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Abstract 

This paper adds a novel perspective to the literature by exploring the predictive performance of 
two relatively unexplored indicators of financial conditions, i.e. financial turbulence and systemic 
risk, over stock market volatility using a sample of seven emerging and advanced economies. The 
two financial indicators that we utilize in our predictive setting provide a unique perspective on 
market conditions, as they relate directly to portfolio performance metrics from both volatility and 
co-movement perspectives and, unlike other macro-financial indicators of uncertainty, or risk, can 
be integrated into diversification models within forecasting and portfolio design settings. Since the 
data for the two predictors are available at a weekly frequency, and our focus is to produce 
forecasts at the daily frequency, we use the generalized autoregressive conditional 
heteroskedasticity-mixed data sampling (GARCH-MIDAS) approach. The results suggest that 
incorporating the two financial indicators (singly and jointly) indeed improves the out-of-sample 
predictive performance of stock market volatility models over both the short and long horizons. 
We observe that the financial turbulence indicator that captures asset price deviations from 
historical patterns does a better job when it comes to the out-of-sample prediction of future returns 
compared with the measure of systemic risk, captured by the absorption ratio. The outperformance 
of the financial turbulence indicator implies that unusual deviations in not only asset returns, but 
also in correlation patterns play a role in the persistence of return volatility. Overall, the findings 
provide an interesting opening for portfolio design purposes, in that financial indicators, which are 
directly associated with portfolio diversification performance metrics, can also be utilized for 
forecasting purposes, with significant implications for dynamic portfolio allocation strategies. 
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1. Introduction 

Unexpected fluctuations in financial markets pose a great challenge for investors in terms of 

the effectiveness of their diversification strategies. In addition to the appropriate rebalancing of 

target portfolios, an issue of high concern is the accuracy and stability of the parameters used to 

build diversified portfolios that can balance out the negative fluctuations experienced in various 

asset classes. As noted in Ang and Chen (2002), unstable risk parameters might lead portfolio 

managers to overstate the benefits of diversification, potentially leading to significant losses 

unanticipated by their diversification schemes. Clearly, one risk parameter of high importance is 

volatility, which is a key input not only for hedging and portfolio optimization applications but 

also for the pricing of options. Accordingly, a large strand of the literature has examined the 

predictability of stock market volatility using a wide range of univariate and multivariate 

forecasting models (e.g., Poon and Granger, 2003; Engle and Rangel, 2008; Rapach et al. 2008; 

Rangel and Engle, 2012; Engle et al. 2013; Demirer et al. 2019; Liu et al. 2020; Salisu and Gupta, 

2021; Salisu and Ogbonna, 2021; among others) and some others focusing on alternative 

methodologies to examine volatility during crises (see Inci et al. 2011).  

An emerging strand of the literature, however, has shown improved results by combining 

predictors at different frequencies using Mixed Data Sampling (MIDAS)-based Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) models (e.g. Engle et al. 2013). This is 

indeed an important concern in high-frequency exercises, given the well-established evidence that 

links macro-financial fundamentals and stock market volatility (e.g. Hamilton and Lin, 1996; 

Schwert, 2011; Choudhry et al. 2016), despite the availability of most uncertainty and 

macroeconomic variables at lower frequencies (usually monthly). A second important advantage 

of the mixed data sampling framework in our context is that it allows us to produce high-frequency 
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daily forecasts via the GARCH-MIDAS model instead of forecasting realized volatility obtained 

from the sum of squared returns (Andersen and Bollerslev, 1998). Further motivated by the finding 

that financial conditions are an important driver of the economy at large (e.g. Koop and Korobilis, 

2014) and the informational value captured by financial conditions in forecasting the volatility of 

the US equity market (Opschoor et al. 2014; Demirer et al. 2021), this paper adds to the literature 

on forecasting stock market volatility the novel perspective of examining the predictive 

performance of two relatively unexplored indicators of financial conditions, namely, financial 

turbulence and systemic risk with regard to stock market volatility, using a sample of seven 

emerging and advanced economies.  

The issue of predictability has become especially challenging given the consensus that the 

variation in aggregate market volatility is higher than what might be expected based on the 

observed variation in the volatility of the fundamental economic variables (e.g. Bollerslev, et al. 

1992), which in turn has led researchers to seek alternative predictors that might improve the 

performance of volatility forecasting models. To this end, the two financial indicators that we 

utilize in our predictive setting provide a unique perspective on market conditions as they directly 

relate to portfolio performance metrics. Originally developed by Chow et al. (1999), based on the 

Mahalanobis Distance used to analyze resemblances and distances across human populations 

(Mahalanobis, 1927, 1936), the financial turbulence indicator offers a high frequency (weekly in 

our case) indicator of uncharacteristic market conditions that are associated with asset price 

fluctuations and correlation patterns. The systemic risk indicator, on the other hand, captures 

market fragility, again at high frequency, based on the so-called absorption ratio of Kritzman and 

Li (2010), which relates to how much of the variation in asset price movements can be explained 

by a small number of independent factors. These financial indicators thus offer a unique approach 
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to measuring financial risk, as they directly relate to the effectiveness of diversification models 

from both volatility and co-movement perspectives and – unlike other macro-financial indicators 

of uncertainty, or risk – can be integrated into diversification models within a forecasting and 

portfolio design setting.1 To this end, our forecasting application presents the first evidence of the 

predictive power of these indicators within a mixed data sampling framework. 

In our forecasting application, we examine the out-of-sample predictive performance of the 

two financial indicators against the benchmark GARCH-MIDAS model with realized volatility at 

three forecast horizons [5, 10 and 20 days ahead]. The analysis is performed within a rolling-

window framework wherein one-day ahead forecasts are generated iteratively over the entire 

specified out-of-sample horizon. Our analysis of daily data from Brazil, France, Germany, Hong 

Kong, Japan, the United Kingdom and the United States indicates that incorporating the two 

financial indicators (singly and jointly) indeed outperforms the benchmark model. While the 

financial turbulence indicator is found to overwhelmingly outperform the systemic risk indicator 

in its out-of-sample predictive performance, we also observe that incorporating both financial 

indicators in the forecasting model significantly improves the predictive accuracy of the alternative 

models that incorporate only one of the risk proxies, underscoring the marginal predictive 

information captured by the two financial indicators. Interestingly, the predictive performance of 

the augmented model is generally higher when the COVID-19 pandemic period is excluded from 

the analysis, suggesting that the pandemic period may plausibly have peculiarities that have 

reduced the predictive accuracy of volatility forecasting models. The overall findings provide an 

interesting opening for portfolio design purposes in that financial indicators, which are directly 

                                                            
1 See Kritzman and Li (2010) for an application in the context of portfolio management. Our application is the first in 
a forecasting context. 
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associated with portfolio diversification performance metrics, can also be utilized for forecasting 

purposes, with significant implications for dynamic portfolio allocation strategies.  

The remainder of the paper is organized as follows. Section 2 presents the description of the 

data, the two financial indicators employed as predictors of stock market volatility and the 

GARCH-MIDAS model employed. Section 3 discusses the empirical findings, and section 4 

concludes with a discussion on investment implications. 

2. Data and Methodology 

2.1 Data 

Our dataset includes daily stock market index returns for seven advanced and emerging 

economies, including Brazil, France, Germany, Hong Kong, Japan, the United Kingdom and the 

United States over the period Oct. 28, 1996-March 31, 2021, obtained from Bloomberg. These 

seven countries are chosen because the two indicators we describe below are based on the asset 

pool of these economies. The descriptive statistics for daily returns, presented in Table 1, clearly 

distinguish the Brazilian stock market as the most volatile one in the sample, with daily returns 

ranging between a low of -17.225% and a high of 28.824%. Interestingly, although the U.S. stock 

market offers a mean return that is comparable to that of Brazil, investors were able to enjoy much 

lower volatility in the U.S. market, achieving a more favorable risk/return tradeoff. All stock 

market return series experienced high kurtosis values, indicating the presence of extreme 

fluctuations during the sample period. 
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Table 1. Descriptive statistics 

 U.S. U.K. Japan Germany France Hong Kong Brazil 

Mean 0.045% 0.005% 0.000% 0.022% 0.014% 0.012% 0.046% 
Std. Dev. 1.24% 1.18% 1.46% 1.48% 1.43% 1.56% 1.99% 
Min. -11.994 -11.512 -12.111 -13.055 -13.098 -14.735 -17.225 
Max. 11.354 9.384 13.235 10.797 10.595 17.247 28.824 
Skewness -0.25 -0.274 -0.316 -0.158 -0.15 0.09 0.119 
Kurtosis 9.223 7.349 6.145 5.233 5.832 10.693 14.61 

Note: This table presents the descriptive statistics for daily stock market index returns for the period Oct. 28, 1996-
March 31, 2021. U.S. is represented by the U.S. CRSP aggregate market index, while the remaining stock markets are 
represented by FTSE 100, Nikkei 225, German DAX, CAC-40, Hang Seng and Bovespa indexes, respectively. 

 

The predictive variables employed in the MIDAS model include weekly measures of financial 

conditions, i.e. financial turbulence and systemic risk (Zhang, 2021). By construction, the financial 

turbulence indicator measures unusual asset price patterns, including extreme fluctuations and the 

decoupling of correlated assets, which are uncharacteristic compared with past observed patterns. 

Originally developed by Chow et al. (1999), given a ሺ1 ൈ 𝑛ሻ vector 𝑦௧ of 𝑛 asset returns for period 

t and the sample average vector, 𝜇, of historical returns, the financial turbulence index (𝑓𝑡௧) 

captures the unusual patterns in the cross-section of asset returns relative to their historical 

multivariate distributions, formulated as  

𝑓𝑡௧ ൌ ሺ𝑦௧ െ 𝜇ሻ𝛴ିଵሺ𝑦௧ െ 𝜇ሻ′    (1) 

where 𝛴 is the ሺ𝑛 ൈ 𝑛ሻ sample covariance matrix of historical returns. As Kritzman and Li 

(2010) note, high levels of this indicator coincide with wild price fluctuations and regime changes 

in asset correlations, i.e. assets either decouple or become more correlated, which is indeed visible 

in Figure 1a, where we observe notable spikes in the financial turbulence index during the dot-

com bubble period in the late 1990s, later during the 2008 Global Financial Crisis period and most 

recently, during the COVID-19 pandemic. From an economic point of view, considering the 
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evidence of volatility persistence and long memory in financial markets (e.g. Andersen et al. 2001; 

2003), because financial turbulence would be persistent, one could argue that a predictive 

relationship exists between financial turbulence and future volatility. 

Figure 1. Time-series plots 

a) Financial turbulence indicator 

 

b) Systemic risk indicator 

 

 

The second predictor employed in the GARCH-MIDAS model is the systemic risk indicator, 

which captures market conditions from a different aspect. Based on the absorption ratio, developed 

by Kritzman et al. (2011), the systemic risk indicator captures the extent to which financial markets 

are tightly coupled or unified. More specifically, utilizing principal component analysis, the 

authors measure what fraction of the total variance of a group of asset returns can be explained by 
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a fixed number of eigenvectors. This procedure yields an indirect proxy for systemic risk in the 

marketplace such that a high value indicates that asset price movements can be explained by a 

small number of common factors, whereas a low value indicates that idiosyncratic factors are more 

dominant in the cross-sectional patterns of asset returns.  

As seen in Figure 1b, the market has experienced a steady rise in systemic risk since the early 

2000s, followed by a decline during the Global Financial Crisis period, suggesting that individual 

market-specific factors have gained relative importance during this period. The decline in the 

systemic risk indicator during this period is indeed consistent with the finding by Didier et al. 

(2012) that emerging markets, in general, displayed a more heterogeneous pattern in the reaction 

and recovery rates following the Global Financial Crisis. Interestingly, a similar downward pattern 

is also observed during the COVID-19 pandemic period. From an economic perspective – 

considering that high systemic risk corresponds with periods when global markets are tightly 

connected, thus facilitating the propagation of financial shocks more quickly and broadly – one 

could argue that a predictive relation should exist between systemic risk and future volatility 

because a broader propagation of market shocks would induce volatility spillovers across global 

financial markets. Finally, we observe that the two predictors are negatively correlated at -0.26, 

suggesting that they capture market conditions from distinctly different aspects. 

2.2 Methodology 

We employ the GARCH-MIDAS modelling framework, which simultaneously 

accommodates data with mixed frequencies, to investigate the role of the financial turbulence and 

systemic risk indicators in volatility forecasts for equity markets.2 This is premised on the naturally 

                                                            
2 It must be noted that a low (response) – high (predictor) frequency mix also exists and has computational advantages 
over uniform-frequency-based models (see Salisu and Ogbonna, 2019). 
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occurring frequencies of the data – daily stock returns (Brazil, France, Germany, Hong Kong, 

Japan, the United Kingdom and the United States) and weekly measures of financial indicators 

(turbulence and systemic risk). The GARCH-MIDAS model is well suited to high-frequency 

dependent and low-frequency independent variables mix, and circumvents the possible loss of 

information and estimation bias that is occasioned by aggregation or disaggregation, as is the case 

with most uniform-frequency-based models. This framework allows one to incorporate every bit 

of information in the estimation model, thus contributing to improving the predictability of the 

model over the uniform-frequency-based models. 

The stock returns for the equity markets considered are generated using 𝑟௜,௧ ൌ 𝑙𝑛൫𝑃௜,௧൯ െ

ln ሺ𝑃௜ିଵ,௧ሻ, where 𝑃௜,௧ is the stock price of the 𝑖௧௛ day of the 𝑡௧௛ week; 𝑖 ൌ 1, … , 𝑁 and 𝑡 ൌ 1, … , 𝑇 

indicate daily and weekly frequencies, respectively, while 𝑁௧ indicates the number of days in any 

given week𝑡. The GARCH-MIDAS model for the daily stock returns is defined as 

  𝑟௜,௧ ൌ 𝜇 ൅ ඥ𝜏௧ ൈ ℎ௜,௧ ൈ 𝜀௜,௧,          ∀ 𝑖 ൌ 1, … , 𝑁௧    (2) 

  𝜀௜,௧|Φ௜ିଵ,௧ ∼ 𝑁ሺ0,1ሻ        (3)  

where the first component of equation (2), that is, 𝜇, is the unconditional mean of the stock returns, 

while the second part of the same equation, that is, ඥ𝜏௧ ൈ ℎ௜,௧ ൈ 𝜀௜,௧, captures the conditional 

variance with the error distribution defined in equation (3). The conditional variance is further 

decomposed into a short-run component (ℎ௜,௧) that is a higher frequency series characterized by a 

𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ process and a long-run component that captures the long-run volatility characterized 

by the parameter 𝜏௧.3 Note that the information that is available at day 𝑖 െ 1 of month 𝑡 is denoted 

by Φ௜ିଵ,௧. The short-run component of the conditional variance is given in equation (4) as:  

                                                            
3 Engle et al. (2013) provide some technical details of the multiplicative decomposition of conditional variance into 
high- and low-frequency components of the MIDAS model. 
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  ℎ௜,௧ ൌ ሺ1 െ 𝛼 െ 𝛽ሻ ൅ 𝛼൫𝑟௜,௧ െ 𝜇൯
ଶ

/𝜏௧  ൅ 𝛽ℎ௜ିଵ,௧    (4) 

where the ARCH and GARCH terms are respectively denoted by 𝛼 and 𝛽, such that 𝛼 ൐ 0, 𝛽 ൒

0, and 𝛼 ൅ 𝛽 ൏ 1. Following Engle et al. (2013), all series are transformed into a daily frequency 

without distorting the original GARCH-MIDAS framework. The weekly varying long-term 

component (𝜏௧) is transformed into a daily frequency, rolling back the days across the weeks 

without keeping track of them. The daily‐structured long-term component (𝜏௜) is given in equations 

(5) and (6) respectively for the realized volatility and the exogenous factor: 

   𝜏௜
ሺ௥௪ሻ ൌ 𝑚ሺ௥௪ሻ ൅ 𝜃ሺ௥௪ሻ ∑ 𝜙௞ሺ𝜔ଵ, 𝜔ଶሻ𝑅𝑉௜ି௞

ሺ௥௪ሻ௞
௞ୀଵ    (5) 

   lnቀ𝜏௜
ሺ௥௪ሻቁ ൌ 𝑚ሺ௥௪ሻ ൅ 𝜃ሺ௥௪ሻ ∑ 𝜙௞ሺ𝜔ଵ, 𝜔ଶሻ𝑋௜ି௞

ሺ௥௪ሻ௄
௞ୀଵ    (6) 

where “𝑟𝑤” indicates the implementation of a rolling-window framework4; 𝑚 is the constant in 

the long-run component; 𝜃 is the MIDAS slope coefficient – a measure of the predictability of the 

realized volatility and/or the incorporated predictor 𝑋௜ି௞. Note that the beta polynomial weights 

𝜙௞ሺ𝜔ଵ, 𝜔ଶሻ ൒ 0, 𝑘 ൌ 1, . . . , 𝐾 must sum to one for the model’s parameters to be identified. Finally, 

we choose the lag-length 𝐾 ൌ 10, which corresponds to ten MIDAS weeks, to filter out the secular 

component of the MIDAS weights.  

The predictors are obtained by combining the risk measures with the model-derived realized 

volatilities; hence, the emergence of three different model structures in addition to the GARCH-

MIDAS model with realized volatility (Model 1), which is our benchmark model. The alternative 

augmented models include (i) Model 2, which incorporates the PCA factor, obtained by combining 

the financial turbulence indicator and realized volatility; (ii) Model 3, which incorporates the PCA 

factor obtained by combining the systemic risk indicator and realized volatility; and (iii), Model 

                                                            
4 The rolling-window framework is an estimation procedure that allows for the long-run component to vary for every 
period (daily in our case). 
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4, which incorporates the PCA factor obtained by combining both the financial turbulence and 

systemic risk indicators and realized volatility. Following Colacito et al. (2011), who show the 

flexibility of the beta weighting scheme, the two-parameter beta-polynomial weight is transformed 

into a one-parameter beta-polynomial weight by setting 𝜔ଵ to one and 𝜔ଶ ൌ 𝜔, to optimally obtain 

a monotonically decreasing weighting function (Engle et al. 2013). The weighting function is 

defined in equation (7) as: 

𝜙௞ሺ𝜔ଵ, 𝜔ଶሻ ൌ
ሾ௞/ሺ௄ାଵሻሿഘభషభൈሾଵି௞/ሺ௄ାଵሻሿഘమషభ

∑ ሾ௝/ሺ௄ାଵሻሿഘభషభൈሾଵି௝/ሺ௄ାଵሻሿ಼
ೕసభ

ഘమషభ ⇔ 𝜙௞ሺ𝜔ሻ ሾଵି௞/ሺ௄ାଵሻሿഘషభ

∑ ሾଵି௝/ሺ௄ାଵሻሿ಼
ೕసభ

ഘషభ  (7) 

where the weights are positive and sum to one. To ensure that distant lags of the observations are 

weighted lower than more recent observations, the restriction, 𝜔 ൐ 1, is imposed. 

The in-sample predictability is ascertained by testing whether 𝜃 statistically differs from zero, 

where a non-rejection of the null would imply no predictability. A rejection of the null would, 

however, imply that the corresponding risk measures affect stock return volatility. An a priori 

expected relationship could be either positive or negative, which suggests higher (lower) risks 

associated with lower (higher) returns. However, in this study, for practical portfolio management 

purposes, we focus primarily on the out-of-sample forecast performance of the different GARCH-

MIDAS specifications, which incorporate the turbulence and systemic risk indicators as predictor 

variables, in comparison with the benchmark GARCH-MIDAS model, which incorporates realized 

volatility only.  

We employ the Diebold and Mariano (1995; DM) test for pairwise comparisons to formally 

ascertain whether the observed difference between a given pair of contending GARCH-MIDAS 

models is statistically significant. The test statistic is specified in equation (8) as: 

   𝐷𝑀𝑆𝑡𝑎𝑡 ൌ 𝑑ሜ/ඥ𝑉ሺ𝑑ሻ/𝑇 ~𝑁ሺ0,1ሻ    (8) 
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where 𝑑ሜ ൌ ଵ

்
∑ 𝑑௧

்
௧ୀଵ  is the sample mean of the loss differential 𝑑௧ ≡ 𝑔ሺ𝜀௜௧ሻ െ 𝑔൫𝜀௝௧൯, with 𝑔ሺ𝜀௜௧ሻ, 

and 𝑔൫𝜀௝௧൯ representing the loss functions of the forecast errors, 𝜀௜௧ and 𝜀௝௧, corresponding to the 

two return forecasts, 𝑟̂௜௧ and 𝑟̂௝௧, and 𝑉ሺ𝑑௧ሻ is the unconditional variance of 𝑑௧. The null hypothesis 

asserts the relative equality of the forecast accuracy of the paired competing models, such that 

𝐸ሾ𝑑௧ሿ ൌ 0. The rejection of the null would thus imply statistically different forecast errors. 

Drawing on Hansen et al's. (2011) model confidence set and Patton's (2011) argument on the 

consistency of the loss function for model ranking, we also subject the contending models to 

further evaluations using two loss functions MSE and QLIKE, which are defined as follows: 

𝑀𝑆𝐸௜ ൌ ଵ

்
∑ ൫𝑅𝑉ప,௧෣ െ 𝑅𝑉௧൯

ଶ்
௧ିଵ      (9) 

𝑄𝐿𝐼𝐾𝐸௜ ൌ ሺ1/𝑇ሻ ∑ ൫𝑅𝑉௧/𝑅𝑉ప,௧෣ െ 𝑙𝑛 𝑅𝑉௧/𝑅𝑉ప,௧෣ െ 1൯்
௧ିଵ  (10) 

where 𝑅𝑉ప,௧෣ is the realized variance forecast from the 𝑖௧௛ model at time 𝑡; 𝑅𝑉௧ is a proxy of the 

realized volatility, computed as a five-day rolling-window realized variance, while 𝑇 is the number 

of out-of-sample forecast horizons considered. The aforementioned loss functions measure the 

magnitude of the difference between the actual and predicted realized volatility. Hence, a model 

will be adjudged preferred if the associated MSE or QLIKE value is smaller than that of the 

contending model. 

3. Empirical Results 

This section presents the empirical results for the in-sample and out-of-sample predictability 

of selected equity market returns using the aforementioned financial turbulence and systemic risk 

indicators. In essence, we are interested in the role that these financial indicators play in the 

forecasting of stock market returns. Consequently, we evaluate the forecasts emanating from the 
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four GARCH-MIDAS model variants via the DM statistic, which is well suited to pairwise 

comparisons of contending models, and two alternative loss functions – MSE and QLIKE. As 

noted earlier, the models differ in terms of the comprising predictor variable. Model 1 (benchmark 

model) is a GARCH-MIDAS model with realized volatility; Model 2 is GARCH-MIDAS model 

with a PCA factor combining financial turbulence and realized volatility; Model 3 is a GARCH-

MIDAS model with a PCA factor combining systemic risk and realized volatility; and Model 4 is 

GARCH-MIDAS model with a PCA factor combining financial turbulence, systemic risk and 

realized volatility. In addition to the in-sample predictability stance of each of the contending 

models, the model pairs are evaluated at three forecast horizons [ℎ ൌ 5, ℎ ൌ 10 and ℎ ൌ 20 days 

ahead] and in a rolling-window framework, wherein one-day ahead forecasts are generated 

iteratively over the entire specified out-of-sample horizons. For robustness purposes, we also 

consider different sub-sample periods in addition to the full-data sample period. 

As noted earlier, the sample of countries in our analysis is selected based on the asset pool that 

is used to generate the financial turbulence and systemic risk indicators. However, given the strong 

integration of the emerging economies with their advanced counterparts, one would not expect a 

significant difference in the predictive relationship between these indicators and volatility patterns 

in emerging markets when compared with advanced markets. However, considering the rise in the 

relative importance of market-specific factors during the Global Financial Crisis period, implied 

by a decline in systemic risk – observed in Figure 1b – during this period, and the evidence by 

Didier et al. (2012) that emerging markets, in general, displayed a more heterogeneous pattern in 

their reaction to the Global Financial Crisis,  one could argue that the predictive relation between 

systemic risk and market volatility would be more heterogeneous and market specific in the case 

of emerging markets. In this regard, one could argue that the predictive power of the systemic risk 
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and turbulence indicators might be dominated by the degree to which a particular emerging market 

is connected to advanced economies, either through economic trade relations or the fragility of 

their economies to external shocks or currency market fluctuations, or both. 

3.1. In-Sample Predictability 

We proceed with the in-sample predictability of our four GARCH-MIDAS models. The 

difference in the model structure is based on whether the predictor variable incorporated is the 

realized volatility or an exogenous variable (financial turbulence or systemic risk, or both 

simultaneously). The GARCH-MIDAS parameters for the contending models are presented in 

Table 2 (for the full sample) and Table 3 (for the full sample without COVID period). These 

parameters include an unconditional mean for the stock return (𝜇); the ARCH term (𝛼); the 

GARCH term (𝛽); the slope coefficient (𝜃) which indicates the stance of predictability of weekly 

risk measures for daily return volatility; the adjusted beta polynomial weight (𝑤); and the long-

run constant term (𝑚). The short-run component ARCH and GARCH terms are statistically 

significant, with evidence of high but mean-reverting volatility persistence, since the sum of the 

ARCH and GARCH terms is less than unity. This implies that the impact of shocks to return 

volatility will only be temporary, though, taking a long time to fizzle out. This feat is consistently 

confirmed across model constructs, countries and sample data periods. The adjusted beta weight 

coefficients are mostly statistically insignificant, especially for the GARCH-MIDAS model, which 

incorporates any of the risk measures as predictors. This implies that there may not be a marked 

difference in the weights assigned to immediate past and far-apart lag observations. 
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Table 2. In-sample predictability results (full sample) 

Model 𝜇 𝛼 𝛽 𝜃 𝜔 𝑚 

Brazil 

𝑅𝑉 6.50E-04*** [1.99E-04] 5.27E-02*** [6.18E-03] 9.38E-01*** [7.02E-03] 4.64E-02*** [1.18E-02] 4.30E+01*** [1.41E+01] 3.35E-04*** [4.60E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 8.18E-04*** [1.99E-04] 8.96E-02*** [4.43E-03] 8.87E-01*** [6.15E-03] -3.33E-01** [1.57E-01] 1.22E+01 [2.12E+01] -7.98E+00*** [7.45E-02] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 8.25E-04*** [1.98E-04] 9.07E-02*** [4.55E-03] 8.78E-01*** [7.02E-03] 1.21E+01*** [1.88E+00] 1.31E+01 [1.74E+02] -8.02E+00*** [5.97E-02] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

8.21E-04*** [1.99E-04] 8.90E-02*** [4.43E-03] 8.87E-01*** [6.13E-03] -6.93E-01*** [2.01E-01] 1.39E+00* [7.45E-01] -7.99E+00*** [7.45E-02] 

France 

𝑅𝑉 4.64E-04*** [1.38E-04] 7.52E-02*** [7.60E-03] 9.17E-01*** [8.33E-03] 3.12E-02** [1.43E-02] 3.08E+01* [1.66E+01] 2.06E-04*** [4.39E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 5.25E-04*** [1.37E-04] 9.81E-02*** [5.28E-03] 8.90E-01*** [5.80E-03] -1.90E+00 [1.70E+00] 4.87E+01 [3.05E+02] -8.45E+00*** [1.61E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 5.78E-04*** [1.35E-04] 1.75E-01*** [8.23E-03] 8.25E-01*** [8.23E-03] 3.82E+00 [3.29E+00] 5.64E+00 [2.11E+02] -3.25E-01 [3.84E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

5.95E-04*** [1.30E-04] 1.99E-01*** [9.32E-03] 8.01E-01*** [9.32E-03] -1.90E+01*** [2.83E+00] 4.11E+00*** [1.30E+00] -5.26E-01 [4.13E-01] 

Germany 

𝑅𝑉 5.97E-04*** [1.41E-04] 9.22E-02*** [8.69E-03] 8.25E-01*** [3.50E-02] 1.41E-01*** [1.65E-02] 1.71E+00*** [5.64E-01] 5.29E-05*** [1.28E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 6.55E-04*** [1.38E-04] 9.21E-02*** [5.44E-03] 8.95E-01*** [6.18E-03] -1.79E+00 [1.68E+00] 4.53E+01 [2.72E+02] -8.47E+00*** [1.45E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 6.62E-04*** [1.38E-04] 9.18E-02*** [5.43E-03] 8.94E-01*** [6.21E-03] 5.71E+00* [3.01E+00] 1.56E+01 [4.49E+02] -8.49E+00*** [1.35E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

6.58E-04*** [1.37E-04] 9.21E-02*** [5.44E-03] 8.95E-01*** [6.17E-03] -1.80E+00 [2.10E+00] 4.14E+00 [1.05E+01] -8.47E+00*** [1.45E-01] 

Hong Kong 

𝑅𝑉 3.80E-04** [1.49E-04] 6.34E-02*** [5.88E-03] 8.52E-01*** [2.21E-02] 1.55E-01*** [8.88E-03] 1.01E+00*** [3.82E-02] 4.29E-05*** [5.82E-06] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 4.03E-04*** [1.27E-04] 4.68E-02*** [2.30E-03] 9.52E-01*** [2.51E-03] -3.72E-02** [1.85E-02] 1.50E+00* [7.90E-01] -8.65E+00*** [2.85E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 3.94E-04*** [1.32E-04] 5.77E-02*** [2.98E-03] 9.42E-01*** [3.05E-03] -5.45E+02*** [1.80E+02] 2.91E+01 [8.22E+01] -7.42E+00*** [4.70E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

4.50E-04*** [1.42E-04] 1.11E-01*** [5.38E-03] 8.89E-01*** [5.38E-03] 4.46E-02* [2.47E-02] 3.07E+00 [2.75E+00] -7.01E-01** [3.27E-01] 

Japan 

𝑅𝑉 3.00E-04* [1.57E-04] 7.94E-02*** [7.71E-03] 7.79E-01*** [7.50E-02] 1.38E-01*** [1.87E-02] 3.70E+00*** [1.14E+00] 6.28E-05*** [1.51E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 4.54E-04*** [1.51E-04] 9.67E-02*** [4.99E-03] 8.86E-01*** [6.15E-03] -1.78E+00 [1.48E+00] 4.73E+01 [2.26E+02] -8.31E+00*** [1.16E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 4.52E-04*** [1.53E-04] 9.51E-02*** [4.96E-03] 8.84E-01*** [6.34E-03] 9.27E+00*** [2.35E+00] 3.33E+01 [6.56E+02] -8.40E+00*** [9.06E-02] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

5.12E-04*** [1.49E-04] 1.48E-01*** [6.71E-03] 8.52E-01*** [6.71E-03] 2.36E+00 [1.61E+00] 7.09E+00 [1.47E+01] 7.97E-01** [3.53E-01] 

United Kingdom 

𝑅𝑉 1.64E-04 [1.10E-04] 3.96E-02*** [6.11E-03] 9.55E-01*** [6.67E-03] 9.59E-02*** [2.36E-02] 2.44E+01*** [4.46E+00] 9.37E-05*** [1.95E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 3.17E-04*** [1.07E-04] 1.02E-01*** [6.20E-03] 8.83E-01*** [6.90E-03] -3.47E+00** [1.69E+00] 4.01E+01 [1.30E+02] -8.95E+00*** [1.46E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 3.18E-04*** [1.07E-04] 1.01E-01*** [6.06E-03] 8.85E-01*** [6.78E-03] 2.09E+00 [2.99E+00] 2.05E+01 [1.89E+03] -8.94E+00*** [1.49E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

3.67E-04*** [1.04E-04] 2.04E-01*** [9.59E-03] 7.96E-01*** [9.59E-03] -2.53E+00 [2.56E+00] 4.89E+00 [1.20E+01] -3.28E-01 [4.10E-01] 

United States 

𝑅𝑉 7.61E-02*** [1.12E-02] 1.29E-01*** [7.98E-03] 8.09E-01*** [1.44E-02] 1.09E-01*** [1.13E-02] 1.00E+00*** [4.11E-02] 5.57E-01*** [6.53E-02] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 7.71E-02*** [1.09E-02] 1.22E-01*** [6.55E-03] 8.59E-01*** [7.32E-03] -4.63E+00*** [1.70E+00] 4.99E+01 [1.46E+02] 3.48E-01*** [1.29E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 7.84E-02*** [1.08E-02] 1.24E-01*** [6.75E-03] 8.51E-01*** [7.97E-03] 1.25E+01*** [1.91E+00] 1.06E+00 [7.47E+00] 2.89E-01*** [1.04E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

7.71E-02*** [1.09E-02] 1.22E-01*** [6.55E-03] 8.59E-01*** [7.32E-03] -4.63E+00*** [1.70E+00] 4.99E+01 [1.46E+02] 3.48E-01*** [1.29E-01] 

Note: 𝑅𝑉 is the model with realized volatility only;  𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 is the model with PCA factor that combines turbulence and realized volatility; 𝑅𝑉 ൅ 𝑆𝑦𝑠 is the model 
with PCA factor that combines systemic risk and realized volatility; 𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 ൅ 𝑆𝑦𝑠 is the model with PCA factor that combines turbulence, systemic risk and 
realized volatility. The figures in each cell are the estimated coefficients with the associated standard errors in square brackets; and ***, ** and * respectively denote 
statistical significance at 1%, 5% and 10%. 

 

 

 

 

 

 

 

 



16 
 

Table 3. In-sample predictability results (full less COVID period) 

Model 𝜇 𝛼 𝛽 𝜃 𝜔 𝑚 

Brazil 

𝑅𝑉 5.76E-04*** [2.02E-04] 4.19E-02*** [5.82E-03] 9.52E-01*** [6.52E-03] 5.74E-02*** [1.36E-02] 4.07E+01*** [1.13E+01] 3.24E-04*** [5.12E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 7.76E-04*** [2.03E-04] 8.14E-02*** [4.27E-03] 8.98E-01*** [5.74E-03] -5.42E+00*** [2.10E+00] 1.34E+00 [9.44E-01] -8.01E+00*** [8.04E-02] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 7.22E-04*** [1.95E-04] 7.71E-02*** [3.90E-03] 9.16E-01*** [4.54E-03] -1.73E+01*** [4.76E+00] 1.29E+01 [1.16E+02] -7.74E+00*** [2.19E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

7.72E-04*** [2.02E-04] 8.19E-02*** [4.27E-03] 8.98E-01*** [5.72E-03] -1.29E+00 [1.59E+00] 3.04E+01 [1.82E+02] -8.00E+00*** [8.12E-02] 

France 

𝑅𝑉 4.85E-04*** [1.40E-04] 1.03E-01*** [9.28E-03] 8.13E-01*** [2.71E-02] 1.46E-01*** [1.30E-02] 1.25E+00*** [2.90E-01] 4.74E-05*** [8.76E-06] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 5.20E-04*** [1.39E-04] 9.08E-02*** [5.32E-03] 8.98E-01*** [5.79E-03] -1.05E-01 [2.42E-01] 2.52E+00 [1.01E+01] -8.51E+00*** [1.68E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 5.27E-04*** [1.39E-04] 9.16E-02*** [5.41E-03] 8.95E-01*** [6.07E-03] 8.70E+02*** [3.26E+02] 1.33E+01 [2.29E+02] -8.55E+00*** [1.43E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

5.19E-04*** [1.39E-04] 9.07E-02*** [5.35E-03] 8.98E-01*** [5.81E-03] -6.92E-02 [1.77E-01] 4.67E+01 [7.81E+02] -8.51E+00*** [1.68E-01] 

Germany 

𝑅𝑉 6.26E-04*** [1.42E-04] 9.29E-02*** [8.66E-03] 8.38E-01*** [2.78E-02] 1.33E-01*** [1.82E-02] 1.30E+00*** [4.32E-01] 5.78E-05*** [1.43E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 5.67E-04*** [1.11E-04] 6.32E-02*** [2.92E-03] 9.37E-01*** [3.26E-03] 7.15E-01 [1.80E+00] 6.63E+00 [3.72E+01] -8.96E+00*** [6.39E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 6.89E-04*** [1.38E-04] 1.41E-01*** [7.45E-03] 8.59E-01*** [7.45E-03] -7.57E+00** [3.60E+00] 5.41E+00 [9.71E+01] -3.13E-01 [3.69E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

7.21E-04*** [1.33E-04] 1.63E-01*** [8.62E-03] 8.37E-01*** [8.62E-03] 2.51E+00 [2.51E+00] 3.75E+00 [8.68E+00] -3.43E-01 [3.94E-01] 

Hong Kong 

𝑅𝑉 3.66E-04** [1.52E-04] 6.07E-02*** [5.76E-03] 8.60E-01*** [2.17E-02] 1.55E-01*** [9.30E-03] 1.01E+00*** [3.87E-02] 4.20E-05*** [6.04E-06] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 4.64E-04*** [1.45E-04] 1.19E-01*** [6.07E-03] 8.81E-01*** [6.07E-03] 9.56E-03 [2.66E-02] 2.01E+00 [8.13E+00] -2.92E-01 [3.40E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 4.03E-04*** [1.46E-04] 5.93E-02*** [3.62E-03] 9.34E-01*** [4.13E-03] 4.29E+00 [4.02E+00] 2.53E+01 [8.85E+02] -8.46E+00*** [1.44E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

4.04E-04*** [1.47E-04] 5.94E-02*** [3.65E-03] 9.34E-01*** [4.16E-03] -3.03E-02 [2.11E-02] 1.43E+00 [1.20E+00] -8.46E+00*** [1.48E-01] 

Japan 

𝑅𝑉 1.75E-04 [1.62E-04] 6.81E-02*** [7.29E-03] 6.70E-01*** [1.19E-01] 1.55E-01*** [8.87E-03] 5.24E+00*** [9.65E-01] 4.89E-05*** [6.11E-06] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 4.85E-04*** [1.51E-04] 1.51E-01*** [6.96E-03] 8.49E-01*** [6.96E-03] 4.74E+00*** [1.69E+00] 7.20E+00 [7.63E+00] 4.44E-01 [3.59E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 4.16E-04*** [1.50E-04] 9.68E-02*** [4.70E-03] 9.00E-01*** [4.92E-03] -1.53E+01*** [4.65E+00] 1.03E+01 [7.71E+01] -7.30E+00*** [5.67E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

4.12E-04*** [1.55E-04] 9.48E-02*** [4.98E-03] 8.90E-01*** [6.04E-03] -1.15E+00 [1.53E+00] 4.90E+01 [3.75E+02] -8.29E+00*** [1.29E-01] 

United Kingdom 

𝑅𝑉 3.26E-04*** [1.07E-04] 9.90E-02*** [6.98E-03] 8.87E-01*** [7.66E-03] -6.26E-03 [5.20E-03] 2.49E+00 [2.72E+00] 1.26E-04*** [2.00E-05] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 3.22E-04*** [1.08E-04] 9.67E-02*** [6.42E-03] 8.89E-01*** [7.06E-03] -4.34E+00* [2.56E+00] 1.35E+00 [1.36E+00] -9.03E+00*** [1.46E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 3.22E-04*** [1.08E-04] 9.65E-02*** [6.38E-03] 8.88E-01*** [7.14E-03] 4.01E+00 [3.01E+00] 2.51E+01 [1.33E+03] -9.03E+00*** [1.42E-01] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

3.91E-04*** [1.04E-04] 2.22E-01*** [1.03E-02] 7.78E-01*** [1.03E-02] -1.89E+00 [2.77E+00] 2.70E+00 [8.62E+00] -3.20E-01 [4.26E-01] 

United States 

𝑅𝑉 7.30E-02*** [1.15E-02] 1.18E-01*** [7.63E-03] 8.22E-01*** [1.61E-02] 1.09E-01*** [1.40E-02] 1.00E+00*** [4.19E-02] 5.24E-01*** [7.59E-02] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 7.46E-02*** [1.13E-02] 1.13E-01*** [6.27E-03] 8.69E-01*** [7.24E-03] -3.63E+00** [1.74E+00] 4.99E+01 [1.86E+02] 2.67E-01** [1.26E-01] 

𝑅𝑉 ൅ 𝑆𝑦𝑠 7.64E-02*** [1.12E-02] 1.15E-01*** [6.50E-03] 8.59E-01*** [8.09E-03] 1.40E+01*** [1.93E+00] 1.07E+00 [7.44E+00] 1.99E-01** [9.69E-02] 

𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏
൅ 𝑆𝑦𝑠 

7.46E-02*** [1.13E-02] 1.13E-01*** [6.27E-03] 8.69E-01*** [7.24E-03] -3.63E+00** [1.74E+00] 4.99E+01 [1.86E+02] 2.67E-01** [1.26E-01] 

Note: 𝑅𝑉 is the model with realized volatility only;  𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 is the model with PCA factor that combines turbulence and realized volatility; 𝑅𝑉 ൅ 𝑆𝑦𝑠 is the 
model with PCA factor that combines systemic risk and realized volatility; 𝑅𝑉 ൅ 𝑇𝑢𝑟𝑏 ൅ 𝑆𝑦𝑠 is the model with PCA factor that combines turbulence, systemic risk 
and realized volatility. The figures in each cell are the estimated coefficients with the associated standard errors in square brackets; and ***, ** and * respectively 
denote statistical significance at 1%, 5% and 10%. 

 

Testing the null hypothesis of the insignificance of the MIDAS slope coefficient (𝜃) to 

ascertain the predictability of the risk measures for return volatility, we find predictability in a few 

cases, with a mostly negative nexus between return volatility and the risk measures (financial 

turbulence and financial turbulence and systematic risk combined); and a positive nexus between 

return volatility and systematic risk, for the full-data sample period. The cases of insignificant 
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predictability of the risk measures are indicative of the dependence of the result on some country-

specific features that may not have been captured within the model framework. However, we do 

not discard the predictive stance outright, as incorporating the risk measures provides some 

information to improve out-of-sample forecasts. 

We expect a negative relationship between the risk factors and return volatility, such that the 

higher the risks, the lower the trading for risk-averse investors. Under the full-data sample period, 

our a priori expectation is met in the cases of the nexus between return volatility and financial 

turbulence (Brazil, Hong Kong, UK and USA) and systemic risk (Hong Kong). Also, when the 

sample period excludes the COVID period, the result seems to remain unchanged, especially for 

Brazil and the USA. The a priori is however met for systemic risk in the cases of Brazil, Germany 

and Japan. This shows that the COVID period does have some impact on the volatility-risk nexus. 

Overall, the relationship between volatility and risk measures (especially financial turbulence) is 

negative. The predictability plot of realized vs predicted volatilities for the full-sample data is 

presented in Figure 2.  
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Figure 2. Predictability plot of realized vs predicted volatility (full sample) 
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3.2. Forecast Evaluation 

The out-of-sample forecast performance results for the seven equity markets considered are 

presented in Table 4. In Panel 1, Models 2 – 4 are each compared with Model 1 as the benchmark 

model. This is a bid to ascertain whether incorporating any of the two risk proxies (financial 

turbulence and systemic risk), both singly and jointly, could improve the out-of-sample forecast 

performance. In conforming with the DM statistics, a significantly negative value indicates a 

preference for the contending model over the benchmark model, while a significantly positive 

value supports the benchmark model in the compared model pair. In Panel 2, we show a 

comparison of Models 2 and Model 3, with the latter used as the benchmark model. Consequently, 

a significantly negative DM value implies a preference for Model 2 over Model 3. Finally, in Panel 

3, Models 2 and 3 are separately compared with Model 4 as the benchmark model. The intuition 

here is to ascertain whether including both risk proxies would outperform the single incorporation 

of these risk proxies. 

In Panel 1, we observe a generally higher proportion of outperformance of Model 2 over Model 

1, consistently across the three considered forecast horizons and equity markets (except for Hong 

Kong and Japan (ℎ ൌ 5), where Model 1 was preferred). This is an indication of improvement in 

the forecast precision, which is occasioned by incorporating financial turbulence as a predictor 

variable in the model. Clearly, the financial turbulence indicator that captures unusual deviations 

in asset return and correlation patterns compared with past trends contains valuable predictive 

information regarding the future path of stock market returns, possibly as a result of the volatility 

persistence effects, well documented in the literature. In the case of Model 3, which incorporates 

systemic risk as a predictor, the degree of outperformance is somewhat mixed. We observe that 

Model 3 outperforms Model 1 only in several exceptional cases, i.e. Brazil (ℎ ൌ 5), France (ℎ ൌ 5 
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and 10) and Hong Kong (ℎ ൌ 20). In contrast with the benchmark Model 1 (the GARCH-MIDAS 

model with realized volatility), incorporating systemic risk in the GARCH-MIDAS model does 

not seem to improve the forecasts of equity market returns in Germany, Japan the United Kingdom 

and the United States. The forecast performance of Model 4 supersedes that of Model 1, given that 

the significantly negative DM values cut across the equity markets considered. Overall, the 

findings presented in Panel 1 suggest that the unusualness of returns relative to their historic 

patterns, captured by the financial turbulence indicator, carries significant predictive information 

regarding the future path of asset returns, while the absorption ratio of Kritzman and Li (2010), 

captured by the systemic risk indicator, does not by itself add to the predictive accuracy of the 

forecasting model. 

We present in Panel 2 of Table 4 the comparison of the forecast performance of Model 2 

and Model 3, with the latter considered as the benchmark. In essence, this analysis allows us to 

compare the predictive performance of financial turbulence against the systemic risk indicator. We 

find that Model 2 overwhelmingly outperforms Model 3, consistently across all forecast horizons 

and equity markets for all the considered countries except Hong Kong and France. This implies 

that incorporating financial turbulence as a predictor in the forecasting models yield forecasts of 

out-of-sample stock returns with much less forecast error than the GARCH-MIDAS model, which 

incorporates only systemic risk. Kritzman et al. (2011) show that the absorption ratio, captured by 

the systemic risk indicator, systematically rose in advance of market turbulence, and stock prices 

depreciated significantly following spikes in the absorption ratio. However, our results show that, 

in terms of predictive ability, the financial turbulence indicator, which captures asset price 

deviations from historical patterns, does a better job when it comes to predicting out-of-sample 

future returns, compared with the measure of market connectedness, captured by the absorption 
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ratio. This finding highlights the long memory feature in financial market volatility patterns, driven 

by how information is processed and absorbed by market participants. It is, however, interesting 

that the financial turbulence predictor captures marginal predictive information over and above 

what is captured in historical realized volatility. Thus, one could argue that unusual deviations not 

only in asset returns, but also in correlation patterns play a role in the persistence of return 

volatility, thus leading to improved out-of-sample forecasting performance, observed in our 

analysis. 

Table 4. Diebold and Mariano results (full sample) 

Out-of-Sample 
Forecast 
Horizon 

Panel 1 
(Benchmark is Model 1)  

Panel 2 
(Benchmark is Model 3)  

Panel 3 
(Benchmark is Model 4) 

Model 2 Model 3 Model 4 Model 2 Model 2 Model 3 
Brazil 

ℎ ൌ 5 -7.87*** -3.97*** -7.81*** -27.92*** -4.11*** 18.79***

ℎ ൌ 10 -5.30*** -1.20 -4.73*** -24.29*** -8.44*** 22.37***

ℎ ൌ 20 -6.26*** 0.39 -6.26*** -40.17*** -2.81*** 25.96***

France 
ℎ ൌ 5 -1.97** -2.02** -3.12*** 2.04** 3.44*** 9.11***

ℎ ൌ 10 -3.52*** -2.97*** -5.15*** 2.75*** 5.47*** 18.18***

ℎ ൌ 20 -5.39*** -1.39 -5.61*** 0.51 5.50*** 28.80***

Germany 
ℎ ൌ 5 -1.37 6.72*** 0.10 -20.28*** -10.02*** 26.75***

ℎ ൌ 10 -1.08 6.50*** 0.04 -41.25*** -5.84*** 26.43***

ℎ ൌ 20 -4.68*** 2.08*** -3.80*** -68.25*** -2.72*** 28.54***

Hong Kong 
ℎ ൌ 5 11.68*** 4.15*** -14.75*** 35.24*** 13.42*** 10.64***

ℎ ൌ 10 5.95*** 0.53 -10.88*** 20.85*** 8.40*** 6.40***

ℎ ൌ 20 3.52*** -2.25** -5.04*** 11.86*** 4.50*** 2.88***

Japan 
ℎ ൌ 5 2.90*** 6.33*** -10.18*** -27.51*** 5.64*** 7.96***

ℎ ൌ 10 0.44 3.63*** -6.33*** -52.28*** 2.95*** 4.93***

ℎ ൌ 20 -1.67* 3.13*** -6.54*** -57.64*** 3.58*** 6.57***

United Kingdom 
ℎ ൌ 5 1.03 1.74* -2.38** -15.99*** 3.95*** 4.95***

ℎ ൌ 10 -0.30 0.80 -1.30 -32.84*** 0.75 1.44
ℎ ൌ 20 -0.78 1.17 -0.54 -43.60*** -0.03 1.14

United States 
ℎ ൌ 5 -1.86* 11.40*** -1.86* -12.53*** 52.34*** 12.53***

ℎ ൌ 10 -4.22*** 5.83*** -4.22*** -16.81*** 23.10*** 16.81***

ℎ ൌ 20 -8.70*** 6.75*** -8.70*** -30.66*** 18.37*** 30.66***

Note: Model 1 is GARCH-MIDAS model with realized volatility; Model 2 is GARCH-MIDAS model with PCA factor obtained by combining 
financial turbulence and realized volatility; Model 3 is GARCH-MIDAS model with PCA factor obtained by combining systemic risk and 
realized volatility; and Model 4 is GARCH-MIDAS model with PCA factor obtained by combining financial turbulence, systemic risk and 
realized volatility. The figures in each cell are the estimated D.M. statistics, with ***, ** and * respectively denoting statistical significance at 
1%, 5% and 10%.  
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Finally, we present in Panel 3 of Table 4, the comparison of the GARCH-MIDAS models, 

which incorporates each risk proxy singly against the GARCH-MIDAS model, which jointly 

incorporates the two risk proxies. We observe that, in most cases, the joint incorporation of the 

two risk proxies performs better than singly incorporating the same risk proxies except for Model 

2 for Brazil and Germany. In the case of the United Kingdom, there seems not to be significant 

outperformance in favor of the single or joint incorporation of risk proxies in the longer out-of-

sample periods. Nevertheless, the findings in Panel 3 show that incorporating risk proxies 

(especially financial turbulence), singly and jointly, indeed improves the forecasting performance 

of the GARCH-MIDAS model significantly.  

In the last part of our analysis, considering the growing literature that establishes a link 

between the COVID-19 pandemic and increased volatility and uncertainty in financial markets 

(e.g., Bouri et al. 2020, 2021; Haldar and Sethi 2020; Alexakis et al. 2021; Salisu et al. 2021; 

Scherf et al. 2021; among others), next, we repeat our analysis by excluding the pandemic period 

from the sample to ascertain the predictive role of the two financial indicators examined. 

Considering that the pandemic has turned an unprecedented health crisis into an economic one, 

our goal is to verify our findings without including this exceptional period. Table 5 presents the 

results for the full sample without the COVID-19 period (Oct. 28, 1996-December 31, 2020). We 

find, to a great extent, a similar pattern of performance as for the full sample presented in Table 4. 

The models with the two financial indicators incorporated (singly and jointly) mostly 

outperformed the benchmark GARCH-MIDAS model with realized volatility. Likewise, the 

GARCH-MIDAS model with financial turbulence as a predictor also overwhelmingly outperforms 

its counterpart that incorporates only systemic risk, while the model with jointly incorporated risk 

proxies is found to outperform the alternative with singly incorporated financial indicators for 
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Model 2 (Brazil, France, Hong Kong, Japan and the US) and Model 3 (for all equity market 

returns). Interestingly, however, the magnitude of performance of Models 2 – 4 compared with 

Model 1 appears to be higher when the COVID period is excluded from the analysis than for the 

full-sample data periods. This suggests that the results may be sensitive to the sample period 

considered, wherein the COVID period may plausibly have peculiarities that differ from those of 

the full sample without the COVID period. 

Table 5. Diebold and Mariano results (full sample excluding COVID-19 pandemic) 

Out-of-Sample 
Forecast 
Horizon 

Panel 1 
(Benchmark is Model 1)  

Panel 2 
(Benchmark is Model 3)  

Panel 3 
(Benchmark is Model 4) 

Model 2 Model 3 Model 4 Model 2 Model 2 Model 3 
Brazil 

ℎ ൌ 5 -17.97*** -3.47*** -11.64*** -102.94*** -108.87*** 74.38***

ℎ ൌ 10 -23.57*** -2.22** -16.57*** -77.99*** -29.10*** 26.08***

ℎ ൌ 20 -34.09*** -3.54*** -19.68*** -123.90*** -9.85*** 26.90***

France 
ℎ ൌ 5 7.18*** 8.48*** 7.77*** -28.90*** -11.23*** 15.17***

ℎ ൌ 10 1.19 2.14** 1.34 -48.37*** -10.22*** 23.57***

ℎ ൌ 20 -1.80* -0.46 -1.66* -36.40*** -3.55*** 19.21***

Germany 
ℎ ൌ 5 36.29*** -17.17*** -13.71*** 30.90*** 24.69*** 9.17***

ℎ ൌ 10 15.87*** -12.52*** -7.71*** 15.51*** 12.53*** 3.79***

ℎ ൌ 20 15.45*** -13.13*** -8.01*** 16.18*** 12.94*** 2.41**

Hong Kong 
ℎ ൌ 5 -11.96*** -50.20*** -32.21*** -7.44*** -7.67*** 4.01***

ℎ ൌ 10 -8.18*** -8.20*** -7.62*** -4.55*** -4.47*** 1.97*

ℎ ൌ 20 -5.10*** -5.06*** -4.31*** -3.74*** -3.91*** -1.22
Japan 

ℎ ൌ 5 -2.60*** 1.47 -2.55** -5.52*** -2.20** 31.27***

ℎ ൌ 10 -1.61 1.12 -1.91* -2.74*** -1.48 13.94***

ℎ ൌ 20 -1.81* 3.26*** -0.49 -3.82*** -2.09** 16.04***

United Kingdom 
ℎ ൌ 5 4.94*** 15.89*** -8.20*** -8.48*** 8.32*** 8.41***

ℎ ൌ 10 4.88*** 14.39*** -4.84*** -6.75*** 4.92*** 5.03***

ℎ ൌ 20 9.94*** 15.75*** -2.88*** -3.97*** 3.06*** 3.11***

United States 
ℎ ൌ 5 63.61*** 36.38*** 63.60*** -11.45*** -3.56*** 11.44***

ℎ ൌ 10 10.30*** 17.15*** 10.30*** -23.07*** -7.94*** 23.05***

ℎ ൌ 20 2.08** 7.61*** 2.09** -26.25*** -13.39*** 26.24***

Note: Model 1 is GARCH-MIDAS model with realized volatility; Model 2 is GARCH-MIDAS model with PCA factor obtained by combining 
financial turbulence and realized volatility; Model 3 is GARCH-MIDAS model with PCA factor obtained by combining systemic risk and 
realized volatility; and Model 4 is GARCH-MIDAS model with PCA factor obtained by combining financial turbulence, systemic risk and 
realized volatility. The figures in each cell are the estimated D.M. statistics, with ***, ** and * respectively denoting statistical significance at 
1%, 5% and 10%. 

 

In another form of comparison, we compare the out-of-sample forecast performance using two 

alternative loss functions – MSE and QLIKE. Considering the MSE and QLIKE statistics over the 
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full sample period, we find both loss functions to yield consistent inferences with respect to the 

comparative performance of the models. Models 2 and 4 consistently outperform the benchmark 

model in the cases of Germany, Japan and the USA (across all the out-of-sample forecast horizons) 

and Brazil (when the forecast horizon is 5); while Model 3 outperform Model 1 in the case of 

Germany (across all the forecast horizons) and Hong Kong (for shorter out-of-sample horizons). 

In the case of the UK, none of the other models that incorporated the risk measure, either singly 

or jointly, outperform the benchmark model (see the results in Table 6). The stance of performance 

is markedly different when the sample period excludes the COVID period. We find consistent 

outperformance of the exogenous-based models over the benchmark, across all forecast horizons, 

for France only. Model 2 outperformed Model 1 for the UK (across all forecast horizons), Germany 

and the USA (forecast horizons 10 and 20), while Models 3 and 4 perform best for France, Hong 

Kong and the USA (horizons 5 and 10) (see the results in Table 7). The above performance 

comparisons align and contrast the comparisons for the Diebold and Marino statistics, which is not 

unexpected as the measures are considered from different perspectives. One major point of 

agreement between the DM, MSE and QLIKE results is the consistent outperformance of Model 

2 over Model 3, which shows the incorporation of financial turbulence to improve the out-of-

sample forecast more than the incorporation of the systematic risk proxy. Generally, the effects of 

the incorporated risk measures are market-dependent. However, the maintained stance of 

outperformance of Model 2, regardless of the sample period, implies that the incorporation of risk 

measures (especially, financial turbulence) in the predictive model for return volatility is necessary 

for improved out-of-sample forecasts.  
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Table 6. MSE and QLIKE results (full sample) 

Out-of-Sample 
Forecast 
Horizon 

MSE  QLIKE 

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

Brazil 
ℎ ൌ 5 1.74E-06 1.74E-06 2.01E-06 1.71E-06 0.668 0.662 0.962 0.636 
ℎ ൌ 10 1.46E-06 1.51E-06 1.75E-06 1.49E-06 0.533 0.572 0.840 0.552
ℎ ൌ 20 7.61E-07 7.86E-07 9.38E-07 7.74E-07 0.293 0.312 0.493 0.300

France 
ℎ ൌ 5 4.20E-08 4.07E-08 4.52E-01 5.56E-01 0.146 0.140 6.245 6.349
ℎ ൌ 10 5.00E-08 4.96E-08 4.52E-01 5.82E-01 0.222 0.221 6.562 6.687
ℎ ൌ 20 3.69E-08 3.83E-08 4.52E-01 6.22E-01 0.297 0.306 7.123 7.282

Germany 
ℎ ൌ 5 5.41E-07 4.22E-07 4.59E-07 4.25E-07 1.501 0.724 0.902 0.736 
ℎ ൌ 10 4.47E-07 3.65E-07 3.91E-07 3.66E-07 1.240 0.735 0.854 0.743 
ℎ ൌ 20 2.26E-07 1.88E-07 1.99E-07 1.89E-07 0.658 0.427 0.473 0.430 

Hong Kong 
ℎ ൌ 5 2.09E-06 2.23E-06 4.58E-07 2.19E-01 1.393 1.721 0.069 4.642
ℎ ൌ 10 1.15E-06 1.24E-06 7.82E-07 2.18E-01 0.839 1.053 0.158 4.955
ℎ ൌ 20 6.26E-07 6.80E-07 1.16E-06 2.15E-01 0.505 0.638 0.302 5.272

Japan 
ℎ ൌ 5 1.12E-06 1.11E-06 1.21E-06 4.63E+00 0.664 0.629 0.848 6.759
ℎ ൌ 10 5.70E-07 5.64E-07 6.09E-07 4.60E+00 0.369 0.358 0.457 7.267
ℎ ൌ 20 4.44E-07 4.06E-07 4.60E-07 4.56E+00 0.464 0.345 0.495 7.107

UK 
ℎ ൌ 5 1.08E-07 1.28E-07 1.33E-07 5.51E-01 0.246 0.379 0.426 6.606
ℎ ൌ 10 5.78E-08 6.97E-08 7.12E-08 5.55E-01 0.275 0.369 0.377 7.282
ℎ ൌ 20 2.96E-08 3.57E-08 3.63E-08 5.61E-01 0.148 0.198 0.199 7.333

USA 
ℎ ൌ 5 9.45E+01 8.65E+01 9.73E+01 8.65E+01 1.551 1.218 1.691 1.218 
ℎ ൌ 10 5.36E+01 4.86E+01 5.56E+01 4.86E+01 0.948 0.729 1.053 0.729 
ℎ ൌ 20 2.97E+01 2.64E+01 3.12E+01 2.64E+01 0.615 0.450 0.716 0.450 

Note: Model 1 is GARCH-MIDAS model with realized volatility; Model 2 is GARCH-MIDAS model with PCA factor obtained by combining 
financial turbulence and realized volatility; Model 3 is GARCH-MIDAS model with PCA factor obtained by combining systemic risk and 
realized volatility; and Model 4 is GARCH-MIDAS model with PCA factor obtained by combining financial turbulence, systemic risk and 
realized volatility. Models with smaller MSE and QLIKE are considered better. 
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Table 7. MSE and QLIKE results (full sample) 

Out-of-Sample 
Forecast 
Horizon 

MSE QLIKE 

Model 1 Model 2 Model 3 Model 4  Model 1 Model 2 Model 3 Model 4 

Brazil 

ℎ ൌ 5 5.80E-08 7.31E-08 2.88E-07 5.96E-08 0.241 0.277 0.569 0.245 
ℎ ൌ 10 6.98E-08 8.45E-08 3.09E-07 7.15E-08 0.380 0.416 0.731 0.384
ℎ ൌ 20 5.43E-08 6.23E-08 2.36E-07 5.48E-08 0.245 0.265 0.508 0.247

France 

ℎ ൌ 5 1.99E-07 1.25E-07 1.55E-07 1.26E-07 1.137 0.396 0.615 0.406 
ℎ ൌ 10 1.01E-07 6.75E-08 7.94E-08 6.81E-08 0.597 0.254 0.341 0.258 
ℎ ൌ 20 5.25E-08 4.35E-08 4.51E-08 4.36E-08 0.351 0.273 0.278 0.274 

Germany 

ℎ ൌ 5 1.21E-07 1.20E-07 7.46E-01 4.88E-01 0.744 0.727 6.559 6.347 
ℎ ൌ 10 6.20E-08 6.12E-08 7.44E-01 4.94E-01 0.392 0.379 7.033 6.829 
ℎ ൌ 20 3.34E-08 3.39E-08 7.41E-01 5.04E-01 0.268 0.284 7.469 7.276 

Hong Kong 

ℎ ൌ 5 6.55E-08 5.47E-01 3.57E-08 2.96E-08 0.324 6.495 0.111 0.083 
ℎ ൌ 10 1.88E-07 5.49E-01 1.40E-07 1.29E-07 0.647 6.326 0.325 0.274 
ℎ ൌ 20 1.45E-07 5.53E-01 1.18E-07 1.12E-07 0.621 6.842 0.444 0.419 

Japan 

ℎ ൌ 5 1.52E-08 2.36E+00 5.67E-07 6.36E-09 0.201 7.698 0.634 0.043 
ℎ ൌ 10 7.90E-08 2.43E+00 5.07E-07 4.74E-08 0.685 7.822 0.815 0.362 
ℎ ൌ 20 6.93E-08 2.51E+00 6.12E-07 6.18E-08 0.605 8.197 1.105 0.515 

UK 

ℎ ൌ 5 1.07E-07 1.06E-07 1.17E-07 5.43E-01 0.604 0.592 0.736 6.322
ℎ ൌ 10 9.78E-08 9.75E-08 1.06E-07 5.38E-01 0.518 0.514 0.628 6.466
ℎ ൌ 20 7.81E-08 7.80E-08 8.33E-08 5.31E-01 0.524 0.521 0.584 7.035

USA 

ℎ ൌ 5 4.70E-01 1.32E-01 4.04E-01 1.32E-01 0.106 0.020 0.085 0.020 
ℎ ൌ 10 3.08E-01 1.62E-01 2.59E-01 1.62E-01 0.074 0.033 0.058 0.033 
ℎ ൌ 20 2.29E-01 4.69E-01 2.74E-01 4.69E-01 0.090 0.160 0.111 0.160 

Note: Model 1 is GARCH-MIDAS model with realized volatility; Model 2 is GARCH-MIDAS model with PCA factor obtained by combining 
financial turbulence and realized volatility; Model 3 is GARCH-MIDAS model with PCA factor obtained by combining systemic risk and 
realized volatility; and Model 4 is GARCH-MIDAS model with PCA factor obtained by combining financial turbulence, systemic risk and 
realized volatility. Models with smaller MSE and QLIKE are considered better. 

 

4. Conclusion 

An issue of great concern when it comes to building turbulence-resistant portfolios is the 

accuracy and stability of the parameters used to build diversified portfolios that can balance out 

the negative fluctuations experienced in various asset classes. A key parameter of interest in stress 

testing investment portfolios and managing exposure to risk factors is volatility. Recent research 

suggests that the performance of volatility forecasting models can be improved significantly by 

combining predictors at different frequencies using Mixed Data Sampling (MIDAS)-based 
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Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models. This is particularly 

important considering that most uncertainty and risk proxies are available at low frequencies. This 

paper adds a novel perspective to the literature by exploring the predictive performance of two 

relatively unexplored indicators of financial conditions, i.e. financial turbulence and systemic risk, 

for stock market volatility, using a sample of seven emerging and advanced economies. The two 

financial indicators that we utilize in our predictive setting provide a unique perspective on market 

conditions as they directly relate to portfolio performance metrics from both volatility and co-

movement perspectives and – unlike other macro-financial indicators of uncertainty, or risk – can 

be integrated into diversification models within forecasting and portfolio design settings.  

The results suggest that incorporating the two financial indicators (singly and jointly) indeed 

improves the out-of-sample predictive performance of stock market volatility models over both 

the short and long horizons. We observe that the financial turbulence indicator, which captures 

asset price deviations from historical patterns, does a better job when it comes to the out-of-sample 

prediction of future returns compared with the indicator of market connectedness, captured by the 

absorption ratio. This finding highlights the long memory feature in financial market volatility 

patterns, driven by how information is processed and absorbed by market participants. At the same 

time, the outperformance of the financial turbulence indicator implies that unusual deviations in 

not only asset returns, but also correlation patterns play a role in the persistence of return volatility. 

Interestingly, however, the predictive performance of the augmented model is found to be 

generally higher when the COVID-19 pandemic period is excluded from the analysis, suggesting 

that the pandemic period may plausibly have peculiarities that reduce the predictive accuracy of 

volatility forecasting models.  
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An important investment implication of our results is that the findings provide an interesting 

opening for portfolio design purposes in that financial indicators that are directly associated with 

portfolio diversification performance metrics can also be utilized for forecasting purposes with 

significant implications for dynamic portfolio allocation strategies. Given the predictive 

information captured by both the financial turbulence and systemic risk indicators, portfolio 

managers can utilize these indicators within a predictive setting using a GARCH-MIDAS 

specification in order to stress-test their portfolios. This can then be used to identify optimal asset 

allocations to create a turbulence-resistant portfolio, by computing optimal portfolio weights based 

on the forecasts obtained from the predictive models. For future work, it would be interesting to 

utilize these financial indicators in a predictive setting in order to compute out-of-sample hedge 

ratios and examine the effectiveness of dynamic hedging strategies, as opposed to utilizing the 

static alternatives or those based on DCC-based models. 
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