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21 Abstract
22 Cohesion in social insect colonies is maintained by use of chemical signals produced by 

23 the queen, workers and brood. In honey bees in particular, signals from the queen and 

24 brood are crucial for the regulation of reproductive division of labour, ensuring that the 

25 only reproductive female individual in the colony is the queen, while the workers remain 

26 reproductively sterile. However, even given this strict level of control, workers can, in 

27 principle, activate their ovaries and lay eggs. While much is known about the behavioural 

28 and physiological traits that accompany the switch from worker sterility to being 

29 reproductively active, much less is known regarding the molecular changes that 

30 accompany this switch. This review will examine what is currently known about the genes 

31 and molecular pathways involved in the making of laying workers / false queens  in the 

32 Cape honey bee Apis mellifera capensis Eschscholtz, through an analysis of the basis 

33 for thelotoky in this subspecies, the exocrine glandular chemistry of reproductively 

34 dominant workers and what is known about the biosynthesis of their pheromone 

35 components. This work will contribute to our understanding of the genetic regulation of 

36 thelotoky and the molecular mechanisms that govern reproductive division of labour in 

37 honey bees and provide generalisations that may be applicable to other social 

38 hymenoptera using this evolutionary fascinating example of worker reproduction.

39

40

41 Key words: Thelytoky, reproductive dominance, pheromone profiles, gene regulation, 

42 laying workers
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43 Introduction
44 In a colony, the main role of reproduction is undertaken by the honey bee queen, as the 

45 workers normally possess inactive ovaries and are thus reproductively sterile. However, 

46 in the event of queen loss, workers can activate their ovaries and lay unfertilised (and 

47 thus haploid) eggs which through arrhenotokous parthenogenesis will result in drones 

48 (Crozier 1975). While this is the case in most honey bee subspecies, workers of the Cape 

49 honey bee Apis mellifera capensis have evolved the exceptional ability to produce female 

50 offspring from unfertilised eggs (Onions 1912) -thelytokous parthenogenesis- where the 

51 unfertilised eggs become diploid as a result of the central fusion of meiotic products in 

52 anaphase II (Verma and Ruttner 1983); although some workers from this subspecies 

53 reproduce arrhenotokously (Hepburn and Crewe 1991). The contribution of worker 

54 reproduction to drone production is rather small in European subspecies of the honey bee 

55 (Visscher 1996). However, the proportion of worker-laid eggs in African honey bee 

56 colonies is quite significant (Moritz et al. 1998) with most subspecies producing drones 

57 while the Cape honey bee produces females via thelotoky. A. m. capensis is one of two 

58 subspecies of A. mellifera found in South Africa and is native to the Western Cape region 

59 of the country  in the fynbos biome (Hepburn and Crewe 1991, Hepburn et al. 1998), while 

60 the Savannah honey bee A. m. scutellata on the other hand is widely distributed across 

61 South Africa, and northwards into various parts of East Africa (Hepburn and Radloff 1998, 

62 Radloff and Hepburn 2000) (Figure 1A). Separating the two subspecies is a stable natural 

63 introgression zone, restricting the naturogenic spread of A. m. capensis beyond its native 

64 region. Indeed, examining the honey bee colonies surrounding this zone, Neumann et al. 

65 (2001) showed that workers from A. m. capensis colonies utilised dispersal behaviour 

66 (workers drifting over long distances) as a host-seeking mechanism but these dispersing 
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67 A. m. capensis workers were strongly rejected by colonies in the hybrid zone. Further, 

68 workers of the hybrid colonies also dispersed less than both A. m. scutellata and A. m. 

69 capensis into the surrounding colonies. These two mechanisms (rejection of dispersers 

70 and lack of dispersal by host hybrid workers) are thought to contribute greatly to the 

71 maintenance of the stability of the hybrid zone (Figure 1B). Through short-sighted 

72 evolution, a virulent lineage of A. m. capensis workers developed into a facultative 

73 reproductive parasite (Moritz et al. 2008) of A. m. scutellata (Allsopp and Crewe 1993, 

74 Pirk et al. 2014) colonies in South Africa, with the spread of the A. m. capensis 

75 reproductive parasite mainly facilitated by anthropogenic means (Dietemann et al. 2006a) 

76 and maintained through parasite-infested colonies (Figure 1B). 

77 Reproductive parasitism by A. m. capensis workers begins when these workers through 

78 active drifting and dispersal seek out and gain entry into susceptible hosts such as 

79 queenless colonies (Neumann et al. 2001, Hepburn and Radloff 2002, Reece 2002), 

80 produce queen-like pheromones (Crewe and Velthuis 1980, Dietemann et al. 2006b, 

81 Dietemann et al. 2007, Zheng et al. 2010, Okosun et al. 2017), activate their ovaries and 

82 lay eggs, therefore becoming so called false queens (Sakagami 1958). The laying 

83 workers’ eggs are preferentially nursed by host workers (Beekman et al. 2000, Allsopp et 

84 al. 2003) and will eventually emerge as reproductive parasites, continuing the cycle of 

85 infestation (Neumann and Moritz 2002). In South Africa, infestation of host colonies by 

86 the A. m. capensis clonal laying workers continues to result in heavy colony losses to 

87 South African apiculture (>40% colony loss annually) in what has come to be known as 

88 ‘the capensis calamity’ (Allsopp 1993, Pirk et al. 2014).
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89 While relatively more is known regarding the pheromones produced by the laying Cape 

90 honey bees, much less is known about the molecular mechanisms that govern the 

91 production of these chemical signals. In this review, we will bring together the current 

92 body of knowledge regarding the various genetic models for the origins of thelytokous 

93 parthenogenesis, describe the composition of the multi-sourced pheromones associated 

94 with reproductive dominance and explore some of the genes and molecular pathways 

95 involved in the biosynthesis of some of the pheromone components. We will shed light 

96 on what is known regarding the basis of reproductive dominance in the Cape honey bee, 

97 and hence provide a richer understanding of the evolution of reproductive division of 

98 labour in hymenopteran social insects.

99

100 Genetic models governing thelytoky
101 Thelytokous parthenogenesis has been reported in workers of a number of hymenopteran 

102 species including about 11 ant species such as Cataglyphis cursor, Cerapachys biroi, 

103 Mycocepurus smithii, Platythyrea punctata and Pristomyrmex punctatus reviewed by 

104 Crozier and Pamilo (1996) and Rabeling and Kronauer (2013). At the cytological level, 

105 thelytokous parthenogenesis can result from either mitotic (apomictic) or meiotic 

106 (automictic) parthenogenesis. For A. m. capensis workers, thelytokous parthenogenesis 

107 has been shown to take place during the Anaphase II stage of meiosis, with diploidy 

108 restored by the fusion of the two central polar nuclei, followed by the disintegration of the 

109 other two terminal nuclei (Verma and Ruttner 1983). While this process allows A. m. 

110 capensis workers to produce female offspring without the need for fertilisation, Hepburn 

111 and Crewe (1991) found that some workers from this subspecies still reproduced 
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112 arrhenotokously. The genetic switch that allows for arrhenotokous and thelytokous 

113 reproduction in A. m. capensis has been the subject of a variety of investigations (Ruttner 

114 1988, Lattorff et al. 2005, Lattorff et al. 2007, Jarosch et al. 2011, Chapman et al. 2015, 

115 Aumer et al. 2017, Aumer et al. 2019, Christmas et al. 2019, Yagound et al. 2020).

116 In perhaps one of the earliest assessments of the inheritance of thelytoky in A. m. 

117 capensis, Ruttner (1988) carried out a cross between A. m. capensis and A. m. carnica 

118 to produce F1 hybrid queens. The sperm from drones that emerged from the hybrid 

119 queens (thus the F2 gametes) were then used to inseminate native A. m. capensis 

120 queens, with each queen inseminated with the sperm of a single drone only. After the 

121 emergence of a large enough worker population from each of these queens, the queens 

122 were removed in order to induce egg-laying from the workers, with the ratio of female: 

123 male offspring from worker-laid eggs recorded. The results generally showed a bimodal 

124 distribution of male and female offspring leading, Ruttner (1988) to conclude that thelytoky 

125 in A. m. capensis is controlled by a single gene. He was however unable to account for 

126 the high numbers of offspring that were amphitokous (mixed parthenogenesis). 

127 Using classic backcross experiments and in a follow up to the work of Ruttner (1988), 

128 Lattorff et al. (2005) reported that thelytoky indeed was controlled by a single major gene 

129 th, which segregates in a classic Mendelian manner. The th allele was identified as 

130 recessive, with the wildtype (+/+) and heterozygous dominant (+/ th) being arrhenotokous 

131 while the homozygous recessive (th/th) being thelytokous. Using microsatelite 

132 quantitative trait loci analyses, the th gene was later mapped to the honey bee 

133 Chromosome 13 and a locus on that chromosome, thelytoky identified as influencing not 

134 only the switch into diploid egg production, but also the full ‘thelytoky syndrome’ which 
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135 includes production of queen-like pheromones and rapid ovary activation (Lattorff et al. 

136 2007). Screening candidate genes at the thelytoky locus revealed that alternative splicing 

137 of gemini (a transcription factor in the CP2 family) regulated sterility in workers by 

138 influencing the rate of ovarian activation in the usually sterile bees (Jarosch et al. 2011), 

139 and also influenced the production of queen-like mandibular gland pheromone 

140 components (Jarosch-Perlow et al. 2018). That gemini is the genetic switch controlling 

141 thelytoky was however challenged, first by Chapman et al. (2015) who suggested that 

142 polymorphism within gemini is unlikely to be the sole switch into thelytokous reproduction 

143 in the Cape honey bee and suggested instead that a recessive gene tightly linked to three 

144 markers within th may instead play this role. This multiple-loci model was refuted by 

145 Aumer et al. (2017) upon reanalysis of Chapman et al. (2015) genotype data sets and 

146 also by examining the segregation of various modes of parthenogenesis in workers of a 

147 new mapping population drawn from a single naturally-mated A. m. capensis queen. In 

148 Chapman et al. (2015), the queen was inseminated with the semen of a single drone, 

149 while A. m. capensis queens normally mates with up to 56 males (Kraus et al. 2004). 

150 Aumer et al. (2017) did however also conclude that while gemini plays a significant role 

151 in the regulation of reproduction in female honey bees, it is highly unlikely to be the genetic 

152 switch to diploid egg production.

153 Using a population genomics approach and a time-course abundance dynamics analysis, 

154 Aumer et al. (2019) showed that this shift in worker reproduction is caused by a single 

155 non-synonymous single nucleotide polymorphism (SNP) in the heterozygous dominant 

156 thelytoky locus (Th) located on Chromosome 1. The thelytoky allele (ThTh) together with 

157 a complementing arrhenotoky allele (Thar) results in thelytokous workers (ThTh/Thar), with 
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158 (ThTh/Th+) being possibly non-functional and (Thar/Th+) being fertile arrhenotokous 

159 workers. In addition, Aumer et al. (2019) report that the Th locus forms a linkage group 

160 (Th-Ethr), with the Ecdysis triggering hormone receptor (Ethr). Ethr is known to regulate 

161 ecdysis (Roller et al. 2010) and the synthesis of Juvenile hormone in insects (Areiza et 

162 al. 2014) and in this case it possibly helps in the full expression of the thelytoky syndrome 

163 which includes the development of spermatheca, ovary activation and production of 

164 queenlike pheromones during larval development of the false queen.

165 The Aumer et al. (2019) model of thelytoky has recently been challenged, initially by 

166 Christmas et al. (2019) who through the analysis of a data set of A. mellifera subspecies 

167 (but without mapping populations) argued that there were populations where the 

168 suggested SNP associated with thelytoky is present but the thelytoky syndrome is absent, 

169 and that in queens produced through thelytoky, the proposed SNP is absent. Most 

170 recently, Yagound et al. (2020) generated backcrosses between thelytokous A. m. 

171 capensis queens and non thelytokous A. m. scutellata, looking for markers that co-

172 segregated with the thelytokous phenotype. Yagound et al. (2020) identified the gene 

173 GB45239 (LOC100576557) located on Chromosome 11 that encodes a protein putatively 

174 involved in chromosomal segregation. The gene GB45239 is expressed in the honey bee 

175 ovaries where it is downregulated in thelytokous bees, possibly as a result of 

176 polymorphisms in the promoter region found upstream of this gene. Yagound et al. (2020) 

177 showed that GB45239 consistently co-segregated with thelytoky and was absent from the 

178 genomes of all other honey bee subspecies they sequenced, thus concluding that this 

179 must be the gene responsible for the thelytoky syndrome in A. m. capensis.
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180 These conflicting outcomes of the experimental exploration of the genetics of thelotoky in 

181 the Cape honey bee are due to the fact that some of the studies are based on very small 

182 sample sizes, use of few microsatellite markers and also, a lack of consensus on the most 

183 appropriate mapping populations for use. Resolving these conflicts will require the 

184 functional characterisation of the various genetic variants that govern the switch from 

185 social worker to social parasite, and the factors involved in the full expression of the 

186 thelytoky syndrome. Further, there is a need for more extensive sampling of this 

187 population to generate larger mapping populations in order to establish a better 

188 consensus on the divergent results and come to a better understanding of genetic 

189 mechanisms underlying thelotoky.

190

191 Pheromone signatures of laying A. m. capensis workers and their associated 
192 pheromone biosynthetic pathways
193 The phenotype of an organism is influenced by both its genotype and the environment 

194 and for social insects, this prevailing environment is further influenced by the genotypes 

195 and phenotypes of other conspecific individuals with which it interacts, leading to a 

196 complex communication system mediated by chemical signals. In the honey bee colony, 

197 the queen is reproductively dominant and will produce chemical signals that inhibit 

198 reproductive activity in workers. In the absence of the queen, however, workers can 

199 activate their ovaries and, in some subspecies, start producing queen-like chemical 

200 signals that will be received by other workers, some of whom will also attempt 

201 reproductive behaviour (Dietemann et al. 2007). On the other hand, in the presence of 

202 the queen, workers that produce queen-associated signals would be identified and killed 

203 by other workers and eggs laid by these workers removed through the process of worker 
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204 policing (Pirk et al. 2003). For A. mellifera, the primary channel for communication is via 

205 pheromones. The pheromones and their sources of production have been reviewed by 

206 (Slessor et al. 1990, Pankiw 2004, Slessor et al. 2005, Pirk et al. 2011) and include 

207 cuticular hydrocarbons (Page et al. 1991), and compounds produced from multiple 

208 exocrine glands (Winston 1987), including the mandibular (Crewe and Velthuis 1980, 

209 Slessor et al. 1988, Plettner et al. 1997), Dufour’s (Katzav-Gozansky et al. 1997b, Sole 

210 et al. 2002) and tergal glands (Wossler and Crewe 1999a, Okosun et al. 2015, 2019). 

211 The production and composition of pheromones in honey bees is highly plastic, with 

212 phenotypic variation mainly caused by the physiological state of the organism (e.g. age 

213 or mating status of a queen) and the social environment (e.g., presence or absence of 

214 the queen) in which the organism finds itself. Pankiw et al. (1996) showed that mated A. 

215 m. ligustica queens produce higher amounts of the aromatic components 4-hydroxy-3-

216 methoxyphenylethanol (HVA) and methyl p-hydroxybenzoate (HOB) (as compared to 

217 virgin and drone laying queens), higher amounts of the queen substance 9-oxo-2 (E)-

218 decenoic acid (9-ODA) and its precursor compound (R,S)-9-hydroxy-2-decenoic acid (9-

219 HDA). In a display of intraspecific variation, Strauss et al. (2008) showed that while A. m. 

220 carnica mated queens produced higher amounts of 9-HDA and HVA, there was no 

221 significant difference in the production of 9-ODA or HOB in the mandibular glands of 

222 mated, virgin or drone laying A. m. carnica queens. 

223 The social environment in which workers find themselves plays a crucial role in 

224 determining composition of worker pheromones. It has been shown that the composition 

225 of mandibular glands of queen-right workers are generally dominated by the worker acids 

226 10-hydroxy-2 (E)-decenoic acid (10-HDA) and its precursor 10-hydroxydecanoic acid (10-
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227 HDAA) (Zheng et al. 2010, Yusuf et al. 2015). However, in the event of queen loss, some 

228 workers can switch to production of queen-associated compounds 9-ODA and 9-HDA, 

229 and activate their ovaries (Plettner et al. 1993, Mumoki et al. 2018). This plasticity has 

230 also been demonstrated in the pheromone composition of the Dufour’s (Katzav-Gozansky 

231 et al. 1997b, Katzav-Gozansky et al. 2000, Sole et al. 2002) and the tergal glands 

232 (Okosun et al. 2015, Okosun et al. 2017). These false queens are able to change their 

233 pheromonal composition in response to the loss of a queen, which in turn further alters 

234 the social environment in the colony. The rest of the workers in the queenless colony 

235 respond by either increasing their own production of queen-associated signals in a 

236 pheromonal arms race or having the production of queen signals inhibited (Moritz et al. 

237 2004, Yusuf et al. 2018).

238 In examining the complete pheromonal bouquet of A. m. capensis we see certain 

239 signature mixtures displayed. Described by Wyatt (2010) as “a distinctive mix of 

240 molecules”, in this case, pheromone components used in recognition or identification of 

241 certain individuals. In the case of A. m. capensis we see that workers from queenright 

242 Cape honey bee colonies and worker social parasites possess different signature 

243 mixtures, and that these signatures are indeed different from those of the arrhenotokous 

244 workers of the sister subspecies A. m. scutellata.

245

246 Mandibular gland signals
247 The laying A. m. capensis worker phenotype initially described by Onions (1912) was 

248 subsequently shown by Crewe and Velthuis (1980) to produce pheromone components 

249 predominant in the mandibular glands of queens such as the ‘queen substance’ 9-ODA 
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250 and its precursor compound 9-HDA. Further, an examination of the mandibular gland 

251 profiles of queenright (non-reproductive) A. m. capensis workers from different parts of 

252 South Africa showed that the workers from the Western Cape regions of Heidelberg, 

253 George and Stellenbosch produced a more queenlike mixture containing high amounts 

254 of 9-ODA and 9-HDA, and very little of the worker components 10-HDA and 10-HDAA. In 

255 contrast, workers from Grahamstown which is found in the zone of introgression (Figure 

256 1B) were found to have mandibular gland pheromone profiles very similar to those of 

257 workers of other subspecies (Zheng et al. 2010). The large amounts of 9-HDA in these 

258 workers exposed the fact that A. m. capensis workers are indeed predisposed to 

259 parasitism, by synthesising the precursor compound (9-HDA) used to produce the queen 

260 substance (9-ODA) (Zheng et al. 2010, Mumoki et al. 2018). In the event of queen loss, 

261 the workers are then able to easily convert 9-HDA to 9-ODA. 

262 On the other hand, an examination of the mandibular gland pheromone profiles of A. m. 

263 capensis worker social parasites collected from host A. m. scutellata colonies reveals a 

264 queenlike pheromone bouquet dominated by the four compounds HOB, 9-ODA, 9-HDA 

265 and some 10-HDA (Schäfer et al. 2006, Dietemann et al. 2007, Okosun et al. 2017, 

266 Mumoki et al. 2018, Yusuf et al. 2018) with the queenlike signals increasing in quantity 

267 and age of the parasitic workers. The queen-associated aromatic compound HVA is rarely 

268 identified in the mandibular glands of these laying workers. Indeed, examining the 

269 mandibular gland pheromone composition of non-parasitic A. m. capensis workers in their 

270 native region, Simon et al. (2001) showed that while the secretions of the queenless A. 

271 m. capensis were dominated by the queen substance 9-ODA at day 4, the secretion 

272 profiles for the younger (day 1) bees were very worker-like, dominated by 10-HDAA and 
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273 10-HDA. The mandibular gland pheromone profiles from newly emerged (less than 24 

274 hours post-emergence) A. m. capensis parasitic bees collected from infested A. m. 

275 scutellata colonies contain predominantly 9-HDA, the precursor component to 9-ODA 

276 demonstrating a clear predisposition to social parasitism (Mumoki et al. 2019).

277 The fatty acid components of the A. mellifera mandibular gland pheromones are 

278 synthesised in a caste-dependent stepwise manner, starting with the acylation and 

279 activation of stearic acid which is the precursor molecule (Figure 2). The activated stearic 

280 acid then undergoes hydroxylation in a caste-selective manner leading to a bifurcation in 

281 the biosynthetic pathway where hydroxylation in the ω position predominates in workers 

282 while that in the ω-1 position predominates in queens (Plettner et al. 1996). In A. mellifera, 

283 the hydroxylation of acylated stearic acid is catalysed by Cytochrome P450 enzymes 

284 (Plettner et al. 1996, Malka et al. 2014, Wu et al. 2017), with different sets of genes 

285 responsible for ω and ω-1 hydroxylation and thus forming a crucial point of regulation of 

286 pheromonal dominance in honey bees.

287

288 Reproductively dominant A. m. capensis workers have however shown the ability to 

289 switch from worker specific hydroxylation gene sets to gene sets known to be upregulated 

290 in queens, as they transition to producing queen-associated fatty acid molecules such as 

291 9-ODA and 9-HDA (Mumoki et al. 2019). This tendency has also been shown by 

292 queenless workers with activated ovaries in A. mellifera from European populations. For 

293 instance, Malka et al. (2009), Malka et al. (2014) and Wu et al. (2017) demonstrated that 

294 queenless workers mainly upregulated the same CYP sets of genes expressed at higher 

295 levels in queens, while their queenright counterparts generally upregulated worker-
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296 associated genes. Eventually, this upregulation of queen-associated cytochrome P450 

297 gene sets could lead to the production of queen pheromone components, in the 

298 mandibular glands of the queen-less workers. The hydroxylated components are 

299 transported to the peroxisome for uncompleted β-oxidation (Reddy and Hashimoto 2001), 

300 catalysed by various oxidases, thiolases and hydrolases (Plettner et al. 1998, Malka et 

301 al. 2014, Wu et al. 2017) leading to the formation of 9-HDAA, 9-HDA 10-HDAA and 10-

302 HDA. In queens and reproductive workers, the 9-HDA is catalysed by alcohol 

303 dehydrogenases into 9-ODA (Malka et al. 2014, Wu et al. 2017, Mumoki et al. 2018). In 

304 queen-right colonies of A. m. scutellata infested by A. m. capensis reproductive parasites, 

305 this oxidation of 9-HDA to 9-ODA has been shown to be much reduced as compared to 

306 A. m. capensis parasites in queenless colonies (Mumoki et al. 2018) an indication of 

307 queen-regulation in the expression of alcohol dehydrogenases in the honey bee 

308 mandibular glands.

309

310 Tergal gland signals
311 Tergal glands of A. mellifera are located on the edges of abdominal tergites II-V and have 

312 been shown to consist of sub-epidermal unicellular and bicellular complexes of glandular 

313 cells opening into the intersegmental membrane of the cuticle (Renner and Baumann 

314 1964, Billen et al. 1986, Wossler et al. 2000, Azevedo et al. 2007). There exists 

315 morphological differences in the development of the tergal glands of various A. mellifera 

316 subspecies. For instance, while the glands have been shown to be well developed in 

317 virgin and mated A. m. melifera queens, the tergal glands of workers from this subspecies 

318 are either poorly developed or completely absent (Billen et al. 1986). In contrast, both 

Page 14 of 33

https://mc.manuscriptcentral.com/aesa

Manuscripts submitted to Annals of the Entomological Society of America



319 queens and workers of A. m. scutellata and A. m. capensis posess well developed tergal 

320 glands, although the structure of the tergal glands in the workers of these two subspecies 

321 is different. Wossler et al. (2000) showed that both A. m. capensis and A. m. scutellata 

322 virgin queens possess Type B tergal glands which are located in the posterior edges of 

323 tergites II-V, are bicellular in nature, mostly consisting of secretory cells and secretory 

324 vessicles. In contrast, Type A cells are found on the anterior edge of tergite II-V, and 

325 consist of single cells with numerous rough endoplasmic reticula and are closely 

326 associated with fat cells and oenocytes. While A. m. scutellata workers had predominantly 

327 Type A tergal cells and few or no Type B tergal cells (Wossler et al. 2000), their A. m. 

328 capensis counterparts contained Type A cells that were larger in size than those found in 

329 A. m. scutellata workers and also large numbers of the queen-associated Type B cells 

330 (Billen et al. 1986, Wossler et al. 2000). These differences in the structure of tergal glands 

331 no doubt has implications for the composition of the chemicals secreted from these 

332 glands.

333 Tergal gland secretions of queens and workers of A. mellifera mainly consist of long chain 

334 esters, long chain fatty acids and linear unsaturated hydrocarbons, together with linear 

335 saturated hydrocarbons with carbon lengths between 23 and 31 (Espelie et al. 1990, 

336 Wossler and Crewe 1999b, Okosun et al. 2015). However variations in the composition 

337 of these secretions do exist, enabling discrimination in a caste-specific manner. In fact, 

338 the tergal secretions of queens have been shown to work in concert with the queen’s 

339 mandibular gland secretions in exerting reproductive domiance in workers (Velthuis 1970, 

340 Moritz and Crewe 1991) eliciting both short-term (Wossler and Crewe 1999c) and long-

341 term effects (Wossler and Crewe 1999a). Indeed, components of the tergal gland signals 
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342 are thought to have formed part of the ancestral form of the queen’s fertility signals (Moritz 

343 and Crewe 2018).

344 The tergal gland secretions of A. m. capensis reproductive workers have been shown to 

345 be different from those of both non-reproductive A. m. capensis and A. m. scutellata 

346 workers (regardless of the reproductive state) (Wossler and Crewe 1999b, Okosun et al. 

347 2015). Okosun et al. (2015) showed that laying A. m. capensis parasites produced three 

348 specific compounds palmitic acid, n-heneicosene and n-nonacosene that were not 

349 produced by A. m. scutellata workers. Further, significantly larger quantities of ethyl 

350 stearate, ethyl oleate and ethyl palmitate were reported for laying A. m. capensis workers. 

351 These ethyl esters have also been shown to be part of the A. mellifera brood pheromone, 

352 where they aid in the supression of ovarion activation in workers (Mohammedi et al. 1998, 

353 Maisonnasse et al. 2009, Maisonnasse et al. 2010). These compounds possibly work in 

354 tandem with other tergal gland components to supress ovarian activation in non-

355 reproductive workers after a colony infestation by A. m. capensis parasites. Okosun et al. 

356 (2019) showed that a blend of the three esters; ethyl palmitate, ethyl oleate and ethyl 

357 stearate were as attractive to subordinate workers and as effective in supressing ovary 

358 activation as the blend of major tergal gland components.

359

360 Dufour’s gland signals
361 Similar to the mandibular and tergal gland secretions, the signals of the Dufour’s glands 

362 in A. mellifera are caste specific and in workers the composition of these secretions is 

363 regulated by the queen’s pheromones (Katzav-Gozansky et al. 2006). The queen’s 

364 Dufour’s gland pheromones are part of the multiply-sourced queen’s signal (Katzav-

365 Gozansky et al. 2001). Although the roles of the Dufour’s gland signals are still not fully 
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366 understood, they are thought to have a variety of functions in different species of social 

367 insects, such as fertility indication (Dor et al. 2005), trail marking and recruitment (Le 

368 Conte and Hefetz 2008) in social insects.

369 While the secretions of the Dufour’s glands of both honey bee workers and queens consist 

370 of hydrocarbons, queen Dufour’s gland secretions are further fortified with wax-type 

371 esters such us tetradecyl hexadecanoate, tetradecyl tetradecanoate, hexadecyl 

372 hexadecanoate (Katzav-Gozansky et al. 1997a, Katzav-Gozansky et al. 1997b) that 

373 mediate attraction to nestmates (Katzav-Gozansky et al. 2003).

374 In addition to caste-specific differences, the secretions of the Dufour’s gland in workers 

375 have been shown to be influenced by the queen’s pheromones. Examining A. m. ligustica,

376 Katzav-Gozansky et al. (2004) showed that queenleess workers with activated ovaries 

377 produced significantly higher amounts of Dufour’s gland secretions specifically esters 

378 associated with queens secretions in comparison to their queen-right counterparts. 

379 Similarly, Sole et al. (2002) showed that laying workers of both A. m. capensis and A. m. 

380 scutellata subspecies produced queen-like waxtype esters, although the laying A. m. 

381 capensis parasites produced significantly higher quantities of the esters, amounts similar 

382 to the A. m. scutellata queen. It is this tight correlation between ovarian activation and 

383 queen-like Dufour’s gland secretions that suggests the Dufour’s gland may be a fertility 

384 indicator. Interestingly, non-laying A. m. capensis workers produced many of the queen-

385 associated esters, which is in contrast to the long-chain hydrocarbons that dominated the 

386 secretions of non-laying queen-right A. m. scutellata. This finding further supports the 

387 notion that A. m. capensis workers are indeed predisposed to parasitism, facilitating their 

388 becoming false-queens (Zheng et al. 2010).
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389 While not much is known regarding the biosynthesis of the secretions of the Dufour’s 

390 gland, Katzav-Gozansky et al. (2000) and Katzav-Gozansky et al. (1997a) have shown 

391 that the glands of both queens and workers are metabolically active possibly thorughout 

392 the life of the honey bee. Using [1-14C] sodium acetate as a precursor compound in in 

393 vitro and in vivo experiments, Katzav-Gozansky et al. (1997a) showed that while the long 

394 chain esters are produced in the Dufour’s glands, the long chain hydrocarbons are most 

395 probably produced elsewhere and are later sequestered by the Dufour’s gland, a 

396 phenomenon common for hydrocarbons produced in social insects (Soroker et al. 1994, 

397 Schal et al. 2015).

398

399 Conclusion
400 The A. m. capensis subspecies reveals the wide reproductive spectrum into which 

401 workers in social insect colonies can be categorised. Perhaps the easiest way to make 

402 this is through the use of categories based on signals from different exocrine glands and 

403 physiological status such as ovarian activation and laying status as suggested by Okosun 

404 et al. (2017). Such a classification can be expanded to include signals from other exocrine 

405 glands like the Dufour’s (Figure 3). This spectrum ranges from the false queen, with 

406 activated ovaries and a complete queen-like pheromone repertoire with 9-ODA and 9-

407 HDA dominating the mandibular gland signals, high quantities of long chain esters 

408 dominating the Dufour’s gland secretions and a queen-like bouquet of tergal gland 

409 secretions (Figure 3A). These individuals are characteristic of colonies where laying 

410 workers have become established and where attempts at re-queening have been 

411 abandoned. The second category in the spectrum would be individuals with inactive 

412 ovaries, queen-like Dufour’s gland secretions, and queen-like mandibular gland and 
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413 tergal gland secretions, that could be called incipient false queens (Okosun et al. 2017) 

414 (Figure 3B). These individuals are likely to be newly emerged reproductive parasites in 

415 queen-less host colonies, producing queen-associated mandibular, tergal and Dufour’s 

416 secretions but are yet to activate their ovaries. The production of queen-associated 

417 pheromone components in A. m. capensis parasites takes place more rapidly than the 

418 activation of ovaries, hence the initial disjunction between the two traits (Okosun et al. 

419 2015, Aumer et al. 2018, Mumoki et al. 2019). The third category in this spectrum would 

420 consist of reproductive workers with activated ovaries and possibly worker-like Dufour’s 

421 gland signals containing large amounts of long chain hydrocarbons (Sole et al. 2002), 

422 and with worker-like tergal and mandibular gland pheromone composition (Figure 3C). 

423 These laying individuals are likely be found in colonies transitioning from a queenright 

424 condition to a queen-less condition or in large A. mellifera scutellata colonies that have 

425 just been infested with A. m. capensis parasites whose cryptic pheromonal signals avoid 

426 detection by host workers through not secreting queen-associated esters (such as those 

427 of the Dufour’s gland). The final category consists of workers characterised by inactive 

428 ovaries, worker-like pheromone composition, comprising of mandibular gland signals 

429 dominated by 10-HDA and 10-HDAA and relatively low amounts of 9-HDA (such as the 

430 queenright workers from Grahamstown South Africa in the work by Zheng et al. (2010)), 

431 worker-like composition of tergal gland signals and Dufour’s gland secretions dominated 

432 by long chain hydrocarbons. These individuals comprise the majority of workers in a 

433 queenright colony and are characterised as subordinate workers (Figure 3D).

434
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435 Intermediates within the four categories do exist. For instance, individuals with activated 

436 ovaries and producing queen-like pheromones either from the mandibular, Dufour’s or 

437 tergal glands secretions would be a type of false queen, even though not producing the 

438 full range of queen like signals. Similarly, individuals with inactive ovaries but producing 

439 various combinations of any of the queen-like pheromone secretions would be variations 

440 of the incipient false queen (Figure 4).

441

442 This complexity has been revealed through the different social situations that arise in 

443 colonies infested with A. m. capensis parasites. This provides the conditions that allow 

444 for the exploration of plasticity in the biosynthesis and expression of pheromones in adult 

445 honey bee workers and provides an insight into the nature of reproductive dominance 

446 and its evolution in social insects.
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730 LIST OF FIGURES

731 Figure 1: Maps showing the distribution of Apis mellifera scutellata (green) in Africa (A) 

732 and in South Africa (B) where A. m. scutellata is predominant in the north of the country 

733 (green) while A. m. capensis is native to the western cape region (dark purple). The two 

734 subspecies are separated by a stable natural hybrid zone (pink) which forms a buffer area 

735 restricting the naturogenic movement of the Cape honey bee outside of its native region. 

736 The A. m. capensis reproductive parasites are maintained in infested colonies (brown 

737 hives) throughout the northern part of the country in the A. m. scutellata zone.

738

739 Figure 2: Biosynthetic pathway of the fatty acid components of the Apis mellifera 

740 mandibular gland fatty acids. The numbers 1-5 indicate major points of regulation in the 

741 biosynthesis pathway.

742

743 Figure 3: Phenotypes of A m. capensis workers classified into four different categories, 

744 based on the extent of ovary activation and the state of mandibular, tergal and Dufour’s 

745 gland pheromone signals, as either queen-like (purple) or worker-like (green) signals. 

746 This classification is expanded from Okosun et al 2017.

747

748 Figure 4: Variations in phenotypes of A m. capensis workers classified into four different 

749 categories, based on the extent of ovary activation (OA) and the state of mandibular (MG), 

750 tergal (TG) and Dufour’s (DG) gland pheromone signals, as either queen-like (purple) or 

751 worker-like (green) signals. 

752

Page 29 of 33

https://mc.manuscriptcentral.com/aesa

Manuscripts submitted to Annals of the Entomological Society of America



753 Figure 1

754

755

756

Page 30 of 33

https://mc.manuscriptcentral.com/aesa

Manuscripts submitted to Annals of the Entomological Society of America



757 Figure 2

758

759

Page 31 of 33

https://mc.manuscriptcentral.com/aesa

Manuscripts submitted to Annals of the Entomological Society of America



760 Figure 3

761

762

763

Page 32 of 33

https://mc.manuscriptcentral.com/aesa

Manuscripts submitted to Annals of the Entomological Society of America



764 Figure 4

765

766

767

Page 33 of 33

https://mc.manuscriptcentral.com/aesa

Manuscripts submitted to Annals of the Entomological Society of America


