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Abstract 

Diabetes mellitus affects millions of people worldwide and if left untreated leads to many serious 

complications such as hypertension, stroke, coma, or even death. Although drugs are commercially 

available, often these are unaffordable and have undesirable side effects. Therefore, discovering new 

and more effective treatments is of importance. Several edible plants have been found to have 

antidiabetic properties and the compounds contributing to activity may be an alternative source of 

compounds for the treatment of type 2 diabetes (T2D). The study aimed to analyse the in silico 

properties, the digestive enzyme inhibition and cellular glucose-uptake inducing ability of the selected 

compounds present in herbs, spices, and medicinal plants. 

The docking scores of 1070 compounds in 30 herbs, spices, and medicinal plants were obtained using 

the virtual docking simulations known as Glide and AutoDock Vina. Twenty compounds were selected 

that had a range of docking scores for pancreatic alpha-amylase and alpha-glucosidase. The ADMET 

properties of these compounds were predicted using Canvas and pkCSM, and the potential cross 

reactions of six selected compounds were predicted using SwissTargetPrediction. The pancreatic alpha-

amylase and the alpha-glucosidase inhibitory activity of these compounds were determined with the 3,5-

dinitrosalicylic acid (DNSA) and p-nitrophenyl α-D-glucopyranoside (pNPG) assays, respectively, and 

the inhibition constant (Ki) values were compared with acarbose. The enzyme kinetics were determined 

using Lineweaver-Burk and secondary plots. Caffeic acid, vanillin, ethyl gallate, and p-coumaric acid 

had Ki values that were similar (p > 0.05) to the Ki of acarbose (Student’s t-test) for pancreatic alpha-

amylase. Rutin, caffeic acid, vanillin, and p-coumaric acid had Ki values that were similar (p ˃ 0.05) to 

the Ki of acarbose for alpha-glucosidase. A positive correlation between the Glide docking score and the 

Ki value was obtained. 

The IC50 of the compounds and acarbose in the Caco2, HepG2, and C2C12 cell lines was determined 

with the sulforhodamine B (SRB) assay. Caffeic acid, p-coumaric acid, rutin, and vanillin in the Caco2 

cell line had IC50 values that were similar (p ˃ 0.05) to acarbose (IC50 = 715±89.1 µM); whereas for the 

negative controls, ethyl gallate and oxalic acid, the IC50 values were significantly (p ˂ 0.05) smaller than 

acarbose. Cytotoxicity in the HepG2 and C2C12 cell lines was less than that observed for the Caco2 cell 

line. These compounds were then analysed for their glucose uptake activity in C2C12 and HepG2 cell 

lines with the 2-NBDG assay. None of the compounds, including metformin, significantly increased the 

glucose uptake in the HepG2 or insulin resistant HepG2 cells when compared with the control. Some of 

the compounds, including metformin, significantly (p ˂ 0.05) increased the glucose uptake ability in the 

C2C12 cell line when compared with the control.  
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Sources of these compounds were then determined, and common verbena, sweet basil, tarragon, pepper, 

parsley, sorrel, and vanilla were found to be rich sources of caffeic acid, p-coumaric acid, rutin, and 

vanillin. These compounds in addition to epigallocatechin and epigallocatechin gallate with known 

antidiabetic properties were present in green tea indicating that green tea was an excellent source of 

compounds with antidiabetic properties. As green tea is widely consumed and easily accessible, in the 

second part of this study untargeted metabolomic analysis on five commercial green tea brands (Dilmah, 

Eve’s, Livewell, Tetley, and Five Roses) using ultra-performance liquid chromatography/ mass 

spectrometry (UPLC/MS) analysis was undertaken. The data was analysed using MassLynx, MSDIAL, 

and MSFINDER. MSFINDER used several metabolomic databases to annotate the peaks detected by 

the Waters UPLC/MS. Targeted metabolomic analysis was performed to determine the content of 

selected standards in each green tea sample. The most abundant standards were epigallocatechin (5 - 

8.5% dry weight), and epigallocatechin gallate (7 - 9% dry weight). The content of caffeic acid and p-

coumaric acid was less than 0.01% and the content of rutin ranged from 0.4% to 2.9%. The pancreatic 

alpha-amylase and alpha-glucosidase inhibitory activity of the five green tea brands was determined 

with the in vitro enzyme inhibition assays. Tetley was the only brand that had a pancreatic alpha-amylase 

IC50 value that was similar (p ˃ 0.05) to acarbose, whereas the other four brands had significantly (p ˂ 

0.05) higher pancreatic alpha-amylase IC50 values when compared with acarbose. All five green tea 

brands had significantly (p ˂ 0.05) lower alpha-glucosidase IC50 values when compared to acarbose. 

MetaboAnalyst identified two annotated compounds that were significantly (p ˂ 0.05) more abundant in 

the green tea brands that had a low IC50 values which suggests that these two compounds could be 

responsible for the enhanced enzyme inhibition ability of those green tea brands. The presence of several 

inhibitory compounds in a single plant (Camellia sinensis) is most advantageous when it comes to 

complementary and alternative medicines because each compound could have a different mode of action 

and can act synergistically. In addition, when used in combination with antidiabetic drugs may have a 

beneficial effect.   
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CHAPTER 1: Literature review 

1.1.Diabetes  

Diabetes mellitus is a metabolic disease that affects the body’s ability to metabolise carbohydrates, 

proteins, and lipids. This disorder results from a deficiency in insulin production or the resistance of 

target cells to the effects of insulin. Decreased insulin action causes hyperglycemia which leads to 

diabetic symptoms such as polyphagia, polydipsia, polyuria, and ketoacidosis. The hyperglycemic 

consequences of diabetes can also cause several complications such as nerve damage, kidney failure, 

vision loss, heart attack, stroke, and leg amputation. If left untreated, these symptoms and complications 

can have fatal consequences (Sharma, 2018).  

1.1.1. Types of diabetes 

There are several types of diabetes, such as type 1 diabetes (T1D) which is also known as insulin-

dependent diabetes or juvenile-onset diabetes, as it usually manifests at a fairly young age. T1D is caused 

by the autoimmune destruction of pancreatic beta-cells which leads to the absolute deficiency of insulin 

production. T1D treatment consists of daily insulin injections to regulate the blood glucose concentration 

and to avoid a diabetic coma caused by ketoacidosis (Roglic, 2016).  

The most common type of diabetes is type 2 diabetes (T2D) which is also known as non-insulin-

dependent diabetes or adult-onset diabetes. T2D results from the resistance of target cells to the effects 

of insulin and the inability of the pancreas to produce enough insulin to compensate for this resistance. 

The metabolic syndrome increases your risk for T2D and is a cluster of metabolic abnormalities that 

include hypertension, obesity, insulin resistance, and hyperlipidemia (Rochlani et al., 2017). There are 

several risk factors associated with the manifestation of T2D, such as genetic predispositions, ethnicity, 

and family history of diabetes as well as environmental factors, such as age, body weight, unhealthy 

diet, physical inactivity, and smoking (Luo et al., 2013). A range of treatments is available for the 

management of T2D, such as changes in diet and regular exercise, as well as several types of antidiabetic 

agents and insulin injections (Roglic, 2016).  

Another type of diabetes is gestational diabetes (GDM) which is a temporary condition that occurs 

during pregnancy when the blood glucose concentration is above normal. Both the mother and child are 

at risk of developing T2D because of a GDM pregnancy. GDM can be managed by going for regular 

medical check-ups, eating healthy, and regular exercise (WHO, 2013). 
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1.1.2. Global prevalence  

According to the World Health Organization (WHO), diabetes is the seventh leading cause of death in 

the world. In 2019, 463 million adults were suffering from diabetes and this number is expected to 

increase to 578 million in 2030 and 700 million in 2045. More people die from diabetes than from 

tuberculosis, HIV and malaria combined. The global prevalence of diabetes is shown in Figure 1. In 

2019, adults who were 65 years and older had the highest prevalence of diabetes (20%) compared to 

younger individuals (˂20%). Men also had a slightly higher diabetes prevalence (9.6%) than women 

(9.0%). Individuals living in high-income urban areas had a greater diabetes prevalence than individuals 

living in low-income rural areas. Of concern, only half of the individuals with diabetes are aware of their 

condition (Saeedi et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: The global prevalence of diabetes 
The present and predicted global prevalence of diabetes in adults (20-79 years) in 2019, 2030, and 2045 
(Federation, 2019).    

 

1.1.3. Cost of diabetes treatment 

Proper management of diabetes has become increasingly problematic due to the rise in individuals with 

diabetes, especially in low-income countries, which lack basic medical care facilities, and the associated 

availability and cost of oral antidiabetic drugs either as brand name or generic forms. Diabetes-related 

health expenditure has greatly increased from $232 billion (US dollars) in 2007 to $760 billion in 2019, 
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worldwide. This number is expected to increase to $825 billion by 2030 and $845 billion by 2045 (Atlas, 

2019). 

For patients with T1D, the price of insulin has increased over the past few years, and patients especially 

in rural areas, lack access to sufficient amounts of insulin as insulin is difficult to transport and needs to 

remain refrigerated (Atlas, 2003). Especially in third world countries, there is a need for new treatments 

that are both affordable and easily accessible. 

1.2. Biochemistry of diabetes 

Diabetes is caused by the deficiency of insulin production or the resistance of target cells to the effects 

of insulin. Insulin is a peptide hormone that is produced in the pancreas and is responsible for regulating 

the metabolism of carbohydrates, proteins, and lipids. Insulin secretion increases proportionally to the 

increase of glucose levels, such as after a meal, and promotes glucose uptake into adipose and skeletal 

muscle cells. In addition, insulin also inhibits the endogenous production of glucose in the liver. 

1.2.1. Carbohydrate digestion 

Pancreatic alpha-amylase is an enzyme produced in the pancreas and secreted into the small intestine. 

Pancreatic alpha-amylase is responsible for the hydrolysis of consumed starch. Several food sources that 

contain starch include potatoes, rice, wheat, maize, and sorghum. Starch is a polysaccharide that consists 

of amylose and amylopectin residues, Figure 2. Pancreatic alpha-amylase hydrolyses the α-(1-4) linkage 

of starch to produce maltose, maltotriose and α-limit dextrins. These oligosaccharides are further 

hydrolysed by brush border enzymes in the small intestine (Singh et al., 2010). 

 

 

 

 

 

 

 

 

 

Figure 2: Starch 
The amylose and amylopectin residues of starch (Visakh, 2014).    
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Alpha-glucosidase, specifically maltase, is a brush border enzyme in the small intestine that is 

responsible for the hydrolysis of the α-(1-4) linkages of maltose and maltotriose to produce glucose 

residues, Figure 3. The other types of alpha-glucosidases include: sucrase which hydrolyses sucrose to 

glucose and fructose; lactase which hydrolyses lactose to glucose and galactose; and isomaltase which 

hydrolyses the α-(1-6) linkage of α-limit dextrins. Maltase is perhaps the most important alpha-

glucosidase because most complex carbohydrates consumed are in the form of starch. The resulting 

monosaccharides are actively transported across intestinal epithelial cells and into the bloodstream. 

Glucose, for example, is transported into the bloodstream via a sodium-glucose symporter, on the brush 

border membrane of intestinal epithelial cells and then the GLUT2 transporter on the basolateral 

membrane (Holmes, 1971, Koepsell, 2020). 

      

 

 

 

 

Figure 3: Maltase hydrolysis  
The hydrolysis of maltose into glucose (Pantazis, 2013). 
 

The inhibition of both pancreatic alpha-amylase and alpha-glucosidase is a critical first step in lowering 

the blood glucose concentration and thereby reducing the hyperglycemic status of diabetic patients. 

1.2.2. Insulin secretion 

Glucose reaches pancreatic beta-cells and enters the cell via a GLUT2 membrane transport protein, 

Figure 4. Glucose is then broken down by the glycolytic pathway into pyruvate which is metabolised 

by the citric acid cycle to produce ATP. Increased levels of ATP lead to the closure of ATP-sensitive 

potassium channels which reduces the efflux of potassium ions. The build-up of potassium ions in the 

cell causes the cell membrane to depolarize which stimulates voltage-dependent calcium channels to 

take up more calcium ions. The increased influx of calcium ions stimulates the calcium-dependent 

secretion of insulin granules from pancreatic beta-cells.  
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Figure 4: Insulin secretion 
The glucose stimulated secreation of insulin from pancreatic beta-cells (Alejandro et al., 2009). 
 

Insulin enters the bloodstream and stimulates target cells to increase glucose uptake thereby decreasing 

the blood glucose concentration. Insulin also inhibits the secretion of glucagon from pancreatic alpha-

cells. Glucagon is a peptide hormone that increases the blood glucose concentration by promoting the 

release of glucose from skeletal muscle cells and hepatocytes (Wang et al., 2013). 

Several factors can affect the functionality of pancreatic beta-cells which could ultimately lead to T2D. 

The autoimmune destruction of pancreatic beta-cells that is normally associated with T1D is usually 

caused by monogenetic factors. On the other hand, T2D can be caused by a wide range of gene 

expression defects as well as several environmental factors, such as an unhealthy diet of saturated fatty 

acids and simple sugars. Increased consumption of glucose can lead to glucotoxicity and oxidative stress 

in pancreatic beta-cells. Furthermore, increased consumption of saturated fats can cause lipotoxicity in 

pancreatic beta-cells. The increased need for insulin can also cause beta-cell exhaustion, endoplasmic 

reticulum stress, and islet amyloidosis. Pancreatic beta-cells become exhausted when insulin granules 

are depleted and insulin availability decreases. Exposure to high levels of glucose and fatty acids also 

causes endoplasmic reticulum stress when beta-cells become overwhelmed by the production of the 

proteins required for insulin production and secretion. Islet amyloid fibrils are formed from amylin 

which is deposited around the capillaries and eventually within the islets. These mechanisms of beta-

cell dysfunction all contribute to the manifestation of T2D (Girgis and Gunton, 2012). 
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1.2.3. The effects of insulin 

Insulin binds to the transmembrane insulin receptor (IR) of skeletal muscle cells, adipocytes, and 

hepatocytes. This binding initiates a signalling cascade that ultimately leads to a decrease in blood 

glucose concentration. The binding of insulin to the extracellular domain of the IR stimulates the 

autophosphorylation of the intracellular domain. Insulin receptor substrate (IRS) is then able to bind to 

intracellular receptor sites and become phosphorylated by the activated IR. Phosphorylated IRS activates 

phosphoinositide-3-kinase (PI3K) by recruiting it to the plasma membrane and by phosphorylation. 

Activated PI3K phosphorylates phosphotidylinositol-3,4-bisphosphate (PIP2) to produce 

phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 activates phosphoinositide-dependent kinase 1 

(PDK1) which is then able to activate protein kinase B (PKB), also known as Akt. Activated PKB 

stimulates the translocation of GLUT4-containing vesicles to deliver GLUT4 to the plasma membranes 

of skeletal muscle cells and adipocytes, Figure 5. Additional GLUT4 allows for increased uptake of 

glucose from the bloodstream and subsequently there is a reduction in the blood glucose concentration. 

This insulin-stimulated cascade is terminated when protein tyrosine phosphatase 1B (PTP1B) 

dephosphorylates the IR (Schinner et al., 2005).  

 

 

Figure 5: Glucose uptake 
The insulin-dependent uptake of glucose in skeletal muscle cells and adipocytes (Alam et al., 2019b). 

Insulin activates the rate-limiting enzymes of glycolysis which is the process that breaks down incoming 

glucose. Glycolysis provides ATP as well as substrates that enter energy storage pathways such as 

glycogenesis and lipogenesis. Glucokinase (GK) is the enzyme that catalyses the first step of glycolysis 
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and phosphorylates glucose to produce glucose-6-phosphate in hepatocytes (Hodgkin, 1971). Activated 

PKB activates GK gene expression and thereby stimulates the phosphorylation of incoming glucose. 

Another rate-limiting enzyme of glycolysis is phosphofructokinase-1 (PFK-1) which is allosterically 

activated by fructose-2,6-bisphosphate (F26BP). Activated PKB activates a protein phosphatase that 

dephosphorylates and thereby activates phosphofructokinase-2 (PFK-2) which is the enzyme responsible 

for the phosphorylation of fructose-6-phosphate to produce F26BP, Figure 6 (Wu et al., 2005).  

 

 

 

 

 

 

 

Figure 6: PFK-1 regulation        

 

Insulin stimulates the storage of glucose as glycogen in a process known as glycogenesis. Activated PKB 

is also responsible for the phosphorylation and inactivation of glycogen synthase kinase 3 (GSK-3). 

Inactivated GSK-3 is unable to catalyse the conversion of inactive phosphorylated glycogen synthase 

(GS) to active dephosphorylated GS, is responsible for the incorporation of glucose into glycogen, 

Figure 7. GS is also allosterically activated by glucose-6-phosphate which increases when glucose 

enters hepatocytes via GLUT2. Activated PKB can activate protein phosphatase-1 (PP-1) which is also 

responsible for the dephosphorylation of GS as well as the inactivation of glycogen phosphorylase 

(Nagpal et al., 2012). Inactivation of GP decreases the release of glucose from glycogen stores and 

thereby prevents glucose secretion by the liver (Jensen and Lai, 2009).  
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Figure 7: Glycogenesis activation  
The activation of glycogenesis by insulin-signalling pathway in hepatocytes (Ahmed et al., 2013).  
 

Insulin also inhibits glucose production and release from hepatocytes. Activated PKB can regulate the 

expression of the rate determining enzymes of gluconeogenesis at the transcriptional level. These 

enzymes are phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Gluconeogenesis is the 

process of glucose production from lactate, glycerol, and alanine during the fasting state when the 

glycogen stores are depleted. This process must be inhibited during the fed state by insulin to prevent 

the release of glucose into the bloodstream (Hatting et al., 2018). 

Insulin affects the metabolism of lipids in adipose tissue by decreasing the concentration of non-

esterified fatty acids available to muscle cells for energy production. This allows incoming glucose to 

be used as an energy source instead of fatty acids. Insulin reduces the release of non-esterified fatty acids 

by inhibiting hormone-sensitive lipase activity which decreases the rate of lipolysis. Insulin also affects 

the metabolism of proteins in muscle cells by decreasing the release of amino acids and increasing their 

incorporation into proteins. Reducing the amino acid concentration in the bloodstream prevents the liver 

from producing glucose via gluconeogenesis (Dimitriadis et al., 2011). 
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1.3. Antidiabetics 

1.3.1. Current treatments 

Several antidiabetics are available to manage T2D; however, most of these commercially available 

antidiabetics have some undesirable side effects. Insulin is mostly used to treat T1D and some severe 

cases of T2D (Roglic, 2016). Diabetes is a complex disease and existing drugs target specific aspects of 

diabetes such as inhibiting the systemic uptake of glucose or promoting glucose uptake in insulin 

sensitive tissues or inhibiting gluconeogenesis.  

Inhibition of digestive enzymes such as pancreatic alpha-amylase and alpha-glucosidase, which are 

involved in the hydrolysis of consumed carbohydrates, results in delayed glucose absorption and thereby 

prevents a rapid increase in blood glucose concentration after a meal. The drug acarbose is an inhibitor 

of this process. However, acarbose has some undesirable side effects such as abdominal pain, flatulence, 

and diarrhea (Ross et al., 2004). 

In contrast, the drug metformin, a common antidiabetic drug, lowers blood glucose levels by inhibiting 

gluconeogenesis. One of the advantages of metformin is that it does not cause hypoglycemia or stimulate 

insulin secretion. Metformin also stimulates glucose-uptake in insulin-resistant skeletal muscle cells by 

stimulating adenosine monophosphate-activated protein kinase (AMPK) which activates AKT to initiate 

GLUT4 translocation to the cell membrane (Elmadhun et al., 2013). Metformin does however have some 

gastrointestinal side effects, such as, abdominal discomfort, bloating, and metallic taste (Ross et al., 

2004). The focus of this research is to address these limitations by identifying which natural plants 

contain compounds that could possibly have similar antidiabetic effects as current drugs but with fewer 

side effects. 

1.3.2. Natural compounds 

One of the unfortunate consequences of hyperglycemia is the generation of reactive oxygen species 

(ROS) which cause lipid peroxidation and membrane damage. ROS are also responsible for the 

development of complications associated with T2D such as neuropathy, nephropathy, and cataracts. 

Natural compounds contain antioxidants, such as polyphenols which scavenge free radicals and inhibit 

hydrolytic and oxidative enzymes (Patel et al., 2012).  

Several edible plants have already been determined to inhibit pancreatic alpha-amylase as well as alpha-

glucosidase (Seetaloo et al., 2019). They have also been shown to exhibit insulin-mimicking properties 

that lead to the stimulation of glucose-uptake in skeletal muscle cells and adipocytes, as well as increased 

glucose utilization and storage (Bi et al., 2017). 
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Serval advantages to using natural compounds as an alternative to synthetic hypoglycemic drugs is that 

they have fewer side effects, are easily available, and contain numerous bioactive compounds. Another 

advantage of using natural compounds as a treatment for T2D is that one compound could have multiple 

protein targets to lower blood glucose concentration (Pereira et al., 2019).  
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1.4. Aim 

To analyse the in silico properties, the digestive enzyme inhibition and cellular glucose-uptake inducing 

ability of the selected compounds present in herbs, spices, and medicinal plants. 

1.4.1. Null hypothesis  

H01: There will be no statistically significant difference in the Ki values between acarbose and the 

compounds at a 95% level of confidence. 

H02: The compounds will not significantly increase the glucose-uptake ability of selected cell lines at a 

95% level of confidence. 

1.4.2. Objectives 

1. In silico analysis of the compounds in herbs and spices  

2. Pancreatic alpha-amylase enzyme assay on selected compounds 

3. Alpha-glucosidase enzyme assay on selected compounds 

4. SRB cytotoxicity assay of selected compounds in Caco2, HepG2, and C2C12 cell lines 

5. Glucose-uptake assay of selected compounds in HepG2 and C2C12 cell lines 

6. Extraction and analysis of the content of selected compounds in green tea (Camellia sinensis) 

7. Targeted and untargeted tea metabolomics with in vitro inhibition of digestive enzymes   
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1.5. Experimental design  

  

Perform docking simulation of compounds on pancreatic alpha-amylase, 

alpha-glucosidase, and insulin receptor using Glide and AutoDock Vina 

Analyse the ADMET properties of selected 

compounds using Canvas and pkCSM 

 Extract and analyse the content of the 

selected compounds in green tea using 

LC/MS 

Identify compounds present in edible plants 

Analyse the cross reactions of selected 

compounds using SwissTargetPrediction 

Determine and compare the Ki of the 

compounds with acarbose  

Perform pancreatic alpha-amylase and 

alpha-glucosidase inhibitory assays on 

selected compounds 

 Targeted and untargeted tea 

metabolomics with in vitro inhibition of 

digestive enzymes 

Evaluate the ability of the compounds to 

stimulate glucose uptake with HepG2 

and C2C12 cells 

Evaluate the cytotoxicity of the 

compounds with the SRB cytotoxicity 

assay with Caco2, HepG2 and C2C12 cells  
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CHAPTER 2: In silico analysis 

2.1. Introduction 

In silico docking is a powerful tool, to initially determine if compounds can bind enzymes or receptors 

of interest. Likewise, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 

compounds can also be estimated. As this study focuses on the identification of compounds that can be 

used for the treatment of diabetes the focus is on the ability of the selected compounds to bind and inhibit 

pancreatic alpha-amylase and alpha-glucosidase, as well as the ability to stimulate cellular uptake of 

glucose by stimulation of the insulin receptor and inhibition of tyrosine-protein phosphatase.  

2.1.1. Virtual docking simulation 

The in silico analysis of the compounds in herbs and spices is a quick and inexpensive way to narrow 

down which compounds should be analysed using in vitro methods.  

Before the ligands can be virtually docked, they need to be prepared using LigPrep (Schrödinger, 2015a). 

LigPrep has a smiles_to_mae conversion tool that converts simplified molecular-input line-entry system 

(SMILES) into a Maestro-formatted file (mae) and is further prepared by LigPrep. LigPrep uses Epik, a 

template-based tautomerization software program that generates different ionization states for each 

ligand (Shelley et al., 2007). LigPrep also uses a tautomerize and stereoizer tool to generate different 

tautomers and stereoisomers for each ligand.  

Glide (Schrödinger, 2021) is the virtual docking program that determines the free energy required by 

each compound to bind to the active site of pancreatic alpha-amylase, alpha-glucosidase, and the insulin 

receptor. A negative docking score represents a spontaneous reaction and, therefore, a greater binding 

affinity of the compound to the enzyme. The docking score of each compound can be compared to the 

docking score of acarbose and metformin. Each compound will produce several docking scores, each 

score representing a different pose and possible ligand-protein binding combinations. The most negative 

docking score for each compound will be compared to each other as well as acarbose and metformin. 

Glide uses an empirical scoring function known as GlideScore that estimates the free energy for a 

protein-ligand complex. Each ligand has several contacts with the ligand-binding site which is in the 

Glide grid of the enzyme. Each interaction between the ligand and the protein either releases or requires 

free energy which can be predicted by the Glide algorithm (Eldridge et al., 1997). Glide is a software 

package that uses a series of hierarchical filters that eliminates unlikely docking conformations and 

orientations and only calculates the docking score for the most likely orientations. The GlideScore 

function, Figure 8, can then predict the binding affinity and rank these compounds.  
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ΔGbind = Clipo-lipoΣf(rlr)1 + Chbond-neut-neutΣg(Δr)h(Δα)2 + 
Chbond-neut-chargedΣg(Δr)h(Δα)3 + Chbond-charged-chargedΣg(Δr)h(Δα)4 + 

Cmax-metal-ion∑f(rlm)5 + Cpolar-phobVpolar-phob
6

 + CrotbHrotb
7
 + CcoulEcoul

8 + 
CvdWEvdW

9 + solvation terms10 

Figure 8: GlideScore function 
The free energy of each type of interaction between the protein and ligand. The lipophilic-lipophilic 
term1 considers the interaction energies between lipophilic atoms. The hydrogen-bonding term is 
separated into three components depending on whether the donor and acceptor are both neutral2, both 
charged4, or one is charged and one is neutral3. The metal-ligand interaction term5 considers any 
interactions of metal atoms with donor or acceptor ions. The sixth term6 considers when a polar atom is 
found in a hydrophobic region. The next terms consider the contributions of rotatable bonds7, Coulomb8, 
and Van der Waals9 interaction energies between the ligand and the protein. The solvation terms10 
consider the restrictions on the ligand that arise from the requirement of charged and polar groups to be 
adequately solvated (Friesner et al., 2004).  

DIA-DB is a database and web server for the prediction of diabetes drugs that uses AutoDock Vina to 

perform docking-based calculations. AutoDock Vina uses a structure-based docking approach that 

determines whether a compound interacts with the active site of the protein. These protein targets are 

the enzymes that are involved in insulin secretion and sensitivity (Figures 4, 5, 6, and 7) as well as the 

enzymes involved in glucose and lipid metabolism (Perez-Sanchez et al., 2020). The AutoDock Vina 

scoring function works similar to the GlideScore function because it also determines the bound 

conformation preference and the free energy of binding (Trott and Olson, 2010). 

2.1.2. ADMET screening 

The ADMET properties of a drug can also be predicted using a computer program known as Canvas 

version 3.8 by Schrodinger and an online tool known as pkCSM. pKCSM uses predictive quantitative 

structure-activity relationship (QSAR) modelling of ADMET properties (Obrezanova et al., 2007). The 

ideal drug should obey Lipinski’s rule of five’ which predicts the drug-likeness of a compound intended 

for an oral route of administration. The rule of five pertains to the molecular weight of the compound 

which should be less than 500 g/mol, and the logP value which should be less than 5. The number of 

hydrogen donors should be less than or equal to 5, and the number of hydrogen acceptors should be less 

than or equal to 10 (Chagas et al., 2018). The number of stars refers to the number of QikProp descriptors 

whose values fall outside the 95% range of similar values for known drugs (Ntie-Kang et al., 2014). A 

large number of stars suggests that the compound is less drug-like than compounds with fewer stars 

(Schrödinger, 2015b, Jorgensen and Duffy, 2000). 

The absorption of a drug is described by the percentage of human intestinal absorption also known as 

bioavailability and relates to the compound’s molecular weight, lipophilicity, and polar surface area. 

The bioavailability represents the percentage of the consumed compound that is absorbed into the 

bloodstream from the small intestine (Kelder et al., 1999). Another predictor of oral absorption potential 
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is Caco2 permeability which represents Caco2 cell permeability in the small intestine (Yazdanian et al., 

1998). Orally active drugs are primarily absorbed in the small intestine because it has the largest surface 

area for drug absorption when compared to the rest of the gastrointestinal tract, it has a higher pH than 

the stomach, and the drug is in contact with the small intestine for a longer period of time (Vertzoni et 

al., 2019). Caco-2 permeability can be predicted as the logarithm of the apparent permeability coefficient 

(logPapp) in log cm/s. The Caco-2 cell line is composed of human epithelial colorectal adenocarcinoma 

cells which are usually used to determine the in vitro absorption of orally administered drugs. P-

glycoprotein is an ATP binding cassette (ABC) transporter that exports xenobiotic compounds from 

diverse cells and interferes with therapeutic drug delivery. pkCSM can predict whether a compound is a 

P-glycoprotein substrate or inhibitor (Alam et al., 2019a). 

The distribution of a drug can be described by the steady state volume of distribution (VDss) which 

measures the extent to which the compound distributes itself throughout the body. VDss is defined as 

the volume of blood that contains the same concentration of compound as the vascular tissues (Yates 

and Arundel, 2008). The fraction unbound refers to the fraction of compound that is not bound to plasma 

proteins which enhances drug efficiency (Berezhkovskiy, 2010). The penetration of the drug across the 

blood-brain barrier (BBB) would be undesirable in this case because the compounds that are being 

analysed are not intended to be active in the central nervous system. pkCSM is able to predict BBB 

permeability and central nervous system (CNS) permeability.  

The metabolism of a drug can be described by its ability to activate or inhibit cytochrome P450 

isoenzymes. Unwanted inhibition of CYP450 isoenzymes can result in drug toxicities and adverse drug 

reactions (Ogu and Maxa, 2000). The elimination of a drug can be described by the total drug clearance 

which encompasses the hepatic and renal clearance of the drug. Total drug clearance was defined as the 

volume of plasma completely cleared of the drug per unit time (Chiou, 1982). 

Several toxicity properties can be predicted by pkCSM such as rat LD50 which is the dosage of a 

compound that would kill 50% of a group of test rats. AMES toxicity predicts the compound’s mutagenic 

potential. Tetrahymena pyriformis toxicity predicts the dosage of the compound that inhibits the growth 

of 50% (IGC50) T. pyriformis. Minnow toxicity predicts the lethal concentration (LC50) of the compound 

that kills 50% of fathead minnows. The maximum tolerated dose of the compound can help estimate the 

recommended starting dose of the compound. Oral rat chronic toxicity predicts the highest dose of the 

compound where no adverse effects are observed. Hepatotoxicity predicts whether the compound is 

likely to disrupt normal liver function (Pires et al., 2015). Another measure of toxicity is whether the 

compound is a hERG inhibitor. The hERG channels are K+ channels in the heart and drug-induced 
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blockage of K+ channels leads to QT prolongation and the occurrence of torsades de points (Cavalli et 

al., 2002).  
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2.1.3. SwissTargetPrediction 

SwissTargetPrediction is an online tool that predicts the most likely protein targets of small molecules 

out of 3068 macromolecular targets. These predictions are based on the similarity principle through 

reverse screening (Daina et al., 2019). Compounds that interact with unintended proteins in the body 

could lead to unforeseen side effects (Gfeller et al., 2013). 

The aim of the research undertaken in this chapter is to narrow down the number of possible antidiabetics 

present in herbs, spices, and medicinal plants from 1070 to 6. In silico studies allows for the rapid sorting 

of hundreds of compounds based on their chemical structure. Virtual docking was performed on the 

1070 compounds and 20 compounds with a range of docking scores was selected. The ADMET 

properties of these 20 compounds was predicted and compared to acarbose and metformin. Six 

compounds, that were less toxic than acarbose, were selected for in vitro testing.   
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2.2. Methods 

Virtual docking simulations were performed using a computer program known as Maestro version 11.8 

which uses the Glide algorithm. The SMILES of 1070 compounds in herbs and spices was provided by 

Pereira et al. (2019) as well as acarbose and metformin, and docked into the active site of pancreatic 

alpha-amylase, alpha-glucosidase, and insulin receptor (Jhong et al., 2015). The protein database code 

for pancreatic alpha-amylase is 4GQR, alpha-glucosidase is 3L4Y, the insulin receptor is 3EKN and 

tyrosine-protein phosphatase non-receptor type 9 is 4GE6. 

The three-dimensional structure of each protein was imported from the Protein Data Bank. The protein 

was prepared by preprocessing it using default settings. After preprocessing, all the proteins, chains, and 

waters were deleted except for the ligand. The preprocessed protein was optimized and minimized using 

the default settings. The receptor Glide grid was generated from the minimized protein using the default 

settings, similar to the preparation steps described by Tendulkar and Mahajan (2014).  

The 1070 compounds were imported into Glide and prepared using the ligand preparation default 

settings. The prepared ligands and Glide grid were imported into the virtual screening workflow. The 

ligands were docked with Glide HTVS, and 100% of the results were kept after docking.  

The selected compounds were submitted to the DIA-DB web server (http://bio-hpc.ucam.edu/dia-db/) 

and the AutoDock Vina scoring function was obtained. The Glide and AutoDock Vina docking scores 

was compared using the Pearson’s and Spearman’s correlation coefficinents. The Pearson’s coeffiecent 

was calculated using the Pearson formula in excel and the Spearman’s coefficient was calculated by 

using the Correl formula in excel based on the rank of each value.      

The docking score of each compound in herbs and spices was obtained by this high-throughput screening 

process. A more negative docking score represents a high binding affinity because a negative free energy 

change is associated with a more spontaneous reaction. Six compounds with a range of docking scores 

were selected and analysed further using Canvas, pkCSM, and SwissTargetPrediction. 

The selected compounds were imported into Canvas 3.8. These structures were minimized and 

incorporated automatically using default settings. The physiochemical descriptors were calculated and 

incorporated automatically using default settings. pkCSM (http://biosig.unimelb.edu.au/pkCSM/) was 

used to predict ADMET properties for the selected compounds (Pires et al., 2015). The selected 

compounds were imported into pkCSM as smi files, and the results were exported as an Excel file. 

SwissTargetPrediction (http://www.swisstargetprediction.ch/) was used to predict the potential protein 

targets of the selected compounds in Homo sapiens. Each compound’s SMILES was imported into the 

SwissTargetPrediction website, and the results were exported as an Excel file (Daina et al., 2019). 
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2.3. Results  

2.3.1. Docking scores 

Glide is a virtual docking program by Schrodinger that predicts the Glide docking score of the 

compounds in the proteins of interest. DIA-DB is a web server that predicts the AutoDock Vina score 

of the compounds using inverse docking procedures.  

The Glide docking scores of rutin, caffeic acid, p-coumaric acid, vanillin, ethyl gallate, and oxalic acid 

were compared to acarbose for pancreatic alpha-amylase (4GQR) and alpha-glucosidase (3L4Y). Rutin 

has a more negative docking score than acarbose for 4GQR, which suggests that rutin could potentially 

be a better inhibitor than acarbose. Caffeic acid, p-coumaric acid, and ethyl gallate had similar docking 

scores to that of acarbose for 4GQR. Vanillin and oxalic acid had more positive docking scores than 

acarbose. The docking score of rutin was similar to that of acarbose for 3L4Y, and the other five 

compounds had more positive docking scores than acarbose. The AutoDock Vina scores of rutin and 

acarbose were similar for 4GQR and 3L4Y. Caffeic acid, p-coumaric acid, ethyl gallate, and vanillin 

had more positive AutoDock Vina scores than acarbose and rutin for 4GQR and 3L4Y, and oxalic acid 

had the most positive AutoDock Vina score. Supplementary Table 1 shows the docking scores of 

acarbose, rutin, caffeic acid, p-coumaric acid, vanillin, ethyl gallate, and oxalic acid docked in the active 

site of pancreatic alpha-amylase (4GQR), and alpha-glucosidase (3L4Y) as well as the number 

interactions that each ligand has with the amino acids in the protein’s binding pocket. Supplementary 

Figure 1 shows the selected compounds docked into the active site of pancreatic alpha-amylase (4GQR) 

and alpha-glucosidase (3L4Y) as well as the binding pocket for these two proteins. This experiment does 

not have known inhibitors for 3EKN or 4GE6; therefore, the selected compounds cannot be compared 

to a positive control. The correlation between the Glide and AutoDock Vina docking scores for each 

compound is represented in Figure 9.  
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Figure 9: The correlation of Glide and AutoDock Vina docking scores  

There was a strong positive Pearson correlation coefficient (r) between the Glide and AutoDock Vina 

docking scores for 4GQR, and 3EKN (r ≈ 0.9), and a moderate correlation for 3L4Y, and 4GE6 (r ≈ 0.6). 

The Spearman correlation coefficient (ρ) is similar to the Pearson correlation coefficient for 4GQR, 

3L4Y, and 4GE6. However, the Pearson and Spearman correlation coefficients for 3EKN were different 

which suggests that the rankings of compounds for AutoDock Vina and Glide docking scores were 

different (Schober et al., 2018).  

2.3.2. ADMET results 

Canvas is a software program by Schrodinger that can determine the molecular weight, logP value, and 

number of hydrogen donors and acceptors. Table 1 lists these properties of selected compounds as well 

as the number of stars associated with each compound. The number of stars represents the number of 
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QikProp descriptor values that fall outside the 95% range of similar values for known drugs; a large 

number of stars suggests that a compound is less drug-like than a compound with fewer stars 

(Schrödinger, 2015b).   

Table 1: Lipinski’s rule of five for acarbose (control) and the selected compounds 

 

Compound MW (g/mol) logP HBA HBD #rule of 5 
violations 

#stars 

Acarbose 645.60 -6.84 18 13 3 13 
Caffeic acid 180.16 1.26 2 2 0 0 
Ethyl gallate 198.17 1.23 5 3 0 0 
Insulin 5777.65 -18.73 82 77 3 - 
Metformin 129.16 -0.74 2 1 0 2 
Oxalic acid 90.03 -0.48 0 0 0 7 
p-Coumaric acid 164.16 1.53 1 1 0 0 
Rutin 610.52 -0.23 16 10 3 9 
Vanillin 152.15 1.31 3 1 0 0 
MW – molecular weight, logP – logarithm of the partition coefficient, HBA- number of hydrogen bond 
acceptors, HBD – number of hydrogen bond donors 

According to Lipinski’s rule of 5, an orally active drug should have a molecular weight less than 

500 g/mol. Acarbose and rutin have molecular weights greater than 500 g/mol and so does insulin. 

Insulin is a peptide hormone, and due to the proteolytic enzymes in the gastrointestinal tract (GIT) will 

lose activity, therefore is administered intravenously (Kelly, 2014, Wilcox, 2005). The logP value for 

all the selected compounds is less than 5. The number of hydrogen bond acceptors should be less than 

or equal to 10 and the number of hydrogen bond donors should be less than or equal to 5, which is not 

the case for acarbose, insulin, and rutin. Metformin, p-coumaric acid, caffeic acid, vanillin, ethyl gallate, 

and oxalic acid do not violate Lipinski’s rule of 5. Acarbose has the greatest number of stars when 

compared to the selected compounds.  

pkCSM is an online tool that can predict the ADMET properties of a potential orally active drug. Table 2 

lists the absorption properties of the selected compounds which include Caco2 permeability, intestinal 

absorption, and whether the compound is a P-glycoprotein substrate or inhibitor. 
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Table 2: pkCSM absorption analysis of acarbose and the selected compounds 

 

Compound Caco2 
permeability 

(log cm/s) 

Intestinal 
absorption (%) 

P-glycoprotein 
substrate 

P-glycoprotein 
I inhibitor 

P-glycoprotein 
II inhibitor 

Acarbose -0.64 0 Yes No No 
Caffeic acid 0.50 52.97 No No No 
Ethyl gallate 0 76.70 Yes No No 
Insulin -2.55 0 No No No 
Metformin -0.34 59.40 Yes No No 
Oxalic acid 0.41 79.42 No No No 
p-Coumaric acid 1.21 93.49 No No No 
Rutin -0.95 23.45 Yes No No 
Vanillin 1.19 84.71 No No No 

 

Caco2 cells are human epithelial colorectal adenocarcinoma cells, and Caco2 permeability is predicted 

as the logarithm of the apparent permeability coefficient. A high Caco2 permeability would be more 

than 0.90 log cm/s (7.94 cm/s). p-Coumaric acid, caffeic acid, vanillin, ethyl gallate, and oxalic acid 

have a greater Caco2 permeability than acarbose and metformin. In general, p-coumaric acid and vanillin 

have high Caco2 permeability. The intestine is the primary site for the absorption of an orally active 

drug. A compound with a percentage intestinal absorption less than 30% is considered to be poorly 

absorbed. Metformin, p-coumaric acid, caffeic acid, vanillin, ethyl gallate, and oxalic acid are well 

absorbed by the small intestine. In contrast, acarbose and rutin are poorly absorbed or not at all. P-

glycoprotein is an ABC transporter that exports toxins and xenobiotics out of cells. Acarbose, metformin, 

rutin, and ethyl gallate were predicted to be P-glycoprotein substrates. All the selected compounds were 

predicted not to inhibit P-glycoprotein I or II.  

The distribution properties of the selected compounds are listed in Table 3. Distribution properties 

include the VDss, the fraction of compounds unbound to serum proteins, and whether the compounds 

can cross the BBB and be active in the CNS. 
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Table 3: pkCSM distribution analysis of acarbose and the selected compounds 

 

Compound VDss  
(log L/kg) 

Fraction unbound 
(human) 

BBB permeability 
(logBB) 

CNS permeability 
(logPS) 

Acarbose -0.74 0.42 -2.62 -8.18 
Caffeic acid -0.92 0.51 -0.71 -2.93 
Ethyl gallate 0.41 0.61 -1.10 -3.38 
Insulin 0.01 0.38 -11.43 -17.27 
Metformin -0.23 0.81 -0.95 -4.24 
Oxalic acid -0.62 0.74 0.02 -3.42 
p-Coumaric acid -1.15 0.43 -0.23 -2.42 
Rutin 1.66 0.19 -1.90 -5.18 
Vanillin -0.08 0.48 -0.21 -2.12 

 

Human VDss is considered low if it is less than -0.15 log L/kg (0.71 L/kg) and high if it is above 

0.45 log L/kg (2.81 L/kg). Rutin, vanillin, ethyl gallate, and oxalic acid have larger VDss values than 

acarbose. Rutin, vanillin, and ethyl gallate have larger VDss values than metformin. The efficacy of the 

compound can be affected by the degree to which it binds to serum proteins; a large fraction of unbound 

compound means that it can diffuse more effectively across cellular membranes. p-Coumaric acid, 

caffeic acid, vanillin, ethyl gallate, and oxalic acid all have larger or similar fractions than acarbose, but 

none have fractions larger than metformin. A compound with a logBB greater than 0.3 is considered to 

readily cross the BBB. The logBB value is the logarithmic ratio of brain to plasma drug concentration. 

All the selected compounds have logBB values less than 0.3. CNS permeability is predicted as the blood-

brain permeability-surface area product (logPS), and compounds with logPS values greater than -2 can 

potentially penetrate the CNS. None of these compounds have logPS values less than -2. 

The metabolic properties of the selected compounds were determined by predicting their interaction with 

the five main cytochrome P450 isoenzymes. Table 4 indicates whether the selected compound is a 

CYP2D6 or CYP3A4 substrate or inhibitors of CYP1A2, CYP2C19, CYP2C9, CYP2D6, or CYP3A4. 
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Table 4: pkCSM metabolism analysis of acarbose and the selected compounds 

 

Compound CYP2D6 
substrate 

CYP3A4 
substrate 

CYP1A2 
inhibitor 

CYP2C19 
inhibitor 

CYP2C9 
inhibitor 

CYP2D6 
inhibitor 

CYP3A4 
inhibitor 

Acarbose No No No No No No No 
Caffeic acid No No No No No No No 
Ethyl gallate No No No No No No No 
Insulin No Yes No No No No No 
Metformin No No No No No No No 
Oxalic acid No No No No No No No 
p-Coumaric acid No No No No No No No 
Rutin No No No No No No No 
Vanillin No No Yes No No No No 

 

All the selected compounds were not CYP2D6 substrates and only insulin is a CYP3A4 substrate. All 

the selected compounds were not CYP inhibitors except for vanillin which was predicted to be a 

CYP1A2 inhibitor.  

The excretion properties of the selected compounds were predicted by pkCSM. Table 5 lists the total 

drug clearance which represents the excretion of the compounds by the liver and kidneys. 

 

Table 5: pkCSM excretion analysis of acarbose and the selected compounds 
 

Compound Total Clearance 
(log mL/min/kg) 

Acarbose 0.48 
Caffeic acid 0.54 
Ethyl gallate 0.67 
Insulin -13.58 
Metformin 0.10 
Oxalic acid 0.77 
p-Coumaric acid 0.66 
Rutin -0.37 
Vanillin 0.67 

 
 
 
 

 

p-Coumaric acid, caffeic acid, vanillin, ethyl gallate, and oxalic acid have greater total clearance than 

acarbose and metformin. 
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The toxicity properties predicted by pkCSM are listed in Table 6 and include AMES toxicity, the 

maximum recommended tolerated dosage (MRTD), hERG inhibition ability, oral rat chronic (LOAEL) 

and acute toxicity, hepatotoxicity, T. pyriformis and minnow toxicity.  

 

Table 6: pkCSM toxicity analysis of acarbose and the selected compounds 

 

Compound AMES 
toxicity 

Max. 
tolerated 
dose (log 

mg/kg/day) 

hERG I 
inhib 

hERG 
II inhib 

Rat Acute 
Toxicity 
(mol/kg) 

LOAEL 
(log 

mg/kg/ 
day) 

Hepato
-

toxicity 

T.pyrifo
rmis 

toxicity  
(µg/L) 

Minnow 
toxicity 

(log 
mM) 

Acarbose No 0.47 No Yes 2.39 7.49 No 0.29 13.31 
Caffeic acid No 0.96 No No 2.09 3.16 No 0.34 2.18 
Ethyl 
gallate 

Yes -0.32 No No 1.94 2.39 No 0.20 2.71 

Insulin No 0.44 No No 2.48 35.00 Yes 0.29 88.42 
Metformin Yes 0.90 No No 2.45 2.16 No 0.25 3.97 
Oxalic acid No 1.40 No No 1.68 2.96 No 0.28 2.40 
p-Coumaric 
acid 

No 1.11 No No 2.16 2.53 No 0.32 1.61 

Rutin No 0.45 No Yes 2.49 3.67 No 0.29 7.68 
Vanillin No 1.40 No No 1.87 2.96 No 0.08 1.60 

 

Metformin and ethyl gallate are AMES positive and may have mutagenic properties. An MRTD greater 

than 0.48 log mg/kg/day (3.0 mg/kg/day) was considered high. Metformin, p-coumaric acid, caffeic acid, 

vanillin, and oxalic acid have MRTDs greater than 0.48 log mg/kg/day. None of the selected compounds 

were hERG I inhibitors, and only acarbose and rutin were hERG II inhibitors. The selected compounds 

have a rat LD50 between 1.6 and 2.5 mol/kg. The LOAEL of the selected compounds were less than that 

of acarbose but more than that of metformin. Only insulin is considered hepatotoxic, and the other 

compounds were not considered to cause drug-induced liver injury. A T. pyriformis IGC50 greater than 

0.32 µg/L is considered toxic. All compounds, except caffeic acid, had an IGC50 less than or equal to 

0.32 µg/L. A minnow LC50 less than -0.3 log mM is regarded as highly toxic. All the selected compounds 

had a minnow LC50 more than -0.3 log mM. 

2.3.3. SwissTargetPrediction 

SwissTargetPrediction predicts the probability with which the selected compounds interact with proteins 

in humans. Supplementary Table 2 lists the probability that the selected compounds are predicted to 

interact with protein targets. Acarbose has a near 100% probability of interacting with salivary amylase 

(AMY1C), and lysosomal alpha-glucosidase. Acarbose has a 77% probability of interacting with 

pancreatic alpha-amylase and a 42% probability of interacting with maltase-glucoamylase (alpha-

glucosidase). Metformin is not predicted to strongly interact with any proteins in the 



26 

 

SwissTargetPrediction database. Rutin is predicted to interact with acetylcholinesterase, adrenergic 

receptor alpha-2, alpha-2a adrenergic receptor, and neuromedin-U receptor 2 with 100% probability. p-

Coumaric acid has a 100% probability of interacting with aldose reductase, estrogen receptor beta and 

several carbonic anhydrase isoenzymes. Caffeic acid also has a 100% probability of interacting with 

carbonic anhydrase isoenzymes as well as matrix metalloproteinase isoenzymes, arachidonate 5-

lipoxygenase, and protein tyrosine phosphatase 1B. Both vanillin and oxalic acid are predicted to not 

interact strongly with any of the proteins in the SwissTargetPrediction database. Ethyl gallate is 

predicted to interact with squalene monooxygenase with 100% probability.  
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2.4. Discussion 

In silico drug discovery is a great way of testing the drug-likeness of thousands of compounds in a quick 

and effective manner. Virtual docking was used to predict the Gibbs free energy change associated with 

the protein-ligand interaction also known as a docking score. A more negative docking score represents 

a more spontaneous interaction and better binding affinity. Glide uses a Glide scoring function, and DIA-

DB uses an AutoDock Vina scoring function. Even though Glide and AutoDock Vina use slightly 

different formulas to predict the docking score, the relative docking scores should be similar, and the 

ranking should correspond. 

Compounds that had docking scores similar to acarbose were selected. These compounds should be less 

toxic or at least as toxic as the currently available commercial antidiabetics. Compounds with a weaker 

binding affinity than acarbose were also selected to act as negative controls. The three compounds that 

were selected were rutin, p-coumaric acid, and caffeic acid, and the three negative controls selected were 

ethyl gallate, vanillin, and oxalic acid. As presented in Figure 10, acarbose is a pseudotetrasaccharide 

that is a known alpha-glucosidase and pancreatic alpha-amylase inhibitor. Rutin, also known as quercetin 

3-rutinoside, is a flavonoid. Caffeic acid and p-coumaric acid are hydroxycinnamic acid derivatives. 

Ethyl gallate is the ethyl ester of gallic acid which is a type of phenolic acid. Vanillin is the reduced form 

of vanillic acid; and oxalic acid is a dicarboxylic acid (NCBI, 2020). 
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Figure 10: Chemical structures of acarbose and the selected compounds
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DIA-DB docks the selected compounds into eighteen protein targets associated with diabetes. Four of 

these protein targets are pancreatic alpha-amylase (4GQR), intestinal maltase-glucoamylase (3L4Y), 

insulin receptor (3EKN), and tyrosine-protein phosphatase non-receptor type 9 (4GE6). These same 

PDB codes were used to dock the compounds in Maestro. Pancreatic alpha-amylase and intestinal 

maltase-glucoamylase are digestive enzymes in the small intestine that hydrolyse starch into maltose 

and maltose into glucose, respectively. The inhibition of these enzymes would slow down the release of 

glucose from starch and, therefore, the rise in blood glucose concentration. The insulin receptor is present 

on hepatocytes, adipocytes, and skeletal muscle cells. In diabetes these cells are insensitive to the effects 

of insulin. Stimulation of the insulin receptor initiates the signal cascade that leads to an increase in 

intracellular glucose associated with a decrease in blood glucose levels. Tyrosine-protein phosphatase 

non-receptor type 9 is an enzyme in insulin-target cells that dephosphorylates and, therefore, inactivates 

the insulin receptor which terminates the signal cascade. The inhibition of this enzyme would allow the 

signal cascade to continue and the blood glucose level to decrease.  

Supplementary Table 1 shows the docking scores of acarbose and the selected compounds for 

pancreatic alpha-amylase and alpha-glucosidase in the order of most to least negative. Maestro predicts 

several docking scores for each compound that represent the different poses and conformations of the 

compound. The most negative docking score for each compound is represented in Figure 9 and 

Supplementary Table 1. The compounds with the most negative docking scores also have the most 

number of interaction points between the ligand and the binding pocket. The docking score of acarbose 

can be compared to the selected compounds for pancreatic alpha-amylase and alpha-glucosidase. The 

docking score of metformin cannot be compared to the selected compounds because metformin does not 

interact with the insulin receptor or tyrosine-protein phosphatase non-receptor type 9 (Jingchun et al., 

2015). In Figure 9, the positive correlation between the Glide and AutoDock Vina docking scores for 

all four protein targets is presented. This positive correlation demonstrates that the docking scores 

between Glide and AutoDock Vina are quantitatively different but relatively the same. The difference 

in docking score values between these two programs is due to the difference in algorithms used to 

calculate the docking score. There was a strong Spearman correlation coefficient which suggests that the 

compounds are ranked in a similar manner according to the Glide and AutoDock Vina docking scores. 

It can be concluded that either program can be used to rank the docking scores of compounds as diabetes 

protein targets. 

Rutin, had a better Glide docking score than acarbose. Caffeic acid, p-coumaric acid, and ethyl gallate 

had similar Glide docking scores to acarbose for pancreatic-alpha amylase. Rutin, ethyl gallate, and 

vanillin had similar Glide docking scores to acarbose for alpha-glucosidase. Rutin had a similar 
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AutoDock Vina docking score to acarbose for pancreatic-alpha amylase. Rutin, caffeic acid, and p-

coumaric acid had AutoDock Vina docking scores similar to acarbose for alpha-glucosidase. Oxalic acid 

had the largest Glide and AutoDock Vina docking score for both enzymes when compared with the other 

selected compounds. Ethyl gallate and vanillin had AutoDock vina docking scores larger than acarbose 

for both enzymes, Supplementary Table 1. Oxalic acid, ethyl gallate, and vanillin were selected as 

negative controls.  

The next step in predicting the drug-likeness of a compound is to determine whether the compound 

follows Lipinski’s rule of five and predict its ADMET properties. Canvas is a computer program that 

predicts the molecular weight, logP value, the number of hydrogen bond acceptors and donors. 

According to Lipinski et al. (2012), poor absorption is more likely when the compound has a molecular 

weight greater than 500 g/mol, a logP value greater than 5, more than 10 hydrogen bond acceptors, and 

more than 5 hydrogen bond donors. Table 1 shows that acarbose, insulin, and rutin violate three of the 

rule of five, because these compounds are too large to be absorbed from the small intestine into the 

bloodstream. When analysing a compound as a potential digestive enzyme inhibitor, it is not required to 

enter the bloodstream but remain in the small intestine. In contrast, a potential glucose-uptake stimulator 

is required to be absorbed into the bloodstream to reach the target cells. Table 1 also lists the number of 

stars associated with each compound. Acarbose has 13 stars which is more than the selected compounds 

indicating more drug-like properties than acarbose. 

pkCSM is a web-based server that can predict several ADMET properties of selected compounds. 

Absorbance, in this case, refers to the drug’s ability to be transported across the small intestine’s 

membrane into the bloodstream. The compounds that have greater Caco-2 permeability than acarbose 

and metformin are p-coumaric acid, caffeic acid, vanillin, ethyl gallate, and oxalic acid. Human intestinal 

absorption was predicted as the percentage of compound absorbed through the small intestine. Acarbose 

and insulin are not absorbed through the small intestine and rutin is poorly absorbed. Metformin, p-

coumaric acid, caffeic acid, vanillin, ethyl gallate, and oxalic acid are well absorbed through the small 

intestine. Acarbose, rutin, and insulin do not follow three of the rules of five explaining why these 

compounds are not well absorbed through the small intestine. When assessing these compounds as 

digestive enzyme inhibitors, absorption is not a requirement as these enzymes are active in the lumen of 

the small intestine. In contrast, as glucose uptake stimulators, the compounds must be absorbed into the 

bloodstream to be able to reach insulin target cells. 

pkCSM also predicts whether these compounds interfere with the functions of P-glycoprotein. P-

glycoprotein belongs to the ABC superfamily and functions to limit cellular uptake, distribution, 

excretion, and toxicity of drugs by acting as a unidirectional efflux pump in several organs. The 



31 

 

inhibition or activation of these P-glycoproteins by potential antidiabetic agents could have unforeseen 

side effects (Prachayasittikul and Prachayasittikul, 2016). None of the compounds were P-glycoprotein 

I or II inhibitors and only acarbose, metformin, rutin, and ethyl gallate were predicted to be P-

glycoprotein substrates. Acarbose and rutin are not well absorbed into the body and therefore would not 

interfere with P-glycoprotein function. Metformin was predicted to be a P-glycoprotein substrate which 

suggests that metformin can be pumped out of a cell. Compounds that are not P-glycoprotein substrates 

are preferable as they will not be pumped out of the insulin target cells. However, compounds that are 

pumped out of insulin target cells can still stimulate glucose uptake by extracellular activation of the 

insulin receptor from outside the cell.  

Distribution was predicted as the volume of distribution, the fraction of unbound serum proteins, BBB 

and CNS permeability. The distribution, metabolism, excretion, and toxicity of acarbose is irrelevant 

because it is not absorbed into the bloodstream. The ADMET properties of insulin were not compared 

to the compounds as insulin is not an orally active drug. The VDss is the volume that the total dose of a 

drug would need to be uniformly distributed to give the same concentration as in the blood. VDss is 

therefore the theoretical volume that would be necessary to obtain the total amount of drug at the same 

concentration as in the blood plasma. A high VDss indicates that more of the drug is distributed in the 

tissue rather than the plasma. VDss is considered high when the log VDss is greater than 0.45 log L/kg 

(2.8 L/kg) which is the case for rutin. The other compounds do not have such a high VDss but some of 

them have higher log VDss than metformin, such as, vanillin and ethyl gallate. The efficacy of a drug 

can be affected by the degree to which it binds to proteins within the blood. Efficacy increases as the 

fraction of unbound serum proteins increases. Metformin has the largest fraction of unbound serum 

proteins; this suggests that the selected compounds are not as effectively distributed to target tissues 

when compared to metformin. Some of the compounds do, however, have a fraction of unbound serum 

proteins greater than 50%. The BBB permeability is predicted as a logBB value and the CNS 

permeability is predicted as logPS which is a more direct measurement of the BBB permeability. 

Metformin and the selected compounds are not intended to be active in the CNS and crossing the BBB 

could lead to unforeseen side effects. A compound is predicted to readily cross the BBB when the logBB 

is more than 0.3. Metformin and all the selected compounds have a logBB value less than 0.3 which 

suggests that these compounds are unable to cross the BBB. A compound is considered to penetrate the 

CNS when the logPS value is more than -2. Metformin and all the selected compounds have a logPS 

value less than -2 which suggests that these compounds do not enter the CNS.  

Cytochrome P450 are detoxification enzymes in the body that oxidises xenobiotics to facilitate their 

excretion. Inhibition of these isoenzymes could affect drug metabolism. pkCSM also predicts whether 

the compounds are CYP2D6 or CYP3A4 substrates which indicates whether the compounds are 
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metabolised by these enzymes. None of the selected compounds are inhibitors of CYP1A2, CYP2C19, 

CYP2C9, CYP2D6, or CYP3A4; except for vanillin which was predicted to be a CYP1A2 inhibitor, 

possibly interfering with the metabolism of other drugs. None of the compounds are CYP2D6 or 

CYP3A4 substrates, suggesting that these compounds are excreted without being oxidised or 

metabolised by other enzymes.  

Total drug clearance occurs as a combination of hepatic and renal clearance, and is measured by the 

proportionality constant (logCLtot) as log mL/min/kg. All the selected compounds, except for rutin, 

have a greater total clearance than metformin. It is important for a drug to be cleared from the body to 

avoid toxic accumulation; however, rapid clearance could interfere with the ability to reach steady state 

concentrations. 

The AMES toxicity test is a method used to assess the mutagenic potential of a compound. Metformin 

and ethyl gallate were predicted to be AMES positive which suggests that these compounds could be 

carcinogenic. The MRTD estimates the dosage of the compound that is toxic to humans. MRTD is 

predicted as log mg/kg/day and an MRTD greater than 0.477 log mg/kg/day (3.0 mg/kg/day) is high. 

Only rutin and ethyl gallate have an MRTD less than 0.477 log mg/kg/day. Rutin is not well absorbed 

which means that the amount of rutin consumed is not necessarily the amount that ends up in the body. 

Ethyl gallate was selected as a negative control with a poor docking score which means that its small 

MRTD and AMES positive test might be irrelevant. The LOAEL is the highest dose at which no adverse 

effects are observed and is measured as log mg/kg/day. All the selected compounds have a log LOAEL 

greater than metformin which suggests that the selected compounds are slightly less toxic than 

metformin. The rat LD50 was used to predict the relative toxicity of different compounds in mol/kg. Most 

of the selected compounds have smaller rat LD50 values than metformin which suggests that these 

compounds are slightly more toxic. T. pyriformis toxicity was measured as the negative logarithm of the 

concentration required to inhibit 50% growth of T. pyriformis (pIGC50) in log µg/L. A pIGC50 value 

greater than -0.5 log µg/L (0.32 µg/L) indicates possible toxicity. All the selected compounds, except 

caffeic acid, had an IGC50 less than or equal to 0.32 µg/L which indicates that these compounds may be 

T. Pyriformis toxic. T. pyriformis toxicity does not necessarily predict adverse effects as metformin, 

which is a well-established drug, is also T. pyriformis toxic. Minnow toxicity is measured as log LD50 

in log mM and a log LD50 less than -0.3 log mM is considered to be toxic. All the compounds have a 

minnow log LD50 greater than -0.3 which suggests that none of these compounds are toxic to minnows. 

The inhibition of hERG I and II could lead to the development of long QT syndrome. All the selected 

compounds were predicted not to inhibit hERG I or II except for rutin and acarbose which inhibits 

hERG II. Rutin and acarbose are poorly absorbed into the bloodstream and these predictions may not be 

relevant. None of the compounds were predicted to cause hepatic toxicity. 
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SwissTargetPrediction analyses the probability that the selected compounds interact with the 3068 

human macromolecular targets in their database. Acarbose primarily interacts with the carbohydrate 

digesting enzymes: salivary amylase, lysosomal alpha-glucosidase, pancreatic alpha-amylase, and 

maltase-glucoamylase. This is to be expected because acarbose is a known alpha-glucosidase and 

amylase inhibitor and will be used as a positive control for digestive enzyme inhibition assays. 

Metformin was not predicted to interact strongly with any of the proteins in the SwissTargetPrediction 

database. Metformin was predicted to interact with AMPK in insulin target cells. AMPK activates 

protein kinase B which leads to increased glucose uptake and glycogen synthesis (Elmadhun et al., 

2013). Rutin was predicted to interact with acetylcholinesterase which is an enzyme in the CNS that 

terminates impulse transmissions at cholinergic synapses (Milkani et al., 2011). Rutin was predicted to 

interact with adrenergic receptor alpha-2 and its subtype alpha-2a adrenergic receptor which are 

generally responsible for the inhibition of adenylyl cyclase, activation of receptor-operated K+ channels, 

and inhibition of voltage-gated Ca2+ channels. These receptors are mostly found in the CNS, but can also 

be found in several peripheral tissues (Saunders and Limbird, 1999). Neuromedin-U receptor 2 

(NMUR2) was predicted to interact with rutin. NMUR2 is predominantly expressed in the CNS and is 

associated with the regulation of food intake and energy balance (Liu et al., 2009). pkCSM predicted 

that rutin is not well absorbed into the body, nor does it cross the BBB and enter the CNS; therefore, 

rutin will not necessarily interact with these CNS enzymes.  

p-Coumaric acid was predicted to interact with aldose reductase which catalyses the conversion of 

glucose into sorbitol in the polyol pathway. Aldose reductase is associated with diabetes complications 

in the eye and peripheral nervous system (Petrash, 2004). p-Coumaric acid is almost completely 

absorbed in the small intestine, and possibly can act as an aldose reductase inhibitor to alleviate some 

diabetes complications. p-Coumaric acid also interacts with estrogen receptor beta which plays a role in 

the female cardiovascular system (Muka et al., 2016). Both p-coumaric acid and caffeic acid were 

predicted to interact with carbonic anhydrase isoenzymes. These isoenzymes have different tissue 

distributions and intracellular locations where they catalyse the reversible hydration of carbon dioxide. 

Carbonic anhydrase inhibitors have been researched for their ability to help treat glaucoma (Lindskog, 

1997). Caffeic acid was predicted to interact with matrix metalloproteinase isoenzymes and arachidonate 

5-lipoxygenase. Matrix metalloproteinase isoenzymes are zinc-containing endopeptidases that cleave 

most of the extracellular matrix constituents. The inhibition of these isoenzymes has been studied for 

the treatment of periodontal diseases (Birkedal-Hansen et al., 1993). Arachidonate 5-lipoxygenase is an 

enzyme that catalyses the synthesis of leukotrienes which are mediators of inflammation derived from 

arachidonic acid. Leukotrienes have been identified as mediators of a variety of inflammatory and 

allergic reactions and the inhibition of arachidonate 5-lipoxygenase helps alleviate these symptoms 
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(Werz and Steinhilber, 2006). Caffeic acid was most notably predicted to inhibit protein tyrosine 

phosphatase 1B (PTP1B). PTP1B is an intracellular enzyme responsible for the termination of the 

insulin-induced signalling pathway. PTP1B has been analysed as a therapeutic target for the treatment 

of T2D (Wang et al., 2004). Both vanillin and oxalic acid are predicted to not interact strongly with any 

of the proteins in the SwissTargetPrediction database. Ethyl gallate is predicted to interact with squalene 

monooxygenase, which is involved in the steroid biosynthesis pathway and its inhibition could lead to 

possible side effects (Pollier et al., 2019).  

Supplementary Table 3 shows the proteins identified by SwissTargetPrediction that had a high 

probability (100%) of interacting with the selected compounds as well as the protein’s natural substrate 

found in the body, as well as the percentage probability of the natural substrate interacting with the 

corresponding protein. Some of the natural substrates have a zero percent probability of interacting with 

the corresponding protein. This suggests that this predictive program requires further in vitro studies. 
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2.5. Chapter summary 

Compounds were selected with a range of docking scores for the following proteins: pancreatic alpha-

amylase, intestinal maltase-glucoamylase, insulin receptor, and tyrosine-protein phosphatase non-

receptor type 9. Their ADMET properties were determined and compared with acarbose and metformin. 

The selected compounds were predicted to have similar or better drug-likeness than acarbose and 

metformin. These compounds were also predicted to have similar toxicity or be less toxic than acarbose 

and metformin. Most of the predicted cross reactions could result in beneficial side effects. The next 

step was to analyse the in vitro inhibition of the selected compounds against pancreatic alpha-amylase 

and alpha-glucosidase. 

 

2.5.1. Limitations and future work 

The docking studies was performed by docking the ligand into the active site of the protein; however, 

ligands can dock to other sites on the protein and possible have an allosteric effect on the enzyme. The 

limitations of SwissTargetPrediction would be the database of proteins which does not encompass all of 

the proteins within the human body and its predictive algorithm only recognises compounds that are 

similar to known inhibitors. Future work could include comparing natural compounds to other 

commercial antidiabetic drugs, such as miglitol, or voglibose, alpha-glucosidase inhibitors (Van De Laar 

et al., 2005). 
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CHAPTER 3: Digestive enzyme inhibition 

3.1. Introduction 

The research in the previous chapter has identified, via in silico studies, several compounds with the 

ability to inhibit pancreatic alpha-amylase and alpha-glucosidase. However, it is necessary to confirm 

these results in vitro. The inhibition kinetics is also an important parameter to measure as the inhibition 

constant (Ki) which represents the binding affinity of a compound. The relationship between the docking 

score and Ki value can provide insight into the ability of virtual docking simulations to identify potential 

pancreatic alpha-amylase and alpha-glucosidase inhibitors. 

3.1.1. Pancreatic alpha-amylase assay 

Pancreatic alpha-amylase is an enzyme in the small intestine that hydrolyses starch into maltose. Alpha-

amylase from porcine pancreas was used in this study. Alpha-amylase has a molecular mass of 51 – 

54 kDa. It has a single polypeptide chain of ~475 residues, containing a tightly bound calcium ion for 

stability. Chloride ions are necessary for activity and stability at pH 6.9 at 20˚C (Gates, 2010). In vitro 

activity of this enzyme is determined using starch as a substrate and measures the amount of maltose 

released in the presence and absence of the selected compounds. Maltose concentration will be 

determined using the DNSA method. Maltose reduces 3,5-dinitrosalicylic acid (DNSA) to produce 3-

amino-5-nitrosalicylic acid which has an absorbance that can be measured at 540 nm, Figure 11. 

Acarbose, a known antidiabetic drug, is used as a positive control and has mixed-type inhibition (Kim 

et al., 1999).  

 

 

 

 

 

Figure 11: DNSA reduction 
The reduction of 3, 5-dinitrosalicylic acid to 3-amino-5-nitrosalicylic acid (a coloured product with an 
absorbance at 540 nm) by a reducing sugar (Garriga et al., 2017).  
 

3.1.2. Alpha-glucosidase assay 

Alpha-glucosidase is an enzyme in the small intestine that hydrolyses maltose into glucose. Alpha-

glucosidase from Saccharomyces cerevisiae was used in this study. Alpha-glucosidase will liberate 
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glucose from maltose at pH 6.8 at 37 ˚C (Gates, 2010). To quantify the enzymatic activity, p-nitrophenyl 

α-D-glucopyranoside (pNPG) is used as a substrate which is hydrolysed by alpha-glucosidase into p-

nitrophenyl (pNP) and α-D-glucopyranoside, Figure 12. The absorbance of pNP can be measured at 

405 nm. Acarbose is used as a positive control and is a competitive inhibitor of alpha-glucosidase (Kim 

et al., 1999).  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 12: pNPG hydrolysis 
The hydrolysis of pNPG by alpha-glucosidase into α-D-glucopyranoside and pNP (a coloured product 
with an absorbance at 405 nm) (Mohiuddin et al., 2016). 
 

3.1.3. Enzyme kinetics 

The rate of an enzyme reaction is the concentration of the product produced by the enzyme in the 

presence or absence of an inhibitor divided by the time the reaction was allowed to occur. This is the 

initial velocity (v0) of the reaction and can be plotted against varying concentrations of the substrate (S) 

to generate the Michaelis-Menten graph, Figure 13. The maximum velocity (Vmax) of an enzyme 

represents the velocity when the enzyme is saturated with substrate. The Michaelis constant (KM) is the 

substrate concentration where the enzyme has reached half its maximum velocity.  
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Figure 13: Michaelis-Menten graph 

The Michaelis-Menten equation is 𝑣 =  
[ ]

[ ]  
, where v0 is in mol/min and [S] is in g/mL or mol/mL.  

The Michaelis-Menten graph is a hyperbolic curve, and it is difficult to determine the Vmax and KM of 

the enzyme using this plot; the Lineweaver-Burk graph was then derived by transforming the hyperbolic 

Michaelis-Menten equation into a linear form, Figure 14, with the equation   =   
[ ]

+   . 

 

Figure 14: Lineweaver-Burk graph 
The graph of 1/v0 against 1/[S] where the y-intercept is 1/Vmax, the x-intercept is -1/KM, and the gradient 
is KM/Vmax.  

 

The KM and Vmax of an enzyme can be affected by the presence of an inhibitor (I). An inhibitor can bind 

reversibly or irreversibly to the enzyme’s active site or another site. There are several types of reversible 

inhibitors that affect the Vmax and KM differently. Competitive inhibitors resemble the substrate, and 

competes with the substrate for the active site, Figure 15. Uncompetitive inhibitors can only bind to the 
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enzyme-substrate complex [ES], Figure 16. Non-competitive inhibitors can bind to the free enzyme [E] 

or [ES], Figure 17. Inhibitors can also exhibit mixed inhibition, such as competitive-non-competitive 

inhibition, Figure 18, or non-competitive-uncompetitive inhibition, Figure 19. The extent to which the 

inhibitor decreases the reaction rate is represented by the inhibition constant (Ki or KI), where Ki = 

[E][I]/[EI] and KI = [ES][I]/[ESI].  

 

 
Figure 15: Competitive inhibition 

The equation for the competitive inhibitor is =  1 +
[ ]

[ ]
+ . The competitive inhibitor 

increases the KM and the Vmax is unaffected.  

 

 

Figure 16: Uncompetitive inhibition 

The equation for the uncompetitive inhibitor is =  
[ ]

+ 1 +
[ ]

. The uncompetitive 

inhibitor decreases the KM and the Vmax. 
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Figure 17: Non-competitive inhibition 

The equation for the non-competitive inhibitor is  =  
[ ]

1 +
[ ]

+ 1 +
[ ]

. The non-

competitive inhibitor decreases the Vmax and the KM is unaffected. 

 

 

 

Figure 18: Competitive-non-competitive inhibition 

The equation for the competitive-non-competitive inhibitor is  =  
[ ]

1 +
[ ]

+ 1 +
[ ]

.  

The competitive-non-competitive inhibitor decreases the Vmax and increases the KM.  

 



41 

 

 

 

Figure 19: Non-competitive-uncompetitive inhibition 

The equation for the non-competitive-uncompetitive inhibitor is  =  
[ ]

1 +
[ ]

+ 1 +
[ ]

. 

The non-competitive-uncompetitive inhibitor decreases the Vmax and the KM. 

 

A secondary plot, Figure 20 can also be produced by plotting the slope of the Lineweaver-Burk graph 

against different inhibitor concentrations. This plot can be used to determine the Ki as the x-intercept of 

the secondary plot is -Ki. An inhibitor with a small Ki has a greater binding affinity to the enzyme than 

an inhibitor with a large Ki. 

 

Figure 20: Secondary plot 
The graph of the primary slope against the inhibitor concentration with a y-intercept of KM/Vmax, a 
x-intercept of -Ki, and a slope of KM/Vmax.Ki.  
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The Lineweaver-Burk plot can be used to determine the KM and Vmax of an enzyme in the presence and 

absence of an inhibitor. The type of inhibition can be determined using the statistical comparison of the 

KM and Vmax of the uninhibited and inhibited enzyme. The secondary plot can be used to determine the 

Ki which represents the binding affinity of the inhibitor to the enzyme (Palmer and Bonner, 2008).  

The aim of the research presented in this chapter was to determine the Ki and type of inhibition of the 

previously selected compounds for pancreatic alpha-amylase and alpha-glucosidase. The Ki was 

compared with acarbose, a known antidiabetic drug, using the Student’s t-test where p ˂ 0.05 is 

considered to be significantly different. The relationship between the Ki value and the docking score was 

also examined. 
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3.2. Methods 

3.2.1. Chemicals 

Alpha-amylase from porcine pancreas type VI-B (EC 3.2.1.1), alpha-glucosidase type I from 

Saccharomyce cerevisiae (EC 3.2.1.20), starch from potatoes, D-(+)-maltose monohydrate, 3,5-

dinitrosalicylic acid, potassium sodium tartrate tetrahydrate, p-nitrophenyl-alpha-D-glucopyranoside, p-

nitrophenyl, acarbose, and rutin trihydrate were all purchased from Sigma-Aldrich (St. Louis, Missouri, 

USA). Ethyl gallate and p-coumaric acid were obtained from the Fluka (St. Louis, Missouri, USA) 

product line; and vanillin was obtained from the UniLab (St. Louis, Missouri, USA) product line. Oxalic 

acid was purchased from Merck (Darmstadt, Germany). The selected compounds were dissolved in 

dimethyl sulfoxide (DMSO). More details about the reagents are in Annexure A.  

3.2.2. Pancreatic alpha-amylase assay 

The DNSA colour reagent was prepared by dissolving 12.0 g of sodium potassium tartrate tetrahydrate 

in 8.0 ml of 2 M NaOH and 20 mL of a 96 mM 3,5-dinitrosalicylic acid solution. The standard curve 

was generated using a range of maltose concentrations (0.555 – 2.775 mM). Amylase was dissolved in 

sodium phosphate buffer (20 mM sodium phosphate dibasic/monobasic and 6.7 mM sodium chloride, 

pH 6.9) to prepare a 4 U/mL enzyme solution. The IC50 of each compound was determined by measuring 

the absorbance in the presence of a range of compound concentrations (0 – 5 mM). A volume of 50 µL 

compound solution was incubated with 50 µL amylase solution for 10 min at room temperature. Then a 

volume of 100 µL of 2% (w/v) starch solution was added to the reaction and incubated for 10 min at 

room temperature. The reaction was terminated by adding 100 µL DNSA solution and incubating for 10 

min at 85°C in a heating block (Labnet, Edison, NJ, USA). The solution was then diluted by adding 1200 

µL dH2O, and 200 uL aliquots were transferred into a 96 well plate, in triplicate. The absorbance was 

measured at 540 nm (SpectraMax Paradigm, Molecular Devices, San Jose, California, USA).  

To determine enzyme kinetics, various concentrations of compounds was plotted on a Lineweaver-Burk 

graph. For acarbose, caffeic acid, ethyl gallate, and vanillin the concentration range was 0 – 40 µM; for 

oxalic acid, and rutin, 0 – 400 µM; and lastly for p-coumaric acid, 0 – 1000 µM. The compounds were 

incubated with 50 µL of a 4 U/mL amylase solution for 10 min at room temperature. The reaction was 

then incubated with a range of starch concentrations (1.4 – 10 mg/mL) for 10 min at room temperature. 

The reaction was terminated by adding 100 µL DNSA solution and incubating in an oven (Labotec, 

Midrand, South Africa) set to 80°C for 25 min. A volume of 50 µL was transferred to another 96 well 

plate and diluted with 200 µL dH2O in triplicate. The absorbance was measured at 540 nm. For details 

of the method see Annexure B.  
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3.2.3. Alpha-glucosidase assay  

The standard curve was generated by converting 200 µL pNP (0.1 – 0.5 mM) to the conjugate base with 

50 µL of a 0.8 M NaOH solution. Glucosidase was dissolved in sodium phosphate buffer (100 mM 

sodium phosphate dibasic/monobasic, pH 6.8) to prepare a 0.2 U/mL enzyme solution. The IC50 of each 

compound was determined by measuring the absorbance in the presence of a range of compound 

concentrations (0 – 12.5 mM). A volume of 50 µM compound solution was incubated with 50 µL 

glucosidase solution for 10 min at room temperature. A 100 µL volume of 2 mM pNPG solution was 

added to the reaction and incubated for 30 min at 37°C in an incubator (SepSci, Roodepoort, South 

Africa). The reaction was terminated by adding 50 µL of a 0.8 mM NaOH solution and the absorbance 

was then measured at 405 nm. 

For the enzyme kinetics, various concentrations of each compound (0 – 1000 µM) were plotted on a 

Lineweaver-Burk graph. Each compound was incubated with 50 µL of a 0.2 U/mL glucosidase solution 

for 10 min at room temperature. The reaction was then incubated with a range of pNPG concentrations 

(0.14 – 1 mM) for 30 min at 37°C. The reaction was terminated by adding 50 µL of a 0.8 M NaOH. The 

absorbance was measured at 405 nm. Each reaction was performed in a 96 well plate in triplicate. For 

details of the method see Annexure C. 

3.2.4. Statistical analysis 

Four independent repeats were performed for each experiment, and three repeats (n = 3) were chosen 

that produced the smallest coefficient of variation. The data were expressed as the mean ± standard error 

of the mean (SEM). The two-tailed Student’s t-test was used to determine significant differences 

between two values where a p-value less than 0.05 was considered statistically significant. The IC50 was 

determined using the NumPy package in Python. The difference in fits (DFFITS) method was used 

according to Belsley et al. (1980) on the Lineweaver-Burk and secondary graphs. The Lineweaver-Burk 

graphs were plotted using the ggplot2 library in RStudio and the Glide- Ki correlation graphs were 

plotted in Excel.  
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3.3. Results  

3.3.1. Pancreatic alpha-amylase inhibition 

The pancreatic alpha-amylase enzyme kinetics of acarbose, rutin, caffeic acid, p-coumaric acid, vanillin, 

ethyl gallate, and oxalic acid was determined by plotting Lineweaver-Burk graphs (Figure 21). The type 

of inhibition was determined by analysing the changes in Vmax and KM for pancreatic alpha-amylase in 

the presence and absence of the compound (Supplementary Table 4). Acarbose exhibited mixed-type 

(non-competitive-uncompetitive) inhibition at 40 and 20 µM as both lines intersect with the 0 µM line 

in quadrant III of the Lineweaver-Burk plot. Only the Vmax of the 20 µM line was significantly less than 

that of the 0 µM line. Caffeic acid exhibited competitive inhibition as the Vmax is the same for all 

concentrations while the KM increases for some of the concentrations. Ethyl gallate exhibited 

uncompetitive inhibition as the Vmax decreases, and the KM significantly decreases in the presence of 

5 µM ethyl gallate. Oxalic acid also exhibited competitive inhibition as the Vmax is unchanged and the 

KM increases, significantly for 400 µM oxalic acid. p-Coumaric acid and rutin exhibited uncompetitive 

inhibition as both the Vmax and KM decreased. Vanillin exhibited mixed-type (competitive-non-

competitive) inhibition as the 5 µM line and 20 µM line intersect with the 0 µM line in quadrant IV of 

the Lineweaver-Burk plot. The Vmax of 10 µM vanillin decreased significantly.  

The Ki was determined by plotting secondary graphs. Smaller Ki values represent better binding 

affinities (Table 7). The order of Ki values from smallest to largest was as follows: acarbose ˂ caffeic 

acid ˂ vanillin ˂ ethyl gallate ˂ rutin ˂ p-coumaric acid ˂ oxalic acid. The Ki values of oxalic acid and 

rutin were significantly larger than that of acarbose, whereas the other compounds were not significantly 

different than acarbose. The IC50 was determined using the NumPy package in Python. Larger IC50 

values indicates that a higher concentration of a compound is required to inhibit the enzyme by 50%. 

The order of IC50 values from smallest to largest was as follows: acarbose ˂ p-coumaric acid ˂ ethyl 

gallate ˂ vanillin ˂ rutin ˂ caffeic acid ˂ oxalic acid. All the selected compounds had IC50 values 

significantly greater than acarbose. 
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Figure 21: Lineweaver-Burk plots of acarbose (control) and the selected compounds for pancreatic 
alpha-amylase assay 
The graph of 1/v (µmol/min) and 1/S (g/mL) where S is the starch concentration. Each compound has 
several plots representing different compound concentrations (µM).  
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Table 7: The pancreatic alpha-amylase inhibition ability of acarbose and the selected compounds 

The type of inhibition, Ki (µM), and IC50 (mM) of selected compounds for pancreatic alpha-amylase. 

 

 

 

 

 

 

  

Compound Type of inhibition Ki (µM) IC50 (mM) 
Acarbose Mixed 14±1a 0.03±0.003a 

Vanillin Mixed 39±15a 3.83±0.642b 

Caffeic acid Competitive 28±6a 4.50±0.037b 

Oxalic acid Competitive 10800±177b 4.71±0.782b 

p-Coumaric acid Uncompetitive 2460±627a 2.44±0.395b 

Ethyl gallate Uncompetitive 136±42a 3.65±0.355b 

Rutin Uncompetitive 1160±240b 4.39±0.243b 

a Value is significantly similar (p ˃ 0.05, n=3, two-tailed) to acarbose 
b Value is significantly different (p ˂ 0.05, n=3, two-tailed) to acarbose  
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3.3.2. Alpha-glucosidase inhibition 

The alpha-glucosidase enzyme kinetics of acarbose, rutin, caffeic acid, p-coumaric acid, vanillin, ethyl 

gallate, and oxalic acid was determined by plotting Lineweaver-Burk graphs (Figure 22). The type of 

inhibition was determined by analysing the changes in Vmax and KM for alpha-glucosidase in the presence 

and absence of each compound (Supplementary Table 5). Acarbose, caffeic acid, ethyl gallate, and p-

coumaric acid exhibit competitive inhibition as the Vmax did not change, except for 1000 µM acarbose 

where the Vmax was significantly different than 0 µM, and the KM increases. Oxalic acid, rutin, and 

vanillin did not exhibit any type of inhibition at the concentrations that were analysed. 

The Ki value was determined by plotting secondary graphs. Smaller Ki values represent better binding 

affinities (Table 8). The order of Ki values from smallest to largest was as follows: rutin ˂ acarbose ˂ 

caffeic acid ˂ vanillin ˂ ethyl gallate ˂ oxalic acid ˂ p-coumaric acid. The Ki of ethyl gallate and oxalic 

acid were significantly larger than that of acarbose, whereas for the other compounds the Ki values were 

not significantly different than acarbose. The IC50 was determined and the order of IC50 values from 

smallest to largest was as follows: acarbose ˂ ethyl gallate ˂ rutin ˂ caffeic acid ˂ vanillin ˂ p-coumaric 

acid ˂ oxalic acid. Rutin, caffeic acid, vanillin, p-coumaric acid, and oxalic acid had IC50 values 

significantly greater than acarbose, whereas ethyl gallate was not significantly different from acarbose. 
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Figure 22: Lineweaver-Burk plots of acarbose and the selected compounds for alpha-glucosidase 
assay 
The graph of 1/v (µmol/min) and 1/S (mM) where S is the pNPG concentration. Each compound has 
several plots representing different compound concentrations (µM).  
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Table 8: The alpha-glucosidase inhibition ability of acarbose and the selected compounds 

The type of inhibition, Ki (µM), and IC50 (mM) of selected compounds for alpha-glucosidase.  

 

 

 

 

 

 

  

Compound Type of inhibition Ki (µM) IC50 (mM) 
Acarbose Competitive 481±43a 0.39 ±0.025a 

Caffeic acid Competitive 989±161a 1.88 ±0.204b 

Ethyl gallate Competitive 1630±201b 1.25 ±0.480a 

p-Coumaric acid Competitive 9580±4670a 6.59 ±0.446b 

Oxalic acid None 5020±849b 8.36 ±0.162b 

Rutin None 225±78a 1.48 ±0.132b 

Vanillin None 1480±262a 6.44 ±0.245b 

a Value is significantly similar (p ˃ 0.05, n=3, two-tailed) to acarbose 
b Value is significantly different (p ˂ 0.05, n=3, two-tailed) to acarbose 
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3.3.3. Validation of in silico binding affinity analysis  

The virtual docking program Maestro by Schrodinger was used to determine the docking scores of the 

selected compounds in the active site of pancreatic alpha-amylase and alpha-glucosidase. Both the 

docking score and the Ki values represent the binding affinity of the compound. A more negative docking 

score represents a greater binding affinity. Smaller Ki values also represent a greater binding affinity. 

Figures 23 and 24 show the correlation between the docking scores and Ki values of the compounds for 

pancreatic alpha-amylase and alpha-glucosidase, respectivly. Pearson’s correlation coefficient (r) and 

Spearman’s rank order correlation coefficient (ρ) were calculated in Excel. The docking score and the 

Ki value correlates positively confirming that the compounds that had better binding affinities with in 

silico testing also had better binding affinities with in vitro testing. 

 

Figure 23: The correlation between Glide score and Ki for pancreatic alpha-amylase  

 
Figure 24: The correlation between Glide score and Ki for alpha-glucosidase 
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3.4. Discussion 

Inhibition of enzymes that digest carbohydrates in the small intestine delays the postprandial increase in 

blood glucose concentration. The key enzymes responsible for the hydrolysis of carbohydrates are 

pancreatic alpha-amylase and alpha-glucosidase. These enzymes hydrolyse complex carbohydrates into 

monosaccharides that can be absorbed from the small intestine into the bloodstream. Delaying the 

absorption of monosaccharides after a meal is an effective strategy in managing T2D. Several drugs are 

available that inhibit these enzymes, such as, acarbose, miglitol, or voglibose. However, these drugs are 

expensive and have several side effects (Adefegha and Oboh, 2012). Therefore, the aim of this research 

was to determine whether the compounds from herbs, spices, and medicinal plants had similar inhibitory 

ability as acarbose for pancreatic alpha-amylase and alpha-glucosidase. 

In this study, acarbose was used as a positive control for both the pancreatic alpha-amylase and alpha-

glucosidase inhibition assays. Findings were that acarbose had mixed-type inhibition of pancreatic 

alpha-amylase, with a Ki value of 14±1 µM, and an IC50 of 0.03±0.003 mM. Yoon and Robyt (2003) 

reported that acarbose was a mixed inhibitor of  porcine pancreatic alpha-amylase and had a Ki value of 

0.797±0.156 µM with amylose as the substrate and acarbose concentrations were 20–80 µM. Desseaux 

et al. (2002) also reported that acarbose was a mixed inhibitor of porcine pancreatic alpha-amylase and 

had a Ki value of 1.6±0.7 µM with amylose as the substrate and the acarbose concentrations were 0.15–

1.8 µM.  

In this study, acarbose was found to be a competitive inhibitor of alpha-glucosidase, with a Ki value of 

481±43 µM, and an IC50 of 0.39±0.025 mM. Proença et al. (2017) reported that acarbose was a 

competitive inhibitor for alpha-glucosidase (0.05 U/mL) with a Ki value of 457±11 µM with pNPG as a 

substrate and the acarbose concentrations were 0–2000 µM. Srimoon et al. (2020) reported that acarbose 

was a competitive inhibitor of alpha-glucosidase with a Ki value of 0.33 mg/mL with pNPG as a substrate 

and acarbose concentrations of 0.1–1.0 mg/mL. Differences between this experiment and the literature 

could be due to differences in enzyme or inhibitor concentrations, and the substrate. In this study, a direct 

comparison was made between acarbose and the selected compounds under identical experimental 

conditions. 

Some plant extracts, with antidiabetic properties, have been reported to contain the compounds, or 

derivatives of the compounds used in this study. For example, the dried leaves of Ventilago denticulata 

inhibited alpha-amylase and alpha-glucosidase, and investigation of the phenolic and flavonoid content 

of these dried leaves extract revealed the presence of gallic acid, vanillic acid, and rutin (Srimoon et al., 

2020). Zea mays aqueous extract exhibited alpha-amylase and alpha-glucosidase inhibition similar to 

acarbose at 0.25-0.05 mg/mL and 0.25-1.0 mg/mL, respectively. Investigation of the phenol and flavanol 
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content revealed that Z. mays contained gallic acid and rutin (Sabiu et al., 2016). Elaeagnus angustifolia 

leaves extract had alpha-amylase and alpha-glucosidase inhibitory activities at 10-50 µg, and 

investigation of the phenolic acid content revealed that E. angustifolia contained vanillic acid, caffeic 

acid, and p-coumaric acid (Saltan et al., 2017).  

Ethyl gallate, which was a compound in this study, is a derivative of gallic acid and the inhibitory effect 

of on alpha-amylase and alpha-glucosidase was previously studied by Oboh et al. (2016). Gallic acid 

(25 µM) had a significantly lower percentage inhibition for both alpha-amylase and alpha-glucosidase 

when compared with acarbose (25 µM), however the combination of gallic acid (50%) and acarbose 

(50%) produced significant inhibitory results for both enzymes. Dubey et al. (2017) reported that rutin 

had alpha-amylase and alpha-glucosidase inhibitory activity and the rutin concentrations were 

50-250 µg/mL. Oboh et al. (2015) reported that caffeic acid had dose-dependent inhibitory effects on 

alpha-amylase and alpha-glucosidase activities. Kwon et al. (2008), examined the alpha-glucosidase 

inhibitory activity of the phenolic compounds in wine and tea and reported that caffeic acid, coumaric 

acid, and gallic acid had high alpha-glucosidase inhibitory activity. A recent study (Liu et al., 2021) 

reported that vanillin had mixed inhibition mechanism for alpha-glucosidase by evaluating molecular 

docking simulations and fluorescence quenching experiments. No previous studies have investigated the 

ability of type of inhibition of rutin, caffeic acid, p-coumaric acid, vanillin, ethyl gallate, and oxalic acid 

using the Ki values and Lineweaver Burk plots for pancreatic alpha-amylase and alpha-glucosidase. 

In this study, the Student’s t-test might not detect significant differences between independent means. 

This relates to the power of the test where the greater the power of the test, the greater the chance of 

detecting significant differences. The test can have greater power when there is a large difference 

between the two means, a smaller variability, and a larger sample size (Capraro and Yetkiner, 2010). 

This could explain why most of the differences between the Vmax and KM’s of the uninhibited and 

inhibited enzymes were not significant. The variation between these two samples was too large, and the 

sample size was too small. The type of inhibition was, therefore, determined by analysing how the 

different inhibitor concentrations relate to each other and to the uninhibited reaction. One way to 

overcome this limitation is to increase the sample size.  

Virtual docking scoring is a useful tool to screen hundreds, even thousands, of compounds cost 

effectively and rapidly. However, several authors have reported that there is no significant relationship 

between docking scores and ligand affinity, while other authors only observed that some proteins had a 

strong positive correlation between in silico and in vitro studies (Warren et al., 2006, Nagpal et al., 2012, 

Gao et al., 2010, Park et al., 2009). In this study, there was a positive correlation between the Glide 

docking score and the Ki value of the selected compounds for both pancreatic alpha-amylase and alpha-
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glucosidase as the Pearson’s correlation coefficients (r) were 0.82 and 0.67, respectively (Figures 23 

and 24). The DFFITS method was performed on the correlation graphs in Figures 23 and 24. It appears 

that oxalic acid had an undue influence on the pancreatic alpha-amylase Glide- Ki correlation graph and 

acarbose had an undue influence on the alpha-glucosidase Glide- Ki correlation graph. Spearman’s rank 

correlation coefficient (ρ) evaluates the rank values between the Glide docking score and Ki values 

instead of the actual values and this would minimize the effect of outliers, such as, oxalic acid in Figure 

23 and acarbose in Figure 24. The Pearson’s correlation coefficient, for pancreatic alpha-amylase the 

Glide- Ki correlation was strong; and for alpha-glucosidase the Glide- Ki correlation was moderate. The 

Spearman’s correlation coefficient, for pancreatic alpha-amylase the Glide- Ki correlation was weak; 

and for alpha-glucosidase the Glide- Ki correlation was strong. This further demonstrates the effects of 

outliers (Schober et al., 2018, Mukaka, 2012). Future research should include the determination of the 

Ki value of more natural compounds that are structurally similar to acarbose and have good docking 

scores for pancreatic alpha-amylase and alpha-glucosidase.
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3.5. Chapter summary 

The inhibition ability of the selected compounds was compared with acarbose for pancreatic alpha-

amylase and alpha-glucosidase by comparing their Ki values. The Ki values for caffeic acid, ethyl gallate, 

p-coumaric acid and vanillin were similar to the Ki value of acarbose for pancreatic alpha-amylase. The 

Ki values for caffeic acid, p-coumaric acid, rutin, and vanillin were similar to the Ki value of acarbose 

for alpha-glucosidase. Therefore, we accept the H01 for these compounds. There was a positive 

correlation between the Glide score and the Ki value for both pancreatic alpha-amylase and alpha-

glucosidase. Thus, these two PDB codes, 4GQR and 3L4Y, can be used to screen for other inhibitors 

from herbs, spices, and medicinal plants. The next step was to analyse the glucose uptake inducing ability 

of the selected compounds in relevant cell lines. 

3.5.1. Limitations and future work 

Limitations to this study was the use of pancreatic alpha-amylase and alpha-glucosidase from porcine 

and S. cerevisiae, respectively, instead of from humans. Improvements to this experiment could be to 

use larger inhibitor concentrations for alpha-glucosidase kinetic studies, especially for vanillin and rutin, 

whose type of inhibition could not be determined. Future research could include the analysis of more 

natural compounds as pancreatic-alpha amylase and alpha-glucosidase inhibitors to better validate the 

in silico – in vitro relationship.  
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CHAPTER 4: Cytotoxicity and insulin-mimicking effects 

4.1. Introduction 

To further develop compounds for therapeutic applications, it is essential to determine if the compounds 

are not cytotoxic using relevant cell lines. For example, the use of rutin, caffeic acid, p-coumaric acid, 

and vanillin as inhibitors of pancreatic alpha-amylase and alpha-glucosidase in the small intestine, it is 

necessary to determine the cytotoxicity of these compounds using a cell line such as the Caco-2 cell line. 

Several of the compounds in this study were shown to be bioavailable and may target insulin dependent 

tissues, such as the liver and muscle. Likewise, cytotoxicity determination in representative cell lines, 

such as the HepG2 and C2C12 cell lines, is essential prior to determining the effects of these compounds 

on glucose uptake.  

4.1.1. SRB assay 

Sulforhodamine B (SRB) assay is a method used for in vitro cytotoxicity screening. The cytotoxicity of 

a compound is the measure of the effect a chemical agent has on the morphology, rate of cell growth, 

and survival of a cell (Miret et al., 2006). SRB, Figure 25, is a dye that binds to the basic amino acid 

residues of cellular proteins following trichloroacetic acid (TCA) fixation (Vajrabhaya and 

Korsuwannawong, 2018). The SRB assay has several advantages over other protein and fluorescent dye-

staining methods, as it is more sensitive, is rarely affected by the interference of the other compounds 

and is independent of the cellular metabolic activity (Vichai and Kirtikara, 2006). The SRB assay was 

used to determine whether a compound is cytotoxic to Caco2, HepG2, and C2C12 cells. The absorbance 

of SRB is measured at 540 nm and correlates with cell number. 

 

Figure 25: SRB structure 
The sulfonic acid groups bind basic amino acids in cellular protein and absorbance at 540 nm is an 
indirect measure of cell number.  
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4.1.2. Glucose uptake assay 

To evaluate cellular glucose uptake, 2-[N-(7nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose 

(2NBDG), a fluorescent glucose analog, Figure 26, was used to determine uptake of glucose into C2C12 

and HepG2 cells in the presence of insulin and the selected compounds (Zou et al., 2005). Metformin 

was used as a positive control. The stimulation of glucose-uptake into skeletal muscle cells and 

hepatocytes reduces the blood glucose concentration.  

 

Figure 26: 2NBDG 
The structure of 2NBDG, a glucose analogue, that has strong fluorescence at an excitation wavelength 
of 475 nm and an emission wavelength of 550 nm (Oh and Matsuoka, 2002). 
 

The research undertaken in this chapter was to determine the cytotoxicity of the selected compounds 

with relevant cell lines. The cytotoxicity of a compound was quantified using the IC50 value. Caco2 cells 

were used as an intestinal epithelial model and the IC50 of the selected compounds were compared to 

acarbose. IC50 values significantly smaller than acarbose indicated that the compound was more 

cytotoxic than acarbose. The cytotoxicity of the compounds with C2C12 skeletal muscle cells and 

HepG2 hepatic cells were also evaluated. The ability of the selected compounds to increase glucose 

uptake for C2C12 and HepG2 cells as investigated. 
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4.2. Methods 

4.2.1. Chemicals 

Caco2 colorectal adenocarcinoma cells (CCAC-FL) were obtained from Cellonex (Separation Scientific, 

Roodepoort, South Africa). C2C12 myotubes (American Type Culture Collection [ATCC] CRL-1772) 

and HepG2 hepatocarcinoma cells (ATCC HB-8065) were obtained from ATCC. Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 1% nonessential amino acids, 1% (w/v) L-glutamine, 

penicillin (100 U/mL), streptomycin (100 U/mL), dextrose (25 mM), and 10% (v/v) heat-inactivated 

foetal calf serum (FCS) (DMEM/10% FCS). Trichloroacetic acid (TCA), sulforhodamine B (SRB), tris 

buffer, glucose-free DMEM supplemented with penicillin (100 U/mL) and streptomycin (100 U/mL), 

and trypan blue were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Phosphate buffered 

saline (PBS) was purchased from BD Diagnostics (New Jersey, USA). Human insulin was purchased 

from European Pharmacopoeia (Strasbourg, France). 2-NBDG and trypsin were purchased from Thermo 

Fisher Scientific (Waltham, Massachusetts, USA). 

4.2.2. SRB assay 

Cell cultures were incubated in T75 culture flasks at 37°C in a humidified incubator (Binder, Tuttlingen, 

Germany) with a 5% CO2 atmosphere until confluency was established. The cell cultures were 

trypsinized to detach the cells from the flask and the cells were collected by centrifuging the culture at 

200g for 5 min (Beckman Coulter, California, USA). The cells were resuspended in 1 mL of 

DMEM/10% FCS. The appropriate cell concentration was obtained by counting the cells using 0.1% 

trypan blue and a hematocytometer under a microscope (Reichert-Jung, Wetlzar, Germany). The assay 

plates were prepared by seeding 96-well plates with the 100 µL cell suspension (1x105 cells per well) in 

DMEM/10% FCS and incubating the plates at 37°C for 24 h. 

The cells were then exposed to 100 µL selected compounds (0.001 to 100 µM for C2C12 and HepG2 

cells; and 0.1 to 1000 µM for Caco2 cells) for 72 h. The cells were then fixed overnight with 50 µL of a 

50% TCA solution and incubated at 4°C. The plates were then washed four times with tap water and 

allowed to dry before the SRB stain was added. The cells were exposed to the 100 µL of a 0.057% SRB 

stain solution for 30 min and washed four times with 1% acetic acid and dried overnight in the oven 

(Labotec, Midrand, South Africa). To extract the dye, 200 µL of 10 mM tris buffer (pH 10.5) was added 

to each well and the plates were shaken at 550 rpm for 1 h (Labex, Johannesburg, South Africa). The 

absorbance of the extracted dye was measured at 540 nm (BioTek, Vermont, United States). For details 

on the method see Annexure D.  
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4.2.3. Glucose-uptake assay  

The cell suspension was prepared as described for the SRB assay, and the 96-well plate was seeded with 

80 µL cell suspension and incubated at 37°C for 24 h. The medium was removed, and the cells were 

incubated with 80 µL glucose-free DMEM/2.5% FCS at 37°C for 24 h. The medium was then removed, 

and the selected compounds, in glucose-free DMEM, were added to final concentrations of 10, 1, and 

0.1 µM. C2C12 cells were incubated with the compounds at 37°C for 24 h and HepG2 cells were 

incubated for 45 min.  

In a subsequent experiment, to induce insulin resistance, HepG2 cells were incubated with 100 nM 

insulin, in DMEM, at 37°C for 24 h. HepG2 cells were then exposed to the compounds with 50 nM 

insulin in glucose-free DMEM. 

The cells and the compounds were then incubated with 80 µM 2-NBDG for 1 h in the dark. C2C12 cells 

were then washed twice with PBS and HepG2 cells were washed with glucose-free DMEM. The 

fluorescence was measured at an excitation wavelength of 485/40 nm and an emission wavelength of 

590/35 nm (BioTek, Vermont, USA). For details on the method see Annexure E. 

4.2.4. Statistical analysis 

Three independent repeats were performed for the cytotoxicity in the Caco2 cell line, and four 

independent repeats were performed for the cytotoxicity in the C2C12 and HepG2 cell lines. For the 

glucose-uptake assay, three independent repeats in the C2C12 and HepG2 cell lines was performed. The 

data were expressed as the mean ± standard error of the mean (SEM). The one-tailed Student’s t-test 

was used to determine significant differences between the control and the compound, where a p-value 

less than 0.05 was considered statistically significant. The IC50 was determined using QuestGraphTM 

(2020). GraphPad Prism 5 was used to produce the glucose-uptake graphs.  
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4.3. Results  

4.3.1. Cytotoxicity  

The cytotoxicity, as IC50 values, of the selected compounds was determined (Table 9) and the 

cytotoxicity graphs was generated (Supplementary Figure 2). 

Table 9: The cytotoxicity of selected compounds in Caco2, HepG2, and C2C12 cells 

 

 

 

 

 

 

 

In the Caco2 cell line, an IC50 could be determined for all the selected compounds. The order of 

cytotoxicity from most to least was ethyl gallate > oxalic acid > p-coumaric acid > caffeic acid > rutin 

> vanillin > acarbose. In Caco2 cells, the IC50 for acarbose was 715±89.10 µM and the IC50 of only ethyl 

gallate and oxalic acid was significantly less than that of acarbose. In the HepG2 and C2C12 cell lines, 

the IC50 value for all the compounds, except ethyl gallate, was greater than 100 µM, the highest 

concentration. In all cell lines, ethyl gallate was the most cytotoxic with the lowest IC50 in the Caco2 

cell line. Of the cell lines evaluated, the Caco2 cell line was the most sensitive to the cytotoxic effects 

of the compounds evaluated.  

4.3.2. Glucose-uptake ability   

For the glucose uptake study (Figures 27, 28, and 29), concentrations that were not cytotoxic were 

selected (Table 9) and these were 10, 1, and 0.1 µM.  

 

Compound Caco2 IC50 (µM) HepG2 IC50 (µM) C2C12 IC50 (µM) 
Acarbose 715±89.1a - - 
Vanillin 637±249.1a >100 >100 

Rutin 534±199.1a >100 >100 
Caffeic acid 382±243.9a >100 >100 

p-Coumaric acid 371±13.7a >100 >100 
Oxalic acid 177±19.6b >100 >100 

Ethyl gallate 42.3±24.0b 63.6±13.9 39.6±13.8 
a Caco2 IC50 assumed to be significantly similar (p ˃ 0.05, n=3, SEM, two-tailed) to
Caco2 IC50 of acarbose.  
b Caco2 IC50 assumed to be significantly different (p ˂ 0.05, n=3, SEM, two-tailed) to
Caco2 IC50 of acarbose 
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Figure 27: The glucose-uptake ability of selected compounds in HepG2 cells 
HepG2 cells were exposed to 0.1, 1, and 10 µM metformin and each compound as well as 10 nM insulin 
at 37°C for 45 min. Glucose uptake was determined with 80 µM 2NBDG for 1 h added after the 45 min 
incubation with metformin and the compounds. The control was HepG2 cells not exposed to metformin 
or the compounds. The supernatant was removed, and the cells were washed with glucose-free DMEM, 
and the fluorescence was measured at an excitation wavelength of 485/40 nm and emission wavelength 
of 590/35 nm.  
a Compounds that have a fluorescent intensity significantly different than the control (p ˂ 0.05, n=3, 
error bars = SEM, one-tailed)  
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Figure 28: The glucose-uptake ability of selected compounds for C2C12 cells 
C2C12 cells were exposed to 0.1, 1, and 10 µM metformin and each compound as well as 10 nM insulin 
at 37°C for 24 h. Glucose uptake was determined with 80 µM 2NBDG for 1 h added after the 24 h 
incubation with metformin and the compounds. The control was C2C12 cells not exposed to metformin 
or the compounds. The supernatant was removed, and the cells were washed with PBS and the 
fluorescence was measured at an excitation wavelength of 485/40 nm and emission wavelength of 
590/35 nm. 
a Compounds that have a fluorescent intensity significantly different than the control (p ˂ 0.05, n=3, 
error bars = SEM, one-tailed)  
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Figure 29: The glucose-uptake ability of selected compounds for insulin-resistant HepG2 cells 
Insulin resistance was induced with 100 nM insulin, in DMEM, at 37°C for 24 h. Then the cells were 
exposed to 0.1, 1, and 10 µM metformin and each compound as well as 50 nM insulin at 37°C for 45 min. 
Glucose uptake was determined with 80 µM 2NBDG for 1 h added after the 45 min incubation with 
metformin and the compounds. The control was HepG2 insulin-resistant cells with 50 nM insulin but 
not exposed to metformin or the compounds. The supernatant was removed, and the cells were washed 
with glucose-free DMEM, and the fluorescence was measured at an excitation wavelength of 485/40 nm 
and emission wavelength of 590/35 nm.  
a Compounds that have a fluorescent intensity significantly different than the control (p ˂ 0.05, n=3, 
error bars = SEM, one-tailed)  
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4.4. Discussion   

The ability of natural compounds to stimulate glucose-uptake in hepatocytes and skeletal muscle cells 

would help decrease the blood glucose concentration, especially after a meal when the blood glucose 

concentration spikes. Insulin is the main hormone that is released from the pancreas and stimulates these 

cells to take up more glucose by increasing the number of GLUT4 transporters. Metformin, a commercial 

drug, stimulates glucose-uptake and is used for the treatment of T2D. The signalling pathway of 

metformin is different from that of insulin. Instead of activating the insulin receptor to translocate the 

GLUT4 transporter to the cell surface, metformin stimulates AMPK to translocate GLUT1 transporters 

to the cell surface (Elmadhun et al., 2013).  

Before investigating the glucose-uptake stimulating ability of the selected compounds, it was necessary 

to determine the cytotoxicity in three cell lines: Caco2, HepG2 and C2C12 cell lines representative of 

the site of uptake and specific insulin cellular targets. The Caco2 IC50 of the selected compounds relates 

to the toxicity of the compounds in the lumen of the small intestine. Caffeic acid, p-coumaric acid, rutin, 

and vanillin all had Caco2 IC50 values statistically similar to acarbose. This suggests that these 

compounds are just as toxic in the small intestine as acarbose. These compounds can, therefore, be used 

as pancreatic alpha-amylase and alpha-glucosidase inhibitors as identified in CHAPTER 3. Ethyl gallate 

and oxalic acid, however, had significantly smaller Caco2 IC50 values than acarbose. In this study, ethyl 

gallate and oxalic acid were the negative controls and, therefore, are not to be used as digestive enzyme 

inhibitors. In the HepG2 and C2C12 cell lines, an IC50 could only be obtained for ethyl gallate, and all 

other compounds were not cytotoxic with an IC50 greater than 100 µM. Karakurt (2016) reported that 

rutin had an IC50 value of 52.7µM with HepG2 cells using the Alamar blue method. Magnani et al. 

(2014) reported that caffeic acid had an IC50 value of 781.8 µg/mL using the MTT method. 

Differences in sensitivity of the cell lines tested may be related to the doubling times which according 

to the DSMZ website (Klaus, Accessed 2021) are 80 h for Caco2, 50-60 h for HepG2, and 20 h for 

C2C12. Therefore, the doubling time of Caco2 cells is longer than that of HepG2 and C2C12 cells, and 

Caco2 cells will have a lower growth density during the 24 h period which may make these cells more 

sensitive to the toxic effects of the compounds evaluated. The Caco2 cytotoxicity assay also used higher 

drug concentrations (0-1000 µM), whereas the HepG2 and C2C12 cytotoxicity assay used lower drug 

concentrations (0-100 µM) to reflect the higher drug concentrations in the gut lumen than in the liver 

and muscle tissue. This could possibly explain why the IC50 could be determined for Caco2 cells but not 

HepG2 or C2C12 cells. The higher drug concentrations for the Caco2 cytotoxicity assay could increase 

the likelihood of secondary metabolites that contribute to the cytotoxicity of the drug.  
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In the investigation of the effects of these compounds on glucose uptake, the effect of several insulin 

concentrations was evaluated, including the concentrations found in human blood which range from 0.1 

to 1 nM (Mari et al., 2011). Higher concentrations of insulin were also tested, with 100 nM being the 

highest (Park et al., 2014, Semaan et al., 2018). In the HepG2 cell line, insulin caused a decrease in 

glucose uptake. Although glucose uptake was slightly increased in the C2C12 cell line, this increase was 

not statistically significant. None of the compounds influenced glucose uptake in HepG2 cells. In 

contrast, glucose uptake in C2C12 cells was increased by 10 µM metformin, 0.1 µM caffeic acid, 10 µM 

oxalic acid and 1 µM ethyl gallate. None of the compounds, including insulin and metformin, were 

considered to significantly increase the glucose-uptake in HepG2 cells; however, insulin (10 nM) 

significantly decreased the fluorescent intensity compared to that of the control. Both C2C12 and HepG2 

cells were grown under high glucose conditions which induced insulin resistance in these cells (Zang et 

al., 2004). 

None of the insulin concentrations that were tested had a significant effect on the glucose-uptake ability 

of C2C12 cells, which may indicate that the 2NBDG assay was not sensitive enough to measure glucose 

uptake. The fluorescent intensity of 10 µM metformin was significantly greater than the control for 

C2C12 cells, which was expected because metformin was a positive control. Metformin also seemed to 

have a dose response in C2C12 cells where the fluorescent intensity increased as the metformin 

concentration increased. Oxalic acid also seemed to take up a significant amount of 2-NBDG at 10 µM 

in C2C12 cells. However, this may be misleading as the SEM is smaller compared to the other 

compounds. On the other hand, 10 µM vanillin had a much larger fluorescent intensity than the control 

(0 µM) but it is not significant because of the SEM which is much larger than the other compounds. 

Caffeic acid (0.1 µM) and ethyl gallate (1 µM) had fluorescent intensities significantly greater than the 

control but the SEM is also small, and these compounds also appear to have a negative dose response 

where the higher concentrations had smaller fluorescent intensities. 

Several adaptations were made to the original assay described in Zou et al. (2005), for example, the cells 

were starved of glucose for 48 h. Other methods were also tested, such as, differentiating the C2C12 

cells by reducing the serum content of the media to 2% FCS (Elkalaf et al. (2013), however, glucose 

uptake by the differentiated C2C12 cells were not significantly increased in the presence of insulin. 

Likewise, insulin did not increase uptake of glucose in the HepG2 cells. 

The possible loss of cells after washing may result in lower fluorescence measurements. By performing 

an SRB assay on the twice-washed cells the contribution that washing has on cell loss was evaluated. 

The measured absorbance of the control before washing was between 1.2 and 2.0 and after washing 0.05 
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to 0.10 indicating a significant loss of cells. In another experiment, the cells were washed with glucose-

free DMEM, and subsequently the cells remained attached.  

Kim et al. (2017) performed a 2NBDG uptake assay on differentiated C2C12 cells and found that tricin, 

a methylated flavone, significantly increases the uptake of glucose when compared to the control. The 

cells were incubated with 5, 10, and 20 µM drug and 100 µM 2NBDG for 24 h. Yoon et al. (2013) also 

performed a 2NBDG assay on differentiated L6 rat skeletal muscle cells and found that 100 µM p-

coumaric acid significantly increased 2NBDG uptake compared to the control. Lim et al. (2021) found 

that 5 µM rutin induced 2NBDG uptake in differentiated 3T3-L1 adipocytes but only in the presence of 

100 nM insulin. Chen et al. (2019) found that a 100 µg/mL phenolic acid fraction of chlorogenic acid 

and caffeic acid induced 2NBDG uptake in insulin resistant HepG2 cells in the presence of 500 nM 

insulin. Differences between the present study and previous studies may be related to the exposure time, 

drug concentrations, the degree of cellular differentiation for muscle cell lines and the sensitivity of the 

detection system. The concentrations used in these studies varied from 5 µM – 100 µM and the lack of 

any observed effect may be related to the concentrations of 0.1 µM – 10 µM. 

Pietrzyk et al. (2021) evaluated glucose uptake in HepG2 cells exposed to Viburnum opulus L. 

(European guelder rose fruit) phenolic extracts. Insulin resistance was not induced but the cells were 

incubated with 100 nM insulin, and the HepG2 cells were exposed to 300 µM of the phenolic extract for 

24 h before adding 150 µM 2NBDG for 2 h. Only some of the phenolic extracts induced 2NBDG uptake 

when compared to the control. 

In this study, another approach was also tested in which insulin resistance was further induced by 

incubating HepG2 cells for 24 h in 100 nM insulin, as described by Zang et al. (2004). The cells were 

then incubated with 0.1 to 10 µM of the selected compounds and 50 nM insulin for 45 min before adding 

80 µM 2-NBDG for 1 h. Most of the compounds, including metformin, decreased the fluorescent 

intensity compared to the control (Figure 29).  

According to Hardy et al. (2017), an effect is biologically relevant if it is directly or indirectly linked to 

an adverse or beneficial effect, and the size of the effect must be relevant for the assessment. The 

increased uptake of glucose, especially in insulin resistant liver cells, would have a beneficial effect on 

those suffering from diabetes. However, the effect size in this experiment might not be relevant. Jiang 

et al. (2016), who also tested the glucose-uptake of HepG2 cells using 100 µM 2-NBDG for 20 min, 

reported a 1.5-to-2-fold increase in glucose-uptake of HepG2 cells in the presence of marein, a glucoside 

of okanin, a chalconoid, compared to the control (without marein), whereas the decrease in glucose-

uptake in Figure 29 was less than 1.2-fold compared to the control. Jiang et al. (2016) also reported a 

dose-dependent response to glucose-uptake, whereas Figure 29 does not show a clear dose-dependent 
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response to any of the compounds. This suggests that the decreased glucose-uptake in insulin resistant 

HepG2 cells might be statistically significant but not biologically relevant. 

 

Nam et al. (2013) tested the effect of a plant extract on the glucose uptake of differentiated C2C12 cells 

using the 2NBDG assay. The cells were incubated with 40 µg/mL extract, 1 µM insulin, and 10 µM 

2NBDG for 1 h; and fluorescence was measured using a FACS flow cytometer. Krishna et al. (2015) 

also used FACS flow cytometry to measure 2NBDG uptake in L6 rat skeletal muscle cells in the presence 

of an herb extract. FACS flow cytometry is usually used to measure the fluorescence of a small sample 

of cells, such as, 10,000 single cell events. However, with larger cell numbers, such as, 100,000 to 

1,000,000 cells, fluorescence can be measured using a fluorometer as was undertaken in the present 

study (Krishna et al., 2015). 

Giang Thanh Thi et al. (2017) performed a glucose uptake assay on insulin sensitive HepG2 cells and 

differentiated myotubes using radioactively labelled [14C(U)]-glucose. Both rutin and caffeic acid 

increased glucose uptake in these cells. Exposure was to 10, 1, and 0.1 µM of the compounds for one to 

two days followed by the addition of [14C(U)]-glucose for 4 h. Although effects were observed, 

fluorescently labelled glucose does hold several advantages over radioactively labelled glucose because 

fluorescent labels can be measured fast and in real-time, and are as sensitive as radioactive labels without 

being as hazardous as the radioisotopes (Ying et al., 2007).  
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4.5. Chapter summary   

The Caco2 IC50 of caffeic acid, p-coumaric acid, rutin, and vanillin was statistically similar to acarbose. 

Most of the compounds, including insulin, did not significantly increase the glucose-uptake ability of 

C2C12 and HepG2 cells, including insulin-resistant HepG2 cells. The H02 is therefore accepted for these 

compounds. The compounds either do not increase glucose uptake, or the 2-NBDG assay is not sensitive 

enough to detect effects. The next step was to determine the content of the selected compounds in herbs, 

spices, and medicinal plants such as green tea. 

 

4.5.1. Limitations and future work 

Sinclair et al. (2020) suggests that 2-NBDG uptake alone is not a reliable tool for the assessment of 

cellular glucose transport especially if the 2-NBDG assay has no effect on the controls, which occurred 

in the present study. The 2-NBDG assay, therefore, requires further optimization or an alternative assay 

should be considered such as, a bioluminescent assay (Valley et al., 2016). The detection of several 

proteins involved in the uptake of glucose, by Western blotting, could also be an option to measure the 

insulin-mimicking ability of the compounds. These proteins include AKT, IRS-1, AMPK, and PI3K all 

of which are involved in the increased expression of GLUT4 on the cell membrane (Figure 5) (Chen et 

al., 2019).  
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CHAPTER 5: Green tea analysis 

5.1. Introduction 

Several plant species have been identified to have antidiabetic properties and these include Cinnamomum 

zeylanicum (cinnamon), Allium sativum (garlic), Aloe vera (aloe vera), Nigella sativa (black cumin), and 

Zingiber officinale (ginger) (Shihabudeen et al., 2011, Priya Rani et al., 2011, Beidokhti and Jäger, 

2017). Individual plant derived compounds, such as rutin, caffeic acid, p-coumaric acid, and vanillin, in 

CHAPTER 3, have been found to have antidiabetic properties related to the inhibition of pancreatic 

alpha-amylase and alpha-glucosidase. The advantage of plants is that several of these compounds can 

be found in one plant species and as such, may act synergistically, resulting in increased activity.  

5.1.1. Camellia sinensis 

Camellia sinensis tea is an example of a readily available product that has many reported health benefits. 

Green tea is a beverage made by steeping the dried unfermented leaves of the Camellia sinensis plant 

and is the most common drink in the world after water. Tea flavanols have several beneficial properties, 

including antioxidant, antimutagenic, anticarcinogenic, and antibacterial activity. Thirty to forty percent 

of the polyphenols are water-extractable from green tea (Archana and Abraham, 2011). The most notable 

polyphenols in green tea are catechin, epigallocatechin gallate (EGCG), epicatechin gallate (ECG), 

epigallocatechin (EGC), and epicatechin (EC) (Ikbal et al., 2020). Green tea also has antidiabetic 

activity, such as, the inhibition of alpha-glucosidase and alpha-amylase (Yilmazer-Musa et al., 2012).  

5.1.2. UPLC/MS  

Polyphenols can be detected using ultra-performance liquid chromatography (UPLC) coupled with mass 

spectrometry (MS). The standard analytical approach for the identification of polyphenols in all plant 

material was developed by Lin and Harnly (2007). When plant material, such as green tea leaves, was 

extracted using aqueous acetonitrile with 0.1% formic acid, it had the best separation by liquid 

chromatography. The mass spectra show the relative intensity, or peak height, against the mass to charge 

ratio (m/z) in negative ion mode. When quantifying the concentration of a particular compound in green 

tea, a standard curve can be produced by plotting the peak height of different concentrations of the 

selected compound.  
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5.2. Methods  

5.2.1. Chemicals 

HPLC standards: epigallocatechin gallate, epicatechin, epigallocatechin, epicatechin-3-o-gallate, 

catechin, chlorogenic acid, rutin, caffeic acid, p-coumaric acid, quercetin, quinic acid, and rosmarinic 

acid were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). The green tea brands used in this 

study were Five Roses, Livewell, Tetley, Eve’s, and Dilmah, and were obtained from local supermarkets 

(Pick n Pay, Wellness Warehouse, and Spar, Pretoria, South Africa). All reagents used for the analysis 

of pancreatic alpha-amylase and alpha-glucosidase enzymatic activity were the same as described in 

CHAPTER 3.  

5.2.2. The content of the selected compounds in herbs, spices, and green tea  

Content values of different herbs and spices was obtained from Phenol-Explorer (Rothwell et al., 2013), 

and FooDB (FooDB, 2017), except for green tea (Zhao et al., 2011), and vanilla (Zhang et al., 2014). 

The content was defined as the amount of compound (mg) in 100 g of seasoning. The equivalence was 

the amount (g) of seasoning that contains the amount of compound that corresponds to a 150 mg daily 

dose of acarbose. 

5.2.3. Pancreatic alpha-amylase and alpha-glucosidase IC50 determination 

A 20% (w/v) green tea solution was prepared for each brand by steeping two tea bags (2 x 2.5 g) in 

25 mL boiling dH2O for 10 min. The tea bags were removed, and the tea solution was centrifuged at 

10 000g for 10 min (MiniSpin, Eppendorf, Hamburg, Germany). The supernatant was filtered using a 

0.2 µm syringe filter, and the resulting filtered solution was used in the pancreatic alpha-amylase and 

alpha-glucosidase assay, as described in sections 3.2.2. and 3.2.3. For details on the method see 

Annexure F. 

5.2.4. Green tea extraction 

Green tea from tea bags was ground for 20 s in a coffee grinder (Breville, Botany, Australia) and sieved 

with a final aperture opening of 355 µm (Labotec, Midrand, South Africa). A 0.25 g sample was mixed 

with 1.6 mL of 50% methanol/1% formic acid (v/v) and vortexed for 1 min. The samples were extracted 

in an ultrasonic bath for 1 hour and then centrifuged at 14 000g for 5 min. The clear supernatant was 

then diluted 10x with extraction solvent and transferred into 1.5 ml glass vials for analysis. A cocktail 

of standards was also prepared that included EGCG, EC, EGC, ECG, catechin, chlorogenic acid, rutin, 

caffeic acid, p-coumaric acid, quercetin, quinic acid, and rosmarinic acid. The concentrations ranged 

from 0 to 83 ppm for each standard. 
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5.2.5. Liquid chromatography/mass spectrometry (LC/MS) analysis 

LC–MS analyses were performed on a Waters (Milford, MA, USA) Synapt G2 quadrupole time of flight 

mass spectrometer coupled to a Waters Acquity ultraperformance liquid chromatograph (UPLC) fitted 

with an Acquity photo diode array (PDA) detector. Similar to the method described by  Long et al. 

(2012). Separation was achieved on a Waters HSS T3 (2.1 × 100 mm, 1.7 μm particle size) with 0.1% 

formic acid as mobile phase A and acetonitrile as mobile phase B. The flow rate was 0.3 mL/min, and 

the column temperature was maintained at 55°C. The gradient elution program was as follows: 0–28% 

B (0–1 min), 28–40% B (1–22 min), 40–100% B (22–23 min), held at 100% B (23–24.5 min), 100-0% B 

(24.5-25 min), and allowed to equilibrate for a further 4 min prior to the next injection of 5 μL. 

Electrospray ionization was applied in the negative ion mode at a cone voltage of 15 V, desolvation 

temperature of 275°C and desolvation gas setting of 650 L/h. The rest of the MS settings were optimized 

for best sensitivity. The instrument was calibrated with sodium formate and leucine enkaphelin was used 

as lock mass for accurate mass determinations. The MS acquisition method consisted of a low energy 

function at a trap voltage of 4 V and a high energy function where the trap collision energy was ramped 

from 40 to 100 V to generate fragmentation data (MSe). For details on the method see Annexure G. 

5.2.6. Statistical analysis  

Data were processed using TargetLynx for quantitative analysis using MSDIAL and MSFINDER for 

unsupervised data processing (RIKEN Center for Sustainable Resource Science: Metabolome 

Informatics Research Team, Kanagawa, Japan) (Tsugawa et al., 2015, Lai et al., 2018). Data were also 

processed using MassLynx software version 4.1 from Waters. Principal component analysis (PCA) plots 

and volcano plots (adjusted p-value using false discovery rate (FDR)) were produced using 

MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (Xia and Wishart, 2011). Mass fragmentation 

patterns produced using ChemSketch MassSpec Scissors. 
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5.3. Results 

5.3.1. The content of the selected compounds in herbs, spices, and green tea  

Rutin, caffeic acid, and p-coumaric acid were present in green tea. The highest content of caffeic acid 

was in common verbena, tarragon, and sweet basil. The highest content of rutin was in parsley, sorrel, 

and capers. Vanillin was only present in vanilla. The equivalence dosages are listed in Table 10. 

 
Table 10: The content (mg/100 g) of selected compounds in a variety of seasonings 

 

Caffeic acid 
Seasoning Content (mg/100 g) Equiv (g) 

Common verbena (Verbena officinalis) 1000 4 
Tarragon (Artemisia dracunculus) 764 5 
Sweet basil (Ocimum basilicum) 634 7 
Green tea (Camellia sinensis)a 257 16 
Anise (Pimpinella anisum) 103 40 
Common sage (Salvia officinalis), dried 26 158 
Spearmint (Mentha spicata), dried 25 167 
Ceylon cinnamon (Cinnamomum burmannii) 24 173 
Common thyme (Thymus vulgaris), dried 21 196 
Star anise (Illicium verum) 20 207 
Cumin (Cuminum cyminum) 17 252 
Caraway (Carum carvi) 16 255 
Nutmeg (Myristica fragrans) 16 256 
Ginger (Zingiber officinale), dried 16 270 
Common thyme (Thymus vulgaris), fresh 12 357 

p-Coumaric acid 
Seasoning Content (mg/100 g) Equiv (g) 

Green tea (Camellia sinensis)a 399 10 
Pepper (Capsicum frutescens) 54 71 
Cloves (Syzygium aromaticum) 8 449 
Oregano  (Origanum vulgare), fresh 6 662 
Common sage (Salvia officinalis), dried 5 769 
Common thyme (Thymus vulgaris), dried 5 769 
Rosemary (Salvia Rosmarinus), dried 4 1038 
Marjoram (Origanum majorana), dried 2 1587 

Rutin 
Seasoning Content (mg/100 g) Equiv (g) 

Parsley (Petroselinum crispum) 3000 5 
Sorrel (Rumex acetosa) 1280 11 
Capers (Capparis spinosa) 332 43 
Red tea (Aspalathus linearis) 120 118 
Green tea (Camellia sinensis)a 53 270 
Marjoram (Origanum majorana), dried 3 5457 

Vanillin 
Seasoning Content (mg/100 g) Equiv (g) 

Vanilla (Vanilla planifolia)b 1980 2 
Content values obtained from Phenol-Explorer (Rothwell et al., 2013) and FooDB (FooDB, 2017), except for 
green tea (Zhao et al., 2011)a, and vanilla (Zhang et al., 2014)b 

Content = the amount of compound (mg) in 100 g of seasoning, Equiv = the amount (g) of seasoning that 
contains the amount of compound that corresponds to a 150 mg daily dose of acarbose 
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5.3.2. Untargeted metabolomics  

The Waters Synapt G2 UPLC/MS data were quantified using TargetLynx which provided information 

about the peak height and retention time of the peaks. These data were used to produce chromatograms 

for each green tea sample as well as the standards. Figure 30 represents the base peak intensity (BPI) 

chromatogram of the Dilmah green tea brand showing the chemical structures of some of the highest 

peaks: gallocatechin (8.57 min, 305.07 m/z), epigallocatechin (11.03 min, 305.07 m/z), catechin (11.83 

min, 289.07 m/z), epicatechin (13.90 min, 289.07 m/z), assamicain A (14.13 min, 915.16 m/z), EGCG 

(14.27 min, 457.08 m/z), and epicatechin gallate dimer (17.38, 883.17 m/z). Supplementary Figure 3 

represents the BPI chromatogram of the other four green tea brands.  
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Figure 30: BPI chromatogram of Dilmah green tea brand 
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Figure 31 represents a PCA of all five green tea brands produced using MassLynx based on the original 

profile matrix. The first principal component (PC1) explains 32.7% and the second principal component 

(PC2) explains 27.7% of the variation.  

 

 

 

Figure 31: The PCA plot of all five green tea brands based on the original profile matrix exported 
from MassLynx 

 

PCA was performed on the 139 putatively annotated compounds in all five green tea brands, Figure 32. 

Supplementary Table 6 summarises the compounds that were annotated with a high level of 

confidence. According to the PCA, Five Roses, Livewell, and Tetley have similar peak heights for the 

putatively annotated compounds. Eve’s and Dilmah had different peak heights of the putatively 

annotated compounds when compared with each other and the other three green tea brands. Eve’s had a 

large variation within the sample when evaluating the PCA plot in Figure 31 and the raw data. The 

outliers were removed and the PCA in Figure 32 was produced with MetaboAnalyst. PC1 explains 

64.6% and PC2 explains 15.3% of the variation.  
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Figure 32: PCA of the putatively annotated compounds in the five green tea brands 
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5.3.3. Targeted metabolomics  

Figure 33 shows the Waters Synapt G2 TOF MS of the selected standards in negative ion mode (ES-). 

The TOF MS ES- chromatogram is represented as the BPI chromatogram which is a variant of a total 

ion current (TIC) chromatogram, but the BPI chromatogram only shows the most intense peaks and 

therefore has greater apparent resolution, (Waters, 2005). The standards identified in Figure 33, with 

their monoisotopic masses in negative ion mode are: quinic acid (1.84 min, 191.06 m/z), epigallocatechin 

(11.06 min, 305.07 m/z), catechin (11.78 min, 289.07 m/z), chlorogenic acid (12.23 min, 353.09 m/z), 

caffeic acid (12.97 min, 179.04 m/z), epicatechin (13.90 min, 289.07 m/z), EGCG (14.07 min, 

457.08 m/z), p-coumaric acid (15.75 min, 163.05 m/z), epicatechin-3-O-gallate (17.40 min, 441.08 m/z), 

rutin (17.66 min, 609.14 m/z), rosmarinic acid (20.70 min, 359.08 m/z), and quercetin (24.20 min, 

301.04 m/z). Any peaks after 24 min were ignored as this represent the washing step with 100% solvent 

B as well as re-calibration back to solvent A.



78 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 33: Chromatogram of standards 
The TOF MS ES- BPI chromatogram of the standard cocktail (17 ppm) 
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The standard curve of each standard in the cocktail was generated and the % dry weight was determined. 

Table 11 shows the % dry weight of each standard in the five green tea brands. Dilmah had the largest 

overall percentage of standards. EGC and EGCG had the largest % dry weight in all five green tea 

brands. Caffeic acid, p-coumaric acid, and rosmarinic acid had the smallest % dry weight in all five 

green tea brands.  

 

Table 11: The % dry weight (mean±SD, n=6) of the standards in the five green tea brands 

 

Standards Dilmah Eve’s Five Roses Livewell Tetley 
Caffeic acid ˂0.01 ˂0.01 ˂0.01 ˂0.01 ˂0.01 

Catechin 1.68 ±0.01 0.76±0.06 0.38±0.02 0.58±0.01 0.62±0.01 
Chlorogenic acid 0.27 ±0.01 0.04±0.01 0.04±0.01 0.03±0.01 0.06±0.01 

Epicatechin 6.26 ±0.02 3.78±0.19 3.75±0.01 3.58±0.02 3.68±0.01 
Epicatechin 3-O-gallate 5.61 ±0.02 4.51±0.22 5.04±0.01 4.01±0.14 4.84±0.02 

Epigallocatechin 8.35 ±0.03 5.02±0.02 7.55±0.02 7.36±0.04 7.62±0.04 
Epigallocatechin gallate 8.66 ±0.05 7.16±0.35 9.01±0.01 8.57±0.04 8.35±0.04 

p-Coumaric acid ˂0.01 ˂0.01 ˂0.01 ˂0.01 ˂0.01 
Rosmarinic acid ˂0.01 ˂0.01 ˂0.01 ˂0.01 ˂0.01 

Rutin 2.85 ±0.03 0.57±0.06 0.44±0.05 0.60±0.02 0.70±0.03 
Quinic acid 0.42 ±0.01 0.06±0.01 0.07±0.01 0.10±0.01 0.11±0.01 
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5.3.4. Enzyme inhibition of green tea brands 

The pancreatic alpha-amylase inhibitory ability of the five green tea brands was investigated. The IC50 

of each green tea brand was determined for pancreatic alpha-amylase and was compared with acarbose 

(Table 12). Dilmah, Eve’s, Five Roses, and Livewell had IC50 values significantly greater than acarbose. 

Tetley had an IC50 value significantly similar to acarbose. Eve’s and Tetley had IC50 values that were 

lower than Dilmah, Five roses, and Livewell. The putatively annotated compounds in the low and high 

IC50 green tea groups were analysed using MetaboAnalyst. The PCA of high vs low pancreatic alpha-

amylase IC50 is represented in Figure 34. There is a large variation within the high IC50 green tea brands 

compared to the low IC50 green tea brands.  

     

Table 12: The inhibition of pancreatic alpha-amylase by the five green tea brands  

 

 

  

Green tea brand IC50 (mg/mL) 
Acarbose 0.02±0.002a 

Dilmah 25.36±2.931b 

Eve’s 14.42±2.618b 

Five Roses 22.64±1.006b 

Livewell 26.13±3.856b 

Tetley 14.40±3.648a 

IC50 is the mean ± SEM (n = 3) 
a Value is significantly similar, (p ˃ 0.05, n=3, two-tailed) 
to acarbose 
b Value is significantly different (p ˂ 0.05, n=3, two-
tailed) to acarbose 
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Figure 34: PCA of high vs low pancreatic alpha amylase IC50 
 

Figure 35 shows the volcano plot of the 139 putatively annotated compounds where none of these 

compounds were significantly more abundant in the green tea brands that had low or high pancreatic 

alpha-amylase IC50.  
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Figure 35: Volcano plot of high vs low pancreatic alpha-amylase IC50 

Fold change threshold of 2.0, p-value threshold of 0.05 (log(p) = 1.12), and direction of comparison is 

high IC50/low IC50 

The alpha-glucosidase inhibitory ability of the five green tea brands was investigated. The IC50 of each 

green tea brand was determined for alpha-glucosidase and compared to acarbose (Table 13). All five 

green tea brands had IC50 values significantly smaller than acarbose. Dilmah and Eve’s had IC50 values 

that were considered to be low when compared with Five Roses, Livewell, and Tetley green tea brands. 

The putatively annotated compounds in the low and high IC50 green tea groups were analysed using 

MetaboAnalyst. The PCA of high vs low alpha-glucosidase IC50 is represented in Figure 36.  
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Table 13: The inhibition of alpha-glucosidase by the five green tea brands 

 

 

 

 

 

 

 

 
Figure 36: PCA of high vs low alpha-glucosidase IC50 

Green tea brand IC50  (mg/mL) 
Acarbose 0.2524±0.0164a 

Dilmah 0.0094±0.0005b 

Eve’s 0.0128±0.0005b 

Five Roses 0.0275±0.0012b 

Livewell 0.0233±0.0019b 

Tetley 0.0227±0.0005b 

IC50 is the mean ± SEM (n = 3) 
a Value is significantly similar (p ˃ 0.05, n=3, two-tailed) 
to acarbose 
b Value is significantly different (p ˂ 0.05, n=3, two-
tailed) to acarbose 
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Figure 37 shows the volcano plot of the 139 putatively annotated compounds where 2 of these 

compounds were significantly more abundant in green tea brands that had a low alpha-glucosidase IC50. 

 
 

 
Figure 37: Volcano plot of high vs low alpha-glucosidase IC50 

Fold change threshold of 2.0, p-value threshold of 0.05 (log(p) = 1.12), and direction of comparison is 

high IC50/low IC50 

The compounds that were significantly more abundant in green tea brands with a low IC50 value for 

alpha-glucosidase were putatively identified as guibourtinidol-(4alpha->2)-3,5,4'-trihydroxystilbene-(6-

>4beta)-epiguibourtinidol and robinin. Figure 38 shows the MS/MS spectra for these compounds and 

EGCG indicating the fragmentation pattern. The red lines that fragment the chemical structures represent 

the fragments present in the in silico MS/MS spectra obtained from the databases in MSFINDER.  
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Figure 38: MS/MS spectra of compounds significantly abundant in green tea brands with low 
digestive enzyme IC50 values and EGCG 
A: EGCG (fragmentation pattern according to MassBank), B: guibourtinidol-(4alpha->2)-3,5,4'-
trihydroxystilbene-(6->4beta)-epiguibourtinidol, C: robinin (fragmentation pattern based on pattern 
obtained by Ju et al. (2018)) 
   

C 
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5.4. Discussion 

Green tea (Camellia sinensis) has several beneficial properties, including antioxidant, antimutagenic, 

anticarcinogenic, and antibacterial activities. Green tea is widely available and can be consumed daily. 

The most notable polyphenols in green tea are catechin, EGCG, ECG, EGC and EC (Ikbal et al., 2020). 

Caffeic acid, p-coumaric acid, and rutin which were investigated in CHAPTER 3 and 4 were also 

present in green tea (Zhao et al., 2011). Untargeted metabolomics was used to compare the polyphenol 

content between five commercial green teas. Green tea was extracted with 50% methanol, separated 

using a Waters Acquity UPLC column and analysed using a Waters Synapt TOF MS in negative ion 

mode. The UPLC/MS data were analysed using TargetLynx, an application manager that automates 

sample data acquisition, processing and reporting for quantitative results. MassLynx could then be used 

to visualize the data as chromatograms as shown in Figure 30 and Supplementary Figure 3.  

Catechin and EC both have a m/z value of 289 Da and the same molecular formula, C15H14O6, the only 

difference being that they are stereoisomers. The same for EGC and GC, which both have a m/z value 

of 305 Da and a molecular formula of C15H14O7. These stereoisomers have different retention times and 

can, therefore, be identified on a chromatogram. According to Abbas and Wink (2014), catechin elutes 

from the column before EC; and GC elutes before EGC, which is apparent in Figure 30. An ECG dimer 

(17.38 min, 883 Da) with a m/z value two times that of ECG (441.5 Da) was observed in the 

chromatogram. These peaks are present in all five green tea brands. The main polyphenols were, 

therefore, detected in these green tea brands as described in the literature (Friedman et al., 2006).  

The raw UPLC/MS data were imported into MassLynx where statistical analysis could be performed. A 

PCA plot was produced showing the variation between all five green tea brands based on the original 

profile matrix, Figure 31. According to this PCA, the PC1 was 32.7% and the PC2 was 27.7%. The 

percentage variation explained by these two principal components was 60.4%. Evaluation of the PCA 

plot (Figure 31) reveals that there was a large variation in the Eve’s tea sample. The repeats that 

contribute the most to the variation were removed. Supplementary table 6 summarises the compounds 

that were annotated with a high level of confidence. Schymanski et al. (2014) defines 5 levels of 

confidence, level 1 being the highest level of confidence and applies to the compounds annotated with a 

standard. Level 2 applies to the compounds annotated using a library spectrum match.   

Compound annotation was performed on the Waters raw data using MSDIAL and MSFINDER. The 

Waters raw file was converted to an ABF file that could be imported into MSDIAL. The alignment 

results were then imported into MSFINDER which putatively annotated the compounds by matching 

MS/MS spectra from library databases. The peak height file from MSDIAL and the structure file from 

MSFINDER were combined. These data were then sorted by removing peaks that were not annotated 
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which left 139 compounds that were putatively annotated. The variation between the five green tea 

brands based on the peak height of the putatively annotated compounds was analysed using 

MetaboAnalyst. A PCA was produced, Figure 32 which shows separation between Dilmah and the other 

four green tea brands as well as some separation between Eve’s and the other three green tea brands 

(Five Roses, Livewell, and Tetley). The PC1 for the PCA in Figure 32 is 64.6% and the PC2 is 15.3%. 

The percentage variation explained by these two principal components is 79.9%. The change in 

percentage variation between the PCA in Figure 31 and the PCA in Figure 32 is because the first PCA 

evaluated the original profile matrix whereas the second PCA evaluated the 139 compounds that were 

putatively annotated in the five green brands. The second PCA also had the two Eve’s outliers removed. 

There is, therefore, a larger percentage variation between Dilmah, Eve’s and the other three green tea 

brands when evaluating the peak height of the putatively annotated compounds rather than the original 

profile matrix. Subsequent PCAs were plotted using the putatively annotated compounds.  

Targeted metabolomics was also performed to determine the amount of the selected standards present 

in the five green tea brands. The selected standards were: EGCG, EC, EGC, epicatechin-3-o-gallate, 

catechin, and chlorogenic acid, which are common compounds found in green tea (Yu et al., 2020). 

Included were rutin, caffeic acid, and p-coumaric acid, which had pancreatic alpha-amylase and alpha-

glucosidase inhibitory activity (CHAPTER 3). Quercetin, quinic acid, and rosmarinic acid that were 

part of another study were also investigated. The chromatogram of these standards was produced by 

MassLynx, Figure 33. All 12 standards were identified in this BPI chromatogram. The peak height of 

each standard for five different concentrations (ppm) was used to generate a standard curve for each 

standard. The % (m/m) dry weight of each standard in each green tea brand is shown in Table 11. Many 

of the standards were more abundant in Dilmah green tea than in the other four green tea brands. EGCG 

had the highest % dry weight for all five green tea brands, between 7% and 9% dry weight. Caffeic acid, 

p-coumaric acid, and rosmarinic acid had % dry weight values less than 0.01. Quercetin was not detected 

in the green tea samples. Zhao et al. (2011) was able to quantify these standards where EGCG was the 

most abundant catechin with a % dry weight of 14.4 and a total content of the relevant catechins was 

20.8%. The total catechin content for the five green tea brands in this study ranged from 16% to 25% 

which was similar to the amount quantified by Zhao et al. (2011). Lin et al. (1998) observed similar 

trends in Chinese green tea compared with Zhao et al. (2011), with a total catechin content of 

approximately 20% and EGCG had the largest % dry weight of all the catechins. EGCG is the most 

abundant bioactive compound in green tea and has several health benefits such as antioxidant activity, 

antimutagenic activity, and antimicrobial effects (Pastoriza et al., 2017). The antidiabetic effects of green 

tea and EGCG decreased digestive enzyme activity, and intestinal GLUT activity, while they increased 

insulin sensitivity (Kao et al., 2006).               
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Green tea also has antidiabetic properties, such as, the inhibition of alpha-glucosidase and alpha-amylase 

(Archana and Abraham, 2011). The IC50 of the five green teas for these two enzymes was evaluated 

using the assays described in CHAPTER 3. The green tea for these assays was extracted with boiling 

water. In fact, 30 -40% of the dry weight of a tea bag is extracted as soluble solids (Archana and 

Abraham, 2011). Dilmah, Eve’s, Five Roses, and Livewell had pancreatic alpha-amylase IC50 values 

significantly greater than that of acarbose; and Tetley had an IC50 significantly similar to acarbose, Table 

12. The pancreatic alpha-amylase IC50 of Eve’s and Tetley was approximately 14 mg/mL, but the SD of 

Tetley was larger than Eve’s which is a possible reason for the significant similarity of Tetley to acarbose 

but not Eve’s to acarbose. Both Eve’s and Tetley were considered to have low IC50 values compared 

with Dilmah, Five Roses, and Livewell which had high IC50 values. The metabolomic difference 

between the green teas with low  IC50 values for pancreatic alpha-amylase inhibition was further 

investigated, Figures 34 and 35. Yilmazer-Musa et al. (2012) reported a green tea extract with an alpha-

amylase IC50 value of 34.9 ± 0.9 µg/mg that was significantly smaller than the IC50 value of acarbose 

(6.9 ± 0.8 µg/mg). 

All five green tea brands had alpha-glucosidase IC50 values significantly smaller than acarbose, which 

suggests that these green tea brands are better alpha-glucosidase inhibitors than acarbose, Table 13. 

Dilmah and Eve’s had lower IC50 values compared to Five Roses, Livewell, and Tetley which had higher 

IC50 values. The metabolomic difference between the low and high alpha-glucosidase IC50 green teas 

was further investigated, Figures 36 and 37. Yilmazer-Musa et al. (2012) reported a green extract with 

an alpha-glucosidase IC50 value of 0.5 ± 0.1 µg/mg that was significantly smaller than the IC50 value of 

acarbose (91.0 ± 10.8 µg/mg). Yilmazer-Musa et al. (2012) also investigated the alpha-glucosidase IC50 

of key catechins in green tea, where ECG, EGCG, and GCG had alpha-glucosidase IC50 values 

significantly less than acarbose. The IC50 of ECG, EGCG, and GCG reported by Yilmazer-Musa et al. 

(2012) were 3.5 ± 1.1, 0.3 ± 0.1, 1.4 ± 0.1 µg/mg, respectively. 

Another study determined that the combination of green tea extract with acarbose or EGCG with 

acarbose had a synergistic effect on alpha-amylase and alpha-glucosidase at low concentrations (below 

the IC50). This implies that green tea and acarbose potentially could be used as a combination treatment 

for the treatment of T2D (Gao et al., 2013). 

The green tea brands were grouped into low IC50 and high IC50 for pancreatic alpha-amylase and alpha-

glucosidase as previously described. The peak height files with the putatively annotated compounds 

were uploaded into MetaboAnalyst and PCA and volcano plots were produced. The PCA in Figure 34 

represents the variation between high vs low pancreatic alpha-amylase IC50 based on the relative peak 

heights of the previously putatively annotated compounds. A volcano plot was subsequently produced 
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to visualize the compounds that were significantly different (p ˂  0.05) between high and low IC50 values, 

Figure 35. None of the putatively annotated compounds were significantly more abundant in green tea 

brands with low or high pancreatic alpha-amylase IC50 values. 

The PCA in Figure 36 represents the variation between high vs low alpha-glucosidase IC50 values also 

based on the relative peak heights of the putatively annotated compounds. The volcano plot for these 

data presented the compounds that were significantly (p ˂ 0.05) more abundant in green tea brands with 

low alpha-glucosidase IC50 values, Figure 37. These compounds were guibourtinidol-(4alpha->2)-

3,5,4'-trihydroxystilbene-(6->4beta)-epiguibourtinidol and robinin having the adjusted p-value of 0.002 

and 0.023, respectively. 

The MS/MS spectra from MSFINDER for these compounds and EGCG are represented in Figure 38. 

The MS/MS spectrum A represents EGCG which was identified by several databases on MSFINDER. 

The fragmentation pattern was confirmed by comparing the MS/MS spectrum to that on MassBank 

(https://massbank.eu/MassBank/). The fragmentation pattern in MS/MS spectrum A was also reported 

by Spacil et al. (2010) who performed Waters UHPLC-MS/MS ESI- on non-fermented tea samples. The 

examination of the MS/MS spectrum of EGCG, a common green tea constituent, and the comparison to 

mass spectrum databases, confirmed the ability of MSFINDER to putatively annotate the compounds in 

this study. The similarity score for EGCG between the actual MS/MS and the in silico MS/MS was 

5.73/10. 

The MS/MS spectrum B represents guibourtinidol-(4alpha->2)-3,5,4'-trihydroxystilbene-(6->4beta)-

epiguibourtinidol which was identified by KNApSAcK, UNPD, and COCONUT (CNP0146201). The 

actual MS/MS spectrum matched these databases with a similarity score of 4.60/10. This compound is 

classified as a linear diarylheptanoid and COCONUT predicted that this compound has alpha-

glucosidase inhibitory ability (Sorokina et al., 2021). The actual MS/MS spectrum B has fragments that 

are present in the in silico MS/MS as well as other smaller fragments that do not match the in silico 

MS/MS and explains the low similarity score of 4.60/10. The mass fragmentation pattern was not 

available on any database, nor were there any reports featuring this compound.  

MS/MS spectrum C represents robinin also known as kaempferol 3-O-robinoside-7-O-rhamnoside or 

kaempferol 3-rutinoside-7-rhamnoside was identified by KNApSAcK, CHEBI, FooDB, NANPDB, 

UNPD, and COCONUT (CNP0171942). The actual MS/MS spectrum matched these databases with a 

similarity score of 5.09/10. This compound is classified as a flavonoid glycoside and COCONUT 

predicted that this compound has both amylase and alpha-glucosidase inhibitory ability (Sorokina et al., 

2021). The actual MS/MS spectrum C has fragments that are present in the in silico MS/MS as well as 

other smaller and larger fragments that do not match the in silico MS/MS and explains the low similarity 
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score of 5.09/10. The fragment represented in blue shows a possible fragment in the in silico MS/MS 

(C21H26O13). Kaempferol 3-rutinoside-7-rhamnoside was detected in mulberry leaves by Ju et al. (2018) 

and the fragmentation pattern is represented in Figure 38C. However, mass spectrum C does not 

correlate to the mass spectrum reported by Ju et al. (2018), nor does it correlate to the mass spectrum 

library known as MassBank.  

Guibourtinidol-(4alpha->2)-3,5,4'-trihydroxystilbene-(6->4beta)-epiguibourtinidol and robinin, which 

were more abundant in green tea brands that had low pancreatic alpha-glucosidase IC50 values, were also 

predicted by COCONUT to have amylase and/or alpha-glucosidase inhibitory ability. The presence of 

several inhibitory compounds in a single plant (Camellia sinensis) is advantageous when it comes to 

complementary and alternative medicines because each compound could have different modes of action 

and act synergistically in combination. Further research will provide greater insight into the inhibitory 

activity and the role of these compounds in green tea. Targeted metabolomics of the promising 

compounds will allow the quantification of the content in green tea. Metabolic networking of the 

putatively annotated compounds would also provide information about the metabolism and interactions 

in both Camellia sinensis and humans. 
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5.5. Chapter summary 

In general, green tea had better alpha-glucosidase inhibitory activity than acarbose. The catechin content 

in green tea had a total percentage dry weight of approximately 20% which was calculated to be 500 mg 

per 2.5 g tea bag. The daily dose of acarbose is 75 to 150 mg (with a meal), and a single tea bag has 

enough catechins to be equivalent to the daily dose of acarbose. Green tea can, therefore, be used to 

complement the treatment of T2D.  

5.5.1. Limitations and future work 

Six repeats per green tea brand were used, however, only from one box each. The limitations of using 

only one box are that there were no independent replicates for the green tea brands. Electrospray 

ionization was applied in the negative ion mode, improvements would be to use the positive ion mode. 

The UV-detection data can also be used to further validate the annotation of the compounds. Future work 

could be to synthesise compounds from green tea to better inhibit antidiabetic targets.   
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 CHAPTER 6: Conclusion 

Diabetes mellitus is a disease that affects millions of people all over the world. Diabetes is characterised 

as having a persistent increased blood glucose level in a condition known as hyperglycemia. Diabetes 

can lead to many serious complications, such as hypertension, stroke, coma, or even death. Many of the 

commercially available treatments are expensive, and often have side effects. It is, therefore, important 

to discover new and more effective treatments, such as natural compounds from edible plants, which are 

less expensive, easier to obtain, and could have fewer side effects.  

This study focused on natural compounds as potential pancreatic alpha-amylase and alpha-glucosidase 

inhibitors as well as their ability to stimulate glucose-uptake into liver and skeletal muscle cells. The 

inhibition of pancreatic alpha-amylase and alpha-glucosidase would slow down the hydrolysis of starch 

and maltose and thereby decrease the amount of glucose that enters the bloodstream after a meal. The 

stimulation of glucose uptake into the relevant cells would decrease the glucose concentration in the 

bloodstream. Both the decreased absorption of glucose from the small intestine into the bloodstream, 

and the increased uptake of glucose into the relevant cells; would lower the blood glucose concentration 

in individuals with T2D, Figure 39.  

The compounds that were previously identified in herbs, spices, and medicinal plants were selected using 

in silico studies and further analysed in vitro for pancreatic alpha-amylase and alpha-glucosidase 

inhibition. The in silico studies that were used to filter for possible antidiabetic candidates were, virtual 

docking simulations using Glide and AutoDock Vina algorithms, ADMET property analysis using 

pKCSM, and cross reaction studies using SwissTargetPrediction. 

The selected compounds, based on their docking score and commercial availability, were rutin, caffeic 

acid, and p-coumaric acid. The negative controls, with poor docking scores, were vanillin, ethyl gallate, 

and oxalic acid. The in vitro studies determined the antidiabetic properties of the selected compounds. 

The assays used for enzyme inhibition analysis were the DNSA assay for pancreatic alpha-amylase assay 

and the pNPG assay for alpha-glucosidase, with acarbose as the positive control. Then the cytotoxicity 

of the compounds was determined in the Caco2, HepG2, and C2C12 cells representing the 

gastrointestinal tract and specific insulin targets; liver and muscle, using the SRB assay. The effect on 

glucose uptake was determined in the HepG2 and C2C12 cell lines with the 2NBDG glucose uptake 

assay with metformin, a commercial antidiabetic drug, as the positive control.  

The enzyme inhibition assays determined the Ki values using Lineweaver-Burk and secondary plots. 

The Ki values of the selected compounds which represents the binding ability of the compound to the 

active site of the selected enzyme, were compared to acarbose. For pancreatic alpha-amylase; caffeic 
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acid, vanillin, p-coumaric acid, and ethyl gallate had Ki values that were significantly similar to the Ki 

value of acarbose. For alpha-glucosidase; rutin, caffeic acid, p-coumaric acid, and vanillin had Ki values 

significantly similar to acarbose. The first null hypothesis was accepted for these compounds because 

there was no statistically significant difference in the Ki values between acarbose and these compounds. 

When the docking score which also represents binding affinity, and the Ki values were compared there 

was a positive correlation between the Glide docking score and the Ki values for both selected enzymes. 

This correlation trend can be further validated by including more natural compounds in the study.  

The glucose uptake stimulating ability of the selected compounds was determined by evaluating their 

ability to stimulate glucose uptake into HepG2 and C2C12 cell lines. The HepG2 cells were also exposed 

to a high concentration of insulin to induce insulin resistance. The selected cell lines were exposed to 

the selected compounds in the presence of 2NBDG, a fluorescent glucose analog. The measured 

fluorescent intensity represents intracellular glucose levels in the presence of the compounds. None of 

the compounds, including metformin, significantly increased the glucose uptake in the HepG2 cells or 

insulin resistant HepG2 cells when compared to the vehicle control (no drugs). Some of the compounds, 

including metformin, significantly increased the glucose uptake in C2C12 cells when compared to the 

control (no drugs). However, these findings might not be biologically relevant and further investigation 

related to the sensitivity of the assay, concentration of the compounds and incubation time is warranted. 

The second null hypothesis is therefore rejected because the selected compounds did not significantly 

increase the glucose uptake ability of the selected cell lines in this study. 

The content of each compound evaluated in this study was determined in common seasonings and green 

tea. Caffeic acid, p-coumaric acid, and rutin were all present in green tea. Caffeic acid is in a wide range 

of seasonings which provides a variety of ways for caffeic acid to be consumed. Rutin is most abundant 

in parsley and vanillin is most abundant in vanilla. Incorporation of these seasonings into the diet could 

possibly complement standard treatment of T2D. The presence of identified polyphenols such as ECG, 

EGCG, and GCG is an excellent source of antidiabetic compounds. In addition, green tea is widely and 

usually regularly consumed throughout the day and is an inexpensive source of these compounds.  
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Figure 39: The effects of natural compounds on starch digestion and glucose uptake 
Consuming a carbohydrate-rich meal with green tea, herbs, and spices would provide beneficial polyphenols such as rutin, caffeic acid, p-coumaric acid, and 
vanillin. These polyphenols slow the digestion of carbohydrates by inhibiting pancreatic alpha-amylase and alpha-glucosidase in the small intestine. Only 
monosaccharides, such as glucose, are absorbed into the bloodstream; therefore, the inhibition of these digestive enzymes would prevent a rapid increase in blood 
glucose concentration after a meal. Stimulation of glucose uptake into liver and skeletal muscle cells via the GLUT4 transporter decreases the blood glucose 
concentration. Some polyphenols such as caffeic acid could possibly stimulate glucose uptake in C2C12 skeletal muscle cells. 
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Untargeted metabolomic analysis was performed on five commercial green tea brands (Dilmah, Eve’s, 

Livewell, Tetley, and Five Roses) using UPLC/MS analysis. The data were analysed using MassLynx, 

MSDIAL, and MSFINDER. MSFINDER uses several metabolomic databases to annotate the peaks 

detected by Waters UPLC/MS. Targeted metabolomic analysis was performed to determine the content 

of the selected standards in each green tea sample. The most abundant standards were EGC (5 - 8.5% 

dry weight), and EGCG (7 - 9% dry weight). The pancreatic alpha-amylase and alpha-glucosidase 

inhibitory activity of the five green tea brands was determined using in vitro enzyme inhibition assays 

and the IC50 was compared to acarbose. Tetley was the only brand that had a pancreatic alpha-amylase 

IC50 value that was significantly similar to that of acarbose, whereas the other four brands had 

significantly higher pancreatic alpha-amylase IC50 values when compared with acarbose. All five green 

tea brands had significantly lower alpha-glucosidase IC50 values than acarbose. Green tea brands with 

lower IC50 values are good pancreatic alpha-amylase and alpha-glucosidase inhibitors. The green tea 

brands with low IC50 values were compared with the green tea brands with high IC50 values based on 

the putatively annotated compounds. MetaboAnalyst identified two compounds that were significantly 

more abundant in the green tea brands with a low IC50 value which indicates that these two compounds 

are potentially responsible for the enhanced enzyme inhibition by the green tea brands. The MS/MS 

spectra of these two compounds and EGCG were evaluated, and the fragmentation patterns was 

investigated. The fragmentation pattern of EGCG correlated to the fragmentation pattern in MassBank. 

The fragmentation pattern of the actual MS/MS and the in silico MS/MS for the other two compounds 

had similarity scores less than 5/10. All the fragments present in the in silico MS/MS were also present 

in the actual MS/MS, but the actual MS/MS also contained other mass fragments. These promising 

compounds which were more abundant in green tea brand with low alpha-glucosidase IC50 values, were 

also predicted by the COCONUT database to have amylase and/or alpha-glucosidase inhibitory ability. 

The presence of several inhibitory compounds in a single plant (Camellia sinensis) is most advantageous 

when it comes to complementary and alternative medicines because each compound could have different 

modes of action and act synergistically with each other or potentially with other antidiabetics. Further 

investigation of the in vitro inhibition of these compounds will provide greater insight into the inhibitory 

activity and the role of these compounds in green tea. Targeted metabolomics of the compounds will 

provide information on the content in green tea. Metabolic networking of the putatively annotated 

compounds would also provide information about the metabolism and interactions in both Camellia 

sinensis and humans. Future research will require the evaluation of the effect of these compounds, and 

the plant sources of these compounds in an animal model of T2D.
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Supplementary Table 1: The docking scores of selected compounds for 4GQR and 3L4Y as 
well as the number of interaction points between the ligand and the protein binding pocket 

 

 
  

 4GQR (Pancreatic alpha-amylase) 3L4Y (Alpha-glucosidase) 
Compound Glide 

(kcal/mol) 
Number of 
interactions 

AutoDock 
Vina 

(kcal/mol) 

Glide 
 (kcal/mol) 

Number of 
interactions 

AutoDock 
Vina 

(kcal/mol) 
Acarbose -5.61 7 -8.10 -5.88 4 -7.00 
Caffeic acid -5.69 3 -6.50 -3.70 2 -6.80 
Ethyl gallate -5.24 3 -5.80 -4.96 2 -5.80 
Oxalic acid -2.49 0 -3.40 -1.68 0 -4.20 
p-Coumaric acid -5.26 2 -6.10 -3.27 2 -6.90 
Rutin -6.62 5 -8.80 -5.47 7 -7.90 
Vanillin -4.46 4 -5.20 -4.92 0 -5.50 
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Supplementary Figure 1: The binding pocket of 4GQR (pancreatic alpha-amylase) and 3L4Y 

(alpha-glucosidase) and the selected compounds docked into the active site of 4GQR and 3L4Y 
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Supplementary Table 2: SwissTargetPrediction of selected compounds  

 

Target Acarbose 

AMY1C 0.9997 

Lysosomal alpha-glucosidase 0.9997 

Pancreatic alpha-amylase 0.7678 

Maltase-glucoamylase 0.4166 

Sucrase-isomaltase 0.2642 

Cyclin-dependent kinase 1 0.0746 

Trehalase 0.0746 

Target Metformin 

Thrombin 0.0238 

Target Rutin 

Acetylcholinesterase 1.0000 

Adrenergic receptor alpha-2 1.0000 

Alpha-2a adrenergic receptor 1.0000 

Neuromedin-U receptor 2 1.0000 

Aldose reductase 0.6126 

Carbonic anhydrase IV 0.4872 

Carbonic anhydrase VII 0.4872 

Carbonic anhydrase XII 0.4872 

NADPH oxidase 4 0.3921 

Carbonic anhydrase II 0.3438 

Quinone reductase 2 0.2003 

Ribosomal protein S6 kinase alpha 3 0.2003 

Xanthine dehydrogenase 0.1140 

Cyclooxygenase-2 0.0949 

Lymphocyte differentiation antigen CD38 0.0949 

Adenosine A1 receptor (by homology) 0.0661 

Arachidonate 5-lipoxygenase 0.0661 

Interleukin-2 0.0661 

Phosphodiesterase 5A 0.0661 

Telomerase reverse transcriptase 0.0661 

TNF-alpha 0.0661 

Target p-Coumaric acid 

Aldose reductase 1.0000 

Carbonic anhydrase II 1.0000 

Carbonic anhydrase VII 1.0000 

Estrogen receptor beta 1.0000 

Carbonic anhydrase I 1.0000 

Carbonic anhydrase III 1.0000 

Carbonic anhydrase VI 1.0000 

Carbonic anhydrase XII 1.0000 

Carbonic anhydrase XIV 1.0000 

Carbonic anhydrase IX 1.0000 
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Carbonic anhydrase IV 1.0000 

Carbonic anhydrase VB 1.0000 

Carbonic anhydrase VA 1.0000 

Macrophage migration inhibitory factor 0.2585 

Arachidonate 5-lipoxygenase 0.2250 

Matrix metalloproteinase 9 0.2250 

Matrix metalloproteinase 1 0.2250 

Matrix metalloproteinase 2 0.2250 

Protein-tyrosine phosphatase 1B 0.2250 

Aldo-keto reductase family 1 member B10 0.1584 

Hydroxycarboxylic acid receptor 2 0.1501 

Toll-like receptor 4 (by homology) 0.1334 

Carbonic anhydrase XIII (by homology) 0.1334 

Coagulation factor VII/tissue factor 0.1251 

11-beta-hydroxysteroid dehydrogenase 1 0.1251 

Transient receptor potential cation channel subfamily A 
member 1 

0.1167 

Estrogen receptor alpha 0.1167 

Progesterone receptor 0.1167 

Aldo-keto-reductase family 1 member C3 0.1167 

Target Caffeic acid 

Carbonic anhydrase II 1.0000 

Arachidonate 5-lipoxygenase 1.0000 

Carbonic anhydrase VII 1.0000 

Carbonic anhydrase I 1.0000 

Carbonic anhydrase VI 1.0000 

Matrix metalloproteinase 9 1.0000 

Carbonic anhydrase XII 1.0000 

Matrix metalloproteinase 1 1.0000 

Matrix metalloproteinase 2 1.0000 

Protein-tyrosine phosphatase 1B 1.0000 

Carbonic anhydrase XIV 1.0000 

Carbonic anhydrase IX 1.0000 

Carbonic anhydrase VB 1.0000 

Carbonic anhydrase VA 1.0000 

Carbonic anhydrase III 0.2124 

Aldose reductase 0.1684 

Estrogen receptor beta 0.1684 

Carbonic anhydrase IV 0.1684 

Aldo-keto reductase family 1 member B10 0.0806 

Hydroxycarboxylic acid receptor 2 0.0806 

Macrophage migration inhibitory factor 0.0806 

Carbonic anhydrase XIII 0.0806 

Quinone reductase 2 0.0718 

Toll-like receptor 4 (by homology) 0.0718 

Receptor protein-tyrosine kinase erbB-2 0.0718 
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Estrogen receptor alpha 0.0718 

Norepinephrine transporter 0.0718 

Transthyretin 0.0718 

MAP kinase ERK2 0.0718 

Aldo-keto-reductase family 1 member C3 0.0718 

Aldo-keto reductase family 1 member C4 0.0718 

Aldo-keto reductase family 1 member C2 0.0718 

Tyrosine-protein kinase SYK 0.0718 

Beta amyloid A4 protein 0.0718 

Epidermal growth factor receptor erbB1 0.0718 

Tyrosine-protein kinase FYN 0.0718 

Tyrosine-protein kinase LCK 0.0718 

Cyclooxygenase-1 0.0718 

PI3-kinase p110-beta subunit 0.0718 

Cytochrome P450 1A2 0.0718 

Cytochrome P450 2C9 0.0718 

Cytochrome P450 3A4 0.0718 

Cytochrome P450 2C19 0.0718 

PI3-kinase p110-alpha subunit 0.0718 

Leukocyte elastase 0.0718 

Coagulation factor VII/tissue factor 0.0718 

11-beta-hydroxysteroid dehydrogenase 1 0.0718 

Monoamine oxidase B 0.0718 

Nuclear factor erythroid 2-related factor 2 0.0718 

Signal transducer and activator of transcription 3 0.0718 

Target Vanillin 

Serine/threonine-protein kinase/endoribonuclease IRE1 0.2742 

Carbonic anhydrase II 0.1778 

Carbonic anhydrase VII 0.0630 

Carbonic anhydrase I 0.0630 

Carbonic anhydrase XII 0.0630 

Carbonic anhydrase XIV 0.0630 

Carbonic anhydrase IX 0.0630 

Carbonic anhydrase IV 0.0630 

Carbonic anhydrase III 0.0535 

Carbonic anhydrase VI 0.0535 

Carbonic anhydrase VA 0.0535 

Dual specificity phosphatase Cdc25B 0.0535 

Transthyretin 0.0439 

Arylamine N-acetyltransferase 1 0.0439 

Alkaline phosphatase placental-like 0.0439 

Phospholipase A-2-activating protein 0.0439 

Leukocyte common antigen 0.0439 

Histone acetyltransferase p300 0.0439 

Target Ethyl gallate 

Squalene monooxygenase (by homology) 1.0000 
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Carbonic anhydrase II 0.3486 

Carbonic anhydrase VII 0.3486 

Carbonic anhydrase I 0.3486 

Carbonic anhydrase XII 0.3486 

Carbonic anhydrase XIV 0.3486 

Carbonic anhydrase IX 0.3486 

Carbonic anhydrase XIII 0.0823 

Alpha-(1,3)-fucosyltransferase 7 0.0517 

Plasminogen activator inhibitor-1 0.0415 

Estrogen receptor beta 0.0415 

Vascular endothelial growth factor receptor 2 0.0415 

Carbonic anhydrase III 0.0415 

Carbonic anhydrase IV 0.0415 

Tyrosinase 0.0415 

Carbonic anhydrase VA 0.0312 

Insulin-like growth factor I receptor 0.0312 

ALK tyrosine kinase receptor 0.0312 

Serine/threonine-protein kinase Aurora-B 0.0312 

Tyrosine-protein kinase SRC 0.0312 

Focal adhesion kinase 1 0.0312 

Hepatocyte growth factor receptor 0.0312 

Serine/threonine-protein kinase NEK2 0.0312 

Tyrosine-protein kinase receptor UFO 0.0312 

Carbonic anhydrase VI 0.0312 

Carbonic anhydrase VB 0.0312 

Apoptosis regulator Bcl-X 0.0312 

Platelet-derived growth factor receptor beta 0.0312 

Fibroblast growth factor receptor 1 0.0312 

Myoglobin 0.0312 

Alpha-synuclein 0.0312 

Xanthine dehydrogenase 0.0312 

Target Oxalic acid 

Tyrosine-protein kinase FYN 0.0238 

Tyrosine-protein kinase LCK 0.0238 
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Supplementary Table 3: The proteins that interact with the selected compounds and the natural 

substrates of these proteins with the corresponding probability (%) 

Protein Substrate -- % Compound 
Amylase 

 
Starch – n/a 

Acarbose 

Glucosidase 

 
Maltose – 0 

Acetylcholinestera
se 

 
Acetlycholine – 3 

 
Rutin 
 

Adrenergic 
receptor  

 
Epinephrine – 75 

Neuromedin-U 
receptor 2 

H-Tyr-Lys-Val-Asn-Glu-Tyr-Gln-Gly-Pro-Val-
Ala-Pro-Ser-Gly-Gly-Phe-Phe-Leu-Phe-Arg-Pro-
Arg-Asn-NH2 
Neuromedin U – n/a 

Aldose reductase 

 
Glucose – 0 

 
p-Coumaric acid 
 

Estrogen receptor 

 
Estrogen – 94  
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Carbonic 
anhydrase 

 
CO2 + H2O = H2CO3 – n/a 

Matrix 
metalloproteinase 

H-Gly-DL-Glu-DL-Pro-Gly-DL-xiIle-DL-Ala-
Gly-DL-Phe-DL-Lys-Gly-DL-Glu-DL-Gln-Gly-
DL-Pro-DL-Lys-OH 
Extracellular proteins such as collagen – n/a 

 
Caffeic acid 
 

Arachidonate 5-
lipoxygenase 

 
Arachidonic acid – 24 

Protein tyrosine 
phosphatase 1B 

O

P
OH

OH
O

R

 
Phosphorylated protein such as IRS – n/a 

Squalene 
monooxygenase 

Squalene -- 0 

 
Ethyl gallate 

The proteins identified by SwissTargetPrediction that had a high probability (100%) of interacting with the 
corresponding compounds as well as the protein’s natural substrate found in the body as well as the percentage 
probability of the natural substrate interacting with the corresponding protein 
The structures were sourced from PubChem (https://pubchem.ncbi.nlm.nih.gov/) 
n/a = the probaility could not be determined because the structure is too large or too small 
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Supplementary Table 4: The Vmax and Km of the selected compounds for pancreatic-alpha 
amylase 

Concentration (µM) Vmax (µmol/min) Km (mg/mL) 

Acarbose 

40 0.046±0.0083 1.936±0.0001 

20   0.056±0.0056* 1.168±0.1077 

10 0.083±0.0178 1.453±0.4229 

5 0.092±0.0061 1.332±0.1028 

0 0.109±0.0018 1.480±0.1207 

Caffeic acid 

40 0.076±0.0329 2.775±0.4239 

20 0.078±0.0342 1.910±0.3685 

10 0.073±0.0311 1.435±0.1241 

5 0.075±0.0315 1.329±0.0059 

0 0.109±0.0018 1.480±0.1207 

Ethyl gallate 

40 0.100±0.0233 2.359±0.6448 

20 0.098±0.0170 1.994±0.8094 

10 0.093±0.0112 1.545±0.4353 

5 0.075±0.0124   0.887±0.0087* 

0 0.109±0.0018 1.480±0.1207 

Oxalic acid 

400 0.173±0.0258 2.551±0.1734* 

200 0.150±0.0331 1.982±0.4744 

100 0.182±0.0972 2.604±1.7000 

50 0.104±0.0083 1.380±0.1932 

0 0.109±0.0018 1.480±0.1207 

p-Coumaric acid 

1000 0.124±0.0136 1.684±0.5510 

750 0.135±0.0396 1.616±0.7662 

500 0.147±0.0423 1.971±1.1331 

250 0.140±0.0385 1.503±0.6909 

0 0.109±0.0018 1.480±0.1207 

Rutin 

200 0.101±0.0116 1.468±0.3399 

100 0.092±0.0113 1.201±0.3271 

50 0.096±0.0063 1.242±0.2203 

0 0.109±0.0018 1.480±0.1207 

Vanillin 

20 0.094±0.0092 2.100±0.5165 

10   0.085±0.0050* 2.516±1.2864 

5 0.098±0.0131 3.924±2.6384 

0 0.109±0.0018 1.480±0.1207 

*Significantly different (p ˂ 0.05) to 0 µM 
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Supplementary Table 5: The Vmax and Km of the selected compounds for alpha glucosidase 
Concentration (µM) Vmax (nmol/min) Km (mM) 

Acarbose 

1000   1.66±0.277* 3.98±1.875 

750 2.08±1.089 2.87±1.015 

500 3.03±1.051   3.65±0.582* 

250 6.35±1.047 4.34±0.844 

0 4.08±0.314 0.45±0.038 

Caffeic acid 

1000 2.19±0.800 0.64±0.060 

750 4.22±1.942 0.73±0.395 

500 6.03±1.675 1.55±0.529 

250 6.71±1.537 1.21±0.609 

0 4.08±0.314 0.45±0.038 

Ethyl gallate 

1000 3.37±1.643 0.92±0.344 

750 4.90±2.251 1.64±0.993 

500 3.65±0.813 0.69±0.349 

250 4.93±1.410 0.83±0.583 

0 4.08±0.314 0.45±0.038 

Oxalic acid 

1000 9.95±6.119 1.89±1.577 

750 25.55±20.960 5.80±5.442 

500 24.74±20.607 5.51±5.181 

250 6.19±2.211 0.87±0.606 

0 4.08±0.314 0.45±0.038 

p-Coumaric acid 

1000 3.70±2.608 0.84±0.540 

750 8.59±3.895 2.35±0.996 

500 6.40±2.870 1.73±1.060 

250 15.15±2.343 3.58±0.636 

0 4.08±0.314 0.45±0.038 

Rutin 

750 9.27±4.354 1.34±0.771 

500 18.86±10.93 4.25±3.237 

250 4.14±0.469 0.36±0.260 

0 4.08±0.314 0.45±0.038 

Vanillin 

1000 3.99±0.280 0.39±0.035 

750 4.03±0.146 0.36±0.021 

500 3.78±0.326 0.33±0.052 

250 3.58±0.066 0.28±0.072 

0 4.08±0.314 0.45±0.038 

*Significantly different (p ˂ 0.05) to 0 µM 
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Supplementary Figure 2: Cytotoxicity of selected compounds for Caco2, HepG2, and C2C12 cells 
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Supplementary Figure 3: The BPI chromatogram of green tea brands 
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Supplementary Table 6: The compounds putatively annotated in the five green tea brands 

RT (min) m/z mDa Formula Name Level of confidence 

1.84 191.0575 +1.9 C7H11O6 Quinic acid Level 1  

8.57 305.0668 +0.7 C15H13O7 Gallocatechin Level 2 

11.06 305.0664 +0.3 C15H13O7 Epigallocatechin Level 1  

11.78 289.0717 +0.5 C15H13O6 Catechin Level 1  

12.23 353.0878 +0.5 C16H17O9 Chlorogenic acid Level 1  

12.67 577.1346 -1.3 C30H25O12 Procyanidin B5 Level 2 

12.97 179.0350 +0.6 C9H7O4 Caffeic acid Level 1  

13.90 289.0718 +0.6 C15H13O6 Epicatechin Level 1  

14.07 457.0781 +1.0 C22H17O11 Epigallocatechin gallate Level 1  

14.13 915.1612 -0.8 C44H35O22 Assamicain A Level 2 

15.75 163.0401 +0.6 C9H7O3 p-Coumaric acid Level 1  

17.40 441.0820 -0.2 C22H17O10 Epicatechin-3-O-gallate Level 1  

17.66 609.1460 +0.4 C27H29O16 Rutin Level 1  

20.70 359.0778 +1.1 C18H15O8 Rosmarinic acid Level 1  

24.20 301.0348 +1.1 C15H9O7 Quercetin Level 1  

The retention time (RT) of the putatively identified compounds and the m/z and error as mDa 
The level of confidence was determined using the classification system described by Schymanski et al. (2014) 
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Annexure A: Reagents 

Reagent Catalogue 
number 

Brand 

2NBDG N13195 Thermo Fisher Scientific 
3,5-dinitrosalicylic acid D0550 Sigma Aldrich (Merck) 

4-Nitrophenyl (pNP) 241326 Sigma Aldrich (Merck) 
4-Nitrophenyl α-D-glucopyranoside (pNPG) N1377 Sigma Aldrich (Merck) 

Acarbose A8980 Sigma Aldrich (Merck) 
α-Amylase from porcine pancreas A3176 Sigma Aldrich (Merck) 

α-Glucosidase from Saccharomyces cerevisiae G5003 Sigma Aldrich (Merck) 
Caffeic acid C0625 Sigma Aldrich (Merck) 

D-(+)-Maltose monohydrate M5885 Sigma Aldrich (Merck) 
Dimethyl sulfoxide (DMSO) 472301 Sigma Aldrich (Merck) 

Dulbecco′s Modified Eagle′s Medium (DMEM) P040-3500 Pan Biotech 
Ethyl gallate 48640 Fluka 

Glucose free DMEM D5030 Sigma Aldrich (Merck) 
Insulin I0310000 Sigma Aldrich (Merck) 

Metformin 317240 EMD Millipore Corp 
Oxalic acid 75688 Sigma Aldrich (Merck) 

p-Coumaric acid 28200 Fluka 
Rutin trihydrate 84082 Sigma Aldrich (Merck) 

Sodium chloride (NaCl) S9625 Sigma Aldrich (Merck) 
Sodium hydroxide (NaOH) 221465 Sigma Aldrich (Merck) 

Sodium phosphate dibasic (Na2HPO4) 795410 Sigma Aldrich (Merck) 
Sodium phosphate monobasic (NaH2PO4) S0751 Sigma Aldrich (Merck) 
Sodium potassium tartrate tetrahydrate S2377 Sigma Aldrich (Merck) 

Starch from potato S2004 Sigma Aldrich (Merck) 
Vanillin 6469000 UniLab 
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Annexure B: Pancreatic alpha-amylase assay method 

1. Stock solutions 

1.1. 2 M NaOH: 4 g NaOH dissolved in 50 mL dH2O. 

1.2. 96 mM 3,5-dinitrosalicylic acid solution: 0.44 g 3,5-dinitrosalicylic acid in 20 mL dH2O. 

1.3. DNSA colour reagent: 12 g sodium potassium tartrate tetrahydrate + 8.0 ml 2 M NaOH + 20 mL 

96 mM 3,5-dinitrosalicylic acid solution dissolved by heating.  

1.4. 20 mM sodium phosphate buffer (pH 6.9): 1.2 g NaH2PO4 + 1.4 g Na2HPO4 + 0.4 g NaCl dissolved 

in 1 L dH2O. 

1.5. 0.2% (w/v) maltose: 0.02 g maltose dissolved in 10 mL buffer.  

1.6. 4 U/mL pancreatic alpha-amylase solution: 12 mg pancreatic alpha-amylase dissolved in 30 mL 

buffer.  

1.7. 2% starch: 1 g starch in 50 mL buffer dissolved by heating  

1.8. 50 mM inhibitor solution: 

Inhibitor Mass (mg) 
inhibitor dissolved 

in 2 mL DMSO 
Acarbose 65 

Caffeic acid 18 
Ethyl gallate 20 
Oxalic acid 13 

p-Coumaric acid 16 
Rutin 66 

Vanillin 15 

 

2. Standard curve 

2.1. 96 well plate setup of standard curve: 

Well 0.2% maltose 
(µmol -- µL) 

Buffer 
(µmol -- µL) 

DNSA reagent  
(µmol -- µL) 

1 0.556 -- 100 2.0 -- 100 9.6 -- 100 
2 0.444 -- 80 2.4 -- 120 9.6 -- 100 
3 0.333 -- 60 2.8 -- 140 9.6 -- 100 
4 0.222 -- 40 3.2 -- 160 9.6 -- 100 
5 0.111 --20 3.6 -- 180 9.6 -- 100 
6 0 -- 0 4.0 -- 200 9.6 -- 100 

2.2. The 96 well plate was placed in an oven at 80°C for 25 min.  

2.3. Fifty microliters from each well were transferred to another 96 well plate and diluted with 200 µL 

dH2O, in triplicate. 

2.4.  The absorbance was measured at 540 nm. 

2.5.  A standard curve was produced by plotting the absorbance values against the maltose 

concentration. 
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2.6.  The gradient of that line represents Abs/[maltose].  

 

3. IC50 assay  

3.1. Preparation of 2 mL inhibitor concentrations:   

Number Volume inhibitor 
(µL) 

Volume buffer 
(µL) 

[Inhibitor] 
 (mM) 

I1 800 (of 50 mM) 1200 20.0 
I2 100 (of 20 mM) 1900 1.0 
I3 200 (of 1.0 mM) 1800 0.1 

3.2. 96 well plate setup of IC50 assay: 

Well Inhibitor  
(µmol -- µL)  

Buffer  
(µmol -- 

µL) 

Amylase 
(U -- µL) 

In
cu

ba
te

 f
or

 1
0 

m
in

 a
t R

T
 

 2% Starch 
(mg -- µL) 

T
ot

al
 r

ea
ct

io
n 

vo
lu

m
e 

of
  2

00
 µ

L
 

Final 
[inhibitor] 

(µM) 

In
cu

ba
te

 f
or

 1
0 

m
in

 a
t R

T
 

DNSA 
reagent  
(µmol -- 

µL) 
1 1000 -- 50 (of I1) 0 -- 0 0.2 -- 50 2 -- 100 5000 9.6 -- 100 
2 500 -- 25 (of I1) 500 -- 25 0.2 -- 50 2 -- 100 2500 9.6 -- 100 
3 200 -- 10 (of I1) 800 -- 40 0.2 -- 50 2 -- 100 1000 9.6 -- 100 
4 50 -- 50 (of I2) 0 -- 0 0.2 -- 50 2 -- 100 250 9.6 -- 100 
5 25 -- 25 (of I2) 500 -- 25 0.2 -- 50 2 -- 100 125 9.6 -- 100 
6 10 -- 10 (of I2) 800 -- 40 0.2 -- 50 2 -- 100 50 9.6 -- 100 
7 5 -- 50 (of I3) 0 -- 0 0.2 -- 50 2 -- 100 25 9.6 -- 100 
8 3 -- 25 (of I3) 500 -- 25 0.2 -- 50 2 -- 100 13 9.6 -- 100 
9 1 -- 10 (of I3) 800 -- 40 0.2 -- 50 2 -- 100 5 9.6 -- 100 

10 0 -- 0 1000 -- 50 0.2 -- 50 2 -- 100 0 9.6 -- 100 

3.3. The blank received 50 µL buffer instead of 50 µL amylase for all inhibitor concentrations. 

3.4. The 96 well plate was placed in an oven at 80°C for 25 min. 

3.5. Fifty microliters from each well were transferred to another 96 well plate and diluted with 200 µL 

dH2O, in triplicate. 

3.6. The absorbance was measured at 540 nm. 

3.7. The Abs for each inhibitor concentration was the absorbance of the blank subtracted from the 

average absorbance of each triplicate. 

3.8. An IC50 graph was produced by plotting the %inhibition ((Abs without inhibitor – Abs with 

inhibitor)/Abs without inhibitor) against the final inhibitor concentration.  
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4. Pancreatic alpha-amylase assay 

4.1.  Two millilitres of each inhibitor concentration were prepared: 

Inhibitor Volume inhibitor 
(µL) 

Volume 
buffer (µL) 

Initial 
[inhibitor] (µM) 

  

Final [inhibitor] in 
200 µL reaction 

(µM) 

Nanomoles 
inhibitor in 

50 µL 
p-Coumaric acid 160 (of 50 mM) 1840 4000 1000 50.0 

120 (of 50 mM) 1880 3000 750 37.5 
80 (of 50 mM) 1920 2000 500 25.0 
40 (of 50 mM) 1960 1000 250 12.5 

Oxalic acid, and 
rutin  

160 (of 20 mM) 1840 1600 400 20.0 
80 (of 20 mM) 1920 800 200 10.0 
40 (of 20 mM) 1960 400 100 5.0 
20 (of 20 mM) 1980 200 50 2.5 

Acarbose,  
caffeic acid, 

ethyl gallate, and 
vanillin 

320 (of 1.0 mM) 1680 160 40 2.0 
160 (of 1.0 mM) 1840 80 20 1.0 
80 (of 1.0 mM) 1920 40 10 0.5 
40 (of 1.0 mM) 1960 20 5 0.3 

   

4.2.  Ten millilitres of each starch concentration (mg/mL) were prepared: 

Number Volume 2% 
starch (mL) 

Volume buffer 
(mL) 

Initial [starch] 
(mg/mL) 

Final [starch] in 200 µL reaction 
(mg/mL) 

S1 10.0 0 20.0 10.0 
S2 5.0 5.0 10.0 5.0 
S3 3.3 6.7 6.6 3.3 
S4 2.5 7.5 5.0 2.5 
S5 2.0 8.0 4.0 2.0 
S6 1.7 8.3 3.4 1.7 
S7 1.4 8.6 2.8 1.4 
S8 0 10.0 0 0 

 

4.3.  96 well plate setup of pancreatic alpha-amylase assay: 

Well Volume of 
inhibitor (µL)  

Amylase 
(U -- µL) 

In
cu

ba
te

 f
or

 1
0 

m
in

 a
t R

T
  Starch  

(mg -- µL) 

T
ot

al
 r

ea
ct

io
n 

vo
lu

m
e 

 o
f 

 
20

0 
µ

L
 

In
cu

ba
te

 f
or

 1
0 

m
in

 a
t R

T
 DNSA reagent  

(µmol -- µL) 
1 50 0.2 -- 50 2.00 -- 100 (of S1) 9.6 -- 100 
2 50 0.2 -- 50 1.00 -- 100 (of S2) 9.6 -- 100 
3 50 0.2 -- 50 0.66 -- 100 (of S3) 9.6 -- 100 
4 50 0.2 -- 50 0.50 -- 100 (of S4) 9.6 -- 100 
5 50 0.2 -- 50 0.40 -- 100 (of S5) 9.6 -- 100 
6 50 0.2 -- 50 0.34 -- 100 (of S6) 9.6 -- 100 
7 50 0.2 -- 50 0.28 -- 100 (of S7) 9.6 -- 100 
8 50 0.2 -- 50 0 -- 100 (of S8) 9.6 -- 100 

 

4.4. The blank received 50 µL buffer instead of 50 µL amylase for all starch concentrations.  

4.5. The 96 well plate was placed in an oven at 80°C for 25 min.  

4.6. Fifty microliters from each well were transferred to another 96 well plate and diluted with 200 µL 

dH2O, in triplicate. 

4.7.  The absorbance was measured at 540 nm. 
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4.8. The Abs for each starch concentration was the absorbance of the blank subtracted from the average 

absorbance of each triplicate. 

4.9. The velocity (µmol/min) was calculated as follows: 

 
     (  )

× 0.2 𝑚𝐿 ÷ 10 𝑚𝑖𝑛           

4.10. A Lineweaver-Burk plot was produced by plotting the velocity against the final starch 

concentration.  
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Annexure C: Alpha-glucosidase assay method 

1. Stock solutions 

1.1. 0.8 M NaOH: 3.2 g NaOH dissolved in 100 mL dH2O. 

1.2. 100 mM sodium phosphate buffer (pH 6.8): 7.1 g NaH2PO4 + 7.8 g Na2HPO4 dissolved in 1 L 

dH2O. 

1.3. 1 mM pNP: 0.014 g pNP dissolved in 100 mL buffer.  

1.4. 0.2 U/mL alpha-glucosidase solution: 100 µL of 100 U/2 mL stock solution added to 25 mL buffer.     

1.5. 2 mM pNPG: 0.06 g pNPG dissolved in 100 mL buffer. 

1.6. 50 mM inhibitor solution: 

Inhibitor Mass (mg) 
inhibitor in 2 mL 

DMSO 
Acarbose 65 

Caffeic acid 18 
Ethyl gallate 20 
Oxalic acid 13 

p-Coumaric acid 16 
Rutin 66 

Vanillin 15 

2. Standard curve 

2.1. 96 well plate setup of standard curve: 

Well 1 mM pNP 
(µmol -- µL)  

Buffer  
(µmol -- µL) 

0.8 M NaOH 
(µmol -- µL) 

1 100 -- 100 10000 -- 100 40000 -- 50 
2 80 -- 80 12000 -- 120 40000 -- 50 
3 60 -- 60 14000 -- 140 40000 -- 50 
4 40 -- 40 16000 -- 160 40000 -- 50 
5 20 --20 18000 -- 180 40000 -- 50 
6 0 -- 0 20000 -- 200 40000 -- 50 

2.2. Each reaction was performed in triplicate.  

2.3. The absorbance was measured at 405 nm. 

2.4. A standard curve was produced by plotting the absorbance values against the pNP concentration. 

2.5. The gradient of that line represents Abs/[pNP].  
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3. IC50 assay  

3.1. Preparation of 2 mL inhibitor concentrations:   

Number Volume inhibitor 
(µL) 

Volume buffer 
(µL) 

[Inhibitor] 
 (mM) 

I1 2000 (of 50 mM) 0 50.0 
I2 200 (of 50 mM) 1800 5.0 
I3 400 (of 5.0 mM) 1600 1.0 

3.2. 96 well plate setup of IC50 assay: 

Well Inhibitor  
(µmol -- µL)  

Buffer  
(µmol -- 

µL) 

Glucosidase 
(U -- µL) 

In
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 f
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 1
0 

m
in

 a
t R

T
 

 2 mM 
pNPG  

(µmol -- 
µL) 
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Final 
[inhibitor

] (µM) 
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m
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t 3

7°
C

 

0.8 M NAOH  
(µmol -- µL) 

1 2500 -- 50 (of I1) 0 -- 0 0.01 – 50 200 -- 100 12500 40000 -- 50 
2 1250 -- 25 (of I1) 2500 -- 25 0.01 – 50 200 -- 100 6250 40000 -- 50 
3 500 -- 10 (of I1) 4000 -- 40 0.01 – 50 200 -- 100 2500 40000 -- 50 
4 250 -- 50 (of I2) 0 -- 0 0.01 – 50 200 -- 100 1250 40000 -- 50 
5 125 -- 25 (of I2) 2500 -- 25 0.01 – 50 200 -- 100 625 40000 -- 50 
6 50 -- 10 (of I2) 4000 -- 40 0.01 – 50 200 -- 100 250 40000 -- 50 
7 50 -- 50 (of I3) 0 -- 0 0.01 – 50 200 -- 100 250 40000 -- 50 
8 25 -- 25 (of I3) 2500 -- 25 0.01 – 50 200 -- 100 125 40000 -- 50 
9 10 -- 10 (of I3) 4000 -- 40 0.01 – 50 200 -- 100 50 40000 -- 50 
10 0 -- 0 5000 -- 50 0.01 – 50 200 -- 100 0 40000 -- 50 

3.3. The blank received 50 µL buffer instead of 50 µL glucosidase for all inhibitor concentrations. 

3.4. Fifty microliters from each well were transferred to another 96 well plate and diluted with 200 µL 

dH2O, in triplicate. 

3.5. The absorbance was measured at 405 nm. 

3.6. The Abs for each inhibitor concentration was the absorbance of the blank subtracted from the 

average absorbance of each triplicate. 

3.7. An IC50 graph was produced by plotting the %inhibition ((Abs without inhibitor – Abs with 

inhibitor)/Abs without inhibitor) against the final inhibitor concentration.  
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4. Alpha-glucosidase assay 

4.1. Two millilitres of each inhibitor concentration were prepared: 

Inhibitor Volume 
inhibitor (µL) 

Volume 
buffer (µL) 

Initial 
[inhibitor] (µM) 

  

Final [inhibitor] 
in 200 µL 

reaction (µM) 

Nanomoles inhibitor 
in 50 µL 

For all 
inhibitors 

160 (of 50 mM) 1840 4000 1000 50.0 
120 (of 50 mM) 1880 3000 750 37.5 
80 (of 50 mM) 1920 2000 500 25.0 
40 (of 50 mM) 1960 1000 250 12.5 

   

4.2. Ten millilitres of each pNPG concentration (mM) were prepared: 

Number Volume 2 mM 
pNPG (mL) 

Volume buffer 
(mL) 

Initial [pNPG] (mM) Final [pNPG] in 200 µL reaction 
(mM) 

S1 10.0 0 2.00 1.00 
S2 5.0 5.0 1.00 0.50 
S3 3.3 6.7 0.66 0.33 
S4 2.5 7.5 0.50 0.25 
S5 2.0 8.0 0.40 0.20 
S6 1.7 8.3 0.34 0.17 
S7 1.4 8.6 0.28 0.14 
S8 0 10.0 0 0 

 

4.3. 96 well plate setup of pancreatic alpha-amylase assay: 

Well Volume of 
inhibitor (µL)  

Glucosidase 
(U -- µL) 

In
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(µmol -- µL) 
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  0.8 M NAOH  
 (µmol -- µL) 

1 50 0.01 – 50 200 -- 100 (of S1) 40000 -- 50 
2 50 0.01 – 50 100 -- 100 (of S2) 40000 -- 50 
3 50 0.01 – 50 66 -- 100 (of S3) 40000 -- 50 
4 50 0.01 – 50 50 -- 100 (of S4) 40000 -- 50 
5 50 0.01 – 50 40 -- 100 (of S5) 40000 -- 50 
6 50 0.01 – 50 34 -- 100 (of S6) 40000 -- 50 
7 50 0.01 – 50 28 -- 100 (of S7) 40000 -- 50 
8 50 0.01 – 50 0 -- 100 (of S8) 40000 -- 50 

4.4. The blank received 50 µL buffer instead of 50 µL glucosidase for all starch concentrations.  

4.5. Fifty microliters from each well were transferred to another 96 well plate and diluted with 200 µL 

dH2O, in triplicate. 

4.6. The absorbance was measured at 405 nm. 

4.7. The Abs for each starch concentration was the absorbance of the blank subtracted from the average 

absorbance of each triplicate. 

4.8. The velocity (µmol/min) was calculated as follows: 

 
     (  )

× 0.2 𝑚𝐿 ÷ 30 𝑚𝑖𝑛   

4.9. A Lineweaver-Burk plot was produced by plotting the velocity against the final pNPG 

concentration.  
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5. Difference in fits (DFFITS) method to identify influential data points 

5.1. Lineweaver-Burk lines were plotted for each inhibitor concentration.  

5.2. The gradient of the Lineweaver-burk line was taken as m.  

5.3. The first x-value was removed, and the new gradient was taken as m1.  

5.4. The first x-value was returned, and the second x-value was removed, and the gradient was taken 

as m2. 

5.5. The standard deviation between all the different gradient values was taken as SD. 

5.6. DFFITS = (m – mn)/SD. 

5.7. If the DFFITS was greater than 2 or less than -2, that x-value was removed. 
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Annexure D: Cytotoxicity assay method 

1. Stock solutions 

1.1. Growth media: DMEM supplemented with 1% nonessential amino acids, 1% L-glutamine, 

penicillin (100 U/mL), streptomycin (100 U/mL), 25 mM dextrose, and 10% (v/v) heat-inactivated 

foetal calf serum. 

1.2. Phosphate buffered saline (PBS): 9.23 g FTA hemagglutination buffer dissolved in 1 L dH2O and 

adjusted to pH 7.2.   

1.3. 0.1% (w/v) Trypan Blue: 50 mg trypan blue dissolved in 50 mL PBS.  

1.4. 50% (w/v) trichloroacetic acid (TCA): 50 g TCA dissolved in 100 mL dH2O. 

1.5. 1% (v/v) acetic acid: 10 mL acetic acid added to 1 L dH2O.  

1.6. 0.057% (w/v) sulforhodamine B: 57 mg SRB dissolved in 100 mL 1% acetic acid. 

1.7. 10 mM tris buffer: 120 mg tris buffer dissolved in dH2O and adjusted to pH 10.5.  

1.8. 20 mM inhibitor solution: 

Inhibitor Mass (mg) inhibitor 
dissolved in 2 mL 

DMSO 
Acarbose 25.8 

Caffeic acid 7.2 
Ethyl gallate 7.9 
Oxalic acid 5.0 

p-Coumaric acid 6.8 
Rutin 2.7 

Vanillin 6.9 

 

2. Preparation of cell concentration of 1x105 cells/well 

2.1. The selected cell lines were grown in T75 culture flasks at 37°C in a humidified incubator with 

5% CO2 until 70-80% confluency was reached.  

2.2. Trypsin was added for 30 to 60 min to detach the cells from the flask.  

2.3. The cell suspension was centrifuged at 200 g for 5 min. 

2.4. The supernatant was discarded, and the pellet of cells was resuspended in 1 mL supplemented 

media.  

2.5. Twenty microliters of the cell suspension were added to 180 µL 0.1% trypan blue. 

2.6. The cell-trypan blue solution was viewed on a hematocytometer under a microscope. 

2.7. The number of cells was counted in 3 or 4 blocks of the hematocytometer.  

2.8. The number of cells in the field was calculated by dividing the total number of cells counted by the 

number of blocks counted. 

2.9. The 1x105 cell concentration = (The number of cells in the field ×10 times dilution in Trypan    

Blue ×104/(The cell concentration needed for the plate which was 105). 
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2.10. Ten millilitres of 1x105 cell suspension for the plate was prepared from the original cell suspension: 

10 mL/the above equation to obtain the volume of original cell suspension added to 10 mL 

supplemented media. 

2.11. One hundred microlitres of the 1x105 cell suspension was added to each well of a 96 well plate and 

incubated for 24 h at 37°C.  

 

3. Cells treated with selected compounds 

3.1. Compound preparation: 

Number Volume 
compound (µL) 

Volume 
DMEM (µL) 

Initial  
concentration 

(µM) 

Final 
concentration 
(nmol -- µM) 

C1 200 (of 20 mM) 1800 2000 100 -- 1000 
C2 200 (of C1) 1800 200 10 -- 100 
C3 200 (of C2) 1800 20 1 -- 10 
C4 200 (of C3) 1800 2 0.1 -- 1 
C5 200 (of C4) 1800 0.2 0.01 -- 0.1 
C6 200 (of C5) 1800 0.02 0.001 -- 0.01 
C7 200 (of C6) 1800 0.002 0.0001 -- 0.001 

3.2. 96 well plate layout:  

 1 2 3 4 5 6 7 8 9 10 11 12 
A DMEM media (no cells) Cells (100 µL DMEM) 
B 1000 µM 1000 µM 1000 µM 1000 µM 
C 100 100 100 100 
D 10 100 100 100 
E 1 10 10 10 
F 0.1 1 1 1 
G 0.01 0.1 0.1 0.1 
H 0.001 0.01 0.01 0.01 

3.3. One hundred microliters of each compound concentration were added to the 100 µL cells. 

3.4. The cells were incubated with the compounds for 72 h at 37°C. 

3.5. Fifty microliters 50% TCA was added to the cells and incubated for 24 h at 4°C. 

3.6. The cells were washed with tap water four times and allowed to dry for 24 h in the oven (70°C). 

3.7. One hundred microliters 0.057% SRB was added for 30 min at room temperature.  

3.8. The cells were washed with 150 µL 1% acetic acid 4 times and dried in the oven for 24 h. 

3.9. Two hundred microliters 10 mM tris buffer was added to the cells and was allowed to shake for 1 

h at 550 rpm. 

3.10. The absorbance was read at 540 nm. 

3.11. The percentage survival was calculated by dividing the Abs with compound by the Abs without 

the compound and multiplying by 100%. 

3.12. A cell survival plot was generated by plotting the percentage survival against the log concentration 

of the compound. 
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Annexure E: Glucose-uptake assay method 

1. Stock solutions 

1.1. Glucose-free DMEM: Glucose-free DMEM powder was added to 1 L dH2O and 3.7 g NaHCO3  

1.2. 2.5% FCS supplemented media: 1.250 mL foetal calf serum was added to 50 mL glucose-free 

DMEM. 

1.3. 1000 µM insulin solution: 1.375 mL glucose-free DMEM was added to the 8 mg insulin bottle.  

1.4. 20 mM metformin solution: 5 mg metformin was dissolved in 2 mL dH2O. 

1.5. 200 µM 2NBDG solution: 2 mL glucose-free DMEM was added to the 5 mg 2NBDG bottle. 

(7.3 mM) and 550 µL of the 7.3 mM 2NBDG was added to 20 mL glucose-free DMEM.   

1.6. Phosphate buffered saline (PBS): 9.23 g FTA hemagglutination buffer dissolved in 1 L dH2O and 

adjusted to pH 7.2.   

1.7. Insulin concentrations: 

Number Volume insulin (µL) Volume glucose-free 
DMEM (µL) 

Initial Concentration  
(nM) 

Final 
concentration 
(pmol -- nM) 

In1 10 (of 1000 µM) 990 10000 - 
In2 100 (of In1) 900 1000 - 
In3 100 (of In2) 900 100 - 
In4 163 (of In2) 900 163 8 -- 100 
In5 810 (of In3) 190 81 4 -- 50 
In6 405 (of In3) 595 41 2 -- 25 
In7 160 (of In3) 840 16.3 0.8 -- 10 
In8 100 (of In4) 900 1.63 0.08 -- 1 
In9 100 (of In8) 900 0.163 0.008 -- 0.1 

1.8. Compound concentrations: 

Number Volume 
concentration (µL) 

Volume glucose-free 
DMEM (µL) 

Initial Concentration  
(µM) 

Final 
concentration 
(nmol -- µM) 

C1 100 (of 20 mM) 900 1000  
C2 100 (of C1) 900 163 8 --100 
C3 100 (of C2) 900 16.3 0.8 -- 10 
C4 100 (of C3) 900 0.163 0.08 -- 1 

2. 2NBDG uptake assay in C2C12 cells 

2.1. 96 well plates were seeded with 80 µL of the 1x105 cell suspension as prepared in the cytotoxicity 

assay and incubated for 24 h at 37°C. 

2.2. The media was replaced with 80 µL 2.5% FCS supplemented media and incubated for 24 h at 37°C. 

2.3. That media was then removed (without disturbing the cells) and 80 µL of the compounds was added 

and incubated for 24 h at 37°C. 
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2.4. 96 well plate layout: 

 

2.5. Fifty microliters 200 µM (3.85 nmol) 2NBDG was added to the 80 µL compound-cell solution 

(final concentration of 77 µM 2NBDG) for 1 h at room temperature (except for the cells in A1-

A6). 

2.6. The 2NBDG solution was removed from the cells.  

2.7. The cells were washed twice with cold PBS.  

2.8. The fluorescence was measured at an excitation wavelength of 485/40 nm and emission wavelength 

of 590/35 nm in 100 µL PBS. 

2.9. The results can be represented as a bar graph with the fluorescence on the y-axis and the different 

compound concentrations on the x-axis. 

 

3. 2NBDG uptake assay in HepG2 cells 

3.1. 96 well plates were seeded with 80 µL of the 1x105 cell suspension as prepared in the cytotoxicity 

assay and incubated for 24 h at 37°C 

3.2. The media was replaced with 80 µL 2.5% FCS supplemented media or 100 nM insulin DMEM to 

induce insulin resistance and incubated for 24 h at 37°C 

3.3. That media was then removed (without disturbing the cells) and 80 µL of the compounds (with 

50 nM insulin for insulin resistant cells) was added and incubated for 45 min at 37°C 

3.4. 96 well plate layout: 

 1 2 3 4 5 6 7 8 9 10 11 12 
A Cells (only 2NBDG and 50 nM insulin for insulin 

resistant cells) 
Cells (no 2NBDG) 

B 100 µM 100 µM 100 µM 100 µM 
C 10 10 10 10 
D 1 1 1 1 
E 100 µM 100 µM 100 µM 100 nM 
F 10 10 10 10 
G 1 1 1 1 
H    0.1 

 1 2 3 4 5 6 7 8 9 10 11 12 
A Cells (only 2NBDG and 50 nM insulin for insulin 

resistant cells) 
Cells (no 2NBDG) 

B 100 µM 100 µM 100 µM 100 µM 
C 10 10 10 10 
D 1 1 1 1 
E 100 µM 100 µM 100 µM 100 nM 
F 10 10 10 10 
G 1 1 1 1 
H    0.1 

Metformin 

Caffeic acid p-Coumaric acid 

Rutin Vanillin 

Ethyl gallate 

Oxalic acid 

Metformin 

Insulin 

Rutin Vanillin Oxalic acid Insulin 

Caffeic acid p-Coumaric acid Ethyl gallate 
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3.5. Fifty microliters 200 µM (3.85 nmol) 2NBDG was added to the 80 µL compound-cell solution 

(final concentration of 77 µM 2NBDG) for 1 h at room temperature (except for the cells in A1-

A6). 

3.6. The 2NBDG solution was removed from the cells.  

3.7. The cells were washed twice with glucose-free DMEM. 

3.8. The fluorescence was measured at an excitation wavelength of 485/40 nm and emission wavelength 

of 590/35 nm in 100 µL PBS. 

3.9. The results can be represented as a bar graph with the fluorescence on the y-axis and the different 

compound concentrations on the x-axis. 
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Annexure F: Green tea IC50 method 

1. Green tea preparation 

1.1. Twenty-five millilitres of boiling dH2O was added to two green tea bags of each brand (2 tea     

bags = 2.5 g, therefore two tea bags in 25 mL water were 5.0 g/ 25 mL or 20% dry weight). 

1.2. The green tea bags were left to stand in the 25 mL water for 10 min with occasional stirring. 

1.3. The tea bags were removed by squeezing the water out of the tea bags with a spoon. 

1.4. The green tea solution was transferred into Eppendorf tubes and centrifuged at 10 000g for 10 min. 

1.5. The supernatant (20% dry weight green tea stock solution) was used to make the green tea dilutions 

for the pancreatic alpha-amylase and alpha-glucosidase assays. 

1.6. Green tea dilutions for pancreatic alpha-amylase IC50:  

Number Volume (µL) Volume dH2O (µL) Initial concentration  
(% dry weight) 

Final 
concentration (% 

dry weight) 
T1 1000 (20% stock) 0 20 5.0 
T2 900 (of T1) 100 18 4.5 
T3 890 (of T2) 110 16 4.0 
T4 875 (of T3) 125 14 3.5 
T5 855 (of T4) 145 12 3.0 
T6 830 (of T5) 170 10 2.5 
T7 800 (of T6) 200 8 2.0 
T8 750 (of T7) 250 6 1.5 
T9 665 (of T8) 335 4 1.0 
T10 500 (of T9) 500 2 0.5 
T11 500 (of T10) 500 1 0.25 
T12 0 1000 0 0 

1.7.  Green tea dilutions for alpha-glucosidase: 

Number Volume (µL) Volume 
dH2O 
(µL) 

Initial concentration  
(% dry weight) 

Final 
concentration (% 

dry weight) 
T1 1000 (of 0.04% tea solution) 0 0.040 0.010 
T2 900 (of T1) 100 0.036 0.009 
T3 890 (of T2) 110 0.032 0.008 
T4 875 (of T3) 125 0.028 0.007 
T5 855 (of T4) 145 0.024 0.006 
T6 830 (of T5) 170 0.020 0.005 
T7 800 (of T6) 200 0.016 0.004 
T8 750 (of T7) 250 0.012 0.003 
T9 665 (of T8) 335 0.008 0.002 

T10 500 (of T9) 500 0.004 0.001 
T11 500 (of T10) 500 0.002 0.0005 
T12 0 1000 0 0 

 

2. Green tea IC50 for pancreatic alpha-amylase 

2.1. The same method and reagents were used as described in Annexure B.  

3. Green tea IC50 for alpha-glucosidase 

3.1. The same method and reagents were used as described in Annexure C. 
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Annexure G: LC/MS method 

1. Dry green tea sample preparation  

1.1. The green tea powder from two tea bags was ground using an electric coffee grinder for 20 s. 

1.2. The ground powder was sieved using a steel sieve with the smallest aperture opening of 355 µm. 

1.3. The finest green tea powder was transferred into Eppendorf tubes and used for the extraction 

process. 

 

2. Stock solution preparation 

2.1. Extraction solvent: 50% (v/v) methanol with 1% (v/v) formic acid in HPLC grade water. 

2.2. Standard solvent: 70% (v/v) acetonitrile with HPLC grade water. 

2.3. Solvent A: 0.1% (v/v) formic acid in HPLC grade water. 

2.4. Solvent B: 0.1% (v/v) formic acid in acetonitrile.  

 

3. Green tea extraction 

3.1. 1.6 mL extraction solvent was added to 250 mg of the fine green tea powder sample in a 2 mL 

centrifuge tube.  

3.2. The solution was vortexed for 1 min and placed in an ultrasonic bath for 1 h.  

3.3. The solution was then centrifuged at 14 000 rpm for 5 min. 

3.4. The supernatant was diluted 10x by transferring 100 µL of the supernatant into a 1.5 mL glass vial 

with 900 µL extraction solvent which was injected into the column. 

 

4. Standards cocktail preparation 

4.1. One milligram of each standard was dissolved in one millilitre of the standard solvent. 

4.2. These standards were: epigallocatechin gallate, epicatechin, epigallocatechin, epicatechin-3-o-

gallate, catechin, chlorogenic acid, rutin, caffeic acid, p-coumaric acid, quercetin, quinic acid, 

rosmarinic acid.  

4.3. Ten microliters of each 1 mg/mL standard were mixed to create the standard cocktail (120 µL with 

all 12 standards). 
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4.4.  Dilution of standards cocktail: 

Number Volume of  standards 
cocktail (µL) 

Volume of 50% 
methanol (µL) 

Final concentration  
(mg/L or ppm) 

Std1 200 0 83.33 
Std2 120 80 50.00 
Std3 80 120 33.33 
Std4 40 160 16.67 
Std5 20 180 8.33 

Blank 0 200 0 

5. Waters Acquity UPLC 

5.1. Injection volume: 5 µL.  

5.2. Column: Waters HSS T3, 2.1 x 100 mm, 1.7 µm column. 

5.3. Mobile phase: 100% solvent A for 1 min and changed to 28% solvent B over 22 min with a linear 

gradient. 

5.4. Wash step: 28% to 40% solvent B in 50 s then to 100% solvent B in 1.5 min. 

5.5. Re-equilibration: to initial conditions for 4 min. 

5.6. Flow rate: 0.3 mL/min. 

5.7. Column temperature: 55°C. 

 

6. Negative ion mode electrospray  

6.1. Cone voltage: 15 V. 

6.2. Desolvation temperature: 275°C. 

6.3. Desolvation gas: 650 L/h. 

 

7. Waters Synapt G2 QTOF-MS 

7.1. Column eluate was passed through a PDA detector. 

7.2. Scan range: 150 to 1500 m/z. 

7.3. MSE mode: low collision energy of 4 V and a collision ramp between 40 and 100 V. 

7.4. Leucine enkephalin: used as the reference mass. 

7.5. Sodium formate: used to calibrate the instrument. 

 

8. MSDIAL and MSFINDER annotation 

8.1. Freeware downloaded from CompMS (http://prime.psc.riken.jp/compms/index.html). 

8.2. Waters MassLynx .raw file was converted into analysis base file (ABF). 

8.3. ABF was imported into MSDIAL (SWATH-MS All-ions method).  
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8.4. Minimum peak height: 300 amplitude.  

8.5. Retention time tolerance: 0.15 min. 

8.6. The peak height intensity file was exported from MSDIAL alignment results. 

8.7. The formula and structure of all peaks was searched on MSDIAL. 

8.8. The “All peaks” file was exported from MSDIAL and imported into MSFINDER. 

8.9. The compounds were putatively annotated.  

8.10. Databases: FooDB, PlantCyc, ChEBI, STOFF, NPA, NANPDB, COCONUT, KNApSAcK, 

PubChem, UNPD. 

8.11. The batch results were exported.  

8.12. The structure file and the height file were combined in Excel. 

8.13. Putatively annotated compounds that had peak heights less than 40 (the blank) were removed.   

 

9. Standard curve generation  

9.1. The standard curve of the peak height for each standard against the amount (ng) of standard. 

9.2. The amount (ng) of each standard present in the tea samples was calculated using the equation of 

the line of the standard curve and the peak height of that standard (set intercept). 

9.3. The percentage dry weight was calculated by dividing the amount of standard (ng) by the amount 

of green tea (ng) multiplied by 100%. 

9.4. The amount of green tea (ng) = 250 mg green tea / 1.6 mL methanol x 0.005 mL injection volume 

x 10 dilution factor = 7.8125 mg or 7812.5 ng. 

 

10. MetaboAnalyst  

10.1. Statistical Analysis [one factor] was selected. 

10.2. The csv file containing peak intensity values of putatively annotated compounds was submitted. 

10.3. The data was processed using the default settings (no missing values were detected).  

10.4. The data was filtered using the interquartile range. 

10.5. No sample normalization or data transformation was selected. 

10.6. Auto data scaling was performed. 

10.7. p-Value obtain as adjusted p-value (FDR). 


