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a b s t r a c t 

A Perfectly Accurate, Synthetic dataset featuring a virtual 

railway EnVironment for Multi-View Stereopsis (RailEnV- 

PASMVS) is presented, consisting of 40 scenes and 79,800 

renderings together with ground truth depth maps, extrinsic 

and intrinsic camera parameters, pseudo-geolocation meta- 

data and binary segmentation masks of all the track com- 

ponents. Every scene is rendered from a set of 3 cameras, 

each positioned relative to the track for optimal 3D recon- 

struction of the rail profile. The set of cameras is trans- 

lated across the 100 m length of tangent (straight) track to 

yield a total of 1995 camera views. Photorealistic lighting of 

each of the 40 scenes is achieved with the implementation 

of high-definition, high dynamic range (HDR) environmen- 

tal textures. Additional variation is introduced in the form 

of camera focal lengths, camera location and rotation pa- 

rameters and shader modifications for materials. Represen- 

tative track geometry provides random and unique vertical 

alignment data for the rail profile for every scene. This pri- 

mary, synthetic dataset is augmented by a smaller photo- 
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graph collection consisting of 320 annotated photographs for 

improved semantic segmentation performance. The combina- 

tion of diffuse and specular properties increases the ambigu- 

ity and complexity of the data distribution. RailEnV-PASMVS 

represents an application specific dataset for railway engi- 

neering, against the backdrop of existing datasets available in 

the field of computer vision, providing the precision required 

for novel research applications in the field of transportation 

engineering. The novelty of the RailEnV-PASMVS dataset is 

demonstrated with two use cases, resolving shortcomings of 

the existing PASMVS dataset. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 

 

Subject Computer Vision and Pattern Recognition 

Specific subject area Multi-view stereopsis and 3D reconstruction from images 

Type of data Image 

Depth maps 

CSV 

How data were acquired A virtual railway environment was reconstructed within Blender using a 

mixture of modelled and scanned railway components, each with realistic 

material shaders, based on the methodology implemented by PASMVS [1] . The 

path-tracing rendering engine (Cycles) was used to render the colour images, 

binary segmentation masks and depth maps for all camera perspectives. A 

variety of background environmental textures, randomised camera parameters 

(location and rotation), material variation and unique vertical alignment 

geometry add the requisite variation. The rail components (rail profile, e-clip 

fastener, insulator pad concrete sleeper, ballast and ground surface) were 

assigned unique identifiers to generate individual binary segmentation masks. 

The ground truth depth map was acquired from the Z-buffer (distance 

between the intersecting geometry and camera for every pixel comprising the 

imaging sensor) associated with the camera for each rendering pass. Extrinsic 

and intrinsic camera information are exported as an aggregated CSV 

(comma-separated value) file for every scene. Equivalent geolocation 

information is embedded in the image’s EXIF (exchangeable image file format) 

properties during the post-processing phase. The photographic subset was 

acquired from three locations installations using digital cameras (hand 

operated and aerial perspectives); the corresponding binary segmentation 

maps were hand annotated for the rail profile. 

Data format Raw 

Annotated 

Parameters for data collection Variation of the vertical alignment of the track, in combination with 

translating the camera along the length of the railway track, served as the 

primary variables. Camera locations and rotations, camera focal length and 

environmental background textures increase the data distribution and the 

associated variability of the dataset to improve the robustness of 

reconstruction algorithms and pipelines. The photographic subset is a 

combination of diffuse and specular railway properties typically encountered 

in railway environments, representing various illumination conditions. 

Description of data collection A virtual railway environment was created in Blender for the purpose of 

generating (rendering) path-traces images, binary segmentation masks and 

ground truth depth maps for different vertical alignment geometry associated 

with the rail profile. 40 scenes were rendered using a combination of 1995 

cameras translated over a section of tangent track measuring 100 m in length, 

yielding a total of 79,800 synthetic samples (covering a total of 4 km of track) 

for the dataset. Every scene is associated with a unique environment texture 

for photorealistic illumination. The camera parameters are exported to 

generate the corresponding matrices and equivalent geolocation metadata 

( continued on next page )
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for the rendered samples. The rendered distance maps exported from Blender 

are post-processed to produce the correct depth maps used for training 

applications and quantification of accuracy. The photographic dataset is 

comprised of 320 high-resolution photographs, each with a corresponding 

binary segmentation map (hand annotated) of the rail profile. 

Data source location Institution: Department of Civil Engineering, Engineering 4.0, University of 

Pretoria 

City: Pretoria 

Country: South Africa 

Data accessibility Repository name: Zenodo 

Data URL: https://doi.org/10.5281/zenodo.5233840 

Value of the Data 

• The dataset enables the development of accurate, sub-millimetre accurate reconstruction

pipelines and architectures for specific applications (railway environments) that implement

sensitive optical metrology. 

• RailEnV-PASMVS [2] can be used for training MVS neural network architectures [ 3 , 4 ] and

benchmarking photogrammetric pipelines that are dependent on large, accurate ground truth

datasets, in addition to structure-from-data pipelines dependant on accurate geolocation

metadata provided that is embedded in the dataset. 

• The data structure and file formats are identical to BlendedMVS [5] and PASMVS [1] , which

are agnostic to state-of-the-art, MVS neural network implementation requirements [ 3 , 4 ]. 

• RailEnV-PASMVS resolves select shortcomings presented by the PASMVS dataset, specifically

highly specular and shadowed regions in addition to providing a larger number of training

examples for improved generalisation for varied environmental illumination conditions. 

1. Data Description 

MVS reconstruction pipelines, particularly state-of-the-art developments that are based on

neural network implementations, require both a large sample distribution of photorealistic image

sequences alongside accurate ground truth depth maps, to learn and generalise effectively [ 3 , 4 ].

Datasets such as Blended MVS illustrate the ease with which datasets can be collected, sub-

ject to limitations of photogrammetric reconstruction [5] . PASMVS [1] by comparison presented

a flexible, open-source development pipeline to generate equivalent, synthetic datasets that of-

fer the benefit of absolute accuracy for improved precision. Datasets such as IVL-SYNTHSFM-v2

[6] follow a similar development process. The need for physical instrumentation which func-

tions as the primary medium for capturing physical data, such as cameras, unmanned aerial

vehicles (UAVs) [5] or laser-based scanning methods [7] , are eliminated entirely from the pro-

cess. Dataset domains tend to reflect applicable research areas of interest, in particular the au-

tomotive sector. Compared to other areas of transportation engineering, for example the railway

sector, data acquisition for these environments presents a much lower technical and legislative

barrier to collect either physical data (for example KITTI [8] ) or synthetic data sourced from

video game engines [9] . Based on the proven performance and flexible performance presented

by Blended MVS [5] and PASMVS [1] respectively, RailEnV-PASMVS [2] was developed for the do-

main specific application of railway engineering. RailEnV-PASMVS presents improvements over

other datasets, directly embedding EXIF (exchangeable image file format) metadata of the im-

ages (geolocation and optical properties), in addition to the mixture of both diffuse and specular

materials. Existing datasets [5] typically relegate the image properties to separate files with the

underlying photogrammetric reconstruction methods not embedding specular information. The 

development of RailEnV-PASMVS exemplifies the idea Civiltronics [10] , whereby traditional civil

https://doi.org/10.5281/zenodo.5233840
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Fig. 1. Cross sectional render illustrating the various superstructure components of the railway track, the ballast config- 

uration and the world origin, along with the most relevant dimensions. 
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ngineering concepts and knowledge is fused with key enabling technologies of the 4th Indus-

rial Revolution to address challenging research problems. 

For the presented dataset, a 100 m length of tangent (linear) section of railway track is mod-

led ( Fig. 1 ), comprising concrete sleepers (600 mm center-to-center spacing), e-clip fasteners,

round and ballast planes, insulator pads and rail profile (UIC60) with a gauge of 1067 mm

Cape gauge). The material shaders range from natural and diffuse for the ground, ballast and

oncrete, to a combination of rusted and specular metals for the rail profile and head of the

ail, respectively. The vertical alignment (z-axis) of the two parallel rail profiles, along with the

ccompanying superstructure components, are defined by a Bezier curve with a point-to-point

istance of 10 mm. The PSD sourced from representative track geometry data is used to gen-

rate random and unique vertical alignment data for the rail profile for each of the 40 scenes.

his procedure is automated using the integrated Python API (application programming inter-

ace) within Blender. 

Three camera positions were selected following extensive simulations that considered nu-

erous possible camera configurations and their respective MVS accuracies ( Fig. 2 ). The final

onfiguration reflects the corresponding practical implementation of such a camera system on

n instrumented vehicle. The x-coordinate (lateral) of the camera remains fixed along the cen-

er line of the track, with the z-coordinate (longitudinal) increasing in fixed increments of 148.5

m along the length of the track. The bottom (blue), center (green) and top (red) cameras are

ositioned 100 mm, 250 mm and 400 mm above the railhead, respectively. The y-axis rotation

pitch) of the bottom, center and top cameras are 75, 60 and 55 degrees, respectively, center-

ng the camera’s imaging sensor and focus point about the web of the rail profile. The z-axis

otation (yaw) of the bottom and center cameras are perpendicular to the direction of the rail

rofile, whereas the top camera rotated by 30 degrees. This overlapping camera view configura-

ion demonstrates a preference for a larger relative angle between the camera and rail to reduce

he uncertainty volume, in addition to reducing the ambiguity along the edge of the reference

mage where views do not overlap. 

The focal length of the cameras varies between 58 and 61 mm (constant value used for all

ameras for all frames of a particular scene), along with the material model of the railhead; mi-

or variations are introduced for the steel shader. All of the superstructure components were

odelled according to standardised dimensions used in industry. The fastener (e-clip) was digi-

ised with a commercial VSLAM-based (Visual Simultaneous Localization and Mapping) desktop

canner [ 11 , 12 ]. Frame numbers for every scene range from 0 to 1994 (the bottom, center and

op cameras start with frame numbers 0, 1 and 2 respectively), yielding a total of 79,800 colour

enderings for the RailEnV-PASMVS dataset ( Fig. 3 ). Every scene folder number, i.e. “19”, corre-

ponds to the scene number (01 through 40). Forty, high-definition environmental textures (8K

esolution) sourced from HDRI Haven [13] ensures accurate global illumination, replicating natu-

al environments. Fig. 4 illustrates the equi-rectangular projections of the environmental textures

long with their respective scene identification numbers. 

The scenes for RailEnV-PASMVS are divided using a 80–20% train-validation split using a

tratified sampling scheme. The list of all scenes, training scenes and validation scenes are stored
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Fig. 2. Illustration of the three primary camera positions and orientations observed from different perspectives. Projec- 

tion of the center of the imaging sensor is represented by the ray emitted from every respective camera. (For interpre- 

tation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

in the all_list.txt, training_list.txt and validation_list.txt text files, respectively. The index.csv CSV

file provides a convenient reference for all the sample files, linking the corresponding file and

relative data path. The RailEnV-PASMVS.blend Blender source file, in addition to the 40 scenes

(individual archives) are accessible from the data repository [2] . The camera information file for

every scene is exported as a CSV file and stored in the scene folder as scene.csv . All signed float

values are stored to a length of 5 decimal places. The following parameters are stored in the

scene file: 

• frame: frame number identification increasing from 0 through 1994 for every camera view. 

• posX, posY, posZ: position vector (measured in meters) of the camera’s origin point in

Blender’s world coordinate system; signed float. 

• rotX, rotY, rotZ: rotation vector (measured in degrees, XYZ) of the camera coordinate system;

signed float. 

• resX, rexY: resolution (in pixels) of the sensor image; unsigned integer. 

• focalLength: focal length of the camera (measure in millimetres); unsigned integer. 

• sensorWidth: width of the camera’s imaging sensor (in millimetres); unsigned integer. 
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Fig. 3. Random (stratified sampling) selection of renders, each from a different scene. 
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For each unique scene folder, the output files are stored in four sub-folders, each detailed

elow. All image files (JPG file format) assume a fixed resolution of 768 × 576 pixels, with file-

ames padded to a fixed length of eight characters, e.g. 0 0 0 01994.jpg . The presented file format

s identical to that detailed in PASMVS [1] . 

.1. Blended_images 

Image renderings (e.g. 0 0 0 01994.jpg ) of the railway environment rendered in perspective

ode ( Fig. 5 a). The camera’s sensor width is fixed at 36 mm with the focal distance varied

etween 58 and 61 mm. 

.2. Cams 

The camera information, composed of a homogenous extrinsic and intrinsic matrix, is stored

s a text file (e.g. 0 0 0 01994.txt ) that corresponds to the image file name in blended_images .

he last line of the camera text file specifies the minimum and maximum depth distance (first

nd last terms, respectively) alongside the step distance and number of depth hypotheses used

or the neural network implementation [3] (second and third terms, respectively). The RailEnV-

ASMVS data repository [2] contains the required information to transform the camera data from



A. Broekman and P.J. Gräbe / Data in Brief 38 (2021) 107411 7 

Fig. 4. Illustration of the 40 high definition, HDR environmental lighting textures used for photorealistic scene illumina- 

tion [13] . 

 
Blender’s coordinate system into the correct matrices. An example of the camera file content is

provided: 

extrinsic 

-0.0120252 0.8589704 0.0 0 0 0507 -85.8280443 

0.5047866 0.3009469 -0.8090868 -29.4175799 

-0.6949969 -0.4142472 -0.5876891 41.8656260 

0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 

intrinsic 

1237.3333333 0.0 0 0 0 0 0 0 384.0 0 0 0 0 0 0 
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Fig. 5. Illustration of the image rendering (row a), ground truth depth map (row b) and binary segmentation masks of 

the concrete sleeper (row c), e-clip fastener (row d), ground and ballast plane (row e), insulator pad (row f) and rail 

profile (row g) for all the primary camera perspectives. 
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Fig. 6. Illustration of samples (1st row) 10 0 0 0 049 (left), 10 0 0 0 099 (center) and 10 0 0 0201 (right) for the physical 

dataset, alongside the corresponding manually annotated binary segmentation masks (2nd row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0 0 0 0 0 0 1237.3333333 288.0 0 0 0 0 0 0 

0.0 0 0 0 0 0 0.0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 

0.3319233 0.0055326 128.0 1.0401012 

2.3. Masks 

For every rendered image contained within the blended_images folder, a total of 5 corre-

sponding binary segmentation masks are stored in the masks folder. The binary segmentation

mask (comprised of black and white coloured pixels) encodes the occupancy of a particular

pixel as viewed from the perspective of the camera. The masks for the concrete sleepers (e.g.

0 0 0 01994cs.jpg , Fig. 5 c), e-clip fasteners (e.g. 0 0 0 01994ec.jpg , Fig. 5 d), ground and ballast planes

(e.g. 0 0 0 01994gr.jpg , Fig. 5 e), insulator pads (e.g. 0 0 0 01994ip.jpg , Fig. 5 f) and rail profile (e.g.

0 0 0 01994cs.jpg , Fig. 5 g) are included. 

2.4. Rendered_depth_maps 

For every camera view stored in the blended_images folder, a corresponding ground truth

depth map (e.g. 0 0 0 01994.pfm ) is included ( Fig. 5 b) in the rendered_depth_maps folder. The ren-

dered depth maps represent the distance measured from the camera’s principal point to the

intersecting scene geometry, for every pixel of the camera’s imaging sensor [ 1 , 14 ]. 

2.5. Physical dataset 

The physical dataset is comprised of high-resolution photographs captured from both hand-

held digital cameras (Canon EOS 100D, 5184 × 3456 pixels; Panasonic DC-TZ90, 5184 × 2920

pixels), a UAV (DJI Mavic Air, 4056 × 2280 pixels) and computer vision cameras (Basler a2A1920-

160uBAS, 1920 × 1200 pixels) from a variety of perspectives ( Fig. 6 , 1st row). Both traditional

ballasted and PY slab track sections were considered with the railway components exhibiting

varying degrees of rust for added variation and illumination conditions. The binary segmenta-

tion mask for each of the 320 full resolution photographs ( Fig. 6 , 2nd row) was manually anno-

tated using Gimp, the open-source graphics editor, restricted to the rail profile owing to the time

intensive nature of generating the data and limited use for other component classes. The phys-

ical dataset ( PhysicalDataset.zip ) is accessible from the data repository [2] , with the photographs
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nd masks subdivided into the images and masks folders respectively. Similar to the synthetic

ataset, the filenames are padded to a fixed length of eight characters, e.g. 0 0 0 0 0124.JPG for

oth the colour photograph and corresponding binary segmentation mask. Unlike the synthetic

ataset, the photographs and binary segmentation masks share the same filename, stored in

he respective subfolders. The value of this complementary dataset is demonstrated in the last

ection ( Novelty ) of this article. 

. Experimental Design, Materials and Methods 

.1. Synthetic data 

Blender is a free and open-source creation suite which serves as the primary end-to-end

reative pipeline to create the RailEnV-PASMVS dataset. The availability of the path-traced ren-

ering engine (Cycles) proved instrumental in realising the required photorealism and physically

ccurate rendering results required for diffuse and specular material shaders. The availability of

igh-resolution HDR environmental textures replaces the time-consuming process to develop re-

listic lighting conditions. The projection of the environmental textures remains static for every

cene, avoiding any movement of shadows. Similar to the original PASMVS dataset, the config-

ration required for every scene (rebuilding the geometry of Bezier curve, replacement of back-

round environmental textures, phase shifting noise modifiers and changing relative directories

or output data) is accomplished with the Python API. The 148.5 mm interval between the suc-

essive camera positions along the length of track (with a sleeper spacing of 600 mm) provides

n out-of-phase view sequence over the length of track, further increasing the data distribu-

ion. The f-stop (8) of the camera reflects the equivalent camera configuration expected to be

mplemented for experiment applications. 

The pairing of camera views ( pair.txt file located in the cams folder for every scene) follows

 distinctive pattern for the three cameras ( Fig. 2 ). This pattern remains viable for much of

he track, except at the opposing ends where suitable perspectives are not available. The pair

les accommodate these edge cases by duplicating the reference camera view. This approach,

hilst providing poor inference during training for these extreme edge cases, seamlessly inte-

rates with the current data structure requirements of MVSNet [3] . In practice these files are

iscarded, non-convergence of the SfM (structure from motion) optimisation algorithms. 

Three levels of detail (LOD) were introduced for the virtual environment to optimize compu-

ational constraints: 

• High LOD. High-density rail profile extruded in 10 mm segments, digitised e-clip fasteners

and textured ballast materials with subdivision modifiers to realistically represent the geom-

etry, without resorting to memory intensive particle emitters. 

• Medium LOD. The immediate vicinity around the railway track includes individual ballast

particles (20,0 0 0), grass (50 0 0), large rocks (750) and sticks (500) to add detail, additional

variability and feature markers visible from the perspective of the camera. The gras dis-

tributed along the sloped edges of the surrounding terrain serves as a visual backdrop with

finite depth. For the depth map hypotheses (minimum and maximum depth), only the su-

perstructure components are considered, confining the depth range hypotheses to the com-

ponents of interest, disregarding the background environment as a result. For neural network

training applications, this truncation serves as an effective means of regularization. The OHTE

(overhead traction equipment) were modelled from simple geometric shapes and curve mod-

ifiers for realistic shadow casting onto the ground. 

• Low LOD. Two planes were added to the opposing sides of the railway cutting with low

resolution trees (200), adding the final layer of background detail. 
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3.2. Rendering 

PBR (physically-based rendering) materials, simplified geometry and low polygon-count as-

sets were introduced as far as possible, improving the overall performance of the rendering

process. Fig. 7 highlights the similarity between photographs acquired from a real railway track

environment – which originally served as reference material during the design phase ( Fig. 7 , left-

hand column) – and that of the virtual environment recreated with Blender ( Fig. 7 , right-hand

column). Fig. 8 provides an overview of the entire virtual model, revealing the utility of dividing

the environment according to different LODs to achieve acceptable rendering performance. The

virtual environment is composed of 14.2 million vertices and 5.6 million faces, without consid-

eration of the subdivision modifiers increasing the level of detail during rendering. Rendering of

all 40 scenes spanned over a four-month period on a workstation-grade computer featuring an

AMD Ryzen 

TM 9 3900 (12-core, 12-thread) CPU, Nvidia GTX1080 GPU and 48 GB of RAM. 
Fig. 7. Comparison between the virtual environment created within Blender (left column) and photographs of railway 

components from similar perspectives (photo credit: Rick Vandoorne). 
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Fig. 8. Nadir perspective of the entire virtual environment from an elevation of 25 m (top), 75 m (center) and 225 m 

(bottom). 
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.3. Vertical geometry 

The synthetic vertical geometry is applied to the railway track prior to rendering. The geom-

try data is stored in a CSV file (e.g. vertGeometry_0 0 0 0 0 019.csv ) that specifies the longitudinal

ffset (distance along the track, in m) and vertical offset of the railhead (in mm). Fig. 9 illus-

rates select examples of the synthetic geometry for scene 00 ( Fig. 9 a) that functions as a con-

rol, scene 19 ( Fig. 9 b) and scene 40 ( Fig. 9 c). The orthographic projection of the rail profile

 Fig. 10 ) reflects the deviations which correspond to the synthetic geometry data along the 100

 length of track. 

.4. Geolocation information 

Earth-centered, earth-fixed (ECEF) is a Cartesian coordinate system that represents positional

nformation using vectors (x-, y- and z-coordinates). Powerful photogrammetric software pack-

ges such as MicMac [15] benefit from additional geolocation metadata in the form of GPS
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Fig. 9. Synthetic profile geometry for (a) scene 1, (b) scene 19 and (c) scene 40 as a function of the track distance. 
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(global positioning system) or LLH (latitude, longitude and height) coordinates [16] , improving

both the robustness of solvers and precision of photogrammetric reconstruction. The local coor-

dinate system utilized by Blender’s camera can be mapped to any arbitrary starting position on

the Earth (GPS → ECEF). Vector addition of the stating position’s equivalent ECEF coordinate and

the local camera coordinate (transformed using applicable Euclidean rotations, refer to Fig. 11 )

provides the equivalent ECEF coordinate of the camera. This pseudo-geolocation (ECEF position

transformed back to an equivalent GPS coordinate, ECEF → GPS) is in turn embedded within the

EXIF of the rendered images. The geolocation metadata integrates seamlessly with photogram-

metric pipelines, in contrast to PASMVS which does not embed any EXIF data. The starting posi-

tion for the RailEnV-PASMVS dataset (LLH = [-25.74217, 28.25882, 1351.8] | ECEF = [50 6470 6.0,

2722370.0, -2753948.0]) is located adjacent to the Engineering 4.0 complex [17] on the Hillcrest

campus of the University of Pretoria in South Africa. Fig. 12 illustrates a selection of markers

representing the view number of an arbitrary scene. The pyproj Python library automates this

coordinate transformation (GPS → ECEF → GPS) and embedding of metadata within each respec-

tive image file. The local coordinate system from Blender was transformed such that the y-axis

of the local tangent plane (LTP) is aligned with the line of longitude ( Fig. 11 ), with increasing

view numbers progressing from East to West ( Fig. 12 ). The equivalent camera coordinates rep-

resented using the GPS coordinate system is provided separately in the gps.csv CSV file for each

scene folder. 

The equivalent geolocation functionality for practical scenarios will be provided by a Real-

ime Kinematic (RTK) geolocation solution deployed close to the intended location. The incor-

poration of correction data from a fixed base station in close proximity to a GNSS receiver is

a differential GNSS technique referred to as Real-Time Kinematic [18] navigation. The successful

demonstration of a RTK geolocation service, that will be used for the explicit purpose of MVSNet

reconstruction for railway infrastructure, has been successfully demonstrated [19] . 
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Fig. 10. Orthographic perspective of the 100 m railway track. 
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.5. Novelty 

Two applications of the RailEnV-PASMVS dataset are demonstrated; the first demonstrates

he benefits of combining synthetic and photographic data for semantic segmentation as part of

 post-processing pipeline, with the second example illustrating the advantages when training

he MVSNet neural network using domain specific data compared to other available datasets. 

.6. Semantic segmentation 

Semantic segmentation automates the process of isolating features of interest; for railway

pplications, the component of interest is primarily the rail profile. This masking operation, au-

omated using a trained neural network, can remove irrelevant points from the corresponding

epth map inferred by MVSNet for such an application. The generalisation performance of a

eural network trained exclusively on synthetic data for all 5 component classes (rail profile,

-clip fastener, insulator pad concrete sleeper, ballast and ground surface) proved insufficient

hen tested on photographs of railway components ( Fig. 13 ). 

An alternative approach was explored to sample half of the training examples from the syn-

hetic dataset and the other half from the photographs, using only one component class (rail
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Fig. 11. ECEF coordinate system in relation to latitude, longitude and the ECEF transformation of a local observer on the 

surface of the Earth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

profile) instead of all five. Using Python, a total of 10,0 0 0 images (768 × 576 pixels) were sam-

pled from the 320 high-resolution photographs; these high-resolution images were scaled be-

tween 30% and 80% of their original size, followed by a random cropping operation of the de-

sired resolution (for both the photograph and the corresponding hand-annotated binary segmen-

tation mask). The samples were divided using a 80–20% train-validation split using a random

sampling scheme. 

Fig. 14 illustrates the improved performance using the mixed dataset. The input images

( Fig. 14 , 1 st row) are representative of both the synthetic dataset and rusted (diffuse) / reflective

(specular) rail photographs. The corresponding hand-annotated ground truth binary segmenta-

tion maps are also illustrated for reference ( Fig. 14 , 2 nd row). Three variations (UNet, ResNet

4-layer and ResNet 5-layer) of the popular UNet [20] neural network architecture was evaluated.

The implementation producing the best qualitative inference (ResNet 5-layer) underwent a final

post-processing step (using OpenCV) to remove noise and small artifacts ( Fig. 14 , 6 th row). The

advantage of increasing the variation of the training data through combining synthetic data and

real photographs is evident. 
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Fig. 12. Mapped local coordinates to equivalent GPS coordinates adjacent to the Engineering 4.0 facility [17] . 

Fig. 13. Validation sample (left) and segmentation inference (right) for multi-class segmentation. 
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.7. MVSNet inference performance 

Comparing the training history ( Fig. 15 ) of MVSNet for each of the three datasets discussed

BlendedMVS, PASMVS and RailEnV-PASMVS) illustrates the varying complexity of each dataset.

he hyperparameters were kept fixed for all three training scenarios (3 views, 128 depth hy-

otheses). PASMVS attains the highest training accuracy, followed by BlendedMVS with RailEnV-

ASMVS trailing in third over the course of 10 0,0 0 0 training iterations. 
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Fig. 14. Validation images (1st row) and ground truth binary segmentation map (2nd row) compared to the inference 

results obtained from UNet (3rd row) and ResNet (4th, 5th and 6th row) architectures. 
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Fig. 15. Training statistics associated with MVSNet trained with BlendedMVS, PASMVS and RailEnV-PASMVS datasets. 

Fig. 16. Test set for the pointcloud reconstruction sourced from RailEnV-PASMVS scene 06: reference view 13 (center), 

12 (left) and 20 (right). 
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An example of the reconstructed point clouds for one of the validation scenes from RailEnV-

ASMVS ( Fig. 16 ), each generated by the three respective networks, is illustrated ( Fig. 17 ) from

hree different perspectives. The point clouds are the corresponding projected inference depth

ap in three-dimensional space, with each vertex represented by a small cube for improved

isualisation. BlendedMVS ( Fig. 17 , left-hand column) provides a comparatively good quality re-

onstruction except for the specular railhead yielding noisy depth proposals. PASMVS ( Fig. 17 ,

enter column) performs poorly for the shadowed regions, a feature that is noticeably absent

rom corresponding dataset, in addition to an undesirable wavelike discontinuity associated with

he railhead. RailEnV-PASMVS ( Fig. 17 , right-hand column) resolves these shortcomings, produc-

ng a much more accurate representation of the rail profile, in particular for the more challeng-

ng specular features. However, it should be recognised that this validation sample is derived

rom the same underlying data distribution (of the rail environment). Nonetheless, with the ex-

ected distribution of training data known a-priori, the quality of the reconstructions should

rove to be equally favourable for data sourced from photographs sourced from field experi-

ents. Research efforts are currently directed toward evaluating the performance of the neural

etworks trained on the synthetic datasets when presented with equivalent experimental data

btained from real railway environments. 
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Fig. 17. Qualitative reconstruction quality comparison for the MVSNet neural network trained on the BlendedMVS (left 

column), PASMVS (center column) and RailEnV-PASMVS (right column). 
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