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Highlights 

 Geometric functions to enable the accurate modelling of boiler tubes with localized 
erosion flaws were developed. 

 Effect of the flaw geometries on the stress concentrations and failure pressures of the 
tubes were investigated. 

 Failure of the tubes is insensitive to the choice of flaw shape, as long as the minimum 
remaining tube thickness is matched. 

 For various failure criteria thresholds, failure assessment of flawed tubes is fairly 
insensitive to their flaw shapes. 

Abstract 

Localized erosion is one of the most common failure mechanisms associated with boiler tubes, 

driven by impaction of the tube surface by fly ash, soot blowing steam, falling slag or other 

abrasive substances from the boiler’s combustion chamber. The tubes may experience significant 

localized reduction in their wall thickness, becoming susceptible to plastic collapse and bursting. 

The replacement of failed tubes is one of the leading causes of unplanned and forced boiler outages 

in process and power plants. In this study, geometric functions to enable the accurate modelling of 

boiler tubes with localized erosion flaws were developed from conceptualized models and finite 

element analyses were conducted on the modelled flawed tubes. The effect of geometry on the 

stress concentration in the tubes and on the failure pressure associated with the tubes was 

investigated. Linear elastic stress analysis is sensitive to the flaw geometry – for representative 

problem stresses vary 38% as the flaw shape is varied. However, nonlinear elastic-plastic analysis 

shows significantly reduced sensitivity to flaw shape. The collapse pressure of the same 
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representative problem now varies only 2.45% as the flaw shape is varied. This finding was 

demonstrated for various failure thresholds sourced from the literature, based either on plastic 

strain or Von Mises equivalent stress, which demonstrates that the failure of the tubes is insensitive 

to the specific choice of shape parameterization, as long as the minimum remaining wall thickness 

is matched. The outcome of these investigations gives further insight into the behaviour of tubes 

with localized external flaws while in service. 

Keywords: Localized erosion flaws, boiler tubes, plastic collapse, finite element analysis, stress 

concentration, plastic strain. 

 

1 Introduction 

Complex conditions in which boiler tubes operate while in service, involving high temperature, 

pressure and erosive-corrosive environments, cause them to experience a wide variety of failures 

[1–5]. These failures include the formation of cracks, pits or gouges, and the deformation, bulging, 

thinning, and eventual bursting of the tubes [2–7]. The occurrence of these tube failures has been 

reported to be one of the major causes of availability loss in boilers [7–10] and it is also a leading 

cause of unscheduled or forced boiler outages in power plants and manufacturing industries, 

resulting in loss of production and costly emergency repairs [1–3,10–14]. The cost of electricity 

power loss as a result of boiler tube failures leading to unplanned outages exceeds billions of 

dollars annually [3]. To improve the profitability of these industries, more focused attention needs 

to be given to these failure problems. 

The concept of localized erosion or metal-loss in boiler tubes has drawn a lot of attention over the 

years due to the resulting failures [2–4,7–13]. As a result of the continuous exposure of boiler 
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tubes to impingement by abrasive substances within their operating environment, they experience 

significant metal loss due to wall thickness reduction. As this localized metal loss continues for a 

period, the tubes become susceptible to gross plastic collapse, causing an overall structural 

instability of the tubes such that they lose equilibrium and are unstable for a small increase in load 

[15,16]. Fig. 1 shows an example of a failed boiler tube, with final rupture due to plastic 

deformation after wall thinning. 

 
Fig. 1. Side view of a cut-out sample of the failed tube (above) and top view showing the wall thinning of the tube 

and the ruptured tube (below)  

In a typical case of a commercial power plant with ageing infrastructure and a constrained 

maintenance budget, a quick assessment procedure is required for numerous flawed tubes. The 

inspection team will have to measure all suspected flawed tubes and prioritize their replacement 

or repairs, judging whether or not they will remain safe until the next planned outage. The operator 

captures only limited information for these flawed tubes: typically, the flaw width, flaw length and 

minimum remaining wall thickness. This limited data only allows a simple parameterization of 

flaw geometries, but this simple parameterization captures large variations in flaw size. This 

paper’s main focus is to determine how sensitive typical failure assessment procedures are as the 
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flaw sizes and shapes are varied, while the minimum remaining wall thickness remains unchanged. 

Such a study gives guidance as to whether more complex descriptions of flaw geometries are 

necessary, or if simple descriptions are adequate. 

Through the years, failure assessment of pressurized vessels under localized erosion (mainly boiler 

tubes) have been by metallurgical investigations during planned outages [4,17–19] or studying the 

flaw evolution using some form of fluid-structure interaction [12,20]. Stress- and strain-based 

criteria have also been proposed by various authors to guard against the failure of pressurized 

vessels due to local metal loss and consequently plastic collapse. Sims et al [21] proposed a 2% 

plastic strain (𝑃ଶ%ሻ criteria for round localized thinned flawed vessels, which was also extended 

to groove-like thinned flawed vessels by Hantz et al. [22]. Shim et al. [23,24], Fekete and Varga 

[25], and Abdalla Filho et al. [26] used the ultimate tensile strength ሺ𝜎௨௧௦ሻ of the vessel as the 

referenced failure stress, such that failure is considered when the maximum Von Mises equivalent 

stress within the vessel reaches 𝜎௨௧௦. Y. Kim et al. [27] used 90% 𝜎௨௧௦ and Choi et al [28]. used 

the flow strength (which is the average of the yield strength, 𝜎௬ and 𝜎௨௧௦), 80% and 90% 𝜎௨௧௦ as 

failure criteria for their investigative studies. J.W. Kim et al. [29] and Ma et al. [30] recommended 

using the true ultimate tensile strength ൫𝜎௧,௨௧௦൯ as the reference failure stress. Kamaya et al. [31] 

and Zarrabi [2] proposed using the flow strength as the referenced failure criteria. 

In this paper, a wide range of external localized erosion flaws are modelled geometrically, based 

on flaws observed on boiler tubes in operation. These parameterized geometries are simulated 

using linear as well as nonlinear finite element analyses (FEA). The effect of varying geometric 

parameters on the elastic stress concentrations in the tubes is first investigated. Subsequently, the 

variation in the failure pressure, computed using nonlinear elastic-plastic analysis with a bilinear 

plasticity model, is characterized. Various failure criteria are used to judge the sensitivity of the 
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specific failure assessment criterion to the size and shape of the flaw (keeping the minimum 

remaining wall thickness unchanged). These comparative studies are then used to determine to 

what extent more complex flaw geometries need to be considered. A broad range of flaws are used 

for this study, unlike many of the general investigations performed on localized external erosion 

of boiler tubes, which usually focus on few flaws, sometimes only one or two [11,17–19,32]. 

2 Geometric functions for modelled localized thinned boiler tubes  

Previous finite element analysis (FEA) studies on boiler tubes were done using flaw geometries 

such as: elliptical scar, triangular scar, rectangular scar, double rectangular scar and part-through 

rectangular scar [32–34]. These flaw geometries do not resemble the scenarios of localized 

external erosion which we observed in examples of failed boiler tubes [35]. More similar shapes 

were used to model erosion of titanium tubes in heat exchangers [18] and corrosion defects on 

pipes [25]. In this study, three characteristic geometric flaw shapes that will reasonably satisfy a 

wide range of localized erosion that occur in real scenarios were modelled in the DesignModeler 

of ANSYS®[36]. Given the data captured in inspection reports (flaw width, flaw length and 

minimum remaining wall thickness), only one of these models can exactly match the provided 

flaw data. The design of these models is explained in detail below. 

The first modelled localized flaw on the tube is a u-shaped or scoop shaped flaw, created by 

offsetting a plane from the centreline of the tube to a height, 𝐻, then sketching from the mid-axis 

of the tube a convex ellipse with an axis offset by a height, 𝑧 from the tube centre line. This causes 

the ellipse to intersect with the circular cross section of the tube in a u-shaped manner. The sketch 

is revolved from the plane axis at  𝐻 in the horizontal direction to slice-cut the tube to a specific 𝑓ௗ 

as shown in Fig. 2 and Fig. 3. 
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The second modelled flaw on the tube is an n-shaped or saddle shaped flaw. This is created by 

first offsetting from the tube centreline to a height, 𝐻, then sketching a concave ellipse that is offset 

from the base to a height, 𝑧, as well as two vertical straight lines drawn from the plane to the 

vertices of the ellipse. This causes the ellipse to intersect the circular cross section of the tube in 

an n-shaped manner. The entire sketch is revolved about the x-axis from the vertical plane and 

slice-cut to the required flaw depth, 𝑓ௗ on the tube as shown in Fig. 4 and Fig. 5. 

The flat line modelled flaw is the third modelled flaw geometry made by offsetting a plane to a 

height, 𝐻, from the centre line of the tube and sketching a horizontal straight line at the specific 

flaw depth, 𝑓ௗ. The sketch is revolved about the x-axis from the position of the plane to slice and 

cut the tube to the required flaw depth 𝑓ௗ as shown in Fig. 6 and Fig. 7. The flat line flaw is the 

point of intersection of the sets of u-shaped and n-shaped flaws, as the major axis of the ellipse 

becomes infinitely large.  

 

Fig. 2. Schematic showing the modelling of a u-shaped or scoop shaped flawed tube - cross-section. 
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Fig. 3. A u-shaped (scoop shaped) flawed tube. 

 

Fig. 4. Schematic showing the modelling of an n-shaped or saddle shaped flawed tube - cross-section. 
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Fig. 5. An n-shaped (saddle shaped) flawed tube. 

 

Fig. 6. Schematic showing the modelling of a flat line flawed tube - cross-section. 
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Fig. 7. A flat line flawed tube. 

Mathematical expressions for the flaw geometries: the flaw length ሺ𝑓௟ሻ, flaw width ሺ𝑓௪ሻ, flaw 

depth ሺ𝑓ௗሻ and remaining thickness on the tube ሺ𝑡௥ሻ, are formulated for a tube with an outer 

diameter ሺ𝐷௢ሻ and tube thickness ሺ𝑡ሻ using the following parameters: Plane height from the centre 

line of the tube (𝐻ሻ, radius of the cutting plane from the plane axis (𝑅ሻ, horizontal dimension of 

the elliptical surface (𝑎ሻ, vertical dimension of elliptical surface (𝑏ሻ and remaining thickness of the 

tube ሺ𝑡௥ሻ. 

The length of the flaw, 𝑓௟ , which is the same for all three variants, is derived from the schematic 

shown in Fig. 8. The cutting radius, 𝑅 is given by: 

𝑅 ൌ  𝐻 – ሾሺ஽೚

ଶ
ሻ െ 𝑓ௗሿ           (1) 

By the Pythagorean theorem, 

𝑅ଶ  ൌ  ሺ𝑅െ 𝑓ௗሻଶ ൅ ሺ௙೗

ଶ
ሻଶ         (2) 

Rearranging Eq.(2) gives the solution for 𝑓௟ : 
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𝑓௟ ൌ 2ට2𝑅𝑓ௗ െ  𝑓ௗ
ଶ

          (3) 

 
Fig. 8. Schematic showing the creation of the localized flaw length on the tube – side view. 

The width 𝑓௪ of the flat line flaw is derived from Fig. 9, which shows the intersection of the flat 

line with the circular cross section of the tube. Again, the Pythagorean theorem gives 

ሺ஽೚

ଶ
ሻଶ  ൌ  ሺሺ஽೚

ଶ
ሻെ 𝑓ௗሻଶ ൅ ሺ௙ೢ

ଶ
ሻଶ        (4) 

Rearranging Eq. (4) gives the solution for 𝑓௪: 

𝑓௪ ൌ 2ට𝐷௢𝑓ௗ െ  𝑓ௗ
ଶ

          (5) 
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Fig. 9. Front view of the flat line flaw showing the cutting plane in red, intersected with the tube cross-section. 

The width 𝑓௪ of the u-shaped flaw is derived from Fig. 10, which shows the intersection of the 

convex ellipse with the circular cross section of the tube. The width 𝑓௪  of the n-shaped flaw is 

derived from Fig. 11, which shows the intersection of the concave ellipse with the circular cross 

section of the tube. 

From Fig. 10, for the u-shaped flaw: 

𝑓ௗ ൌ  ஽೚

ଶ
െ ሺ𝐻 െ 𝑅ሻ          (6) 

𝑓ௗ ൌ  ஽೚

ଶ
െ ሺ𝑧 ൅ 𝑏ሻ          (7) 

𝑅 ൌ 𝐻 െ ሺ𝑧 ൅ 𝑏ሻ          (8) 

From Fig. 11, for the n-shaped flaw: 

𝑓ௗ ൌ  ஽೚

ଶ
െ ሺ𝐻 െ 𝑅ሻ          (9) 

𝑓ௗ ൌ  ஽೚

ଶ
െ ሺ𝑧 െ 𝑏ሻ          (10) 
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𝑅 ൌ 𝐻 െ ሺ𝑧 െ 𝑏ሻ          (11) 

The mathematical expression for the width 𝑓௪, which is the point of intersection on the x-axis of 

the circle and horizontal ellipse is determined by considering the following two equations: 

𝑥ଶ ൅ 𝑦ଶ ൌ 𝑟௢
ଶ           (12) 

௫మ

௔మ ൅
ሺ௬ି௭ሻమ

௕మ ൌ 1          (13) 

By solving these two equations (as documented fully in Appendix A), the value of 𝑓௪ in terms of 

𝑥 is obtained from: 

𝑥 ൌ ටି஻േඥሺ஻మିସ஺஼ሻ

ଶ஺
          (14) 

where 𝐴 ൌ ቀ1 െ ௕మ

௔మቁ
ଶ

; 𝐵 ൌ ସ௕మ௭మ

௔మ ൅ 2 ቀ1 െ ௕మ

௔మቁ ሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶሻ; 𝐶 ൌ ሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢

ଶሻଶ െ 𝑏ଶ𝑧ଶ 

From Eq. (14), 𝑓௪ of either the n-shaped flawed tube or the u-shaped flawed tube is computed 

as 2𝑥 for their full dimension, as shown below: 

𝑓௪ ൌ 2.
ඪ

ି
ర್మ೥మ

ೌమ ାଶ൬ଵି
್మ

ೌమ൰൫௕మା௭మି௥೚
మ൯േඩቌቆ

ర್మ೥మ

ೌమ ାଶ൬ଵି
್మ

ೌమ൰൫௕మା௭మି௥೚
మ൯ቇ

మ

ିସቆ൬ଵି
್మ

ೌమ൰
మ

൫௕మା௭మି௥೚
మ൯

మ
ିସ௕మ௭మቇቍ

ଶ൬ଵି
್మ

ೌమ൰
మ   (15) 
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Fig. 10. Front view of the u-shaped flaw showing the cutting plane in red, intersected with the tube cross-section. 

 

Fig. 11 Front view of the n-shaped flaw showing the cutting plane in red, intersected with the tube cross-section. 

The developed mathematical formulations relate the flaw dimensions ( 𝑓௟, 𝑓௪ and 𝑓ௗሻ of any flawed 

tube to the geometric model parameters. This is needed for accurate modelling and failure 

assessment of the tubes, especially for parameterized studies that involve a large number of tubes. 
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3 Finite element analysis (FEA) 

Based on symmetry conditions of the modelled tube, a quarter model is used for the analysis as 

shown in Fig. 12 (a). This is done to save computation time during the analysis. The entire flawed 

area is further partitioned to facilitate the easy application of mesh control measures within the 

main flaw area during the mechanical analysis. Fig. 12 (b) shows the partitioned flawed tube. 

   

Fig. 12. Quarter n-shaped model showing (a) the entire flaw area and the (b) the partitioned flaw area. 

Fourteen flawed tubes with constant flaw length (𝑓௟ሻ and varied flaw width (𝑓௪ሻ for a specific flaw 

depth (𝑓ௗሻ are modelled. The dimensions and geometric data of the modelled tubes are as follows: 

𝐷௢ = 100 mm, 𝑙 = 300 mm, 𝑡 = 10 mm, 𝑓ௗ= 5 mm, H = 500 mm, 𝑧 = 85 mm (for u-shaped) and 𝑧 

= 5 mm (for n-shaped), 𝑏 is held constant at 40 mm, while 𝑎 is varied from 52 mm to 300 mm for 

the u-shaped, flat line and n-shaped flaw types, as shown in Table 1. The flaw length 𝑓௟ is kept 

constant because preliminary studies indicated that the results were insensitive to it [37]. The 

geometries of the models in relation to their geometry axes and across the length of the tube can 

be seen in Fig. 13, showing the effect of varying the aspect ratio of the cutting ellipse. When 

viewed from the cross-section and the side, it can be seen that the flaws modelled have varied 

widths and fixed constant length and depth. The flat line flaw is shown with a black line in Fig. 

13. Notice, in Table 1, that the flaw width for the flat line flaw (TF) is almost identical to that of 
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the widest u-shaped and n-shaped flaws, TU7 and TN1. For this reason, we do not perform 

simulations on the flat line flaw. 

Material properties are chosen to represent a 15Mo3 low-alloy heat resistant seamless steel boiler 

tube, with elastic modulus, 𝐸 = 212 GPa, Poisson’s ratio, 𝜐 = 0.3, yield strength, 𝜎௬ = 260 MPa 

and ultimate tensile strength, 𝜎௨௧௦ = 550 MPa. A 20% plastic strain hardening material model 

(𝑀ଶ଴%) is used to effectively account for the large percentage plastic strain these tubes experience 

in reality according to material data sheets [38–42]. Fig. 14 shows this material model, as 

implemented in ANSYS. In this model, the strain is chosen such that the stress reaches σ௨௧௦ when 

the elongation is 20%. After 𝜎௨௧௦, the response is perfectly plastic with no further work hardening 

allowed. The setting of a perfectly plastic response after the elongation limit was done following 

the guideline stipulated by the American Society of Mechanical Engineers (ASME) in conducting 

numerical simulation analyses [15]. In this work, the effect of temperature on the material 

properties is not considered. 

Table 1 

Geometric dimensions of the modelled tubes 

Modelled 
Tubes 

a 
(mm) 

b 
(mm) 

𝑓௟ 
(mm) 

𝑓௪ 
(mm) 

TU1 
TU2 
TU3 
TU4 
TU5 
TU6 
TU7 
TF 

TN1 
TN2 
TN3 
TN4 
TN5 
TN6 
TN7 

52 
55 
60 
70 
85 

120 
300 
N/A 
300 
120 
85 
70 
60 
55 
52 

40 
40 
40 
40 
40 
40 
40 

N/A 
40 
40 
40 
40 
40 
40 
40

134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54 
134.54

33.43 
34.21 
35.34 
37.11 
38.90 
41.06 
43.16 
43.59 
44.03 
46.60 
50.32 
54.88 
61.91 
69.21 
77.08 
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Fig. 13. Cross-sectional view of the geometry plots for the u- and n-shaped flaws at constant flaw length and depth 

(above); Side view of the geometry plots for both flaws across the tube length (below). 

Global meshing of the modelled tubes is performed using mostly hexahedral elements, 2 mm in 

size. For the flaw area, local mesh control measures are applied to obtain a finer mesh. Body sizing 

control is used within the flaw area  to obtain a finer mesh of 1 mm and soft edge sizing is used to 

create five sub-divisions along the edge of the remaining thickness (𝑡௥) of the model, as shown in 

Fig. 15. These measures are taken to ensure each model has good mesh quality and the results that 

will be obtained from the path created through the tube thickness will be reliable. A mesh 

convergence check was completed, checking for both element quality and number of elements. 
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The difference in the hoop stress values between the highest and lowest number of elements was 

3.6%.  

 

Fig. 14. Material model used for this study 

 

Fig. 15. Samples of meshed u- and n-shaped flawed tubes respectively. 

Each modelled tube is solved with a pressure 𝑃௔ applied on the inner surface of the tube. 
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𝜀 20% 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 

𝜎௬ 

 𝜎௨௧௦ 
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𝑃௔ ൌ  ଶ

√ଷ
𝜎௨௧௦

௧ೝ

௥೔
                    (16) 

where 𝑡௥ and 𝑟௜ are the tube remaining thickness and inner radius, respectively. This follows 

directly from the theoretical plastic collapse pressure for flaw-free cylindrical hollow tubes using 

an elastic-perfect plastic material model [43]. But we replace the yield stress with 𝜎௨௧௦ (to 

accommodate the strain hardening of the tube) and the flaw-free thickness, 𝑡 with 𝑡௥ (since we 

were dealing with flawed tubes at a specific tube remaining thickness , 𝑡௥). This modified equation 

enables us to obtain the plastic collapse pressure for these flawed tubes at the deepest point of the 

flaw, where the Von Mises equivalent stresses are equal to the 𝜎௨௧௦. The pressure 𝑃௔ is therefore 

used as an estimate of a realistic upper bound for the applied pressure in the finite element model. 

Frictionless supports are applied on the symmetrical boundaries of the model and a displacement 

constraint is applied at the vertex on the lower tip of the model to prevent rigid body motion as 

shown in Fig. 16. An axial force, 𝐹 ൌ 𝑃௔ 𝜋ሺ𝐷௢
ଶ 4 െ 𝑟௜

ଶ⁄ ሻ, is applied on the cross-sectional end of 

the model to introduce the appropriate axial stress without needing to model end cap effects. 

 

Fig. 16. Load and boundary conditions applied. 
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4 Results and discussion 

4.1 Effect of stress concentration on the failure of the tubes 

The elastic stress concentration factors ሺ𝑆𝐶𝐹ሻ of the modelled tubes are computed using: 

𝑆𝐶𝐹 ൌ ୔ୣୟ୩  ୗ୲୰ୣୱୱ

୒୭୫୧୬ୟ୪  ୗ୲୰ୣୱୱ
          (17) 

where the peak stress is the maximum hoop stress within the localized flaw area of the tube and 

the nominal stress is given by: 

Nominal stress ൌ ௉௥೔

௧ೝ
          (18) 

This represents the stress that would be expected in a uniform tube with thickness 𝑡௥. 

To calculate the elastic stress concentration factor, the models were solved with loads of 0.1𝑃௔, 

ensuring that the tube remained in the elastic domain. Fig. 17 shows the 𝑆𝐶𝐹 for different flaw 

geometries of the tubes, which corresponds to different flaw aspect ratios. Note that the u-shaped 

flaws have a higher 𝑆𝐶𝐹 within the flawed areas compared to the n-shaped flaws. For both flaw 

types, as the flaw aspect ratio increases, the 𝑆𝐶𝐹 within the flaw area decreases. The 𝑆𝐶𝐹 decreases 

smoothly with the ratio 𝑓௪/𝑓ௗ for both flaw types, beginning with the smallest u-shaped flaw, U1 

(that has the smallest aspect ratio and highest 𝑆𝐶𝐹 of 1.98) to the largest n-shaped flaw, N7, with 

the largest aspect ratio and lowest 𝑆𝐶𝐹 of 1.44. This indicates a 38% variation in SCF using the 

smallest 𝑆𝐶𝐹 as reference.  

If we consider using the elastic stress analysis to predict failure, then the observed differences in 

the response of both flaws indicates two outcomes. First, the u-shaped, or scoop, flaws are more 

susceptible to failing before the n-shaped, or saddle, flaws, and second, the larger the aspect ratios 

of both flaw types are, the less prone to failure they become. The practical implication of this is 



20 
 

that within similar operating environments, the n-shaped flaws will tend to be less severe compared 

to the u-shaped ones. Within the family of the u-shaped flaws, the smaller ones are likely to pose 

more threat compared to the larger ones because of their high 𝑆𝐶𝐹. 

We will now proceed to investigate the sensitivity of these flaws to the failure pressure of the tubes 

in the plastic region using nonlinear FEA. 

 
Fig. 17. Stress concentration factors ሺ𝑆𝐶𝐹𝑠ሻ for u- and n-shaped flaw width to depth ratios. 

4.2 Failure pressure sensitivity to flaw geometry 

In this initial investigation on failure pressure, the failure pressure of the tubes is defined as the 

internal pressure that results in a peak plastic strain of 5%,  𝑃ହ%. Previous research reported on 

limit load analysis using an elastic perfectly plastic model [3,26,28,32], with some also using 2% 

plastic strain, 𝑃ଶ% [21,22], as an upper limit. Others used the Von Mises equivalent stress limit 

 σ௨௧௦ [23–26], without setting a limit on the amount of strain that should be allowed within the 
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flaw area. Fig. 18 shows the plastic strain distribution of an example of a u-shaped and an n-shaped 

flaw. It can be seen that the modelled flawed tubes attain 5% plastic strain at the thinnest part of 

the defect within their flaw area. Notice that the plastic zone is larger for the n-shaped flaw. 

 

Fig. 18. Plastic strain distribution for the TU1 flaw and TN7 flaw respectively. 

Fig. 19 shows the effect of the geometry of the modelled flaws on the failure pressure of the tubes 

while in plasticity. The failure pressure, 𝑃ହ%, increases from a failure pressure of 50.13 MPa for 

the u-shaped flaw with the lowest 𝑓௪/𝑓ௗ ratios to 51.36 MPa for the n-shaped flaw with the largest 

flaw characteristic ratio. It might have been expected that the flaws with small aspect ratios are 

safer compared to the large aspect ratio flaws, because there is less material removal, but this is 

not the case. Hence the elastic-plastic analysis results in similar findings to the linear elastic 

analysis, in that the u-shaped flaws are more severe than the n-shaped ones. However, the failure 

pressure only varies 2.45% for a flaw width variation from 33.4 mm to 77.1 mm. Therefore, the 

elastic-plastic analysis shows a reduced sensitivity to shape, only a 2.45% variation compared to 

38% variation based on the linear elastic analysis. 

From the outcome of the previous assessment and this one, it can be inferred that, as a result of the 

stress redistribution that occurs after yielding, the flaw geometry only slightly influences the 

failure of the tube. Note that we have not altered the flaw depth. The failure pressure based on 

linear elasticity is inversely proportional to minimum remaining wall thickness, and extensive 
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nonlinear finite element analyses on similar geometries indicate that tube failure is highly sensitive 

to minimum remaining wall thickness [35,44]. 

 
Fig. 19. Failure pressure for different flaw geometries of the modelled tubes  

4.3 Sensitivity of various failure criteria on flaw geometry 

Failure pressures of the modelled tubes are analysed again, but now based on a broad range of 

failure criteria from literature, as reported in the introduction. These criteria include: 2% plastic 

strain (𝑃ଶ%ሻ [21,22], 0.9. 𝜎௨௧௦ [27,28] and 0.8 𝜎௨௧௦ [28]. Additional criteria are also investigated, 

which include: 20% plastic strain (𝑃ଶ଴%ሻ, 15% plastic strain (𝑃ଵହ%ሻ, 10% plastic strain (𝑃ଵ଴%ሻ, 

7.5% plastic strain (𝑃଻.ହ%ሻ and 5% plastic strain (𝑃ହ%ሻ criteria. This deliberately broad range of 

criteria aims to ensure that our conclusions are general, and not specific for one single criterion.  

The large strain hardening model selected ( 𝑀ଶ଴%) allowed the analyses to proceed to 20% plastic 

strain, 𝑃ଶ଴%. We acknowledge that this is an unreasonable upper bound for a practical failure 
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criterion, but we want to observe the behaviour of the flaws up to this numerical upper limit. 

Beyond 𝑃ଶ଴%, the material model is perfectly plastic, and then plastic strain localization occurs 

and the models no longer converge. The peak failure pressures based on each failure criterion are 

obtained from each of the modelled tubes. Fig. 20 shows the effect of the flaw geometry on the 

failure of the tubes based on the criterion used. It can be first noticed that for all the failure criteria, 

except the lowest one ሺ𝑃ଶ%ሻ, they follow the same pattern as had been reported from the outcome 

of the previous investigations done [37,45], with the n-shaped flaws generally having higher failure 

pressure compared the u-shaped ones. However, the differences are small. Table 2 summarizes the 

smallest and largest failure pressures, for each of the considered failure criteria. The differences 

are less than 10% for all the failure criteria, with the 𝑃ଶ଴% case having the highest difference of 

9.13%. 

 
Fig. 20. Failure pressure for different flaw geometry of modelled tubes based on various failure criteria. 
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Table 2 

Percentage differences between the failure pressure of the largest and smallest flaws for each failure criteria. 

Failure 
Criteria 

Maximum 
Failure Pressure 

(MPa)

Minimum 
Failure Pressure 

(MPa)

Percentage 
Difference (%) 

𝑃ଶ଴% 
0.9. 𝜎௨௧௦ 

𝑃ଵହ% 
0.8. 𝜎௨௧௦ 

𝑃ଵ଴% 
𝑃଻.ହ% 
𝑃ହ% 
𝑃ଶ% 

78.88 
73.06 
71.62 
67.08 
62.26 
57.18 
51.36 
42.71 

72.28 
67.21 
66.02 
62.22 
58.15 
54.92 
50.13 
42.62 

9.13 
8.70 
8.48 
7.81 
7.07 
4.12 
2.45 
0.21 

This investigation made it clear that the failure of externally eroded tubes is only slightly sensitive 

to the flaw width, even for variation across a large range (flaw width from 33.4 mm to 77.1 mm). 

In previous works, we have shown that the sensitivity to flaw length is equally small [37], but the 

sensitivity to minimum remaining wall thickness is high [35]. Therefore, we conclude that failure 

assessment of externally eroded tubes can be performed reasonably well without requiring precise 

measurements of flaw width and flaw length. It is also a reasonable extrapolation from these results 

to conclude that the failure assessments would be similarly insensitive to a different shape 

assumption, as long as the same minimum remaining wall thickness is used. 

5 Conclusions 

In this paper, using a distinctive procedure, three variants of geometric flaw shapes that reasonably 

satisfy a wide range of real localized erosion flaw geometries were modelled. Geometric functions 

that could accurately model real localized thinned tubes were formulated from the developed 

models. These geometric functions find much relevance in conducting parameterized studies and 

failure assessment for cases involving a large number of tubes. 

Linear finite element analysis was first carried out on the modelled tubes to examine the effect of 

stress concentration on the failure of the tubes due to localized external erosion. It was observed 
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that the u-shaped flaws were more susceptible to elastic stress concentration than the n-shaped 

flaws, and also, the larger the aspect ratios of both flaw types, the lower the elastic stress 

concentration factor. The practical implication of this is that within a similar operating 

environment, the n-shaped flaws will tend to be less severe than the u-shaped ones. 

Following this assessment, failure pressures of the tubes were predicted using nonlinear finite 

element analyses on the modelled flaw geometries based on the internal pressure that results in a 

peak plastic strain of 5%,  𝑃ହ%. The outcome of this investigation shows that the failure pressure 

increases proportionately from a low failure pressure for the u-shaped flaw with the lowest 𝑓௪/𝑓ௗ 

ratios to a slightly higher failure pressure for the n-shaped flaw with the largest flaw characteristic 

ratio. The implication of this is that n-shaped flaws will be able to withstand more pressure as they 

deform plastically for the same percentage elongation when compared to their u-shaped 

counterparts. This finding reinforces the earlier result on the effect of elastic stress concentration 

that the u-shaped flaws were more severe than the n-shaped ones. 

However, the increase in failure pressure as flaw shape changes is small (2.45%). Therefore, the 

most important research finding in this paper is that the failure assessment of externally eroded 

boiler tubes is insensitive to the specific shape parameterization employed, as long as the minimum 

remaining wall thickness is matched. Any reasonable shape that matches the flaw width, flaw 

length and minimum remaining wall thickness will produce failure pressure predictions that only 

differ marginally. 

Finally, failure pressures of the modelled tubes were computed based on other failure criteria 

obtained from literature and some suggested by the authors. This study showed that the prior 

conclusion holds for all reasonable failure criteria: the failure assessment of boiler tube flaws is 

insensitive to the specific choice of shape parameterization. 
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Overall, the insights gained from this study suggests a specific future avenue for failure assessment 

of boiler tubes. Since the specific form of the shape parameterization is not absolutely critical, 

numerous finite element models can be generated using a simple parameterization. These large 

number of models can then be analyzed off-line, potentially producing a database of known results 

that can be used for rapid decision making once a specific flaw is identified. 
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To formulate the mathematical expression for the flaw width, 𝑓௪, the point of intersection on the 

x-axis of the circle and ellipse need to be determined, the two simultaneous equations below are 

considered: 

For the circle: 

𝑥ଶ ൅ 𝑦ଶ ൌ 𝑟௢
ଶ           (A 1) 

For the ellipse: 

௫మ

௔మ ൅
ሺ௬ି௭ሻమ

௕మ ൌ 1          (A 2) 

From A 2, 

𝑏ଶ𝑥ଶ ൅ 𝑎ଶሺ𝑦 െ 𝑧ሻଶ ൌ 𝑎ଶ𝑏ଶ           (A 3) 

𝑎ଶሺ𝑦 െ 𝑧ሻଶ ൌ 𝑎ଶ𝑏ଶ െ 𝑏ଶ𝑥ଶ         (A 4) 

ሺ𝑦 െ 𝑧ሻଶ ൌ
௕మ൫௔మି௫మ൯

௔మ           (A 5) 

y ൌ ୠඥሺୟమି୶మሻ

ୟ
൅ z          (A 6) 

Substituting A 6 into A 1; 

𝑥ଶ ൅ ൬
௕ඥሺ௔మି௫మሻ

௔
൅ 𝑧൰

ଶ

ൌ 𝑟௢
ଶ         (A 7) 

𝑥ଶ ൅ ௕మ

௔మ ሺ𝑎ଶ െ 𝑥ଶሻ ൅ 𝑧ଶ ൅ ଶ௕௭

௔
ඥሺ𝑎ଶ െ 𝑥ଶሻ ൌ 𝑟௢

ଶ      (A 8) 

ቀ1 െ ௕మ

௔మቁ 𝑥ଶ ൅ 𝑏ଶ ൅ 𝑧ଶ ൅ ଶ௕௭

௔
ඥሺ𝑎ଶ െ 𝑥ଶሻ ൌ 𝑟௢

ଶ      (A 9) 

ቀ1 െ ௕మ

௔మቁ 𝑥ଶ ൅ 𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶ ൌ െ ଶ௕௭

௔
ඥሺ𝑎ଶ െ 𝑥ଶሻ      (A 10) 

ቆቀ1 െ ௕మ

௔మቁ 𝑥ଶ ൅ 𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶቇ

ଶ

ൌ ቀെ ଶ௕௭

௔
ඥሺ𝑎ଶ െ 𝑥ଶሻቁ

ଶ
     (A 11) 
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ቀ1 െ ௕మ

௔మቁ
ଶ

𝑥ସ ൅ ሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶሻଶ ൅ 2 ቀ1 െ ௕మ

௔మቁ 𝑥ଶሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶሻ ൌ ସ௕మ௭మ

௔మ ሺ𝑎ଶ െ 𝑥ଶሻ (A 12) 

ቀ1 െ
௕మ

௔మቁ
ଶ

𝑥ସ ൅ ቂସ௕మ௭మ

௔మ ൅ 2 ቀ1 െ
௕మ

௔మቁ ሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶሻቃ 𝑥ଶ ൅ ሾሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢

ଶሻଶ െ 4𝑏ଶ𝑧ଶሿ ൌ 0 (A 13) 

Let 𝑡 ൌ 𝑥ଶ, 

𝐴𝑡ଶ ൅ 𝐵𝑡 ൅ 𝐶 ൌ 0          (A 14) 

𝑡 ൌ ି஻േඥሺ஻మିସ஺஼ሻ

ଶ஺
          (A 15) 

𝑥 ൌ ටି஻േඥሺ஻మିସ஺஼ሻ

ଶ஺
          (A 16) 

𝑤ℎ𝑒𝑟𝑒 𝐴 ൌ ቀ1 െ ௕మ

௔మቁ
ଶ

; 𝐵 ൌ ସ௕మ௭మ

௔మ ൅ 2 ቀ1 െ ௕మ

௔మቁ ሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢
ଶሻ; 𝐶 ൌ ሺ𝑏ଶ ൅ 𝑧ଶ െ 𝑟௢

ଶሻଶ െ 𝑏ଶ𝑧ଶ 

Since  𝑓௪ ൌ 2𝑥, then, 

 𝑓௪ ൌ 2.
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