TEA PESTS AND THEIR MANAGEMENT WITH BIO-PESTICIDES

Seema Wahab

ABSTRACT
The increasing demand for higher productivity of tea results in its intensive cultivation, which increases the pressure from insect pests on this crop. Chemical pesticides, irrespective of their toxicity status, are being extensively applied. Their various detrimental effects become apparent in the ecosystem including residues in made tea. Bio-control agents such as parasites, predators, and fungal, bacterial and viral pathogens have strong potential to act as effective alternatives to chemical pesticides. In this paper, an attempt has been made to compile all available information on biocontrol research on tea around the world as well as in India. This information will not only help to focus the possibility of using these agents against tea pests, but also will identify the gap of biopesticidal research for designing the future thrusts. Department of Biotechnology Government of India has played a catalytic role and supported several projects on the management of tea pests and diseases in Indian tea.

Keywords: India; tea productivity; pesticide residues; biocontrol agents; biocides

INTRODUCTION
Tea (Camellia sinensis [L.] O. Kuntz) has a special place as export-oriented crop. Being a perennial grown as monoculture, tea provides a congenial permanent habitat to different pests (Chen and Chen, 1989; Muraleedharan, 1992; Hazarika et al., 1994a, 2001). Insect pests attack all parts of tea plant viz. root, stem, leaf, flower and seed causing 10-15% loss in yield (Hazarika et al., 2001). In order to ward off the severity of pests, chemical pesticides have been used extensively which also affect natural enemies, encourage development of resistant pests and secondary pest outbreaks, cause health hazards to applicators and leave undesirable residues in made tea (Hazarika et al., 1994a). Pesticide residues in made tea seriously affect the exportability of Indian tea. Likewise health hazard to the consumers are also a matter of great concern. In this context the demand of biological control as a component of integrated pest management (IPM) along with need based application of safer pesticides could lead to reduction of problems associated with pesticide application including residues and overall cost of made tea (Hazarika et al., 1994a; Hazarika et al., 2001).

SURVEY OF NATURAL ENEMIES OF TEA PESTS
Survey and identification of natural enemies of tea pests were conducted by several workers from different parts of the world (Hazarika et al., 2001). In Sri Lanka, Cranham (1966a) enlisted predators and parasites associated with tea pests, and Danthanarayana (1967) studied the interactions of parasitoids and pests. Identification and description of spider fauna associated with tea leafhoppers was reported from China (Zhang, 1993) and India (Hazarika et al., 2001; Hazarika and Chakraborti, 1998).

Sarma (1979) reviewed extensively the literatures on biocontrol of tea pests from Indian sub continent. He catalogued a few parasitoids belonging to **Braconidae, Euplophidae and Tachinidae** as well as predators and pathogens of limacodids. Biology and distribution of predators and parasitoids of insect and mite pests of tea were studied by Muraleedharan et al. (1988) from south India. The problems and prospects of biocontrol as an alternative to pesticides in northeast Indian tea plantation were discussed by Borthakur et al. (1992) and Hazarika et al. (1994a). The thought of biocontrol research on tea is not only confined on native parasitoids and predators, but also the probability of importing such agents and release after augmentation is getting attention. During 1935-36 a parasitoid Macrocentrus homonae was introduced from Java, Indonesia to bring complete suppression of the tortricid (Homona coffearia), a serious pest of tea in Sri Lanka (Evans, 1952; Gadd, 1941) and is regarded as a classical example of biological control of tea pest (Cranham, 1966b). Conservation of biocontrol agents is essential; however, mass production and release of effective biocontrol agents would bring more success for tea pest management. Attempts in this direction are not at all satisfactory.

PARASITES OF TEA PESTS
Several workers like Cranham (1966a) and Muraleedharan and Selvasundaran, (1986) highlighted the importance of parasites against tea pests in Sri Lanka. A few species of egg parasitoids of leaf eating caterpillar (**Teleonoma euprostis** - Scclionidae) on a lymantrid pest (**Euproctis pseudocaspersa**) were recorded in China (Wang, 1981). A few important tortricid species of tea and their larval parasitoids were described in Australia, India, Japan, Papua New Guinea and Sri Lanka by several researchers (Muraleedharan and Selvasundaram, 1986; Danthanarayana and Kathiravetpillai, 1969; Lu, 1993; Cranham, 1966a; Gadd, 1941; Evans, 1952; Takagi, 1978; Huddleston, 1983; Danthanarayana, 1967). Kodomari (1995) recorded **Trichogramma dendrolimi** as one of the common egg parasitoids of tortricids, cossids and tussock moths. The tea lasiocampid was parasitized by **Trichogramma chilonis** (Hazarika et al., 1995a). **Apanteles** sp., an important larval parasitoid of the geometrid, was used to control looper caterpillar of tea in China (Ning et al., 1995).

The red slug caterpillar (**Euterusia magnifica** - Zygaenidae) can be efficiently controlled by braconid, **Apanteles tapirobanas** and **Exorista heteresias** (Cranham, 1966a; Ozawa, 1994). Takagi (1978) identified **Arrenophagus chionaspidis**, **Archenomus bicolor** and **Thomsonisca** typical as parasitoids of white peach scale (**Pseudaula capas** pentaogena). **Arrenophagus chionaspidis**, **Prospaltella (Encarcia) berleseli** and **Mariella camesi** were also identified as parasitoids of same insects (Ozawa, 1994). A few hymenopteran wasp parasitoids of brown scale (**Saissetia coffeae**) and **Coccus viridis** were also identified from Sri Lanka (Cranham, 1966b).

PREDATORS OF TEA PESTS
The use of predators in controlling tea pests is also an effective method of plant protection. Mzhavanade (1984) released 500 adults of **Cryptolaemus montrouziera** per ha of tea which was sufficient for controlling **Camella** scale. Kokhreideze (1981) recorded predatory efficiency of common earwig adult, **Forficula auricularia**, as 40-75 aphids per day.

Natural enemies present in Kenya include **Scymnus moreletti** (Coccinellidae), **Xanthogramma aegyptium**
(Syrphidae) and Aphytis sp. (Aphelinidae), whereas X. aegyptium is found more efficient under green house condition (Sudoi et al., 1996). Sudoi and Rotisch (1997) mass-reared X. aegyptium and observed that a larva consumed 10 aphids per day. In a survey on spiders in China, a few species of salticids and liocranids as predators of leaf hoppers were identified by Zhang (1993) and marked Evancha albaria, Jotus minutus and Telamonia bifurcillinea as dominant salticids, and Clubiona corugata, C. japonica as dominant clubionids. Four antlions were identified to predate on thrips (Muraleedharan and Ananthakrishnan, 1978). Sudoi (1987) listed a few spiders, coccinellids and syrphids as predators of Scirtothrips sp. along with some entomogenous fungi. Two species of phytoseiid mites, that predate on Ceroplastes cerifera, were observed by Lai (1993). Other predatory mites like Amblyseius rhabdus, A. deleoni, Amblyseius sp., Tydeus sp., Acarus sp. and an undescribed mite were also reported to predate upon Acaphylla theae and Calcarus carinatus (Muraleedharan and Chandrasekhar, 1981). Oomen (1982), while studying population dynamics of the scarlet mite in Indonesia, observed that there were two species of insects and 22 species of phytoseiid mites, which preyed upon other mites.

Das (1974) recorded 11 species of Coccinellid predators, six species of syrphid predators and one species of antlion that feed on active form of tea aphid. Many predators and parasitoids were recorded on the nymphs and adults of Helopeltis theivora Waterhouse (Miridae), which is a very notorious pest of tea in northeast India. Among these predators a spider, Oxyopes sp., preying mantids and reduviids was dominant (Barbora and Singh, 1994). Hazarika and Chakraborti (1998) forwarded opinion about the probable utilization of spiders for controlling jassids and thrips – two common pests of tea. Three coccinellids and three predatory mite species were found to feed on red spider mite and scarlet mite (Borthakur and Das, 1987). Amblyseius giganticus and A. rhabdus are good predators of phytophagous mite (Gupta, 1980; Ray and Gupta, 1983). Predatory mite fauna and prey-predator relationship were studied by Somchoudhury et al. (1995). The green lacewing is an important predator of all stages of soft bodied insects. Its predatory efficacy on tea aphid (Toxoptera auranti), red spider mite (Oligonychus coffae) and tea mosquito bug (Helopeltis theivora) were observed by Hazarika et al. (1996).

MYCOPATHOGENS FOR TEA PESTS

The fungal infection is often observed on tea pests. The basic requirements for fungal growth are high humidity, rainfall and moderate temperature. A few mycoparasites are abundantly found on scale insects, such as Aschersonia sp. on Fiorina theae, Saissetia coffeae, S. formicarii, Duriaurum sp. and Fusarium sp. on F. theae, and Septobasidium sp. on Velataspis sernulata. Verticillium lecanii was considered as an important pathogen of Coccus viridis in Sri Lanka (Cranham, 1966a).

In China, Beauveria bassiana was used to control a few pests of tea successfully. B. bassiana (strain 871) when used @ 100-200 million spores/l at 7.5 to 15.0 Kg/ha gave more than 95% mortality of the brown weevil (Myllocerus aurolineatus) on 10th day of spraying (Wu and Sun, 1994). Wu et al. (1995) sprayed 15-30 kg of the fungus @ 1-2 × 10^8 spores/ml suspension and had about 80% control of the weevil in the field. In China, formulation of this fungus was prepared in order to apply it in combination with synthetic pyrethroid and organophosphorous insecticides in the soil for controlling M. aurolineatus during October – December, a period when adults emerge from the soil (Sun et al., 1993).

The role of another pathogen, Entomophthora sp. in natural control of Cerace tetraonis was established by Debnath and Das (1995). Likewise,
Poecilomyces carneus caused 37% mortality to the field population of the mole cricket (Gryllotalpa africana), a minor pest of tea in the nurseries (Hazarika et al., 1994b).

Barua (1983) reported the occurrence of Aspergillus sp. on dead aphids. The potentiality of utilizing Verticillium lecanii, Beauveria bassiana, Aegertia weberri and Entomophthora sp. against scale insects were reported by Barua (1983) and Hazarika et al. (1994b). Water suspensions of some plant products and Verticillium lecanii containing 3% Sandovit E were sprayed in field and gave marginal control of red spider mite (Hazarika et al., 1995b).

VIRAL PATHOGENS FOR TEA PESTS
The potency of polyhedral virus in controlling lepidopterous insect of tea is countable. Spraying of polyhedral suspensions on the field resulted 98% mortality of the caterpillars, which also contributed toward possible infection to the next generation (Gan, 1981). Shi (1985) and Qi et al. (1985) had not only confirmed pathogenicity of BsNPV on Bazura suppressaria but also the protection of large area of tea from its attack in Jiangxi, China. NPV was reported earlier from the tea geometrid (Ectropis oblique) by Zhu et al. (1981) who also contributed towards its histopathology and mode of action. Hu et al. (1997) managed E. oblique by spraying 7.25 X 10^8 - 1.5 X 10^9 PIU/mm in the field. In Argentina, Sosa-Gomez et al. (1994) created artificial epizootics on a field population of a sphingid (Penagonia lucasius) by applying NPV. The virus also caused severe infection to Adoxophyes privatana (Tortricidae) and could kill larvae up to 80-93% within 15-40 days (Liang et al., 1981). Kodomari (1993) reported effectiveness of GV on tea tortrix in Japan, which was originally collected from an oriental species (Homona magnanima) by Sato et al. (1980). A highly infectious and specific to tea limacodid, Darna trima GV (DtGV) was identified from China. The baculovirus was of 281 X 73.5 nm in size; spraying a suspension containing 10^8 granular bodies/ml, controlled 90% of the 4th instar larvae of the species with LD_{50} as 2.63 X 10^4 GB (Yang et al., 1994). Earlier, Cranham (1966b) checked outbreak of nettle grubs by spraying GV and Bacillus thuringiensis in Sri Lanka.

NPV occurrence on the 5th instar larvae of bunch caterpillar (Andraca bipunctata) as well as on looper caterpillar (Bazura suppressaria) in northeast India was reported by Hazarika et al. (1995c). NPV, a potent source of biopesticide, has tremendous scope in controlling lepidopteran tea pests. Hazarika et al. (1995c) reported for the first time that the NPV efficiently controlled the bunch caterpillar (Andraca bipunctata) in field condition. Hazarika and Puzari (2001) observed 80-100% control of pest population by using B. bassiana in H. theivora, V. lecanii in O. coffeae and NPV in Bazura suppressaria.

BACTERIAL PATHOGENS FOR TEA PESTS
The epizootics potency of pathogens on tea pests is not yet exploited fully (Barua, 1983). However, a few bacterial disease outbreaks were reported in lepidopteran pests (Hazarika et al., 1994a). Commercial formulation of B. thuringiensis like Dipel was used for the control of tortricid caterpillar in tea field of Japan. (Kodomari, 1993). He also prepared a suspension by mixing GV and NPV for controlling the pest.

EFFORTS MADE BY DEPARTMENT OF BIOTECHNOLOGY (DBT), THE GOVERNMENT OF INDIA TOWARDS MANAGEMENT OF TEA PESTS
Biotechnology has great potential in biocontrol. Taking cognizance of need to take the technology of biocontrol from lab to land, DBT has supported a major programme to study the biological control of crop pests, disease and weeds. Under this major programme a national R & D network programme was established in 1989 with the main objectives
of developing better product formulations as well as to develop cost effective, commercially viable mass production technologies of various biocontrol agents. This R & D network programme is a continued activity of the DBT. Besides, this DBT has also launched several other programmes for large scale adaptation of biocontrol based IPM technologies and their adoption by the farmers. During 1994-95 a goal oriented time bound Mission Mode programme was launched on development, production and efficacy demonstration of biocontrol agents. Subsequently, during 1998-99, a major R & D programme on INM/IPM was launched in the country on the use of biological resources for INPM for increasing the agricultural productivity in the existing crop ecosystem of different states representing various agroclimatic zones. Due to pesticide residues, Indian consignments of plantation crops were not accepted outside the country and this has affected the export of this agricultural commodity drastically. Keeping in view the export potential of plantation crops (tea, coffee and rubber) and other crops like cotton, basmati rice, fruits (mango, apple, citrus) spices (ginger, turmeric, black pepper and cardamom) etc. several projects were generated and supported under various programmes by DBT. The main aim is to develop/ generate the technology packages/capable modules, which are cost effective, sustainable and eco-friendly in different ecosystem. DBT has played an important role in supporting several projects on pest and disease management of tea crop. The projects are already underway on the development of microbials and plant based pesticides for controlling various pests of tea at Assam Agricultural University (AAU), Tocklai Experimental Station (TES), Regional Research Laboratory (RRL), Jorhat and many other organizations. AAU is situated in the major tea belts of India; it has the distinction of not only offering graduate and post graduate degrees, but it has been also involved in pursuing research and development activities on tea. This centre has sufficient infrastructure facilities for conducting research on various fields of plant protection including IPM and biocontrol. Considerable progress has been made for the control of pests and diseases of tea at AAU and TES, Jorhat which are highlighted hereunder by citing a few examples.

(i) A new improved medium for mass production of *Beauveria bassiana* has been developed which is of great significance. The medium is designed to produce 39.33×10^7 spores/ml and showed high pathogenicity to insects (85% mortality).

(ii) 80-100% control of pest population was observed by using *B. bassiana* in *Helopeltis theivora*, *Verticillium lecanii* in *Oligonychus coffeae* and NPV in *Buzura suppressaria*.

(iii) Infection of NPVs (AbNPV and BsNPV) was detected for the first time in the bunch caterpillar (*Andraca bipunctata*) and looper caterpillar (*Buzura suppressaria*) in tea. *Crysoperla carnea* and *Trichogramma chilonis* were also identified as potential predator and parasitoid of soft-bodied pests and eggs of several lepidopteran pests of tea crop.

(iv) A few entomopathogens namely *Beauveria bassiana*, *Verticillium lecanii* and *Paecilomyces sp.* were also isolated from tea pests. The feasibility of *B. bassiana* and *V. lecanii* in controlling tea insect pests was established by field application and demonstration. It was recorded that *V. lecanii* could kill 70-80% tea aphid and 70% tea coccid, and thus could protect 83% of the infested tea seedlings.

(vi) TV clones released by TES were screened against *O. coffeae* and *H. theivora* and resistant clones were identified.

(vi) Aqueous and solvent extracts of various plants were also tested against tea pests. Extracts of *Linostoma decundrum* and *Phlogacanthas sp.* were found to show prominent insecticidal activity against *O.
Further, characterization and structure-activity determination of its bioactive molecule is being continued for bringing the active molecule to pesticidal formulation in commercial scale.

(vii) For the first time 28 species of spiders were recognized as potential naturally occurring biocontrol agents against several pests of tea crop and a booklet of “Spider Complex Of Tea Ecosystem” was prepared. The spider fauna from tea ecosystem was surveyed and identified subsequently which have potentiality for use as predators of tea pests.

(viii) Scientists of different centres were also provided several training cum demonstration programmes on the potentiality and usefulness of biopesticides in tea crop protection for the purpose of popularization of the biopesticides application in tea garden. The concept of ‘Biological control’ among the tea growers of Assam and West Bengal was popularized. The endeavor of the research team of AAU is quite appreciable for its outstanding contribution in development of biopesticides in the context of present-day anti pesticidal campaign.

(ix) BIOCON (Trichoderma biocide) and BIOTOK (Bacillus biocide), two biopesticide formulations, were developed at TES, Jorhat. Tea growers of north east India are using these biocides successfully for controlling certain root, stem and black rot diseases of tea crop.

(x) Trichoderma biocide (BIOCON) was provided to 74 member gardens of Tea Research Association from the production unit of TES established under these projects, along with its application technology.

(xi) TES covered 24 tea estates throughout Assam for assessing biological control of stem and root diseases of tea. Success has been achieved in reducing the rehabilitation period of tea from 2 years to 3-6 months for replanting purpose through control of root diseases.

(xii) Besides, several demonstration camps were organized in different tea estates located throughout northeast India and a technical brochure on the use of biopesticides in tea crop for diseases management has been brought out.

CONCLUSIONS

Among plantation crops, tea has dominance on international export market. Lots of innovative researches are needed to accelerate its production with 100% safety assurance. Pesticide load in tea production is too high, which gives to several problems like residues, health hazards, insect resistance, increase in cost of production etc. Presence of residues in made tea at above MRL results in rejection of Indian tea in international market.

Agricultural pests are developing resistance to many synthetic agrochemicals, and new synthetic chemicals are being registered at a slower rate than in the past. This situation has helped open the market for a new generation of microbial pesticides. Bacterial and viral pathogens need to be exploited in the future. Similarly, pesticide resistant strains of predators and parasitoids have also great potential in this ecosystem where pesticides are applied extensively. Genetic engineering can be exploited for developing tea clones resistant to pests.

Therefore, to reduce the pesticide load and thereby minimizing residue problem, the use of biopesticides may play a crucial role as a component of IPM of tea crop. The work on biological control of tea pests is still in its infancy in India; its success will create a long lasting impact on the commercial tea cultivation. The priority/thrust areas of biocontrol/ biopesticides were already identified by DBT. There is an urgent need for undertaking basic and applied research in respect
of mass multiplication of biopesticides, product development, and also the introduction, conservation and augmentation of biocontrol agents.

Petch's experience in Sri Lanka left with a somewhat pessimistic view of biological control (Petch, 1925). According to him, "No fungus disease has ever exterminated an insect or prevented an epidemic (outbreak). That such diseases do kill off large numbers of insects periodically and so exercise a considerable natural control is undoubted but it has not yet been possible to improve on nature in this respect". Perhaps the situation has not much changed since then. Therefore, detailed investigations, which require both time and money, are necessary to interpret the complex host-pathogen interactions and to develop appropriate technology to overcome the well-documented constraints to successful implementation in the field as compared to the laboratory situation so that a viable alternative to conventional chemical control can be worked out.

ACKNOWLEDGEMENT
The author and the editors are grateful to Dr. P.N. Rustagi for his help in extensive revision of the manuscript and adding new references of the work done on the subject.

REFERENCES

