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Abstract: A cornerstone in the modeling of wireless communication is MIMO systems, where a complex
matrix variate normal assumption is often made for the underlying distribution of the propagation
matrix. A popular measure of information, namely capacity, is often investigated for the performance of
MIMO designs. This paper derives upper bounds for this measure of information for the case of two
transmitting antennae and an arbitrary number of receiving antennae when the propagation matrix
is assumed to follow a scale mixture of complex matrix variate normal distribution. Furthermore,
noncentrality is assumed to account for LOS scenarios within the MIMO environment. The insight of
this paper illustrates the theoretical form of capacity under these key assumptions and paves the way
for considerations of alternative distributional choices for the channel propagation matrix in potential
cases of severe fading, when the assumption of normality may not be realistic.

Keywords: ergodic capacity; eigenvalues; noncentrality

1. Introduction
1.1. MIMO Channels and Capacity

Research in random matrix theory has seen unprecedented growth in not only theoret-
ical advances over the last two decades, but also coupled with a variety of developments
in fields of application including wireless communication. In fact, the development in this
current era of growing need for continuous and more reliable communication motivates
a sustained research interest in mathematical, and specifically statistical representation
and theoretical frameworks to understand and extend global communication needs. A
major consideration within wireless communication is the multiple-input-multiple-output
(MIMO) design. MIMO designs are widely studied and employed in practice as their
multiple-antenna design exhibits high spectral efficiency and increased capacity for the
transfer of information via wireless signals passing through these systems. MIMO has a
fundamental probabilistic foundation, and is intertwined with statistical distribution theory.
Therefore, statistical distribution insight is essential for further development, refinement,
and investigation of MIMO systems and the interconnected world we live and operate in.

In wireless communication, this design is characterized as y = Hx + e where y, e ∈ Cn×1,
x ∈ Cp×1, and H ∈ Cn×p. In MIMO terms, x and y denotes the transmit- and receiver
signal vectors respectively, e denotes a noise vector, and n denotes the number of trans-
mitter antennae and p denotes the number of receiver antennae (often denoted by nt and
nr respectively—however, "usual" statistical notation of n and p will be retained). Here,
Cn×p denotes the space of all complex matrices of dimension n× p and Cp×p

∗ denotes the
space of all Hermitian positive definite complex matrices of dimension p× p. H is called
the propagation matrix, and is usually considered to be complex matrix variate normally
distributed with probability density function (pdf)

f (H) =
1

πnp det(Φ)p det(Σ)n etr
(
−Φ−1(H−M)Σ−1(H−M)H

)
(1)
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denoted H ∼ CNn×p(M, Φ⊗ Σ), where M ∈ Cn×p, Φ ∈ Cn×n
∗ , Σ ∈ Cp×p

∗ with mean
E(H) = M and cov(H) = Φ⊗ Σ. XH , X−1, and det (X) denotes the Hermitian transpose,
the inverse, and the determinant of the complex matrix X respectively, ⊗ denotes the
Kronecker product, etr(·) denotes the exponential trace exp(tr·), and E(·) and cov(·)
denotes the expectation and covariance operator.

MIMO systems have different measures of information that describes the efficacy and
quality of transmitted information in the design: mutual information being an important
characteristic. In particular, the ergodic mutual information of the MIMO channel is
evaluated as (see [1])

C = EH

(
log det

(
Ip +

ρ

p
HHH

))
= pEH

(
log
(

1 +
ρ

p
λ1

))
(2)

where ρ denotes the signal-to-noise ratio, and Ip denotes the identity matrix of dimension
p. The measure of information (2) is often described as the capacity of the MIMO system
(also called Shannon capacity, see [2]), and relies on the distribution of HHH - or what is
known as the complex (noncentral) Wishart matrix when H is considered CN distributed.
Here, λ1 denotes the largest eigenvalue of HHH, and its distribution is essential in the
evaluation of (2). This assumption for H is restrictive in the practical case when severe
fading is observed, and it is the main focus of this paper to alleviate this restriction via the
platform of scale mixture of complex matrix variate normals for H.

1.2. Scale Mixture of (Complex) Matrix Variate Normals and the Resulting Wishart

Normality remains a common and useful assumption within statistical theory- and
application. However, data often display characteristics that do not align with the implied
requirements of normality: characteristics such as heavier tails, even if the data still respects
characteristics such as symmetry. The alleviation of this normal assumption has been the
focus of much research. Two important research foci in this regard are Gaussian mixtures
(see [3,4] for examples in the MIMO context) which can account for multimodality and
skewness, and scale mixtures which can account for heavier-than-normal tails in the
data. Scale mixtures are often considered for relaxing the normal assumption, and is a
particular focus area of this paper. Pioneering work has been undertaken by [5–7] and has
brought forth an important wave of research since due to the elegance and practicality
of this broader elliptical class of models. In the complex variate realm, [8] capitalized
on this mixture representation of complex normal variates. However, limited work has
been done to introduce the platform of scale mixture of normal distributions within a
MIMO context. Within MIMO, a normal assumption is made, but evidence exists that
there are practical considerations from fieldwork which supports the argument that a
departure from normality does not seem far-fetched [9–12]. In this light, the consideration
of a scale mixture of (complex) matrix variate normals (SMCN) for the candidacy of H
makes a meaningful contribution, as the scale mixture class has different distributional
members which may very well suitably adapt to the practitioners need [9,13]. These
members include the usual normal-, t-, contaminated normal-, and slash distribution
among others—all of which provide a heavier-than-normal tailed alternative for potential
practical considerations of H. In fact, [11] illustrates an SMCN assumption for a zero mean
H in the MIMO context specifically where superior capacity performance is observed for
an underlying complex matrix variate t model for H, and [10,12] demonstrates the added
value of the scale mixture approach when H exhibits a nonzero mean; specifically focusing
on rank-1 noncentrality and the condition number of the quadratic form, respectively. The
data-driven consideration of the scale mixture approach in the MIMO environment is
therefore well-motivated, and a valuable theoretical consideration.
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The variable H has an SMCN distribution if it has pdf

f (H) =
1

det(Φ)p det(Σ)n h
(
−trΦ−1(H−M)Σ−1(H−M)H

)
=

∫
R+

fCNn×p(M,Φ⊗t−1Σ)(H|t)k(t)dt (3)

denoted by H ∼ SMCNn×p(M, Φ⊗ Σ, h) where fCNn×p(M,Φ⊗t−1Σ) denotes the CN pdf

as in (1), h(·) denotes the generator function, and k(t) denotes the weight function (in-
herently dependent on h(·)). The advantage of this mixture representation is that the
variable H ∼ SMCNn×p(M, Φ⊗ Σ, h) retains key statistical characteristics E(H) = M and
cov(H) = Φ⊗ Σ. There are two aspects of (3) that warrants some comments for this paper:
first, the assumption of a nonzero mean (in this case M) which often causes a challenging
theoretical environment in which to investigate properties of the model. Secondly, the large
covariance structure which causes further theoretical challenges, where the trace operator
in the argument of h(·) oftentimes restrict computable forms. Key characteristics under
these challenges (such as pdfs of the joint eigenvalues, and thus capacity) are often derived
in mathematically elegant yet computationally challenging forms of zonal- and Hayakawa
polynomials (see [2], for example). This limits the practical consideration, and this paper
will make additional assumptions (similar to [10,14,15]), such as Φ = In to circumvent the
cumbersome potential computational implementation of the results.

1.3. Main Contribution of this Paper

The main contribution in this study is assuming this SMCN distributional form (3) for
H, compared to the usual complex normal assumption (1). This results in the distribution
of S = HHH ∈ Cp×p

∗ (see [10]), necessary for deriving (2), with pdf

f (S) =
(det S)n−p

Γ̃p(n)det(Σ)n

∫
R+

tnpetr
(
−t
(

Σ−1S + ∆
))

0 F̃1

(
n; t2∆Σ−1S

)
k(t)dt (4)

denoted by S ∼ SMCWp(n, M, In ⊗ Σ) where S ∈ Cp×p
∗ , ∆ = Σ−1MHM indicates the

noncentral matrix parameter, and Γ̃p(·) denotes the p−dimensional complex multivari-
ate gamma function. The function r F̃q

(
a1, ..., ar; b1, ..., bq, X

)
denotes the hypergeometric

function of Hermitian matrix argument with r upper and q lower parameters (see [2,16]
for further details) where r = 0 and q = 1 in (4) specifically. The distribution in (4) is
called a scale mixture of complex Wishart (SMCW) and will be referred to as Case 1, where
the consideration of the parameter ∆ implies noncentrality. [17] (and subsequently [12])
also considered an uncorrelated SMCW model within the MIMO environment. This con-
sideration simplifies the theoretical framework, but is practically motivated for spatial
(in)dependence of transmitters for when antennae are spaced far enough apart geograph-
ically so that the assumption of independence is not unreasonable. Consider thus the
transformation W = Σ−1S ∈ Cp×p

∗ with Jacobian J(S→ W) = det(Σ)p, then (see [12])

func(W) =
(det W)n−p

Γ̃p(n)

∫
R+

tnpetr(−t(W + ∆)) 0 F̃1

(
n; t2∆W

)
k(t)dt (5)

and will be referred to as Case 2.
The second main consideration of this paper is assuming a nonzero mean matrix for

H. This is a valid and oftentimes essential assumption for a MIMO system when there
is a direct line-of-sight (LOS) component between transmitters and receivers (see [10]).
This noncentrality is also a fundamental component in expressions left in zonal- and
Hayakawa polynomial form. To this effect, expressions which are effectively an upper
bound for the capacity are derived under the SMCN assumption, assuming noncentrality
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for H. Together, these two considerations will give insight into the (comparatively) little
researched phenomena into severely fading channels and accounting for LOS between
transmitters and receivers (see [1] as well as the Appendix A).

For observing the capacity, the joint pdf of the eigenvalues of (4) and (5) are derived;
however, the form of these pdfs are challenging to work with for arbitrary n and p. The
assumptions of this paper as well as the derivation of an upper bound for Case 1 and 2 will
ease this investigation to allow clearer insight into the conceptual behavior in the case of a
SMCN assumption H. The case when p = 2 will be of particular illustrative interest, for
both Cases 1 and 2. This way, a contribution is also made to allow for arbitrary n: arbitrary
degrees of freedom for the SMCW distributions under consideration in this paper, and
arbitrary number of transmitter antennae in the MIMO environment.

The outline of this paper is as follows: in Section 2, the joint pdfs of the eigenvalues
for both Case 1 and Case 2 are derived, and a specific upper bound for these densities are
derived. These expressions are used in Section 3 to derive an upper bound for the capacity
for Case 1 and Case 2. A particular exact expression for Case 2 is also given. Section 4
contains a discussion of obtained results and some potential areas for further work.

2. Eigenvalue Pdfs and an Upper Bound

As the eigenvalues of S (and W) respectively play an essential role in understanding
the capacity of a MIMO system subjected to this alternate distributional consideration
for H, determining the joint pdf of the eigenvalues of S (and W) are of interest. Sup-
pose that λ1 > λ2 > ... > λp > 0 denote the real ordered eigenvalues of S, and let
Λ = diag

(
λ1, λ2, ..., λp

)
. Additionally, let µ1 > µ2 > ... > µp > 0 denote the real ordered

eigenvalues of ∆, and let Ω = diag
(
µ1, µ2, ..., µp

)
. The joint pdf of Λ is then given by [18])

f (Λ) =
πp(p−1)

Γ̃p(p)

p

∏
k<l

(λk − λl)
2

∫
E∈U(p)

f
(

EΛEH
)

dE (6)

where the pdf f (·) in the integral in (6) denotes the pdf of S, and U(p) denotes the unitary
space of order p (see [18]). For Case 1 (see (4)) the joint pdf of Λ is then given by [10] (Note

that
p

∏
k<l

(λk − λl) is often referred to as the Vandermonde determinant.)

f (Λ) =
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)det(Σ)n

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆) (7)

×
∫

E∈U(p)

etr
(
−tΣ−1EΛEH

)
0 F̃1

(
n; t2∆Σ−1EΛEH

)
dEk(t)dt.

This equation, in terms of an integral over the unitary space, leads to a nonpractical
representation of the joint pdf of the eigenvalues. Ref. [2] proved the following upper
bound for X ∈ Cn×p:

0 F̃1

(
n; XHX

)
≤ 0 F̃0

(
XHX

n

)
= etr

(
XHX

n

)
(8)

and illustrated the tightness of this upper bound. Thus, to circumvent the theoretical
challenge in (8) we apply (8) to obtain an upper bound for this joint pdf, and use the
splitting formula of [18]:
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f (Λ)

≤ πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)det(Σ)n

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆)

×
∫

E∈U(p)

etr
(
−tΣ−1EΛEH

)
0 F̃0

(
t2∆Σ−1EΛEH

n

)
dEk(t)dt

=
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)det(Σ)n

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆) (9)

×
∫

E∈U(p)

etr

(
−
(

tΣ−1 − t2∆Σ−1

n

)
EΛEH

)
dEk(t)dt

=
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)det(Σ)n

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆) 0 F̃(p)
0 (−Ψ, Λ)k(t)dt

where Ψ =tΣ−1− t2∆Σ−1

n and 0 F̃(p)
0 (−Ψ, Λ) denotes the hypergeometric of double complex

matrix argument [18]. For Case 2 (see (5)), in a similar way as above, this pdf (denoted by
func(·) for Case 2) is given by

func(Λ)

=
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆)

×
∫

E∈U(p)

etr
(
−tEΛEH

)
0 F̃1

(
n; t2∆EΛEH

)
dEk(t)dt

≤ πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆) (10)

×
∫

E∈U(p)

etr
(
−tEΛEH

)
0 F̃0

(
t2∆EΛEH

n

)
dEk(t)dt

=
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆) 0 F̃(p)
0 (−Ψ∗, Λ)k(t)dt

where Ψ∗ = tIp − t2∆
n . A useful representation of 0 F̃(p)

0 (−Ψ, Λ) in (10) (and 0 F̃(p)
0 (−Ψ∗, Λ)

in (11)) is given by [16]:

0 F̃(p)
0 (−Ψ, Λ) =

Γ̃p(p)det
(
exp

(
−ψiλj

))
π

p(p−1)
2

p
∏
k<l

(λk − λl)
p

∏
k<l

(ψk − ψl)

(11)
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where ψ1 > ψ2 > ... > ψp > 0 denotes the real ordered eigenvalues of Ψ (and ψ1,∗ >
ψ2,∗ > ... > ψp,∗ > 0 denotes the real ordered eigenvalues of Ψ∗). Using (11) and obtaining
the unordered joint pdf of the eigenvalues (see [19]) leaves

f
(
λ1, λ2, ..., λp

)
≤ πp(p−1) det(Λ)n−p

p!Γ̃p(p)Γ̃p(n)det(Σ)n

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆)

×
Γ̃p(p)det

(
exp

(
−ψiλj

))
π

p(p−1)
2

p
∏
k<l

(λk − λl)
p

∏
k<l

(ψk − ψl)

k(t)dt (12)

=
π

p(p−1)
2 det(Λ)n−p

p!Γ̃p(n)det(Σ)n

p

∏
k<l

(λk − λl)

×
∫
R+

tnp etr(−t∆)
p

∏
k<l

(ψk − ψl)

det
(
exp

(
−ψiλj

))
k(t)dt

and

func
(
λ1, λ2, ..., λp

)
≤ πp(p−1) det(Λ)n−p

p!Γ̃p(p)Γ̃p(n)

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t∆)

×
Γ̃p(p)det

(
exp

(
−ψi,∗λj

))
π

p(p−1)
2

p
∏
k<l

(λk − λl)
p

∏
k<l

(ψk,∗ − ψl,∗)

k(t)dt (13)

=
π

p(p−1)
2 det(Λ)n−p

p!Γ̃p(n)

p

∏
k<l

(λk − λl)

×
∫
R+

tnp etr(−t∆)
p

∏
k<l

(ψk,∗ − ψl,∗)

det
(
exp

(
−ψi,∗λj

))
k(t)dt.

There are clear theoretical challenges in using (8) or (10), or even (10) or (11) in the
quest to determine explicit expressions for the capacity (see (2)). Using (13) and (14), an
upper bound can now be obtained for the capacity using the marginal distribution for λ1
in each respective case.

3. Capacity for the Case p = 2

In this section, expressions for an upper bound for the capacity in (2) when assuming
an SMCN for H is derived when p = 2 for Case 1 and 2. An exact expression for C is also
derived for Case 2.

3.1. Approximation for Case 1 and Case 2

Considering Case 1 (13) and setting p = 2, see that

det
(
exp

(
−ψiλj

))
=

∣∣∣∣ exp(−ψ1λ1) exp(−ψ1λ2)
exp(−ψ2λ1) exp(−ψ2λ2)

∣∣∣∣ (14)

= exp(−ψ1λ1 − ψ2λ2)− exp(−ψ1λ2 − ψ2λ1).

Therefore, by substituting (15) into (13) and determining (2):
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C ≤
∫
R+

2 log
[
1 +

ρ

2
λ1

] ∫
R+

π(λ1λ2)
n−2(λ1 − λ2)

2!Γ̃2(n)det(Σ)n

×
∫
R+

t2n etr(−t∆)
(ψ1 − ψ2)

(exp(−ψ1λ1 − ψ2λ2)− exp(−ψ1λ2 − ψ2λ1))k(t)dtdλ2dλ1

=
1

Γ(n)Γ(n− 1)det(Σ)n

∫
R+

log
[
1 +

ρ

2
λ1

] ∫
R+

t2n etr(−t∆)
(ψ1 − ψ2)

(15)

×
∫
R+

(
λn−1

1 λn−2
2 − λn−2

1 λn−1
2

)
×(exp(−ψ1λ1 − ψ2λ2)− exp(−ψ1λ2 − ψ2λ1))dλ2k(t)dtdλ1.

Using the gamma integral relation (see [20], p. 337), see that∫
R+

(
λn−1

1 λn−2
2 − λn−2

1 λn−1
2

)
(exp(−ψ1λ1 − ψ2λ2)− exp(−ψ1λ2 − ψ2λ1))dλ2

= λn−1
1 exp(−ψ1λ1)ψ

−(n−1)
2 Γ(n− 1)− λn−1

1 exp(−ψ2λ1)ψ
−(n−1)
1 Γ(n− 1) (16)

−λn−2
1 exp(−ψ1λ1)ψ

−n
2 Γ(n) + λn−2

1 exp(−ψ2λ1)ψ
−n
1 Γ(n).

Substituting (16) into (16) leaves

C ≤ 1
Γ(n)Γ(n− 1)det(Σ)n

∫
R+

∫
R+

log
[
1 +

ρ

2
λ1

]
t2n etr(−t∆)

(ψ1 − ψ2)

×(λn−1
1 exp(−ψ1λ1)ψ

−(n−1)
2 Γ(n− 1)− λn−1

1 exp(−ψ2λ1)ψ
−(n−1)
1 Γ(n− 1)

−λn−2
1 exp(−ψ1λ1)ψ

−n
2 Γ(n) + λn−2

1 exp(−ψ2λ1)ψ
−n
1 Γ(n))k(t)dtdλ1

=
1

det(Σ)n [
∫
R+

t2n etr(−t∆)ψ−(n−1)
2

Γ(n)(ψ1 − ψ2)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−1

1 exp(−ψ1λ1)dλ1k(t)dt

−
∫
R+

t2n etr(−t∆)ψ−(n−1)
1

Γ(n)(ψ1 − ψ2)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−1

1 exp(−ψ2λ1)dλ1k(t)dt

−
∫
R+

t2n etr(−t∆)ψ−n
2

Γ(n− 1)(ψ1 − ψ2)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−2

1 exp(−ψ1λ1)dλ1k(t)dt

+
∫
R+

t2n etr(−t∆)ψ−n
1

Γ(n− 1)(ψ1 − ψ2)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−2

1 exp(−ψ2λ1)dλ1k(t)dt].
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For Case 2 (14), the result would follow in a similar manner:

C ≤
∫
R+

t2n etr(−t∆)ψ−(n−1)
2,∗

Γ(n)(ψ1,∗ − ψ2,∗)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−1

1 exp(−ψ1,∗λ1)dλ1k(t)dt

−
∫
R+

t2n etr(−t∆)ψ−(n−1)
1,∗

Γ(n)(ψ1,∗ − ψ2,∗)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−1

1 exp(−ψ2,∗λ1)dλ1k(t)dt

−
∫
R+

t2n etr(−t∆)ψ−n
2,∗

Γ(n− 1)(ψ1,∗ − ψ2,∗)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−2

1 exp(−ψ1,∗λ1)dλ1k(t)dt

+
∫
R+

t2n etr(−t∆)ψ−n
1,∗

Γ(n− 1)(ψ1,∗ − ψ2,∗)

∫
R+

log
[
1 +

ρ

2
λ1

]
λn−2

1 exp(−ψ2,∗λ1)dλ1k(t)dt.

Both these approximations for Case 1 and 2 illustrate the elegance which the scale
mixture platform provides in a theoretical sense, and under the usual CN assumption
(with corresponding weight k(t)) the results reflect those obtained by [2]. In the zero mean
case, i.e., when M = 0 and thus Λ = 0, the results of [11] are closely reflected. A computa-
tional challenge remains due to the dependence of these expressions on ψ1, ψ2, . . . , ψp and
ψ1,∗, ψ2,∗, . . . , ψp,∗, the eigenvalues of Ψ and Ψ∗ respectively since both these matrices are
functions of the mixing variable t.

3.2. Exact Expression for Case 2

An exact expression not consisting of zonal- or Hayakawa polynomials for the capac-
ity (2) for Case 1 is not feasible, due to the intractability of the function 0 F̃1

(
n; t2∆Σ−1EΛEH

)
in (8). However, an exact expression can be derived for Case 2. For this expression, the com-
putable form for the hypergeometric function of two complex matrix arguments from [21]
is exploited. Thus, from (10):

func(Λ)

=
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t(∆ + Λ))

×
∫

E∈U(p)

0 F̃1

(
n; t2∆EΛEH

)
dEk(t)dt (17)

=
πp(p−1) det(Λ)n−p

Γ̃p(p)Γ̃p(n)

p

∏
k<l

(λk − λl)
2
∫
R+

tnpetr(−t(∆ + Λ))

× 0 F̃1(n; tΩ,tΛ)k(t)dt.

Ref. [21] enables us to express the function 0 F̃1(n; tΩ,tΛ) as follows:

0 F̃1(n; tΩ,tΛ) =
det
(

0F1
(
n− p + 1, t2µiλj

))
(πt)

p(p−1)
2

p
∏
k<l

(λk − λl)
p

∏
k<l

(µk − µl)

Γ̃p(p)Γ̃p(n)
((n− p)!)p (18)

where 0F1(·; ·) denotes the confluent hypergeometric function of scalar argument
and det(0F1(·; ·)) denotes the determinant of a matrix with this confluent hypergeometric
function of scalar argument as entries. Please note that 0F1(s + 1; x) = s!x−

s
2 Is
(
2
√

x
)

and

that Is
(
2
√

x
)
=

∞
∑

k=0

1
k!Γ(s+k+1)

(
2
√

x
2

)s+2k
where Γ(·) denotes the usual gamma function

(see [20], p. 919, eq. 8.445). Therefore

0F1

(
n− p + 1, t2µiλj

)
= (n− p)!

(
t2µiλj

)− n−p
2

∞

∑
k=0

1
k!Γ(n− p + k + 1)

(
t
√

µiλj

)n−p+2k
. (19)
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Using these expressions, it is theoretically possible to numerically solve for the capac-
ity for any p by taking the expectation of (2) using the above for the pdf. Of course, this
would prove computationally intensive, as the determinant of a (potentially) high dimen-
sional matrix is an expensive operator—in addition to this, the entries of this determinant
follow from (19), and would still require the marginal distribution of λ1 to be numerically
determined to evaluate (2). For particular insight into the theoretical framework in this
case, assume that p = 2:

det
(

0F1

(
n− 1, t2µiλj

))
=

∣∣∣∣ 0F1
(
n− 1, t2µ1λ1

)
0F1
(
n− 1, t2µ1λ2

)
0F1
(
n− 1, t2µ2λ1

)
0F1
(
n− 1, t2µ2λ2

) ∣∣∣∣
= 0F1

(
n− 1, t2µ1λ1

)
0F1

(
n− 1, t2µ2λ2

)
− 0F1

(
n− 1, t2µ1λ2

)
0F1

(
n− 1, t2µ2λ1

)
= (n− 2)!

(
t2µ1λ1

)− n−2
2

∞

∑
k=0

1
k!Γ(n− 2 + k + 1)

(
t
√

µ1λ1

)n−2+2k
(n− 2)!

(
t2µ2λ2

)− n−2
2

×
∞

∑
m=0

1
m!Γ(n− 2 + m + 1)

(
t
√

µ2λ2

)n−2+2m
(20)

−(n− 2)!
(

t2µ1λ2

)− n−2
2

∞

∑
k=0

1
k!Γ(n− 2 + k + 1)

(
t
√

µ1λ2

)n−2+2k

×(n− 2)!
(

t2µ2λ1

)− n−2
2

∞

∑
m=0

1
m!Γ(n− 2 + m + 1)

(
t
√

µ2λ1

)n−2+2m

= ((n− 2)!)2
∞

∑
k=0

∞

∑
m=0

t2k+2m

k!m!Γ(n + k− 1)Γ(n + m− 1)
µk

1µm
2

(
λk

1λm
2 − λk

2λm
1

)
.

By substituting (21) into (18) leaves:

0 F̃1(n; tΩ,tΛ) =
det
(

0F1
(
n− p + 1, t2µiλj

))
πt(λ1 − λ2)(µ1 − µ2)

π2π2Γ(n)Γ(n− 1)

((n− 2)!)2

=
π2π2Γ(n)Γ(n− 1)

((n− 2)!)2πt(λ1 − λ2)(µ1 − µ2)
((n− 2)!)2 (21)

×
∞

∑
k=0

∞

∑
m=0

t2k+2mµk
1µm

2

(
λk

1λm
2 − λk

2λm
1

)
k!m!Γ(n + k− 1)Γ(n + m− 1)

=
π3Γ(n)Γ(n− 1)

(λ1 − λ2)(µ1 − µ2)

∞

∑
k=0

∞

∑
m=0

t2k+2mµk
1µm

2

(
λk

1λm
2 − λk

2λm
1

)
k!m!Γ(n + k− 1)Γ(n + m− 1)

Thus, after considering (22), (18) is shown to be:

func(λ1, λ2)

=
π2(λ1λ2)

n−2

Γ̃2(2)Γ̃2(n)
(λ1 − λ2)

2
∫
R+

t2netr(−t(∆ + Λ))
π3Γ(n)Γ(n− 1)

(λ1 − λ2)(µ1 − µ2)

×
∞

∑
k=0

∞

∑
m=0

t2k+2mµk
1µm

2

(
λk

1λm
2 − λk

2λm
1

)
k!m!Γ(n + k− 1)Γ(n + m− 1)

k(t)dt (22)

=
1

(µ1 − µ2)

∞

∑
k=0

∞

∑
m=0

µk
1µm

2

(
λn−1

1 λn−2
2 − λn−2

1 λn−1
2

)(
λk

1λm
2 − λk

2λm
1

)
k!m!Γ(n + k− 1)Γ(n + m− 1)

×
∫
R+

t2n+2k+2metr(−t(∆ + Λ))k(t)dt.
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This pdf (23) can also be viewed as a weighted infinite sum with Poisson probabilities:

func(λ1, λ2)

=

(
λn−1

1 λn−2
2 − λn−2

1 λn−1
2

)
(µ1 − µ2)

∫
R+

∞

∑
k=0

∞

∑
m=0

t2n+k+metr(−tΛ)

(
λk

1λm
2 − λk

2λm
1

)
Γ(n + k− 1)Γ(n + m− 1)

(23)

×
(
(tµ1)

k exp(−tµ1)

k!
(tµ2)

m exp(−tµ2)

m!

)
k(t)dt

with Poisson parameters tµ1 and tµ2. The noncentral aspect of this representation thus
corresponds with similarly illustrated noncentral representations: in this case by relying
on the noncentral matrix eigenvalues µ1 and µ2 as the parameters of Poisson probabil-
ities, which has been observed across the literature: see for example [22,23], and more
recently, [24] in the MIMO environment.

For evaluating the capacity (2), see that

C =
∫
R+

2 log
[
1 +

ρ

2
λ1

] 1
2!(µ1 − µ2)

∞

∑
k=0

∞

∑
m=0

µk
1µm

2
k!m!Γ(n + k− 1)Γ(n + m− 1)

×
∫
R+

(
λn−1

1 λn−2
2 − λn−2

1 λn−1
2

)(
λk

1λm
2 − λk

2λm
1

)
×
∫
R+

t2n+2k+2metr(−t(∆ + Λ))k(t)dtdλ2dλ1

=
1

(µ1 − µ2)

∞

∑
k=0

∞

∑
m=0

µk
1µm

2
k!m!Γ(n + k− 1)Γ(n + m− 1)

∫
R+

t2n+2k+2metr(−t∆)

×
∫
R+

log
[
1 +

ρ

2
λ1

]
exp(−tλ1)

×
∫
R+

(
λn−1

1 λn−2
2 − λn−2

1 λn−1
2

)(
λk

1λm
2 − λk

2λm
1

)
exp(−tλ2)dλ2dλ1k(t)dt

where using the gamma integral relation again leaves

C =
1

(µ1 − µ2)

∞

∑
k=0

∞

∑
m=0

µk
1µm

2
k!m!Γ(n + k− 1)Γ(n + m− 1)

∫
R+

tn+2k+2metr(−t∆)

×[t−(m−1)Γ(n + m− 1)
∫
R+

log
[
1 +

ρ

2
λ1

]
exp(−tλ1)λ

n+k−1
1 dλ1

−t−(k−1)Γ(n + k− 1)
∫
R+

log
[
1 +

ρ

2
λ1

]
exp(−tλ1)λ

n+m−1
1 dλ1

−t−mΓ(n + m)
∫
R+

log
[
1 +

ρ

2
λ1

]
exp(−tλ1)λ

n+k−2
1 dλ1

+t−kΓ(n + k)
∫
R+

log
[
1 +

ρ

2
λ1

]
exp(−tλ1)λ

n+m−2
1 dλ1]k(t)dt.

This exact expression for the capacity provides meaningful theoretical insight to the
form of the capacity when considering uncorrelated MIMO channels subject to an SMCN
propagation channel H, and has the results of [2,12] as a special case for corresponding
choices of k(t). The view of (24) solidifies the noncentral consideration for this bivariate
case and acts as a "benchmark" of the noncentral representation which is often encountered
in the literature.
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4. Conclusions

In this paper, a motivated argument was presented for the introduction of an SMCN
distribution for the underlying model of the propagation matrix H in a MIMO system
environment. Not only does this assumption relieve the restriction of normality for the
practitioner, but in this case a nonzero mean is also assumed as part of this model. Capacity,
an essential measure of information within the MIMO context, relies on the distribution of
HHH, and this paper investigates the eigenvalue relations of this SMCW distribution, as
well as its uncorrelated counterpart. An upper bound for the capacity for both these cases
are derived for the case when p = 2, which in a MIMO context implies a two transmitter
environment and is often employed for dual branch MIMO systems in practice, while
considering arbitrary number of receivers n. This theoretical framework of the scale mixture
assumption for the propagation matrix and the mathematical effect of this assumption in
theoretically understanding and quantifying the capacity of such a system enjoys specific
conceptual insight.

For higher orders of p the complexity of the calculation may be well reached in com-
putational terms, but in a theoretical sense the representations become challenging—even
more so because of the nonzero mean assumption: it is essential to note that ψ1, ψ2, . . . , ψp
and ψ1,∗, ψ2,∗, . . . , ψp,∗ are eigenvalues of complex matrices inherently dependent on the
scale mixture variable t. These challenges are mostly due to the potential high dimensional-
ity of an arbitrary p, and the provision of ∆ via Ψ or Ψ∗ in accounting for LOS in a practical
consideration. Perhaps this does not facilitate convenient immediate computation for the
capacity, but it does give us insight into the theoretical framework of the capacity when
assuming H ∼ SMCNn×p(M, Φ⊗ Σ, h) which remains a meaningful and popular choice
for the departure from normality within the statistical arena. In future, one might consider
the further investigation of higher orders of p, the computational complexity involved with
it, and the derivations and interpretations of other measures of information such as types of
condition numbers and outage probabilities for models under the key assumptions made
in this paper. A refreshing contribution to the literature could also be made by considering
complex matrix variate Gaussian mixtures for the underlying distribution, as described in
Section 1.
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Appendix A

The statistical characterization of the fading (or, degradation) of the signal between
transmitters and receivers in the case of a nonzero M case is described by the Rician
distribution. This distribution has its direct roots in the usual CN assumption for H; thus it
is necessary to report the equivalent fading distribution in the case where H is assumed
to be an SMCN distribution. Suppose R is the fading variable; then, under the SMCN
assumption, the pdf is given by

f (r) =
∫
R+

r
σ2t−1 exp

(
− r2 + s2

2σ2t−1

)
I0

( rs
σ2t−1

)
k(t)dt, r > 0 (A1)

where s2, σ2 > 0 and Iv(.) denotes the modified Bessel function of the first kind [20]. Note
in particular that when s2 = 0, then (A1) reduces to the Rayleigh type distribution (or in
other words, a Rayleigh type fading scenario) when the assumption of H is that of a zero
mean SMCN distribution (see [11]). It is essential to observe that for the specific case when
H is a CN candidate (for the specific choice of k(t)) then (A1) reflects the usual Rician fading
scenario–see also [10,12]. In addition to this, it is valuable to note the recent consideration
of the Rayleigh type model emanating from a scale mixture of normal approach in the
work of [25].
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