satisfying u(x, t) > 0 and v(x, t) ≥ 0

for all t ∈ (0,∞) and x ∈ Ω̄.

Proof. We first integrate the u-equation of (3.3) over Ω, we obtain

∫

Ω
utdx =

∫

Ω
∇ · (∇u− duvuχ(u)∇v) dx+

∫

Ω
(u(1 − u)− vf(u)) dx.

Thus, we have

d

dt

∫

Ω
u(x, t)dx =

∫

∂Ω
(∇u− duvχ(u)u∇v) · ndS +

∫

Ω
(u(1− u)− vf(u)) dx

=

∫

Ω
u (1− u) dx−

∫

Ω
vf(u)dx

≤

∫

Ω
u (1− u) dx

≤

∫

Ω
(1− u) dx, since u ≤ 1.

(4.4)

Define

y(t) =

∫

Ω
u(x, t)dx, t > 0.

Then, we have

y′(t) + y(t) ≤ 1, for all t > 0.

From the Gronwall’s Lemma, it follows that

y(t) ≤ 1 + (y0 − 1)e−t, for all t > 0.

We then obtain that

lim
t→∞

sup||u||L1
≤ 1,
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which shows the boundedness of ||u||L1
. Similarly, we can show that ||v(·, t)||L1

is bounded for

all t ∈ (0,∞). From system (4.1), the growth of predator is dependent on prey only. That is,

it depends only on the availability of the food source, u, which is referred to as ‘food pyramid’

hypothesis. In [4], it is shown that L1 uniform boundedness of the solution implies L∞ uniform

boundedness connecting this result with the food pyramid condition. That is, since we have

that v(x, t) ≥ 0 and sup
t≥0

∫

Ω
v(x, t)dx < K, consequently, under the food pyramid condition,

then

sup
t≥0

||v(x, t)||L∞(Ω) ≤ K∗,

where K∗ is a constant dependent on K and ||v(x, 0)||L∞(Ω). Hence, by Theorem 3.1 in [4],

the boundedness of ||v||L1
implies the boundedness of ||v||L∞

. Thus, we can conclude that

the boundedness of solution (u, v) of system (4.1) in L∞ implies global existence of smooth

solutions, by [5].

5 Model without diffusion

Neglecting diffusion, the Holling-Tanner predator-prey model is given by

du

dt
= u (1− u)− vf(u),

dv

dt
= vη (1− v/u) .

(5.1)

Theorem 5.1. Consider the linear system (5.1) subject to initial conditions u(0) = u0 > 0 and

v(0) = v0 > 0. Assuming f(0) = 0 and f ′(u) > 0 for all u > 0, then (5.1) is a dynamical

system on the biologically feasible region

Ω =
{

(u, v) ∈ R
2
+ : u ≤ 1, v ≤ 1

}

.

The proof of the Lemma is straightforward and will be left to the reader. We refer readers

to the work [14], where the authors showed that model (5.1) is mathematically well-posed.

However, for the proof, we will need to show that the solution is positive and bounded.

5.1 Qualitative analysis

There are two equilibrium solutions to the system. We see that (1, 0) is an equilibrium point

which corresponds to the absence of predators with the prey being at its carrying capacity. On

the other hand, for v∗ 6= 0, then u∗ = v∗ and u∗ satisfies

1− u∗ − f(u∗) = 0.

It is clear that a unique positive equilibrium point (u∗, v∗) exists. In particular, if we define

H(u∗) = 1 − u∗ − f(u∗), and assuming f(0) = 0 and f ′(u) > 0 for all u > 0, we see that

H(0) > 0, lim
u∗→∞

H(u∗) < 0 and H ′(u∗) < 0. We summarise this as follows
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Proposition 5.1. Assume the functional response f(u) for system (5.1) satisfies assumptions

(3.2). The system admits the following equilibria:

• a unique predator-free equilibrium P 0 = (1, 0),

• a unique coexistence equilibrium P ∗ = (u∗, v∗).

Following the ideas in [14], we generalise the model (5.1) as follows

du

dt
= u(1− u)− uvp(u),

dv

dt
= vη (1− v/u) ,

(5.2)

where f(u) = up(u) satisfying (3.2). To investigate the local stability of the equilibria of system

(5.2), we consider the Jacobian of the system given by

J(u, v) =





1− 2u− vp(u)− uvp′(u) −up(u)

η
(u

v

)2
η

(

1−
2v

u

)



 . (5.3)

We determine the local stability of the predator-free equilibrium by evaluating the Jacobian at

P 0 to get

J(P 0) =

(

−1 −p(1)

0 η

)

.

Clearly, the equilibrium P 0 is a saddle point. Evaluating the Jacobian at the coexistence

equilibrium gives

J(P ∗) =

(

−u∗(u∗p′(u∗) + 1) −u∗p(u∗)

η −η

)

,

where we have used the fact that u∗ = v∗ at P ∗. Hence, P ∗ is locally asymptotically stable

provided

u∗(u∗p′(u∗) + 1) + u∗p(u∗) > 0, and u∗(u∗p′(u∗) + 1) + η > 0,

corresponding to the conditions det(J) > 0 and trace(J) < 0, respectively. In particular, the

necessary conditions for local stability of P ∗ is that u∗(u∗p′(u∗) + 1) ≥ 0.

Remark 5.1. Consider the system of equations (5.1). We see that (u∗p′(u∗) + 1) + p(u∗) =

(u∗p(u∗))′+1 = f ′(u∗)+1 > 0, where we have used the fact that f ′(u) > 0 for all u > 0. Hence,

the stability of P ∗ is determined solely by the inequality trace(J) < 0.

We summarise the results for the stability of the equilibria of (5.2), as also proved in [14],

in the following result.

Proposition 5.2. Consider the nonlinear system (5.2):

(a) The predator-free equilibrium point P 0 is a saddle point.

(b) If u∗(u∗p′(u∗) + 1) > 0, the coexistence equilibrium P ∗ is locally asymptotically stable.
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We highlight the global results on the stability of the positive equilibrium which are outlined

in [14]. For our needs, the local results are sufficient to develop a dynamically consistent

nonstandard finite difference scheme for the system. This is considered in the next section.

Remark 5.2. Following the work [14], a direct application of the Poincaré-Bendixon theorem

shows that under certain conditions (u∗(u∗p′(u∗) + 1) ≤ 0), the equilibrium P ∗ is an unstable

focus. See also [25, Chapter 3 ] for further details.

5.2 Numerical scheme

As with all nonlinear differential models, it is important to seek for a numerical scheme that

can accurately approximate the solution to the system. In [8], the researchers presented an

argument against the use of a forward Euler scheme. In particular, while the scheme preserves

all the fixed points, both P 0 and P ∗ are stable and unstable, respectively, depending on the

numerical step size h = ∆t with both fixed points exhibiting chaotic solutions when the step

size is varied. Hence, the dynamics of the system will be derived by the numerical method

[20]. In this section we propose the nonstandard finite difference scheme due to their qualitative

stability properties, [24, 6]. The proposed formulation will also be used in the construction of a

dynamically consistent scheme for the Holling-Tanner predator-prey model with predator-taxis

proposed in (3.3).

The sub-equation approach proposed in [24] is used in the construction of nonstandard

finite difference scheme of (5.2). In the absence of the predator, the prey equation reduces to

a standard Logistic equation whose nonstandard scheme is well documented, see for example

[24, 9] and references therein. On the other hand, a dynamically consistent discrete model of

the Holling type II term (Michaelis-Menten reaction term) was extensively investigated in the

work [10]. Combining these results, we propose the following scheme for (5.2)

un+1 − un

φ(∆t)
= un(1− un+1)− vnun+1p(un),

vn+1 − vn

φ(∆t)
= ηvn

(

1−
vn+1

un

)

,

(5.4)

with φ(∆t) =
1− e−η∆t

η
and ∆t is the step size.

A remark is necessary regarding the current work and the work in [8]. In [8], the authors con-

sidered a uniform state predator-prey model with Beddington–DeAngelis functional response.

The functional response is assumed to depend on both the predator and the prey populations.

A dynamically consistent scheme with respect to the step size is also presented. On contrary,

this work deals with the Holling-Tanner predator-prey model with a general response function

dependent on the prey population only. While the current model and the work in [8] are differ-

ent, the presented numerical approach in (5.4) is generic and applicable to general predator-prey

models.

In this section, we will go further to show that the proposed scheme in (5.4) for model

(5.1), is dynamically consistent with respect to the step-size, stability and preservation of the

equilibrium points. Later in Section 6, we will investigate the spatial effects by introducing
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predator-taxis into the model. Numerical simulations will be provided.

The explicit form of (5.4) is given by

un+1 =
un(1 + φ)

1 + φ(p(un)vn + un)
,

vn+1 =
vn(ηφ+ 1)un

ηφvn + un
.

(5.5)

The following result is obvious.

Proposition 5.3. The nonstandard scheme (5.4) is unconditionally positive, i.e.,

un > 0, vn ≥ 0 =⇒ un+1 > 0, vn+1 ≥ 0.

Clearly, the system (5.4) has an explicit form zn+1 = G(∆t; zn) where the function G =

[G1, G2]T : R2 → R
2. Setting zn+1 = zn, we see that the scheme preserves the same fixed

points, P 0 = (1, 0) and P ∗ = (u∗, v∗) as the continuous model (5.1).

We also notice the following, assuming that un ≤ 1 and vn ≤ 1 (see Lemma 5.1), then

un+1 ≤ 1 implies that

un(1 + φ) ≤ 1 + φ(p(un)vn + un).

That is, un ≤ 1 + φvnp(un), which is always satisfied. It can also be shown that vn+1 ≤ 1 so

that the following result follows.

Theorem 5.2. The nonstandard finite difference scheme (5.4) is a dynamical system on the

biological feasible region Ω of the continuous model.

The local stability of the fixed points will be investigated through the Jacobian of the system.

The Jacobian of the scheme (5.4) is given by

J(u, v) =













(1 + φ)
(1 + φp(u)v − φuvp′(u))

(1 + φ(vp(u) + u))2
−

φu(1 + φ)p(u)

(1 + φ[vp(u) + u])2

v2(1 + φη)ηφ

(u+ φηv)2
u2(1 + φη)

(u+ φηv)2













. (5.6)

The eigenvalues of J(1, 0), i.e., the predator-free fixed point, are 1 + ηφ and
1

1 + φ
. Hence the

predator-free fixed point is unstable which is consistent with the properties of the continuous

model. In fact, P 0 is a saddle point. Next, we consider the Jacobian at the co-existence fixed

point P ∗. This can be simplified to

J(u∗, v∗) =













1−
φu∗(1 + u∗p′(u∗))

1 + φ
−
φu∗p(u∗)

1 + φ

ηφ

1 + ηφ

1

1 + ηφ













, (5.7)

where we have used the fact that u∗ = v∗. Here, for convenience of notation, we define kψ =
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1 + φη and kφ = 1 + φ. It follows

trace(J(u∗, v∗)) =
kφ − φu∗[u∗p′(u∗) + 1]

kφ
+

1

kψ
,

and

det(J(u∗, v∗)) =
kφ − φu∗[u∗p′(u∗) + 1] + φ2ηu∗p(u∗)

kψkφ
.

Using Lemma 2.1, the first condition simplifies to

1− det(J(u∗, v∗)) =
kψkφ −

{

kφ − φu∗[u∗p′(u∗) + 1] + φ2ηu∗p(u∗)
}

kψkφ
.

That is, for kψkφ > 0,

kφ(kψ − 1) + φu∗[u∗p′(u∗) + 1]− φ2ηu∗p(u∗) = ηφkφ + φu∗[u∗p′(u∗) + 1]− φ2ηu∗p(u∗)

= ηφ(kφ − φu∗p(u∗)) + φu∗[u∗p′(u∗) + 1].

However, at the fixed point (u∗, v∗), we have kφ − φu∗p(u∗) = 1 + φu∗, then

ηφ(kφ − φu∗p(u∗)) + φu∗[u∗p′(u∗) + 1] = ηφ(1 + φu∗) + φu∗[u∗p′(u∗) + 1],

which is always positive provided u∗p′(u∗) + 1 ≥ 0 for u∗ > 0, see Proposition 5.2. The second

condition is given by

1− trace(J(u∗, v∗)) + det(J(u∗, v∗))

= 1−
kφ − φu∗[u∗p′(u∗) + 1]

kφ
−

1

kψ
+
kφ − φu∗[u∗p′(u∗) + 1] + φ2ηu∗p(u∗)

kψkφ

= 1−
kψkφ − kψφu

∗[u∗p′(u∗) + 1] + kφ
kψkφ

+
kφ − φu∗[u∗p′(u∗) + 1] + φ2ηu∗p(u∗)

kψkφ

=
φ2ηu∗p(u∗) + φu∗[u∗p′(u∗) + 1](kψ − 1)

kψkφ

=
φ2ηu∗p(u∗) + ηφ2u∗[u∗p′(u∗) + 1]

kψkφ
> 0,

using Proposition 5.2. Next we consider J22 =
1

1 + ηφ
. Clearly 0 < J22 < 1 for η > 0 and

φ > 0. Finally, we consider J11 = 1−
φu∗(1 + u∗p′(u∗))

1 + φ
and we need to show that 0 < J11 < 1.

Clearly J11 < 1. In addition, we write

J11 = 1−
φu∗(1 + u∗p′(u∗))

1 + φ
=

(1 + φ)− φu∗ − φu∗2p′(u∗)

1 + φ
=

1 + φ(1− u∗)− φu∗2p′(u∗)

1 + φ
,

which is always positive since p′(u∗) ≤ 0 and 0 < u∗ ≤ 1. We have the following result

Proposition 5.4. Consider the discrete system (5.4):

(a) The predator-free fixed point P 0 is a saddle point.
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(b) If u∗(u∗p′(u∗) + 1) > 0, the coexistence fixed point P ∗ is locally asymptotically stable.

Clearly, the dynamics of the nonstandard finite difference scheme is consistent with the

dynamics of the continuous problem for any step size ∆t. In the next section, we formulate a

corresponding discrete model for the Holling-Tanner predator-prey model with predator-taxis.

The poor performance of standard methods, due to the existence of multiple ghost fixed points,

is well documented in the literature, see for example [10]. In this work, the nonstandard finite

difference scheme (5.4) will be crucial in the construction of the coupled finite volume and

nonstandard finite difference scheme in Section 6.2.

6 The reaction-diffusion model

We recall the predator-prey model with predator-taxis as given in (3.3). For convenience in the

analysis, we rewrite the system in the form

∂u

∂t
= f(u, v) +∇2u− duv∇ · (χ(u)u∇v),

∂v

∂t
= g(u, v) + d ∇2v.

(6.1)

Without diffusion, the following generalised result holds.

Theorem 6.1. Assume fu + gv < 0 and fugv − fvgu > 0 hold, then the steady state (u∗, v∗) of

system (6.1) is stable in the absence of diffusion.

Remark 6.1. Consider the model (5.1). In the current formulation, the result in Theorem 6.1

is equivalent to u∗(u∗p′(u∗) + 1) > 0.

6.1 Linear stability analysis

Turing instability requires that the stable homogeneous steady state is driven unstable by the

interaction of the dynamics and diffusion of the species. The two conditions in Theorem 6.1

will play a crucial role in establishing when Turing instability can form. The following linear

stability analysis will be performed around the coexistence equilibrium (u∗, v∗). We assume a

perturbed solution of the prey and predator is given by

u(z, t) = u∗ + εū(z, t) and v(z, t) = v∗ + εv̄(z, t), (6.2)

respectively, where 0 < ε≪ 1 is a small parameter and (ū, v̄) holds the space and time variation

of the perturbation.

Theorem 6.2. Assume fu+gv < 0 and fugv−fvgu > 0 hold, the steady state (u∗, v∗) of system

(6.1) loses stability if and only if guduvχ(u
∗)u∗+fud+gv > 0, and (guduvχ(u

∗)u∗+fud+gv)
2−

4d(fugv − fvgu) > 0, holds.

Proof. Taylor series expanding system (6.1) at (u∗, v∗) and neglecting higher order terms gives

12



the following linearised system

∂ū

∂t
= fu(u

∗, v∗)ū+ fv(u
∗, v∗)v̄ +∇2ū− duvχ(u

∗)u∗∇2v̄,

∂v̄

∂t
= gu(u

∗, v∗)ū+ gv(u
∗, v∗)v̄ + d ∇2v̄.

(6.3)

System (6.3) can be written as the matrix form:

∂ω

∂t
= Jω +D∇2ω, (6.4)

where ω = (ū, v̄)t, denotes vector solutions to the linear system in (6.3), and

J =

(

fu fv

gu gv

)

, ω =

(

ū

v̄

)

, and D =

(

1 −duvχ(u
∗)u∗

0 d

)

. (6.5)

Using the standard approach, see for example, [12, 22], we seek for an analytical solution to

the linear system (6.3) using seperation of variables in the general form ω = eikz+λt. This leads

to the dispersion relation, which gives an eigenvalue λ as a function of the wave number k, i.e.,

λ2 − a(k2)λ+ b(k2) = 0, (6.6)

where the trace and the determinant of the Jacobian in (6.5) are given by

a(k2) = (fu + gv)− (1 + d)k2,

and

b(k2) = dk4 − (guduvχ(u
∗)u∗ + fud+ gv)k

2 + fugv − fvgu,

respectively. The trace and the determinant provide key conditions for the homogeneous solution

to be linearly stable - and more importantly, establishing when Turing instability may occur.

The eigenvalues are found from

λk =
a(k2)±

√

a(k2)2 − 4b(k2)

2
, (6.7)

see Fig. 1(b). When a(k2) < 0 and b(k2) > 0 is always satisfied, we have both roots of equation

(6.6) having negative real parts, thus (u∗, v∗) is stable against inhomogeneous perturbations

since ω → 0 as t → ∞. We have a(k2) < 0 always being satisfied since d > 0 and fu + gv < 0.

If b(k2) < 0 for some values of k 6= 0, then (u∗, v∗) becomes unstable due to inhomogeneous

perturbations. Since d > 0 and fugv − fvgu > 0, we might have b(k2) < 0 for some values of

k 6= 0 when

guduvχ(u
∗)u∗ + fud+ gv > 0.

In addition, we are guaranteed that b(k2) < 0 for some values of k if min(b(k2)) < 0. When

k2min =
guduvχ(u

∗)u∗ + fud+ gv
2d

,
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we have

min(b(k2)) = −
1

4d
[(guduvχ(u

∗)u∗ + fud+ gv)
2 − 4d(fugv − fvgu)].

Thus, min(b(k2)) < 0 when

(guduvχ(u
∗)u∗ + fud+ gv)

2 − 4d(fugv − fvgu) > 0. (6.8)

That concludes the proof.

Remark 6.2. The first condition from the previous theorem can be rewritten as

duv > −
(fud+ gv)

guχ(u∗)u∗
.

This can be interpreted as, the only potential destabilizing mechanism of (u∗, v∗) is presence of

a predator-taxis term while predator linear diffusion plays a stabilizing role [32].

The profile of b(k2) is dependent on duv, which plays the role of the bifurcation parameter,

see Fig. 1(b). The condition for the marginal stability at some k = kc is min(b(k2)) = 0 [29].

We can express min(b(k2)) = 0 as

Ekd
2
uv + Fkduv +Gk = 0, (6.9)

where Ek = (gu(u
∗)χ(u∗)u∗)2, Fk = 2guχ(u

∗)u∗(fud + gv) and Gk = (fud + gv)
2 − 4d(fugv −

fvgu). For fixed kinetics parameters, the root of equation (6.9) defines a critical predator-taxis

coefficient

dcuv =
−Fk ±

√

F 2
k − 4EkGk

2Ek
.

Since duv > 0, we let

dcuv =
−Fk +

√

F 2
k − 4EkGk

2Ek
.

This critical predator-taxis coefficient has the critical wave number

k2c =

√

fugv − fvgu
d

.

Remark 6.3. In system (6.1), if u∗(u∗p′(u∗) + 1) > 0 and duv > dcuv, we have min(b(k2)) < 0.

This is shown in Fig. 1(b), where we have chosen the response function as the Holling type II

function p(u) =
γ

δ + u
.

Remark 6.4. In system (6.1), when u∗(u∗p′(u∗)+1) > 0 and duv > dcuv we have Turing modes.

Also, the number of these modes increases as duv is increased. This is shown in Fig. ?? with

p(u) =
γ

δ + u
.

From the linear stability analysis we can conclude that, if u∗(u∗p′(u∗) + 1) > 0 holds in

the kinetic model and the system (6.1) then (u∗, v∗) is stable under the kinetic system and is

unstable under the system (6.1) when duv > dcuv. We are also interested in the asymptotic
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Figure 1: (a) A plot of b(k2) for different values of duv. (b) A plot of the real part of the growth
rate of the kth mode for different values of duv. The parameters are δ = 0.8, γ = 1.00, η = 0.01,
d = 0.01 and dcuv = 8.77.

properties of model (6.1) when u∗(u∗p′(u∗) + 1) < 0. In this parameter regime, the model has

a oscillations caused by Hopf instability. In Section 7 we investigate numerically the effects of

predator-taxis on these oscillations.

6.2 Numerical approximation

In this section, we follow a systematic approach to derive a nonstandard finite difference scheme

for the nonlinear predator-taxis system (3.3). We follow the general subequation approach

typical of nonstandard finite difference formulations, see for example [24, 11, 1], and references

therein. In particular, similar to the present work, the authors in [11] proposed a methodology

for constructing unconditionally dynamically consistent nonstandard schemes with respect to

positivity for differential models with cross diffusion. The idea was to identify and exploit on the

positive (productive) and negative (destructive) terms of the difference scheme. In this section,

we develop on these ideas and construct a scheme for the system of equations (3.3) by coupling

nonstandard finite difference methods and finite volume methods. We recall (3.3)1, and write

∂u

∂t
=
∂2u

∂x2
− duv

∂

∂x

(

uχ(u)
∂v

∂x

)

+ u(1− u)− uvp(u). (6.10)

The scheme for the sub-equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u),

i.e., the Fishers equation, has attracted the attention of many researchers in the nonstandard

finite difference community. Here, we adopt the following scheme as proposed in several works,

see for example [24],

1

φ(∆t)

[

un+1
m − unm

]

=
1

ψ2(∆x)

[

unm+1 − 2unm + unm−1

]

+unm−
un+1
m

3
[unm+1+u

n
m+unm−1], (6.11)
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where ψ(∆x) = 2 sin

(

∆x

2

)

and φ(∆t) = e∆t − 1 satisfying the asymptotic relations ψ(∆x) =

∆x+O(∆x2) and φ(∆t) = ∆t+O(∆t2), respectively.

First, we will elaborate more on the productive and destructive terms of the predator-taxis.

We consider the nonlinear diffusion term (χ(u)uvx)x, which we discretise following [11], to get

1

ψ2(∆x)
[χ(um)umvm+1 − [χ(um)um + χ(um−1)um−1]vm + χ(um−1)um−1vm−1] . (6.12)

Combining the schemes (5.4), (6.11) and (6.12), we propose the following scheme for equation

(3.3)1,

1

φ

[

un+1
m − unm

]

= unm −
un+1
m

3

[

unm+1 + unm + unm−1

]

− un+1
m vnmp(u

n
m) +

1

ψ2

[

unm+1 − 2unm + unm−1

]

−
duv
ψ2

[

χ(unm)u
n
mv

n
m+1 − [χ(unm)u

n
m + χ(unm−1)u

n
m−1]v

n
m + χ(unm−1)u

n
m−1v

n
m−1

]

.

This scheme has the explicit form

un+1
m =

[unm(1− 2Λ) + φunm + Λ(unm+1 + unm−1)]

(1 + φūnm) + φp(unm)v
n
m

+Λduv
[χ(unm)u

n
m + χ(unm−1)u

n
m−1]v

n
m

(1 + φūnm) + φp(unm)v
n
m

− Λduv
[χ(unm)u

n
mv

n
m+1 + χ(unm−1)u

n
m−1v

n
m−1]

(1 + φūnm) + φp(unm)v
n
m

.

Clearly, the choice Λ =
φ

ψ2
=

1

2
will guarantee unconditional positivity of the first two terms on

the right hand side of the equal sign. The negative last term can be multiplied by 2un+1
m /(un+1

m +

unm), which approximates the constant 1 as ∆t→ 0. An alternative term like un+1
m /unm can also

be used. Such modifications, in addition to the requirement Λ = 1/2, will guarantee that the

scheme is unconditionally positive. The reader can consult [11] for further details.

As alluded to earlier, in this work we capitalise on the conservative nature of the cross

diffusion term and formulate a finite volume approximation to this term. We consider the

following sub equation of (6.10),

∂u

∂t
+ duv

∂

∂x

(

uχ(u)
∂v

∂x

)

= 0, (6.13)

which takes the form of nonlinear hyperbolic conservation laws, ut + fx = 0 with a flux, f =

χ(u)uvx. Naturally, this motivates the use of finite volume methods to disretise this equation,

see [17]. If we denote the mth grid cell by Cm = (xm− 1

2

, xm+ 1

2

), then unm will approximate the

average over the mth interval at time tn, i.e.,

unm =
1

∆x

∫ xm+1/2

xm−1/2

u(x, tn)dx =
1

∆x

∫

Cm

u(x, tn)dx,

where ∆x = xm+1/2 − xm−1/2 is the grid size. Defining F as the numerical flux function, then

it can be shown that the finite volume scheme for the conservation law is

un+1
m = unm −

∆t

∆x

[

F(unm, u
n
m+1)−F(unm−1, u

n
m)
]

,
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where, considering (6.13), we have

F(unm, u
n
m+1) = duvχ(u

n
m+1/2)u

n
m+1/2

vnm+1 − vnm
∆x

.

A similar construction is given for F(unm−1, u
n
m). The numerical flux has a physical interpretation

that the conserved quantity flows from one grid cell to the neighbouring cells at some rate

proportional to to the difference between values at either end of a cell. With this formulation

in mind, we propose the following coupled nonstandard - finite volume scheme

1

φ

[

un+1
m − unm

]

= unm −
un+1
m

3

[

unm+1 + unm + unm−1

]

− un+1
m vnmp(u

n
m) +

1

ψ2

[

unm+1 − 2unm + unm−1

]

−
duv
ψ2

[

χ(unm+1/2)u
n
m+1/2

(

vnm+1 − vnm
)

− χ(unm−1/2)u
n
m−1/2

(

vnm − vnm−1

)

]

,

where we have replaced the classical denominator ∆x with the non-negative function ψ(∆x).

As discussed earlier, we will also choose Λ = 1/2.

Next we recall the model
∂v

∂t
= d

∂2v

∂x2
+ v(1−

v

u
),

i.e., differential model (3.3)2. Assuming u is known and fixed, we see that this is the Fisher

equation. Following the nonstandard finite difference scheme above, we obtain the following

scheme

1

ϕ

[

vn+1
m − vnm

]

= ηvnm − η
vn+1
m

3un+1
m

[

vnm+1 + vnm + vnm−1

]

+
d

ψ2

[

vnm+1 − 2vnm + vnm−1

]

,

where ϕ(∆t) =
eη∆t − 1

η
satisfying ϕ(∆t) = ∆t+O(∆t2). The term u is approximated at level

n+1, assuming the so called Gauss-Seidel approach. We rewrite the scheme in its explicit form

to get

vn+1
m =

un+1
m [vnm(1− 2Υd) + ϕηvnm +Υd(vnm+1 + vnm−1)]

un+1
m + ϕηv̄nm

, (6.14)

where Υ = ϕ/ψ2 is a constant and v̄nm =
vnm+1 + vnm + vnm−1

3
. Furthermore, taking Υ = 1

2d
−1

we obtain

vn+1
m =

un+1
m [ϕηvnm + 1

2(v
n
m+1 + vnm−1)]

un+1
m + ϕηv̄nm

, (6.15)

and clearly this scheme replicates positive solutions irrespective of the values of the time and

space step sizes. To summarise, the coupled nonstandard finite difference and finite volume

scheme for system (3.3) is given by

un+1
m =

φunm + 1
2(u

n
m+1 + unm−1)

(1 + φūnm) + φvnmp(u
n
m)

−

1
2duv

[

χ(unm+1/2)u
n
m+1/2

(

vnm+1 − vnm
)

− χ(unm−1/2)u
n
m−1/2

(

vnm − vnm−1

)

]

(1 + φūnm) + φvnmp(u
n
m)

,

vn+1
m =

un+1
m [ϕηvnm + 1

2(v
n
m+1 + vnm−1)]

un+1
m + ϕηv̄nm

,

(6.16)
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where ūnm =
unm+1 + unm + unm−1

3
. In the next section we provide several numerical simulations

to support our study.

7 Numerical simulations

In this section, we will perform 1D numerical simulations of nonlinear system (3.3) using scheme

(6.16). The spatial domain is fixed on Ω = (0, 20). We will focus on the behaviour of the interior

equilibrium P ∗ = (u∗, v∗) since both populations exist simultaneously. The system undergoes a

Hopf bifurcation at P ∗ when u∗(u∗p′(u∗) + 1) = 0. When u∗(u∗p′(u∗) + 1) > 0, the direction of

Hopf bifurcation is sub-critical and super-critical when u∗(u∗p′(u∗) + 1) < 0. Unless otherwise

stated, in all the simulations we assume χ(u) = 1− u representing the volume filling effect, see

[35] and the references there in. We will also use the Holling type II functional response, i.e.,

f(u) =
γu

δ + u
. All simulations are based on the bifurcation diagram in Fig. 2 with the model

parameters selected as follows: γ = 1.0, η = 0.01 and d = 0.01. The broken line shows the

Hopf curve and the solid line shows the Turing curve. Above the Hopf curve is the subcritical

region where stable spatial homogeneous solution (left hand side of the solid line), or stable

spatial patterns (right hand side of the solid line) are expected. Below the broken line is the

supercritical region.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Hopf curve

Turing curve

Figure 2: Bifurcation diagram for model in the duv–δ space.

In all our numerical simulations, we assume periodic boundary conditions. The initial con-

dition is a small random perturbation of the homogeneous steady state (u∗, v∗). We will also

run the simulations until they show a behaviour that does not seem to change with time.

When performing numerical simulations, each grid point adds a degree of freedom to the

system and the more degrees of freedom the more accurate the solutions are. However, each

degree of freedom increases solving time. We will balance size and solve time for scheme (6.16)

by performing a mesh convergence analysis. In the analysis we will plot solutions of scheme

(6.16) in the sub-critical region of Hopf bifurcation with duv = 30 using mesh sizes M = 70,
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Figure 3: Solution profile for u(x, t) in the sub-critical region for different mesh sizes, corre-
sponding to point P1 of Fig. 2.

M = 100, M = 130 andM = 160. This analysis will determine the mesh size required to ensure

that the simulation results are not affected by changing the size of the mesh.

In Fig. 3 we observe that, when using mesh size M = 120 simulation results of scheme

(6.16) are not affected by decreasing the mesh size. Thus, this mesh size is used for all our

simulations. All simulations were obtained in less than 123 seconds of CPU time on a standard

2.0GHz Quad Core i5 laptop. We also highlight that no meaningful results were obtained using

the standard finite difference methods for grid size up to M = 150. For the simulations in Fig.

3, different initial perturbation is used and we observe that the initial conditions have no effect

on steady-state solutions.
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Figure 4: Simulations in the subcritical region with duv = 2.0 and δ = 0.6, corresponding to
point P1 of Fig. 2. Figure (a) is a solution profile at t = 1000 and figure (b) is a solution profile
at x = 10. We observe no patterns since duv < dcuv = 8.768.

Simulation results in Fig. 4 and Fig. 5 provide clear evidence that in the sub-critical region

of Hopf bifurcation, Turing patterns may appear in the model (3.3) when the effect of predator-

taxis is larger than the predator-taxis critical value. In this parameter regime, the unique

positive equilibrium is given by (u∗, v∗) = (0.580, 0.580), satisfying u∗(u∗p′(u∗)+1) = 0.403 > 0.

We observe that if duv < dcuv , planar solutions are observed, see Fig. 4. On the other hand,
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Figure 5: Simulations in the subcritical region with duv = 30 and δ = 0.8, corresponding to
point P2 of Fig. 2. Figure (a) is a solution profile at t = 1000 and figure (b) is a solution profile
at x = 10. We observe Turing patterns since duv > dcuv = 8.768.

in support of Theorem 6.2, Fig. 5 shows that the positive equilibrium (u∗, v∗) = (0.580, 0.580)

is unstable for duv > dcuv, and we predict Turing patterns for the predator and prey in model

(3.3). It is clear that the regions of higher predator and prey concentration coincide, which

highlights the luring mechanism introduced in the model.
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Figure 6: Simulations in the supercritical region with duv = 30 and δ = 0.1, corresponding to
point P3 of Fig. 2. Figure (a) is a solution profile at t = 1000 and figure (b) is a solution profile
at x = 10. Stationary Turing patterns are observed in this parameter regime.
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Figure 7: Simulations in the supercritical region with duv = 1.0 and δ = 0.2, corresponding to
point P4 of Fig. 2. Figure (a) is a solution profile at t = 1000 and figure (b) is a solution profile
at x = 10. Oscillations are observed in this parameter regime.

We also perform simulations in the super-critical region of Hopf bifurcation. In this pa-

rameter regime (u∗, v∗) = (0.358, 0.358), satisfying u∗(u∗p′(u∗) + 1) = −0.0536 < 0. From

numerical simulations, also supported by Figs. 6, 7 and 8, we observe oscillatory solutions. A
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Figure 8: Simulations in the supercritical region with duv = 6.0 and δ = 0.1, corresponding to
point P5 of Fig. 2. Figure (a) is a solution profile at t = 1000 and figure (b) is a solution profile
at x = 10. Oscillations are observed in this parameter regime.

comparison of simulations in Figs. 4 – 8 predicts one of the following stable states: spatially

homogeneous steady state, bulk oscillations, oscillating patterns or stationary Turing patterns.

These numerical simulations are entirely consistent with our theoretical results in Theorem 6.2.

8 Conclusions

In this paper, we presented a theoretical and numerical investigation of the Holling-Tanner

model with predator-taxis. Predators are assumed to move randomly in their habitat at the

same time luring the prey. First the global existence of classical solutions for the proposed model

is established. We then design a dynamically consistent nonstandard finite difference scheme for

the corresponding spatially homogeneous Holling-Tanner predator-prey model. Choosing the

predator-taxis coefficient duv as the bifurcation parameter, we established conditions for Turing

pattern formation using linear stability analysis. A coupled nonstandard finite difference and

finite volume scheme that support the qualitative behaviour of the continuous model is derived.

Clearly the results in Fig. 3 support the fast convergence properties of the designed scheme.

Numerical simulations are provided to explore the spatiotemporal patterns generated by the

scheme in the different parameter regimes identified in the analysis. It is observed that Turing

patterns appear when the coefficient of predator-taxis term is larger than the critical value dcuv.

It is worth noting that our methods do apply to a wide class of Holling-Tanner predator-

taxis systems with general functional responses. It is important to check that the amplitude of

the morphogen pattern is physiologically relevant. Hence, in future, a weakly nonlinear analysis

to determine the amplitude of the Turing patterns will be considered. In addition, simulations

in higher dimensions will be provided.
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