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A B S T R A C T   

Malawi experiences frequent and intense extreme weather events that affect rain-fed household maize produc
tion. Thus, households have adopted various climate-smart agriculture (CSA) practices to cushion maize pro
duction from the adverse effects of extreme weather events, particularly drought episodes. This study examines 
the drivers of CSA practices’ adoption and their influence on the technical efficiency of maize production among 
drought-affected households. Based on a conditional logit model, the study finds drought episodes substantively 
enhancing the adoption of organic manure by 76% and soil and water conservation by 29%. The Cobb-Douglas 
Stochastic Frontier Analysis reveals that households are 63% technically efficient, implying that they can in
crease current maize production by 37%. A two-stage Tobit model further shows that concurrent adopting 
organic manure and inorganic fertilizers in the same farm significantly improves maize production’s technical 
efficiency by 18% and is more noticeable among drought-affected households. This study, therefore, advocates 
for simultaneous adoption of organic and inorganic fertilizers to enhance the effect of CSA practices on the 
technical efficiency of maize production under intensifying drought episodes. Besides, the study recommends 
championing gender-targeting extension services to augment the benefits of CSA practices among female 
farmers. Ultimately, the study results contribute to the existing literature on improving agricultural productivity 
under varying weather conditions.   

1. Introduction 

Agriculture remains the cornerstone of Sub-Sahara Africa’s (SSA) 
economic transformation and achievement of Sustainable Development 
Goals (SDGs) [1]. Several SSA countries, including Malawi, have adop
ted agriculture as their pathway out of poverty. It is the primary source 
of livelihood, accounting for 60% of the regions labor force and 40% of 
Gross Domestic Product (GDP) (Bjornlund et al., 2020). By 2050, SSA’s 
population is expected to double to 2.1 billion, with a 60% increase in 
food demand (Ittersum et al., 2016). Over the past decades, food pro
duction in SSA has been volatile and failed to meet the population de
mand due to high dependence on rain-fed agriculture, poor agricultural 
practices, and extreme weather events such as droughts, dry spells and 
floods [2]. El Nino Southern Oscillation events have amplified drought 
and flood episodes in the region, and temperatures have continuously 
increased by 1.6 ◦C–2 ◦C, while precipitation declined by 4% between 
1990 and 2018 [3]. In the region, temperature is predicted to increase 
by 1.0–3.0 ◦C by 2060. Furthermore, high poverty levels and limited 

credit markets have exacerbated SSA’s vulnerability to extreme weather 
events [4]. These factors have contributed to SSA’s weak agricultural 
adaptive capacity to extreme weather events [5]. 

In Malawi, agriculture accounts for 28% of GDP, 80% of export 
earnings, 64% of the workforce, and 85% of household livelihoods [6]. 
The sector is dualistic, comprising smallholder (70%) and estate (30%) 
sub-sectors. Smallholder farmers’ landholding sizes have diminished 
from 1.53 ha (ha) in 1968 to 0.4 ha in 2020 following rapid population 
growth [7,8]. The crop sub-sector accounts for over 80% of the agri
cultural sector and 17% of GDP. As a staple food, maize dominates the 
crop sub-sector and is cultivated by over 92% of households [7]. Women 
contributes 70% of the total labour-force in the crop sub-sector [9], 
nevertheless, they have limited access and use of agricultural input, 
insecure land tenure systems and informal institutions governing farm 
management [10]. Despite maize production determining national and 
household food security, its impact is limited by rain-fed dependence, 
small landholding sizes, low soil fertility, and poor agricultural practices 
[9,11]. With overwhelming evidence of extreme weather events by 2040 
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(DoDMA, 2018 [6]; and without adaptation, maize production stands to 
be adversely affected [4,7,12]. 

In the recent past, Malawi has experienced increasing dry days by 
almost 27% and late on-set of rainfall during main cropping seasons, 
resulting in crop failures and over 6.5 million people being food insecure 
(World Bank, 2016; [4]. Seven major drought episodes have occurred 
between 1990s and 2020, reducing maize production by 48%, affecting 
over 32 million people, and downscaling GDP by 21.5% (DoDMA, 
2018). These realities, compounded by rapid population growth and 
high poverty levels, have negatively affected the technical efficiency of 
maize production and the food security status of the country [6,13]. 

Following the adverse effects of drought episodes on maize produc
tion, the Government of Malawi (GoM) and several other stakeholders, 
including households, have championed various climate change adap
tation strategies [14]. The Government has promoted Climate-Smart 
Agriculture (CSA), which integrates climate responsiveness in agricul
ture at the household level [8,15]. CSA concepts include conservation 
agriculture, sustainable land management, and agroforestry practices 
[16]. While the CSA concept is new and still evolving, many of its 
practices have existed before [17,18]. Besides externally inspired CSA, 
households have adopted locally enthused CSA practices [6]. Nonethe
less, the rate of adopting these CSA practices is still not consistent with 
investment, and extreme weather events are predicted to indisputably 
reduce maize production by 10.8% by 2040 [3,19]. 

CSA practices present an opportunity to address the effects of 
extreme drought episodes and enhance the sustainability of maize pro
duction in Malawi [3]. The challenge, however, is that in Malawi, 
households have operationalized CSA practices differently, with various 
local translations and nomenclatures across several communities [17]. 
Some households have even abandoned already adopted CSA practices 
due to information asymmetry on the ground [20,21]. Contrary to rec
ommendations of adopting CSA as a package [22], most households 
have undertaken only two of the five CSA practices, and allied imple
mentation has often been short-lived [11]. Consequently, farmers have 
failed to derive the full potential benefits of CSA on enhancing maize 
production, thereby increasing poverty incidences and food insecurity at 
the household level [11]; Khataza et al., 2018). Additionally, limited 
research on the drivers and the climate resilience of CSA has facilitated 
low adoption at the household level [9,23]. Moreover, most households 
lack information on the technically efficient CSA practices that induce 
maize productivity under extreme weather conditions [4,19]. Thus, 
additional studies on the drivers and the technical efficiency of CSA 
practices are assertive to cope with extreme weather events in Malawi 
[5,51,55]. 

Therefore, this paper examines drivers of CSA practices’ adoption 
and their influence on the technical efficiency of maize production 
under extreme drought episodes. It uses a panel dataset representing 
farming households in Malawi for 2010/2011 to 2016/2017. While 
using a conditional logit model (CL), the study assesses drivers of 
adopting various CSA practices. It also evaluates CSA practices’ influ
ence on the technical efficiency of maize production through the 
application of a two-stage Tobit model. This study’s contribution to the 
existing literature on extreme drought episodes is four-fold. First, it 
provides evidence regarding the drivers and the effects of CSA practices 
on maize production in Malawi. Second, it minimises CSA dis-adoption 
through isolating efficient CSA practices at household level. Third, the 
study enhances the adoption of climate resilient CSA practices that have 
substantial effects on the technical efficiency of maize production. 
Finally, it ensures suitability, flexibility and sustainability of CSA prac
tices by mainstreaming indigenous knowledge in climate adaptation 
programming. Overall, the study adds to the existing SDGs’ literature on 
improving agricultural productivity under intensifying weather events. 

2. Research methodology 

2.1. Study area 

The study was conducted in rural farming communities in Malawi 
affected by extreme drought episodes (see Fig. 1). Malawi is a land- 
locked country and relies on rain-fed maize production for national food 
security. District altitudes vary from below 500–1500 m above sea level. 
Malawi has one annual rainy season from November to April, with 
average precipitation varying from 725 mm to 2500 mm. It has expe
rienced drought episodes since 1980s, with extreme drought events 
becoming more pronounced in the recent past, with Chikwawa, Chir
adzulu, Karonga, Mulanje, Nsanje and Phalombe being the most affected 

Fig. 1. Proportion Distribution of drought-affected households in Malawi.  
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districts. Several models have predicted increasing vulnerability, in
tensity, magnitude and frequency of extreme drought events (DoDMA, 
2018; [12]. Apart from the high poverty levels and limited adaptive 
capacity [23], El Niño and La Niña phenomena have further intensified 
the country’s climate vulnerability [3]. 

2.2. Conditional fixed effect logit model 

In this study, the random utility theory informs the framework of 
examining household decisions over various CSA choices [24] and is 
described in two-fold. First, the objects of various CSA practices over 
which farmers have preferences, namely, organic manure (MAP), soil 
and water conservation (SWC), maize improved varieties (MIV) and 
legume intercropping (MLI), cushion maize production from the adverse 
effects of extreme drought episodes. Second, household attributes such 
as age, education, gender and other socioeconomic factors determine 
various CSA practices’ choice behaviour. 

The independence of irrelevant alternatives (IIA) assumption of the 
multinomial logit (MNL) model assumes that the choice of one CSA 
practice does not influence the choice of another [25–27,53]. On the 
contrary, households in the study area combine CSA practices in the 
same plot, thus ruling out use of the MNL [4,17]. Several models that 
allow for correlation across various CSA practices, however, exist, viz., 
the multinomial probit (MNP) and the conditional logit (CL) [28]. This 
study adopts the CL due to its flexibility to estimate either a standard, 
uniform, or log-normal choice distribution [29,30]. Following Hoffman 
and Duncan [31] and Heckman (1981), we also considered the CL 
appropriate because CSA decisions are a function of household charac
teristics. The study thus specifies the panel-based CL model as in equa
tion (1). 

CSAijt ={

1 if CSA*
ijt =

∑J

j=0
βjMijt + ωiRijt + αi + εijt > 0

0 if CSA*
ijt =

∑J

j=0
βjMijt + ωiRijt + αi + εijt ≤ 0

(1)  

where CSAijt takes a value of 1 if a household adopts any CSA practice 
including MAP, SWC, MIV, MLI and otherwise, zero. The Mijt is a vector 
of age, education, farm size, literacy, cell-phone ownership, household 
size, distance to district headquarters, slope, soil quality and soil type. 
Rijt represents dummies for drought experience, access to credit as well 
as extension services. The β and ωi are unknown parameters to be esti
mated by the model. The αi is treated as a random component, while the 
εijt is the error term, with zero mean and constant variance. 

2.3. Cobb-Douglas Stochastic Frontier Analysis (SFA) 

This study defines technical efficiency as the plot manager’s ability 
to generate optimal maize output from a given technology. It further 
strongly assumes that drought episodes partially widen the gap between 
the observed and frontier outputs, which correspondingly determine 
household technical inefficiency, ceteris paribus. However, a production 
function is devoid of any economic intuition unless it has some specified 
structural properties such as utility maximization [32,33]. 

Various scholars have examined technical efficiency using either a 
parametric or a non-parametric approach. The parametric approach uses 
stochastic frontier analysis (SFA), while the non-parametric uses data 
envelopment analysis (DEA). A key advantage of the SFA over DEA is its 
ability to split the random error term’s impact from the inefficiency 
effect [33,34]. Inadequate record keeping and high illiteracy rates 
among smallholder farmers popularly favour the SFA use [32]. Farrell 
(1957) developed the SFA, which Aigner et al. [35] as well as Meeusen 
and van den Broeck [36] extended to evaluate technical efficiency across 
various fields. 

The SFA has been used to investigate technical efficiencies of crop 

production. Musaba [37] and Mango et al. [32] adopted the SFA to study 
the technical efficiency of smallholder farmers’ maize production in 
Zambia and Zimbabwe, respectively. Mehmood et al. [38] employed the 
SFA to assess the influence of liquidity constraints on wheat producers’ 
technical efficiency in Pakistan. Some studies have used the SFA to 
examine the technical efficiency of maize production in Malawi, using 
cross-section data and with bias on demographic factors (Chirwa, 2008; 
[39]. In this study, we use panel data to investigate the influence of CSA 
practices on the technical efficiency of maize production in Malawi, 
thereby contributing to the existing literature on improving agricultural 
productivity [23]. We adopt the Cobb-Douglas specification because of 
its flexibility, excitability and interpretability [34]. The panel-based 
maximum likelihood estimated Cobb-Douglass SFA model is expressed 
as in equation (2). 

lnyijt =
∑J

j=0
βjlnxijt +

∑M

m=1
λmDijt + αi + υijt + uijt (2)  

where lnyijt is the log of yield in kg/ha for plot-manager at time point. 
lnxijt is a vector of various inputs, namely, farm size, fertilizer, seed, 
labor and organic fertilizer. The Dijt denotes dummies for soil quality, 
slope and drought experience. The λm and βjare unknown parameters, 
while αi is the individual fixed effect. The uijt is the technical inefficiency 
which is derived through its exponential while the υijt is the random 
error, with zero mean and constant variance. 

2.4. Two-stage panel-based censored Tobit model 

This study adopts a two-stage panel-based censored Tobit model to 
analyse the influence of CSA on the technical efficiency of maize pro
duction under extreme drought episodes. First, the study employs a 
bivariate panel-based Probit model to predict the CSA practices farmers 
adopt, while accounting for possible endogeneity [23]. The study pre
sents a panel-based Probit model as in equation (3): 

Aijt =
∑J

j=0
ωjHijt + αi + κijt (3)  

where Aijt takes a value of 1 if the household adopts any CSA practice as 
mentioned above, and zero otherwise. The Hijt is a vector of education, 
age, gender, farm size, household size, mobile phone, access to extension 
services and credit. The ωj stands for the unknown parameters to be 
estimated. The κijt is the white noise, with zero mean and constant 
variance, while the αiis as presented previously. 

Second, the study employs a panel-based Tobit model as in equation 
(4): 

ûijt =ω0 +
∑J

j=1
ωj Ẑ ijt + γjKijt + αi + εijt (4)  

where ûijt is the technical efficiency score predicted from equation (2). 
Ẑijt is a vector of CSA practices values estimated from equation (3) such 
as M̂AP, ŜWC, M̂IVand M̂LI, and Kijt is a vector that includes variables 
like access to subsidy and credit, land productivity, livestock ownership, 
gender, literacy, household size and marital status. The ωj and γj are the 
unknown parameters to be estimated by the model. The εijt is the error 
term with zero mean and constant variance, while the αi is as prior- 
defined. 

2.5. Data and sampling design 

The study uses a panel based household dataset (2010/2011–2016/ 
2017), which was compiled by the NSO and the World Bank through the 
Integrated Household Panel Surveys (IHPS). It was collected within a 
two-stage cluster sampling design covering 208 enumeration areas, and 
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representative at the national, urban/rural, regional, and district levels, 
[7]. The IHPS instruments included households, agriculture, fishery, and 
community questionnaires. Between 2010/2011 and 2016/2017, the 
IHPS asked all sampled households to state whether they experienced 
any drought episodes. Consequently, we define households reporting 
experience of any drought episodes as drought-affected community 
(DAC) households, otherwise non-drought-affected community (NDAC) 
households. The IHPS captured data on household socioeconomic 
characteristics (such as age, marital status, education, household size, 
mobile phone ownership, credit accessibility, extension services), 
extreme weather events (drought and dry spell) and plot characteristics 
such as plot area, slope, soil quality and type [7,13]. It also captured 
farm level data like labor, farm holding size, seed, inorganic fertilizers, 
CSA practices (such as organic fertilizer, soil and water conservation, 
improved maize varieties, intercropping), crops cultivated and harvest. 

This study has sample size of 1329 households in 2010, 1311 
households in 2013, and 1193 households in 2016/2017. The IHPS data 
shows several households experiencing extreme drought episodes, with 
half of households reporting the effect of extreme drought in 2010/2011 
(51%), 34% in 2013 and 46% in 2016/2017 cropping seasons. In this 
study, drought episodes negatively affect the technical efficiency of 
maize production, and adoption of CSA practices strengthens the climate 
resilience of maize production at the household level. Finally, this study 
complements household interviews with IHPS community (qualitative) 
focus group interviews. 

3. Results and discussions 

3.1. Summary statistics of household socioeconomic characteristics and 
plot-level characteristics 

Table 1 presents summary statistics for drought-affected (DAC) and 
non-drought-affected (NDAC) communities. Table 1 shows that males 
(75%) head most households in DAC and NDAC communities. The mean 
household head age was 44 years, with a mean household size of 5 
persons. Two-thirds of household heads have ever attended school, with 
the majority having attained senior primary education. Table 1 also 
shows that household location in relation to agricultural markets has a 
bearing on input accessibility. Almost half of households own a working 
mobile phone. These results are in line with [7]. 

Table 1 further indicates that households cultivate maize on an 
average farm size of 0.48 ha, with female farmers having 0.41 ha. Half of 
the cultivated farms have loamy soils, with substantial differences be
tween DAC (63%) and NDAC (56%) households. About 62% of the 
households have good soil quality and flat farm. Female farmers produce 
370 kg less than their male counterparts. Table 1 shows significant 
differences of DAC maize yield between 2010 and 2017, with no sub
stantial disparity among NDAC over the same period. 

Fig. 2 shows the distribution of households adopting various CSA 
practices. The figure reveals increasing adoption of various CSA prac
tices between 2010 and 2016/2017. Most households (65%) implement 
two to three of the five CSA practices. Furthermore, about 76% of 
households apply NPK fertilizers, which increased from 37.5 kg per acre 
(2010) to 54 kg per acre (2017). More male farmers (78%) apply NPK 
relative to their female counterparts (72%), thus explaining resource 
constraints among female farmers (see Fig. 2). The study also finds that 
21% of households use organic fertilizer, applying on average about 178 
kg per acre (see Table 1). The study finds a considerable increase in 
organic fertilizer application between 2010 (126.5 kg) and 2017 (321.6 
kg). Besides, more than half of the households implement SWC tech
niques such as terraces (5%), erosion control bunds (26%), sandbags 
(1%), vetiver grass (8%), water harvest bunds (1%) and ditches (4%). 
Additionally, half of the respondents plant MIV and its adoption rose 
from 46% in 2010 to 56% in 2017. Qualitative data rationalizes that the 
increase in adoption of MIV among farming households is due to the 
previous adverse effect of drought episodes on maize production. 

3.2. Adoption of climate smart agricultural practices 

Table 2 presents the drivers of CSA practices among DAC and NDAC 
households based on the conditional fixed effects logit model. Factors 
such as household head’s education, distance to district headquarters, 
slope and soil quality significantly influence households’ decision to 
adopt SWC techniques. Furthermore, households with steep slopes, poor 
soil quality and drought experience have higher probabilities of adopt
ing the various SWC techniques. Nevertheless, the study finds no sig
nificant differences in terms of drivers affecting SWC adoption between 
DAC and NDAC households. These results are in line with Nguyen et al. 
[40]; Darkhwh et al. [41] and Teshome et al. [42]. 

Literacy and extension services substantially affect the MIV adop
tion. For instance, most literate households cultivate MIV due to the 
understanding of extension messages on improved varieties. Qualitative 
data shows that farmers have information on the merits and demerits of 
various maize varieties, which presents a freedom of choice among 
households. Interestingly, Table 2 demonstrates extension services and 
drought episodes as the only factors essentially influencing MIV adop
tion among DAC. These findings conform to those of Katengeza et al. 
[19]and; Ayedun [49]. 

The study also observes that gender and drought episodes signifi
cantly influence maize-legume intercropping decision. The study finds 
several male farmers intercropping maize with legumes compared to 
female farmers. The study further notices that drought episodes signif
icantly enhance intercropping of maize with leguminous crops. Besides, 
qualitative data explains that intercropping maize with legumes reduce 
run-off water and enhance nitrogen fixation. Conversely, the study finds 
slightly above half of the households (56%) still practicing maize mono- 
cropping despite increased drought episodes. These results are similar to 
those of Bouwman et al. [43]; Timothy et al. [44] and Simtowe et al. 
[45]. 

Table 2 further indicates that credit accessibility, age and drought 
experience substantively influence household adoption of organic fer
tilizer. Qualitative data reveals that households access credit to hire 
labor for composite manure production. Similarly, the study notes elder 
people engaging in organic fertilizer while household with larger farms 
practise fallow cultivation. 

3.3. Cobb Douglas stochastic frontier analysis 

Table 3 highlights the maximum likelihood estimated results of a 
Cobb-Douglas Stochastic Frontier Analysis (SFA) between DAC and 
NDAC households. The study notes slopes, soil quality, labor, inorganic 
fertilizer, seed, farm size and drought experience significantly influence 
maize production. Households that apply NPK fertilizer enhances maize 
production by at least 3 kg. Similarly, labor improves maize yield by 26 
kg in NDAC and 35 kg in DAC households. Table 3 also shows that farm 
size yields higher returns than any factor of production. Likewise, 
organic fertilizer improves maize production by 15 kg in NDAC and 8 kg 
in DAC households. The study finds farms with steep slopes having lower 
maize yield by 4 kg in DAC and 8 kg in NDAC. Qualitative data clarifies 
that farm with steep slopes experience excessive soil erosions, while 
farms with loamy soils have better soil structure and water filtration. 
Drought episodes have reduced maize yield by 20% and these results are 
in line with McCarthy et al. [4]. 

Despite the negative effect of drought on maize production, the study 
finds DAC households reporting higher yields per ha than NDAC coun
terparts (see Fig. 3). Accordingly, the chi-square test shows a significant 
correlation between yield and experience drought episode, and there is a 
considerable difference between maize yield by DAC and NDAC. 
Moreover, maize yield has significantly increased from 922 kg per ha in 
2010 to 1720 kg per ha in 2016 among DAC households due to adoption 
various CSA practices. 
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Table 1 
Summary statistics of household socioeconomic characteristics [2010–2016/2017].    

2010 2013 2016 POOLED 2010–2016 DIFF_TEST  

UNIT_M TOTAL DAC NDAC TOTAL DAC NDAC TOTAL DAC NDAC TOTAL DAC NDAC MHHD FHHD DAC/NDAC M/FHHD 

Matched sample % 35% 51% 49% 34% 37% 63% 31% 46% 54%  44% 56% 75% 25%   
Matched sample size Number 1329 672 657 1311 479 832 1193 554 639 3833 1705 2128 2872 961   
Gender Yes/No 0.76 0.73 0.79 0.76 0.76 0.75 0.73 0.76 0.70 0.03 0.05 0.01 0.03 0.02 ***  
Married Yes/No 0.79 0.76 0.81 0.78 0.80 0.77 0.77 0.79 0.75 0.75 0.75 0.75 0.75 0.25   
HH size Number 5.04 4.86 5.22 5.55 5.75 5.44 5.47 5.58 5.37 0.78 0.78 0.78 0.97 0.20  *** 
Age Years 43.47 43.45 43.49 46.47 45.97 46.76 48.42 48.66 48.21 5.35 5.35 5.35 5.65 4.46  *** 
Literacy Yes/No 1.38 1.38 1.37 1.33 1.35 1.33 1.37 1.34 1.39 46.02 45.84 46.17 44.64 50.15  *** 
School attended Yes/No 1.21 1.24 1.19 1.20 1.18 1.21 1.15 1.14 1.16 1.36 1.36 1.36 1.28 1.59  *** 
Class reached Years 6.22 5.71 6.70 6.20 5.99 6.32 5.68 5.52 5.82 1.19 1.19 1.19 1.15 1.32  *** 
Mobile phone ownership Yes/No 0.46 0.39 0.53 0.55 0.48 0.60 0.72 0.75 0.70 6.04 5.72 6.29 6.38 4.76 *** *** 
Distance to main road Km 1.05 1.13 0.98 1.07 1.19 1.00 1.02 1.07 0.98 0.57 0.53 0.61 0.66 0.31 *** *** 
Distance to ADMARC Km 7.61 8.07 7.14 7.90 8.40 7.61 7.78 7.50 8.03 1.05 1.13 0.99 1.05 1.03 ***  
Distance to HQ Km 51.14 44.50 57.93 25.24 23.18 26.42 27.30 29.62 25.29 7.76 7.98 7.59 7.48 8.60 ** *** 
Sandy soils Yes/No 0.22 0.23 0.22 0.19 0.25 0.16 0.27 0.31 0.25 0.23 0.26 0.21 0.22 0.26 *** ** 
Loamy soils Yes/No 0.53 0.57 0.48 0.54 0.47 0.58 0.59 0.63 0.56 0.55 0.56 0.54 0.56 0.52  ** 
Clay soils Yes/No 0.22 0.18 0.25 0.26 0.27 0.25 0.35 0.31 0.39 0.27 0.25 0.29 0.28 0.26 ***  
Good soils Yes/No 0.48 0.50 0.45 0.42 0.44 0.41 0.62 0.64 0.60 0.50 0.53 0.48 0.51 0.47 *** ** 
Fair soils Yes/No 0.40 0.35 0.44 0.42 0.38 0.45 0.45 0.45 0.44 0.42 0.39 0.45 0.42 0.43 ***  
Poor soils Yes/No 0.13 0.15 0.11 0.15 0.18 0.14 0.15 0.17 0.14 0.14 0.17 0.13 0.14 0.17 *** ** 
Flat slope Yes/No 0.56 0.55 0.57 0.57 0.57 0.57 0.61 0.63 0.58 0.58 0.58 0.57 0.59 0.55  ** 
Slight steep Yes/No 0.33 0.32 0.35 0.31 0.28 0.32 0.49 0.47 0.51 0.37 0.36 0.39 0.37 0.39 *  
Moderate slope Yes/No 0.08 0.10 0.06 0.09 0.12 0.08 0.15 0.16 0.15 0.11 0.12 0.09 0.11 0.10 ***  
Hilly Yes/No 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03   
Seed Kg 13.08 13.00 13.17 14.22 14.82 13.88 20.49 21.30 19.78 15.78 16.21 15.43 16.13 14.74  ** 
Labor Hours 55.90 55.39 56.42 32.33 34.54 31.05 23.42 25.01 22.04 37.73 39.66 36.18 39.62 32.07 *** *** 
Farm size Acre 1.00 0.97 1.03 0.95 0.90 0.98 1.59 1.63 1.56 1.17 1.16 1.17 1.22 1.00  *** 
Inorganic fertilizer Kg 37.46 37.09 37.85 32.22 29.94 33.54 53.72 53.16 54.20 40.73 40.30 41.07 43.90 31.25  *** 
Organic fertilizer Kg 126.55 51.91 202.90 99.68 92.92 103.57 321.63 338.44 307.05 178.08 156.53 195.34 196.47 123.12   
Manure Application Yes/No 0.14 0.13 0.15 0.19 0.20 0.18 0.31 0.33 0.29 0.21 0.22 0.20 0.21 0.22   
NPK Fertilizer Application Yes/No 0.81 0.78 0.84 0.74 0.71 0.76 0.74 0.75 0.72 0.76 0.75 0.77 0.78 0.72 * *** 
SWC Yes/No 0.57 0.54 0.59 0.50 0.45 0.54 0.65 0.64 0.67 0.57 0.55 0.59 0.56 0.60 *** ** 
Extension Services Yes/No 0.41 0.46 0.37 0.73 0.69 0.75 0.91 0.92 0.91 0.67 0.66 0.67 0.68 0.62  *** 
Access to subsidy Yes/No 1.00 1.00 1.00 0.53 0.55 0.52 0.42 0.42 0.41 0.61 0.64 0.59 0.61 0.61 ***  
Credit Accessibility Yes/No 0.11 0.09 0.13 0.22 0.24 0.21 0.24 0.27 0.22 0.19 0.19 0.19 0.20 0.16  ** 
Improved varieties Yes/No 0.46 0.43 0.50 0.48 0.50 0.47 0.57 0.59 0.56 0.50 0.50 0.51 0.53 0.42  *** 
Intercropping Yes/No 0.44 0.55 0.33 0.57 0.63 0.53 0.66 0.63 0.69 0.45 0.51 0.40 0.42 0.53 *** *** 
Drought Yes/No 0.51 1.00 – 0.37 1.00 – 0.46 1.00 – 0.44 1.00 – 0.44 0.45   
Pest infestation Yes/No 0.09 0.12 0.06 0.23 0.29 0.19 0.13 0.24 0.04 0.15 0.21 0.10 0.16 0.11 *** *** 
Yield Kg/Acre 552.06 439.01 667.69 607.87 483.17 679.66 736.13 818.88 664.39 628.44 574.85 671.38 698.34 419.54  *** 

NOTE: t statistics in parentheses: *p<0.05, **p<0.01, ***p<0.001. 
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3.4. Influence of CSA on technical efficiency of maize production 

Fig. 4 illustrates the distributions of technical efficiency for DAC and 
NDAC households. The study finds households being 63% technically 
efficient, implying that farmers can reduce current input use by 37% to 
achieve the same production level. The student’s t-test reveals a sub
stantial difference between the technical efficiency of DAC (62%) and 
NDAC (64%) households. About 74% of both DAC and NDAC house
holds have an efficiency score above 50%. Almost 22% of DAC versus 
18% of NDAC households have technical efficiency below 50%, indi
cating more production loss among DAC than NDAC. 

Table 4 provides results from a two-stage panel-based censored Tobit 
model, which assess CSA practices’ influence on the technical efficiency 
of maize production. In the first step, the study removes the potential 
endogeneity of CSA choices through the use of CSA-related predicted 
values, while the second stage evaluates the effect of CSA practices on 
the technical efficiency of maize production. The study notes that SWC 
adoption significantly improves the technical efficiency of maize pro
duction for both DAC and NDAC households by 2%. Qualitative data 
reveals contour-farming and erosion control bunds conserve soil mois
ture and increase water infiltration rate. These findings are consistent 
with Kumawat et al. [46] and Abate et al. [48]. 

Similarly, the study finds the cultivation of improved varieties other 
than local varieties enhances the technical efficiency of maize produc
tion by 3% in NDAC and DAC. Qualitative data shows that farmers 
cultivate early maturing and drought-resistant improved varieties. 
Furthermore, households that intercropped maize with legume enhance 
the technical efficiency by 2% in both DAC and NDAC. Nonetheless, the 
study finds more DAC (51%) than NDAC households (40%) intercrop 
maize with beans, pigeon peas and groundnuts. Intercropping generally 
enhances soil fertility through soil moisture retention and nitrogen fix
ation [47]. 

Additionally, the study records that concurrently adopting organic 
fertilizer and inorganic fertilizer strongly increases the technical effi
ciency of maize production by 18%. Furthermore, simultaneously 
applying organic manure and inorganic fertilizer is more effective and 
evident among DAC households. This study also observes that land 
productivity positively influences the technical efficiency of maize 
production. Nevertheless, the study notices negative relationship be
tween livestock ownership and credit accessibility, on the one hand, and 
the technical efficiency of maize production, on the other hand. In other 
words, there is limited complementarity between livestock, credit and 
maize production [38]. Household heads’ gender, literacy, marital sta
tus and family size substantively affect the technical efficiency of maize 

production (see Table 4). The study finds female farmers less technically 
efficient than male farmers due to limited access to improved varieties 
and credits for procuring inorganic fertilizers. 

Imperatively, this study attempts to combine various methodologies 
to understand the drivers and the influence of CSA on the technical ef
ficiency of maize production between DAC and NDAC households under 
extreme drought episodes. Thus, the study has partly contributed to the 
evidence on attaining SDGs targets on improving agricultural produc
tivity. However, the study has not tested some hypotheses due to use of 
secondary data, which lacked some disaggregated data for CSA practice’ 
specific techniques. Thus, the study has not address the following 
research questions: (i) what is the effect of specific contour bunds, 
drainage ditches, terrenes and others on the technical efficiency, and (ii) 
what concurrent application of organic and inorganic fertilizer is 
optimal to enhance the technical efficiency of maize production? 
Additionally, land is very critical in transforming agriculture in Malawi 
[6], hence, a study which assesses the effects of these specific SWC or 
MIV or MLI with varying land tenure systems becomes informative to 
customary land regularization policies in the country. Therefore, the 
study suggests that future research should include such researchable 
hypotheses to thoroughly inform CSA implementation under both 
extreme drought episodes and varying land tenure systems. 

4. Conclusion and policy recommendations 

This study examines the drivers of CSA practices’ adoption and their 
influence on the technical efficiency of maize production under extreme 
weather events. The study uses a three-wave panel dataset (2010/2011, 
2013 and 2016/2017) containing 3800 randomly sampled households. 
To address the research objectives, the study adopts a Conditional Logit 
(CL) model to assess drivers of CSA practices’ adoption and the two- 
stage Tobit regression to evaluate their influence on the technical effi
ciency of maize production. 

Based on the CL model, the study finds that farm size, mobile phones, 
extension, slope and soil quality as well as drought significantly influ
ence the adoption of soil and water conservation, organic fertilizer, 
improved varieties and legume intercropping. Furthermore, drought 
episodes considerably enhance the adoption of soil and water conser
vation (29%), maize improved varieties (23%) and organic fertilizer 
application (76%). There is a strong bias of maize mono-cropping in the 
study area, especially among households with large farms. Nonetheless, 
the study finds more households intercropping maize with legumes in 
DAC than in NDA communities. Besides, the results reveal an inverse 
relationship between distance to the district office and the likelihood of 

Fig. 2. Distribution of DAC and NDAC households adopting various CSA practices between 2010/2011 and 2016/2017].  
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Table 2 
Results of Conditional Logit regression output [2010–2016/2017].   

NDAC DAC POOLED 

CSA PRACTICES: SWC IMV MLI OMA SWC IMV MLI OMA SWC IMV MLI OMA 

Gender (Male=1) 0.038 − 0.490*** 0.304* − 0.189 0.113 − 0.126 0.415* − 0.220 0.046 − 0.334** 0.363*** − 0.205  
(0.220) (-3.32) (2.200) (-0.89) (0.550) (-0.65) (2.270) (-0.69) (0.350) (-2.87) (3.320) (-1.18) 

Credit (Access=1) 0.027 − 0.121 0.014 0.438* 0.366 − 0.108 0.035 0.505 0.142 − 0.114 0.011 0.423*  
(0.160) (-0.85) (0.100) (2.140) (1.670) (-0.53) (0.180) (1.670) (1.080) (-0.98) (0.090) (2.520) 

Cellphone(Own=1) 0.010 − 0.108 0.074 − 0.166 − 0.022 − 0.117 0.056 − 0.095 0.002 − 0.112* 0.062 − 0.147  
(0.130) (-1.73) (1.230) (-1.70) (-0.18) (-1.09) (0.550) (-0.62) (0.030) (-2.08) (1.200) (-1.82) 

Age (Years) − 0.001 0.0120** 0.007 0.011 0.005 0.009 0.005 0.007 0.001 0.0118*** 0.00613* 0.00948*  
(-0.11) (3.110) (1.870) (1.880) (0.870) (1.640) (1.080) (0.810) (0.200) (3.820) (2.130) (1.970) 

Literate (Yes=1) 0.321* − 0.359** 0.147 0.131 0.057 − 0.241 0.326* − 0.610* 0.197 − 0.285** 0.226* − 0.122  
(2.050) (-2.69) (1.140) (0.640) (0.310) (-1.41) (2.020) (-2.14) (1.670) (-2.73) (2.260) (-0.74) 

HHsize (Number) 0.035 − 0.007 0.030 0.025 0.023 − 0.070 0.043 − 0.022 0.032 − 0.027 0.036 0.012  
(1.170) (-0.26) (1.190) (0.620) (0.580) (-1.94) (1.290) (-0.37) (1.350) (-1.30) (1.810) (0.350) 

Distance to HQ − 0.470* − 0.226 − 0.784*** − 0.142 − 0.939* − 0.162 − 0.594 0.053 − 0.542** − 0.235 − 0.739*** − 0.080  
(-2.01) (-1.10) (-4.18) (-0.48) (-2.29) (-0.47) (-1.79) (0.120) (-2.69) (-1.35) (-4.54) (-0.33) 

Slope (Flat=1) − 2.125*** − 0.115 0.230* − 0.098 − 1.821*** − 0.085 0.219 0.519 − 2.007*** − 0.096 0.236** 0.102  
(-15.89) (-0.98) (2.030) (-0.55) (-11.09) (-0.55) (1.470) (1.950) (-19.48) (-1.02) (2.630) (0.700) 

Soil Quality(Good=1) − 0.280* 0.071 0.162 − 0.244 − 0.532** 0.086 0.145 0.086 − 0.363*** 0.071 0.144 − 0.126  
(-2.09) (0.620) (1.450) (-1.39) (-3.23) (0.570) (1.000) (0.350) (-3.51) (0.780) (1.640) (-0.89) 

Soil Type(Clay=1) 0.069 0.257 0.135 0.441* 0.050 0.282 0.001 − 0.265 0.070 0.260* 0.076 0.195  
(0.410) (1.780) (0.960) (2.020) (0.270) (1.640) (0.010) (-0.92) (0.560) (2.360) (0.720) (1.130) 

Extension(Access=1) − 0.061 0.237* 0.078 0.314 − 0.123 0.370* − 0.289* − 0.094 − 0.081 0.276** − 0.061 0.157  
(-0.45) (2.060) (0.700) (1.690) (-0.73) (2.390) -(1.99) (-0.35) (-0.78) (3.030) (-0.70) (1.040) 

Land Area(Ha) − 0.004 − 0.005 − 0.007 − 0.098 − 0.208** 0.111 0.005 − 0.093 − 0.051 0.001 0.001 − 0.093  
(-0.30) (-0.96) (-0.61) (-1.54) (-2.78) (1.750) (0.320) (-1.36) (-1.29) (0.300) (0.290) (-1.94) 

Drought(Yes=1)         0.292** 0.231* − 0.463*** 0.759***          
(2.770) (2.460) (-5.15) (5.150) 

Constant 0.066 0.465 − 0.830** − 1.234** 0.600 0.541 − 1.299*** 0.123 0.160 0.368 − 0.857*** − 1.014**  
(0.210) (1.640) (-3.05) (-2.87) (1.500) (1.460) (-3.62) (0.190) (0.640) (1.620) (-3.93) (-2.87) 

NOTE: t statistics in parentheses: *p<0.05, **p<0.01, ***p<0.001. 
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adopting CSA practices due to reduced extension service visits. Addi
tionally, the study notices a negative relationship between credit 
accessibility and the technical efficiency of maize production due to 
limited complementarity between off and on-farm household activities. 

Furthermore, a Cobb-Douglass Stochastic Frontier Analysis (SFA) 
shows that inorganic fertilizer, farm size, labor, seed and organic 
manure remarkably influence maize productivity. Contrarily, drought 
episodes negatively affect maize production by around 20%. The study 
finds households being 63% technically efficient with varying scores 
between DAC and NDAC households, implying that the current technical 
efficiency can, on average, be improved by 37%. In terms of gender, the 
study finds female farmers 5% less technically efficient than male 
farmers because female farmers have limited access to agricultural in
puts. A two-stage panel-based censored Tobit model reveals positive and 
substantive influence of adopting CSA practices on the technical effi
ciency of maize production. Remarkably, the study finds SWC and MIV 
enhancing the technical efficiency of maize production by 9% and 15%, 
respectively. The study further notices the concurrent adoption of 
organic fertilizer and inorganic fertilizer in the same farm improving the 
technical efficiency by 18%, with the effect heavily observed among 

DAC households. The study also notes that household head’s literacy 
and marital status as critical in determining the technical efficiency of 
maize production. Additionally, the study finds DAC households (1720 
kg per ha) having higher yields that NDAC households (1400 kg per ha) 
and this is attributed to CSA practices’ adoption. 

In general, the study recommends simultaneous adoption of organic 
and inorganic fertilizer at farm-level to enhance the technical efficiency 
of maize production. Besides, the study proposes gender targeting 
extension services in promoting CSA practices since women have limited 
access to agricultural inputs, insecure land tenure systems, and informal 
institutions governing farm management. Moreover, the study proposes 
future studies to assess the effect of specific techniques of SWC, namely, 
terraces, contour bunds, vetiver grass and ditches on the technical effi
ciency of maize production under both extreme drought episodes and 
different land tenure security systems. 

Declaration of competing interest 
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interests or personal relationships that could have appeared to influence 

Table 3 
Results from a cobb douglas stochastic frontier analysis (SFA) [2010–2016/2017].  

DEP_VARIABLE: LN_YIELD (KG/ACRE) COBB-DOUGLAS SFA  

UNIT NDAC DAC MALE FEMALE POOLED 

lnfertilizer Kilogram 0.0306* 0.0498** 0.087*** 0.096** 0.0348**   
(2.16) (2.67) (4.23) (3.17) (3.05) 

lnfarmSize Acre 0.485*** 0.512*** 0.611*** 0.560*** 0.493***   
(19.10) (16.90) (21.89) (11.51) (24.99) 

lnlabor Hours 0.263*** 0.352*** 0.0102 0.094*** 0.295***   
(8.66) (9.03) (0.96) (3.60) (12.08) 

lnseed Kilogram 0.0124* 0.00859 0.130*** 0.142* 0.0114**   
(2.15) (1.31) (4.34) (2.55) (2.62) 

lnManure Kilogram 0.150*** 0.0823* − 0.0329 − 0.142 0.115***   
(5.34) (2.48) (-0.73) (-1.78) (5.31) 

Slope Steep (Yes/No) − 0.055 − 0.0443 0.0715 0.128 − 0.0371   
(-1.37) (-0.92) (1.59) (1.64) (-1.20) 

Soil_type Sandy (Yes/No) − 0.123* − 0.0578 − 0.107* 0.0216 − 0.0843*   
(-2.46) (-1.07) (-2.04) (0.25) (-2.29) 

Soil_quality Good (Yes/No) 0.0820* 0.132** 0.217*** 0.313*** 0.101**   
(2.06) (2.76) (4.95) (3.99) (3.29) 

Drought Affected (Yes/No)   − 0.514*** − 0.0514 − 0.203***     
(-5.63) (-0.30) (-6.63) 

Constant  0.883*** 0.647*** 0.641 1.079 0.806***   
(16.04) (10.27) (0.02) (0.03) (19.68) 

Usigma (cons)  4.826** 15.05* 0.683*** 0.722*** 7.406**   
(2.61) (2.25) (21.45) (10.88) (3.27) 

Vsigma (cons)  0.641*** 0.715*** 0.0871*** 0.0965** 0.717***   
(22.07) (20.66)   (35.17) 

N  2127 1705   3832 

NOTE: t statistics in parentheses: *p<0.05, **p<0.01, ***p<0.001. 

Fig. 3. Average maize yield (kg ha− 1) among households affected and not affected by drought [2010–2016/2017].  
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