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Abstract 
Peatlands are wetlands with peat-producing plants that account for one-third of wetlands worldwide and 

provide a variety of ecological functions and ecosystem services such as carbon storage, biomass 

production, biodiversity conservation, and climate regulation. As important ecological systems that are 
vulnerable to climate change, it is critical to assess what drives mire distribution in order to predict the 

potential impact of climate change on their distribution. As a Special Nature Reserve, the Prince Edward 

Islands (PEIs) are important conservation areas for South Africa. They support extensive peatlands, 

which are actively accumulating peat, and are, therefore, referred to as mires. The Islands have 

experienced severe reductions in precipitation and significant warming in the last decades; anecdotal 

evidence suggests that these have affected the occurrence and extent of mires on the PEIs. Factors 

that drive mire occurrence are unclear and must be identified in order to improve the ability to monitor 
them over time and this can be achieved using Species distribution models (SDMs). SDMs are a 

significant tool in studies on species distribution, the ecological consequences of climate change, and 

efforts to protect specific species or biodiversity as a whole. Predictive models have been used 

effectively to map and detect wetlands at both the local and regional levels. The aim of this study was 

to use species distribution modelling to understand the drivers and predict the island-wide distribution 

of mires on the PEIs.   

 

A total of 1415 mire presence-absence points from a vegetation field survey conducted on Marion Island 
from 2018 to 2020 were used. As there is no single best SDM algorithm, and it is difficult to accurately 

identify which environmental variables drive the distribution of mires on the PEIs, multiple regression-

based and machine learning SDMs based on six different combinations of environmental factors were 

investigated. The environmental variables combinations included climate variables, topographic, 

geology and soils and satellite imagery variables, a combination thereof and wetland classification proxy 

variables from three wetland classification systems (Ramsar, Hydrogeomorphic (HGM), International 

Union for Conservation of Nature (IUCN) Global Ecosystem Typology 2.0 wetland classification 

systems).  
 

Random Forest model performed the best, only performing fairly in terms of the AUC (0.74) and TSS 

(0.42) metrics but managing a 99% correct classification rate (CCR) of all the mire presence-absence 
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observations when trained and tested on Marion Island. The distribution of mires was largely influenced 

by surface wetness and slope. Low annual mean temperature, low temperature and precipitation 

seasonality, and increasing distance from coast (up to 7.2 km inland) also influenced the distribution of 

mires on the PEIs, though less strongly than surface wetness and slope. According to the model 

predictions, mires occupy 8.7 km² (of ~290 km²; ~ 3%) of Marion Island and 2.63 km² (of ~ 45 km²; 

~6%) of Prince Edward Island respectively.  
 

The predictive performance and reliability of the models can be improved by making enhancements to 

the datasets of environmental variables in terms of resolution. This is especially true for the spatial, 

temporal, and spectral resolutions of satellite imagery used to model environmental variables, the 

spatial resolution of the WorldClim climate data (which is currently based on data from only one 

meteorological station on Marion Island), and the spatial resolution and accuracy of the geology dataset.  

The inclusion of other environmental variables  may also improve the predictive ability of the models in 

this study.
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Chapter 1: Introduction 
1.1. Background 

The natural greenhouse effect is affected and enhanced by anthropogenic activities, which release 

greenhouse gases into the atmosphere, increasing global temperatures (IPCC, 2021). As the global 

radiative forcing becomes increasingly positive, the global climate system changes in an unprecedented 

manner, causing greater variability in the climate and frequent and more intense weather events (IPCC, 

2021). Climate influences ecosystems, species, and processes such as primary production rates and 

chemical element input–output balance (Grimm et al., 2013), and are threatened by the changing global 

climate. Water, an integral component of the climate system, is critical for human and ecological 
systems (Huang et al., 2018a), and simultaneously affected by climate change through various 

mechanisms (Bates et al., 2008; Stagl et al., 2014; Huang et al., 2018a). Extreme changes and variation 

to the water cycle processes such as precipitation, water vapour contents, evaporation, soil moisture, 

and runoff are closely associated with a warming climate, affecting the hydrological cycle (Bates et al., 

2008).  

 

The effect of climate change of water can be seen through the loss of wetland areas globally. Wetlands 

are essential ecosystems, offering invaluable ecosystem services such as food, fresh water, energy 
resources, controlling erosion, providing habitats for wetland-dependent species, and contribute to the 

well-being of people and environments globally (MEA, 2005; Amler et al., 2015; Hu et al., 2017; Ramsar 

Convention on Wetlands, 2018). Although wetland ecosystems are naturally dynamic over seasons, 

years, and longer climatic cycles, anthropogenic pressures such as wetland drainage, pollution, 

vegetation clearance, livestock grazing, land use changes, tourism, and overexploitation of their natural 

resources, as well as climate change, which will have an impact on the hydrology of specific wetland 

ecosystems primarily through changes in precipitation and temperature regimes, have increased rate 
of change in wetlands, resulting in faster degradation and greater biodiversity losses than other 

ecosystems (MEA, 2005; Erwin, 2009; Bassi et al., 2014; Finlayson et al., 2017).  

 

Mires are peatlands. They are described as wetlands with vegetation that forms peat, that is, vegetation 

that has not completely decomposed and has accumulated due to a water table at or near the surface 

(Rydin et al., 1999; Joosten and Clarke, 2002; Dartnall and Smith, 2012; Rydin et al., 2013). Their 

formation is governed by the climate; depending on cool and humid climatic conditions (Essl et al., 

2012). As mires depend on cool and humid climate conditions, they are vulnerable to any changes 
thereof (Essl et al., 2012). Carbon storage, biomass production, and climate regulation are just a few 

of the ecosystem services provided by peatlands and, as they deteriorate due to various factors, 

including those of climate change or land use change, they release stored carbon into the atmosphere, 

contributing to greenhouse gas emissions (Joosten and Clarke, 2002; Minasny et al., 2019). 

Consequently, peatlands are important in the global carbon cycle and climate regulation (FAO, 2020).  

 

This study looks at the distribution of mires on the Prince Edward Islands (PEIs). The PEIs are South 

African-owned, remote islands in the sub-Antarctic Ocean made up of Marion Island and Prince Edward 
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Island (Figure 1-1, pg. 2). They are located approximately 2180 km southeast of Cape Town and are 

politically part of the South African province of the Western Cape (Smith and Mucina, 2006). 

 

Figure 1-1: The sub-Antarctic Islands and surrounding Southern Ocean (Data source: Matsuoka et al. 

(2021)).  

The PEIs have a fairly stable annual climate, characterised by low temperature, regular rainfall, humidity 

and strong winds (Smith, 2002; Pakhomov and Chown, 2003; Smith and Mucina, 2006; le Roux and 

McGeoch, 2008). As a result of the oceanic climate, water bodies are common (Dartnall and Smith, 

2012), and peat formation is favoured. Subsequently, terrestrial vegetation of the PEIs is characterised 

by the presence of mires (Gremmen, 1981; Essl et al., 2012). Figure 1-2 depicts a mire on Marion 
Island. 

 

The Islands are mostly unoccupied except for a few research scientists visiting for short periods, or a 

handful of personnel residents there to ensure research installations and the research base on Marion 

Island remain operational. The Islands are, thus, isolated and minimally affected by direct human 

impacts. However, studies on Marion Island and other sub-Antarctic islands indicate changes to their 

climate (Frenot et al., 1997; Kirkpatrick and Scott, 2002; Smith, 2002; Pendlebury and Barnes-Keoghan, 
2007; le Roux and McGeoch, 2008). While Marion Island has seen substantial warming, decreased 

precipitation and increased wind speeds since the 1960s (le Roux, 2008; le Roux and McGeoch, 2008), 

the changes to climate on the sub-Antarctic islands have been heterogenous across the region. 

Kerguelen Island, Macquarie Island and Heard Island have also seen a decrease in temperature, 

although at different rates compared to Marion Island (Frenot et al., 1997; Budd, 2000; Kirkpatrick and 

Scott, 2002; Pendlebury and Barnes-Keoghan, 2007). Furthermore, unlike on Marion Island, 

precipitation on Macquarie Island has increased (Pendlebury and Barnes-Keoghan, 2007). Such 
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changes in the climate will have a direct impact on the indigenous biota (Smith and Steenkamp, 1990; 

Smith et al., 2001; Smith, 2002). Furthermore, anecdotal evidence suggests that water bodies on 

Marion Islands are shrinking and that the Island is becoming drier, including mires where peat moisture 

content is decreasing (Chown and Smith, 1993; Sadiki, 2019). Selkirk (2007) reported drier conditions 

in mires on the sub-Antarctic islands due to decreased precipitation in some parts of the region and 

increasing windspeed. 

 

Figure 1-2: A mire on Marion Island (Image source: M Greve). 

Mire ecosystems' geographical distribution is crucial for their conservation and management. In the face 

of climate change and related ecological changes, it is critical to understand what causes mire 

distribution in order to comprehend their current and future dynamics (Stagl et al., 2014; Harenda et al., 
2018). Compared to resource intensive, on-the-ground methods, remote sensing offers efficient, 

effective, and reliable ways to identify and observe surface water (Torbick et al., 2007; Zhai et al., 2015). 

Geographic Information Systems (GIS) in turn provide powerful platforms to model environmental 

parameters that may be used as proxies for identifying mire locations. However, the identification and 

delineation of mires from satellite imagery is more complex than delineating normal open water bodies, 

as mires constitute systems with different spectral properties, including open water, vegetation 

dominated by different species, and a mixture thereof (Kaplan and Avdan, 2017). The vegetation of the 
Prince Edward Islands varies greatly in an area, with small areas, especially at low elevations below 

200 m, often containing several vegetation types (Smith and Mucina, 2006), making it difficult to discern 

between mire vegetation and other vegetation types using only satellite imagery. As a result, other 

factors besides the existence of plant and water are required to monitor their change through time. As 
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such, factors that influence their distribution must be established in order to determine how they might 

be tracked through time. 

 

Species distribution models (SDMs), which characterise and predict the occurrence of particular 

species by evaluating the connection between known species occurrences and environmental factors 

thought to affect their occurrence, are often used in research into the distribution of species, ecological 
repercussions of climate change, as well as attempts to conserve particular species or biodiversity as 

a whole (Guisan and Zimmermann, 2000; McPherson et al., 2004; Franklin, 2009). Predictive models 

have been used successfully at both the local and regional levels to map and detect wetlands (Hunter 

et al., 2012; Hiestermann and Rivers-Moore, 2015; Rebelo et al., 2017). Therefore, this study employs 

SDMs to determine the drivers of mire distribution of the PEIs. Almost always, the data necessary to 

train SDMs requires substantial preparation in GIS (Brown, 2014). As such, while SDMs were built 

outside of GIS, the data in this study were pre-processed, visualised and results prepared (into binary 

prediction maps) in a GIS (QGIS or ArcGIS Pro). In addition, remote sensing methods were used to 
create and pre-process data required for input into the SDMs. As such, this study uses SDMs, GIS and 

remote sensing to simulate distribution of mires on the PEIs landscapes. 

 

1.2. Problem Statement 

The PEIs were declared a Special Nature Reserve by South Africa in 1995 and thus hold a special 

protection status regarding South African territory, with human activities limited to conservation and 

scientific research (Chown et al., 2006; Smith and Mucina, 2006). Although they are among the most 

isolated locations on the planet with limited direct human impact, they have been experiencing a warmer 

and drier climate. Change to the climate has a direct influence on the hydrological system. Anecdotal 

evidence suggests wetlands on Marion Island are changing, with lakes shrinking, while mires become 
drier and shallower (Hedding and Greve, 2018). Furthermore, preliminary evidence suggests that lakes 

are becoming smaller in extent (Sadiki, 2019). Mires represent an important habitat and are integral to 

the hydrological and biogeochemical water cycles on the PEIs, consequently affecting the ecology of 

the Islands. 

 

In the context of climate change and associated ecological changes, it is important to estimate the future 

dynamics and spatial distribution of mire ecosystems. Knowing where mires are located and how they 
might change under different climate scenarios, in turn, is fundamental to conserve and better manage 

these features. Although research has been conducted on the mires on Marion Island, the focus has 

been on features such as their overall location or distribution, the vegetation dynamics within them, and 

the influence of climate change (Gremmen, 1981; Smith and Steenkamp, 1990; Chown and Smith, 

1993; Smith and Mucina, 2006). No research has been conducted to attempt to understand what factors 

dictate their occurrence. This research applies remote sensing, GIS, and species distribution modelling 

to determine the key ecological drivers for the existence of mires on the PEIs, to provide a reference 

state of mire distribution that can be used in future studies to monitor changes to their distribution over 
time.  
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1.3. Aim and Objectives 

The aim of this study was to use species distribution modelling, utilising variables prepared using GIS 

and remote sensing methods, to predict and understand the distribution of mires on the PEIs. To 

achieve this aim, two key objectives were identified. 

 

Objective 1: Identify the best algorithm to predict the distribution of mires on the PEIs. 
This involves testing the performance of different species distribution models based on different sets of 

predictor variables to determine the best model and predictor variables to be used to predict the 

distribution of mires on the PEIs.  

Objective 2: Determine and understand the main drivers of the distribution of mires on the PEIs. 
This involves in-depth analysis of the contributions of the predictor variables. 
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Chapter 2: Literature Review 
2.1. Wetlands  

Water is a vital part of life on  earth; thus, there is a widespread need for understanding the spatial and 

temporal variations of surface water as changes thereof impact the human population, the environment, 

and other natural resources (Alsdorf et al., 2007; Huang et al., 2018a). Surface water is dynamic, 

changing between states of matter, and continuously being redistributed as a result of both natural and 

anthropogenic factors (Coppin et al., 2004). With advances in earth observations and Geographic 
Information Systems (GIS), the observation of water from space becomes an elementary remote 

sensing application and a fundamental part of exploring hydrological processes (Huang et al., 2018a). 

As such, research on the impacts of different factors such as climate change, urbanisation, and pollution 

on surface water have been conducted in many parts of the world. 

 

Wetland ecosystems are defined as “permanently or seasonally inundated freshwater habitats ranging 

from lakes and rivers to marshes, as well as coastal and marine areas such as estuaries, lagoons, 
mangroves, and reefs” (Ramsar Convention on Wetlands, 2018, p. 11).They are essential to life, 

offering invaluable ecosystem services such as food, fresh water, energy resources, controlling erosion, 

providing habitats for wetland-dependent species, and contribute to the well-being of people and 

environments globally (MEA, 2005; Amler et al., 2015; Ramsar Convention on Wetlands, 2018). In a 

natural cycle, wetland ecosystems are particularly dynamic across seasons, years, and larger climatic 

cycles; however, anthropogenic pressures and the impacts of climate change have exacerbated their 

rate of change, leading to a rapid degradation and higher losses in biodiversity compared to other 

ecosystems (MEA, 2005). To monitor wetlands and prevent further loss, their distribution across the 
landscape should be known.  

 

Peatlands are wetlands with vegetation that creates peat, that is, plants depositing at the surface without 

entirely decomposing due to deposition occurring at or near the water table (Rydin et al., 1999; Joosten 

and Clarke, 2002; Dartnall and Smith, 2012; Rydin et al., 2013). They depend on cool and humid climatic 

conditions, along with low evaporation rates, and high effective moisture preferred (Yu et al., 2009; Essl 

et al., 2012; Harenda et al., 2018). Peatlands account for one-third of all wetlands globally 

(approximately 3% of the earth’s surface), and they provide a variety of ecological services such as 
carbon storage, biomass production, biodiversity conservation, and climate regulation (Joosten, 2012; 

Grundling et al., 2017; Minasny et al., 2019). However, as they are deteriorating as a result of climate 

change and land use change, stored carbon is released into the atmosphere, contributing to 

greenhouse gas emissions (Joosten and Clarke, 2002; Harenda et al., 2018; Minasny et al., 2019). In 

areas that are experiencing drying as a result of climate change, the high water table level required for 

peatlands is lowered, enabling oxygen to permeate the peatlands, increasing peat degradation and 

consequently a fast release of stored carbon into the atmosphere (FAO, 2020). 
 

Mires are peatlands where the peat is actively accumulating (Joosten and Clarke, 2002). Gremmen 

(1981) studied the vegetation on the PEIs, distinguishing 41 plant communities, which were grouped 

into six community complexes, identifying the peatlands on the Islands as mires in the process. Smith 



MM Sadiki: MSc Dissertation  Page | 7 

and Mucina (2006) further classified the vegetation of the Islands under three main vegetation groups, 

namely, Marine Macroalgal vegetation, Subantarctic Tundra and Subantarctic Polar Desert and created 

five mapping units, which include sub-Antarctic cinder cones, coastal vegetation, fellfield, mire-slope 

vegetation, and polar desert, to compile maps of the vegetation on the Islands. Their work provides a 

description of the distribution of mires on Marion Island, stating that “mire vegetation is found in most 

lowland areas, being most extensive below 200 m, but found up to 400 m altitude. On Marion Island 
approximately 30% of the area below 100 m and approximately 3% of that between 100 and 300 m is 

occupied by mire vegetation; the largest mires on Marion Island are found on the coastal plain between 

Repetto’s Hill and Long Ridge, inland of East Cape, Macaroni Bay and on the western coastal plain 

between Kleinkoppie and Kampkoppie” (Smith and Mucina, 2006, p. 716). Mire complexes encompass 

almost half of the Island below 300 metres above sea level (m a.s.l) (Van Zinderen Bakker Sr, 1970; 

Smith et al., 2001; Yeloff et al., 2007). These mires have a smooth surface with no pattern of 

depressions (Gremmen, 1981; Yeloff et al., 2007) and many are covered by a thick layer of gelatinous 

algae (Van Zinderen Bakker Sr, 1970). Figure 2-1 shows the location of the largest mires on Marion 
Island as per Smith and Mucina (2006) description.  

 

 

Figure 2-1: Location of the largest wetlands as per the Smith and Mucina (2006) description. The locations 

of the largest mires are circled by red ovals. 

Pekel et al. (2016) derived worldwide surface water locations and seasonality using inventories and 

national descriptions, statistical extrapolation of regional data, and satellite images; however, there are 

no data for the Prince Edward Islands in the global datasets. Therefore, the only documentation 

highlighting the distribution of the mires on the PEIS is provided by Gremmen (1981), Smith et al. (2001) 

and Smith and Mucina (2006). 



MM Sadiki: MSc Dissertation  Page | 8 

 

2.2. Wetland Mapping 

Remote sensing of water has long been a subject of interest. In 1973, McGinnis and Rango (1975) 

monitored floods using  earth resources satellite systems. In the 1970s, open water was mapped as an 

indicator of waterfowl habitat quality. This study was conducted to assist in devising appropriate 

management decisions of migratory waterfowl, resulting in maps of locations and frequency of surface 

water bodies (Work et al., 1976). In most cases, remote sensing has been used to model the spatial 

and temporal changes of lakes and rivers. One such example, a study carried out by Rokni et al. (2014), 
evaluated surface area changes of Lake Urmia, Iran, over 13 years (2000-2013) after observing 

increasing salinity and decreasing surface area in the lake. A similar study was conducted by Sarp and 

Ozcelik (2018) where they investigated the spatiotemporal changes in Lake Burdur, Turkey, over 24 

years (1987-2011) using multiple spectral water indices.  

 

By using remote sensing to observe and monitor spatiotemporal changes in wetlands, these important 

land features can be preserved and better managed (Ozesmi and Bauer, 2002). Wetlands can be 

monitored using conventional field mapping; however, remote sensing offers a better alternative, 
especially over large geographic areas (Torbick et al., 2007). Furthermore, wetlands can be monitored 

through the interpretation of aerial photographs (Minasny et al., 2019). Due to the high spatial resolution 

aerial photographs offer, change detection is likely to be more precise than most classification results 

from satellite imagery as they allow for the identification of small, long or narrow wetlands (Ozesmi and 

Bauer, 2002). However, it works better once the wetland of interest has been identified; hence, it cannot 

be used to identify wetlands but rather to determine their extent (Rebelo et al., 2017). Additionally, 

change detection using aerial photographs may become a time-consuming process, especially when it 

is being conducted over multiple years (Baker et al., 2007). Aerial photograph interpretation is also 
subjective and prone to human error, as well as variation in interpretation. As such, results are difficult 

to replicate and can be inconsistent (Coppin et al., 2004; Baker et al., 2007).  

 

As the spatial, spectral and temporal resolution of satellite data continues to improve, modern day 

remote sensing relies on satellite remote sensing for land cover and land use change detection; wetland 

detection and delineation is no exception (Baker et al., 2007; Rebelo et al., 2017). Satellite remote 

sensing offers advantages over aerial photographs in that it offers repeated coverage allowing for 
seasonal or yearly change detection, provides the data in a format that is easier to integrate into a GIS, 

and does so at a lesser cost (Ozesmi and Bauer, 2002). Most of the research regarding the remote 

sensing of water is aimed at attaining more efficient and effective methods of detecting and monitoring 

water. Methods of extracting water areas from remotely sensed imagery are developed based on the 

principle that water has a lower reflectance when compared to other land cover types (Huang et al., 

2018a). The boundary between water and non-water features, specifically land, is defined by their 

respective responses to the near-infrared radiation (NIR) band, with water appearing darker than land 

as it absorbs the NIR (Klemas and Pieterse, 2015).  
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Methods of analysing remotely sensed data to assess water resources date as far back as 1976. Work 

et al. (1976) used satellite data to map open surface water (ponds and lakes) in the glaciated prairie 

where they focussed on identifying water features using the principle that in a single infrared waveband, 

water possesses a low radiance. With this principle, they were able to examine each scene pixel in the 

imagery as either water or non-water using a ‘high-speed digital computer’, resulting in quick and 

accurate recognition of the open surface water (ponds and lakes). The study also adopted a multiple 
waveband approach, which they referred to as proportion estimation, which estimated the fraction of a 

cell that may be composed of open water, allowing for the identification of more open water features.  

 

The most popular current method of detecting surface water from satellite imagery, an adaptation of the 

Normalised Difference Vegetation Index (NDVI), is the Normalised Difference Water Index (NDWI), as 

suggested by McFeeters (1996). The NDVI is an index intended to assess surface biomass and 

productivity using the near-infrared (NIR) and red bands (refer to equation (4), pg. 32), to enhance the 

presence of vegetation, while it does not affect water features (McFeeters, 1996). The near-infrared 
band (750–900 nm) is used primarily for imaging vegetation, with the red band (600-690 nm) mainly 

used to imaging man-made objects, soil, and vegetation. McFeeters (1996) suggested that if the green 

band (515-600 nm), used for imaging vegetation and deep-water structures, were to be substituted in 

for the red band, only water features would be enhanced. McFeeters (1996) was able to offer a method 

for identifying open water areas from satellite data while suppressing soil and vegetation elements at 

the same time. The NDWI (equation (5), pg. 33) is a first-generation water index based on the idea that 

water has the highest absorption capabilities and vegetation has the highest reflectance in the near 
infrared (NIR) (Huang et al., 2018a).  

 

Although the NDWI can differentiate between water and vegetation and successfully extract water from 

remotely sensed images, the index has some shortcomings (Xu, 2006; Gautam et al., 2015; Du et al., 

2016; Huang et al., 2018a). Specifically, it is unable to distinguish between water and built-up areas 

because built-up areas return positive values like those of water due to NIR reflectance being lower 

than the green reflectance (Xu, 2006; Du et al., 2016). Previous work has demonstrated that the 

modification to the NDWI by Xu (2006), as illustrated by equation (1), makes the index more stable and 
reliable and thus more suitable to enhance and extract water bodies by replacing the NIR band with the 

short-wave infrared (SWIR) band, which is used for imaging vegetation and soil moisture content, and 

is better at distinguishing between water, soil and built-up areas. 

 

 MNDWI = Green - SWIR
Green + SWIR

 (1) 

 

Although the modified Normalised Difference Water Index (MNDWI) also has shortcomings in that it is 

unable to discriminate between water and snow because of the high reflectivity of snow compared to 

water, the index is still suitable for surface water extraction from images, if this limitation is 

acknowledged. In the first ten years of the twenty-first century, the NDWI was the most popular and 

extensively utilised approach, and the modified NDWI has since become the acknowledged standard 

for water detection and monitoring (Huang et al., 2018a). 
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There are other water extraction indices such as the Automated Water Extraction Index (AWEI) 

proposed by Feyisa et al. (2014), which uses a different strategy of extracting surface water compared 

to the NDWI and MNDWI. The index was proposed to use band differencing, addition, and the 

application of different coefficients to maximise the distinguishability of water features from the non-

water feature pixels. It was designed with shadows and urban backgrounds in mind as these are major 

problems that result in low accuracy of surface water feature classification. The authors used Landsat 

5 imagery to develop two versions of the AWEI, one for areas that do not have shadows (!"#$!"#), 

and one for areas that have shadows (!"#$"#). After comparing these with the performance of the 

MNDWI on the same data, they concluded that the AWEI was an improved water index, especially 

when applied to areas that have shadows and are built-up. The improvement is credited to the index’s 

ability to accurately classify edge pixels, using a stable threshold (Feyisa et al., 2014).  

 
The performance of the NDVI, NDWI, MNDWI, and AWEI were compared from their application on 

Open Land Imager (OLI) imagery (Zhai et al., 2015). The results showed that AWEI and MNDWI are 

better indices for surface water extraction. A different result is achieved when a Support Vector Machine 

(SVM) classification method coupled with spectral water indexing (NDWI, MNDWI, AWEI) is used as a 

method of extracting water bodies and detecting change (Sarp and Ozcelik, 2018). The results show 

the method produced the best results for all the spectral water indices that were applied after the SVM 

classification. Thus, the results suggest that three of the indices (NDWI, MNDWI, and AWEI) are 

capable of extracting water if the conditions are favourable. Therefore, the appropriateness of an index 
is determined by the need and conditions of the study area.  

 

Water indices (WIs), namely, NDWI, MNDWI, and AWEI, are good detectors of surface water features 

from remotely sensed imagery. However, Jiang et al. (2014) suggest that there are problems associated 

with these WIs that are based on the method of thresholding, that is, deciding which pixels are water, 

non-water, and mixture features. Inefficient detection and identification of surface water features; water 

features mixed up with non-water features (background noise); and variations in the extraction threshold 

that are based on the characteristics of each scene are all issues (Jiang et al., 2014). Thus, the 
Automated Method for Extracting Rivers and Lakes (AMERL) index was created with the idea that mixed 

water pixels are typically found in narrow rivers or along the edge of lakes or wide rivers. The index 

simplifies threshold optimisation while also removing noise that may be caused by shadows. Compared 

to the other WIs over three study areas in China, the AMERL performed the best, thus improving the 

extraction of narrow rivers (Jiang et al., 2014). 

 

As mentioned previously, the identification and delineation of vegetated wetlands (such as peatlands) 
from satellite imagery is more complex than that of open water bodies, due to them occurring in open 

water, vegetation, or a mixture thereof (Kaplan and Avdan, 2017). These can be mapped using 

vegetation or water spectral signatures (Kameyama et al., 2001; Thomas et al., 2015). This becomes a 

concern with pixel-based indices such as NDVI and NDWI being used to identify vegetated wetlands 

from satellite imagery as the threshold is not a fixed number; rather, it must be computed dynamically 

in order to differentiate between water, non-water, and mixed features (Ji et al., 2009). This is illustrated 

by Kaplan and Avdan (2017), who investigated Sentinel-2 imagery’s ability to map and monitor 



MM Sadiki: MSc Dissertation  Page | 11 

wetlands. The authors were successful in mapping and monitoring wetlands by extracting their 

boundaries using an object-based classification method and using two indices, the Normalised 

Difference Vegetation Index (NDVI) and the Normalised Difference Water Index (NDWI) to classify the 

contents (i.e., fully vegetated, mixed, and water areas) within the wetland boundaries. Regardless, other 

challenges to using remote sensing to map wetlands remain. Although wetlands are defined by the 

presence of water, this does not indicate that the water is constantly there or that it is on the earth's 
surface. Water may be present seasonally or at specific times of the year, and it may also occur below 

the surface, where the plans are rooted (Gallant, 2015). Furthermore, the distribution of wetlands is 

influenced by a variety of abiotic and biotic elements such as elevation, slope, geology, soils, and 

climate, all of which interact and interconnect, making it difficult to map the distribution (Hiestermann 

and Rivers-Moore, 2015; Rebelo et al., 2017). All these factors present difficulties when using remote 

sensing to map open water features. Huang et al. (2018a) further highlight that one of the biggest 

limitations is the unavoidable effect of cloud cover on the imagery. This is of concern since the PEIs are 

often covered by clouds, making cloud-free images exceedingly rare. The authors further suggest that 
another limitation is that sensors are unable to penetrate vegetation cover, thus preventing the detection 

of water bodies that may be underneath vegetation. This can be managed by the inclusion of 

topographic information to supplement remote sensing-derived data. As such, while remote sensing 

has introduced new methods of detecting, extracting, monitoring, and mapping surface water features, 

it is important to remember that there are limitations to using remotely sensed data, which may result 

in under representation of wetlands (Hiestermann and Rivers-Moore, 2015). Therefore, auxiliary data 

such as topographic information can help to improve the accuracy of wetlands mapping (Hiestermann 
and Rivers-Moore, 2015). 

 

There is a close relation between topography and surface water because of its fluid characteristics. 

Thus, surface characteristics can play a crucial role in hydrological modelling. The shape and 

permeability of a landscape controls the movement of surface water (Wolock et al., 2004; MacMillan 

and Shary, 2009). Water flows from higher to lower places, thus the flow and accumulation of water are 

closely related to the terrain (Huang et al., 2018a). For instance, when the profile curvature is concave, 

surface flows converge to form areas of accumulation or deposition while they diverge where the profile 
curvature is convex, moving at greater speeds that facilitate surface runoff and erosion thus reducing 

infiltration and groundwater recharge (Moore et al., 1991; MacMillan and Shary, 2009). A convex plan 

curvature suggests the presence of ridges, from which water flows outward (diverge) while it converges 

on concave slopes forming drainage lines (valleys) since water flows inward and accumulates at those 

points (Milevski, 2007). As such, the classification of the landscape aids in extraction of surface water 

bodies by providing the determination of areas of possible water accumulation. Considerations are the 

permeability of the underlying geology and soil, as this affects the flow and accumulation of water. 

Surface runoff is extensive in areas of low permeability, limiting groundwater recharge while in 
landscapes with high permeability, groundwater recharge is significant as a result of limited surface 

runoff (Wolock et al., 2004). The geology on the Prince Edward Islands (PEIs) consists primarily of grey 

and black lava flows. The predominant younger black lava flows are more porous while grey lava is 

more impermeable and less susceptible to weathering (Gremmen, 1981). Andosols, which are the 

predominant soil type on Marion Island, are also highly porous and have good internal drainage 
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(Driessen et al., 2001; Lubbe, 2010). Therefore, the permeability of the surface also affects the amount 

of surface water, surface water runoff, surface water infiltration, and groundwater storage and recharge. 

The analysis of the terrain factors such as slope, aspect, curvature, relief (hills, mountains, and valleys), 

the drainage network, as well as the underlying soil and geology, thus provides valuable information in 

the study of spatial and temporal patterns of surface water.  

 
These characteristics of the surface can be extracted from digital elevation models (DEMs) (Giles and 

Franklin, 1998). Lower areas where water is likely to accumulate can be identified from DEMs (Huang 

et al., 2017). DEMs have been used in several studies to assist in the detection of surface water from 

remotely sensed imagery. Uuemaa et al. (2018) effectively identify potential places for wetland 

construction or restoration in New Zealand using topographic parameters (slope, topographic wetness, 

and stream network). Birsrat and Berhanu (2018) used the Topographic Wetness Index (TWI) to 

determine sites that store water in Ethiopia. Of note is that peatland development areas have distinct 

hydrologic regimes, climates, chemistry, landforms, substrates, and flora (Bourgeau-Chavez et al., 
2018; Minasny et al., 2019). Topographic information that describes hydrologic regimes can be derived 

using methods of GIS. Primary and secondary terrain analysis methods, such as slope, the TWI, or 

landforms (Topographic Position Index (TPI), based landform classification), can be used as supporting 

information when identifying peatlands. Therefore, from a DEM, it is possible to create a reliable and 

usable hydrology model, or a landform model, that can assist in the delineation of surface water from 

satellite imagery. DEM data can also be used to supplement the detection and extraction of water by 

providing supplementary information to derive water depth, eliminate terrain shadows, and map water 
underneath vegetation (Huang et al., 2018a). Wang et al. (2002) presented a method for mapping flood 

extent in a coastal floodplain using Landsat 7 TM data. Due to Landsat TM’s inability to penetrate 

vegetation, the flooded areas were underestimated. Therefore, DEM data were incorporated to 

overcome this limitation. Although DEM data do not provide information of the actual surface water, it 

can accurately represent the landscape, and surface water accumulation areas can be more precisely 

inferred. 

 

Hydrology is an important part of the formation of both lakes and mires. There are several indices that 
model surface water content well. These model the influence of the terrain by mathematically 

categorising the landscape from a DEM (Hjerdt et al., 2004), to identify wet areas. Such indices include 

the TWI, which was introduced by Beven and Kirkby (1979). The index quantifies the effect of the local 

topography on the runoff flow direction and accumulation by considering flow direction, flow 

accumulation, and slope (Beven and Kirkby, 1979; Qin et al., 2011; Ballerine, 2017). High values of 

topographic wetness indicate areas with high potential of water accumulation while lower (negative) 

values indicate drier areas (Mattivi et al., 2019). Beven and Kirkby (1979) define TWI using equation 

(2). 

 TWI	 = 	ln	 ,$%&'()*+&	%-*%./0 b -, where b = slope in degrees (2) 

 
The TPI is an algorithm that classifies landscapes into slope positions (Figure 2-2). It compares each 

cell's elevation value to the mean elevation of neighbouring cells determined by a radius (Weiss, 2001; 

Jenness and Enterprises, 2006). The resultant TPI values can range from negative to positive values. 
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Positive TPI values indicate that the cell is higher in elevation than the neighbouring cells (ridgetops or 

hilltops), in contrast, the negative values indicate the cell is lower in elevation than neighbouring cells 

(valleys or canyon bottoms). TPI values near zero indicate locations of flat areas or mid-slope, 

depending on the slope of the cell (Weiss, 2001; Jenness and Enterprises, 2006).  

 

 

Figure 2-2: Summary of landform classifications according to TPI values (Jenness and Enterprises, 2006).  

This algorithm is also scale dependent. The level of detail in the classification depends on the shape 
and size of the neighbourhood of analysis (Tağıl and Jenness, 2008). Different shapes (circle, rectangle, 

annulus, wedge or irregular) can be used for the neighbourhood. Weiss (2001) used an annulus (ring-

shaped object) neighbourhood created by specifying two different radii. Different sized neighbourhoods 

reveal different landforms (Skentos and Ourania, 2017). Small neighbourhoods are used to classify 

small features, such as small streams and lakes (Figure 2-3), while larger neighbourhoods are used to 

classify larger features, such as canyons or mountains (Figure 2-4).  

 

 

Figure 2-3: Small neighbourhood TPI and slope 

position classification (Weiss, 2001). 

 

Figure 2-4: Large neighbourhood TPI and slope 

position classification (Weiss, 2001).

 

TPI values can be classified into discrete slope position classes based on how extreme they are, as 

well as the slope for values close to zero. The classes may be defined in terms of the actual TPI values 
or in terms of standardised TPI values based on the mean and standard deviation of the TPI grid 

(Jenness and Enterprises, 2006). The latter method was suggested by Weiss (2001), and is the 

commonly used method used to classify slope positions. By standardising TPI grids to a mean of zero 

(mean = 0), and standard deviation of one (stdev = 1), any slope combination of TPI grids may be 

classified using the same fundamental algorithm (Weiss, 2001; Jenness and Enterprises, 2006).  Weiss 

(2001) suggested a 6-category slope position classification (Table 2-1) while Tağıl and Jenness (2008) 

used a 4-category slope position classification (Table 2-2). 

Table 2-1: TPI and slope criteria for 6-slope position classes (Weiss, 2001). 

Class Class description TPI and slope criteria 
1 Ridge TPI ≥ 1 SD 
2 Upper Slope 0.5 SD < TPI ≤ 1SD 
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3 Middle Slope -0.5 SD < TPI < 0.5 SD, Slope > 5° 
4 Flat Slope -0.5 SD < TPI < 0.5 SD, Slope ≤ 5° 
5 Lower Slope -1 SD < TPI ≤ -0.5 SD 
6 Valley TPI ≤ -1 SD 

 

Table 2-2: TPI and slope criteria for 4-slope position classes (Tağıl and Jenness, 2008). 

Class Class description TPI and slope criteria 
1 Ridge TPI ≥ 1 SD 
2 Mid Slope -1 SD < TPI < 1 SD, Slope ≥ 6° 
3 Flat Surface -1 SD < TPI < 1 SD, Slope < 6° 
4 Valley TPI ≤ -1 SD 

 

A single neighbourhood can classify the landscape into slope position classes, however, TPI values 

that are calculated from two neighbourhood sizes are better as they provide more information about the 

general shape of the landscape, thus making it possible to identify more complex features (Weiss, 2001; 
Tağıl and Jenness, 2008; Skentos, 2017). Combining TPI at two scales classifies the landscape into 10 

landform classes (Table 2-3).  As elevation is spatially autocorrelated, with the ranges of the TPI values 

increase with scale, standardising TPI grids to a mean of zero (mean = 0), and standard deviation of 

one (stdev = 1) makes it possible to classify the landscape into landform classes (Weiss, 2001; Jenness 

and Enterprises, 2006). 

Table 2-3: TPI and slope criteria for 10 landform classification (Weiss, 2001). 

Class Class description TPI and slope criteria 
Small neighbourhood Large neighbourhood 

1 Canyons, deeply 
incised streams 

TPI ≤ -1 SD TPI ≤ -1 SD 

2 Midslope drainages, 
shallow valleys 

TPI ≤ -1 SD -1 SD < TPI < 1 SD 

3 Upland drainages, 
headwaters 

TPI ≤ -1 SD TPI ≥ 1 SD 

4 U-shaped valleys -1 SD < TPI < 1 SD TPI ≤ -1 SD 
5 Plains -1 SD < TPI < 1 SD -1 SD < TPI < 1 SD 

Slope ≤ 5° 
6 Open slopes -1 SD < TPI < 1 SD -1 SD < TPI < 1 SD 

Slope ≥ 6 
7 Upper slopes, mesas -1 SD < TPI < 1 SD TPI ≥ 1 SD 
8 Local Ridges, hills in 

valleys 
TPI ≥ 1 SD TPI ≤ -1 SD 

9 Midslope ridges, small 
hills in plains 

TPI ≥ 1 SD -1 SD < TPI < 1 SD 

10 Mountain tops, high 
ridges 

TPI ≥ 1 SD TPI ≥ 1 SD 

 

2.3. Species Distribution Modelling 

A strong link exists between a species and its surroundings; therefore, supplementary environmental 

and climatic data can be used to explain the distribution of a species across the landscape. Species 

distribution models (SDMs) employ algorithms to estimate a species' geographic range by evaluating 

the link between known species occurrences and environmental variables presumed to influence its 
occurrence (Guisan and Zimmermann, 2000; Elith and Leathwick, 2009; Franklin, 2009). Correlations 

between the distributions of species and the physical environment have long been a subject of interest 



MM Sadiki: MSc Dissertation  Page | 15 

(Guisan and Zimmermann, 2000; Elith and Leathwick, 2009; Hallstan, 2011). In the late 1970s, when 

computational capacity was limited, species distribution modelling was first developed (Zimmermann et 

al., 2010), and as a result of technology improvements, such as improved statistical approaches, GIS, 

more digital data, and a greater range of tools available to analyse them, new and improved modelling 

methods have been developed (Elith and Leathwick, 2009; Miller, 2010). Species distribution modelling 

typically involves four steps, namely 1) collecting the location of species occurrence; 2) amassing 
environmental predictor variables; 3) fitting occurrence and environmental data into a model or 

algorithm to identify the conditions associated with the species' occurrence; and 4) predicting the 

species' distribution to a landscape (Guisan and Zimmermann, 2000; Pearson, 2007; Elith and 

Leathwick, 2009). Wetland occurrence is governed by complicated interactions between geographic 

characteristics such as altitude, gradient, and geology, all of which impact groundwater, soils, and 

climatic variables, and SDMs have proved to be effective in mapping and identifying wetlands of varied 

sizes (Hiestermann and Rivers-Moore, 2015; Rebelo et al., 2017; Zhong et al., 2021). Essl et al. (2012) 

also looked at the impact of a changing climate on the distribution of Austria's nine main types of 
peatlands. As such, SDMs, supported by pre-analyses using GIS and remote sensing, are a useful tool 

for mapping and predicting the location of wetlands. 

 

The initial step in developing SDMs is the collection of sufficient and accurate locations of the 

occurrence of the species of interest (Guisan and Zimmermann, 2000; Pearson, 2007; Elith and 

Leathwick, 2009). This information can either be presence-only data, which provide locations where the 

species were observed, or both presence and absence data providing locations where species were 
observed and were not observed (Pearson, 2007). In most cases, presence data are plentiful, however, 

absence data are often unavailable or insufficient due to a lack of surveying effort (Gomes et al., 2018). 

However, some SDMs allow for absence data to be randomly drawn from the area of interest (Hijmans 

and Elith, 2013; Gomes et al., 2018). Field surveys conducted by an individual or a small group of 

individuals (personal collection), surveys conducted by a large number of people (large surveys), 

museum collections, and Internet resources can all be used to collect occurrence data (Pearson, 2007). 

Thereafter, the most relevant environmental data (predictors variables) (Jiménez-Valverde et al., 2008; 

Hijmans and Elith, 2013) are collected. In most cases, SDMs are developed using existing predictor 

data in the hopes that the model is able to discern which of those factors are critical to the species' 

survival; however, others have argued that only ecologically relevant predictor data, which can be 

continuous or categorical, should be used instead (Elith and Leathwick, 2009; Naimi and Araújo, 2016). 
SDM data may also be prone to multicollinearity among predictors, spatial autocorrelation in both 

response and predictor variables, and positional uncertainty, which must be addressed before fitting a 

model with the data (Naimi and Araújo, 2016).  

 

In the modelling of species distribution, a variety of algorithms are available that are classified into three 

classes, namely, profile, regression, and machine learning methods (Hijmans and Elith, 2013). Profile 

methods solely analyse presence data, whereas regression and machine learning methods employ 

both presence and absence or background data (Hijmans and Elith, 2013). In the early phases of SDM 
use and development, regression models were often utilised; however, more advanced statistical 

techniques for SDMs are currently used, based on improved methodology and ecological 
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understanding, enhancing the accuracy of model predictions (Guisan and Zimmermann, 2000; Yu et 

al., 2020). Machine learning approaches have become more popular in SDMs during the last two 

decades (Früh et al., 2018; Yu et al., 2020). Machine learning model methods include Artificial Neural 

Networks (ANN), Random Forests (RF), Boosted Regression Trees (BRT), and Support Vector 

Machines (SVMs) (Hijmans and Elith, 2013). Ensemble models, which combine individual models to 

create one predictive output, are often used when it is difficult to discern which model would be best to 
use in a new situation and should produce more accurate predictions than any single model (Araujo 

and New, 2007; Marmion et al., 2009; Kaky et al., 2020). The accuracy of the prediction of the species 

distribution depends on the model or algorithm used, so the choice of model must be made carefully 

(Elith and Leathwick, 2009). Therefore, some have resorted to comparing multiple models’ ability to 

predict to select the best one for application in a particular study (Essl et al., 2012; Hiestermann and 

Rivers-Moore, 2015; Früh et al., 2018). In terms of predicting the occurrence of wetlands, the machine 

learning MaxEnt model is the most popular SDM and has been successfully used to predict the 

occurrence of wetlands (Hunter et al., 2012; Rebelo et al., 2017). This model is based on the principle 
maximum entropy and is suitable for prediction of species occurrence from presence-only data (Phillips 

et al., 2006; Kaky et al., 2020). 

 

Following the fitting of the models, further processes such as model evaluation, prediction, and variable 

importance assessment can be used (Naimi and Araújo, 2016). By evaluating the models, their ability 

to predict the occurrence of a species can be assessed and this can assist in choosing the optimal 

model for the situation. For model evaluation, testing data is required to test the models, and in rare 
cases, there is enough data to have a completely independent test dataset, that is species occurrence 

data that were not used in the training of the model (Guisan and Zimmermann, 2000; Pearson, 2007; 

Naimi and Araújo, 2016). However, in most cases, a data resampling method is required to create a 

test data set. These methods include, 1) random subsampling, 2) k-fold cross-validation, and 3) 

bootstrapping. Such methods are ideal when the species occurrence dataset is too small to be split into 

two independent training and testing datasets (Guisan and Zimmermann, 2000). The first method, 

subsampling, is a hold-out strategy that relies on data splitting into training and testing data (Kohavi, 

1995). The method is repeated k times, and the estimated accuracy is the mean accuracy of each run 
(Kohavi, 1995). The second method, k-fold cross-validation, is used by the majority of modelers as it 

reduces variability and is less sensitive to erroneous findings from a single random pick because it 

cycles through all the data (Hijmans and Elith, 2013). Finally, bootstrapping is a sampling approach that 

repeats a sampling with a replacement method, drawing a sample with the same size as the original 

data and using it for training data each time (Naimi and Araújo, 2016). Guisan and Zimmermann (2000) 

suggest that a resampling method is used in conjunction with an independent test dataset, when 

possible, to assess the stability of the model and the quality of the model predictions.  

 
SDM accuracy may be determined by their ability to correctly categorize presence and absence 

occurrences (discrimination metrics) or prediction accuracy (reliability metrics) (Leroy et al., 2018). The 

area under the receiver operating characteristic (ROC), Cohen's Kappa statistic, and true skill statistic 

(TSS) are the most popular classification metrics that are calculated on presence-absence data (Leroy 

et al., 2018). The ROC curve is the most popular metric to compare SDM performance (Hijmans and 
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Elith, 2013; Yu et al., 2020). When continuous probability produced scores are translated to a binary 

presence-absence variable, the ROC reduces subjectivity in the threshold selection process by 

summing entire model performance across all feasible thresholds (Lobo et al., 2008; Peterson et al., 

2008). Area under the curve (AUC) values vary from 0 to 1, with an AUC score between 0.9 and 1 

indicating an excellent model, 0.8 to 0.9 indicating a good model, 0.7 to 0.8 indicating a fair model, 0.6 

to 0.7 indicating a poor model, and 0.5 to 0.6 indicating a failed model (Swets, 1988; González-Ferreras 

et al., 2016). As such, an AUC of 0.5 indicates that the model is as good as a random guess (i.e., imply 

that the model is no better than randomly predicting presences against absences), and values larger 

than 0.7 indicate that the model is sufficient for modelling species distributions (Swets, 1988). Although 
it is widely accepted as the standard technique for assessing SDM correctness, others do not advocate 

using this metric as a comparison measure of model accuracy. They argue that models with similar 

AUC values can predict vastly diverse distribution patterns, and that AUC should be used with caution 

when comparing model performance for different species and for models using different data sets 

(Termansen et al., 2006; Austin, 2007; Lobo et al., 2008). They also caution against comparing the 

accuracy of multiple models for the same species if the total extent investigated differs, because the 

extent to which models are carried out has a significant impact on the AUC values (Lobo et al., 2008). 

Other studies have also criticized the use of AUC as a comparative measure of SDM performance 

(Peterson et al., 2008; Jiménez-Valverde, 2012). As a result, the AUC is frequently employed in 

combination with another metric when utilised as a measure of accuracy (Mainali et al., 2015; Leroy et 

al., 2018).  
 

Another metric that is frequently used to evaluate model performance is Cohen's Kappa statistics. This 

metric adjusts the total accuracy of model predictions to account for the accuracy predicted to occur 

through chance (Allouche et al., 2006; Raes and ter Steege, 2007). The Kappa statistic ranges from -1 

to +1, with a value of +1 showing perfect agreement between observation and the prediction of the 

testing dataset and values of zero and below suggesting no better than random performance (Cohen, 

1960; Landis and Koch, 1977). As with the AUC, the Kappa statistic has also been criticised. This metric 

is affected by the prevalence of the modelled species, which is the proportion of the study area occupied 
by the species (McPherson et al., 2004; Allouche et al., 2006; Pontius Jr and Millones, 2011). As an 

alternative, Allouche et al. (2006) suggest using the more straightforward and intuitive TSS as a 

measure of SDM success. The metric compares the proportion of correct predictions to the proportion 

of hypothetical predictions, disregarding any predictions that may be due to random guess (i.e., when 

the model is no better than predicting presences versus absences at random) (Allouche et al., 2006). 

TSS has the advantages offered by the Kappa statistic, while not affected by species prevalence 

(Allouche et al., 2006). Furthermore, the size of the validation set has no effect on TSS (Allouche et al., 
2006). TSS values range between -1 and +1, with larger values indicating a better model. TSS values 

less than 0.2 are considered fail or null models, between 0.2 and 0.4 are poor, between 0.4 and 0.6 are 

fair and those greater than 0.6 are good to excellent (González-Ferreras et al., 2016).  

 

Unlike the AUC, Kappa and TSS require that the continuous model predictions be transformed into 

binary predictions based on a threshold (Fielding and Bell, 1997). To account for species prevalence, 

sensitivity and specificity can be used. Sensitivity (true positive proportion) and specificity (false positive 
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proportion) are two reliability metrics, which are independent of prevalence. Sensitivity is the proportion 

of correctly predicted species presences, whereas specificity measures the proportion of correctly 

predicted absences (Swets, 1988; Allouche et al., 2006). The sensitivity and specificity values range 

from -1 to +1, with values closer to +1 indicating better model performance (Swets, 1988). Swets (1988) 

classified sensitivity and specificity values between 0.5 and 0.7 as poor accuracy, those between 0.7 

and 0.9 as appropriate for some uses, and those greater than 0.9 as high accuracy. By applying a 
statistically determined threshold to the continuous surface and selecting the value that maximises the 

sum of sensitivity and specificity (i.e., sensitivity + specificity/ 2), binary presence or absence maps can 

be constructed (Liu et al., 2005).  

 

SDMs make the most of ancillary information such as topographic attributes and climatic data to explain 

the relationship that exists between a species and its surrounding environment, and offer a practical, 

reliable, and cost-effective method of estimating species distribution. However, there is no single best 

modelling algorithm, therefore, an appropriate modelling technique for the species under investigation 
must be selected in order achieve high accuracy predictions of species occurrence (Li and Wang, 2013). 

 

In this study, the ability of multiple regression-based and machine learning SDM algorithms to predict 

the distribution of mires on the PEIs were tested. The accuracy of the models was assessed using three 

metrics, the AUC, TSS and the correct classification rate (CCR), which crosses all the model presence-

absences with the model’s binary predictions to measure overall model accuracy (Fielding and Bell, 

1997; Martínez-Freiría et al., 2016).  
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Chapter 3: Study Area 
3.1. Geographical and Oceanographic Position 

The Prince Edward Islands (PEIs), which comprise Marion Island (46° 54´ S, 37° 45´ E) and Prince 

Edward Island (46° 38´ S, 37° 57´ E) (Figure 3-1), are South African-owned, remote islands in the sub-

Antarctic Ocean. The PEIs have fairly stable annual climates, characterised by low temperature, regular 

rainfall and strong winds (le Roux, 2008). They are mostly unoccupied except for a few research 

scientists visiting some of these islands for short periods, or a small handful of personnel residents on 

these islands to ensure research bases remain operational.  

 

 

Figure 3-1: The location of the study area, the Prince Edward Islands (PEIs), Marion Island, and Prince 

Edward Island, in relation to South Africa. 

The Islands are the summits of geologically young (Quaternary Period) coalescing shield volcanoes, 

rising from the West Indian Ocean Ridge, with the closest land being the sub-Antarctic Crozet Islands, 

situated approximately 900 km to the east (Gremmen, 1981; Smith and Mucina, 2006; Chown and 

Froneman, 2008; Chown et al., 2008). Marion Island has a low roughly oval (dome-like) shape, covering 

an area of 290 km², and rising to approximately 1230 metres above sea level (m a.s.l.) (Mascarin peak) 

(Smith and Mucina, 2006), and is the larger of the two Islands. Prince Edward Island lies 19 km 
northeast of Marion Island, covering 46 km², with van Zinderen Bakker Peak rising to approximately 

672 m a.s.l (Smith and Mucina, 2006; Chown and Froneman, 2008). Prince Edward Island has a 

distinctive asymmetric form and extensive vertical relief, with cliffs up to 400 m high on the western side 

and up to 500 m to the north and south of the central block (Gremmen, 1981; Rudolph et al., 2020). 
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3.2. Climate 

The Islands are located in the Roaring Forties, and thus have an oceanic climate that is characterised 

by low temperatures with small seasonal variations, heavy rain, snow, strong prevailing westerly winds 

(50 km per hour or greater), humidity and frequent cloud cover (Smith, 2002; Pakhomov and Chown, 

2003; Smith and Mucina, 2006; le Roux, 2008; le Roux and McGeoch, 2008). High precipitation, 

humidity, strong winds, and cloud cover are similar characteristics of other sub-Antarctic islands 
(Bergstrom and Chown, 1999). The climate on Marion Island varies across the landscape due to 

variations in aspect, altitude and recording height (le Roux, 2008). It is speculated that the prevailing 

westerly winds travelling up the windward side (western) of the mountain, cause the warm, moist air to 

lose moisture and result in warmer, drier air on the leeward side (eastern) of the mountain, resulting in 

the windward side experiencing more humidity, cloudiness and precipitation than the leeward side of 

the island (Rouault, 2005; le Roux, 2008). 

 
The permanent meteorological station on Marion Island has recorded mostly uninterrupted weather 

observations since 1948 (Chown and Smith, 1993; le Roux, 2008). Due to the surrounding ocean, the 

Islands experience small temperature and precipitation variations (Smith and Mucina, 2006; le Roux, 

2008). Although Prince Edward Island has no meteorological records, it lies 19 km from Marion Island 

and is assumed to have a similar climate to Marion Island, with slightly lower diurnal temperature 

variation (le Roux, 2008). They are considered ‘thermally stable’, with Marion Island experiencing a 

difference of 4.1 °C between the coldest and warmest month, while the diurnal temperature varies by 

only 1.9 °C (Smith, 2002; Smith and Mucina, 2006). There is a high prevalence of cloudiness and 
sporadic direct sunshine in the Southern Ocean, which is associated with the high precipitation on the 

Islands (Smith and Mucina, 2006). Precipitation falls almost daily , mostly in the form of rainfall rather 

than snow or hail, with the rainfall distributed almost equally throughout the year (Smith and Mucina, 

2006). 

 

However, since the 1960s a steady increase in the mean diurnal and annual temperatures and a 

decrease in precipitation has been observed, resulting in a drier and warmer climate (le Roux, 2008; le 

Roux and McGeoch, 2008). Mean annual temperature increased from 5.4 °C in the 1950s to 6.4 °C in 
the 1990s, with an average increase of 0.28 °C and 0.24 °C to daily maximum and minimum daily 

temperature per decade respectively, resulting in an increase from a maximum daily temperature of 7.6 

°C in the 1950s to 8.6 °C in the 1990s and an increase from a minimum daily temperature of 2.8 °C 

(1950s) to 3.7 °C (1990s) (le Roux and McGeoch, 2008). Over the same period (1950s-1990s), Marion 

Island saw a decline in annual rainfall, from approximately 3000 mm per annum to 2000 mm per annum 

(le Roux and McGeoch, 2008). Furthermore, there has been a decrease in the annual rainfall days on 

the Island, with the number of days without rainfall increasing from an average of 49.1 days to 89.1 
days (le Roux and McGeoch, 2008). The increasing temperatures and decreasing precipitation is linked 

to the warming of the surrounding ocean and changing atmospheric circulation patterns (Smith and 

Mucina, 2006; le Roux, 2008). Wind speed and the number of days with potential evapotranspiration 

also increased, while cloud cover varied with a peak in the 1970s (le Roux and McGeoch, 2008). The 

changes to climate on the sub-Antarctic islands have been heterogenous across the region. While some 

of the islands, such as Kerguelen Island, Macquarie Island and Heard Island, have seen a decrease in 
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temperature, the rate of change differs to that on Marion Island (Frenot et al., 1997; Budd, 2000; 

Kirkpatrick and Scott, 2002; Pendlebury and Barnes-Keoghan, 2007). Furthermore, unlike on Marion 

Island, precipitation on Macquarie Island has increased (Pendlebury and Barnes-Keoghan, 2007). 

 

3.3. Topography, Geology and Soils 

Marion Island’s central highland area slopes gradually on the eastern and northern side, forming coastal 

plain areas approximately 4 to 5 km towards the sea, while it is much more abrupt on the western and 

southern side of the Island, dropping to a low plain (Figure 3-2) (Gremmen, 1981; Smith and Mucina, 
2006). The plains and valleys on these slopes are separated by grey lava plateaus and ridges, while 

the lower-lying areas are covered in black lava (Gremmen, 1981). Some of the scoria cones on Marion 

Island rise to 200 m above the surroundings, forming major landscape features (Hedding, 2006). 

 

 

Figure 3-2: Shaded relief depicting Marion Island's topography. 

Much of Prince Edward Island is a central block that gently slopes towards the east coast, covering 

almost 7 km (Figure 3-3). However, the central block creates a steep escarpment to the west of the 

Island, while the Island’s central plateau descends into the sea as cliffs to the north and the south 

(Gremmen, 1981; Smith and Mucina, 2006).  
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Figure 3-3: Shaded relief depicting Prince Edward Island's topography. 

The Islands were formed as a result of different periods of volcanic activity, resulting in two main types 

of basaltic lava, namely black and grey lava (Øvstedal and Gremmen, 2001). The original volcanology 

and geology maps, with low spatial precision and detail, for the Prince Edward Islands (PEIs) were 

developed by Verwoerd and Langenegger (1968), and were recently modified by Rudolph et al. (2020). 

As seen in Figure 3-4 and Figure 3-5, the bedrock of the Islands is mainly grey lava, which is covered 

by the younger black lava (Rudolph et al., 2020). It can also be seen that the younger black lava is the 
dominant geology on the Islands (Table 3-1, pg. 23) (Gremmen, 1981; Øvstedal and Gremmen, 2001; 

Rudolph et al., 2020). There are 130 red and orange conical hills of volcanic cinder, known as scoria 

cones, which are the product of several lava flows from explosive volcanic activity on Marion Island, 

whereas on Prince Edward Island, there are approximately 15 scoria cones scattered over the 

landscape (Gremmen, 1981; Heymann et al., 1987; Boelhouwers et al., 2008; Hedding, 2020). Black 

lava flows and scoria cones are porous while grey lava is more impermeable, making them less 

susceptible to the processes of freezing and thawing and erosion (Gremmen, 1981).   
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Table 3-1: The total surface area cover of the different geological units on Marion and Prince Edward Island 

(Rudolph et al., 2020). 

Geological unit Marion Island Prince Edward Island 
Surface area (km²) Surface area (km²) 

Black lava 183.29 23.16 
Grey lava 58.24 11. 46 
Scoria 37.15 4.21 
Wind-blown ash 3.41 4.24 
Grey-bedded ash 0.35 2.02 
Black lava: Post 1980 11.58 0 

 

 

Figure 3-4: A simplified depiction of the geology of Marion Island using a simplified categorization scheme 

(Rudolph et al., 2020), adapted here to improve discernibility of features. 
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Figure 3-5: A simplified depiction of the geology of Prince Edward Island using a simplified categorization 

scheme (Rudolph et al., 2020), adapted here to improve discernibility of features. 

Organic matter is likely to accumulate where decomposition is slow as a result of a thermally stable 
climate and moist substrate, therefore, the oceanic climate of the Prince Edward Islands is conducive 

to the accumulation of organic matter (Gremmen, 1981; Smith and Mucina, 2006). Therefore, peats are 

the dominant soil formations on these Islands. On Marion Island, the peat deposits range between a 

thickness of a few centimetres and 4 m in the poorly drained lowland areas, and thicknesses between 

5 and 30 cm in well-drained areas (Gremmen, 1981). Although peats can lie directly on rock, there is 

usually loamy clay between the peat and the underlying rock (Gremmen, 1981; Smith and Mucina, 

2006). Peats are much thicker on older, impermeable grey lava flows (up to 3 m), while they are 

shallower on younger, more porous black lava flows (generally less than 1 m) (Smith and Mucina, 2006). 
No substantial soil formation has occurred in some areas of young black lava flows and scoria deposits 

(Gremmen, 1981). 

 

Lubbe (2010) used the World Reference Soil Classification System to classify the soils found on Marion 

Island, as the soils are of organic and volcanic nature, thus different from those found in South Africa, 

and the soil groups in the South African Soil Classification System. Lubbe (2012) classified soils into 

three reference soil groups, namely, Andosols, Histosols, and Regosols (Lubbe, 2010). Histosols, also 

known as ‘peat soils’, ‘mulch soils’, ‘bog soils’, and ‘organic soils’, are soils characterised by high organic 
matter (20% and 30%), and formed under waterlogged conditions from decomposed plant remains 

(Driessen et al., 2001; The Editors of Encyclopaedia Britannica, 2016b). Andosols are typically dark 

coloured soils that develop on volcanic landscapes from mainly volcanic ash (Driessen et al., 2001; The 

Editors of Encyclopaedia Britannica, 2016a). These soils are highly porous and typically occur in high 
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terrains, and as a result, have good internal drainage (Driessen et al., 2001). On average, the organic 

matter in Andosols is approximately 8%, however, some of the Andosols on Marion Island have higher 

organic matter (16% or greater). Although the soils are characteristics of Andosols, they have organic 

matter similar to Histosols. As such they are classified into an intermediary category, Histic Andosols 

(Driessen et al., 2001; Lubbe, 2010). Soils that cannot be classified into any soil groups in the World 

Reference Soil Classification System are classified as Regosols (Driessen et al., 2001; The Editors of 
Encyclopaedia Britannica, 2016c). A non-soil solid rock group was further added to describe recent lava 

flows, resulting in 5 final soil categories, namely, Andosols, Histosols, Histic Andosols, Regosols and 

Solid rock, depicted in Figure 3-6 (Lubbe, 2010). 

 

Figure 3-6: Soils of Marion Island (Lubbe, 2010). 

3.2. Hydrology 

On the PEIs, the predominant, porous black lava facilitates substantial underground drainage, while the 

impermeable grey lava flows allow for a more developed above-ground drainage system (Gremmen, 

1981). Therefore, the Islands experience high rates of sub-surface drainage. Tarns, lakes, and ponds 

can be found on both Islands (Smith and Mucina, 2006). Marion Island has 35 streams, a few of which 

are perennial due to the porosity of the dominant geology, while none of the few small streams on Prince 

Edward Island are perennial (Gremmen, 1981). Lakes between 1000 and 30 000 m² in area, with depths 

ranging from 0.5 to 2.5 m, are considered large lakes and are usually restricted to the impermeable 
grey lava flows (Gremmen, 1981; Smith, 2008). Water also moves through the soil; however, it is 

concentrated in drainage lines. Small water springs occur at the bottom of some grey lava slopes, with 

water tracts providing water to the springs also feeding into streams (Gremmen, 1981). Lakes do occur 

on the more blocky and porous black lava flows, albeit they are less common(Smith, 2008). Bog ponds, 
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which are generally small in size, are frequent in mire areas (areas of peat deposit accumulation) 

(Gremmen, 1981). 

3.3. Vegetation 

 

Due to the low temperatures, low incident solar radiation, and strong winds, the Islands are barren of 

trees (Van Zinderen Bakker Sr, 1970; Smith and Lewis Smith, 1987; Smith and Mucina, 2006). The  

Island has a tundra-type biome (Crafford et al., 1986), characterised by tundra-like (low-growing) 

vegetation consisting mainly of mosses, ferns, and some lichens in the central areas, as well as vascular 
plants dominating in some areas (Heymann et al., 1987; Smith and Mucina, 2006). While not all parts 

of the Island are vegetated, in particular the higher elevations, certain areas are characterised by dense 

vegetation cover, with 100% of the ground covered by plants. 

 

Due to the cool and oceanic climate on the PEIs, peat formation is common (Gremmen, 1981). Peat 

formation is possible where the water table is close to the surface for most of the time (Rydin et al., 

1999; Raeymaekers et al., 2000). This results in the formation of waterlogged mires, mostly in lowland 

areas, which can range from a depth of a few centimetres to more than 4 m where drainage is impeded 
(Gremmen, 1981). The Juncus scheuchzerioides–Blepharidophyllum densifolium complex is made up 

of mire plant communities and graminoid plants, particularly Agrostis magellanica, Uncinia compacta, 

and Juncus scheuchzerioides, are significant peat-forming plants (Gremmen, 1981; Yeloff et al., 2007). 

 

Smith and Mucina (2006) used field research to group vegetation on the PEIs and create five mapping 

units, which include sub-Antarctic cinder cones, coastal vegetation, fellfield, mire-slope vegetation, and 

polar desert, to compile maps of the vegetation on the Islands. The five units can be seen in the 

simplified representation of Marion Island’s vegetation presented in Figure 3-7.  
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Figure 3-7: A simplified representation of Marion Island’s vegetation (after Smith and Mucina (2006)). 

3.4. Human Influence on the Island’s Ecosystems 

The Islands are important conservation areas and were declared a Special Nature Reserve in 1995, 

the ultimate protection under South African legislation (Smith and Mucina, 2006). As a result, access to 

the Islands is restricted to ensure a maximum level of conservation. For 13 months at a time, Marion 

Island allows 20-25 permanent researchers and/or workers to stay on the island. This number may 

increase up to 80 people to accommodate visiting personnel during the annual relief voyage to the 

Island. During the recent Covid-19 pandemic, however, these numbers have been less per 13-month 

period. Prince Edward Island’s protection is much stricter, with a maximum of 10 people allowed a short 
visit of 8 days every 4 years, allowing the Island to remain relatively pristine compared to Marion Island 

(Chown et al., 2006). Although the Islands are now protected by law and have limited human 

interactions, they were subject to the culling of seals in the 19th century and well into the 20th century, 

with sealers taking temporary settlement on the Islands (Gremmen, 1971; Cooper, 2008; Greve et al., 

2020). This has directly impacted the Islands’ native wildlife and ecosystems, with up to 29 known alien 

species of terrestrial taxa (vertebrates, invertebrates, plants, and microorganisms) being introduced as 

a result (Greve et al., 2020). The Islands have remained reasonably undisturbed since the introduction 

of the Sea Birds and Seals Protection Act (Act 46 of 1973), which not only provides protection for most 
of the seabirds and seal species through its control of their capture and hunting but also ensures that 

the Islands are isolated from ship, aircraft, motor vehicle, and human traffic (Smith and Lewis Smith, 

1987; Smith and Mucina, 2006). 
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Chapter 4: Methodology 
4.1. Data Acquisition and Pre-Processing using GIS 

The data required for species distribution modelling was prepared in various Geographic Information 

Systems (GIS). Figure 4-1 depicts and explains a workflow that summarizes the activities used to obtain 

and prepare data for inclusion in Species Distribution Models (SDMs). 

 

 

Figure 4-1: Workflow of the operations undertaken in a Geographic Information System (GIS) to acquire 

and prepare data for use in Species Distribution Models (SDMs).  

A vegetation field survey was conducted from 2018 to 2020, using rapid vegetation plots that cover all 

the main vegetation types on Marion Island. The vegetation complexes proposed by Gremmen and 
Smith (2008) were used to classify the different vegetation types. The complexes included a Mire, 

Slope, Fellfield. Polar Desert, Saltspray and Biotic (Gremmen and Smith, 2008). The observations were 

collected using two sampling methods:  

1. Stratified random sampling of plots, using geology to stratify plots, was used to locate plots 

around Marion Island. Vegetation complex was estimated from species abundance estimates 

inside the plot area. 
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2. Transects were walked and the vegetation scored after vegetation type had changed. The 

vegetation complex was estimated from the dominant species. To classify mires, waterlogged 

ground was an additional requirement. 

The observations are available as a list of coordinates, with a total of 1415 points, 255 mire presence 

points (based on the descriptions and classification given by Gremmen (1981)), and 1 160 absence 

points. For this study the species occurrence observations were transformed into binary presence-

absence mire observations. The mire complex was employed to indicate the existence of mires, 

whereas the other vegetation complexes were classified as mire absences. Figure 4-2 shows the 

distribution of the mire occurrence observations on Marion Island. No training data (mire presence-
absence) exists for Prince Edward Island, thus, the model trained on Marion Island was projected onto 

Prince Edward Island. 

 

 

Figure 4-2: All mire presences and absences observations collected on Marion Island. 

The explanatory variables to the SDMs were chosen based on their availability and prediction potential 

for mires on the PEIs (Naimi et al., 2011). Digital Elevation Models (DEMs) of the Prince Edward Islands 

were acquired from the National Geo-spatial Information (NGI) with 1 m spatial resolution. Random 
errors in DEM elevation values may result in some cells being lower than the surrounding cells. These 

cells are referred to as sinks or pits, and hamper flow routing. Such cells are often problematic when 

determining the flow direction (upon which many hydrological functions depend) across the terrain as 

there is an erroneous inward flow into the cell without any outward flow (Wang and Liu, 2006; Li et al., 

2011; Lindsay, 2016; Hariri et al., 2021). DEM depressions are not always artificial depressions that 

indicate defects in the DEM, but can be true, real-world terrain features such as lakes, ponds, caves, 
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or hollows of a karst region that can be easily spotted with high resolution LIDAR DEMs  (Wang and 

Liu, 2006). As a result, sinks were removed from the DEM at a spatial resolution of 1 m using the default 

parameters of the Fill Sinks (Wang & Liu) tool in SAGA GIS (Wang and Liu, 2006). Standard procedures 

for creating a depressionless DEM identify the depressions, delineating their catchments and identifying 

their pour points before determining which cell must be filled and to what height (Wang and Liu, 2006). 

Using the least-cost search algorithm, the Wang and Liu technique computes a spill elevation for each 
grid cell without previous delineation of depression catchments, resulting in a depressionless DEM and 

identifying the locations and depth of surface depressions (Wang and Liu, 2006). The DEMs were 

resampled to 10 m to match the resolution of the Sentinel-2 Imagery that was also used in this study. 

Environmental variables, namely, elevation, slope, aspect, distance from coast, topographic positions, 

and topographic wetness were derived from the DEM. The DEM represents elevation, and the slope 

was extracted from the DEM using built-in raster functions in ArcGIS Pro 2.8.0. A raster depicting 

distance from the coast (inward of the island) was created using the Euclidean Distance tool in ArcGIS 

Pro 2.8.0. Equation (2) was used to extract the topographic wetness (TWI) from the DEM using the 
ArcPy script written by Wolf and Fricker (2013) in ArcGIS Pro. 

 

The classification of landforms on the PEIs was separated into two stages. The initial step was to 

classify the terrain into four categories of slope positions (1) ridges, 2) mid slopes, 3) flat surfaces, 4) 

valleys) (Table 2-2, pg. 14) based on the five neighbourhoods for both islands (10 m, 50 m, 100 m, 150 

m, and 200 m), as suggested by Becker et al. (2014). This was done to identify the small and large 

neighbourhood radii that would be utilized in the second stage, where combined TPI at two scales were 
used to classify the landscape into 10 landform classes (Table 2-3). The workflow of the 4-category 

slope positions classification is given by Figure 4-3. Code as used in the Esri ModelBuilder is provided 

below.  

 

Figure 4-3: Workflow of 4-category slope position classification in ArcGIS. The ModelBuilder code is 

provided to calculate TPI (1), standardise TPI (2) and classify slope positions (3). Method based on that of 

Becker et al. (2014). 

1. Calculate TPI 

Calculation of the TPI grids (given by equation (3)), is based on Weiss (2001), where scale denotes the 

outer radius in map units, irad denotes the inner radius of the annulus in cells, and orad denotes the 
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outer radius of the annulus in cells. TPI values are standardised using the code given on pg. 31. Slopes 

are classified as per the code given on pg. 31. 

 

 TPI (scalefactor) = int ((dem – focalmean (dem, annulus, irad, orad)) +0.5) (3) 

 

ModelBuilder code 

TPI (Scale Factor) = (Input_DEM – FocalStatistics (Input_DEM, NbrAnnulus((Radius/Cell_Size) – 

5, Radius/Cell_Size, CELL), MEAN, DATA)) + 0.5 

2. Standardise TPI 

ModelBuilder code 

TPI_STDI = (((TPI – TPI_Mean) / TPI_STDDEV) *100) + 0.5 

 

3. Classify slope positions 

ModelBuilder code 

Con ((TPI_STDI >= 100),1,  

Con ((TPI_STDI > -100) & (TPI_STDI < 100) & (Slope >= 6),2, 
Con ((TPI_STDI > -100) & (TPI_STDI < 100) & (Slope < 6),3, 

Con ((TPI_STDI <= -100),4,))))  

Two neighbourhood sizes (small and large) to create an annulus (ring-shaped object) neighbourhood 

were selected based on the accuracy assessment of the slope position classification. The workflow of 
the landform classification is given by Figure 4-4. Code as used in the ModelBuilder is provided below 

as well. 

 

 

Figure 4-4: Workflow of landform classification in ArcGIS. ModelBuilder code is provided to classify 

landforms (1). Method based on that of Becker et al. (2014). 
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Up until the classification of the landforms, all the steps are like those used in the slope position 

classification (pg. 30 onwards). The classification of landforms was achieved using code below. 

ModelBuilder code 

Con ((TPI_Small_STDI > -100) & (TPI_Small_STDI < 100) & (TPI_Large_STDI > -100) & 

(TPI_Large_STDI < 100) & (Slope <= 5),5, 

Con ((TPI_Small_STDI > -100) & (TPI_Small_STDI < 100) & (TPI_Large_STDI > -100) & 

(TPI_Large_STDI < 100) & (Slope >= 6),5, 

Con ((TPI_Small_STDI > -100) & (TPI_Small_STDI < 100) & (TPI_Large_STDI >= 100),7, 

Con ((TPI_Small_STDI > -100) & (TPI_Small_STDI < 100) & (TPI_Large_STDI <= - 100),4, 

Con ((TPI_Small_STDI <= 100) & (TPI_Large_STDI > -100) & (TPI_Large_STDI < 100), 2, 

Con ((TPI_Small_STDI >= 100) & (TPI_Large_STDI > -100) & (TPI_Large_STDI < 100), 9, 
Con ((TPI_Small_STDI <= -100) & (TPI_Large_STDI >= 100), 3, 

Con ((TPI_Small_STDI <= -100) & (TPI_Large_STDI <= -100), 1, 

Con ((TPI_Small_STDI >= 100) & (TPI_Large_STDI >= 100), 10, 

Con ((TPI_Small_STDI >= 100) & (TPI_Large_STDI >= -100), 8,)))))))))) 

 

The Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index 

(NDWI) were employed as proxies for local vegetation cover and surface wetness (i.e., surface water 

presence), respectively. They were extracted from the freely available Sentinel-2 user product from the 

European Space Agency (ESA). Sentinel-2 products are geometric and radiometrically corrected 
images. Sentinel-2 multispectral imagery has a fine spatial resolution (i.e., 10 m for four bands) and a 

high revisit rate (10 days) at free cost, making it good for the mapping of water bodies (Du et al., 2016). 

A Sentinel-2 image has a total of 13 bands, with different spatial resolutions (as shown in  

Table 4-1). Due to persistent cloud cover on the PEIs, it was not possible to acquire a cloud free image 

for Marion Island, therefore, three images (two from October 5, 2020, and one from October 10, 2020) 

were used to create a mosaic for Marion Island, while the cloud free image for Prince Edward Island is 

from November 10, 2017. The resulting Marion Island mosaic is depicted in Figure 4-6 (pg. 34). The 

mean monthly total rainfall and mean temperature on Marion vary slightly in a year, as seen in Figure 
4-5 (pg. 33) (Sadiki, 2019). As a result, there are no seasons to consider while gathering images, 

therefore comparing the influence of imagery obtained during different months of the year was 

unnecessary. The Semi-Automatic Classification plugin in Quantum GIS (QGIS) was used to download 

the data, mask the clouds, and mosaic the images to create a mosaic of the images. The Normalized 

Difference Vegetation Index (NDVI) was used as a proxy for local vegetation cover on the Prince 

Edward Islands (PEIs). The NDVI is an index intended to assess surface biomass and productivity using 

the near infrared (NIR) and red bands to enhance the presence of vegetation, while it has no effect on 
water features (McFeeters, 1996). It is defined by equation (4) below and has already been described 

in detail in Wetland Mapping (pg. 8 onward). In this index the near-infrared (NIR) band is used primarily 

for imaging vegetation and the red (Red) band is mainly used to image man-made objects, soils, and 

vegetation. 

 NDVI =  NIR- Red
NIR + Red

 (4) 
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The Normalized Difference Water Index (NDWI), already described in detail in Wetland Mapping (pg. 8 

onward), was used as a proxy for surface wetness over the Prince Edward Islands. McFeeters (1996) 

suggested the NDWI, which is an adaptation of the NDVI, where the red band in the NDVI is replaced 

by the green band, used for imaging vegetation and deep-water structures. Thus, McFeeters (1996) 

was able to introduce a new method for delineating open water features from satellite imagery, while 

simultaneously removing soil and vegetation features. The NDWI is based on the idea that water has 
the highest absorption capabilities and vegetation has the highest reflectance in the near infrared (NIR) 

(Huang et al., 2018a). The NDWI is defined by equation (5). 

 NDWI = Green - NIR
Green + NIR

 (5) 

 

Table 4-1: Sentinel-2 image spectral band specifications. 

Band Spectral Region Central wavelength (μm) Spatial Resolution (m) 
B1 Coastal aerosol 0.443 60 
B2 Blue 0.490 10 
B3 Green 0.560 10 
B4 Red 0.665 10 
B5 Vegetation red edge 0.705 20 
B6 Vegetation red edge 0.740 20 
B7 Vegetation red edge 0.783 20 
B8 Near infrared 0.842 10 
B8A Vegetation red edge 0.865 20 
B9 Water vapour 0.945 60 
B10 Shortwave infrared band 

- Cirrus 
1.375 60 

B11 Shortwave infrared band 1.610 20 
B12 Shortwave infrared band 2.190 20 

 

 

Figure 4-5: Monthly mean total rainfall and mean temperature on Marion Island (Sadiki, 2019). 
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Figure 4-6: Marion Island Sentinel-2 mosaic. Three images (two from October 5th, 2020, and one from 

October 10th, 2020) to create a mosaic for Marion Island. 

Climate data were acquired, at a spatial resolution of 30 arc seconds (~1 km²), from the WorldClim 

database, a database of high spatial resolution global weather and climate data for use in research and 

related activities. The data represent annual trends, seasonality and limiting environmental factors for 

the years between 1970 and 2000. Current climate data were downloaded from WorldClim Version 2 
(WorldClim2). The data include 19 bioclimatic variables (Table 4-2) averaged between 1970 and 2000 

at a spatial resolution of 30 arc second (~1 km (900 m) at the equator) (Fick and Hijmans, 2017). The 

bioclimatic datasets are known to possess high levels of multicollinearity as they are derived from mean 

maximum and minimum temperature, and precipitation values (Hijmans et al., 2005). Therefore, only 

variables thought to affect the occurrence of mires were considered in this study. These variables were 

annual mean temperature (BIO01), temperature seasonality (BIO04), annual precipitation (BIO12) and 

precipitation seasonality (BIO15) (Essl et al., 2012). The standard deviation of the 12 mean monthly 

temperature values was used to compute temperature seasonality. To maintain significant digits, the 
resulting value in degrees Celsius was multiplied by 100 (O’Donnell and Ignizio, 2012). The annual 

precipitation was computed by adding the precipitation values from each of the year's 12 months. To 

calculate precipitation seasonality, the standard deviation was calculated for each of the 12 monthly 

precipitation totals, then divided by the mean monthly precipitation value, and for cases where the mean 

rainfall was less than one, one was added to the denominator to avoid odd coefficient of variation values, 

and finally, the value was multiplied by 100 to give precipitation seasonality as a percentage (O’Donnell 

and Ignizio, 2012). The WorldClim data do not overlap perfectly with the coastal zone of the PEIs, which 
include some of the occurrence points. As such, Inverse Distance Weighting (IDW) was used to 

interpolate the values of the climatic variables in these areas. To determine cell values, inverse distance 
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weighted (IDW) interpolation employs a linearly weighted combination of a set of sample points, with 

the inverse distance determining the weight. To perform IDW, the bioclimatic variable raster was 

transformed to points (at 10 m), using the centre point of each cell, and the IDW tool in ArcGIS Pro 2.8 

was used to interpolate the surfaces to include the missing value regions. 

 

Table 4-2: Description of the 19 WorldClim bioclimatic variables (O’Donnell and Ignizio, 2012). 

Variables Description Unit Equation 
BIO01 Annual Mean Temperature °C (0 11

23

142
)/12 

BIO02 Mean Diurnal Range °C (0 (1567 − 151!))/12
23

142
 

BIO03 Isothermality % (1 ∗ (1567 − 151!)/1567 − 151!) ∗ 100 
BIO04 Temperature Seasonality  

(Coefficient of variation) 
°C 

(9 1
110 (11 − (0 11/12))

23

142

323

142
) ∗ 100 

BIO05 Max Temperature of Warmest Month °C  
BIO06 Min Temperature of Coldest Month °C  
BIO07 Temperature Annual Range °C 1567 − 151! 
BIO08 Mean Temperature of Wettest Quarter °C  
BIO09 Mean Temperature of Driest Quarter °C  
BIO10 Mean Temperature of Warmest Quarter °C  
BIO11 Mean Temperature of Coldest Quarter °C  
BIO12 Annual Precipitation mm 0 :1

23

142
 

BIO13 Precipitation of Wettest Month mm  
BIO14 Precipitation of Driest Month mm  
BIO15 Precipitation Seasonality  

(Coefficient of variation) 
 % 

(

; 1
11∑ (:1 − (∑ :1/12))23

142
323

142
∑ :123
142
12 ) 

BIO16 Precipitation of Wettest Quarter mm  
BIO17 Precipitation of Driest Quarter mm  
BIO18 Precipitation of Warmest Quarter mm  
BIO19 Precipitation of Coldest Quarter mm  

 

Additional data on the geology and soils of the Islands was acquired. There are five classes in both the 

geology and soil layer. See Table 4-3.  

Table 4-3: Prince Edward Islands geology and soil classes. 

Class Number Geology Classes Soil Classes 
1 Black lava (incl. recent: post 1980) Histosols 
2 Grey lava Andosols 
3 Grey-bedded ash Regosols 
4 Scoria Histic andosols 
5 Wind-blown ash Solid rock 

 

Table 4-4 (pg. 36) summarizes the environmental predictor variables that were collected for the study. 

All predictor variables were resampled to the extent of the DEMs for the PEIs using ArcGIS Pro 2.8. As 
a result, the variables were standardised in terms of data format (GeoTiff), spatial resolution (10 m), 

projection (WGS 84 UTM Zone 37S), and extent. The spatial resolution of 10 m was based on the 

spatial resolution of the Sentinel-2 imagery. Although the finer spatial resolution does not improve the 
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resolution of the predictor variables with lower spatial resolution, it was essential as the software utilised 

(RStudio) requires that all predictor variables have the same extent and projection. 

Table 4-4: Predictor variables used in the study. 

Variable Type Predictor Variables Data type Source 
Topographic 
(DEM derived) 
 

Elevation (msl) Continuous DEM 
Slope (°) Continuous DEM 
Distance from coast (m) Continuous DEM 
Topographic wetness (TWI) Continuous DEM 
Landforms (TPI) Categorical DEM 

Geology and Soils Geology Categorical (Rudolph et al., 2020) 
Soils Categorical (Lubbe, 2010) 

Satellite imagery Vegetation density (NDVI) Continuous ESA 
Surface wetness (NDWI) Continuous ESA 

Bioclimatic BIO01: Annual Mean Temperature Continuous WorldClim 
BIO04: Temperature Seasonality  Continuous WorldClim 
BIO12: Annual Precipitation Continuous WorldClim 
BIO15: Precipitation Seasonality  Continuous WorldClim 
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4.2. Species Distribution Models 

A workflow depicting the steps followed (model data, model development, and evaluation) to construct 

and evaluate the SDMs is shown in Figure 4-7.  

 

 

Figure 4-7: Workflow of the Species Distribution Modelling (SDM) for mire occurrence. 

 
In this study, SDMs were developed using a presence-absence approach in the ‘sdm’ package in R 

(Naimi and Araújo, 2016). As the mire occurrences dataset (Figure 4-2, pg. 29) has presences and true 

absences, presence-absence algorithms were implemented. Models as listed in Table 4-5, are either 

regression-based and machine learning algorithms or an Ensemble of methods; models were 

implemented using the default model settings (Naimi and Araújo, 2016). 
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Table 4-5: The regression based, and machine learning presence-absence algorithm implemented in this 

study. 

Model Description Reference 
BRT Boosted Regression Trees  (Elith et al., 2008) 
CART Classification and Regression Trees (Breiman et al., 1984) 
GAM Generalised Additive Models  (Guisan et al., 2002) 
GLM Generalised Linear Models (McCullagh and Nelder, 1989) 
MARS Multivariate Adaptive Regression Splines (Friedman, 1991) 
RF Random Forests (RF) (Breiman, 2001) 

 

4.2.1. Model Inputs 
Due to the cloud cover issue on Marion Island (Figure 4-6, pg. 34), some mire presence-absence 

observations were excluded from the study, leaving 1375 observations (248 presence, 1127 absences). 

SDMs are often built utilising predictor data in the hopes of determining which of those characteristics 

are important to the species' occurrence; however, some believe that only ecologically relevant 

predictor data should be utilized instead (Elith and Leathwick, 2009). Peatland development areas have 

distinct hydrologic regimes, climates, chemistry, landforms, substrates, and flora (Bourgeau-Chavez et 

al., 2018; Minasny et al., 2019). As it is difficult to accurately identify which environmental variables 

drive the distribution of mires on the Prince Edward Islands (PEIs), there is a need to test a combination 
of predictors to identify the best ones. Models were created using various variable combination groups 

to compare them. The variable combination groups were based on six variable scenarios. The variable 

scenarios included modelling:  

1. All variables; 

2. Climate variables; 

3. Topographic, geology and soils and satellite imagery variables; and 

4. Wetland classification proxy variables. 

a. The Ramsar convention classification system 
b. The Hydrogeomorphic (HGM) classification system classification 

c. The International Union for Conservation of Nature (IUCN) Global Ecosystem Typology 

2.0 

Collinearity among predictor variables can lead to spurious results, therefore, correlation between the 

predictor variables was assessed as variables that are not independent may result in multicollinearity 

issues in the models (Dormann et al., 2013; Naimi and Araújo, 2016), which reduces SDM efficiency 

and increases model uncertainty (De Marco and Nóbrega, 2018). Leihy et al. (2018) stressed that 

variable collinearity is of concern on the sub-Antarctic islands. By assessing intercorrelation between 

the predictors, redundant predictors can be identified and consequently removed, to avoid using 

unreliable variables (Hiestermann and Rivers-Moore, 2015). There are several ways to detect 
collinearity and the variance inflation factor (VIF), which measures how strongly the rest of the predictor 

variables can explain each predictor, is often used (Naimi and Araújo, 2016). To avoid overfitting, the 

collinear variables in this study were identified and excluded using the VIF (vifstep) approach in RStudio 

(Naimi and Araújo, 2016). The VIF stepwise technique calculates VIF measures using equation (6), 

with values larger than 10 indicating strong correlation between variables, and hence removing them 
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owing to collinearity issues. As a stepwise process, the VIF values were recalculated until all values 

were below the threshold. 

 VIF = !
1 - R²

; where R² is the regression equation's coefficient of determination (6) 

The study employs the VIF stepwise technique to exclude highly collinear variables. For visualisation 
purposes, a correlation matrix presenting correlation among the predictor variables for all predictor 

variable scenarios was computed based on Pearson’s correlation coefficients for all predictor variable 

scenarios and presented in Table A-1 (Appendix 1, pg. 75). If two variables have a Pearson (r) 

correlation coefficient larger than a threshold, for instance 0.7, this might indicate that they are 

correlated, and using both variables in the model development may produce collinearity problems. 

(Naimi and Araújo, 2016). Removing predictor variables with multicollinearity issues necessitates 

caution when interpreting the effect of the remaining variables on the distribution of the species. 

Whatever influence the remaining variable has on the distribution, the variable removed for being 
correlated to that variable likely has a similar effect. 

 

Scenario 1: all variables 
As suggested by Table A-1 (Appendix 1, pg. 75), Elevation, NDVI and Annual Precipitation (BIO12) 

have collinearity issues, therefore, they were removed from the list of predictor variables for this 

scenario using the VIF stepwise approach.  
 

Scenario 2: bioclimatic variables 
In the list of identified predictor variables (Table 4-4, pg. 36), four bioclimatic variables were included. 

Collinearity among WorldClim bioclimatic variables is known to be high and depicted by correlation 

matrix presented in Table A-1 (Appendix 1, pg. 75), Annual Precipitation (BIO12) is highly correlated 

with Annual Mean Temperature (BIO01) and Precipitation Seasonality (BIO15). Therefore, it was 

removed from the list of bioclimatic variables in this scenario, leaving three bioclimatic variables. 
 

Scenario 3: topographic, geology and soils and satellite imagery variables 
One of the nine variables in this scenario (NDVI) exhibited multicollinearity issues with NDWI and was 

removed from this scenario.  

 

Scenario 4: wetland classification proxy variables  
Wetland predictors were identified based on some common wetland classification methods used in 

South Africa, namely, the 1) Ramsar classification, the 2) Hydrogeomorphic System, and the 3) 

International Union for Conservation of Nature’s (IUCN’s) typology for wetland ecosystem types. 

a. The Ramsar convention classification system divides wetlands into three major categories: 

marine and coastal; inland; and human-made; it also divides wetlands into subcategories based 

on their location, water permanence, soils, substates, and flora (Ramsar Convention 

Secretariat, 2010; Finlayson, 2018). As such, the topographic wetness (TWI) was selected as 

a proxy for water permanence, and vegetation density (NDVI) for vegetation, in addition to soils. 
None of the three variables have collinearity issues. 
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b. The Hydrogeomorphic (HGM) classification system is based on the premise that the 

landscape influences the flow and accumulation of water, and hydrology and geomorphic 

setting (landforms) are the most obvious characteristics used to characterise wetlands in this 

system (Semeniuk and Semeniuk, 1995; Ollis et al., 2013; Sieben et al., 2018). The system 

categorises wetlands into classes based on geomorphic, water supply, and hydrodynamic 

properties (Ollis et al., 2013). Therefore, landforms (modelled using the TPI), surface wetness 
(NDWI) and topographic wetness (modelled using the TWI) were selected as proxy predictor 

variables for the occurrence of mires. None of the three variables have collinearity issues. 

c. The International Union for Conservation of Nature (IUCN) Global Ecosystem Typology 
2.0 describes the profiles of biomes and ecosystem functional groups, providing key ecological 

traits of functionally different ecosystems and their drivers (Keith et al., 2020). Marion Island is 

structurally and functionally characteristic of the most climatically harsh variety of tundra, high 

Arctic polar deserts (Smith, 2008). Therefore, the PEIs fit the description of the ecological traits 

of polar tundra and deserts as described in the IUCN Global Ecosystem Typology 2.0 (Keith et 
al., 2020). As such, the vegetation density proxy (NDVI) and the four bioclimatic variables were 

selected as proxy predictor variables for the occurrence of mires. The VIF stepwise approach 

removed Annual Precipitation (BIO12) due to correlation issues with Annual Mean Temperature 

(BIO 1) and Precipitation Seasonality (BIO15).  

The predictor variables, with multicollinearity accounted for among all the variables in each variable 

scenario, are presented in Table 4-6.  

Table 4-6: Predictor variables per variables scenario with multicollinearity accounted for. A check mark (ü) 

indicates that a variable was included in a particular variable scenario. 

Variable Type Predictor Variable Variable Scenario 
1 2 3 4a 4b 4c 

Topographic 
(DEM derived) 
 

Elevation   ü    
Slope  ü  ü    
Distance from coast  ü  ü    
Topographic wetness (TWI) ü  ü ü ü  
Landforms (TPI) ü  ü  ü  

Geology and 
Soils 

Geology ü  ü    
Soils ü  ü ü   

Satellite 
imagery 

Vegetation density (NDVI)    ü  ü 
Surface wetness (NDWI) ü  ü  ü  

Bioclimatic BIO01: Annual Mean Temperature ü ü    ü 
BIO04: Temperature Seasonality  ü ü    ü 
BIO15: Precipitation Seasonality  ü ü    ü 

 

4.2.2. Model Development and Evaluation 
As previously discussed, SDMs were developed using a presence-absence approach in the ‘sdm’ 

package in R (Naimi and Araújo, 2016). The models used to predict the distribution of mires on the PEIs 
(see Table 4-5, pg. 38) were evaluated to find the method that would provide the most accurate 

prediction. The R 4.1 software "sdm" package developed by Naimi and Araújo (2016) was used to 

validate the models using the K-fold cross-validation with 10-folds technique, which is the most common 

way of measuring model accuracy. 
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The models’ performance was assessed using a multi-metric method that included the metrics listed in 

Table 4-7. It is important to utilise different metrics to assess model performance since each measures 

a distinct component of predictive performance (Elith and Graham, 2009). To assess model predictive 

performance in this study, three approaches were used: 1) area under the curve (AUC) of a receiver 

operating characteristic (ROC) plot, 2) the True Test Statistic (TSS) and 3) the Correct Classification 

Rate (CCR). The ROC curve is the most popular metric to compare SDM performance (Hijmans and 
Elith, 2013; Yu et al., 2020). By summarizing total model performance over all potential thresholds, it 

eliminates subjectivity in the threshold selection process, when continuous probability generated scores 

are transformed to a binary presence–absence variable (Lobo et al., 2008; Peterson et al., 2008). Area 

under the curve (AUC) values vary from 0 to 1, and an AUC of 0.5 or less indicates that the model is as 

good as a random guess (i.e., imply that the model is no better than randomly predicting presences 

against absences), and values larger than 0.7 indicate that the model is sufficient for modelling species 

distributions (Swets, 1988). The TSS metric compares the proportion of correct predictions to the 

proportion of hypothetical predictions, disregarding any predictions that result when the model is no 
better than predicting presences versus absences at random (Allouche et al., 2006). TSS values range 

between -1 and +1, with larger positive values indicating a better model. By crossing all presences-

absences with the binary (presence/absence) predictions, the correct classification rate (CCR) was 

used to quantify the overall model prediction accuracy (Fielding and Bell, 1997; Martínez-Freiría et al., 

2016).  

 

All models with AUC values sufficient for species distribution modelling (0.70 or more) and TSS values 

indicative of at least fair model performance (0.2 or more) were used to create an ensemble model for 

each scenario. The ensemble models were created using the ‘ensemble’ function based on weighted 

TSS values, with higher statistical weights assigned to models with higher TSS values (Naimi and 

Araújo, 2016).  
 

The relative relevance for each predictor variable in explaining the current distribution of a mire 

ecosystem was also assessed. High values indicate that the predictor variable is more important. 

Table 4-7: Metric ranges and thresholds for evaluating model predictive performance. 

Metric Range Threshold Source 
AUC 0 to 1 > 0.7 (Swets, 1988; González-Ferreras et al., 2016) 
TSS -1 to +1 > 0.2 (González-Ferreras et al., 2016) 
CCR 0 to 1 Larger value indicates a 

better model 
(Fielding and Bell, 1997) 

 
Model predictions were used to assess mire distribution predictions. The outcome was a series of 

continuous surfaces that reflect the probability of finding a mire across the region. By applying a 

statistically determined threshold to the continuous surface and selecting the value that maximized the 

sum of sensitivity and specificity (i.e., sensitivity + specificity/ 2) (comparable to optimizing the TSS), 

ArcGIS Pro 2.8 was used to construct binary presence or absence maps (Liu et al., 2005).  
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Chapter 5: Results  
5.1. Derived Topographic and Environmental Parameters 

The topographic and environmental parameters required for species distribution modelling derived from 

digital elevation models (DEMs) and satellite imagery for Marion Island and Prince Edward Island are 

presented by Figure 5-1 (pg. 43), and Figure 5-2 (pg. 44), respectively. The parameters include 

elevation, distance from coast, slope, Normalised Difference Vegetation Index (NDVI) as a proxy for 

vegetation density, Normalised Difference Water Index (NDWI) as a proxy for surface wetness, 

Topographic Wetness Index (TWI), and landforms (TPI based landform classification). No soils dataset 

was acquired for Prince Edward Island, therefore, there were 13 predictor variable datasets for Marion 
Island and 12 for Prince Edward Island. The range of values for each predictor variable are presented 

by Figure 5-3 ( pg. 45), and Figure 5-4 (pg. 46). 

 

The results of the landform classification process is also described in this section. The results of the 

accuracy of the slope position classification is presented in Table 5-1. As it was impossible to gather 

ground-truth points through fieldwork, 50 random points were generated in ArcGIS pro and referenced 

using a Marion Island satellite image with a spatial resolution of approximately 0.5 m. All 5 

neighbourhoods managed to classify the slope positions with overall accuracy greater than 60%. The 
Kappa statistic, which expresses the agreement between the reference (’ground-truth’) and 

classification data, gave poor agreement (less than 0.4) for the 10 m neighbourhood and moderate 

agreement (between 0.4 and 0.8) for all other neighbourhoods. Therefore, it can be said that the 50 m, 

100 m, 150 m and 200 m neighbourhoods were able to fairly classify the slope positions.  

Table 5-1: Marion Island slope position classifications accuracy assessment. 

Classification Neighbourhood Overall Accuracy Kappa Statistic 
10 m 64% 0.35 
50 m 74% 0.57 
100 m 70% 0.52 
150 m 72% 0.55 
200 m 72% 0.55 

 
In this study, the 10 m and 50 m neighbourhoods were considered small neighbourhood sizes, while 

100 m, 150 m and 200 m are considered larger neighbourhood sizes. The 50 m slope position 

classification achieved a higher overall accuracy as well as agreement between the reference and 

classification data (Kappa statistic) than the 10 m slope position classification. Therefore, the 50 m 

slope position classification neighbourhood was selected as the small neighbourhood (radius) for the 

TPI based landform classification. The 150 m and 200 m neighbourhoods performed the same; the 

larger of the two (200 m) was selected as the preferred larger neighbourhood size. As such, an annulus 
(ring-shaped object) neighbourhood (R1 = 50 m & R2 = 200 m) was used to classify landforms for the 

Prince Edward Islands (PEIs). 
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Figure 5-1: Derived topographic and environmental parameters for Marion Island required as predictor 

variables for species distribution modelling. Distance from Coast (a), Slope (b), NDVI (c), NDWI (d), 

Landforms (e), TWI (f). 
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Figure 5-2: Derived topographic and environmental parameters for Marion Island required as predictor 

variables for species distribution modelling. Distance from Coast (a), Slope (b), NDVI (c), NDWI (d), 

Landforms (e), TWI (f).
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mir

 

Figure 5-3: Range of values for each of Marion Island’s predictor variables. The bioclimatic variables’ abbreviations are as follows: bio1 = Annual Mean Temperature 

, bio 4 = Temperature Seasonality , bio12 = Annual Precipitation, bio15 = Precipitation Seasonality. 

Annual Mean Temperature ( °C) Temperature Seasonality Annual Precipita9on (mm) Precipita9on Seasonality (%)

Distance from Coast (m) Eleva9on (m a.s.l) Geology NDVI

NDWI Slope (°) Soil Landforms

TWI

Black lava 
(incl. recent: 
post 1980) 

Grey 
lava 

Grey-
bedded ash 

Scoria Wind-
blown ash 

Histosols Andosols Regosols Histic 
andosols 

Solid rock 

C
an

yo
ns

, d
ee

pl
y 

in
ci

se
d 

st
re

am
s 

M
id

sl
op

e 
dr

ai
na

ge
s,

 s
ha

llo
w

 v
al

le
ys

 

U
pl

an
d 

dr
ai

na
ge

s,
 h

ea
dw

at
er

s 

O
pe

n 
sl

op
es

 

U
-s

ha
pe

d 
va

lle
ys

 

Pl
an

es
 

U
pp

er
 s

lo
pe

s,
 m

es
as

 

Lo
ca

l R
id

ge
s,

 h
ills

 in
 v

al
le

ys
 

M
id

sl
op

e 
rid

ge
s,

 s
m

al
l h

ills
 in

 p
la

in
s 

M
ou

nt
ai

n 
to

ps
, h

ig
h 

rid
ge

s 



MM Sadiki: MSc Dissertation  Page | 46 

 

Figure 5-4: Range of values for each of Prince Edward Island’s predictor variables. The bioclimatic variables’ abbreviations are as follows: bio1 = Annual Mean 

Temperature , bio 4 = Temperature Seasonality , bio12 = Annual Precipitation, bio15 = Precipitation Seasonality. 
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5.2. Individual Model Performance  
Six models were considered and tested against variables based on the following predictor variable 

scenarios (Table 4-6): 

1. All variables; 

2. Climate variables; 

3. Topographic, geology and soils and satellite imagery variables; and 

4. Wetland classification proxy variables. 

a. The Ramsar convention classification system 

b. The Hydrogeomorphic (HGM) classification system classification 

c. The International Union for Conservation of Nature (IUCN) Global Ecosystem Typology 

2.0 

In order to select the best model to be used to predict the distribution of mires on the PEIs, the models' 

performance was evaluated using the Areas under the Curve (AUC), True Skill Statistics (TSS) and 

correct classification rate (CCR). The models’ performance in the AUC and TSS metrics are presented 

in Table 5-2. 

Table 5-2: The Areas under the Curve (AUC) and True Skill Statistics (TSS) associated 10-fold cross 
validation. Model abbreviations are as follows: BRT = Boosted Regression Tree, CART = Classification and 
Regression Trees, GAM = Generalised Additive Models, GLM = Generalized Linear Model, MARS = 
Multivariate Adaptive Regression Splines and RF = Random Forest.  Variable scenarios are summarised in 
Table 4-6. 

Scenario BRT CART GAM GLM MARS RF 
AUC TSS AUC TSS AUC TSS AUC TSS AUC TSS AUC TSS 

1 0.72 0.40 0.68 0.32 0.74 0.42 0.72 0.41 0.70 0.37 0.74 0.42 
2 0.68 0.34 0.64 0.24 0.67 0.33 0.67 0.32 0.67 0.34 0.70 0.37 
3 0.71 0.39 0.68 0.32 0.72 0.40 0.71 0.39 0.68 0.35 0.72 0.38 
4 (a) 0.67 0.36 0.66 0.30 0.68 0.36 0.65 0.31 0.67 0.32 0.65 0.30 
4 (b) 0.69 0.38 0.65 0.29 0.69 0.39 0.69 0.38 0.70 0.37 0.66 0.33 
4 (c) 0.69 0.34 0.66 0.27 0.67 0.31 0.66 0.30 0.68 0.33 0.72 0.39 

 

A good model should have an AUC value more than 0.9, although a score greater than 0.7 is adequate 

for species distribution modelling (Swets, 1988; González-Ferreras et al., 2016). As depicted in Figure 

5-5 (pg. 48), the models in this study displayed consistent performance in the AUC metric. With values 

between 0.60 and 0.80, the models’ performance can be said to indicate poor to fair model performance. 

The CART models performed slightly poorer compared to the other models in terms of the AUC, with 

all CART models failing to achieve AUC values sufficient for species distribution modelling. Models 

trained with Scenario 1 and 3 variables reported higher AUC values compared to the other variable 

scenarios, with the average AUC values greater than 0.70 (Figure 5-6, pg. 49). 

 

Similar to AUC, TSS values suggest the model accuracies were fair to moderate with values ranging 

between 0.24 and 0.42 (Figure 5-5 [pg. 48], Figure 5-7 [pg. 49]). Once again, the CART model 

performed poorly for the TSS metric reporting the lowest TSS values of 0.24 under variable Scenario 

2. Both CART and MARS models failed to achieve a mean value of 0.30 for all models. Overall, the 

best models scored AUC and TSS values greater than 0.70 and 0.40, respectively.  
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Figure 5-5: Boxplot depicting mean AUC and TSS for each SDM algorithm. Model abbreviations are as 
follows: BRT = Boosted Regression Tree, CART = Classification and Regression Trees, GAM = Generalised 
Additive Models, GLM = Generalized Linear Model, MARS = Multivariate Adaptive Regression Splines and 
RF = Random Forest.  
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Figure 5-6: Boxplot depicting mean AUC of all models under each variable scenario. Variable scenarios 
are summarised in Table 4-6. 

 

Figure 5-7: Boxplot depicting mean TSS of all models under each variable scenario. Variable scenarios are 
summarised in Table 4-6. 
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AUC and TSS metrics, most models were ruled out as unsuitable for application in this study. These 

were models that scored AUC values less than 0.70 (Swets, 1988) or TSS values less than 0.20 

(González-Ferreras et al., 2016). The individual model performance did not provide an obvious best 

model and combination of variables for the prediction of mire distribution, but rather provided five 

possible algorithms (BRT, GAM, GLM, MARS, RF) from two variable scenarios, Scenarios 1 and 3.  

 

However, two models, a GAM and RF model based on Scenario 1 variables performed the same (AUC 

= 0.74, TSS = 0.42). As different models make different assumptions and extrapolate differently to new 

environments, their predictions, binary maps were constructed by applying a statistically determined 

threshold by selecting the value that maximized the sum of sensitivity and specificity (i.e., sensitivity + 

specificity/ 2), as based on Liu et al. (2005). The thresholds for each model in this study are presented 

in Table 5-3 and the predictions for each model are presented in Appendix 2 (pg. 76).  

Table 5-3: Thresholds based on maximized sum of sensitivity and specificity (i.e., sensitivity + specificity/ 
2) for models in the study. Model abbreviations are as follows: BRT = Boosted Regression Tree, CART = 
Classification and Regression Trees, GAM = Generalised Additive Models, GLM = Generalized Linear 
Model, MARS = Multivariate Adaptive Regression Splines and RF = Random Forest.  Variable scenarios are 
summarised in Table 4-6. 

Scenario BRT CART GAM GLM MARS RF 
1 0.1706 0.2162 0.1790 0.1931 0.1986 0.4881 
2 0.1874 0.2175 0.1748 0.2129 0.1882 0.4477 
3 0.1768 0.2285 0.1842 0.2403 0.1925 0.4711 
4 (a) 0.2080 0.2974 0.1917 0.1957 0.2044 0.2587 
4 (b) 0.1665 0.2958 0.1890 0.1873 0.1750 0.2618 
4 (c) 0.1867 0.2682 0.1588 0.1683 0.1684 0.4537 

 

The binary maps for the best performing Scenario 1 models GAM and RF models are presented by 

Figure 5-8 (pg. 51). Additionally, an ensemble model was constructed for Scenario 1, with all the models 

deemed suitable for mire distribution modelling. That is, all models except for the CART model in the 

two scenarios. The correct classification rate (CCR) of each model was calculated by crossing all 

presences-absences with the binary predictions in order to determine the proportion of more presence-

absence observations each model classified correctly. The confusion matrices for the GAM, RF and 

Ensemble for Scenario 1 variables are presented Appendix 2 (pg. 82). 

 

The RF model had the best CCR with 99% compared to the 72% and 85% of the GAM and Ensemble, 

respectively. As evidenced by their individual confusion matrices in Appendix 2 (pg. 82), the GAM and 

Ensemble models overestimated the distribution of mires, misclassifying more mire absence locations 

as mire presences. Although the RF model achieved an almost perfect CCR, based on the description 

provided by Smith and Mucina (2006) as described in detail in Wetlands (pg. 6), the model 

underestimates the distribution of mires on the western side of the Island, where a large mire is said to 

exist (as depicted in Figure 2-1). 
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Figure 5-8: Possible mire distribution on Marion Island according to Scenario 1’s suitable models: Boosted 
Regression Tree (a), Random Forest (b), Ensemble (c). Threshold based on the maximized the sum of 
sensitivity and specificity (i.e., sensitivity + specificity/ 2) Liu et al. (2005). 
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Consequently, the RF model trained with Scenario 1 variables was chosen as the model to predict the 

distribution of mires on the PEIs. However, even though soils are one of the variables in Scenario 1, a 

soils layer is only available for Marion Island. As a result, because the model trained on Marion Island 

was used for Prince Edward Island to predict the distribution of mires there, the model predictor 

variables should be the same for both Islands. Prior to eliminating the soils variable from the model, the 

contribution of each Scenario 1 variable in the RF model was evaluated. This allowed determining the 

effect the soils variable has on model performance, and, as a result, understanding how removing it 

may change the prediction of mire distribution. 

 

According to Figure 5-9 below, soils and geology were the two least influential variables in both models. 

With a contribution of 2%, the soils variable contributed 30% less than the most important variable 

(surface wetness [NDWI]). As the variable did not offer much influence in the model, it was removed 

from the predictor variables used to train the RF model to predict the distribution of mires on the PEIs. 

 

 

Figure 5-9: Relative importance (%) of Scenario 1 variables in Random Forest (RF) model. Higher 
relative variable importance values indicate that the variable is more significant in affecting model 
classification accuracy. 

Therefore, the optimal model for predicting the distribution of mires on the PEIs was the RF model 

based on the variables presented in Table 5-4 (pg. 53). 
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Table 5-4: Predictor variables used to predict the distribution of mires on the Prince Edward Islands. 

Variable Type Predictor Variable 
Topographic 
(DEM derived) 
 

Slope  
Distance from coast  
Topographic wetness (TWI) 
Landforms (TPI) 

Geology and Soils Geology 
Satellite imagery Vegetation density (NDVI) 

Surface wetness (NDWI) 
Bioclimatic BIO01: Annual Mean Temperature 

BIO04: Temperature Seasonality  
BIO15: Precipitation Seasonality  

 

5.3. Current Mire Distribution 
According to the predictions presented in Figure 5-11 (pg. 55), mires currently occupy 8.7 km² (of ~290 

km²) of Marion Island and 2.63 km² (of ~ 45 km²) of Prince Edward Island. Two of the three large mires 

identified by Smith and Mucina (2006, p. 716) were predicted by the model. These large mires were 

found on the eastern side of the Island on the coastal plain between Repetto's Hill and Long Ridge, as 

well as inland from East Cape, Macaroni Bay (Figure 2-1, pg. 7). The one on the western coastal plain 

between Kleinkoppie and Kampkoppie, was only partially predicted. Another noticeable mire prediction 

on Marion Island is on the southern part of the Island. According to predictions, Prince Edward Island’s 

mires are prevalent in the north-western and south-eastern parts of the Island, where plains are the 

dominant landform (Figure 5-2 (e), pg. 44). 

 

Surface wetness (26.4%) and slope (23.2%) were by far the most important predictor factors of mire 

distribution, as shown in Figure 5-10 (pg. 54). Following that were the two temperature variables, 

temperature seasonality (10.7%) and annual mean temperature (9.4%). The distance from coast (8.6%) 

was less essential, but still played a role in predicting mire occurrence. Precipitation seasonality (5.5%), 

landforms (5%), topographic wetness (4.3%), and geology (1.1%) all played a minor influence in mire 

prediction, each contributing less than 6%; however, geology was by far the least important variable in 

the model. 
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Figure 5-10: Relative importance (%) of variables selected for final Random Forest (RF) model. Higher 
relative variable importance values indicate that the variable is more significant in affecting model 
classification accuracy. 

Response curves, which represent the association between a species' probability of occurring and each 

predictor variable, were used to examine the influence of each predictor variable on the probability of 

mire occurrence and are provided in Table 5-5 (pg. 56). 
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Figure 5-11: Predicted distribution of mires on the Prince Edward Islands (PEIs) based on Scenario 1 
predictor variables. Marion Island (a), Prince Edward Island (b). 
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Table 5-5: Response curves for each variable, indicating the effect of a predictor variable on the probability 
of the response variable. Values closer to 1 on the y axis indicate high probability of occurrence at a range 
of predictor variable values on the x-axis. The variables are listed by order of importance. 

Predictor Variable Response Curve Interpretation 
Surface Wetness 

 

The curve shows a steep decline 
with increasing surface wetness 
(NDWI) values. Higher NDWI values 
are associated with open water or 
surface water presence and mires 
are known to occur where there is 
high soil moisture. Therefore, as 
mires occur where values are 
between -0.75 and -0.25, with some 
preferring -0.1 to -0.25, this is an 
indication that mires do not occur in 
areas where the water is visible at 
the surface (open surface water) 

Slope (º)  

 

The curve shows an increase with 
increasing slope from about 30º and 
62º, indicating mires on Marion 
Island likely prefer steeper slope, 
while some prefer slopes between 0º 
and 10º.  

Temperature 
Seasonality 

 

The WorldClim temperature 
seasonality values, as can be seen 
in Table 4-2 (pg. 35), are multiplied by 
100 to preserve significant digits 
(O’Donnell and Ignizio, 2012). 
Therefore, mire occurrences are 
likely when the temperature 
seasonality is no more than 1.87 ºC, 
peaking between 1.60 ºC and 1.87 
ºC. 

Annual Mean 
Temperature (ºC) 

 

Mires are more likely to occur where 
annual mean temperatures are 
around 6 ºC 

Distance from 
Coast (m) 

 

Mires are likely to occur on the 
lowland between the coast and 4.2 
km, but mires can be found up to 7.2 
km away from coast. 
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Precipitation 
Seasonality (%) 

 

Mires prefer areas where 
precipitation seasonality is between 
8 and 11.5%. 

Landforms 

 

Landforms are low on the variable 
importance list and have no 
discernible relationship with mire 
distribution. 

Topographic 
Wetness 

 

Mires occur when the Topographic 
Wetness Index (TWI) value is equal 
to zero, then the probability of their 
occurrence falls drastically until it 
rises between 10 and 15. 

Geology 

 

Geology is at the bottom of the 
variable importance list and has no 
discernible relationship with mire 
distribution. 

 

The Normalised Difference Vegetation Index (NDVI) (Table A-1, pg. 75), which was utilized as a proxy 

for vegetation density, was strongly correlated with surface wetness. As a result, vegetation density 

must have a comparable impact on predicting mire distribution on the PEIs and may thus be used 

instead of the surface wetness proxy. As seen in Figure 5-12, when surface wetness is replaced 

with vegetation density, the latter has a significant impact on prediction; however, it is not the most 

important factor as surface wetness was, but rather the second most important after slope. The 

remaining variables are still ranked in the same order. Figure 5-13 (pg. 58) depicts the response curve 

for the vegetation density proxy, suggesting mires peak where NDVI values are around 0.375. A similar 

situation exists between annual mean temperature (BIO01) and annual precipitation (BIO12). When 

annual temperature is used over annual mean temperature, the former is the third most important 

variable in the model (Figure 5-15, pg. 59), with mires being slightly negatively impacted by annual 

temperature and mires preferring lower annual precipitation amounts (Figure 5-14, pg. 58). 
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Figure 5-12: Relative importance (%) of variables selected for final Random Forest (RF) model with surface 
wetness (NDWI) replaced with vegetation density (NDVI). Higher relative variable importance values 
indicate that the variable is more important in affecting model classification accuracy. 

 

Figure 5-13: Response curve for vegetation 
density proxy (NDVI) when it is used over surface 
wetness proxy (NDWI) in mire distribution 
prediction. 

 

Figure 5-14: Response curve for annual 
precipitation (BIO12). when it is used over mean 
annual temperature (BIO01) in mire distribution 
prediction. 
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Figure 5-15: Relative importance (%) of variables selected for final Random Forest (RF) model with mean 
annual temperature (BIO01) replaced with annual precipitation (BIO12). Higher relative variable importance 
values indicate that the variable is more significant. 
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Chapter 6: Discussion 
The ability of multiple regression-based and machine learning species distribution modelling algorithms 

(Table 4-5, pg. 38) to predict the distribution of mires on the Prince Edward Islands using several 

combinations of predictor variables (Scenarios) (Table 4-6, pg. 40) was assessed in this study.  

 

The best performing model in this study performed only fairly (AUC = 0.74, TSS = 0.42) (González-
Ferreras et al., 2016). Therefore, it is clear that the predictive power of the models in this study was 

poor and just only sufficient for species distribution modelling. The Random Forest model trained with 

a combination of digital elevation model (DEM) derived topographic, WorldClim bioclimatic variables, 

satellite imagery derived, and geology variables was selected as the optimal model to predict the 

distribution of mires on the PEIs.  

 

6.1. Marion Island 
The model’s predictions suggested mires occupy 8.7 km² (of ~290 km²) of Marion Island (Figure 5-11, 

pg. 55). Smith and Mucina (2006, p. 716) provided a description of the distribution of mires on Marion 

Island (Figure 2-1, pg. 7). Based on this description, the model was able to predict two of the large 

mires known to exist on the eastern coast of Marion Island, on the coastal plain between Repetto’s Hill 

and Long Ridge, inland of East Cape, Macaroni Bay. A third mire was said to exist on the western 

coastal plain between Kleinkoppie and Kampkoppie. The model, however, anticipated a minimal extent 

of mires in this area. The underestimation suggests that there may be some critical environmental 

factors that were not included owing to unavailability. It is also probable that some of the environmental 

factors differ between the eastern and western parts of the island due to minor variances in climate on 

both sides of the island, implying that the model did not possess the same predictive ability on both 

sides. Furthermore, the underestimation in that area is also possibly due to the uneven distribution of 

presence-absence observations. There were 1415 presence-absence observations (255 presences, 

1415 absences) in total, which was sufficient to train the model. However, the majority of the 

observations were located on the island's eastern rather than western side. And given the presumed 

minor differences in the conditions under which mires occur as a result of differing climate conditions 

between the western and eastern sides of the Island, the model prediction on the former side of the 

island may have been less precise, as the conditions of the predictor variables on the latter side carried 

more weight (as there is more of them) than those on the former side, resulting in mire underestimation 

on the former (western) side of the island. 

 

According to the model predictions, the distribution of the mires on Marion Islands is primarily influenced 

by surface wetness (derived using the Normalised Difference Water Index (NDWI)) and the slope, 

contributing 15% and 12% more than the next best variable, respectively (Figure 5-10, pg. 54). The 

derived model variable response curves (Table 5-5, pg. 56) suggest mires are likely to occur where 

NDWI values are between -0.75 and -0.25. This range of values represent the absence of open surface 

water and is typically associated with land cover classifications such as vegetation, bare soil or rock. 

This suggests that although mires are habitats that occur in wet areas (high soil moisture), the water is 
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rarely visible at the  surface. As vegetation density (derived using the Normalised Difference Vegetation 

Index (NDVI)) was highly correlated to surface wetness, it can be used as a substitute in the model. 

With mires favouring areas with NDVI values around 0.375, mires are modelled to occur for moderate 

NDVI values (approximately 0.2 to 0.5) associated with sparse vegetation, such as shrubs and 

grasslands (USGS, 2021). As mires are characterised by a layer of peat at the surface, this range of 

values is plausible. In terms of the slope, the model suggests slopes between 30º and 62º, with some 

mires preferring gentler slopes between 0º and 10º. Accumulation (of water or peat or soil) is expected 

to occur on gentler slopes and the largest mires on Marion Island are known to occur on undulating 

landscapes associated with gentle slopes; yet, the model predicts the mires on Marion Island occur on 

steeper slopes. This may be due to the fact that mires on Marion Island often have exposed ridges and 

plateaus around their edges (Yeloff et al., 2007), and the Marion Island landscape is highly variable. As 

such, the scale at which the study was conducted (10 m) could possibly have generalised slope, ridges 

and plateaus, influencing the modelling of mire occurrence. In addition, this result may be as a result of 

inaccuracies in the digital elevation model (DEM) which may have occurred in the data collection or 

DEM generation process. As the explanation for the finding is unclear, additional investigation into the 

model’s suggestion of mires on steep slopes is warranted. 

 

Temperature variables (temperature seasonality (BIO04), and annual mean temperature (BIO01), in 

that order), were the third and fourth most important variables. Mires thrive in cool climatic conditions 

(Essl et al., 2012), hence the proposed temperature seasonality of no more than 1.87 ºC and annual 

mean temperatures of roughly 6 ºC give optimal conditions for peat formation, which is necessary for 

mires existence. The PEIs are considered ‘thermally stable’ (Smith, 2002), therefore, small temperature 

variations are expected. Because of its relationship to the annual mean temperature (BIO01), the annual 

precipitation (BIO12) variable was not included in the model. As a result, at annual precipitation amounts 

of approximately 2150 mm, a similar impact as supplied by annual mean temperature can be expected 

from annual precipitation.  

 

With the presence of mires, the distance from the coast is also a significant element to consider. The 

model suggests that mires can be found everywhere on Marion Island, from the shore up to around 7 

km inland. This, however, contradicts what is known about mires on the Island, which are generally 

lowland features located closer to the coast as depicted in Figure 3-7 (Smith et al., 2001; Smith and 

Mucina, 2006). As a result, the model's recommendation with regards to the distance from coast may 

be considered unexpected and requires further investigation. The other climate variable (precipitation 

seasonality; BIO15), was slightly less important compared to the top five variables, but still played a 

role in predicting mire occurrence. As with temperature seasonality, low variability in monthly 

precipitation total (8% to 11.5%) is ideal for mires on Marion Island. According to their response curves, 

the third and final least important variables (landforms, and geology), have no discernible relationship 

with mire distribution. These two elements are known to have an effect on the existence of mires, 

particularly when using Hydrogeomorphic (HGM) classification system, although the model revealed on 

Marion Island they had only a little effect. There is a close relation between topography and surface 

water because of its fluid characteristics. The shape and permeability of a landscape controls the 

movement of surface water (Wolock et al., 2004; MacMillan and Shary, 2009; Huang et al., 2018b). In 
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terms of geology on Marion Island, peats are substantially thicker (up to 3 m) on older, impermeable 

grey lava flows, whereas they are shallower (usually less than 1 m) on newer, more porous black lava 

flows and scoria deposits (Gremmen, 1981; Smith and Mucina, 2006). However, the response curve 

(Table 5-5, pg. 56) implies that, in addition to the geology variable being negligible in terms of 

contribution in the model, all five geology classes (Table 4-3, 35) have a comparable influence on the 

occurrence of mires. The geology of the PEIs was mapped by Verwoerd and Langenegger (1968), who 

employed interpolation methods to map the geology over the terrain and were recently updated by 

Rudolph et al. (2020). As a result of the dataset's high degree of generalisation, geology did not give 

any insight into the distribution of mires. As with the slope, landforms were generalised due to the 

working spatial resolution for this study (10 m), which could have resulted in the loss of information on 

which landforms are appropriate for mire occurrence. Thus, it is also suggested that all 10 classes of 

landforms (Table 2-3, pg. 14) offer comparable influence on the occurrence of mires. Topographic 

wetness (as measured by the Topographic Wetness Index (TWI)) was the second least important 

variable, providing only a minor contribution to the model, along with landforms and geology. According 

to the response curve, mires are more likely to exist in two places: areas prone to water accumulation 

(low slope angle high values between 10 and 15), and well-drained dry areas (steep slopes) linked with 

low TWI values (close to zero). As such, the TWI does not meaningfully contribute to the occurrence of 

mires on Marion Island. Since it is modelled using the DEM, which was resampled to a spatial resolution 

of 10 m, the same limitations as apply to the TPI (landform classification), apply here. 

 

6.2. Prince Edward Island 
Due to the high levels of protection on Prince Edward Island, there exists no data that can be used to 

train the model and consequently predict the distribution of mires. However, the geographical location, 

climate, terrain, geology, hydrology, and flora of the PEIs are recognised to be similar (Gremmen, 1971; 

Gremmen, 1981; Smith and Steenkamp, 1990; Smith, 2002; Pakhomov and Chown, 2003; Pendlebury 

and Barnes-Keoghan, 2007). Therefore, the variables influencing mire distribution on Marion Island are 

likely to be similar to those on Prince Edward Island. As a result, the model trained on Marion Island 

was used to model mire occurrence on Prince Edward Island. The model’s predictions suggested mires 

occupy 2.63 km² (of ~ 45 km²) of Prince Edward Island (Figure 5-11, pg. 55). According to this model, 

mires are common in the north-western and south-eastern sections of Prince Edward Island, where 

plains are the major landform and slopes are gentler (Figure 5-2, pg. 44). Without mire presence-

absence observations for the Island, there is no way of validating the results of the prediction. Therefore, 

without a field survey, the distribution of mires on Prince Edward Island will remain unverified. 

 

6.3. Conclusion  
Considering the variables available for use on the PEIs, the importance of each variable and the 

thresholds suggested for each variable, six of the nine variables, namely, surface wetness, slope, 

temperature seasonality, annual mean temperature, and distance from coast, can effectively be used 

to predict mire distribution on the PEIs a spatial resolution of 10 m (Table 6-1).  
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Table 6-1: Predictor variables and thresholds that can be used to predict the distribution of mires on the 
Prince Edward Islands (PEIs). The italicised variables can replace the variables they are correlated with 
(which are directly above them). 

Variable Type Predictor Variable Threshold(s) 

Topographic (DEM 
derived) 

Slope  30º to 62º 
Distance from coast  0 to 7.2 km 

Satellite imagery Surface wetness (NDWI) -0.75 to -0.25. 
 Vegetation density (NDVI) ~3 

Bioclimatic 

BIO01: Annual Mean Temperature 6 ºC 
BIO12: Annual precipitation ~2150 mm 
BIO04: Temperature Seasonality  0 ºC to 1.87 ºC  
BIO15: Precipitation Seasonality  8% to 11.5% 

 

 



MM Sadiki: MSc Dissertation  Page | 64 

7. : Conclusion and Recommendations  
The aim of this study was to use species distribution modelling to predict and understand the distribution 

of mires on the Prince Edward Islands (PEIs). In order to do so, the ability of multiple regression-based 

and machine learning species distribution modelling algorithms (Table 4-5, pg. 38) to predict the 

distribution of mires on the Prince Edward Islands using several combinations of predictor variables 

(Scenarios) (Table 4-6, pg. 40) was assessed. 

 

The Areas under the Curve (AUC) and True Skill Statistics (TSS) values for the models in this study 

suggest no more than fair model performance. The Random Forest (RF) model built using the default 

parameters in ‘sdm’ package in R (Naimi and Araújo, 2016) trained with a combination of digital 

elevation model (DEM) derived topographic, WorldClim bioclimatic variables, satellite imagery derived, 

and geology variables (Table 5-4, pg. 53) was able to predict the distribution of mires with a correct 

classification rate (CCR) of 99%. Overall, this model had a fair performance when predicting mires for 

Marion Island. The Model predicts mires for 8.7 km² (3%) of Marion Island and 2.63 km² (5.8%) of Prince 

Edward Island. Furthermore, the predicted mire distribution on Marion Island was realistic when 

compared to the description of mires provided by Smith and Mucina (2006, p. 716). The distribution 

estimates on Marion Island were, however, less than expected, with underestimation on the western 

side of Marion Island. The underestimation can be ascribed to a combination of unavailable or differing 

environmental factors across the landscape, persistent cloud cover (affecting satellite imagery derived 

indices), or a change of mire occurrence since the evaluation by Smith and Mucina (2006). As Prince 

Edward Island is similar to Marion Island in terms of its geographical location, climate, terrain, geology, 

hydrology, and flora, the model trained on Marion Island was used to predict on Prince Edward Island 

where no presence-absence data for mire occurrence exist. However, the accuracy of the prediction on 

Prince Edward Island is unknown as there are no data that can be used to validate the results. 

 

The goal of this study was to ascertain what factors influence mire distribution on the PEIs so that future 

mire distribution can be predicted in light of climate change. With the present climatic trajectory on the 

PEIs, the Islands can be expected to become warmer and dryer, which will dry out mires and potentially 

reduce their distribution over the terrain. However, of the six potential factors influencing mire 

distribution on the PEIs (slope, distance from the coast, surface wetness, and climate variables (annual 

mean temperature, temperature, and precipitation seasonality)), the surface wetness proxy and slope 

were the main drivers of current mire distribution (Figure 5-15), while the three climatic variables were 

less important. Given that the models in this study only performed fairly and the influence of climate 

factors in the RF model, this model should be used with caution when predicting mire distribution on 

the PEIs under future climate scenarios. Regardless, projecting this model onto future climate 

conditions may provide some insight into the impact of climate change on future mire distribution. 

 

There were four main limitations to this study. The explanatory variables for the SDMs were chosen 

based on their availability and prediction potential for mires on the PEIs; however, given the limited 

available data, the selected environmental variables may have excluded some important variables that 

could be useful for mire occurrence prediction. Furthermore, the climate conditions on Marion Island 
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are known to differ slightly, with the western side of the island experiencing more humidity, cloudiness, 

and precipitation than the eastern side (Rouault, 2005; le Roux, 2008), which may cause minor 

differences in environmental variables on both sides of the Island. This may have in turn resulted in the 

RF model employed in this study underestimating the distribution of mires on the western side of the 

Island. Therefore, the inclusion of more environmental variables may improve the predictive ability of 

the models.  

 

The second limitation was encountered in the mire presence- absence observations. Although there 

were enough to train models in the study, their distribution differs on the eastern and western side of 

Marion Island (Figure 4-2), with the distribution on the latter side lesser than on the former side of the 

island. As one of the three large mires on Marion Island is known to be located on the former side, more 

mire presence points are expected in that region than what is suggested by the observations recorded 

during the survey of the area. Therefore, this was likely due to poor surveying on this side of the Island. 

As a result, the RF model employed in this study underestimated the distribution of mires on the western 

side of the Island. Therefore, improved surveying on this side of the Island may improve the predictive 

ability of the models, especially on the western side of the island. 

 

The third limitation related to the resolution of the data used in the study. Geology and soils are known 

to be influencers of mire occurrence. However, the resolution of the data in this study was too coarse 

to offer any useful information about their impact on the distribution of mires on the PEIs. Additionally, 

the climate data downloaded from the WorldClim version 2.1 database has a coarse spatial resolution. 

Due to the limited number of meteorological stations on oceanic islands, these datasets exhibit 

substantial precision errors (Fick and Hijmans, 2017; Leihy et al., 2018). This is due to the fact that the 

data is created from models that smooth data from available meteorological stations, which are lacking 

for oceanic islands (Leihy et al., 2018). Therefore, the PEIs are no different, with their climate datasets 

interpolated from measurements acquired from only one meteorological station located on Marion 

Island. Furthermore, climate interpolation in topographically complex and steep areas is fraught with 

error (Fick and Hijmans, 2017). Considering the data was available at a spatial resolution of 

approximately 900 m at the equator and was interpolated from a single meteorological station for Islands 

that are considered topologically complex with steep areas, the climate data is not completely reliable 

(Leihy et al., 2018). However, according to Treasure et al. (2019), rainfall on Marion Island increased 

with height, particularly on the eastern side, which is consistent with WorldClim2 data. In addition, the 

availability of cloud free, high resolution satellite imagery was also an issue. Although Sentinel-2 

imagery is available for the Islands, there is persistent cloud cover, which results in a reduced number 

of imagery available for use on the Islands. As a result, the imagery for the two Islands were from two 

different years (2017 and 2020). However, this limitation did not significantly affect the presence of 

mires, since a 3-year period is unlikely to reflect a drastic change in mire occurrence. Regardless, the 

presence of cloud cover required that multiple image tiles were used to create one cloud-free mosaic 

of Marion Island. Although the images used for the mosaic were collected a few days apart (5 days), 

their reflectance values were not the same, affecting resultant analyses. Furthermore, the mosaic had 

a section of the Island cut off because of cloud cover (refer to  Figure 4-6, pg. 34). Due to this limitation, 

this small section of Marion Island has no predictions. Therefore, obtaining higher-resolution geology 
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and soil datasets, improved climate variable datasets for the Islands, and a high-resolution cloud-free 

satellite image from a similar time frame to base remote sensing indices on for inclusion in the models 

for future research can improve the predictive performance of the models. 

 

Finally, the inability to conduct field surveying to ground truth the results of the study was an additional 

issue. Although the occurrence points used to train the SDMs in this study are a true reflection of mire 

occurrence on Marion Island, the accuracy of the prediction on Prince Edward Island could not be 

evaluated. Therefore, the research can be improved by verifying modelled mire locations on Prince 

Edward Island, and subsequently using the data to improve the models; and apply those results to other 

sub-Antarctic islands to determine if they can be used elsewhere in the Southern Ocean. 

 

Regardless of the limitations presented here, this study found that mires can be predicted with fair 

accuracy using species distribution models (SDMs) in conjunction with remote sensing and Geographic 

Information Systems (GIS) derived products. Mires represent crucial ecosystems, and their loss, or 

threat by climate change and other factors, will have an effect on the environment they are found in. As 

such, being able to model their distribution with any measure of accuracy for areas where data are 

lacking allows for better management and monitoring of these sensitive ecosystems. 
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A. Appendices 
Appendix 1 
Table A-1: Correlation matrix showing Pearson’s correlation coefficient for all 28 predictor variables. If two variables have a Pearson (r) correlation coefficient larger 

than a threshold, they are correlated (Naimi and Araújo, 2016). Correlation greater or equal to 0.9 (highlighted red) suggests multicollinearity issues. 

 Distance From Coast Elevation Geology NDVI NDWI Slope Soil TPI TWI BIO01 BIO04 BIO12 BIO15 
Distance From Coast 1             

Elevation 0,84 1            

Geology 0,17 0,25 1           

NDVI -0,71 -0,8 -0,27 1          

NDWI 0,64 0,73 0,23 -0,97 1         

Slope 0,17 0,28 0,25 -0,24 0,26 1        

Soil 0,25 0,3 0,08 -0,25 0,24 0,15 1       

TPI 0,05 0,11 0,07 -0,11 0,11 0,11 0,04 1      

TWI -0,07 -0,11 -0,09 0,11 -0,12 -0,37 -0,06 -0,33 1     

BIO01 -0,77 -0,97 -0,22 0,79 -0,74 -0,3 -0,29 -0,07 0,11 1    

BIO04 -0,02 -0,04 -0,11 -0,06 0,07 0 0,04 0,01 0 0,07 1   

BIO12 0,68 0,9 0,15 -0,72 0,68 0,33 0,26 0,07 -0,11 -0,94 0,02 1  

BIO15 0,58 0,75 0,12 -0,63 0,6 0,3 0,27 0,06 -0,1 -0,8 0,05 0,92 1 
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Appendix 2 

 

Figure A-1: Scenario 1 model predictions based on the mean of 10 fold cross-validation predictions per 

model. BRT (a), CART (b), GAM (c), GLM (d), MARS (e), RF (f). 
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Figure A-2: Scenario 2 model predictions based on the mean of 10 fold cross-validation predictions per 

model. BRT (a), CART (b), GAM (c), GLM (d), MARS (e), RF (f). 
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Figure A-3: Scenario 3 model predictions based on the mean of 10 fold cross-validation predictions per 

model. BRT (a), CART (b), GAM (c), GLM (d), MARS (e), RF (f). 
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Figure A-4: Scenario 4(a) model predictions based on the mean of 10 fold cross-validation predictions per 

model. BRT (a), CART (b), GAM (c), GLM (d), MARS (e), RF (f). 
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Figure A-5: Scenario 4(b) model predictions based on the mean of 10 fold cross-validation predictions per 

model. BRT (a), CART (b), GAM (c), GLM (d), MARS (e), RF (f). 
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Figure A-6: Scenario 4(c) model predictions based on the mean of 10 fold cross-validation predictions per 

model. BRT (a), CART (b), GAM (c), GLM (d), MARS (e), RF (f). 
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Table A-2: Confusion matrix for Scenario 1’s GAM model. 
 

Reference Data 
Absent Present Row Total User Accuracy 

C
la

ss
ifi

ed
 

da
ta

 Absent 813 71 885 0,918644 
Present 314 176 490 0,359184 

Column Total 1127 248 1375 0 
Producer Accuracy 0,721384 0,709677 0 0,719273 

 

Overall Accuracy = 72%, KAPPA = 0.31 

Table A-3: Confusion matrix for Scenario 1’s RF model. 
 

Reference Data 
Absent Present Row Total User Accuracy 

C
la

ss
ifi

ed
 

da
ta

 Absent 1126 11 1137 0,990325 
Present 1 237 238 0,995798 

Column Total 1127 248 1375 0 
Producer Accuracy 0,999113 0,754032258 0 0,991278 

 

Overall Accuracy = 99%, KAPPA = 0.97 

Table A-4: Confusion matrix for Scenario 1’s Ensemble model. 
 

Reference Data 
Absent Present Row Total User Accuracy 

C
la

ss
ifi

ed
 

da
ta

 Absent 973 59 1032 0,942829 
Present 154 189 343 0,55102 

Column Total 1127 248 1375 0 
Producer Accuracy 0,863354 0,762097 0 0,8450918 

 

Overall Accuracy = 85%, KAPPA = 0.54 

 

 
 


