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Abstract 

 

Food security is an issue of global concern; this has mandated research on the 

development of systems for monitoring of agriculture using cost effective techniques 

such as remote sensing. Smallholder maize farms are dominant in Africa; they 

produce 80% of the maize in the region. The majority of the African population lives in 

rural areas and their livelihoods are dependent on smallholder agriculture particularly 

maize production. Thus, smallholder maize production plays a vital role in combating 

food insecurity in rural areas. Targeting food insecurity in developing countries is one 

of the important objectives of the Sustainable Development Goals (SDGs). However, 

local planning agencies and governments do not have adequate spatial information 

on smallholder farmers, and this affects the monitoring of the SDGs. Additionally, 

these farmers are faced with economic and environmental constraints that limit their 

productivity. Furthermore, the estimates of total planted area are unknown in most 

developing countries. Techniques for undertaking such estimates are either absent or 

very unreliable. This study explores the use of Sentinel-1 and Sentinel-2 data products 

for mapping and monitoring smallholder farms with machine learning. Findings 

suggest that the multi-temporal approach with the application of support vector 

machine and extreme gradient boosting is the recommended method for mapping 

smallholder maize farms in comparison to single date imagery based on lower 

standard deviation errors. The random forest model was suitable for estimating soil 
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nitrogen. Furthermore, the findings suggest that maize yields can be accurately 

predicted from two months before harvest. The frameworks developed in this study 

can be used to generate spatial agricultural information in areas where agricultural 

survey data are limited. We recommend the use of Sentinel-1 and Sentinel-2 in 

conjunction with machine learning algorithms to map smallholder maize farms to 

support the SDGs. 

 

Keywords: Sustainable development goals; smallholder; maize; machine learning; 

Sentinel-1; Sentinel-2 
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Chapter 1 

General Introduction 

1.1. Introduction 

 

The continuous reliance of developing countries on smallholder farms for food security 

requires effective monitoring and improved management practices. Smallholder farms 

play a crucial role in combating hunger in developing countries (Charman and Hodge, 

2007; FAO, 2016). However, smallholder farms continue to be threatened by climate 

variability and climate change, a rising demand for food due to population growth, and 

changes in land use management (Jari and Fraser, 2009; Calatayud et al., 2014).  

 

Smallholder maize farms are important in South Africa for the production of 

animal feed and are an important human staple food. The major producers of maize 

are the Free State, Northwest, and Mpumalanga provinces. White maize is for human 

consumption and yellow maize is for animal feeding (DAFF, 2016). Products such as 

fuel and starch (used for shoe polish, glue, fireworks, paint) are also derived from 

maize (Du Plessis, 2003). 

 

Rural communities are often solely reliant on smallholder farms and a majority 

of the farmers lack formal education, which hinders them from accessing digital 

information such as climate forecasts and satellite data for crop monitoring purposes. 

Local agricultural governments and municipalities often fail to provide necessary 

support to the farmers, mainly due to the lack of geospatial information such as annual 

crop layers that can assist with planning and resource allocation. These factors 

contribute towards the low productivity of theses farms.   

 

Earth Observation System (EOS) provides a cost effective opportunity to 

monitor and manage smallholder farms. Essential crop parameters (e.g., biophysical, 

crop production area, crop yields) can be estimated with reasonable accuracies using 

remote sensing technologies. This information can be used to manage essential crops 

(e.g., maize, wheat) effectively and to improve management practices (e.g., irrigation, 

monitoring of production, and mobilization of resources from governmental 

departments to the farmers in need) (Liu et al., 2020; Chakhar et al., 2020). 
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1.2. Remote Sensing for Agriculture 

 

A remote sensing system consists of instrumentation, processing and analysis 

designed to measure, monitor, and predict the physical, chemical, and biological 

aspects of the Earth system (Liang and Wang, 2019). The instrumentation component 

consists of sensors that are designed to measure different properties of the Earth 

system. The processing and analysis components consist of information extraction 

from the satellite data and scientific interpretation. Recently, advanced techniques are 

used to extract information from the data; these include Machine Learning algorithms 

and Artificial Intelligence (AI) (Mitchell, 1997; Haupt et al., 2008).    

 

The sensors can be broadly categorized into optical and microwave sensors. 

These sensors only observe Earth systems in a specific range of wavelengths. For 

example, Sentinel-2 and Landsat-8 consist of optical satellites that operate in the 

visible spectrum and extend to near-Infrared and thermal wavelengths. Other satellites 

like Sentinel-1 and RADARSAT operate in a microwave region of the spectrum. 

Satellites such as Orbiting Carbon Observatory-2 (OCO-2) are designed to monitor 

carbon emissions. The amalgamation of different satellite missions is particularly 

important in the agricultural sector. For example, the sector contributes approximately 

52% of global anthropogenic methane emissions and 84% of global nitrous oxide 

emission (Smith et al., 2008). The impact of agricultural activities on climate change, 

ecosystem services, and environmental sustainability can be monitored by using 

remote sensing systems at different spatial and temporal scales. 

 

Table 1 lists the properties of Sentinel-1A/B and Sentinel-2A/B satellites. The 

Sentinel-2 satellite sensor has a temporal resolution of about 5 days at the Equator 

and a spatial resolution from 10 m to 60 m for selected bands. This sensor offers 

additional red-edge bands that are not available from other sensors such as Landsat 

satellites. These bands allow for crop chlorophyll and nitrogen estimations (Delegido 

et al., 2011; Clevers and Gitelson, 2013). The Sentinel-1 satellites offer an improved 

temporal resolution of about 6 days compared to ERS-1/2 and ENVISAT Advanced 

Synthetic Aperture Radar (ASAR) and a 10 m spatial resolution. Figure 1 depicts the 

differences between Sentinel-1 and Sentinel-2 observations. The Vertical Transmit 
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and Vertical Received (VV) and Vertical Transmit and Horizontal Received (VH) 

polarizations look different to the RGB composite.  

 

Table 1. Properties of freely available Sentinel-1 and Sentinel-2 platforms.  

 

Spectral 

Band/Polarization 

Central 

Wavelength (nm) 

Bandwidth 

(nm) 

Spatial 

Resolution (m) 

Sentinel-1 

Vertical transmit and 

vertical receive (VV) 

55,465,763 - 10 

Vertical transmit and 

horizontal receive (VH) 

55,465,763 - 10 

Sentinel-2 MSI 

1-Coastal Aerosol 442 21 60 

2–Blue 490 65 10 

3–Green 560 35 10 

4–Red 665 30 10 

5–Vegetation Red Edge  705 15 20 

6–Vegetation Red Edge  740 15 20 

7–Vegetation Red Edge  783 20 20 

8–Near-Infrared  842 115 10 

8a–Vegetation Red Edge  865 20 20 

9-Water Vapour 945 31 60 

10-Short-wave infrared-

Cirrus 

1373 91 60 

11–Short-wave Infrared  1610 90 20 

12–Short-wave Infrared  2190 180 20 
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Figure 1. Visualization of Sentinel-1 and Sentinel-2 data for selected smallholder maize farms in 

Limpopo Province. The RGB composite is derived from the visible spectrum, while the VV and VH 

polarizations are derived from the microwave spectrum.  

 

Various optical and radar data have been used in agriculture to extract useful 

information. Wang et al., (2020) used Landsat data archives to map maize and 

soybean with the aim of updating the Cropland Data Layer (CDL) in the United States. 

Ahmad et al., (2020) used Landsat-8 and Landsat-7 Enhanced Thematic Mapper Plus 

(ETM+) to model interannual variability of maize yields in Pakistan. Le Page et al., 

(2020) used Sentinel-1 soil moisture products to detect irrigation events in maize 

fields. Recently, data fusion of Sentinel-1 and Sentinel-2 has proven to yield better 

results in agricultural applications. For example, Van Tricht et al., (2018) used both 

Sentinel-1 and Senitnel-2 data to map different crop types in Belgium and obtained an 

overall accuracy 82% and the authors concluded that data fusion always yielded better 

results compared to a single sensor application. Mashaba-Munghemezulu et al., 

(2021) used both Sentinel-1 and Sentinel-2 to map smallholder maize farms and 

concluded that single date Sentinel-1 image data was not sufficient to map smallholder 

maize farms. However, the data fusion approach significantly improved the results by 

approximately 20% in accuracy. The noticeable improvements offered by both 

Sentinel-1 and Sentinel-2 are expected since both sensors capture different 
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information about crops and thus complementing one another. For example, Sentinel-

1 data provides structural, textural, and volumetric information about the crop, while 

Sentinel-2 data offers crop biomass information. This information can be used to 

discriminate crop types or study different growth stages of different crops (for example, 

Veloso et al., 2017). 

 

1.3. Sustainable Development Goals and Earth Observation Systems  

 

The 17 Sustainable Development Goals (SDGs) are a common blueprint between all 

the United National Member States, which were agreed on in 2015. These goals aim 

to promote peace and prosperity for people and the planet to ensure a sustainable 

future for all and the planet (Richard, 2015). Figure 2 depicts all the 17 SDGs, SDG 

number 2 (zero hunger) is of particular importance to this study. It has 8 targets and 

target number 2.3 outlines the need to double agricultural productivity and incomes of 

small-scale or smallholder food producers by 2030. However, the pandemic caused 

by the Coronavirus Disease (COVID-19) has resulted in a decline in economic 

activities around the world. This has caused enormous suffering to the most vulnerable 

including smallholder farmers in rural communities. This pandemic and other factors 

such as climate continue to threaten the 2030 agenda set by the United Nations 

Member States.   

 

        The SDGs cover problems on a regional to global scale that are very difficult to 

solve using conventional techniques of data capturing, monitoring, and modeling. 

Therefore, measuring environmental changes accurately such as quantifying planted 

areas at regional or global scale requires trans-disciplinary approaches. Additionally, 

computational resources are necessary, and the Earth Observation Systems (EOS) 

that can capture environmental variables with high temporal and spatial resolutions 

are needed. Data generated from EOS may include observation of the planet Earth on 

different electromagnetic frequencies (e.g., ultraviolet, visible, infrared and 

microwave). These frequencies allow for physical, chemical, climate, and biochemical 

parameter estimation of the planet Earth. The temporal and spatial resolutions of the 

data provided by EOS at different frequencies, makes it a suitable source of data to 
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address some of the SDGs with very high accuracy and contribute towards monitoring 

and reporting on SDG targets.         

 

 

Figure 2. The Sustainable Development Goals (Source: https://sdgs.un.org/goals). 

 

Kavvada et al. (2020) outlined the importance of Earth Observation data in 

delivering on the SDGs, particularly, goals 6 (Clean Water and Sanitation), 14 (Life 

below Water) and 15 (Life on Land). These goals have been identified by the Group 

on Earth Observations (GEOS) 2020–2021 Work Plan on SDGs as areas that require 

attention in terms of development of methodologies and lack of data in some areas. 

Kavvada et al. (2020) identified additional areas where EOS can provide an indirect 

contribution to other SDGs such as sustainable economic growth by providing 

population distribution or urban structures. For example, Cochran et al. (2020) used a 

remote sensing-based ecosystem services platform (EnviroAtlas) to address SDG 

numbers 6, 11, and 15. This platform can be used to monitor water levels, land cover, 

and other socio-economic variables such as population density. These variables are 

used to report on certain SDGs indicators at different governmental levels. 

Hakimdavar et al., (2020) used a remote sensing approach to monitor water-related 

ecosystems in support of the SDG number 6.  

 

EOS has a critical role to play in food security, especially in developing countries 

where ground-based infrastructure such as meteorological stations, internet 

connectivity is a big challenge. Kogan (2019) outlined the importance of remote 
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sensing in food security. The study highlighted the use of remote sensing to monitor 

crop health status, monitor the impact of drought on crops, model crop yield and 

insurance index. These applications prove that EOS can be used to enhance food 

security.      

 

1.4. Bibliometric Review of Remote Sensing and Maize Mapping 

 

Remote sensing has been underutilized for applications concerning smallholder farms. 

Table 2 lists the number of retrieved articles, books, and book chapters from a 

bibliometric search using common key words from the two widely used databases in 

scientific research, i.e., Scopus and Web of Science. The results generally indicate 

that an average of 1807 articles were published involving the use of remote sensing 

for maize crops at different spatial scales. The research generally involves using 

remote sensing to monitor crops, classify crop types, and estimate crop biophysical 

parameters at different spatial scales using different remote sensing sensors (e.g., 

Moderate-Resolution Imaging Spectroradiometer (MODIS), Landsat, and Sentinel-

1/2) (e.g., Karthikeyan et al. (2020), Mufungizi et al. (2020), Skakun et al. (2021), Ji et 

al. (2021)). This high number of research outputs was mainly due to the general 

search, using remote sensing and maize as keywords. 

 

An average number of 39 papers were retrieved when the smallholder keyword 

was added to the search method. This generally shows that there is a need for more 

research focused on smallholder farms using remote sensing data to address SDG 

number 2. The bibliometric analysis also revealed that researchers from the United 

States of America and China produced most research involving remote sensing and 

maize, with a combined 819 authors contributing to this research area, whereas the 

African continent had only 34 authors contributing in total (Figure 3). This is concerning 

as smallholder maize farms contribute significant proportions to providing a 

sustainable staple food source for developing countries (Charman and Hodge, 2007; 

FAO, 2016).  

 

Figure 4 illustrates the annual scientific contribution to literature concerning the 

use of remote sensing and its application to maize crop. The increase in the number 
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of scientific outputs can be attributed to freely available global satellite data (such as 

Landsat and Sentinel series), availability of surface reflectance data, improvements in 

hardware and software to process satellite data, and continuous improvement in 

internet access and reduction in associated costs. These factors made it possible for 

researchers, especially in developing countries to be able to conduct research using 

these remote sensing technologies.       

 

Table 2. A bibliometric search result of common result phrases and the associated number of 

documents retrieved. Time limit was set to 2020. 

 

Search Criteria  

(limited to article, book chapter, and book)  

Scopus  Web of 

Science Core 

Collection 

TITLE-ABS-KEY 

(remote AND sensing AND maize OR corn) 

1672 1942 

TITLE-ABS-KEY 

(remote AND sensing AND sdgs) 

49 66 

TITLE-ABS-KEY 

(remote AND sensing AND sdgs AND maize OR 

corn) 

1 1 

TITLE-ABS-KEY 

(remote AND sensing AND maize OR corn AND 

smallholder) 

35 43 
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Figure 3. Map illustrating active countries that produced research related to our first search in Table 2 

(grey areas have no data captured).  

 

 

Figure 4. The exponential increase in the annual scientific production in papers/chapters published 

from 1970-2020 (x axis – year and y-axis – number of publications).  

 

The Remote Sensing of Environment and Remote Sensing journals are the most 

important sources of information related to remote sensing research and maize (Table 

3). The top 20 most relevant sources are international journals i.e., journals from 
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developed countries such as Europe, United States and China. Among other factors, 

authors from developing countries often find it difficult to publish in international 

journals due lack of funding to support high publication fees (Salager-Meyer, 2008). 

For example, Remote Sensing of Environment and Remote Sensing journals 

publication fees are USD 3950 and USD 2180, respectively. These fees are equivalent 

to some of the research grants being given to emerging researchers in developing 

countries. One way to improve the contribution of researchers from developing 

countries in international journals is to promote cross-border collaboration. 

 

EOS has matured enough to provide accurate information to smallholder farmers 

to enhance their food production under erratic climate variability and climate change, 

hence contributing towards SDG number 2. Figure 5 illustrates commonly used words 

i.e., remote sensing, maize (Zea mays) and crops were the most used words from 

1672 publications. This is the testament to the importance of EOS in supporting SDGs.     
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Table 3. The top two most relevant sources are Remote Sensing of Environment and Remote 

Sensing Journals. 

 

Journal Most Relevant 

Sources 

Remote Sensing of Environment 150 

Remote Sensing 115 

Transactions of the Chinese Society of Agricultural 

Engineering 

102 

International Journal of Remote Sensing 80 

IEEE Transactions on Geoscience and Remote Sensing 45 

Agricultural and Forest Meteorology 32 

Computers and Electronics in Agriculture 32 

Transactions of the Chinese Society for Agricultural 

Machinery 

31 

Spectroscopy and Spectral Analysis 30 

IEEE Journal of Selected Topics in Applied Earth 

Observation 

29 

International Journal of Applied Earth Observation 24 

Precision Agriculture 24 

ISPRS Journal of Photogrammetry and Remote Sensing 22 

Journal of Applied Remote Sensing 22 

Canadian Journal of Remote Sensing 20 

Agronomy Journal 20 

Field Crops Research 18 

Transactions of the American Society of Agriculture 18 

Sensors (Switzerland) 15 
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Figure 5. Word cloud summarizing most used words within the titles of papers in the period January 

1970 to December 2020. 

 

1.5. Remote Sensing Data Analysis using Machine Learning Algorithms  

 

Machine Learning is a subfield of computer science in which algorithms are developed 

to learn from and make predictions on data. The algorithms are dynamic as they can 

build non-linear models based on the training data to make data-driven decision 

(Bishop, 2006; Scheunders et al., 2018). Broadly, there are two general categories 

within machine learning—supervised and non-supervised approaches. The 

supervised category generally requires sample training data to develop the model and 

make appropriate predictions. The predictions can be discrete in nature, this is referred 

to as classification or the predictions can be continuous, and this is referred to as 

regression. The unsupervised category finds structures or patterns within the data 

using predefined procedures without any training data; examples of this include 

clustering or Principal Component Analysis (PCA). Both categories have huge 

potential in analyzing remote sensing data and extracting useful information or hidden 

patterns (Camps-Valls and Bruzzone, 2009).      
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Remote sensing data and analysis strategies have evolved over the last few 

decades (Scheunders et al., 2018). For example, analysis of time-series satellite data 

may involve stacking multiple bands and analyzing them at once. This creates 

complex data structures that might be very difficult for traditional methods to extract 

any useful information. Machine learning algorithms are designed to deal with complex 

data structures regardless of the number of variables/features that may be included 

(Lary et al., 2015). Much research has been done using remote sensing and machine 

learning algorithms. Shao et al., (2021) used Random Forest (RF) to estimate maize 

kc coefficients together with Unmanned Aerial Vehicle (UAV) and Leaf Area Index (LAI) 

data. The authors obtained a correlation coefficient of 0.65; such results could be used 

in precision irrigation management. Other authors have applied Machine learning 

algorithms for crop disease detection (Rangarajan et al., 2018), weed detection (dos 

Santos Ferreira et al., 2017) and yield prediction (Paudel et al., 2021). More 

information can be found in Benos et al., 2021 and references therein.     

 

 Python programming language (https://www.python.org/) has developed into a 

widely used tool that can implement machine learning algorithms. The Scikit-Learn 

open-source library (https://scikit-learn.org/stable/) is specifically designed to 

implement machine learning algorithms to solve a wide range of problems including 

remote sensing applications (Pedregosa et al., 2011). This library contains machine 

learning algorithms such as supervised (e.g., Support Vector Machine (SVM), Artificial 

Neural Networks (ANN), Gradient Boosting, and RF and unsupervised (e.g., clustering 

and PCA)). This library together with other freely available libraries were used in this 

study to implement machine learning algorithms to solve specific problems that are 

described in later chapters. Anaconda platform (https://www.anaconda.com/) was 

used for implementation and developmental package management. Due to Big Data 

problems in remote sensing (Huang et al., 2018), a high computationally intensive 

system was used for this project. A Ryzen 9 3900, 12 cores processor at 3.8 GHz and 

128 GB Random Access Memory (RAM) computer was used.  
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1.6. Problem Statement 

 

Most local governments in developing countries still lack spatial agricultural 

information on smallholder farms. Spatial agricultural information includes crop type 

maps, soil nutrient information maps, and crop yield estimates on an annual basis. 

Such information is normally available for commercial farms but not available for 

smallholder farms. Local governments usually appoint extension officers to assist and 

collect smallholder farm information. However, these extension officers are poorly 

trained in basic Geographic Information Systems (GIS) and statistics to generate 

useful spatial information. There is a great need for accurate crop type, soil, and crop 

yield estimates information on an annual basis to support the SDGs and to monitor 

food production in rural communities. Such information can benefit local governments 

by informing their policy decision-making and implementation strategies. Remote 

sensing data such as Sentinel-1 and Sentinel-2 offer unprecedented opportunities for 

the use of local governments. This application will have an impact on the socio-

economic status of rural communities in developing countries.          

 

Other research studies have used Synthetic Aperture Radar (SAR) data to map 

maize fields. For example, Abubakar et al. (2020) used multi-temporal Sentinel-1 and 

Sentinel-2 to map smallholder farms in Nigeria using a stacking approach of different 

Sentinel data combinations. The authors applied Support Vector Machine (SVM) and 

Random Forest (RF) algorithms and achieved an overall accuracy of more than 90% 

for both algorithms. However, the authors did not provide the estimated production 

area for maize, which is the most important parameter for SDG number-2 reporting 

and food security monitoring. Jin et al. (2019) used multi-temporal Sentinel-1 and 

Sentinel-2 to also map maize production areas and estimate yield using the Google 

Earth Engine (GEE) platform in Tanzania and Kenya. Seasonal median composites, 

radar backscatter and optical surface reflectance were used to build an RF classifier 

and they obtained accuracies of more than 70%. Polly et al. (2019) used both Sentinel-

1 and Sentinel-2 to map maize in Rwanda and noted that Sentinel-1 had a poor 

performance, which resulted in overestimating the maize production area compared 

to the Sentinel-2 data. All authors acknowledge that smallholder farms are difficult to 

map due to their small size and heterogeneous characteristics that can affect the 
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spectral/backscatter signal. They also encourage the use of Sentinel-1 multi-temporal 

data since this approach can be used in all weather conditions and the resolution of 

10 m is currently sufficient to contribute towards SDGs with relatively high accuracy.  

 

Smallholder farms such as the one depicted in Figure 6, are generally poorly 

managed and receive very little government support. Due to poor farm management 

practices, weeds and pests affect the farms. Smallholder farms are often rain-fed, as 

the farmers do not have resources to implement irrigation systems, which make them 

vulnerable to erratic climate variability and climate change. Some of the farms are in 

remote areas and very difficult to access. The soil nutrient status of these farms are 

often not monitored for example the soil nitrogen content is often not managed with 

fertilization which can hinder maize growth. All these factors contribute towards low 

yields, and this has an impact on the livelihood of villagers.  

 

 

Figure 6. Example of a smallholder maize farm, the red circle indicates areas where seeds did not 

emerge from the soil. Lack of equal row spacing and weeds can be seen in the photograph.  

 

The use of remote sensing and machine learning to map and monitor crops can 

greatly enhance food security in developing countries. Applications of remote sensing 

in smallholder farm settings has been very limited, with only an average of 39 journal 

papers published between 1979 to 2020 period according to Scopus database (Table 
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2) that involves remote sensing and maize and smallholder. Therefore, the use of 

remote sensing and machine learning in smallholder farms has not been fully explored 

yet.        

 

1.7. Aim and Research Objectives  

 

The aim of the study is to use Sentinel-1 and Sentinel-2 remote sensing data to map 

and monitor smallholder maize farms in support of the SDGs number-2 based on 

machine learning algorithms. The developed framework and associated models in this 

study can be used in other areas with similar settings to generate spatial agricultural 

information, especially in areas where such information is lacking such as developing 

countries and rural communities. 

  

Research objectives are to: 

1. Evaluate both Sentinel-1 and Sentinel-2 single date imagery to delineate 

smallholder maize farms using machine learning algorithms. 

2. Develop an innovative approach using Sentinel-1 time-series data and machine 

learning algorithms (integrating both supervised and unsupervised methods) to 

map smallholder maize farms.   

3. Investigate the utility of machine learning regression for spatial predictions of 

soil nitrogen content in smallholder maize farms. 

4. Develop procedures using Sentinel-1 data to model maize yield in complex 

environments.  

 

1.8. Significance of the Research 

 

The commonly used optical techniques for crop monitoring are limited by cloud cover, 

sun illumination, soil properties at low plant cover, and have a low spatial resolution, 

which limits their applications during the summer rainfall period (Jiao et al., 2011; 

Inoue et al., 2014). In crop modelling activities, crop monitoring models developed 

using optical data often have gaps due to the periods of haze and clouds (Jiao et al., 

2011). New generation techniques such as Synthetic Aperture Radar (SAR) based on 

the microwave wavelength can overcome these limitations and operate in all-weather 
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condition or environment at an improved spatial resolution (Moran et al., 2002). 

However, research using this new technique is lacking in Africa as compared to optical 

techniques.  

 

This research focuses on using both microwave, optical techniques and 

ground-based measurements for crop mapping, soil nutrient mapping, and yield 

estimation applications. Ground based measurements of the spectral characteristics 

of vegetation are used to derive narrowband indices, which are more accurate when 

there is high biomass and high leaf area as compared to broadband indices derived 

from air borne platforms, which get saturated under these conditions (Aparicio et al., 

2002; Hansen and Schjoerring, 2003). In most studies, data from space borne 

platforms are used. These have a coarse spectral and spatial resolution, which results 

in weak relationships between vegetation parameters and spectral data as compared 

to ground-based measurements (Goel et al., 2003). However, ground based 

measurements are not widely used in crop monitoring and crop modelling activities. 

This study aims to overcome this gap. The contribution to science of this research is 

in assimilating different types of remotely sensed data (Sentinel-1 and Sentinel-2) in 

conjunction to machine learning models for agricultural applications, which is an 

approach not commonly used for smallholder maize farms. In addition, the study 

proposed novel approaches to generate two critical statistics, quantifying area planted 

and mapping the distribution of soil nitrogen, for the highly heterogeneous smallholder 

farming systems in Africa. 

 

Maize contributes substantially to developing countries especially Africa and 

Latin America as a food source and for nutritional security (Shiferaw et al., 2011). 

Although maize production has increased due to improved crop varieties, increased 

fertilizer inputs, water and pesticides; climate change presents a challenge for maize 

in Southern Africa (Evenson and Gollin, 2003; Lobell et al., 2011). Techniques 

developed using remote sensing are beneficial for agricultural applications because 

they provide timely information on the phenological changes and the development of 

vegetation (Veloso et al., 2017). Additionally, new generation sensors such as SAR 

have cloud penetration abilities, operate in all weather conditions, can acquire images 
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during the day or night and have a high spatial resolution (Moran et al., 2002). These 

characteristics are important for maize growth monitoring during high rainfall months. 

 

The Agricultural Research Council (ARC) in South Africa, where this study was 

funded, will be generating these products (crop type, soil, yield maps) on an annual 

basis to assist local communities and local governments to monitor smallholder farms 

and improve on decision-making processes and inform relevant policies. This initiative 

will ensure a systematic and accurate approach towards providing necessary 

information to improve food security and SDGs reporting. The developed framework 

and associated machine learning models can be extended to other areas for local 

governments to benefit from spatial agricultural information that is generated from this 

study 

 

1.9. General Study Area Description 

 

The Sekhukhune district where this study is based (Figure 8) is located on the 

southeastern part of Limpopo province, South Africa. The main economic activities in 

Sekhukhune are agriculture, mining and tourism. This district shares borders with the 

Waterberg, Capricorn, Vhembe, and Mopani municipal districts. The economic drivers 

of the Waterberg district are mining, agriculture, game and cattle farming, secondary 

activities include manufacturing and service industries (WDM, 2015). The Capricorn 

district hosts Polokwane, which is the capital city of Limpopo wherein is the Central 

Business District (CBD), industrial areas, social services, residential areas, 

recreational land and smallholdings (CDM, 2015). This district is the largest contributor 

(24%) towards the economy of Limpopo in comparison to the other four districts (CDM, 

2018). Within the Vhembe district, the main activities are tourism, livestock and crop 

farming (VDM, 2015). The Mopani district contributes to the economy of Limpopo 

through agriculture, mining, tourism and manufacturing (MDM, 2019). 

 

The Climate Hazards Infrared Precipitation with Stations (CHIRPS) rainfall 

product indicate that the southern parts of the study area receives more rainfall 

compared to areas in the northern part. A maximum and minimum average rainfall of 

11.22 mm and 3.65 mm were recorded between 2000 and 2020 period (Funk et al., 
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2015). Figure 7 depicts elevation that ranges between 748 m and 1759 m and some 

areas have slopes that can reach 51.35º (Farr et al., 2007). The study area receives 

summer rainfall (i.e., from October to April) and less rainfall is recorded during the 

winter periods (i.e., from May to September, Figure 8). Figure 9 depicts the annual 

average rainfall over time; the variations could be linked to drought events. For 

example, the 2015 drought that affected most agricultural sectors in South Africa was 

also captured by the CHIRPS data that indicates an annual average rainfall of 6.6 mm. 

According to Du Plessis, (2003) maize water requirement ranges between 450 mm to 

600 mm per season. 

 

 

 

Figure 7. (a) Insert map of the study area, located in Limpopo province of South Africa. (b) Long-term 

average rainfall for the period 2000-2020 from CHIRPS data product. (c) and (d) Slope and elevation 

data, respectively (data sources: Funk et al., 2015 and Farr et al., 2007).  
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Figure 8. Monthly average precipitation records as observed by CHIRPS data product for the 

Sekhukhune district from year 2000 to 2020 (data source: Funk et al., 2015). 

 

 

Figure 9. Annual average precipitation trend as measured by CHIRPS between 2000 and 2020 for the 

Sekhukhune district (data source: Funk et al., 2015). Linear trend suggest that generally, there is an 

increase in mean annual rainfall between 2000 and 2020 period.  

 

1.10. Thesis structure  

 

Each chapter is structured as standalone entity to deal with a specific objective as 

outlined in section 1.7. Different Sentinel data sets and machine learning algorithms 

that are suitable to the problem are used in each chapter. Due to this adopted thesis 

structure; there will be repetition of certain sections within the chapters. Details of each 

chapter are summarized as follows:  
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Chapter 1: “General Introduction”. This chapter provides a general introduction of the 

remote sensing in agriculture and the link of Earth Observation Systems to Sustainable 

Development Goals. A bibliometric review is provided to explore previous research in 

remote sensing for smallholder maize farms. The objective of bibliometric review was 

to highlight the contributions, limitations, gaps, and opportunities for satellite remote 

sensing techniques to the smallholder farming landscape. Furthermore, the review 

shows that many remote sensing datasets and data analysis techniques such as 

mapping of farm parcels, distribution of nitrogen, and crop types, and machine learning 

have not been sufficiently investigated in the smallholder farming landscape 

particularly in Africa and Asia.The significance of this research, problem statement, 

research aim, and objectives are also provided.  

Chapter 2: “Examining the utility of single date Sentinel-1 and Sentinel-2 data for 

Delineating Smallholder Maize Farms”. This chapter evaluates Sentinel-1 and 

Sentinel-2 single date data to delineate smallholder maize farms. The bibliometric 

analysis revealed a gap in research focusing on smallholder farmers applying remote 

sensing techniques. These farms have been challenging to map with conventional 

techniques due to their small sizes and fragmented nature. New generation Sentinel-

1 and Sentinel-2 imagery are combined for mapping and estimating the planted areas 

for the farms. This strategy was explored to minimize the satellite data needed during 

the planting season which simplifies data archiving and data processing.  Selected 

experiments are designed to explore which data combinations are suitable to delineate 

smallholder maize farms. Random Forest, Support Vector Machine algorithms and 

model stacking approach are used in each experiment. The results are evaluated 

using statistical metrics. Classification maps are produced using the optimal 

performing experiment for each model. The planted areas for maize are validated with 

field collected data. This chapter shows that the single-date Sentinel-1 data are 

insufficient to map smallholder maize farms. However, single-date Sentinel-1 

integrated with Sentinel-2 data are sufficient in mapping smallholder farms and 

estimating their planted area. 

Chapter 3: “Mapping Smallholder Maize Farms Using Multi-Temporal Sentinel-1 

Data”. A time series of Sentinel-1 imagery are used to map smallholder maize farms. 

The multi-temporal approach was investigated to compare with the single-date 

approach in Chapter 2 and determine which technique produces accurate results. The 
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Principal Component Analysis data reduction method is applied to the Sentinel-1 multi-

temporal data. Selected components are then used in the binary classification process 

to map smallholder maize farms and non-maize areas. Support Vector Machine and 

Extreme Gradient Boosting algorithms are used. The results are evaluated by using 

statistical matrices. The maize crops are mapped and the planted areas are 

determined. The results show that multi-temporal approach is better in mapping 

smallholder farms and it produced a much lower standard deviation estimate for the 

estimated areas in comparison to the single date approach.  

Chapter 4: “Modeling the spatial distribution of soil nitrogen content at smallholder 

maize farms using machine learning regression and Sentinel-2 data”. This chapter 

uses machine learning algorithms (Extreme Gradient Boosting, Gradient Boosting, 

Random Forest) in a regression format to map total soil nitrogen in the smallholder 

maize farms identified in Chapter 2 and Chapter 3. This application is particularly 

important for these farms as previous research has revealed that soil nitrogen 

deficiencies are limiting for maize growth (Xu et al., 2018). Four data types are 

integrated—Sentinel-2, environmental variables, soil indices, and vegetation indices 

in different experiments. The optimal data combinations for each algorithm are used 

model total soil nitrogen in smallholder maize farms. Rigorous model validation is done 

using commonly known statistical matrices. Spatial distribution maps are then created. 

Recommendations by crop consultants, extension services, and fertilizer dealers can 

benefit from using nitrogen content maps. 

Chapter 5: “Early Season Spatial Estimation of Smallholder Maize Yield based on 

Machine Learning”. This chapter applies machine learning algorithms―Extreme 

Gradient Boosting and Random Forest in a regression format to identify the optimal 

time for estimating maize yield in smallholder maize farms. Mainly Sentinel-1 data are 

used with minimal field collected data for model development. The ideal time is 

identified using model evaluation metrics. This procedure is necessary for forecasting 

maize yield to plan for maize shortages and surpluses. Important features for both 

machine learning models are determined. Model validation is then done for the 

developed model. Maize yield maps are then generated. Findings from this Chapter 

contribute directly to SDG 2 which aims on improving food security. 

Chapter 6: “Synthesis”. This chapter summarizes the main findings from each 

objective and provides recommendations for future work.  
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Chapter 2 

Examining the utility of single date Sentinel-1 and Sentinel-2 data for 

Delineating Smallholder Maize Farms 

 

Based on: Mashaba-Munghemezulu, Z., Chirima, G.J. and Munghemezulu, C., 2021. 
Delineating Smallholder Maize Farms from Sentinel-1 Coupled with Sentinel-2 Data 
Using Machine Learning. Sustainability, 13(9), 4728. 
 

Abstract 

 

Rural communities rely on smallholder maize farms for subsistence agriculture, the 

main driver of local economic activity and food security. However, their planted area 

estimates are unknown in most developing countries. This study explores the use of 

Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest 

(RF), support vector (SVM) machine learning algorithms and model stacking (ST) were 

applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 

data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, 

respectively, compared to the classification of Sentinel-1 data individually. Similarities 

in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 

± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas 

with high accuracies. The study concludes that the single-date Sentinel-1 data were 

insufficient to map smallholder maize farms. However, single-date Sentinel-1 

combined with Sentinel-2 data were sufficient in mapping smallholder farms. These 

results can be used to support the generation and validation of national crop statistics, 

thus contributing to food security. 

 

Keywords: Sentinel-1; Sentinel-2; smallholder; maize; machine learning 
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2.1. Introduction 

 

Maize (Zea mays L.) is an essential cereal crop worldwide for food consumption, 

animal feed, and the production of industrial products such as biofuels (Ranum et al., 

2014). Developed countries consume lower quantities of maize compared to 

developing countries (Asia, Latin America and Africa), which are reliant on maize 

(FAO, 2019). Smallholder farmers account for 80% of the maize produced as a staple 

crop in Africa (FAO, 2016). However, global climate forecasts have reported that Africa 

could be one of the most susceptible regions to the effects of climate change by 2050. 

This phenomenon will cause growing water shortages and scarcity of suitable land, 

which will affect the production of cereal crops including maize (Knox et al., 2012; 

Misra, 2014). Smallholder maize farms are important for the livelihoods of rural 

communities in Africa who depend on agriculture for food security and their local 

economic activities. These farmers are faced with problems such as inadequate 

rainfall due to droughts; they often have poor soils and limited irrigation infrastructure, 

which hinder their maximum productivity (Giller et al., 2006). Although these problems 

prevail in smallholder farms, there is an increasing demand for maize as a 

consequence of population growth (Santpoort, 2020). The disparity between declining 

maize supply and increasing demand for maize makes it necessary to develop a 

methodology to map smallholder maize farms and their sizes. Information about the 

areal extent of smallholder farms will guide governments when dispersing aid to them, 

inform land-use policies, and provide an indication of the current food security status, 

especially in vulnerable rural communities. The information provided by this project 

will enhance initiatives of local governments to provide spatial information regarding 

agricultural land-use by rural communities, as reliable information is lacking in most 

developing countries. 

 

The use of remotely sensed data presents an opportunity for mapping the widely 

disparate smallholder farms and generating spatial information that can support policy 

implementation and enhance food security planning. Remote sensing technologies 

are able to collect data over a wide area in near-real time (Homolova et al., 2013). 

Additionally, the spatial distribution of crops on other areas within a study location that 

was not visited can be mapped. However, the use of remote sensing data for mapping 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

38 
 

smallholder farms has limitations. The coarse spatial resolution of remote sensing 

products such as Moderate-Resolution Imaging Spectroradiometer (MODIS) and 

Landsat is not sufficient to map smallholder farmland plots because of their small size 

of ±2 ha. Additionally, Landsat 8 has a revisit cycle of 16 days, which is insufficient to 

capture phenological changes for smallholder farms. Other remote sensing products 

such as Worldview, PlanetScope, RapidEye, and Satellite Pour l’Observation de la 

Terre (SPOT) have the required spatial resolution but are not freely available, and 

have a limited spatial coverage (Belward and Skøien, 2012). Hence, there is a need 

to explore the use of Sentinel-1 and Sentinel-2 data, which are freely available and 

have an improved spectral and spatial resolution. 

 

The Sentinel-1 and Sentinel-2 sensors were launched for different applications 

amongst others, monitoring land-use/land-cover change and agricultural applications 

(Veloso et al., 2017). These sensors have a shorter revisit time of 10–12 days and a 

spatial resolution of 10-60 m (Drusch et al., 2012). Sentinel-2 is an optical sensor, 

which captures changes in land cover and provides a means to estimate crop area. 

However, the optical data from Sentinel-2 are susceptible to cloud cover or rainy 

weather, which limits the data availability during the cropping season (Asner, 2001). 

Radar imagery from Sentinel-1 overcomes the above shortfall; data are unobstructed 

by clouds or weather. These data have not been explored extensively for agricultural 

applications in comparison to optical data because of their complex data structure 

(Torbick et al., 2017). 

 

The combined use of both Sentinel-1 and Sentinel-2 has the advantage of 

capturing both the spectral and textural information; this improves classification 

results, according to Cai et al. (2019). Dobson (1995) also observed that other 

Synthetic Aperture Radar (SAR) data such as ERS-1 and JERS-1 are also sensitive 

to the structural properties, soil moisture, and above-ground biomass of vegetation. 

Studies combining both Sentinel-1 and Sentinel-2, such as that of Van Tricht et al. 

(2018), have found overall accuracies (OA) between 75 and 82% when mapping 

maize and other land-cover classes with the application of Random Forest (RF) 

classification. Sonobe et al. (2017) used a kernel-based extreme learning machine to 

map maize and other crop types with Sentinel-1 and Sentinel-2 data. Their study 
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achieved an overall classification of 96.8%. To our knowledge, limited studies have 

explored the potential offered by combining radar and optical data to address 

smallholder crop classification/mapping in a rural setting. 

 

We examined the utility of Sentinel-1 to mapping smallholder areas under maize. 

We determined the outcome of integrating optical bands and vegetation indices 

derived from Sentinel-2 on the Sentinel-1 polarizations through a series of 

classification experiments for mapping maize areas. The RF algorithm, Support Vector 

Machine (SVM) algorithm and model stack (ST) were applied to each experiment. 

These machine learning algorithms are selected specifically because they have a 

superior discrimination capacity between different classes, suitable for noisy data and 

can be applied to limited samples (Belgiu and Drăguţ, 2016; Cooner et al., 2016). 

These distinguishing characteristics of the selected models have the potential of 

resolving issues with mapping fragmented inhomogeneous smallholder farms. 

Thereby, we achieved the overall aim of the study in developing a framework to 

enhance the delineation of smallholder maize farms using Sentinel-1, Sentinel-2 and 

vegetation indices. 

 

2.2. Materials and Methods 

2.2.1 Study Area 

 

The field data were collected from the Makhuduthamaga district in Limpopo, South 

Africa (Figure 10). This area experiences rainfall during the warmer months of October 

to March and with a mean annual rainfall of 536 mm. The fields have an average 

elevation of 1333 m above mean sea level. The temperatures can drop to 7 °C in 

winter but can be as high as 35 °C in summer according to the records from the 

automatic weather stations of the Agricultural Research Council. This area was 

selected as a case study because most of the rural population are smallholder maize 

farmers; they farm primarily for subsistence and partially for selling in local markets 

(SDM, 2019). Specific regions of interest (ROI) were delineated for investigation based 

on the locations of the smallholder maize farms. The ROI was obtained from the local 

government department of agriculture (DAFF), where they were developed through 

survey campaigns. The ROI was used to generate an improved estimate of the area 
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covered by smallholder farms by eliminating built-up areas, which can host households 

with backyard maize gardens leading to an overestimation of the planted areas. These 

households consume their maize before harvest-time. 

 

Figure 10. Location of Makhuduthamaga study area within Limpopo province, South Africa. 

 

2.2.2 Field Data Collection 

 

Field surveys for the collection of training and validation data for different landcover 

types within the ROI occurred from 18 to 21 February 2019. This period was selected 

because maize had the maximum green biomass at this time and could be 

discriminated more clearly in comparison to other land-cover types (Pervez and 

Brown, 2010). A handheld Garmin Global Positioning System (GPS) device was used 

to collect waypoints of different land-cover classes, applying a purposive sampling 

approach. The classes considered were maize (19.72%), bare land (50.01%), 

vegetation (30.23%) and water (0.0%), which are the dominant classes in the study 

area. The bare land, vegetation and water classes were amalgamated to form the non-

maize areas and the maize areas were used as well. This approach of using only two 

classes of (1) maize and (2) non-maize areas reduces the classification errors from 
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incorporating different land-cover classes individually. For example, there were fewer 

pixels for water in the study area in comparison to bare land and vegetated areas; 

using this as a separate class has the potential of introducing errors depending on the 

sensitivity of the classifier. Ground-based validation samples for 18 smallholder maize 

farms were collected using a GPS. The samples were not used as training data for 

classification. 

 

2.2.3 Sentinel-1 Data Acquisition and Pre-Processing 

 

Sentinel-1 Level-1 Ground Range Detected (GRD) data described in Table 4 were 

acquired from the Copernicus Open Access Hub. The Interferometric Wide (IW) image 

for 20 February 2019 was used; this consisted of the vertical transmit and vertical 

receive (VV) and vertical transmit and horizontal receive (VH) polarized backscatter 

values (in decibels) in a 10 m spatial resolution. Pre-processing of the radar images 

was done using the Sentinel Application Platform (SNAP). The orbit file was applied 

to update the orbit state vectors in the metadata file. Then, radiometric calibration was 

performed to convert the intensity values into sigma nought values. Speckle filtering 

was implemented to remove the granular noise caused by the interference of waves 

reflected from many scatterers. The Lee filter was applied at a 7 × 7 window size as it 

was found to be superior in preserving the edges, linear features, point target and 

texture (Lee et al., 1994). Range Doppler terrain correction was done to correct for 

geometric distortions caused by topography such as foreshortening and shadows; the 

Shuttle Radar Topography Mission (SRTM) 3-sec Digital Elevation Model (DEM) was 

used for this purpose (Loew and Mauser, 2007). The backscatter values were 

converted into decibels, and then the VH and VV polarizations were used to generate 

the VV/VH ratio. 
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Table 4. Specifications of the Sentinel-1 and Sentinel-2 MSI data used in this study. 

 

Spectral 
Band/Polarization 

Central 
Wavelength (nm) 

Bandwidth 
(nm) 

Spatial 
Resolution (m) 

Sentinel-1 

Vertical transmit and 
vertical receive  

(VV) 
55,465,763 - 10 

Vertical transmit and 
horizontal receive  

(VH) 
55,465,763 - 10 

Sentinel-2 MSI 

2–Blue 490 65 10 
3–Green 560 35 10 
4–Red 665 30 10 

5–Vegetation Red Edge 
(RE1) 

705 15 20 

6–Vegetation Red Edge 
(RE2) 

740 15 20 

7–Vegetation Red Edge 
(RE3) 

783 20 20 

8–Near-Infrared (NIR) 842 115 10 
8a–Vegetation Red Edge 

(RE4) 
865 20 20 

11–Short-wave Infrared 
(SWIR1) 

1610 90 20 

12–Short-wave Infrared 
(SWIR2) 

2190 180 20 

 

2.2.4 Sentinel-2 Data Acquisition and Pre-Processing 

 

The Sentinel-2 Level-1C image for 26 February 2019 was acquired from the 

Copernicus Open Access Hub. The Sentinel-2 images were pre-processed using the 

Sen2Cor plugin in SNAP to convert them from the top of atmosphere reflectance units 

to the bottom of atmosphere reflectance (ESA, 2018). The bands, which were used 

are summarized in Table 4. The SWIR and vegetation red edge bands were rescaled 

to 10 m resolution. The indices depicted in Table 5 were derived. These indices are 

necessary to be investigated for mapping smallholder farms because they cover a 

broad part of the electromagnetic spectrum (NIR, red and green) in comparison to only 

using the Normalized Difference Index (NDVI). Additionally, they are sensitive to 

changes in soil background; they enhance the green vegetation signal, reduce the 

saturation effect of NDVI and are sensitive to chlorophyll content (Jordan, 1969; 
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Tucker et al., 1979; Huete, 1988; Crippen, 1990; Rougean and Breon, 1995; Chen, 

1996; Gitelson et al., 1996; Rondeaux et al., 1996; Broge and Leblanc, 2000; 

Haboudane et al., 2004). 
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Table 5. Vegetation indices computed from Sentinel-2 imagery. 

 

Vegetation Index Equation Justification Reference 

Difference 
Vegetation Index 

(DVI) 
DVI = NIR - Red  

Distinguishes between maize and 
soil. 

Tucker et al.,  
(1979) 

Green Normalized 
Difference 

Vegetation Index 
(GNDVI) 

= − +( ) / ( )GNDVI NIR Green NIR Green  
More sensitive to chlorophyll 

concentration than NDVI. 
Gitelson et al., 

(1996) 

Infrared 
Percentage 

Vegetation Index 
(IPVI) 

IPVI = NIR/ (NIR+Red)  
Similar to NDVI, but it is 
computationally faster. 

Crippen (1990) 

Modified Simple 
Ratio (MSR) 

1/2
NIR NIR

MSR = -1 / +1
Red Red

    
         

 
Minimizes the effects of variable 

soil reflectance. 
Chen (1996) 

Modified 
Triangular 

Vegetation Index 
(MTVI1) 

( ) ( )1 1.2 1.2 2.5MTVI NIR Green Red Green =   − −  −   Predicting maize green LAI (leaf 
area index). 

Haboudane et al., 
(2004) 

Modified 
Triangular 

Vegetation Index-
Modified (MTVI2) 

( ) ( )

( ) ( )
2

1.5 1.2 2.5
2

2 1 6 5 0.5

NIR Green Red Green
MTVI

NIR NIR Red

   − −  − 
=

 + −  −  −

 
Better predictor of maize green 
LAI than MTVI1, and it accounts 

for soil background. 

Haboudane et al., 
(2004) 

Normalized 
Difference 

Vegetation Index 
(NDVI) 

NIR Red
NDVI

NIR Red

−
=

+
 

Sensitive to maize greenness. 
However, it can saturate in dense 

vegetation when LAI becomes 
very high. 

Tucker et al.,  
(1979) 
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Table 5 continued. 

 

Vegetation Index Equation Justification Reference 

Optimized Soil 
Adjusted 

Vegetation Index 
(OSAVI) 

0.16

NIR Red
OSAVI

NIR Red

−
=

+ +  
Eliminates the effect of the soil 

background. 

Rondeaux et al., 

(1996) 

Renormalized 
Difference 

Vegetation Index 
(RDVI) 

NIR Red
RDVI

NIR Red

−
=

+  

Detects maize and is not sensitive 
to the effects of soil and sun 

viewing geometry. 

Rougean and Breon, 

(1995) 

Soil Adjusted 
Vegetation Index 

(SAVI) 

( ) ( )( )1 L NIR Red
SAVI

NIR Red L

+  −
=

+ +  

The SAVI index is similar to NDVI, 
but it reduces the influence of soil. 

Huete (1988) 

Simple Ratio 
(SR) 

NIR
SR

Red
=

 

Detects healthy maize. However, it 
can saturate in densely vegetated 
maize plots when LAI becomes 

very high. 

Jordan (1969) 

Triangular 
Vegetation Index 

(TVI) 

( ) ( )0.5 120 200TVI NIR Green Red Green =   − −  −   
Detects green maize biomass and 

chlorophyll. 

Broge and Leblanc, 

(2000) 
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2.2.5 Classification Algorithms 

 

Three different approaches were applied for mapping the smallholder farms, namely, 

RF, SVM and ST. The RF algorithm is a non-parametric decision tree ensemble 

classifier (Breiman, 2001). This classifier consists of a large number of classification 

and regression trees (CART), where each pixel is classified using a majority voting 

system. The RF algorithm trains each tree using an independently drawn subset of the 

original data using bootstrapping or bagging, and determines the number of features 

to be used at each node through an evaluation of a random vector (Breiman, 2001). 

One tuning parameter was defined for RF, the number of trees to grow (ntree), and 

the rest of the parameters are set to default values. In this study, the ntree was 150; 

this minimized the Out of Bag error, similar to Rodriguez-Galiano et al. (2012). The RF 

algorithm was selected because it can handle high dimensional data, is less sensitive 

to over-fitting and makes no distribution assumptions (Armitage and Ober, 2010; 

Immitizer et al., 2012; Belgiu and Drăguţ, 2016). 

 

The SVM algorithm is also a non-parametric supervised learning classifier. The 

SVM uses the kernel function to transform training data into a high dimensional feature 

space, and to identify the optimal hyperplane that maximizes the distance between the 

separating hyperplane and the nearest sampling points (Cortes and Vapnik, 1995; 

Mountrakis et al., 2011; Mirik et al., 2013). The radial basis kernel was applied for SVM 

because of its good performance in previous studies (Knorn et al., 2009; Huang et al., 

2002). The regularization parameter, gamma value and kernel coefficient had to be 

defined for the classifier. In this study, the regularization parameter was 100, the 

gamma value was 0.01 and kernel coefficient was 0, similar to Kumar et al. (2015). 

The SVM algorithm was selected because it does not make assumptions of the 

probability distribution and is not sensitive to training sample size (Mountrakis et al., 

2011). A grid-search method was used to find these optimum turning parameters for 

both SVM and RF. 

 

Model stacking was applied; it collates the predictions generated by different 

machine learning algorithms and uses them to generate a second-level learning 

classifier (Wolpert, 1992). In this study, the RF and SVM classifier were stacked, and 
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the Logistic Classifier was used to combine the results. This ensemble model was 

applied because it has the ability to increase the predictive capacity of the two 

classifiers instead of using them independently (Wolpert, 1992). 

 

Although RF has a variable importance measure, the permutation feature 

importance measurement was applied in this study to determine the importance of the 

predictors in each experiment, since previous studies have shown that RF variable 

importance has variations in ranking predictors as different iterations are performed 

(Millard and Richardson, 2015). The permutation feature importance allows different 

trained models (RF, SVM and ST) to assess feature importance. The algorithm 

computes reference scores s for the selected model on experimental datasets D . This 

reference score is the overall accuracy of the classifier. The features j in the datasets 

D  are randomly shuffled to generate a corrupted version of the data ,k j
D . The scores 

,k j
s are computed on the corrupted datasets ,k j

D . The feature importance 
j
i  is then 

computed for feature 
j
f  according to Equation 1 

,
1

1
.

k

j k j
k

i s s
K =

= − 
 

(1) 

2.2.6 Experimental Design 

 

These samples were randomly separated into training (80% of the data) and testing 

(20% of the data) (Zhao, 2019). The training data were used for classification, whereas 

the testing data were used to evaluate the models. The vegetation indices in Table 5 

were derived for use during classification. Then, classification experiments depicted in 

Table 6 were set for the classification algorithms based on different combinations (data 

configurations). These experimental set-ups were adopted to investigate the best 

approach for mapping smallholder maize with Sentinel-1 and Sentinel-2 data. 
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Table 6. Combinations (data configurations) for the four experiments. 

 

Experiment 
Number 

Combinations Description 

1 VH, VV, VV/VH 
Sentinel-1 
polarization 

2 
VH, VV, VV/VH, DVI, GNDVI, IPVI, MSR, MTVI1, 
MTVI2, NDVI, OSAVI, RDVI, SAVI, SR, TVI 

Sentinel-1 
polarization and 
vegetation indices 

3 
VH, VV, VV/VH, DVI, GNDVI, IPVI, MSR, MTVI1, 
MTVI2, NDVI, OSAVI,RDVI, SAVI, SR, TVI, IPVI, 
2, 3, 4, 5, 6 7, 8, 8a, 11, 12 

Sentinel-1 
polarization, 
vegetation indices 
and Sentinel-2 
bands 

4 VH, VV, VV/VH, 2, 3, 4, 5, 6 7, 8, 8a, 11, 12 
Sentinel-1 
polarization, and 
Sentinel-2 bands 

 

2.2.7 Classification Model Evaluation and Planted Maize Area Estimation 

 

Model evaluation was done to select the ideal model for estimating the maize 

areas. The matrices used were the OA, kappa coefficient of agreement ( k̂ ), cross-

validation, precision, recall and F1-Score. The OA is the total classification accuracy 

and values close to 1 indicate that a classification is accurate; this is computed 

according to Equation 2. The OA was adjusted using the procedure of Olofsson et al. 

(2013) to account for classification errors. The k̂  is calculated according to Equation 3 

where k is the land-cover classes in the confusion matrix, 
i
x

+
and

j
x
+

 represent the 

marginal total for row i and column j. 
ii
x represents the number of observations in the 

row i and column i and N represents the total number of samples. k̂  values > 0.8 

represent a strong agreement between the classification map and the ground 

reference data. k̂  values between 0.4 and 0.8 represent moderate agreement and k̂  

values < 0.4 represent poor agreement (Congalton and Green, 2008). The equations 

for both matrices are given as: 

 

1Overall accuracy ,

k

ii
i

x

N
==


 

(2) 
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( )

( )
1 1

2

1

ˆ .

k k

ii i j
i i

k

i j
i

N x x x

k

N x x

+ +
= =

+ +
=

− 

=

− 

 


 

(3) 

The K-fold cross-validation method was then applied (Efron, 1983). This method 

divides the training data randomly into K-folds or subsets (in this study a standard 

value of 10 was used), where one of the subsets is used as a test data set and the 

other K-1 is used as a training data set used to fit the model. This process is repeated 

i times, and the calculated average accuracy is computed for the testing data. The 

accuracy statistic was used during cross-validation, where values close to 1 indicate 

a high probability that a sample is correctly classified. The standard deviation of each 

accuracy value is also computed in each iteration, and the average standard deviation 

is indicated using a +/− attached to the cross-validation accuracy. The precision, recall 

and F1-Score were computed to determine the rate at which the pixels were correctly 

classified. The classifier performs well if the precision, recall and F1-Score are close 

to 1 (Kuhn et al., 2017). 

 

Classification confidence was evaluated using McNemar’s test to compare each 

of the models together (McNemar, 1947). We tested the hypothesis that the two 

models perform the same. When the Chi-squared values are less or equal to 3.84, the 

models have the same error at a 95% confidence level. However, one model is 

superior if the Chi-squared values are greater than 3.84. 

 

The areas derived from the classification map were adjusted to account for 

classification error, and the 95% confidence interval was computed to compare the 

three models (Olofsson et al., 2013). These areas were compared to the areas derived 

from 18 maize farms measured during fieldwork to get an indication of how accurately 

the models estimate maize-planted areas using a regression equation. The p-value 

(p) and Pearson correlation coefficient (R) are used to evaluate the accuracy. 
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2.3. Results 

2.3.1 Classification Model Evaluation 

 

The performances of the three algorithms applied in this study are presented in Table 

7. The experiment with the lowest accuracies was experiment 1, containing the 

Sentinel-1 polarizations independently. This experiment had an accuracy of between 

0.68–0.85 and a cross-validation score of between 0.65–0.69 for the three algorithms. 

Furthermore, the precision (0.65–0.69), recall (0.60–0.71) and F1-Score (0.64) for this 

experiment were considerably lower than all the other experiments. The kappa values 

also indicate moderate agreement between models and the reference data. However, 

there was a notable increase in accuracy by adding vegetation indices to the Sentinel-

1 polarizations. The vegetation indices increased the accuracies by 24.2% for RF, 

8.7% for SVM and 9.1% for ST. Although there was a reasonable improvement in 

model performance (precision of 0.925–0.929, recall of 0.926–0.930 and F1-Score of 

0.925–0.930) in this experiment, adding Sentinel-2 bands improved the performance 

further by 5.9% for RF, 5.7% for SVM and 5.8% for ST in experiment 3. The best-

performing experiment for all algorithms was experiment 4 with Sentinel-1 polarization 

and Sentinel-2 bands. This experiment had the highest accuracy (0.99) and was the 

most accurate (cross-validation: 0.91–0.92, precision: 0.99, recall: 0.99, and F1-

Score: 0.99). McNemar’s test (Table 8) confirmed that all three algorithms had a 

different performance in experiments 1–3. However, the performances of the 

algorithms were similar for the ST-RF combination but different for the ST-SVM 

combination in experiment 4. 
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Table 7. The model performance statistics for the three classification (RF-Random Forest, SVM-Support Vector Machine, ST-Model Stack) algorithms in 

different experimental setups.  

 

 

 

 

 

 

 

 

 

 

Table 8. McNemar’s test results for the ST–RF and ST–SVM combinations for experiments 1–4. 

 

Combination Chi-Squared p-Value 

ST1–RF1 4396.2 0 
ST1–SVM1 430 1.7 × 10−95 
ST2–RF2 120 6.3 × 10−28 
ST2–SVM2 516.5 2.4 × 10−114 
ST3–RF3 6.3 0.0002 
ST3–SVM3 34.5 4.2 × 10−9 
ST4–RF4 0.05 0.83 
ST4–SVM4 9.3 0.0002 

 

Experiment Algorithm Overall Accuracy Cross-Validation Precision Recall F1-Score Kappa 

1 RF 0.679 0.647 +/− 0.131 0.652 0.660 0.637 0.509 
 SVM 0.845 0.688 +/− 0.127 0.693 0.706 0.640 0.526 
 ST 0.841 0.689 +/− 0.128 0.674 0.703 0.637 0.523 

2 RF 0.921 0.869 +/− 0.118 0.926 0.927 0.926 0.885 
 SVM 0.932 0.873 +/− 0.112 0.925 0.926 0.925 0.884 
 ST 0.932 0.870 +/− 0.109 0.929 0.930 0.930 0.890 

3 RF 0.980 0.903 +/− 0.127 0.983 0.983 0.983 0.972 
 SVM 0.989 0.883 +/− 0.106 0.991 0.991 0.991 0.986 
 ST 0.990 0.899 +/− 0.137 0.991 0.991 0.991 0.986 

4 RF 0.987 0.907 +/− 0.132 0.989 0.989 0.989 0.982 
 SVM 0.991 0.914 +/− 0.082 0.992 0.992 0.992 0.988 
 ST 0.991 0.921 +/− 0.112 0.991 0.991 0.991 0.986 
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2.3.2 Variable Importance 

 

The variable importance was determined for the experiments in Table 6 using the 

permutation feature importance algorithm (Millard and Richardson, 2015). The 

experiments (Figure 11) varied in terms of the most important predictors depending 

on the input data. In experiment 1, the VH polarization had the highest importance; 

however, when integrating other predictors (e.g., experiments 3 and 4), the VV 

polarization had a higher importance over the other polarizations. The DVI 

outperformed all the other vegetation indices, followed by GNDVI in experiment 2. The 

most important bands in experiments 3 and 4 were the blue, red-edge and short-wave 

infrared (SWIR) bands. Additionally, the Sentinel-2 spectral bands took the highest 

priority in terms of importance in comparison to the Sentinel-1 polarizations. 

 

 

Figure 11. Variable importance plot for the four experiments. 
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2.3.3 Mapping and Area Estimates for Maize 

 

The 95% confidence interval was computed for the maize and non-maize areas within 

the study area. There was a relatively small variation between the total areas classified 

by the three algorithms for maize in Table 9. The RF algorithm had a discrepancy of 

6% when compared to SVM, and 0.7% when compared to ST for the maize-planted 

areas. The ST algorithm had a variation of 5.5% in comparison to SVM. The areas 

classified as planted with maize had a lower error (0.7–1.2 ha) in comparison to the 

other areas which were not maize (1.2–1.88 ha) based on the 95% confidence interval. 

The RF algorithm had the lowest accuracy of ±1.2 ha when estimating maize areas, 

and SVM had the highest accuracy of ±0.7 ha. 

 

Table 9. Estimated areas based on experiment 4 generated by the three classifiers for maize-planted 

areas and non-maize areas. 

 

Algorithm Land Cover 
Total 

Area (ha) 
95% Confidence 

Interval (ha) 

RF Maize 7001.35 1.236 
 Non-Maize 33,496.05 1.884 

SVM Maize 7926.03 0.735 
 Non-Maize 32,571.37 1.242 

ST Maize 7099.59 0.819 
 Non-Maize 33,397.81 1.202 

 

The classified areas for 18 smallholder maize farms were related to the field measured 

area at the same farms in Figure 12. There was a positive relationship, which was 

significant at a 95% confidence interval (p < 0.05) between the classified areas and 

field measured areas. The correlation coefficients obtained by the RF, ST and SVM 

algorithms are 0.51, 0.78 and 0.84, respectively, indicating higher agreement with the 

field measurements. 
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Figure 12. Linear regression models for the field measured areas (y) compared to the classified areas 

(x) for the best-performing experiment (experiment 4).  

 

The three algorithms were used to generate the classification maps in Figure 13b–d 

depicting the spatial patterns of the two classes considered within the ROI. These 

maps compared well with the true color composite satellite image in Figure 4a for 

Sentinel-2. The classification maps generated by SVM, RF and ST were similar. The 

maize-planted areas were concentrated in the southern part of the Makhudutamaga 

district. The crop maps derived in this study are fundamental for crop forecasting and 

crop yield estimation at the end of the season. Changes induced by natural 

phenomena, such as climate variability and their effects on crop production, can be 

understood with the use of crop maps. 
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Figure 13. Classification maps for the optimal performing models in experiment 4, where (a) is the 

true color composite, (b) is RF, (c) is SVM and (d) is ST. 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

56 
 

2.4. Discussion 

 

This study assessed the applicability of Sentinel-1, Sentinel-2 and derived vegetation 

indices for mapping smallholder maize in Makhudutamaga, Limpopo Province. 

Classification experiments were set to evaluate the performance of three machine 

learning algorithms. The variable importance measures were employed to investigate, 

which predictors had the most influence in each experiment. The best performing 

algorithms were then used for estimating and mapping the maize-planted areas. 

Findings suggest that integrating Sentinel-1 and Sentinel-2 is ideal for mapping 

smallholder maize farms with the application of machine learning algorithms. 

 

Contrary to our expectations, the use of single-date Sentinel-1 radar data was 

not effective for mapping smallholder maize farms. The data combination consisting 

of Sentinel-1 polarizations exclusively had a low OA ranging from 67.9% to 84.5%, 

with RF being the worst performing classifier. These results are similar to those of 

Abubakar et al. (2020), who observed an OA of 78.9% when mapping smallholder 

maize using Sentinel-1 data by applying SVM. However, Useya and Chen (2019) 

reported an OA of 46% with RF and 40% with K-means classification when mapping 

smallholder maize farms and other crops with Sentinel-1 single-date data. The poor 

performance of the Sentinel-1 C-band data could be because of its shorter 

wavelength, which decreases canopy penetration in comparison to L-band SAR, which 

has a longer wavelength (Duguay et al., 2015; Khosravi et al., 2017). The 

inconsistencies in the planting pattern in the smallholder farms, such as a lack of equal 

row spacing, differences in the plant densities, leaf area index and crop heights in the 

study area, detract from the performance of the Sentinel-1 data because, according to 

Inoue et al. (2002), C-band data are sensitive to changes in biomass. 

 

The integration of Sentinel-1, Sentinel-2 and vegetation indices were ideal for 

detecting smallholder maize farms, similar to previous studies in comparison to using 

Sentinel-1 data independently. Experiments 2, 3 and 4 show a clear increase in 

performance measures, in both OA and cross-validation scores. These values are 

more consistent and similar to each other, indicating the positive impact of radar-

optical fusion on classification accuracy. Other studies such as that of Van Tricht et al. 
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(2018) achieved OAs between 75 and 82% when mapping maize and other land-cover 

classes with the application of Sentinel-1 and Sentinel-2 data. Abubakar et al. (2020) 

achieved an OA of 97% when mapping smallholder maize with vegetation indices, 

Sentinel-1 and Sentinel-2 data. The high accuracies attained in this current study are 

attributed to the use of ideal locations of the electromagnetic spectrum such as the 

red-edge and SWIR. Furthermore, the vegetation indices applied in the current study 

reduce background effects (soils and other classes such as buildings), thereby 

enhancing the detection of crops and vegetation classes (Jordan, 1969; Tucker et al., 

1979; Huete, 1988; Crippen, 1990; Rougean and Breon, 1995; Chen, 1996; Gitelson 

et al., 1996; Rondeaux et al., 1996; Broge and Leblanc, 2000; Haboudane et al., 

2004). 

 

The differences in performance of the SVM, RF and ST algorithms were 

expected. For example, Ouzemou et al. (2018) reported different OAs of 89.3%, 85.3% 

and 57.2% for RF, SVM and Spectral Angle Mapper (SAM) for crop type mapping with 

Landsat 8 data. Sonobe et al. (2014) found that SVM (OA of 89.1%) had a superior 

performance than RF (OA of 87.8%) and CART (OA of 81.2%) algorithms for 

classifying crops with TerraSAR-X data. These differences can be induced by various 

factors. In this study, the first experiment had the lowest accuracies; notably, RF had 

a low performance. This is because RF has been shown to be highly sensitive to small 

number of training input data in previous studies, in comparison to SVM and ST (Foody 

et al., 2006; Thanh Noi and Kappas, 2018). All three algorithms had high accuracies 

in the four experiments, possibly because the ROI used for training focused on maize-

planted areas. This approach reduced the effects of using multiple land-cover classes 

individually which has a potential to lower the classification accuracy. 

 

The variable importance results indicating the superiority of the VV polarization, 

DVI, GNDVI, blue band, red-edge and SWIR bands for mapping maize were expected. 

Forkuor et al. (2014) found that the VV band was superior to the VH band derived from 

TerraSAR-X for crop mapping applications. Deschamps et al. (2012) used Sentinel-1 

data for crop classification and observed that the VV band was important for crop 

classification. However, other studies, for example Inglada, et al. (2016) and Arias et 

al. (2020), have reported that the VH band is more important than the VV bands for 
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mapping crops because it captures the volume scattering from the crop canopy 

structure (McNairn et al., 2009). These results suggest that it is important to evaluate 

the polarizations based on the locality where they are applied. The finding that DVI 

and GNDVI are the most important indices, when using radar data and vegetation 

indices for crop classification, highlights the importance of evaluating different indices 

instead of relying on the commonly used NDVI index. The blue band, red-edge and 

SWIR bands have proven to be important in previous studies (Immitzer et al., 2016; 

Sonobe et al., 2018; Yi et al., 2020).). These bands capture the biochemical properties, 

water content and residue cover of different crop types that improves their detection 

(Zhang et al., 2020). In experiment 2, the OSAVI index was the least important 

variable. However, this seems to change in experiment 3, where this index ranked 

higher than RDVI, MTV12, MTV11, DVI, SAVI and TVI. This may be due to the 

correlation of these bands with the raw Sentinel-2 bands in experiment 3, while the 

indices in experiment 2 have a lower correlation between them. 

 

The RF and ST algorithms had a relatively small difference of 0.7% when 

estimating the total planted maize area class, while the SVM algorithm seems to have 

overestimated the planted maize area by approximately 6% compared to the results 

from other algorithms. Even though SVM had a higher correlation coefficient than the 

RF and ST algorithms, we could not conclude that the SVM was the better estimator 

since the validation samples are relatively small. More validation data are required to 

provide more information on the performance of each algorithm in relation to ground-

measured areas. However, since all algorithms have similar positive values of 

correlation coefficients, we can conclude that these algorithms can be used to estimate 

smallholder maize farmed areas. Unfortunately, official agricultural statistics such as 

production areas are not available in our study area, and could have been used to 

validate these observations. 

 

The findings of this study are applicable to the Sustainable Development Goals 

(SDG), specifically, SDG number 2 (Zero Hunger), target 2.4 and indicator 2.4.1, which 

concern mitigating factors that affect agricultural production, ensuring sustainable 

agriculture and increasing the proportion of agricultural area under production 

(Richard, 2015). The agricultural production area is of great importance, as it informs 
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local government and related stakeholders about agricultural activities and provides 

means by which production can be forecasted. The production area is one of the 

important indicators of food insecurity, especially in developing countries such as 

South Africa. Thus, this study contributes towards this SDG by using remote sensing 

data to accurately map production areas for smallholder maize farms. The spatial 

information generated can be used by local government to assist smallholder farms 

and policy implementation (Richard, 2015). 

 

The limitations of this study were that a limited number of sample points were 

collected during fieldwork due to the undulating nature of the terrain, high cost to 

conduct the fieldwork and prominent mountainous areas, which were not accessible 

for data collection. This small sample size affects the statistical robustness of results 

(Foody, 2009). Secondly, the poor farm management practices of smallholder farmers 

such as weeds and patches of grass growing in some of the farms affect the spectral 

signature of maize and decrease the accuracy at which they can be detected with 

remotely sensed imagery. Thirdly, the use of red-edge indices, which have 

demonstrated some potential in improving the detection of vegetation in previous 

studies, should be explored (Forkuor et al., 2018; Kim and Yeom, 2014). 

 

2.5. Conclusion 

 

The overall aim of the study was to develop a framework to enhance the delineation 

of smallholder maize areas using single-date Sentinel-1, Sentinel-2 and derived 

vegetation indices. The results showed that single-date Sentinel-1 on its own was not 

sufficient in mapping planted maize fields. When Sentinel-2 data were integrated with 

Sentinel-1 data, an improvement of 24.2%, 8.7% and 9.1% for RF, SVM and ST 

algorithms, respectively, were observed. Machine learning proved to have a high 

capacity to estimate smallholder maize-planted areas (7001.35 ± 1.2 ha for RF, 

7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST). The framework used in this 

study can be applied when evaluating different algorithms for mapping smallholder 

farms. The crop maps derived in this study are fundamental for crop monitoring, land-

use policies and aiding food security planning activities. 
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Chapter 3 

Mapping Smallholder Maize Farms Using Multi-Temporal Sentinel-1 

Data  

 
Based on: Mashaba-Munghemezulu, Z., Chirima, G.J. and Munghemezulu, C., 2021. 
Mapping Smallholder Maize Farms Using Multi-Temporal Sentinel-1 Data in Support 
of the Sustainable Development Goals. Remote Sensing, 13(9), 1666. 
 

Abstract 

 

Reducing food insecurity in developing countries is one of the crucial targets of the 

Sustainable Development Goals (SDGs). Smallholder farmers play a crucial role in 

combating food insecurity. However, local planning agencies and governments do not 

have adequate spatial information on smallholder farmers, and this affects the 

monitoring of the SDGs. This study utilized Sentinel-1 multi-temporal data to develop 

a framework for mapping smallholder maize farms and to estimate maize production 

area as a parameter for supporting the SDGs. We used Principal Component Analysis 

(PCA) to pixel fuse the multi-temporal data to only three components for each 

polarization (vertical transmit and vertical receive (VV), vertical transmit and horizontal 

receive (VH), and VV/VH), which explained more than 70% of the information. The 

Support Vector Machine (SVM) and Extreme Gradient Boosting (Xgboost) algorithms 

were used at model-level feature fusion to classify the data. The results show that the 

adopted strategy of two-stage image fusion was sufficient to map the distribution and 

estimate production areas for smallholder farms. An overall accuracy of more than 

90% for both SVM and Xgboost algorithms was achieved. There was a 3% difference 

in production area estimation observed between the two algorithms. This framework 

can be used to generate spatial agricultural information in areas where agricultural 

survey data are limited and for areas that are affected by cloud coverage. We 

recommend the use of Sentinel-1 multi-temporal data in conjunction with machine 

learning algorithms to map smallholder maize farms to support the SDGs. 

 

Keywords: Sustainable Development Goals; smallholder; maize; Sentinel-1; principal 

component analysis; SVM; Xgboost 
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3.1 Introduction 

 

The United Nations agreed on 17 Sustainable Development Goals (SDGs)  in 2015  

with the aim of ensuring peace and prosperity for the people and the planet (Richard, 

2015). The SDG number 2—end hunger, achieve food security and improve nutrition, 

and promote sustainable agriculture—aims to address this global crisis. Smallholder 

farming is one of the vehicles that can be used to achieve this goal (Abraham and 

Pingali, 2020). Smallholder farms are in most cases the only main source of 

reasonable income and food security for rural livelihoods in most developing countries. 

To achieve this goal, spatial agricultural information such as the spatial distribution of 

smallholder farms and production area estimates are pre-requisites. The production 

area estimates provide a quantitative measure in which food security can be 

forecasted in rural communities. Local governments can alleviate starvation and 

provide targeted relief efforts by using this information. Food security in developing 

countries remains a big challenge that the world is currently facing (Charman and 

Hodge, 2007; FAO, 2018). In Africa, smallholder farmers produce 80% of the maize in 

the regions, which forms part of the staple diet (FAO, 2016). The smallholder maize 

farmers of Africa are faced with environmental problems such as insufficient rainfall 

because of droughts, insect pest infestations, and infertile soils due to a multitude of 

reasons (e.g., monoculture, desertification, salinization, and degradation) (Jari and 

Fraser, 2009; Aliber and Hall, 2012; Calatayud et al., 2014). Additionally, economic 

issues such as the use of outdated technologies, limited market opportunities, and 

limited access to capital are prevalent in smallholder farms (FAO, 2016; Giller et al, 

2006). These issues coupled with an increase in demand for maize products have 

contributed to food insecurity, particularly in rural communities that are reliant on maize 

(Santpoort, 2020).  

 

Remote sensing data offers opportunities to monitor and map smallholder farms 

because they are able to capture their heterogeneous and complex characteristics 

(Kogan, 2018). Optical remote sensing has been used to map agricultural fields (Liu 

et al., 2020, Chakhar et al., 2020). However, clouds and cloud shadows remain a big 

challenge in extracting phenological parameters of crops during the growth stages and 

mapping crop fields using a multi-temporal approach due to data gaps (Baret et al., 

2013). Radar data have emerged as one of the best remote sensing tools that can be 
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used to map agricultural crops without being affected by clouds (Campbell and Wynne, 

2011). Previously, this data type was limited to specific regions and campaigns 

(Woodhouse, 2017). The Sentinel-1A/B Synthetic Aperture Radar (SAR) C-band 

satellites were launched by the European Space Agency (ESA) with a wider coverage 

(Attema, 2007). Applications of SAR data in agricultural crop mapping have increased 

over the years; this was mainly driven by free access to the data and improved spatial 

(10 m) and temporal resolutions with a global coverage. The smallholder farms are 

generally less than 2 ha in size, which makes it difficult to map them with coarse 

resolution sensors (Jain et al., 2013). Therefore, the characteristics of Sentinel-1 

sensors make it a suitable tool for agricultural applications (McNairn and Brisco, 2004). 

 

Different authors have used a Sentinel-1 multi-temporal approach to map 

agricultural crops. Useya and Chen (2019) used Sentinel-1 data to map smallholder 

maize and wheat farms in Zimbabwe. The authors used model-level data fusion (i.e., 

data were stacked and used as input into the models) and achieved overall accuracies 

of 99% and 95% for different study area sites. Kenduiywo et al. (2018) applied a 

Dynamic Conditional Random Fields classification procedure on multi-temporal 

Sentinel-1 images to map different kinds of crops (maize, potato, sugar beet, wheat, 

and other classes). The authors were able to map maize with a producer and user 

accuracies of 93.74% and 90.04%, respectively. Whelen and Siqueira (2018) used 

comprehensive Sentinel-1 multi-temporal data to identify agricultural land cover types. 

They concluded that vertical transmit and vertical receive (VV) and vertical transmit 

and horizontal receive (VH) polarizations individually and combined were able to 

provide an accuracy of above 90% over North Dakota. All authors mention the problem 

of “Big Data” when dealing with Sentinel-1 multi-temporal images due to the increase 

in dimensionality. Therefore, processing multi-temporal satellite data requires more 

computational resources. McNairn and Brisco (2004) provide a detailed review on the 

applications of C-band polarimetric SAR for agricultural applications. 

 

The use of the Principal Component Analysis (PCA) technique on Sentinel-1 to 

enhance the detection of smallholder maize farms has not yet been fully established. 

The PCA is a simple but powerful multivariate technique that transforms inter-

correlated variables into a set of new linearly orthogonal (non-correlated) variables 
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called principal components, and these components have maximum variance (Abdi 

and Williams, 2010). The condition of maximum variance is an added advantage to 

the classification algorithms as this can allow determination of decision boundaries 

with ease, therefore enhancing the detection of different classes. Meanwhile, a 

stacking approach such as the one used by Abubakar et al. (2020), Jin et al. (2019), 

and Useya and Chen (2019) may result in class overlap due to inter-correlated bands 

that may exist within the stacked datasets. This can lead to potential misclassification 

of different classes. Readers should consult Canty (2014) for more details on PCA 

formulation. 

 

In this study, we used multi-temporal images of Sentinel-1 to develop a framework 

to map smallholder maize farms using well-known machine learning algorithms 

(Support Vector Machine—SVM and Extreme Gradient Boosting—Xgboost) under a 

complex environment. The strengths of these algorithms are that: (1) the SVM 

algorithm can handle high dimensional data using a few training samples (Chakhar et 

al., 2020). (2) The Xgboost algorithm runs at an improved computational speed, which 

is advantageous when processing multi-temporal images for the maize planting 

season (Chen and Guestrin, 2016). (3) Additionally, both algorithms have a good 

feature identification capacity and are non-parametric (Chakhar et al., 2020; Whelen 

and Siqueira, 2018; Piiroinen et al., 2015). The two-stage image fusion approach was 

applied. Firstly, pixel-level fusion was done; the purpose of this first stage is to reduce 

computational demands on the system by reducing the dimensions of the datasets 

using PCA. Secondly, model-level fusion was done; this second stage uses sufficient 

principal components for all the reduced polarizations as input into the classifying 

algorithms.  

 

Generally, this approach has been used mainly in hyperspectral remote sensing 

image classification or change detection analysis (Licciardi et al., 2011; 

Chatziantoniou et al., 2017). It has not yet been applied to Sentinel-1 to map 

smallholder maize farms and estimation of their production areas. The approach was 

tested on a rural community in Makhuduthamaga, Limpopo province of South Africa. 

This region is dominated by smallholder maize farms and most farmers farm for 

subsistence. 
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3.1 Materials and Methods 

3.2.1 Study Area and Field Data Collection  

 

Limpopo province is located on the northern part of South Africa. This province hosts 

Makhuduthamaga (Figure 14), which is the focus of this study. The area has rural 

villages that focus on smallholder maize farming (SDM, 2019). Hence, due to the 

dominance of smallholder farms in the area, it was selected as a case study. Weather 

stations from the Agricultural Research Council located in Nchabeleng, Ga-Rantho, 

and Leeuwkraal have recorded an average annual rainfall of 536 mm and an average 

annual temperature of 7 °C in winter and 35 °C in summer. Makhuduthamaga has an 

undulating topography with rock habitats in the form of rock outcrops, rocky ridges, 

rocky flats, and rocky refugia (Siebert et al., 2003). 

 

Field surveys for the collection of training and validation data for different land 

cover types within the smallholder boundaries occurred from 18 to 21 February 2019. 

A handheld Garmin Global Positioning System (GPS) device which has a positional 

accuracy of 1.5 meters (on average mode) used to capture the coordinates of different 

land cover classes. The dominant land cover classes in the study area were captured; 

these include maize, bare land, and vegetation. The bare land and vegetation classes 

were combined to generate training samples (n = 9895 pixels) for the non-planted 

areas. The maize class consisted of n = 9802 pixels training samples. The samples 

were randomly selected into 80% training and 20% validation for each class. 

Constraining the land cover classes to two classes reduced the potential of 

classification errors from using the classes individually due to the variations in the 

natural occurrence of certain features. Limiting the area of investigation to the 

smallholder boundary excluded the farming activities in residents’ backyards, thus only 

land that was demarcated as smallholder farmland was considered. A total of 18 

smallholder farms were randomly selected in the field for validation purposes. Their 

areas were measured using a GPS. Most of these farms do not have proper access 

roads, which made it difficult to survey more farms.  
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Figure 14. Study area location map for Makhuduthamaga in Limpopo, South Africa. 

 

3.2.2 Sentinel-1 Data Acquisition and Pre-Processing 

 

Sentinel-1 consists of a constellation of two satellites—Sentinel-1A and Sentinel-1B—

which carry C-band SAR instruments to observe the Earth’s surface. Sentinel-1 has a 

frequent repeat cycle of 12 days and the repeat cycle of the two-satellite constellation 

can offer a 6 day repeat cycle depending on the availability of observations from both 

of them and the location (Torres et al., 2012). The advantages of this configuration in 

the current study is that Sentinel-1 can capture the spatio-temporal variations of 

smallholder farms. This study used Sentinel-1 Level-1 Ground Range Detected (GRD) 

images, which cover the maize cropping season (November 2018–July 2019) inclusive 

of all the smallholder farms. These images were 22 in total, and they were acquired 
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from the Copernicus Open Access Hub in the Interferometric Wide (IW) mode. Both 

the VV and VH polarizations with a 10 m spatial resolution were used.  

 

Pre-processing of the radar images was done in the Sentinel Application Platform 

(SNAP) according to Filipponi (2019). Firstly, the orbit files were applied to update the 

orbit state vectors in the metadata files. Secondly, radiometric calibration was done by 

applying annotated image calibration constants to convert the intensity values into 

sigma nought values. Thirdly, speckle filtering was performed to reduce the granular 

noise caused by many scatters. Fourthly, the geometric distortions caused by 

topography were corrected for using the Range Doppler terrain correction with a 3 sec 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). Finally, the 

two polarizations (VV and VH) were converted from a linear scale to a decibel scale 

and the ratio VV/VH was calculated. 

 

Figure 15 illustrates the mean polarizations for selected planted maize farms and 

non-planted maize areas during the planting season. The mean backscatter values for 

the VV, VH, and VV/VH polarizations for maize are −13.66, −20.14, and 0.68 dB, 

respectively. The aggregated class has mean values of −14.83, −20.67, and 0.72 dB 

for VV, VH, and VV/VH polarizations, respectively. The VH polarization has the highest 

variance of 6.31 dB compared to VV polarization with 2.65 dB and the VV/VH ratio 

with 0.0009 dB. The VH polarization seems to respond more effectively to the growing 

stages of maize. A similar observation was made by Son et al. (2017) when they 

studied the rice crop also using Sentinel-1 data. This response is attributed to an 

increase in the volumetric structure of maize, which increases multiple reflections of 

the incoming signal. 
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Figure 15. The mean raw VV, VH, and VV/VH backscatter profiles. The extracted polarizations are for 

maize crops and other classes, which refers to aggregated bare soil and grasslands. 

 

3.2.3 Machine Learning Algorithms 

 

The SVMs are advanced non-parametric statistical learning kernel-based algorithms 

commonly used in classification of remote sensing data (Foody and Mathur, 2004; 

Wan and Chang, 2019). Training data are projected into a higher-dimensional space 

using a linear/kernel-based function to optimally separate classes (Son et al., 2017). 

Parameters that optimally define the linear/non-linear hyperplane to separate the 

target classes are determined through an optimization problem. New data are 

evaluated based on the defined hyperplane constraints and categorized accordingly. 

The SVM requires regularization parameters that assist in tuning the model. These 

are C and gamma values, which were determined by the grid search method. In this 

study, the regularization parameter was 100, the gamma value was 0.01, and a Radial 

Basis Function kernel was used. A comprehensive review of the tuning method can 

be found in Mountrakis et al. (2011).  
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The Xgboost is part of the classification and regression ensemble gradient 

boosting machines (e.g., Gradient Boosting and AdaBoost). This boosting technique 

is an improved version of Gradient Boosting and AdaBoost because it has a higher 

computational efficiency and improved capacity to deal with over-fitting. For example, 

Xgboost grows trees parallel to each other, whereas the original Gradient Boosting 

model builds the trees in a series configuration (Chen and Guestrin, 2016; Polly et al., 

2019; Nobre et al., 2019). Boosting uses many weak classifiers to produce a powerful 

classifier in an additive manner. The classifiers are trained on the weighted versions 

of the training sample; misclassified data are given more weight during the iteration 

process so that the next step focuses on the misclassified data (Chen and Guestrin, 

2016). The predictions improve over time and the final predictions are decided through 

a majority voting process to create vigorous predictions. This algorithm contains a 

rigorous number of regularization parameters that can be tuned to improve predictions 

and minimize overfitting (Georganos et al., 2018). These parameters are also 

determined using a grid search method. 

 

3.2.4 Experimental Design 

 

The experimental design scheme is illustrated in Figure 16. The first stage (i) involves 

preparation and pre-processing of Sentinel-1 images as described in Section 3.2.2. 

The second stage (ii) pixel-based PCA image fusion, which reduces the dimensions 

of the multi-temporal Sentinel-1 images into only 3 bands (i.e., principal components 

1, 2, and 3). The bands describe more than 70% of the information contained in the 

multi-temporal images (Figure 17). The selection criteria were motivated by reducing 

the computational demands on the system, without compromising on the accuracy of 

the results. The third stage (iii) entails model-level data fusion and application of SVM 

and Xgboost classification algorithms. The last stage (iv) is the generation of the 

classification map. The second stage (ii) is necessary to reduce computational 

demands and Random Access Memory requirements. The third stage (iii) involves 

model-level data fusion using machine learning algorithms as described in Section 

3.2.3. The data were separated into training (80%) and testing (20%) (Zhao et al., 

2019). The performance and results of the algorithms in different experiments are 

compared using well-known evaluation metrics. This experiment was implemented 
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using a Python programming platform on a Ryzen 9 3900, 12 cores processor at 3.8 

GHz and 128 GB RAM computer.  

 

Figure 16. Schematic illustration of the experimental design. 

 

 

Figure 17.  The variance explained by the VV, VH, and VV/VH components. The first three components, 

which explained greater than 70% of the variance, were selected. 
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3.2.5 Accuracy Assessment and Smallholder Maize Area Estimation 

 

The models and experiments were evaluated using standard statistical analysis, i.e., 

confusion matrix, cross-validation, overall accuracy, precision, recall, F1-Score, and 

McNemar’s test (Skiena, 2017; Aggarwal, 2014). These statistical measures have 

been used to evaluate different machine learning algorithms, such examples include, 

but are not limited to, Petropoulos et al. (2012), Tong et al. (2020) and Cucho-Padin 

et al. (2019). The confusion matrix is constructed by comparing the results from the 

classification algorithm with the reference data collected in the field (Lewis and Brown, 

2001). The matrix can be used to derive accuracy statistics for the map. Such 

statistical values include overall accuracy, kappa coefficient of agreement ( k̂ ), and 

conditional kappa coefficient of agreement ( ˆ
i
k ). These values are computed using 

Equations (1), (2), and (3 according to Congalton and Green (2008)): 
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where k is the land cover classes in the confusion matrix, 
+i
x  and 

+ j
x  represent marginal 

total for row i and column j. 
ii
x  

represents the number of observations in row i and 

column i. N represents total number of samples.The overall accuracy describes the 

proportion of the area mapped correctly. It provides a user with a probability that a 

randomly selected location on a map is correctly classified (Olofsson et al., 2013). 

Kappa values that are more than 80% indicate good agreement between the reference 

and derived classification map. The k̂  measures the overall level of agreement 

between the reference data and the model data. The ˆ
i
k  allows computation of the 
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level of agreement between the reference data and the model data for a specific class 

i. 

 

Precision measures the ability of the algorithm not to label a true positive sample 

( tp ) or a sample that is false positive ( fp ). Recall measures the ability of the algorithm 

to find all the true positives, and false negative is represented by fn . F1-Score is the 

harmonic mean calculated from both precision and recall values. These statistical 

values are calculated according to Equation (4) (Lewis and Brown, 2001; Davis and 

Goadrich, 2006; Flach, P.; Kull, 2015):   

2

2

,
'

,
'

*
1 (1 ) , 1.

* *

tp
precision

tp fp

tp
recall

tp fn

precision recall
F Score where

precision recall
 



=
+

=
+

− = + =

 (4) 

 

Cross-validation is another statistical method used to evaluate the performance 

of the model by dividing the data into k-folds (e.g., a standard value of 10 folds was 

used); the algorithm uses one set of data as training and the other sets are used to 

evaluate the model. During this iterative process, the accuracy score is calculated. 

The final cross-validation value is derived of the average accuracies from each 

iterative process. The superiority and significance between the SVM and Xgboost 

algorithms for each experiment were evaluated using a nonparametric McNemar’s 

statistical test (McNemar, 1974; Edwards, 1948; De Leeuw et al., 2006). The test is 

based on chi-square (χ2) statistics, calculated using Equation (5):  

( )
( )

2

12 212

12 21

1f f

f f


− −
=

+ , 
(5) 

where 
12
f  denotes the number of cases that are wrongly classified by Model 1 but 

correctly classified by Model 2, and 
21
f  denotes the number of cases that are correctly 

classified by Model 1 but wrongly classified by Model 2 (Manandhar et al., 2009). This 

was computed from two contingency matrices from the two algorithms that were being 

tested. 
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The unbiased proportional mapped areas were estimated using the method 

described by Olofsson et al. (2013). This method takes into account errors in 

misclassifications as reported in a confusion matrix. The mapped areas are estimated 

at 95% confidence intervals, and this is useful in providing error margins for the 

estimated areas for the end-users. Additional validation of the classification models’ 

ability to estimate smallholder maize was done. The areas measured at 18 smallholder 

farms were compared to the estimated areas from the SVM and Xgboost algorithms 

through a linear regression model. The p-value (p) and Pearson correlation coefficient 

(R) were derived to evaluate the agreement. 

 

3.2 Results 

3.3.1 Accuracy Assessment  

 

A two-stage data fusion approach was used in this study, utilizing a time-series of 

Sentinel-1 polarization datasets. The SVM and Xgboost accuracy assessment results 

are listed in Table 10. The SVM has an overall accuracy of 97.1%, cross-validation 

score value of 89%, kappa value of 93.3%, and the conditional kappa coefficient of 

agreement of 90.54% and 95.7% for maize and non-planted classes, respectively. The 

Xgboost has an overall accuracy of 96.8%, cross-validation score value of 96%, kappa 

value of 92.6%, and conditional kappa coefficient of agreement of 90.4% and 94.4% 

for maize and non-planted classes, respectively. The maize classified pixels were 

similar for both classifiers based on the confusion matrix. The precision, recall, and 

F1-Score values for both algorithms have similar values that are more than 90% for 

both classes. It can also be noted that the recall for the planted maize class in both 

cases is approximately 3.7% lower compared to the precision score value. This 

observation is also supported by the kappa statistic and suggests that the planted 

maize class is less accurately classified compared to the non-planted class.  

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

73 
 

Table 10. Accuracy assessment produced for the Sentinel-1 multi-temporal classification using the 

Support Vector Machine (SVM) and Extreme Gradient Boosting (Xgboost) algorithms. 

 

Model 
Overall 

Accuracy 

Cross- 

Validation 
Confusion Matrix  

SVM 

  
Planted 

Maize 
Non-Planted 

0.971 0.89 +/−0,05 20 139 1457 

    628 50 790 

Xgboost 

  
Planted 

Maize 
Non-Planted 

0.968 0.96 +/−0.02 20 115 1481 

    825 50 593 

SVM Xgboost 

Classes Planted Maize  Non-Planted  
Planted 

Maize  
Non-Planted  

Precision 0.970 0.972 0.961 0.972 

Recall 0.933 0.988 0.931 0.984 

F1-Score 0.951 0.980 0.946 0.978 

 

These results show that the SVM and Xgboost produced an acceptable 

performance in mapping smallholder farms and illustrated the capability of two-stage 

image fusion employed in this study. In particular, both algorithms classified the non-

planted area class better by approximately 5% compared to the planted maize class. 

The cross-validation score indicates that the Xgboost algorithm is more consistent and 

stable compared to the SVM algorithm. The Xgboost algorithm cross-validation score 

outperformed the SVM algorithm cross-validation score by 7%. This is in contrast with 

the other statistical measures (Table 10), which seem to suggest that SVM has 

outperformed the Xgboost algorithm. 
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In situations where statistical evaluation matrices seem to contradict each other, 

a non-parametric statistical test must be conducted. In this case, a McNemar’s 

significance test was applied. If the estimated test statistic is lower than the critical chi-

square table value (i.e., 3.84 at 95% confidence level), the null-hypothesis is rejected 

and it is concluded that there is no significant difference between the two model results 

(Sahin and Colkesen, 2019). The McNemar’s chi-square value of 64.62 and p-value 

of 9.085×10−16 were obtained by comparing the two algorithms. Therefore, the null-

hypothesis was rejected and the conclusion was that the two results are statistically 

different from each other.  

 

3.3.2 Variable Importance 

 

Permutation variable importance was used to compute variable importance using the 

two estimators (SVM and Xgboost). The permutation algorithm can be defined to be 

the decrease in a model score when a single feature value is randomly shuffled 

(Breiman, 2001). Variable importance for each VV, VH, and VV/VH PCA 1, 2, and 3 

polarizations are depicted in Figure 18. The VH and VV PCA polarizations formed the 

top six most important variables and the least important variables were the VV/VH 

PCA ratios. Specifically, the VH PCA 3 received the highest score, followed by the VV 

PCA 1 and VH PCA 2. The dominance of VH and VV polarizations was expected. 

Figure 19 depicts the VV, VH, and VV/VH PCA polarization composites. Smallholder 

maize farms are clearly enhanced by the VV and VH PCA polarization composites 

compared to the VV/VH polarizations.  
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Figure 18.  Permutation importance scores for the Principal Component Analysis (PCA)-derived images 

used in the analysis. PCA 3 for the VH polarization is the most important variable in our study. The 

same results were obtained for the two estimators. 
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Figure 19. Examples of the PCA images for different polarizations derived from Sentinel-1 datasets. 

The PCA VH polarization composite seems to visually enhance smallholder farms compared to other 

polarizations. 

 

3.3.3 Mapping and Area Estimate for Smallholder Maize Farms 

 

The maps for the maize planted areas produced by the SVM and Xgboost algorithms 

are depicted in Figure 20. The classification maps reveal the spatial distribution of the 

smallholder maize farms in our study area. It can be seen that most farmers that 

planted maize during the 2018/2019 season are from the south eastern part of 

Makhuduthamaga. These observations are consistent with both maps that were 

produced by the two algorithms. Visual inspection reveals no obvious disagreement 

between the two maps as predicted by the SVM and Xgboost algorithms. 

 

The unbiased proportional areas were generated. The SVM algorithm estimated 

the planted maize class to be 7073.558 ± 0.01 ha and the non-planted class was 

estimated to be 33420.96 ± 0.01 ha. Meanwhile, the Xgboost estimated the planted 

maize class area to be 7303.32 ± 0.180 ha and the non-planted class was estimated 
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to be 33191.2 ± 0.820 ha. It is worth noting that the SVM algorithm has better error 

margins (0.01 ha) for both classes compared to the Xgboost algorithm, which has error 

margins of 0.18 and 0.82 ha for the planted maize class and non-planted areas, 

respectively. The areas for the 18 smallholder farms (Figure 21) compared well with 

those generated by the classification models. The SVM classifier had a better fit (R = 

0.89) in comparison with the Xgboost algorithm (R = 0.84). The linear model was an 

ideal fit for the data. The positive relationship was significant at a 95% level (p < 0.5). 
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Figure 20. Planted maize crop maps produced by the SVM (a) and Xgboost (b) algorithms. Insert maps 

for SVM and Xgboost are represented by (c) and (d), respectively. 
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Figure 21. Comparison of the field measured areas (y) to those generated by the classification models 

(x) applying the SVM and Xgboost algorithms. 

 

3.3 Discussion 

 

This study used Sentinel-1 multi-temporal datasets to map smallholder maize farm 

spatial distribution and to estimate maize production area for the maize crop. A two-

staged image fusion technique was employed. The first stage involved using a pixel-

based PCA technique to transform the original multi-temporal backscatter values into 

three component images that explained more than 70% of the information. This was 

done for the VV, VH, and VV/VH polarizations. The second stage involved model-level 

fusion, where all the components were used as input features into the machine 

learning algorithms. The SVM and Xgboost algorithms were used as classifiers to map 

the distribution of the maize farms and production area in Makhuduthamaga of 

Limpopo province, South Africa. This study found that Sentinel-1 had a high capacity 

to map smallholder maize planted areas with the application of machine learning 

algorithms. Furthermore, the two processing strategies used in this study detected 

smallholder maize farms with acceptable accuracy. 

 

The accuracy assessment results were also expected. The overall accuracies 

were better than 90%, the cross-validation scores were greater than 85%, and the 
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kappa coefficient of agreement and conditional kappa coefficient of agreement were 

all better than 90%. These results confirm the suitability of our approach in mapping 

smallholder farms using Sentinel-1 multi-temporal datasets. Other studies such as 

Ndikumana et al. (2018) used Sentinel-1 multi-temporal data to map agricultural crops 

by applying a Deep Recurrent Neural Network and obtained favorable results that 

were better than 85% in accuracy. The SVM and Xgboost algorithms estimated maize 

production areas to be 7073.558 ± 0.01 ha and 7303.32 ± 0.180 ha, respectively. 

These values are relatively comparable to each other and SVM seems to have smaller 

error margins at a 95% confidence level and slightly higher overall accuracy than the 

Xgboost. However, for cross-validation scores, the Xgboost performed better. 

McNemar’s test showed that the results from the two algorithms were statistically 

different from each other. Other authors have evaluated different machine learning 

algorithms and obtained mixed performance indicators. Aguilar et al. (2018) used 

different ensemble classifiers (Random Forest, SVM, and Majority Voting) to map 

smallholder farming systems based on the cloud-based multi-temporal approach and 

obtained overall accuracies ranging from 60% to 72%. Dong et al. (2018) used 

Xgboost algorithms together with Decision Tree, Random Forest, and SVM to map 

land cover using Gaofen-3 Polarimetric SAR (PolSAR) data and obtained overall 

accuracies ranging from 88.4% to 93%. Zhong et al. (2019) used machine learning 

algorithms and Deep Neural Network algorithms to map crop types and found that a 

Convolutional Neural Network model achieved 85.5%, while the Xgboost achieved 

82.4% in overall accuracy under a multi-temporal classification scenario. Overall, the 

results produced by the classification algorithms compared favorably with the ground-

based measured areas. Both algorithms had an agreement of more than 80%. 

 

There are a few factors that may have contributed to the mapping errors as 

produced by the two algorithms and the radar data. Examples of these include, but 

are not limited to, loss of information during the PCA data reduction stage, backscatter 

mixing, and different planting patterns. Dimensional reduction may have contributed 

to the mapping errors. However, the three components that were kept for each 

polarization at more than 70% proved sufficient in our study. According to Woodhouse 

(2017), backscatter intensity is sensitive to variations in scattering geometry, 

distribution of scatterer size, surface reflectivity beneath the canopy, leaf area density, 
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row structure, and orientation relative to the range domain of the radar. Smallholder 

farms normally practice crop mixing, un-equal row planting patterns, and lack of 

irrigation systems. These practices can influence the backscatter intensity from maize. 

Scattering from nearby vegetation, such as grass and soil-canopy multiple scattering, 

can also contribute towards misclassification.  

 

We showed that the PCA data reduction method can be used to facilitate the 

mapping of smallholder maize farms. Machine learning algorithms require data that 

can be separable to successfully classify data into their respective classes [50]. The 

PCA provides this by decorrelating the multi-temporal backscatter values into 

components that describe unique information for different classes, therefore 

enhancing the probability of accurate classification. Maize can grow up to an average 

height of 2 m and the structural volume of the crop also increases as the leaves also 

grow. This makes it possible to map maize with radar data, since the VV and VH 

polarizations are sensitive to vegetation structure and volumetric changes (McNairn et 

al., 2009). A frequent revisit of Sentinel-1 of 10–12 days and its high spatial resolution 

of 10 meters can capture the phenological stages of maize (Torres, 2012). The 

increase in backscatter intensity for the maize class makes it possible to map 

smallholder farms in complex environments. PCA also suppresses other classes with 

low variable backscatter over time; these classes include grasslands and bare soil in 

our study area. The PCA image composites provide clear examples, where the 

advantage of the first stage of image fusion used in this study can be seen (Figure 16). 

The high level of importance of VH and VV polarizations were expected. Other studies, 

such as Arias et al. (2020), illustrated that the VH, VV, and VH/VV polarizations ranked 

differently depending on the type of crop that was investigated. VH polarization was 

more suitable for rice and rapeseed discrimination, VV polarization was more suitable 

for alfalfa, and the VH/VV ratio was suitable for discriminating crops from different 

seasons.  

 

The results can be used to generate spatial agricultural information such as 

estimating crop production areas and their spatial distributions in areas where survey 

datasets are not available, such as in our study. The results can be used to inform 

local government about the levels of agricultural activities in rural communities, thus 
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providing ways to forecast food shortages and improve food security. The use of 

Sentinel-1 multi-temporal data provides an opportunity to afford this critical information 

regardless of the environmental conditions such as clouds or lack of extensive 

reference data. These results can also be used to contribute towards the SDG number 

2. We therefore recommend the use of Sentinel-1 multi-temporal data to map 

smallholder farms at a provincial scale. More studies need to be done to explore the 

phase and amplitude data extracted from the backscatter intensities and their 

contribution to the accuracy of classifying smallholder farms. Different image fusion 

techniques and multi-sensor data fusion should also be explored.  

 

The limitation of this study was that there were no agricultural statistics to 

independently validate the areas obtained by the machine learning algorithms. These 

validation data are normally collected by local agricultural departments. For example, 

the United States Department of Agriculture (USDA) uses remote sensing and 

extensive reference data provided by the National Agricultural Statistics Service 

(NASS) to generate the crop layer and associated statistics (Boryan et al., 2011). In 

areas with limited reference data, such as smallholder farms in developing countries, 

remote sensing technology provides a sustainable way to generate agricultural 

statistics with reasonable accuracies (Jain et al., 2013; Useya and Chen, 2019). 

Processing multi-temporal data requires computational resources that are otherwise 

not easily accessible in developing countries. The Google Earth Engine (GEE) and 

other platforms provide an alternative solution to process data online, and these 

platforms allow for large-scale data processing at a relatively low cost. For example, 

Jin et al. (2019) used the GEE platform to process Sentinel-1 data to map smallholder 

maize farms. 

 

Future work should focus on testing this approach in different areas where 

smallholder farms are dominant. The response and efficiency of this approach should 

also be tested on different crop types. The operational model should be developed to 

consider the time domain to allow forecasting smallholder maize production areas. 

The phase and amplitude data from multi-temporal Sentinel-1 data and multi-sensor 

data should be explored in mapping smallholder farms in the future. These research 
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opportunities will ensure that remote sensing technology can be fully utilized to support 

SDGs. 

 

3.4 Conclusion 

 

This study presented Sentinel-1 multi-temporal data for mapping smallholder maize 

farms’ spatial distribution and estimated production areas. The two-stage image fusion 

approach was adopted. The SVM and Xgboost machine learning algorithms were 

applied. The results revealed that most smallholder farms in our study area are 

distributed in the south eastern part of Makhuduthamaga. The algorithms provided 

comparable statistical evaluation results. However, McNemar’s test showed that the 

results from the two algorithms were statistically different from each other. The SVM 

and Xgboost algorithms estimated maize production areas to be 7073.558 ± 0.01 ha 

and 7303.32 ± 0.180 ha, respectively, for the region. The classified areas for selected 

farms compared favorably with the measured areas in the field and the SVM classifier 

had a better fit (R = 0.89) in comparison with the Xgboost algorithm (R = 0.84). The 

SVM algorithm seems to have generally performed better than the Xgboost algorithm. 

The use of multi-temporal Sentinel-1 with a two-stage image fusion approach proved 

to be effective in mapping smallholder farms. This framework can be used to support 

the SDGs and to provide spatial agricultural information to inform policy design and 

implementation by local government. Different seasons and different crop types should 

be tested using this approach, including extraction of phase and amplitude data from 

multi-temporal Sentinel-1 data. Multi-sensor data fusion should be explored to improve 

the mapping of smallholder farms in the future. 
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Chapter 4 

Modeling the Spatial Distribution of Soil Nitrogen Content at 

Smallholder Maize Farms Using Machine Learning Regression and 

Sentinel-2 Data  

 
Based on: Mashaba-Munghemezulu, Z., Chirima, G.J., Munghemezulu, C., 2021. 
Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms 
Using Machine Learning Regression and Sentinel‐2 Data. Sustainability, 13(11591). 
 
Abstract 
 

Nitrogen is one of the key nutrients that indicate soil quality and an important 

component for plant development. Accurate knowledge and management of soil 

nitrogen is crucial for food security in rural communities, especially for smallholder 

maize farms. However, less research has been done on generating digital soil nitrogen 

maps for these farmers. This study examines the utility of Sentinel-2 satellite data and 

environmental variables to map soil nitrogen at smallholder maize farms. Three 

machine learning algorithms—random forest (RF), gradient boosting (GB), and 

extreme gradient boosting (XG) were investigated for this purpose. The findings 

indicate that the RF (R2=0.90, RMSE=0.0076%) model performs slightly better than 

the GB (R2=0.88, RMSE=0.0083%) and XG (R2=0.89, RMSE=0.0077%) models. 

Furthermore, the variable importance measure showed that the Sentinel-2 bands, 

particularly the red and red-edge bands have a superior performance in comparison 

to the environmental variables and soil indices. The digital maps generated in this 

study show the high capability of Sentinel-2 satellite data to generate accurate nitrogen 

content maps with the application of machine learning. The developed framework can 

be implemented to map the spatial pattern of soil nitrogen. This will also contribute to 

soil fertility interventions and nitrogen fertilization management to improve food 

security in rural communities. This application contributes to the Sustainable 

Development Goal number 2. 

 

Keywords: satellite data; random forest; gradient boosting; extreme gradient 

boosting; soil fertility; digital mapping 
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4.1. Introduction 

 

Improving soil nutrient management at smallholder maize (Zea mays L.) farms is 

imperative for ensuring food security in developing countries. Smallholder maize farms 

are crucial for the livelihoods of rural communities in Africa who depend on agriculture 

for food security and their local economic activities. Amongst the most important 

nutrients is nitrogen, not only is it a component of the chlorophyll molecule but is also 

essential for maize growth, quality, and yield (Sinclair and Muchow, 1995; Otto, 2016; 

Chlingaryan et al., 2018). The soil is one of the most important nitrogen reservoir in 

the terrestrial ecosystems (Batjes, 1996). Developing frameworks to map the spatial 

variability of soil nitrogen is necessary for the local government, farmers, and 

stakeholders to identify nitrogen excesses or deficiencies. Such information will guide 

soil fertility interventions at smallholder farms. In the long term, improved soil nitrogen 

content management will enhance maize productivity (Lemcoff and Loomis, 1986; 

Osterholz et al., 2017). This application is particularly important for resource limited 

smallholder maize farms such as those in developing countries, for example South 

Africa, which have reported sub-optimal yields, infertile land, and land degradation in 

previous studies (Shi and Tao, 2014; Fischer and Hajdu, 2015). 

 

Several soil databases and sources are available that archive soil nutrient 

information for South Africa. Examples of these include the Africa Soil Information 

Service (AfSIS) which archives soil nutrient maps at a 250 m spatial resolution for 

Africa (http://africasoils.net/). The Harmonized World Soil Database (HWSD) nutrient 

map, which has a spatial resolution of 1 km (Jones and Thornton, 2015). Other 

products such as the SOTER-based soil parameter estimates (SOTWIS) product for 

Southern Africa have a 1:2 M (million) scale resolution (Batjes, 2004). The soil Atlas 

of Africa dataset for soil groups has a 1:3 M scale resolution (Jones et al., 2013). 

Although these products are available, they have a coarse spatial resolution to guide 

soil nutrient management efforts at smallholder farms, which are typically 0.5-2 ha in 

size. These types of farms are often fragmented and heterogeneous in most parts of 

the world including South Africa, which necessitates the use of improved resolution 

data for digital soil mapping (Chivasa, et al., 2017). 
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The Sentinel-2 mission has sensor capabilities with a potential to estimate soil 

nutrients at smallholder farms. This satellite has an improved spatial resolution of 10-

60 m, wide swath of 290 m and a frequent revisit cycle of 5-10 days (Drusch et al., 

2012). Additionally, the Sen-tinel-2 data is compatible with Landsat-8 and Satellite 

Pour l’Observation de la Terre (SPOT) data (Wang et al., 2017). The difference 

between Sentinel-2 and other medium resolution sensors such as Landsat-8 is the 

presence of the red-edge band region in Sentinel-2. The red-edge region lies between 

the red and near infrared portions of the electromagnetic spectrum and is distinguished 

by a sharp increase in vegetation reflectance (Filella and Penuelas, 1994). This current 

study relies on soil and vegetation indices derived from strategic locations of the 

electromagnetic spectrum to estimate the soil nitrogen content for smallholder maize 

farms.  

 

Different techniques have been applied for digital soil mapping. The commonly 

used models are multiple linear regression (Shi et al., 2013), principal component 

analysis regression (Yang et al., 2016), generalized additive model (de Brogniez et 

al., 2015) and kriging (Xu, 2018). Recently, machine learning algorithms (support 

vector machines, decision trees, random forests, artificial neural networks) are widely 

used in remote sensing studies (Friedl and Brodley, 1997; Chang and Islam, 2000; 

Heumann, 2011; Wang et al., 2016). These algorithms are beneficial because they 

can learn from limited data and reduce errors through an adaptive learning process 

(Belgiu and Drăguţ, 2016; Cooner et al., 2016). However, studies using these 

techniques for soil nitrogen mapping at smallholder maize farms are lacking (Xu, 

2018). Particularly, as machine learning algorithms are not universally applicable in 

different environments. This necessitates the evaluation of different machine learning 

algorithms for applicability in our own context to understand the distribution of soil 

nitrogen content at the locality. 

 

This paper uses the random forest (RF) algorithm, gradient boosting algorithm 

(GB) and extreme gradient boosting (XG) machine learning algorithm in a regression 

format. These algorithms were used because they can deal with noisy, high-

dimensional and non-linear data (Izquierdo-Verdiguier, 2014; Li, 2016). The 

algorithms are applied to Sentinel-2 imagery to predict the spatial patterns of soil 
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nitrogen content at selected smallholder maize farms in Makhuduthamaga district, 

South Africa. The study addresses the following specific research questions: 1) What 

are the relationship between soil nitrogen content and different predictor variables? 2) 

How effective are the selected machine learning algorithms in predicting soil nitrogen 

content? 3) Which predictor variables are fundamental for modelling soil nitrogen 

content? Lastly, 4) What is the spatial distribution pattern of soil nitrogen at smallholder 

maize farms? 

 

4.2. Material and Methods 

 

The overview of the methodological approach used in this study is summarized in 

Figure 22. The Sentinel-2 imageries were pre-processed to correct for atmospheric 

effects and band indices were calculated. Ancillary data describing the environmental 

variables and some of the Sentinel-2 bands were resampled to 10 m. Nine 

experiments with different data configurations were conducted using the Sentinel-2 

bands, spectral indices and environmental variables. Three machine learning 

regression algorithms – RF, GB, and XG were then applied in each experiment using 

70% of the nitrogen content measurements for training the model. The remaining 30% 

of the data was used for model evaluation with commonly used statistical metrics. 

Variable importance for the predictors was determined from the scores derived by the 

three machine learning regression models. Lastly, the spatial pattern of soil nitrogen 

at the smallholder maize farms was mapped. 
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Figure 22. The proposed methodological framework for mapping soil nitrogen content at smallholder 

maize farms. 

 

4.2.1. Study Area 

 

Soil nitrogen samples were collected from the smallholder maize farms of 

Makhudutamaga district located in the Northern Part of South Africa (Figure 23). This 

district has a low elevation (799-1047 m) in the north western part and a higher 

elevation (1295-1791 m) in the central and southern parts. The topography is 

undulating with rock habitats such as rock outcrops, rocky ridges and rocky refugia 

(Siebert, 2003). This district was selected because most of the rural population are 

smallholder maize farmers; they farm mainly for subsistence and partially for selling in 

local markets. Smallholder maize production is predominant in the Southern part of 
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the district (SDM, 2019). The farmers add manure to their fields in November. Maize 

is planted during December and January. The growing period is between February to 

May. Harvesting takes place in June and no maize is present in the smallholder farms 

during July-November. The smallholder farms in the district are rain-fed. The annual 

rainfall is 536 mm and an average annual temperature of 7°C in winter and 35°C in 

summer according to the Agricultural Research Council stations located in 

Nchabeleng, Ga-Rantho and Leeuwkraal areas. 

 

 
 

Figure 23. The location of the study wards and smallholder maize farms that are considered for soil 

nitrogen data collection in Makhuduthamaga district, South Africa. 

 

4.2.2.  Field Data Collection and Laboratory Analysis 

 

A total of 105 soil surface samples were collected from the topsoil layer (0-20 cm) at 

the smallholder maize sample farms during 14-17 May 2019 corresponding to a period 

of low rainfall. The positions for each sample were captured with a handheld Global 

Positioning System (GPS). The samples were then processed at the Agricultural 
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Research Council Analytical Laboratory where they were air-dried at room 

temperature (25 °C), crushed, and passed through a 2 mm sieve to remove coarse 

soil materials such as gravel or plant roots. The soil total nitrogen content was then 

determined through analytical processing with the Kjeldahl digestion method. The soil 

properties are summarized in Table 11 according to the dominant soil type at the top 

(Haplic Acrisols) and least dominant soil at the bottom (Lithic Leptosols). These were 

extracted from the Harmonized world soil database (Jones and Thornton, 2015). 

 
Table 11. Soil attributes for the dominant soil types in smallholder farms. 

 

Soil 
Type 

Topsoil 
sand 

fraction 
(%) 

Topsoil 
silt 

fraction 
(%) 

Topsoil 
clay 

fraction 
(%) 

Topsoil  
Texture 

pH 
(H2O) 

Bulk 
Density 
(kg/dm3) 

Organic  
Carbon 

(% 
weight) 

Haplic 
Acrisols 

57 19 24 Sand 
clay 
loam 

5.1 1.4 0.8 

Ferric  
Luvisols 

65 18 17 Sandy 
loam 

6.4 1.5 0.6 

Lithic 
Leptosols 

43 29 28 Clay 
loam 

7.5 1.3 0.4 

 

4.2.3. Sentinel-2 Data Acquisition and Pre-processing 

 

We used Sentinel-2 MSI level-1C (L1C) data acquired from the Copernicus Open 

Access Hub. The image for 17 May 2019 was used in this study. This image covered 

the field sampling date and was appropriate considering that the image was cloud free. 

The L1C product images consist of top-of-atmosphere (TOA) reflectance after 

radiometric correction and geometric corrections (ortho-rectification and spatial 

registration) with a sub-pixel accuracy (https://sentinel.esa.int). Sentinel-2 MSI has 13 

bands, which have different spatial resolutions. This study made used of 10 bands 

(visible, near-infrared, red-edge, and shortwave infrared) as summarized in Table 12 

and excluded the bands which are related to water and atmosphere elements. The 

Sentinel-2 TOA images were pre-processed with Sen2Cor plugin in Sentinel 

Application Platform (SNAP) to convert them to bottom-of-atmosphere reflectance 

(BOA) and the 20 m bands were resampled to a 10 m spatial resolution.  
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Table 12. Sentinel-2 multi-spectral bands used in this study Drusch et al., (2012). 

 

Variable Description 

Raw bands 
Central 

Wavelength 
(nm) 

Bandwidth 
(nm) 

Spatial 
Resolution (m) 

B2–Blue 490 65 10 
B3–Green 560 35 10 
B4–Red 665 30 10 
B5–RE1 705 15 20 
B6–RE2 740 15 20 
B7–RE3 783 20 20 
B8–NIR 842 115 10 

B8a–RE4 865 20 20 
B11–SWIR1 1610 90 20 
B12–SWIR2 2190 180 20 

Note: Red Edge (RE), Near Infrared (NIR), Short Wave Infrared (SWIR) 

 

4.2.4. Spectral Indices  

 

Spectral indices were generated from the Sentinel-2 bands. The vegetation 

indices that are included in the current study were selected by fitting the RF, XG, 

and GB machine learning regression models. Vegetation indices that optimized 

the coefficient of determination (R2) in relation to the nitrogen content for each 

model were retained. This procedure was done because similar studies have 

reported a diverse range of vegetation indices (Wang et al., 2018; Xu, 2018; 

Mandal, 2016). The vegetation indices evaluated based on the RE were the: 

Normalized Difference Vegetation Index RE 1, 2 and 3 narrow (NDVIRE1n, 

NDVIRE2n, NDVIRE3n), Normalized Difference Vegetation Index RE 1 (NDRE1), 

Normalized Difference Vegetation Index RE 1 modified (NDRE1m), Modified 

Simple Ratio RE (MSRRE), Chlorophyll Index RE (CLRE) and Normalized 

Difference Vegetation Index RE (NDVIRE). Other indices based on the NIR, 

SWIR1, SWIR2 and visible parts of the electromagnetic spectrum were also 

evaluated. These indices included the Plant Senescence Reflectance Index 

(PSRI), Enhanced Vegetation Index (EVI) and the Green Normalized Difference 

Vegetation Index (GNDVI). Additionally, the Difference Vegetation Index (DVI), 

Normalized Difference Water Index (NDWI), Renormalized Difference Vegetation 

Index (RDVI), Normalized Difference Vegetation Index (NDVI), Optimized Soil 
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Adjusted Vegetation Index (OSAVI), Soil Adjusted Vegetation Index (SAVI) and 

Triangular Vegetation Index (TVI) were also evaluated. The final spectral indices 

used in this study are summarized in Table 13. 

 

Table 13. The collection of spectral indices considered in this study. 

 

Vegetation 
Indices 

Equation Source Property 

PSRI 
(Re )

2

d Green

RE

−
 Merzlyak et al. (1999) 

Senescence-induced 
reflectance changes 

NDVIRE1n 
( 4 1)

( 4 1)

RE RE

RE RE

−

+  

Fernández-Manso et al. 
(2016) 

Sparse biomass 

NDVIRE2n 
(R 4 2)

(R 4 2)

E RE

E RE

−

+
 Fernández-Manso et al. 

(2016) 
Sparse biomass 

NDVIRE3n 
( 4 3)

( 4 3)

RE RE

RE RE

−

+
 Fernández-Manso et al. 

(2016) 
Sparse biomass 

MSRRE 
( / 1) 1

( / 1) 1

NIR RE

NIR RE

−

+
 Chen (1996) 

Correction for leaf 
specular reflection 

EVI 
( Re )

2.5 *
( 6 * Re 7.5 * ) 1

NIR d

NIR d Blue

−

+ − +  
Miura et al. (2000) Chlorophyll sensitive 

GNDVI 
(NIR -Green)

(NIR+Green)  
Gitelson et al., (1996) Chlorophyll sensitive 

Soil 
Indices 

Equation Source Property 

BI 

0.5
2 2 2(Re )

3

d Green Blue + +
 
   

Madeira et al., (1997); 
Mandal (2016) 

Average reflectance 
magnitude 

CI 
(Re )

(Re )

d Green

d Green

−

+  

Madeira et al., (1997); 
Mandal (2016) 

Soil Colour 

HI 
(2 * Re )

( )

d Green Blue

Green Blue

− −

−  

Madeira et al., (1997); 
Mandal (2016) 

Primary Colours 

RI 
2

3

Re

( * )

d

Blue Green  

Bullard and White, 
(2002) 

Hematite content 

SI 
(Red - Blue)

(Red + Blue)  

Madeira et al., (1997); 
Mandal (2016) 

Spectral slope 

Note: Brightness Index (BI), Coloration Index (CI), Hue Index (HI), Redness Index (RI), Saturation 
Index (SI) 
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4.2.5. Environmental Variables  

 

Different datasets in Table 14 were used to describe the environmental variables 

needed to estimate nitrogen content. These included the slope, elevation, aspect, 

catchment area, topographic wetness index (TWI), precipitation, and temperature. The 

ASTER digital elevation model (DEM) with a 30 m spatial resolution was used to 

extract the terrain variables. This product was used because it is freely available and 

was closer to the 10 m spatial resolution of Sentinel-2 data. The ASTER DEM tiles 

were mosaicked and resampled to a 10 m resolution using a bilinear interpolation in 

the R software. Then, the DEM, slope, aspect, catchment area and TWI were derived. 

The JAXA Earth Observation Research Center precipitation and Landsat land surface 

temperature (LST) covering 7 years from 2013 to 2019 were used. This period was 

selected based on the continuity of the Landsat LST collection. These images were 

also resampled to a 10 m resolution. The environmental variables have shown to be 

valuable in previous studies for modeling nitrogen content (Chlingaryan et al., 2018; 

Wang et al., 2018). 

 

Table 14. The list of selected environmental variables used in this study. 

 

Environmental 
variables 

Units Source Property 

Slope (SLP) Degrees Wu et al., (2008) 
Rise or fall of the land 

surface 

Elevation (EL) Meters Wu et al., (2008) 
Distance above sea 

level 
Aspect (ASP) Degrees Wu et al., (2008) Direction of terrain 

Catchment area 
(CA) 

Square Meters Wu et al., (2008) Flow accumulation 

TWI - Sörensen et al., (2006) Soil moisture 
Precipitation 

(RAIN) 
Millimeter/hour Kubota et al., (2007) Rainfall 

LST Kelvin Ermida et al., (2020) Temperature 
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4.2.6. Machine learning regression models 

4.2.6.1 Random Forest Regression 

 

Random Forest is a bagging ensemble learning method (Breimann, 2001). This 

algorithm can be applied to both classification and regression problems. The principle 

of RF regression is to predict a continuous response variable using a bootstrapping 

method based on the classification and regression trees. Decision tree models are 

fitted to the data. Whereby, every tree is trained using different bootstrap samples from 

the training data, referred to as in-bag samples. The final model is generated by 

averaging the individual tree outputs (Breimann, 2001). Samples that are not used in 

the bootstrap are referred to as the out-of-bag samples; these can be used for model 

evaluation and variable importance (Pal, 2005). The RF is applied in this study 

because of its superior performance capabilities. RF can handle high dimensional 

data, requires relatively few tuning parameters, and processes non-linear data without 

overestimation (Hutengs and Vohland, 2016). The tuning parameters necessary to 

train the RF model (number of trees and features) were determined using Gridsearch 

method in Python; further details can be obtained in Lerman (1980). Variable 

importance for the RF algorithm was determined using the built-in Python variable 

importance measure for RF; readers are referred to Dangeti (2017) for further details 

on this procedure. 

 

4.2.6.2 Gradient Boosting Regression 

 

Gradient boosting is an ensemble-based decision tree machine learning method 

developed by Friedman (2001). This method can be adapted for both regression and 

classification problems. The purpose of gradient boosting is to improve the 

performance of weak learners to achieve over random guessing (Zemel and Pitassi, 

2001). At each iteration, a new regression tree is trained to improve the loss function 

determined by the steepest gradient. This procedure reduces the model residuals 

along the gradient direction. The results of the individual regression trees are 

combined to give the final result (Friedman, 2001). The gradient boosting algorithm is 

applied in the present study because it can handle unbalanced data and it is robust to 
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outliers (Wei et al., 2019). The parameters needed for gradient boosting are the 

number of trees, number of features for the best split, maximum depth, learning rate, 

and the minimum number of samples required at a leaf node. These were optimized 

using Gridsearch method. Variable importance for the GB algorithm was determined 

using the built-in Python variable importance measure for GB; readers are referred to 

Dangeti (2017) for further details on this procedure. 
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4.2.6.3 Extreme Gradient Boosting Regression 

 

The Extreme Gradient Boosting algorithm is part of the classification and regression 

ensemble gradient boosting machine algorithms. This model can be applied for both 

classification and regression problems (Chen and Guestrin, 2016). The XG uses 

additive training strategies, the first learning phase is fitted to the entire input dataset 

and the second phase is fitted to the residuals. This procedure enhances the 

performance of weak supervised learning. The fitting process is done repeatedly until 

the stopping criteria is achieved (Chen and Guestrin, 2016). The XG algorithm was 

applied because it overcomes problems with overfitting and has an optimized 

performance (Georganos et al., 2018). This algorithm requires a rigorous number of 

regularization parameters; these were determined using Gridsearch. Variable 

importance for the XG algorithm was determined using the built-in Python variable 

importance measure for XG; readers are referred to Dangeti (2017) for further details 

on this procedure. 

 

4.2.6.4 Experiments 

 

We investigated the effect of different feature variables for modeling nitrogen content 

in smallholder maize farms. The data was split into 70% training and 30% testing. 

Three RF, GB, and XG models with different combinations of variables summarized in 

Table 15 were implemented. The experiments consisted of: (1) raw bands, (2) raw 

bands + vegetation indices, (3) raw bands + soil indices, (4) raw bands + 

environmental variables, (5) raw bands + vegetation indices + soil indices + 

environmental variables, (6) raw bands + vegetation indices + soil indices, (7) raw 

bands + vegetation indices + environmental variables, (8) raw bands + soil indices + 

environmental variables and (9) raw bands + environmental variables + soil indices. 
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Table 15. The different data configurations for the nine machine learning regression experiments. 

 

Experiment 
Number of 
variables 

Data configuration 

1 10 Raw bands 
2 17 Raw bands and vegetation indices 
3 15 Raw bands and soil indices 
4 17 Raw bands and environmental variables 

5 29 
Raw bands, vegetation indices, soil indices 
and environmental variables 

6 22 
Raw bands, vegetation indices and soil 
indices 

7 24 
Raw bands, vegetation indices and 
environmental variables 

8 22 
Raw bands, soil indices and environmental 
variables 

9 19 
Raw bands, environmental variables and soil 
indices 

 

4.2.7. Model Evaluation  

 

The predictive performances of the RF, GB, and XG models were evaluated using 

validation indices. These included the fraction of predictions within a factor of two 

(FAC2), mean absolute error (MAE), mean bias error (MBE), root mean square error 

(RMSE), Pearson correlation (r), R2 and Cross Validation (CV) as shown in Equations 

(1) – (7): 

i

i

P
FAC2 : 0.5 2.0

O
 

 
(1) 

n

i i
i=1

1
MAE = |P -O |

n


 

(2) 

n

i i
i=1

1
MBE = (P -O )

n


 
(3) 

( )
n

2

i i
i=1

1
RMSE = P -O

n


 
(4) 

n
i i

i=1 p o

P - P O -O1
r = ( )( )
(n -1) σ σ


 

(5) 
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( )

( )

n 2

ii
2 i=1

n 2

ii
i=1

P -O

R =

P -O





 

(6) 

k

(k) i
i=1

1
CV = R

k


 
(7) 

where 𝑛 represents the number of sample points, 𝑃𝑖 represents the predicted soil 

nitrogen content, 𝑂𝑖 represents the observed soil nitrogen content in site 𝑖 respectively, 

and σ represents the standard deviation. The reader is directed to Carslaw and 

Ropkins (2012) for further information on these model evaluation matrices. The Taylor 

diagram was derived using the Openair package in R software (Taylor, 2001). 

 

4.3. Results  

4.3.1. Statistical analysis for soil nitrogen content measurements 

 

Different vegetation indices (Figure 24) described in Section 4.2.4 were evaluated to 

retain indices that perform optimally for soil nitrogen content estimation. The RF, XG, 

and GB models were used to relate the vegetation indices to soil nitrogen. The PSRI, 

NDVIRE1n, EVI, NDVIRE2n, NDVIRE3n, GNDVI, and MSRRE were retained for 

further analysis. These vegetation indices were strongly related to the soil nitrogen 

content with an R2 of 0.62 to 0.81. The soil nitrogen content measurements collected 

at the smallholder maize farms are characterized in Table 16. The nitrogen content 

was low for the farms, ranging from 0.014%-0.088%. The mean is lower than the 

standard deviation, which shows that the data are clustered closely around the mean. 

The mean is greater than the median, indicating a positively skewed distribution similar 

to the skewness value of 1.42 (Cumming and Calin-Jageman, 2016). The nitrogen 

content measurements were related to each of the variables in the regression 

experiments through a correlation matrix (Table 15). The MSRRE, NDVIRE1-3n, EVI, 

LST, and TWI had positive relationships with the soil nitrogen content. The remaining 

variables had a negative relationship with soil nitrogen. The PSRI, NDVIRE1-3n, EVI, 

CI, BI, SI, RI, B4-B12 where strongly related to the soil nitrogen content. However, the 

SLP, CA, ASP, DEM, TWI, LST and RAIN had a weak relationship with soil nitrogen. 

Moderate relationships where observed for the HI, B3 and soil nitrogen. 
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Multicollinearity was identified between the vegetation indices, soil indices and raw 

bands. These variables were highly linearly related.  

 

 
 
Figure 24. Vegetation indices evaluated for mapping soil nitrogen content. 
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Table 16. Statistical analysis for the soil nitrogen content samples. 

 

Soil Nitrogen 

a) Descriptive Statistics 

 Count 
 

Minimum 

(%) 

Maximum 

(%) 

Mean 

(%) 

Median 

(%) 

Standard 
Deviation 

Skewness 
 

Nitrogen 105 0.014 0.088 0.033 0.025 0.019 1.424 

b) Correlation 

Variable R Variable r Variable R Variable r 

MSRRE 0.579 CI -0.713 B6 -0.899 TWI 0.081 

PSRI -0.793 BI -0.798 B7 -0.894 DEM -0.292 

NDVIRE3n 0.835 SI -0.804 B8 -0.883 ASP -0.011 

NDVIRE2n 0.840 RI -0.748 B8A -0.889 CA -0.024 

NDVIRE1n 0.737 B2 -0.061 B11 -0.883 SLP -0.154 

EVI 0.838 B3 -0.463 B12 -0.870   

GNDVI -0,757 B4 -0.884 RAIN -0.268   

HI -0.591 B5 -0.898 LST 0.117   
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4.3.2. Model evaluation 

 

The model performance statistics derived from the testing data (n = 32 samples) are 

summarized in Table 17. The best performing model from all experiments was the RF 

model for experiment 4. This model had the highest accuracy for soil nitrogen content 

estimation based on the lowest values for RMSE and MAE (RMSE = 0.0076% and 

MAE=0.0054%) and the highest r and R2 (r = 0.95 and R2 = 0.90). The predicted soil 

nitrogen values were smaller than the observed values based on the MBE (MBE=-

0.0013%). Additionally, this model had a FAC2=1, indicating a perfect model similar 

to the FAC2 values for the other experiments. The least optimal performing model 

overall was the XG model for experiment 6 containing the raw bands, soil indices, and 

vegetation indices. This model had a high error rate based on the high RMSE and 

MAE (RMSE = 0.0090% and MAE=0.0063%) and the lowest r and R2 (r = 0.9149 and 

R2 = 0.8371). Furthermore, this model overestimated the soil nitrogen content based 

on the MBE (MBE = 0.0004%). The raw bands and environmental variables were 

sufficient to model soil nitrogen content with the RF (RF4) and GB (GB4) model. 

However, additional soil indices were needed in XG (XG8) for estimating soil nitrogen 

more accurately.  
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Table 17. Model evaluation statistics for the three machine learning models in different experiments. 

 

Model FAC2 
MAE 

(%) 

MBE 

(%) 

RMSE 

(%) 
R R2 CV 

RF1 0.9688 0.0067 0.0012 0.0086 0.9324 0.8694 0.7563 

RF2 0.9688 0.0061 0.0000 0.0086 0.9302 0.8653 0.8079 

RF3 0.9688 0.0071 0.0004 0.0092 0.9204 0.8472 0.7891 

RF4 1.0000 0.0054 -0.0013 0.0076 0.9486 0.8998 0.6625 

RF5 1.0000 0.0066 -0.0007 0.0086 0.9232 0.8523 0.7720 

RF6 0.9688 0.0063 -0.0003 0.0089 0.9256 0.8568 0.6604 

RF7 1.0000 0.0053 0.0000 0.0080 0.9433 0.8898 0.7104 

RF8 1.0000 0.0059 0.0002 0.0083 0.9368 0.8775 0.6885 

RF9 1.0000 0.0056 0.0000 0.0082 0.9395 0.8827 0.8645 

GB1 0.9688 0.0070 0.0007 0.0092 0.9210 0.8482 0.5325 

GB2 1.0000 0.0059 -0.0001 0.0084 0.9348 0.8739 0.6670 

GB3 1.0000 0.0068 -0.0003 0.0092 0.9177 0.8423 0.6124 

GB4 1.0000 0.0061 0.0001 0.0083 0.9369 0.8778 0.6354 

GB5 1.0000 0.0061 0.0000 0.0084 0.9347 0.8737 0.7043 

GB6 1.0000 0.0062 -0.0006 0.0087 0.9298 0.8645 0.7942 

GB7 1.0000 0.0060 0.0002 0.0084 0.9336 0.8716 0.7734 

GB8 0.9688 0.0064 -0.0009 0.0094 0.9172 0.8413 0.7556 

GB9 1.0000 0.0058 0.0008 0.0083 0.9315 0.8676 0.7296 

XG1 0.9688 0.0062 0.0003 0.0084 0.9311 0.8669 0.5671 

XG2 0.9688 0.0057 0.0001 0.0085 0.9257 0.8569 0.8546 

XG3 0.9688 0.0065 0.0005 0.0089 0.9227 0.8513 0.5970 

XG4 1.0000 0.0062 0.0004 0.0088 0.9221 0.8502 0.5711 

XG5 1.0000 0.0059 0.0004 0.0081 0.9352 0.8747 0.6121 

XG6 0.9688 0.0063 0.0004 0.0090 0.9149 0.8371 0.6367 

XG7 1.0000 0.0061 0.0007 0.0087 0.9234 0.8527 0.6453 

XG8 1.0000 0.0054 0.0003 0.0077 0.9434 0.8900 0.5954 

XG9 0.9688 0.0058 0.0002 0.0086 0.9300 0.8648 0.5839 

Note: Random forest experiment number (RFx), gradient boosting experiment number (GBx), extreme 
gradient boosting experiment number (XGx) defined in Table 15. 
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The Taylor diagram in Figure 25 was used to verify the model performance. All 

models had high correlation coefficients ranging from 0.91 to 0.95 and they plotted 

close to the observed reference value at the origin. Additionally, they had a similar 

performance shown by the clustering of points with the same location on the Taylor 

diagram (Taylor, 2001). However, the RF4 model had a slightly better performance 

compared to the other models based on the lowest standard deviation and root mean 

squared (RMS) error. The correlation coefficient was also high for this model, 

signifying a good fit between the observed and predicted values. The XG8 and GB4 

models were the optimal performing models for the XG and GB models. They had a 

considerably lower standard deviation and RMS values but a high correlation. 

Additionally, the predicted values from these models were closer to the observed 

values. 

 

Scatterplots were constructed for optimal performing RF, GB, and XG models to 

relate the observed and predicted soil nitrogen content in Figure 26. The data points 

are close to the diagonal line for all three models, indicating a good agreement 

between the observed and predicted values. The RF4 model had a slightly better 

performance R2 (R2 = 0.90) than the other models and was statistically significant 

(p=1.6x10-16) at a 95% confidence interval. The GB and XG models had similar R2 

values (R2=0.88 and R2=0.89). However, GB had a higher p-value of 3.1x10-15 in 

comparison to XG with a p-value of 6.3x10-16. Both models were statistically significant 

at a 95% confidence interval 
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Figure 25. Taylor diagram for the nine experiments applying the three machine learning models. 
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Figure 26. The relationship between observed soil nitrogen and predicted soil nitrogen where a) is RF4, 

b) is GB4 and c) is XG8. 

 

4.3.3. Variable Importance  

 

The importance of the predictor variables was determined for the most robust RF, GB, 

and XG models. All three models in Figure 27 varied in terms of predictor importance. 

The most important predictors for RF were B7, B5, B6, and B4. These were derived 

from experiment 4. The GB model ranked B4, B6, B5 and B12 highly from experiment 

4. The B4 band was important in the XG model followed by the CI, and B5 in 

experiment 8. The RF model had a more even distribution of predictor importance in 

comparison to GB and XG where there is a greater contrast between the important 

(highest 4) and least important predictors (after the highest 4 predictors). 
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Figure 27. The ranking of variables for predicting soil nitrogen content with a) RF4, b) GB4 and c) XG8 

algorithms. 
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4.3.4. Mapping soil nitrogen content for smallholder maize farms 

 

The spatial distribution of soil nitrogen was mapped in Figure 28 - Figure 30. There 

were differences in the spatial distribution of nitrogen for the smallholder maize farms. 

The smallholder farms in the central and southeastern part of the study area had a 

lower nitrogen content. However, the farms in the southern part of the study area had 

a higher nitrogen content. The maps generated by the RF and XG algorithms were 

similar, but, GB overestimated the nitrogen content. 

 

 

 

Figure 28. The spatial distribution of soil nitrogen mapped with the random forest model for experiment 

4. 
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Figure 29. The spatial distribution of soil nitrogen mapped with the gradient boosting model for 

experiment 4. 
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Figure 30. Distribution map of soil nitrogen obtained using the XG model is for experiment 8. 

 

4.4. Discussion  

 

This study assessed the applicability of Sentinel-2 bands, derived soil and vegetation 

indices and environmental data for predicting soil nitrogen in the smallholder maize 

farms of Makhuduthamaga district. Descriptive statistics were generated for the 

collected soil nitrogen content samples. Experiments were used to evaluate the 

performance of RF, GB, and XG machine learning algorithms in a regression format. 

The variable importance measure for each algorithm was used to determine which 

predictors had the most influence. The best performing algorithms in each experiment 

were then used for mapping the nitrogen content. The results showed that the 

Sentinel-2 bands and environmental variables have a superior performance when 

estimating the soil nitrogen content in comparison to the vegetation indices and soil 

indices. 
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Findings from the descriptive statistics indicate that nitrogen content is low 

(0.014%-0.088%) for the smallholder maize farms. This is expected because the 

smallholder farms within the study area rarely apply nitrogen fertilization and a small 

proportion of the farmers use cow manure as fertilizer. For example, Nyamugara et al. 

(2005) conducted experiments for three years and found that the combination of cow 

manure and nitrogen fertilizers in smallholder maize farms in Zimbabwe improves soil 

nitrogen content which increases maize yield. Furthermore, data exploration in our 

study revealed that multicollinearity was present when relating soil nitrogen content to 

the different predictor variables. The presence of multicollinearity implies that the 

application of multiple linear regression with these variables to predict the soil nitrogen 

content would be unreliable (Mansfield and Helms, 1982). Multicollinearity introduces 

large variances in the least squares estimators (regression coefficients), lowers the 

quality of the resulting parameter estimates, and the variables have a low information 

content (Farrar and Glauber, 1967). The main advantage of the machine learning 

techniques, applied in the present study, is that they are less prone to multicollinearity 

problems. For example, Jaya et al. (2020) found that the artificial neural network model 

had a lower bias, mean squared error and minimized residuals in comparison to a 

multiple linear regression model when multicollinearity was present. Additionally, 

Farrell et al. (2019) study observed that multicollinearity removal and correlation 

removal did not reduce the performance of RF and support vector machine 

substantially. The robustness of machine learning could be due to the adaptive 

learning process used by the models which reduces errors (Belgiu and Drăguţ, 2016; 

Cooner et al., 2016). For example, RF uses bagging, XG uses additive training 

strategies, and GB reduces the model residuals along the gradient direction, which 

minimizes the multicollinearity problem. 

 

Three predictive models were evaluated. Findings show that the RF model 

performs better than the GB and XG models when estimating soil nitrogen at 

smallholder maize farms in our study area. These results are similar to other studies 

which show the high capacity of RF in mapping soil nitrogen content (Jeong et al., 

2017; Sorenson et al., 2017; Xu et al., 2018; Zhang et al., 2019; Deng et al. 2020; 

López-Calderón et al. 2020). Furthermore, the findings suggest that the XG model 

needs more input variables to model soil nitrogen content in comparison to GB and 
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RF. This can be attributed to the implementation of the models, the XG algorithm is 

sensitive to outliers because the individual learners are in series format and RF is not 

sensitive to outliers because it is a parallel implementation of multiple decision trees 

(Li et al., 2019). In terms of variability, this study found an R2 of 0.87-0.90, RMSE of 

0.0086%-0.0092% and CV of 0.66-0.81 with RF which is the most robust model. Our 

results are similar to López-Calderón et al. (2020) that found an R2 of 0.77 and a mean 

square error of 0.15 % when predicting soil total nitrogen content applying RF for 

forage maize with UAV imagery. Additionally, Sorenson et al., (2017) used field 

reflectance spectroscopy for estimating soil nitrogen content and reported a cross-

validation RMSE of 0.62% and R2 of 0.78 with RF for reclaimed soils. Furthermore, 

Deng et al. (2020) found a cross validation R2=0.65 and RMSE=0.43 g kg−1 with RF 

applied on MODIS data when estimating soil nitrogen content for croplands. Contrary 

to our findings, Xu et al. (2018) reported an adjusted R2 of 0.49 and RMSE of 125.71 

mg kg−1 with Landsat 8 data applying RF to predict soil nitrogen at smallholder 

farmlands planting different crops. Jeong et al., (2017) observed an R2=0.552 and 

RMSE=1.131 mg g-1 when applying RF soil nitrogen content estimation in a complex 

terrain with Landsat TM data. These differences in findings can be induced by the 

input variables or other factors such as whether the soil is completely bare or has plant 

coverage which can influence the predicted soil nitrogen content. For example, the 

study by Beguin et al. (2017) found that the input predictors affect the predictive 

capacity of models predicting soil properties. Other studies such as Zhang et al., 

(2019) observed different performance for the digital soil map generated in a vegetated 

condition (R2=0.67) and completely bare soil condition (R2=0.80) with RF. 

 

Variable importance was done to determine the most important predictors for 

estimating soil nitrogen content at smallholder maize farms. The results showed that 

the Sentinel-2 bands have an advantage when estimating soil nitrogen content. 

However, environmental variables had a lower ranking and additional soil indices were 

necessary in the XG model. These findings are similar to other studies that found that 

spectral bands are more important than environmental variables (Zhang et al., 2019; 

Forkuor et al., 2017, Zhou et al., 2019). However, some studies showed contrasting 

results and the environmental variables had the highest ranking (Wang et al. 2018; 

Zhou et al., 2020). The differences in findings are attributed to variations in the model 
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input variables in these studies. For example, most of these studies have used 

Landsat optical data for mapping soil nitrogen content which does not have the RE 

bands that Sentinel-2 has, which the current study incorporated. Additionally, the 

presence of maize crops within the smallholder farms in the current study could have 

contributed to the higher importance of the red-edge bands. These bands are sensitive 

to variations in chlorophyll content, differences in the leaf structure and plant biomass 

(Miura et al. 2000; Fernández-Manso et al., 2016). The radiation from the red-edge 

penetrates deeper into the crop canopy and leaves in comparison to visible light due 

to lower chlorophyll absorption in the visible region (Li et al., 2014). Xu et al. (2018) 

also found that red-edge spectral bands are important when estimating soil total 

nitrogen in smallholder farms that have different crops planted. These studies prove 

that red-edge bands have a high capability to estimate total nitrogen content 

accurately in smallholder farms that have crop cover. The high importance of the CI 

and RI amongst the soil indices was expected within the study area because most of 

the soils are red soils which have a high iron oxide content possibly related to 

haematite which the RI is sensitive to (Bullard and White, 2002). The most important 

predictors were LST, DEM, and TWI for the environmental variables. The LST affects 

the spatial distribution of soil nitrogen through its effect on soil temperature, thereby 

affecting the process of nitrogen mineralization (Knoepp and Swank, 2002). The DEM 

is important because elevation plays a role in the microclimate, runoff, evaporation 

and transpiration (Baxter and Olivier, 2005). The TWI is an indicator of soil moisture 

distribution (Sörensen et al., 2006). Soil moisture conditions, in addition of course to 

soil nutrients, are determinants of crop vigor and development. The distinction 

between highly ranked predictors and low ranking predictors in the GB and XG models 

shows that further exploration of the influence of the predictors on model performance 

can be done for both models for model optimization.  

 

The spatial distribution of soil nitrogen was mapped. The resulting spatial maps 

produced from the three algorithms were similar. This finding proved the high 

capability of machine learning to estimate soil nitrogen content in smallholder maize 

farms. The soil nitrogen maps generated in this study can be used as a tool to guide 

decision making for smallholder farms. Recommendations by crop consultants, 

extension services, and fertilizer dealers can also benefit from using nitrogen content 
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maps. Government initiatives providing farmers with agricultural inputs can use such 

maps to determine the soil nitrogen content at the farms and the proportion of fertilizer 

to use because different fertilizer quantities affect maize yield differently as shown by 

Nyamugara et al. (2005). Improved levels of soil nitrogen content at smallholder farms 

will increase maize yields, thereby, improving food security (Sinclair and Muchow, 

1995; Otto, 2016; Chlingaryan et al., 2018). This application contributes to the 

Sustainable Development Goals (SDG) number 2 (Zero Hunger), target 2.4 and 

indicator 2.4.1, which are concerned with mitigating factors that affect agricultural 

production, ensuring sustainable agriculture and increasing the proportion of 

agricultural area under production (Richard, 2015). 

 

The main limitation of this study is that a small number of farms were visited for 

field data collection due to the high cost for laboratory processing of samples and 

fieldwork. This study recommends further exploration of Sentinel-1 and Sentinel-2 data 

for estimating soil nitrogen in smallholder farms (Zhang et al., 2019; Zhou et al., 2019; 

Zhou et al., 2020). Studies focusing on smallholder farms are lacking especially in an 

African context and these farms are important for food security and rural livelihoods 

(Shi and Tao, 2014; Fischer and Hajdu, 2015). Training programs are recommended 

for the smallholder farms to improve the awareness of farmers on chemical 

fertilization. For example, nitrogen is essential when the crop is actively growing, but 

nitrogen application before that time can lead to losses through leaching or subsurface 

flow (Poffenbarger et al., 2018). Other more cost-effective alternatives to nitrogen 

fertilizers such as leguminous trees and shrubs grown with maize are recommended 

for smallholder farms in resource poor areas. These will provide nitrogen-rich residues 

that increase soil fertility (FAO, 2016).  

 

4.5. Conclusion 

 

This study was aimed at assessing Sentinel-2 bands, derived soil and vegetation 

indices and environmental variables for predicting soil nitrogen in smallholder maize 

farms applying machine learning regression. Different predictor variables were related 

to soil nitrogen content. The red, red-edge and short-wave infrared bands were 

strongly related to soil nitrogen with correlations of 0.89-0.90. The machine learning 
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models applied in this study (RF, GB, and XG) were suitable for the data because 

multicollinearity was present between the predictors, which these models dealt with 

effectively. Model evaluation results show that machine learning models have a high 

predictive capacity in estimating soil nitrogen (R2=0.84-0.90 and RMSE=0.0076-

0.0094%) in smallholder farms. Variable importance revealed that the Sentinel-2 

bands, particularly the red and red-edge bands are fundamental for modeling soil 

nitrogen in all three models. The soil nitrogen maps generated in this study can be 

used as a tool to guide decision making for smallholder farms. Recommendations by 

governments, extension services and fertilizer dealers can also benefit from using 

such maps. These maps are useful to establish nitrogen management plans in the 

smallholder farms, which will increase maize yields, thereby, improving food security. 
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Chapter 5 

Early Season Spatial Estimation of Smallholder Maize Yield based 

on Machine Learning 

 

Abstract 

Food security is an issue of global concern; this has mandated the monitoring of 

agricultural systems using cost effective techniques such as remote sensing. 

Smallholder maize farms are dominant in Africa, they produce 80% of the maize in the 

region. These farmers are faced with economic and environmental issues that limit 

their productivity. The utility of Sentinel-1 and minimal field collected soil samples are 

investigated for predicting smallholder maize yield early in the season. Two machine 

learning models were tested―random forest (RF) and extreme gradient boosting 

(XG). The findings suggest that maize yield can be accurately predicted from two 

months before harvest. However, the accuracies of the models were low (R2 of 0.2-

0.41), this was expected for smallholder farms. These farms are fragmented and 

usually have non-homogeneous planting patterns. The VV_December, soil nitrogen 

content, VH_April and VH_March were identified as important variables for estimating 

maize yield. The yield maps generated in this study can be used to contribute to the 

Sustainable Development Goals (SDG) number 2 (Zero Hunger). Thereby, ensuring 

food security and improved policy implementation in rural communities. 

 

Keywords: food security, maize, yield estimation, Sentinel-1 
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5.1. Introduction 

 

The Food and Agriculture Organization (FAO) state of the World Series has identified 

food security as an issue of global concern of the 21st century (FAO, 2018). 

Furthermore, the Sustainable Development Goal (SDG) number 2: End hunger, 

achieve food security, improve nutrition, and promote sustainable agriculture, aims to 

address this global crisis (SDG, 2019). Maize is an important cereal crop worldwide 

for different uses such as human consumption, animal feeding and industrial 

production (Orhun, 2013; Ranum et al., 2014). However, maize production is expected 

to decrease worldwide under conventional management due to climate variability 

(Parry et al., 2004; Zougmoré et al., 2018). Smallholder maize farms that contribute 

80% of the maize produced in the rural communities of Africa are also threatened by 

this phenomenon (FAO, 2016). However, the increasing demand for maize products 

in rural areas where it is a primary food source has contributed to food insecurity in 

these communities (Santpoort, 2020). Therefore, frameworks to predict smallholder 

maize yields before harvest are imperative. These frameworks will provide an 

indication of the expected maize yield and aid in planning for maize shortages and 

surpluses to ensure food security, especially in rural communities.  

 

Satellite data is an indispensible tool for maize yield estimation (Prasad et al., 

2006; Sibley et al., 2014; Yao et al., 2015). However, the high density of clouds during 

the rainy season when smallholder maize is cultivated limits satellite data from optical 

sensors. Thus, this study uses synthetic aperture radar data (SAR), which can 

penetrate cloud cover to overcome this constraint. Few studies have been done on 

the use of SAR for crop monitoring, mapping and biophysical parameter estimation 

(Wu et al., 2010; Satalino et al., 2013; McNairn and Shang, 2016; Zhou et al., 2017). 

Additionally, the lack of freely available SAR images and complexity of the data have 

limited its development in crop yield estimation (Torbick et al., 2017). Sentinel-1 is 

equipped with SAR sensors, which have a shorter revisit time of 6 days and an 

improved spatial resolution (5 m x 20 m) in the interferometric wide-swath mode that 

has a broad potential in estimating crop yield (Torres et al., 2012).  
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Mainly two types of approaches have been used to predict maize yields, these 

comprise of crop simulation models and statistical models. Crop simulation models 

simulate crop yield using meteorological data and farm management data (Whisler et 

al., 1986; Lal et al., 1993). Different crop models have been developed for maize yield 

predictions these include but are not limited to: DSSAT, APSIM, WOFOST and Hybrid 

maize (Yang et al., 2004; Liu et al., 2011; Archontoulis et al., 2014; Cheng et al., 2016). 

The drawback of using these models on a regional scale is the sparse distribution of 

weather stations especially in Africa (Van Wart et al., 2013). Additionally, crop 

simulation models provide results that are point based (Brisson et al., 1992). 

Furthermore, most of the smallholder farmers in Africa rarely record their farm 

management information (Gommes et al., 1998). An alternative approach is the 

statistical approach, this method relies on developing an empirical relationship 

between weather data and historical yield records to develop future forecasts 

(Matsumura et al, 2015). Linear regression approaches have been used widely in this 

approach for maize yield prediction (Rojas et al., 2007; Golam et al., 2011; Matsumura 

et al., 2015). The disadvantage of these models is that they often do not explain the 

soil–plant–atmospheric interactions (Chivasa et al., 2017). Additionally, their spatial 

generalization to other areas is low and they can be easily affected by multicollinearity 

(Farrar and Glauber, 1967; Mkhabela et al., 2005). 

 

Advanced algorithms such as machine learning can be applied for estimating 

crop yields. Machine learning algorithms are widely used because they can learn from 

limited data and reduce errors through an adaptive learning process (Belgiu and 

Drăguţ, 2016; Cooner et al., 2016). Previous studies have reported varying model 

performances when different machine learning models were compared. For example, 

Kang et al. (2020) found that the extreme gradient boosting (XG) algorithm was better 

than the lasso, support vector machine (SVM), random forest (RF), long-short term 

memory and convolutional neural network algorithms when estimating maize yield. 

Chen et al., (2021) reported that Cubist was slightly better than RF, SVM, and XG for 

predicting maize yield. Furthermore, Meng et al., (2021) observed that RF and 

adaptive boosting performed better than linear regression (LR), K-nearest neighbor 

(KNN), SVM and Gaussian process (GP) regression for estimating maize yield. This 

necessitates the evaluation of different machine learning algorithms to find the suitable 
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techniques for estimating the smallholder maize yields within the study area. This 

current study uses the RF and GP machine learning algorithms maize yield forecasting 

because they can deal with noisy, high-dimensional and non-linear data (Izquierdo-

Verdiguier, 2014; Li, 2016). The research questions addressed in this study are: 1) 

Which time window is optimal for maize yield estimation? 2) Which features are 

important for maize yield estimation? and 3) What is the spatial pattern of smallholder 

yield? 

 

5.2. Materials and methods 

5.2.1 Study Area  

 

Maize and soil samples were collected in Makhuduthamaga district (Figure 31) located 

in Limpopo province of South Africa. This district is dominated by smallholder maize 

farms that depend on their produce for sustenance, thus, it was selected as a case 

study (SDM, 2019). The area experiences summer rainfall and the mean annual 

rainfall is 536 mm. The minimum mean annual temperature can reach 7°C and the 

maximum mean annual temperature can reach 35°C according to the automatic 

weather stations of the Agricultural Research Council. The topography is undulating 

with rock habitats such as rock outcrops, rocky ridges and rocky refugia (Siebert et al., 

2003). The dominant soil types are—haplic acrisols, ferric luvisols and lithic leptosols 

(Jones and Thornton, 2015). 
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Figure 31. Dominant land cover classes within the study wards in Makhuduthamaga. 

 

5.2.2 Satellite data: Sentinel-1 

 

Sentinel-1 imagery were acquired from the Google Earth Engine 

'COPERNICUS/S1_GRD' image collection. This collection consists of the Level-1 

Ground Range Detection (GRD) scenes (GEE, 2021). The data is preprocessed using 

the Sentinel-1 toolbox to generate the backscatter coefficient using key preprocessing 

steps before uploading to GEE. These steps consist of applying the obit file to update 

the orbit metadata. The GRD border noise removal is done to remove low intensity 

noise and invalid data. Thermal noise removal takes place to remove additive noise. 

Then, radiometric calibration is done for the computation of backscatter intensity. 

Lastly, the terrain correction is done to remove the geometric distortions caused by 

topography (Filipponi, 2019). Both the Vertical transmit and vertical receive (VV) and 

Vertical transmit and horizontal receive (VH) polarizations were used in this study as 

described in Table 18. The Sentinel-1 data covered the maize cropping season 

(December 2018 - 30 June 2019). 
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Table 18. The characteristics of the Sentinel-1 data. 

 

Polarizations Bandwidth (nm) Spatial 

Resolution (m) 

Vertical transmit and 

vertical receive (VV) 

- 10 

Vertical transmit and 

horizontal receive (VH) 

- 10 

 

5.2.3 Maize yield data 

 

The maize yield samples were collected in June for 2018/19. The yield was then 

determined in tons per hectare using the method by Sapkota et al., (2016) based on 

the grain weight. The parameters measured at each point per field were the number 

of kernel rows per ear, number of ears per square meter (determined from a 1 meter 

quadrant), kernel weight in grams and the 1000 grain weight. The Global Positioning 

System (GPS) locations of 104 maize samples were captured. The phenological 

calendar for maize in the study area is depicted in Figure 32. Maize is planted during 

December and January. The maize then grows for four months between February to 

May. Harvesting takes place in June and no maize is present in the smallholder farms 

during July-November. The maize from the smallholder farms in the study area is rain-

fed. 
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Figure 32. The time series evolution of the VV and VV polarizations during the planting season. 

 

5.2.4 Soil Data 

 

Soil samples were collected in the topsoil of smallholder maize farms in May 2019. 

There were 105 samples in total that were sent to the analytical laboratory of the 

Agricultural Research Council of South Africa to determine the nitrogen content and 

pH. Incorporating soil nutrient information is necessary because a lack of the 

appropriate amount and form of crop nutrients is a major crop productivity constraint 

in the third world (Hussain et al., 2006).  

 

5.2.5 Machine learning regression models 

 

Both RF and XG machine learning regression models were applied for maize yield 

estimation. The RF classifier is an ensemble learning algorithm consisting of a 

combination of classifiers. Each pixel is assigned to a specific class using a majority 

voting system. The RF algorithm trains each tree using an independently drawn 

sample of the original data using bootstrapping or bagging and determines the number 

of features to be used at each node by evaluating a random vector (Breiman, 2001). 
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This algorithm was used because it is insensitive to noise or overtraining. The RF 

model has other advantages such as determining the variable importance and is less 

computationally extensive (Rodriguez-Galiano et al., 2012).  This model was 

implemented in Python and feature importance was determined using the built-in 

function for RF. 

 

The XG model is a scalable tree boosting algorithm proposed by Chen et al., 

(2015). The framework for this model was developed from the gradient tree boosting 

system by Friedman et al., (2000) and Friedman (2001). This algorithm is effective 

and uses additive training process to develop strong learners. The model is fitted to 

the entire datasets and adjusted using the residuals. The additional regularization term 

helps to smooth the final learnt weights to avoid over-fitting (Chen and Guestrin, 2016). 

The algorithm can learn the desired model from complex datasets, supports parallel 

computing, which enables it to reduce computational time. This model was 

implemented in Python and feature importance was determined using the built-in 

function for XG. 

 

5.2.6 Metrics for model evaluation 

 

Model evaluation for the predictive performance of the machine learning algorithms 

was done using common model evaluation metrics. This included the mean absolute 

error (MAE), mean bias error (MBE), root mean squared error (RMSE) and coefficient 

for determination (R2) as shown in Equation (1) – (3): 
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where 𝑛 represents the number of sample points, 𝑃𝑖 represents the predicted soil 

nitrogen content and 𝑂𝑖 represents the observed soil nitrogen content in site 𝑖 

respectively. 

 

5.2.7 Experiments 

 

The effectiveness of Sentinel-1 and other ancillary soil data were evaluated for 

estimating smallholder maize yield. These datasets were tested to identify the earliest 

window when maize yields can be predicted accurately. Five windows summarized in 

Table 19 were considered for experimentation: December-January, December-

February, December-March, December-April, December-May and Dec-June. The 

data was split 90% (93 samples) for training and 10% (11 samples) for validation. 

 

Table 19. The configurations of the six datasets. 

 

Dataset Number of predictors Months Data type 

1 6 Dec-Jan VV, VH, pH, Nitrogen 

2 8 Dec-Feb VV, VH, pH, Nitrogen 

3 10 Dec-Mar VV, VH, pH, Nitrogen 

4 12 Dec-Apr VV, VH, pH, Nitrogen 

5 14 Dec-May VV, VH, pH, Nitrogen 

6 16 Dec-June VV, VH, pH, Nitrogen 

 

5.3. Results 

5.3.1 Identifying the Earliest Time Window to Predict Smallholder Maize Yield 

 

Statistical analysis were done to determine the earliest time window when smallholder 

maize yield can be predicted with RF and XG machine learning regression models. A 

multidimensional time series of Sentinel-1 images and soil information were related to 

maize yield for this purpose. The optimal time window for yield modelling was the same 

for both models. Based on Figure 33 to Figure 35, maize yields can be predicted 

accurately two months before harvest. The ideal time window is in April with a data 

cube including data from December (sowing period). The R-squared value is high for 

the Dec-April dataset, indicating a stronger relationship between maize yield and the 
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predictor variables. Additionally, XG (R2: 0.41) performed slightly better than RF (R2: 

0.30) based on the higher R-squared value. Both the RMSE and MAE were lower for 

the XG (RMSE: 0.41 t/ha and MAE: 0.46 t/ha) model in comparison to RF (RMSE: 

0.48 t/ha and MAE: 0.51 t/ha) during this time. The model accuracies decreased after 

the peak in maize growth for both models. 

 

 

Figure 33. The R-Squared values for the two machine learning models. 
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Figure 34. The MAE for the RF and XG machine learning models. 

 

 

Figure 35. The RMSE for the machine learning regression models. 
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5.3.2 Feature importance 

 

Feature importance was done to determine the most important variables for modeling 

smallholder maize yield in April using RF and XG (Figure 36 and Figure 37). The 

models were similar in terms of feature ranking, both models ranked the 

VV_December, soil nitrogen content, VH_April and VH_March as important features. 

The RF model had a clear distinction of the three most important features, which had 

a ranking greater than 10%. However, RF needed more input data in comparison to 

XG where the VH_Dec, VV_February and VV_January were not important for the 

model.  

 

 

Figure 36. Feature importance plot for RF based on the December to April data cube. 
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Figure 37. Feature importance for XG generated from the December-April data. 

 

5.3.3 Model validation 

 

Scatterplots were generated for the December-April window applying RF and XG 

(Figure 38). These are based on 10% of the samples, which were not used for model 

training. The data points are scattered away from the diagonal indicating a weak 

relationship between the observed yield (field collected samples) and predicted yield 

from the regression models. The XG model (R2 of 0.49) had an improved performace 

in comparison to RF (R2 of 0.33). Both models were significant at a 95% confidence 

interval based on p-values of 0.016 for XG and 0.062 for RF.  
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Figure 38. The observed and predicted maize yield where a) is RF and b) is XG. 

 

5.3.4 Smallholder Maize Yield Maps 

 

The maize yield maps are represented in Figure 39 and Figure 40 for RF and XG 

models. The XG model had a better distinction between the high yielding and low 

yielding areas in comparison to RF. High yielding areas are located on the south 

eastern part of the study wards and the low yielding areas are on the northern part. 

The south eastern part has a favourable climate, fertile soils and more smallholder 

maize planting areas in comparison to the northern part.  

 

Figure 39. Insert maps for the maize yield classification generated by RF and XG. 
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Figure 40. The spatial distribution of smallholder maize yield within the study wards. 

 

5.4. Discussion 

 

The aim of this study was to develop a framework based on Sentinel-1 data with the 

application of machine learning models, which can be easily adapted due to minimal 

data inputs for estimating smallholder maize yield. The optimal window for developing 

the yield model was identified. Feature importance was done for both RF and XG 

machine learning regression models. The spatial pattern of maize yield was mapped. 

Results from the present study indicate that maize can be estimated accurately in 

advance before harvest. Furthermore, the model performances show that there is 

scope for improving the Sentinel-1 based model to be better suited for heterogeneous 

smallholder farms. 

 

Findings from this study reveal that the ideal time window for maize yield 

estimation is in April (two months before harvest), corresponding to the peak growing 

period. These findings are similar to what other authors have observed. For example, 
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Leroux et al., (2019) determined that the period two months before harvest is optimal 

for maize yield estimation in West Africa. Ma et al., (2021) found the same period to 

be important for maize yield estimation in the US Corn Belt. The peak growing period 

reflects maximum greenness for maize, which is important for crop yield estimation 

(Bolton and Friedl, 2013; Rembold et al., 2013; Liu et al., 2020). In our case, the use 

of both the VV and VH backscatter for Sentinel-1 captured different properties for 

maize. The VV polarization is sensitive to soil moisture and the VH polarization 

increases with an increase in leaf area index and biomass. Both polarizations 

decrease after harvest similar to Vreugdenhil et al., (2018). The temporal evolution of 

profile explains the importance of the VV_December, VH_April and VH_March 

polarizations for both models during the feature importance analysis. 

 

Contrary to the findings of other studies, which observed good performances for 

maize yield estimation (R2: 0.69-0.89) (Fieuzal et al., 2017; Ouattara et al., 2020), the 

current study found an R2 of 0.41 for XG and an R2 of 0.31 for RF. Different factors 

resulted in a poor model performance. For example, the smallholder fields in the study 

area are heterogeneous due to poor farm management practices. There are bare 

patches within the farms, a lack of equal row spacing and the farmers rely on rainfall 

for crop production. Other factors which limit the yield of the smallholder farms are: 

acidic soils, lack of a use of suitable maize seeds and suboptimal fertilization. The 

differences in model performances were expected for XG and RF. Zhang et al., (2020) 

observed that the XG (R2=0.77) model had a slightly better performance than RF 

(R2=0.76) through the combined use of optical, fluorescence and thermal Satellite 

data. Chen et al., (2021) found that the RF model performs better (correlation 

coefficient of R=0.94) in comparison to the XG model (R=0.85) with the use of 

multisource data. Spatial statistics for crop yield are not routinely measured which 

meant that the observed yields could not be compared to official statistics. However, 

the field collected yield samples were related to those generated by the machine 

learning model.  

 

The limitations of this study were that a small number of maize fields were 

sampled. Multisource data from Google Earth Engine (GEE) could not be integrated 

in the machine learning models due to the small sizes of the farms which need high 
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resolution data to resolve. Potential GEE datasets which could have improved the 

model performance would be climate and soil moisture data. The climate data is 

important because climate influences the yields of widely grown cereal crops such as 

wheat, barley and maize. For example, Lobell and Field (2007) used 41 years of 

climate data and crop yields, the study showed that climate variability reduces crop 

yields (2-3% losses in maize, wheat and barley yields globally). Furthermore, Matiu et 

al., (2017) used 53 years of temperature data, standardized precipitation 

evapotranspiration index and related it to crop yields (maize, rice, soy beans and 

wheat yield). That study found that drought decreases the yield of maize by 11.6% 

globally. The soil moisture is important for smallholder maize farms because they 

depend on rain for crop production. Insufficient soil moisture affects seedling rooting 

and emergence at the beginning of the season (Yang et al., 2021). This study 

recommends the exploration of integrating Sentinel-1 and Sentinel-2 data which was 

not possible in the current study due to the high density of cloud cover during the 

cropping season. 

 

5.5. Conclusion  

 

This paper assessed the potential application of machine learning regression with 

Sentinel-1A and a limited dataset for smallholder maize yield estimation. Findings 

suggest that the period 2 months before harvest is optimal for early season maize yield 

estimation. Furthermore, the different input features were ranked. This analysis 

revealed that the VV_December, soil nitrogen content, VH_April and VH_March are 

important in the model. Validation results showed a poor relationship between the 

observed and predicted yields (R2 =0.49 for XG and R2=0.33 for RF), which shows the 

need for more studies focused on model optimization for smallholder maize farms. The 

resulting maps are important for managing maize supply and demand to improve food 

security in rural areas. 
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Chapter 6 

Synthesis 

 

The Sustainable Development Goals (SDGs) were developed as part of the 2030 

agenda for sustainable development. This initiative is aimed at ensuring zero hunger, 

promoting justice, reducing inequality, amongst other critical themes. Smallholder 

farmers contribute significantly towards the zero-hunger theme, and in most 

developing countries, the smallholder farming sector maybe the only practical platform 

for meeting SDG2. In such cases, this sector is the only means of food production and 

economic livelihood. However, smallholder maize farmers have a smaller size (0.5-2 

ha) and are located in remote areas that are difficult to access. This poses challenges 

to local governments to generate continuous spatial agricultural information to support 

decision making process. Such information is crucial in policy development, 

monitoring, and implementation. Remote sensing satellites with improved spatial and 

temporal resolutions such as the Sentinel-1 and Sentinel-2 offer unprecedented 

opportunities to contribute towards documenting production, and generating the 

lacking agricultural statics for the smallholder sector, which is required for planning, 

encouraging development, and hence contribute to the many different SDGs including 

zero hunger. This thesis explored and developed models using Sentinel data and 

machine learning algorithms to support SDG 2 and smallholder maize farmers. 

The aim of the study was to use Sentinel-1 and Sentinel-2 remote sensing data 

to map and monitor smallholder maize farms in support of the SDGs number-2 based 

on machine learning algorithms. In this chapter, we summarize the research findings, 

links between the chapters and conclusions based on the set objectives in section 1.7.  

A summary of each objective is given below: 

 

1. Evaluate both Sentinel-1 and Sentinel-2 single date imagery to delineate 

smallholder maize farms using machine learning algorithms 

 

For most developing countries, the literature survey had shown the dire lack of credible 

information on levels agricultural production, and areal extents for the smallholder 

farming sector. This key information is required in order for governments to allocate 

resources and improve this sector. Thus, this chapter explored the use of both 
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Sentinel-1 and Sentinel-2 single date imagery to delineate smallholder maize farms. 

The results showed that single-date Sentinel-1 on its own was not sufficient in mapping 

planted maize fields. When Sentinel-2 data were integrated with Sentinel-1 data, an 

improvement of 24.2%, 8.7% and 9.1% for random forest (RF), support vector 

machine (SVM) and model stack (ST) algorithms, respectively, were observed. 

Machine learning proved to have a high capacity to estimate smallholder maize-

planted areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 

ha for ST). The framework used in this study can be applied when evaluating different 

algorithms for mapping smallholder farms. The crop maps derived in this study are 

fundamental for crop monitoring, land-use policies and aiding food security planning 

activities. The integration of Sentinel-1 and Sentinel-2 is optimal for delineating 

smallholder farms and area estimates with single date imagery. This approach can be 

used in resource scarce areas. 

 

2. Develop an innovative approach using Sentinel-1 time-series data and 

machine learning algorithms (integrating both supervised and 

unsupervised methods) to map smallholder maize farms.   

 

This objective utilized Sentinel-1 multi-temporal data for mapping smallholder maize 

farms’ spatial distribution and estimate production areas. The two-stage image fusion 

approach was adopted. The multi-temporal approach was investigated to compare 

with the single-date approach in Chapter 2 and determine which technique produces 

accurate results. The SVM and extreme gradient boosting (XG) machine learning 

algorithms were applied. The results revealed that most smallholder farms in our study 

area are distributed in the south eastern part of Makhuduthamaga. The algorithms 

provided comparable statistical evaluation results. However, McNemar’s test showed 

that the results from the two algorithms were statistically different from each other. The 

SVM and XG algorithms estimated maize production areas to be 7073.558 ± 0.01 ha 

and 7303.32 ± 0.180 ha, respectively, for the region. The classified areas for selected 

farms compared favorably with the measured areas in the field and the SVM classifier 

had a better fit (R = 0.89) in comparison with the XG algorithm (R = 0.84). The SVM 

algorithm seems to have generally performed better than the XG algorithm. The use 
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of multi-temporal Sentinel-1 with a two-stage image fusion approach proved to be 

effective in mapping smallholder farms.  

 

3. Investigate the utility of machine learning regression for spatial predictions 

of soil nitrogen content in smallholder maize farms. 

 

This study was aimed at assessing Sentinel-2 bands, derived soil and vegetation 

indices and environmental variables for predicting soil nitrogen in smallholder maize 

farms applying machine learning regression. This procedure was done for the farms 

identified in Chapter 2 and Chapter 3. Previous research has shown that soil nitrogen 

deficiencies are limiting for maize growth, thus it was important to establish a 

framework to monitor it (Xu et al., 2018). Different predictor variables were related to 

soil nitrogen content. The red, red-edge and short-wave infrared bands were strongly 

related to soil nitrogen with correlations of 0.89-0.90. The machine learning models 

applied in this study (RF, GB, and XG) were suitable for the data because 

multicollinearity was present between the predictors, which these models dealt with 

effectively. Model evaluation results show that machine learning models have a high 

predictive capacity in estimating soil nitrogen (R2=0.84-0.90 and RMSE=0.0076-

0.0094%) in smallholder farms. Variable importance revealed that the Sentinel-2 

bands, particularly the red and red-edge bands are fundamental for modeling soil 

nitrogen in all three models.  

 

4. Develop procedures using Sentinel-1 data to model maize yield in complex 

environments.  

 

This objective was aimed at developing Sentinel-1 based procedures with minimal field 

collected data for mapping smallholder maize yield early in the season using machine 

learning. This procedure is important for forecasting maize yield in for ensured food 

security and thus contributing to SDG2. The farms identified in Chapter 2 and Chapter 

3 were considered. Two machine learning models were tested―RF and XG. The 

findings showed that maize yield can be predicted accurately from two months before 

harvest. The model accuracies were low (R2 of 0.2-0.41), this was expected for 

smallholder farms. These farms are fragmented and usually have non-homogeneous 
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planting patterns. Feature importance showed that VV_December, soil nitrogen 

content, VH_April and VH_March are important variables for estimating maize yield.  

 

Summary of the scientific contribution  

 

Chapter 1 provided a general introduction and a direction for the thesis. Describing the 

importance of remote sensing technology in supporting SDGs within the context of 

smallholder maize farms. Chapter 2 and Chapter 3 explored techniques to accurately 

identify smallholder maize farms within the complex environments. A single date and 

multi-temporal approaches were studied to identify smallholder maize farms and 

estimate planted areas. The two approaches yielded comparable results, however 

there were noticeable differences between the models i.e., (1) a single date approach 

produced high variance between the model estimates and each estimate of the 

planted area had higher standard deviation. (2) While a multi-temporal approach 

produced smaller variance between the estimates of planted areas and each model 

had much lower standard deviation estimates compared to the single date approach. 

Therefore, the multi-temporal approach is the recommended method for mapping 

smallholder maize farms. However, this method is computationally intensive and not 

easy to implement, while the single date method is relatively easy to implement and 

requires less computation resources. Chapter 4 used machine learning regression 

methods to estimate spatial distribution of the total soil nitrogen content at smallholder 

maize farms. Nitrogen is one of the most important nutrients in the soil for plants. The 

ability of Sentinel-2 data to support production of nitrogen maps with a medium spatial 

resolution (10 m) is an important contribution towards achieving SDGs number 2. 

Especially, in developing countries such as South Africa where such information is 

lacking. This framework can be used to provide spatial agricultural information and the 

associated statistics to inform policy design and implementation by local government. 

Recommendations by governments, extension services and fertilizer dealers can also 

benefit from using such maps. These maps are useful to establish nitrogen 

management plans in the smallholder farms, which will increase maize yields, thereby, 

improving food security. The use of Sentinel-1 and minimal field collected data in 

Chapter 5 has not been extensively explored for smallholder maize yield estimates 

which is necessary for African farmers which are resource scarce and face issues of 
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food security. Early season yield predictions will aid in planning for maize supply and 

demand. 

 

Future work 

 

• The developed framework should be tested at different seasons, different 

climatic zones, and different crop types to assess its robustness under these 

different conditions.  

• A Multi-temporal approach in mapping crop types should include phase, mean, 

and amplitude data as extracted from the multi-temporal images per pixel. This 

additional information could potentially improve classification results. 

• Application of deep leaning algorithms should be explored (e.g., Convolutional 

Neural Network) as these algorithms have a potential to outperform traditional 

machine learning algorithms.  

• Model optimization should be done for the yield model derived for smallholder 

farms and the integration of high spatial resolution data should be explored.  

• To upscale the framework of monitoring smallholder crop farms, it is 

recommended that the Python code be implemented/converted to Java scripting 

to allow easy implementation on the cloud platforms such as Google Earth 

Engine platform (https://earthengine.google.com/). Cloud computing will execute 

the code much faster than the Ryzen 9 system that was adopted in this study.  

• Other data products should be developed to contribute to monitoring of SDG 2 

for example land suitability maps using Sentinel data which will guide farmers of 

where optimal areas are located for smallholder maize production. 
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